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Getting Started

+  “Statistics and Machine Learning Toolbox Product Description” on page 1-2

+ “Supported Data Types” on page 1-3



1 Getting Started

Statistics and Machine Learning Toolbox Product Description

Analyze and model data using statistics and machine learning

Statistics and Machine Learning Toolbox™ provides functions and apps to describe,
analyze, and model data using statistics and machine learning. You can use descriptive
statistics and plots for exploratory data analysis, fit probability distributions to data,
generate random numbers for Monte Carlo simulations, and perform hypothesis tests.
Regression and classification algorithms let you draw inferences from data and build
predictive models.

For analyzing multidimensional data, Statistics and Machine Learning Toolbox lets
you identify key variables or features that impact your model with sequential feature
selection, stepwise regression, principal component analysis, regularization, and other
dimensionality reduction methods. The toolbox provides supervised and unsupervised
machine learning algorithms, including support vector machines (SVMs), boosted and
bagged decision trees, k-nearest neighbor, k-means, k-medoids, hierarchical clustering,
Gaussian mixture models, and hidden Markov models.

Key Features

* Regression techniques, including linear, generalized linear, nonlinear, robust,
regularized, ANOVA, and mixed-effects models

* Repeated measures modeling for data with multiple measurements per subject

*  Univariate and multivariate probability distributions, including copulas and
Gaussian mixtures

*+ Random and quasi-random number generators and Markov chain samplers

* Hypothesis tests for distributions, dispersion, and location, and design of experiments
(DOE) techniques for optimal, factorial, and response surface designs

* Classification Learner app and algorithms for supervised machine learning, including
support vector machines (SVMs), boosted and bagged decision trees, k-nearest
neighbor, Naive Bayes, and discriminant analysis

*  Unsupervised machine learning algorithms, including k-means, k-medoids,
hierarchical clustering, Gaussian mixtures, and hidden Markov models
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Supported Data Types

Statistics and Machine Learning Toolbox supports the following data types for input
arguments:

Numeric scalars, vectors, matrices, or arrays having single- or double-precision
entries. These data forms have data type single or double. Examples include
response variables, predictor variables, and numeric values.

Cell vectors of strings; character, logical, or categorical arrays; or numeric vectors for
categorical variables representing grouping data. These data forms have data types
cellstr, char, logical, categorical, and single or double, respectively. An
example is an array of class labels in machine learning.

You can also use nominal or ordinal arrays for categorical data. However, the
nominal and ordinal data types might be removed in a future release. To work
with nominal or ordinal categorical data, use the categorical data type instead.

You can use signed or unsigned integers, e.g., iNt8 or uint8. However:

Estimation functions might not support signed or unsigned integer data types
for nongrouping data.

If you recast a single or double numeric vector containing NaN values to a
signed or unsigned integer, then the software converts the NaN elements to O.

Some functions support tabular arrays for heterogeneous data (for details, see
“Tables”). The table data type contains variables of any of the data types previously

listed. An example is mixed categorical and numerical predictor data for regression
analysis.

For some functions, you can also use dataset arrays for heterogeneous data.
However, the dataset data type might be removed in a future release. To work

with heterogeneous data, use the table data type if the estimation function
supports it.

Functions that do not support the table data type support sample data of type
single or double, e.g., matrices.

Statistics and Machine Learning Toolbox does not support the following data types:

Complex numbers.

Custom numeric data types, e.g., a variable that is double precision and an object.

Numeric scalars, vectors, matrices, or arrays on a GPU.
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* Signed or unsigned numeric integers for nongrouping data, e.g., unint8 and Intl6.

* Sparse matrices, i.e., matrix A such that issparse(A) returns 1. To use data that is
of data type sparse, recast the data to a matrix using ful l.

Note: If you specify data of an unsupported type, then the software might return an error

or unexpected results.




Organizing Data

* “Other MATLAB Functions Supporting Nominal and Ordinal Arrays” on page
2-3

* “Create Nominal and Ordinal Arrays” on page 2-4

* “Change Category Labels” on page 2-9

* “Reorder Category Levels” on page 2-11

+ “Categorize Numeric Data” on page 2-16

+ “Merge Category Levels” on page 2-19

* “Add and Drop Category Levels” on page 2-21

*  “Plot Data Grouped by Category” on page 2-25

* “Test Differences Between Category Means” on page 2-29
+ “Summary Statistics Grouped by Category” on page 2-38
* “Sort Ordinal Arrays” on page 2-40

+ “Categorical Arrays” on page 2-42

+ “Advantages of Using Categorical Arrays” on page 2-44

* “Index and Search Using Categorical Arrays” on page 2-47
*  “Grouping Variables” on page 2-52

* “Dummy Indicator Variables” on page 2-55

+ “Regression with Categorical Covariates” on page 2-58

+ “Create a Dataset Array from Workspace Variables” on page 2-63
+ “Create a Dataset Array from a File” on page 2-69

+ “Add and Delete Observations” on page 2-77

* “Add and Delete Variables” on page 2-81

* “Access Data in Dataset Array Variables” on page 2-85

+  “Select Subsets of Observations” on page 2-91

* “Sort Observations in Dataset Arrays” on page 2-95
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“Merge Dataset Arrays” on page 2-99

“Stack or Unstack Dataset Arrays” on page 2-103
“Calculations on Dataset Arrays” on page 2-108
“Export Dataset Arrays” on page 2-111

“Clean Messy and Missing Data” on page 2-113
“Dataset Arrays in the Variables Editor” on page 2-118
“Dataset Arrays” on page 2-132

“Index and Search Dataset Arrays” on page 2-135
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Other MATLAB Functions Supporting Nominal and Ordinal Arrays

Notable functions that operate on nominal and ordinal arrays are listed in Using
nominal Objects and Using ordinal Objects. In addition to these, many other functions

in MATLAB® operate on nominal and ordinal arrays in much the same way that they
operate on other arrays. A few functions might exhibit special behavior when operating
on categorical arrays:

+ If multiple input arguments are categorical arrays, the function often requires that
they have the same set of categories, including order if ordinal.

+ Relational functions, such as max and gt, require that the input arrays be ordinal.

The following table lists MATLAB functions that operate on nominal and ordinal arrays
in addition to other arrays.

size isequal intersect histogram double
length isequaln ismember pietimes single
ndims setdiff int8
numel eq setxor sort intlé
ne unique sortrows int32
isrow It union issorted int64
iscolumn le uints
ge permute uintl6
cat gt reshape uint32
horzcat transpose uints4
vertcat min ctranspose char
max cellstr
median
mode
See Also

Using nominal Objects | Using ordinal Objects



2 Organizing Data

Create Nominal and Ordinal Arrays

In this section...

“Create Nominal Arrays” on page 2-4

“Create Ordinal Arrays” on page 2-6

Create Nominal Arrays

This example shows how to create nominal arrays using nominal.
Load sample data.

The variable species is a 150-by-1 cell array of strings containing the species name for
each observation. The unique species types are setosa, versicolor, and virginica.

load("fisheriris®)
unique(species)

ans =

"setosa”
"versicolor*®
"virginica“

Create a nominal array.

Convert species to a nominal array using the categories occurring in the data.

speciesNom = nominal (species);
class(speciesNom)

ans =
nominal
Explore category levels.

The nominal array, speciesNom, has three levels corresponding to the three unique
species. The levels of a nominal array are the set of possible values that its elements can
take.

getlevels(speciesNom)
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ans =

setosa versicolor virginica
A nominal array can have more levels than actually appear in the data. For example, a
nominal array named AIlSizes might have levels small, medium, and large, but you
might only have observations that are medium and large in your data. To see which
levels of a nominal array are actually present in the data, use unique, for instance,
unique(AllSizes).

Explore category labels.

Each level has a label, which is a string used to name the level. By default, nominal
labels the category levels with the values occurring in the data. For speciesNom, these
labels are the species types.

getlabels(speciesNom)
ans =

"setosa” "versicolor” "virginica*®
Specify your own category labels.

You can specify your own labels for each category level. You can specify labels when you
create the nominal array.

speciesNom2 = nominal(species,{"seto", "vers”, “virg“"});
getlabels(speciesNom2)

ans =
"seto” "vers”® “virg”

You can also change category labels on an existing nominal array using setlabels

Verify new category labels.

Verify that the new labels correspond to the original labels in speciesNom.

isequal (speciesNom=="setosa”,speciesNom2=="seto")

ans =
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The logical value 1 indicates that the two labels, "setosa” and "seto”, correspond to
the same observations.

Create Ordinal Arrays
This example shows how to create ordinal arrays using ordinal.

Load sample data.

AllSizes = {"medium”,"large®,"small”,"small”, "medium®, ...
"large®, "medium®, "small"};

The created variable, Al1Sizes, is a cell array of strings containing size measurements
on eight objects.

Create an ordinal array.

Create an ordinal array with category levels and labels corresponding to the values in the
cell array (the default levels and labels).

sizeOrd = ordinal (AllSizes);
getlevels(sizeOrd)

ans =
large medium small
Explore category labels.

By default, ordinal uses the original strings as category labels. The default order of the
categories is ascending alphabetical order.

getlabels(sizeOrd)
ans =
"large* "medium* “small*

Add additional categories.

Suppose that you want to include additional levels for the ordinal array, xsmall and
xlarge, even though they do not occur in the original data. To specify additional levels,
use the third input argument to ordinal.
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sizeOrd2 = ordinal (AllSizes,{},---
{"xsmall*®,"small”,"medium®, " large”, "xlarge"});
getlevels(sizeOrd2)
ans =
xsmall small med ium large xlarge

Explore category labels.
To see which levels are actually present in the data, use unique.
unique(sizeOrd2)
ans =
small medium large
Specify the category order.

Convert Al1Sizes to an ordinal array with categories small <medium < large.
Generally, an ordinal array is distinct from a nominal array because there is a natural
ordering for levels of an ordinal array. You can use the third input argument to ordinal
to specify the ascending order of the levels. Here, the order of the levels is smallest to
largest.

sizeOrd = ordinal (AllSizes,{},{"small”, "medium”, " large});
getlevels(sizeOrd)

ans =
small medium large

The second input argument for ordinal is a list of labels for the category levels. When
you use braces {} for the level labels, ordinal uses the labels specified in the third
input argument (the labels come from the levels present in the data if only one input
argument is used).

Compare elements.

Verify that the first object (with size medium) is smaller than the second object (with size
large).

sizeOrd(1) < sizeOrd(2)
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ans =

1
The logical value 1 indicates that the inequality holds.

See Also

getlabels | getlevels | nominal | ordinal

Related Examples

. “Change Category Labels” on page 2-9

. “Reorder Category Levels” on page 2-11

. “Merge Category Levels” on page 2-19

. “Index and Search Using Categorical Arrays” on page 2-47

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Change Category Labels

This example shows how to change the labels for category levels in categorical arrays
using setlabels. You also have the option to specify labels when creating a categorical
array.

Load sample data.

The variable Cylinders contains the number of cylinders in 100 sample cars.

load(“carsmall™)

unique(Cylinders)
ans =

4

6

8

The sample has 4-, 6-, and 8-cylinder cars.
Create an ordinal array.

Convert Cylinders to a nominal array with the default category labels (taken from the
values in the data).

cyl = ordinal(Cylinders);
getlabels(cyl)

ans =
"4* "6 "8"

ordinal created labels using the integer values in Cylinders, but you should provide
labels for numeric data.

Change category labels.

Relabel the categories in cyl to Four, Six, and Eight.

cyl = setlabels(cyl ,{"Four”,"Six","Eight"});
getlabels(cyl)
ans =
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"Four" "Six" "Eight"

Alternatively, you can specify category labels when you create a nominal or ordinal array
using the second input argument, for example by specifying ordinal (Cylinders,
{"Four®,"Six","Eight"}).

See Also

getlabels | nominal | ordinal | setlabels

Related Examples

. “Reorder Category Levels” on page 2-11

. “Add and Drop Category Levels” on page 2-21

. “Index and Search Using Categorical Arrays” on page 2-47

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Reorder Category Levels

In this section...

“Reorder Category Levels in Ordinal Arrays” on page 2-11

“Reorder Category Levels in Nominal Arrays” on page 2-12

Reorder Category Levels in Ordinal Arrays

This example shows how to reorder the category levels in an ordinal array using
reorderlevels.

Load sample data.

AllSizes = {"medium”,"large”,"small”,“small”, "medium®, ...
“large®, "medium®, "small"};

The created variable, AlISizes, is a cell array of strings containing size measurements
on eight objects.

Create an ordinal array.
Convert AlISizes to an ordinal array without specifying the order of the category levels.

size = ordinal(size);
getlevels(size)

ans =
large medium small

By default, the categories are ordered by their labels in ascending alphabetical order,
large <medium < small.

Compare elements.

Check whether or not the first object (which has size medium) is smaller than the second
object (which has size large).

size(1l) < size(2)

ans =
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0
The logical value O indicates that the medium object is not smaller than the large object.
Reorder category levels.

Reorder the category levels so that small <medium < large.

size = reorderlevels(size,{"small”,"medium®, " large"});
getlevels(size)

ans =
small med ium large
Compare elements.

Verify that the first object is now smaller than the second object.
size(l) < size(2)
ans =

1
The logical value 1 indicates that the expected inequality now holds.

Reorder Category Levels in Nominal Arrays

This example shows how to reorder the category levels in nominal arrays using
reorderlevels. By definition, nominal array categories have no natural ordering.
However, you might want to change the order of levels for display or analysis purposes.
For example, when fitting a regression model with categorical covariates, Fitlm uses the
first level of a nominal independent variable as the reference category.

Load sample data.

The dataset array, hospital, contains variables measured on 100 sample patients.
The variable Weight contains the weight of each patient. The variable Sex is a nominal
variable containing the gender, Male or Female, for each patient.

load("hospital *)
getlevels(hospital .Sex)

ans =
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Female Male

By default, the order of the nominal categories is in ascending alphabetical order of the
labels.

Plot data grouped by category level.

Draw box plots of weight, grouped by gender.

figureQ)
boxplot(hospital .Weight,hospital .Sex)
title("Weight by Gender™®)

Weight by Gender
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160 |
180 .
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|
110} — -

Female hWlale

The box plots appear in the same alphabetical order returned by getlevels.
Change the category order.

Change the order of the category levels.

hospital .Sex = reorderlevels(hospital .Sex,{"Male", "Female"});
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getlevels(hospital .Sex)
ans =

Male Female
The levels are in the newly specified order.

Plot data in new order.
Draw box plots of weight by gender.
figure()

boxplot(hospital Weight,hospital .Sex)
title("Weight by Gender®)

Weight by Gender
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180
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Male Fermmale

The order of the box plots corresponds to the new level order.

See Also

fitlm | getlevels | nominal | ordinal | reorderlevels
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Related Examples

. “Change Category Labels” on page 2-9

. “Merge Category Levels” on page 2-19

. “Add and Drop Category Levels” on page 2-21

. “Index and Search Using Categorical Arrays” on page 2-47

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Categorize Numeric Data

This example shows how to categorize numeric data into a categorical ordinal array using
ordinal. This is useful for discretizing continuous data.

Load sample data.

The dataset array, hospital, contains variables measured on a sample of patients.
Compute the minimum, median, and maximum of the variable Age.

load("hospital ™)
quantile(hospital .Age, [0, .5,1])

ans =
25 39 50

The patient ages range from 25 to 50.

Convert a numeric array to an ordinal array.

Group patients into the age categories Under 30, 30-39, Over 40.

hospital .AgeCat = ordinal(hospital .Age,{"Under 30","30-39","0ver 40"}, ...
[1.[25,30,40,50]);
getlevels(hospital .AgeCat)

ans =

Under 30 30-39 Over 40
The last input argument to ordinal has the endpoints for the categories. The first
category begins at age 25, the second at age 30, and so on. The last category contains
ages 40 and above, so begins at 40 and ends at 50 (the maximum age in the data set). To
specify three categories, you must specify four endpoints (the last endpoint is the upper
bound of the last category).

Explore categories.

Display the age and age category for the second patient.

dataset({hospital .Age(2),"Age"}, - -.
{hospital .AgeCat(2), "AgeCategory"})

ans =
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Age AgeCategory
43 Over 40

When you discretize a numeric array into categories, the categorical array loses all
information about the actual numeric values. In this example, AgeCat is not numeric,
and you cannot recover the raw data values from it.

Categorize a numeric array into quartiles.

The variable Weight has weight measurements for the sample patients. Categorize the
patient weights into four categories, by quartile.

p =0:.25:1;
breaks = quantile(hospital _Weight,p);
hospital .WeightQ = ordinal(hospital .Weight,{"Q1","02","Q3","Q4"}, ...
[1.breaks);
getlevels(hospital .WeightQ)
ans =
01 02 03 04
Explore categories.

Display the weight and weight quartile for the second patient.

dataset({hospital .Weight(2), "Weight"}, ...
{hospital .WeightQ(2), "WeightQuartile®})

ans =

Weight WeightQuartile
163 Q3

Summary statistics grouped by category levels.
Compute the mean systolic and diastolic blood pressure for each age and weight category.
grpstats(hospital ,{"AgeCat”, "WeightQ"}, "mean”, "DataVars"”, "BloodPressure®)

ans =

AgeCat WeightQ GroupCount mean_BloodPressure
Under 30 Q1 Under 30 Q1 6 123.17 79.667
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Under 30_Q2 Under 30 Q2 3 120.33 79.667
Under 30_Q3 Under 30 Q3 2 127.5 86.5
Under 30_0Q4 Under 30 Q4 4 122 78
30-39 Q1 30-39 Q1 12 121.75 81.75
30-39_Q2 30-39 Q2 9 119.56 82_556
30-39_Q3 30-39 Q3 9 121 83.222
30-39_0Q4 30-39 Q4 11 125.55 87.273
Over 40 Q1 Over 40 Q1 7 122.14 84.714
Over 40_Q2 Over 40 Q2 13 123.38 79.385
Over 40_Q3 Over 40 Q3 14 123.07 84.643
Over 40 Q4 Over 40 Q4 10 124.6 85.1

The variable BloodPressure is a matrix with two columns. The first column is systolic
blood pressure, and the second column is diastolic blood pressure. The group in the
sample with the highest mean diastolic blood pressure, 87.273, is aged 30—39 and in the
highest weight quartile, 30-39 Q4.

See Also

grpstats | ordinal

Related Examples

. “Create Nominal and Ordinal Arrays” on page 2-4

. “Merge Category Levels” on page 2-19

. “Plot Data Grouped by Category” on page 2-25

. “Index and Search Using Categorical Arrays” on page 2-47

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Merge Category Levels

This example shows how to merge categories in a categorical array using mergelevels.
This is useful for collapsing categories with few observations.

Load sample data.
load(“carsmall™)
Create a nominal array.

The variable Origin is a character array containing the country of origin for 100 sample
cars. Convert Origin to a nominal array.

Origin = nominal(Origin);
getlevels(Origin)

ans =

France Germany Italy Japan Sweden USA
There are six unique countries of origin in the data.

Tabulate category counts.

Explore the elements of the categorical array.

tabulate(Origin)
Value Count Percent
France 4 4 .00%
Germany 9 9.00%
Italy 1 1.00%
Japan 15 15.00%
Sweden 2 2.00%
USA 69 69.00%

There are relatively few observations in each European country.
Merge categories.

Merge the categories France, Germany, Italy, and Sweden into one category called
Europe.

Origin = mergelevels(Origin,{"France”,"Germany”, " ltaly”,"Sweden®}, . ..
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"Europe”);
getlevels(Origin)

ans =

Japan USA Europe
The variable Origin now has only three category levels.

Tabulate category counts.

Explore the elements of the merged categories.

tabulate(Origin)
Value Count Percent
Japan 15 15.00%
USA 69 69.00%
Europe 16 16.00%

The category Europe has the 16% of observations that were previously distributed across
four countries.

See Also

mergelevels | nominal

Related Examples

. “Create Nominal and Ordinal Arrays” on page 2-4

. “Add and Drop Category Levels” on page 2-21

. “Index and Search Using Categorical Arrays” on page 2-47

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Add and Drop Category Levels
This example shows how to add and drop levels from a categorical array.
Load sample data.
load("examgrades™)

The array grades contains exam scores from 0 to 100 on five exams for a sample of 120
students.

Create an ordinal array.

Assign letter grades to each student for each test using these categories.

Grade Range Letter Grade
100 A+
90-99 A
80-89 B
70-79 C
60—69 D
letter = ordinal(grades,{"D","C","B","A","A+"},[1,---
[60,70,80,90,100,100]1);
getlevels(letter)
ans =
D C B A A+

There are five grade categories, in the specified order D <C <B <A <A+.
Check for undefined categories.

Check whether or not there are any exam scores that do not fall into the five letter
categories.

any(isundefined(letter))

ans =
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1 0 1 1 0

Recall that there are five exam scores for each student. The previous command returns
a logical value for each of the five exams, indicating whether there are any scores that
are <undefined>. There are scores for the first, third, and fourth exams that are
<undefined>, that is, missing a category level.

Identify elements in undefined categories.

You can find the exam scores that do not have a letter grade using the isundefined
logical condition.

grades(isundefined(letter))

ans =

55
59
58
59
54
57
56
59
59
50
59
52

The exam scores that are in the 50s do not have a letter grade.
Add a new category.

Put all scores that are <undefined> into a new category labeled D-.

letter(isundefined(letter)) = "D-";
getlevels(letter)

Warning: Categorical level "D-" being added.
> In categorical.subsasgn at 55

ans =

D C B A A+ D-
The ordinal variable, letter, has a new category added to the end.
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Reorder category levels.

Reorder the categories so that D- <D.

letter = reorderlevels(letter,{"D-","D","C","B", A", "A+"});
getlevels(letter)

ans =
D- D C B A A+
Compare elements.

Now that all exam scores have a letter grade, count how many students received a higher
letter grade on the second test than on the first test.

sum(letter(:,2) > letter(:,1))
ans =
32

Thirty-two students improved their letter grade between the first two exams.
Explore categories.
Count the number of A+ scores in each of the five exams.
sum(letter=="A+")
ans =

0 0 0 0 0
There are no A+ scores on any of the five exams.
Drop a category.
Drop the category A+ from the ordinal variable, letter.

letter = droplevels(letter,"A+");
getlevels(letter)

ans =

D- D C B A
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2-24

Category A+ is no longer in the ordinal variable, letter.

See Also

droplevels | ordinal | reorderlevels

Related Examples

. “Create Nominal and Ordinal Arrays” on page 2-4

. “Reorder Category Levels” on page 2-11

. “Merge Category Levels” on page 2-19

. “Index and Search Using Categorical Arrays” on page 2-47

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Plot Data Grouped by Category

This example shows how to plot data grouped by the levels of a categorical variable.
Load sample data.

load("carsmall™)

The variable Acceleration contains acceleration measurements on 100 sample cars.
The variable Origin is a character array containing the country of origin for each car.

Create a nominal array.

Convert Origin to a nominal array.

Origin = nominal(Origin);
getlevels(Origin)

ans =

France Germany Italy Japan Sweden USA

There are six unique countries of origin in the sample. By default, nominal orders the
countries in ascending alphabetical order.

Plot data grouped by category.
Draw box plots for Acceleration, grouped by Origin.
figure()

boxplot(Acceleration,Origin)
title("Acceleration, Grouped by Country of Origin®)
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Acceleration, Grouped by Country of Origin
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The box plots appear in the same order as the categorical levels (use reorderlevels to
change the order of the categories).

Few observations have Italy as the country of origin.
Tabulate category counts.

Tabulate the number of sample cars from each country.

tabulate(Origin)
Value Count Percent
France 4 4 .00%
Germany 9 9.00%
Italy 1 1.00%
Japan 15 15.00%
Sweden 2 2.00%
USA 69 69.00%

Only one car is made in Italy.
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Drop a category.

Delete the Italian car from the sample.
Acceleration2 = Acceleration(Origin~="ltaly");
Origin2 = Origin(Origin~="ltaly");
getlevels(Origin2)

ans =

France Germany Italy Japan Sweden USA
Even though the car from Italy is no longer in the sample, the nominal variable,
Origin2, still has the category Italy. Note that this is intentional—the levels of a
categorical array do not necessarily coincide with the values.

Drop a category level.
Use droplevels to remove the I'taly category.

Origin2 = droplevels(Origin2,"ltaly”);

tabulate(Origin2)

tabulate(Origin2)
Value Count Percent
France 4 4_.04%
Germany 9 9.09%
Japan 15 15.15%
Sweden 2 2.02%
USA 69 69.70%

The I'taly category is no longer in the nominal array, Origin2.
Plot data grouped by category.

Draw box plots of Acceleration2, grouped by Origin2.
figure()

boxplot(Acceleration2,0rigin2)
title("Acceleration, Grouped by Country of Origin®)
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Acceleration, Grouped by Country of Origin
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The plot no longer includes the car from Italy.

See Also

boxplot | droplevels | nominal | reorderlevels

Related Examples
. “Test Differences Between Category Means” on page 2-29
. “Summary Statistics Grouped by Category” on page 2-38

. “Regression with Categorical Covariates” on page 2-58

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
. “Grouping Variables” on page 2-52
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Test Differences Between Category Means

This example shows how to test for significant differences between category (group)
means using a t-test, two-way ANOVA (analysis of variance), and ANOCOVA (analysis of
covariance) analysis.

The goal is determining if the expected miles per gallon for a car depends on the decade
in which it was manufactured, or the location where it was manufactured.

Load sample data.

load(“carsmall™)
unique(Model_Year)

ans =

70
76
82

The variable MPG has miles per gallon measurements on a sample of 100 cars. The
variables Model _Year and Origin contain the model year and country of origin for each
car.

The first factor of interest is the decade of manufacture. There are three manufacturing
years in the data.

Create a factor for the decade of manufacture.

Create an ordinal array named Decade by merging the observations from years 70 and
76 into a category labeled 1970s, and putting the observations from 82 into a category
labeled 1980s.

Decade = ordinal(Model_Year,{"1970s","1980s"},[1,[70 77 82]);
getlevels(Decade)

ans =
1970s 1980s
Plot data grouped by category.

Draw a box plot of miles per gallon, grouped by the decade of manufacture.

figure()
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boxplot(MPG,Decade)
title("Miles per Gallon, Grouped by Decade of Manufacture®)

Miles per Gallon, Grouped by Decade of Manufacture
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The box plot suggests that miles per gallon is higher in cars manufactured during the
1980s compared to the 1970s.

Compute summary statistics.
Compute the mean and variance of miles per gallon for each decade.
[xbar,s2,grp] = grpstats(MPG,Decade,{"mean”,"var","gname"})
Xbar =

19.7857

31.7097

s2
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35.1429
29.0796

grp =

"1970s*
"1980s*

This output shows that the mean miles per gallon in the 1980s was 31.71, compared to
19.79 in the 1970s. The variances in the two groups are similar.

Conduct a two-sample t-test for equal group means.

Conduct a two-sample ¢-test, assuming equal variances, to test for a significant difference
between the group means. The hypothesis is

Hy : piz70 = Hgo

Hy t pizg # Hgo-
MPG70 = MPG(Decade=="1970s");
MPG80 = MPG(Decade=="1980s");
[h,p] = ttest2(MPG70,MPG80)
h =

1
p =

3.4809e-15

The logical value 1 indicates the null hypothesis is rejected at the default 0.05
significance level. The p-value for the test is very small. There is sufficient evidence that
the mean miles per gallon in the 1980s differs from the mean miles per gallon in the
1970s.

Create a factor for the location of manufacture.

The second factor of interest is the location of manufacture. First, convert Origin to a
nominal array.

Location = nominal(Origin);
tabulate(Location)
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tabulate(Location)
Value Count Percent
France 4 4 .00%
Germany 9 9.00%
Italy 1 1.00%
Japan 15 15.00%
Sweden 2 2.00%
USA 69 69.00%

There are six different countries of manufacture. The European countries have relatively
few observations.

Merge categories.

Combine the categories France, Germany, Italy, and Sweden into a new category
named Europe.

Location = mergelevels(Location,{"France”, "Germany”, " Italy”,"Sweden"}, ...
"Europe®);

tabulate(Location)
Value Count Percent
Japan 15 15.00%
USA 69 69.00%
Europe 16 16.00%

Compute summary statistics.
Compute the mean miles per gallon, grouped by the location of manufacture.
[xbar,grp] = grpstats(MPG,Location,{"mean”, "gname"})

Xbar =

31.8000
21.1328
26.6667

grp =

"Japan®
"USA*
"Europe"

This result shows that average miles per gallon is lowest for the sample of cars
manufactured in the U.S.
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Conduct two-way ANOVA.

Conduct a two-way ANOVA to test for differences in expected miles per gallon between
factor levels for Decade and Location.

The statistical model is

MPGLJ =u+o;+ ﬂj +8ij, 1= 1,2;j = 1,2,3,
where MPG;; is the response, miles per gallon, for cars made in decade i at location j. The
treatment effects for the first factor, decade of manufacture, are the a; terms (constrained
to sum to zero). The treatment effects for the second factor, location of manufacture, are

the f; terms (constrained to sum to zero). The g; are uncorrelated, normally distributed
noise terms.

The hypotheses to test are equality of decade effects,
HO . 051 = 062 =0
H 4 :at least one o; # 0,

and equality of location effects,

Hy:py=Po=pB3=0
H , :at least one B; # 0.

You can conduct a multiple-factor ANOVA using anovan.

anovan(MPG, {Decade,Location}, "varnames” ,{"Decade”, "Location"});

ru Figure 1: N-Way ANOVA R

File Edit View Inset Tools Desktop Window Help k]
Analysis of Variance

Source Sum S5g d_f Mean S5g F Prob>F .
Decade 2554 3¢ 1 2554 .3¢ 1z0.24 Z.88503e-18
Location 1138.85 2 569.43 Z28.8 7.4041ge-10

Error 1912 .35 a0 Z1.25

Total g005_28 33 il

Constrained (Tyvpe I} sums of sguares.
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This output shows the results of the two-way ANOVA. The p-value for testing the
equality of decade effects is 2.88503e-18, so the null hypothesis is rejected at the 0.05
significance level. The p-value for testing the equality of location effects is 7.40416e-10,
so this null hypothesis is also rejected.

Conduct ANOCOVA analysis.

A potential confounder in this analysis is car weight. Cars with greater weight are
expected to have lower gas mileage. Include the variable Weight as a continuous
covariate in the ANOVA; that is, conduct an ANOCOVA analysis.

Assuming parallel lines, the statistical model is

MPG;j, = u+o; + B + yWeight;, + g, 1 =1,2; j =1,2,3; k=1,...,100.

The difference between this model and the two-way ANOVA model is the inclusion of
the continuous predictor, Weight;j., the weight for the kth car, which was made in the ith
decade and in the jth location. The slope parameter is y.

Add the continuous covariate as a third group in the second anovan input argument. Use
the name-value pair argument Continuous to specify that Weight (the third group) is
continuous.

anovan(MPG,{Decade,Location,Weight}, "Continuous”,3, ...
"varnames” ,{"Decade”, "Location”, "Weight"});

rl] Figure 2: N-Way ANOVA EEI)

File Edit View Inset Tools Desktop Window Help o

Analysis of Variance

Source Sum 5g- d_f_ Mean S5g.- F Prob>F -
Decade 72383 1 T23.83 B3.1e 1]

Location 4087 2 20.34 Z2.32 0.1044

Height 11231.51 1 1131.51 1z8.%9¢ u]

Error 780.88 23 8.77

Total g005_28 33 -

Constrained (Type I} sums of sguares.
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This output shows that when car weight is considered, there is insufficient evidence of a
manufacturing location effect (p-value = 0.1044).

Use interactive tool.
You can use the interactive aoctool to explore this result.
aoctool (Weight,MPG,Location);

This command opens three dialog boxes. In the ANOCOVA Prediction Plot dialog box,
select the Separate Means model.

B ANOCOVA Prediction Plot = | B |t
File Edit View Bounds Inset Tools Desktop Window Help k.
< Japan
UsA
+ EuerE '15 T + T T | T T T
40+ I -
P
B T | :
e & |
0r+ ) | -
g
250 o 5+ | -
20+ o T JF =
+
15} | y
10 - | -
5 1 | | | | | |
Export... 2000 2500 3000 3500 4000 4500
| cose | Separate Weans | ¥ 32635 All Groups ¥
Close All Model Weight Location

This output shows that when you do not include Weight in the model, there are fairly
large differences in the expected miles per gallon among the three manufacturing
locations. Note that here the model does not adjust for the decade of manufacturing.

2-35



2 Organizing Data

2-36

Now, select the Parallel Lines model.

ANOCOVA Prediction Plat = | B |t

File Edit View Bounds Insert Tools Desktop Window  Help E

2 Japan
USA

+ Europe -

40

35

MPG

30

25

20

15

10

1 L L L L L
Export... 2000 2500 3000 3500 4000 4500

| Close | Parallel Lines ‘v 3263.5 AllGroups =

Close All Model Weight Location

L 4

When you include Weight in the model, the difference in expected miles per gallon
among the three manufacturing locations is much smaller.

See Also

anovan | aoctool | boxplot | grpstats | nominal | ordinal | ttest2

Related Examples
. “Plot Data Grouped by Category” on page 2-25
. “Summary Statistics Grouped by Category” on page 2-38

. “Regression with Categorical Covariates” on page 2-58



Test Differences Between Category Means

More About

“Categorical Arrays” on page 2-42

“Advantages of Using Categorical Arrays” on page 2-44
“Grouping Variables” on page 2-52
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Summary Statistics Grouped by Category

This example shows how to compute summary statistics grouped by levels of a
categorical variable. You can compute group summary statistics for a numeric array or a
dataset array using grpstats.

Load sample data.

load("hospital *)

The dataset array, hospital, has 7 variables (columns) and 100 observations (rows).
Compute summary statistics by category.

The variable Sex is a nominal array with two levels, Male and Female. Compute the
minimum and maximum weights for each gender.

stats = grpstats(hospital,"Sex”,{"min", "max"}, "DataVars”, "Weight™)

stats =
Sex GroupCount min_Weight max_Weight
Female Female 53 111 147
Male Male 47 158 202

The dataset array, stats, has observations corresponding to the levels of the variable
Sex. The variable min_Weight contains the minimum weight for each group, and the
variable max_Weight contains the maximum weight for each group.

Compute summary statistics by multiple categories.

The variable Smoker is a logical array with value 1 for smokers and value O for
nonsmokers. Compute the minimum and maximum weights for each gender and smoking
combination.

stats grpstats(hospital ,{"Sex", "Smoker"},{"min","max"}, ...

"DataVars”, "Weight®)

stats =
Sex Smoker GroupCount min_Weight max_Weight
Female O Female false 40 111 147
Female 1 Female true 13 115 146
Male_ O Male false 26 158 194
Male 1 Male true 21 164 202
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The dataset array, stats, has an observation row for each combination of levels of Sex
and Smoker in the original data.

See Also

dataset | grpstats | nominal

Related Examples
. “Plot Data Grouped by Category” on page 2-25
. “Test Differences Between Category Means” on page 2-29

. “Calculations on Dataset Arrays” on page 2-108

More About

. “Grouping Variables” on page 2-52
. “Categorical Arrays” on page 2-42
. “Dataset Arrays” on page 2-132
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Sort Ordinal Arrays

2-40

This example shows how to determine sorting order for ordinal arrays.

Load sample data.

AllSizes = {"medium”,"large®,"small”,"small”, "medium®, ...
"large”, "medium®, "small"};

The created variable, AlISizes, is a cell array of strings containing size measurements
on eight objects.

Create an ordinal array.

Convert AlISizes to an ordinal array with levels small <medium < large.

AllSizes = ordinal(AllSizes,{},{"small","medium”, " large"});
getlevels(AllSizes)

ans =
small med ium large

Sort the ordinal array.

When you sort ordinal arrays, the sorted observations are in the same order as the
category levels.

sizeSort = sort(AllSizes);
sizeSort(:)

ans =

small
small
small
medium
medium
medium
large
large



Sort Ordinal Arrays

The sorted ordinal array, sizeSort, contains the observations ordered from small to
large.

See Also

ordinal

Related Examples
. “Reorder Category Levels” on page 2-11
. “Add and Drop Category Levels” on page 2-21

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Categorical Arrays
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Note: The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

In this section...

“What Are Categorical Arrays?” on page 2-42

“Categorical Array Conversion” on page 2-42

What Are Categorical Arrays?

Categorical arrays are Statistics and Machine Learning Toolbox data types for storing
categorical values. Categorical arrays store data that have a finite set of discrete levels,
which might or might not have a natural order. There are two types of categorical arrays:

+ ordinal arrays store categorical values with ordered levels. For example, an ordinal
variable might have levels {small, medium, large}.

* nominal arrays store categorical values with unordered levels. For example, a
nominal variable might have levels {red, blue, green}.

In experimental design, these variables are often called factors, with ordered or
unordered factor levels.

Categorical arrays are convenient and memory efficient containers for storing categorical
variables. In addition to storing information about which category each observation
belongs to, categorical arrays store descriptive metadata including category labels and
order.

Categorical arrays have associated methods that streamline common tasks such as
merging categories, adding or dropping levels, and changing level labels.

Categorical Array Conversion

You can easily convert to and from categorical arrays. To create a nominal or ordinal
array, use nominal or ordinal, respectively. You can convert these data types to
categorical arrays:



Categorical Arrays

Numeric array
Logical array
Character array

Cell array of strings

See Also

nominal | ordinal

Related Examples

“Create Nominal and Ordinal Arrays” on page 2-4
“Summary Statistics Grouped by Category” on page 2-38
“Plot Data Grouped by Category” on page 2-25

“Index and Search Using Categorical Arrays” on page 2-47

More About

“Advantages of Using Categorical Arrays” on page 2-44
“Grouping Variables” on page 2-52
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Advantages of Using Categorical Arrays

Note: The nominal and ordinal array data types might be removed in a future release.

To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

In this section...

“Manipulate Category Levels” on page 2-44
“Analysis Using Categorical Arrays” on page 2-44

“Reduce Memory Requirements” on page 2-45

Manipulate Category Levels

When working with categorical variables and their levels, you’ll encounter some typical
challenges. This table summarizes the functions you can use with categorical arrays

to manipulate category levels. For additional functions, type methods nominal or
methods ordinal at the command line, or see the nominal and ordinal reference

pages.

Task Function

Add new category levels addlevels
Drop category levels droplevels
Combine category levels mergelevels
Reorder category levels reorderlevels
Count the number of observations in each category levelcounts
Change the label or name of category levels setlabels
Create an interaction factor times

Find observations that are not in a defined category isundefined

Analysis Using Categorical Arrays

You can use categorical arrays in a variety of statistical analyses. For example, you
might want to compute descriptive statistics for data grouped by the category levels,
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conduct statistical tests on differences between category means, or perform regression
analysis using categorical predictors.

Statistics and Machine Learning Toolbox functions that accept a grouping variable as an
input argument accept categorical arrays. This includes descriptive functions such as:

- grpstats

- gscatter

* boxplot

+ gplotmatrix

You can also use categorical arrays as input arguments to analysis functions and
methods based on models, such as:

* anovan
« Fitlm

+ Fitglm
+ Fitnlm

When you use a categorical array as a predictor in these functions, the fitting function
automatically recognizes the categorical predictor, and constructs appropriate dummy
indicator variables for analysis. Alternatively, you can construct your own dummy
indicator variables using dummyvar.

Reduce Memory Requirements

The levels of categorical variables are often defined as text strings, which can be costly
to store and manipulate in a cell array of strings or char array. Categorical arrays
separately store category membership and category labels, greatly reducing the amount
of memory required to store the variable.

For example, load some sample data:

load("fisheriris®)
The variable species is a cell array of strings requiring 19,300 bytes of memory.
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Workspace ®
Mame Value Bytes
[[] meas 150xd double 4800
species 150x1 cell 19300
Convert species to a nominal array:
species = nominal (species);
Workspace @
Mame Yalue Bytes
rmeas 1504 double 4800
st species 150x1 nominal 792

There is a 95% reduction in memory required to store the variable.

See Also

nominal | ordinal

Related Examples

. “Create Nominal and Ordinal Arrays” on page 2-4

. “Test Differences Between Category Means” on page 2-29

. “Regression with Categorical Covariates” on page 2-58

. “Index and Search Using Categorical Arrays” on page 2-47

More About

. “Categorical Arrays” on page 2-42
. “Grouping Variables” on page 2-52

. “Dummy Indicator Variables” on page 2-55
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Index and Search Using Categorical Arrays

Note: The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Index By Category

It is often useful to index and search data by its category, or group. If you store categories
as string labels inside a cell array of strings or char array, it can be difficult to index and
search the categories. When using categorical arrays, you can easily:

* Index elements from particular categories. For both nominal and ordinal arrays,
you can use the logical operators == and ~= to index the observations that are in, or
not in, a particular category. For ordinal arrays, which have an encoded order, you
can also use inequalities, >, >=, <, and <=, to find observations in categories above or
below a particular category.

+ Search for members of a category. In addition to the logical operator ==, you can
use I1smember to find observations in a particular group.

+ Find elements that are not in a defined category. Categorical arrays indicate
which elements do not belong to a defined category by <undefined>. You can use
isundefined to find observations missing a category.

* Delete observations that are in a particular category. You can use logical
operators to include or exclude observations from particular categories. Even if you
remove all observations from a category, the category level remains defined unless
you remove it using droplevels.

Common Indexing and Searching Methods
This example shows several common indexing and searching methods.

Load the sample data.

load carsmall;

Convert the char array, Origin, to a nominal array. This variable contains the country
of origin, or manufacture, for each sample car.
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Origin = nominal(Origin);

Search for observations in a category. Determine if there are any cars in the sample that
were manufactured in Canada.

any(Origin=="Canada”)

ans =

There are no sample cars manufactured in Canada.

List the countries that are levels of Origin.

getlevels(Origin)

ans =

France Germany Italy Japan Sweden USA

Index elements that are in a particular category. Plot a histogram of the acceleration
measurements for cars made in the U.S.

figure(Q;
histogram(Acceleration(Origin=="USA"))
title("Acceleration of Cars Made in the USA®)



Index and Search Using Categorical Arrays

) Acceleration of Cars Made in the USA
] T T T T T T T

Delete observations that are in a particular category. Delete all cars made in Sweden
from Origin.

Origin = Origin(Origin~="Sweden");
any(ismember(Origin, "Sweden®))

ans =

The cars made in Sweden are deleted from Origin, but Sweden is still a level of Origin.

getlevels(Origin)
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ans =

France Germany Italy Japan

Remove Sweden from the levels of Origin.
Origin = droplevels(Origin, "Sweden®);
getlevels(Origin)

ans =

France Germany Italy Japan

Sweden USA

USA

Check for observations not in a defined category. Get the indices for the cars made in

France.

ix = find(Origin=="France")

ix

11
27
39
61

There are four cars from France. Remove France from the levels of Origin.

Origin = droplevels(Origin, "“France®);

This returns a warning indicating that you are dropping a category level that has
elements in it. These observations are no longer in a defined category, indicated by

undefined.

Origin(ix)

ans =

<undefined>
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<undefined>
<undefined>
<undefined>

You can use isundefined to search for observations with an undefined category.

find(isundefined(Origin))

ans =

11
27
39
61

These indices correspond to the observations that were in category France, before that
category was dropped from Origin.

See Also

droplevels | nominal | ordinal

Related Examples

. “Create Nominal and Ordinal Arrays” on page 2-4
. “Reorder Category Levels” on page 2-11

. “Merge Category Levels” on page 2-19

. “Add and Drop Category Levels” on page 2-21

More About

. “Categorical Arrays” on page 2-42
. “Advantages of Using Categorical Arrays” on page 2-44
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Grouping Variables

In this section...

“What Are Grouping Variables?” on page 2-52
“Group Definition” on page 2-53
“Analysis Using Grouping Variables” on page 2-53

“Missing Group Values” on page 2-54

What Are Grouping Variables?

Grouping variables are utility variables used to group, or categorize, observations.
Grouping variables are useful for summarizing or visualizing data by group. A grouping
variable can be any of these data types:

*  Numeric vector

* Logical vector

+ String array (also called character arrays)

+  Cell array of strings

+ Categorical vector

A grouping variable must have the same number of observations (rows) as the table,
dataset array, or numeric array you are grouping. Observations that have the same
grouping variable value belong to the same group.

For example, the following variables comprise the same groups. Each grouping variable
divides five observations into two groups. The first group contains the first and fourth
observations. The other three observations are in the second group.

Data Type Grouping Variable

Numeric vector [12212]

Logical vector [0O110 1]

Cell array of strings {"Male", "Female", “"Female”,"Male", "Female~
Categorical vector Male Female Female Male Female
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Grouping variables with string labels give each group a meaningful name. A categorical
array is an efficient and flexible choice of grouping variable.

Group Definition

Typically, there are as many groups as unique values in the grouping variable. However,
categorical arrays can have levels that are not represented in the data. The groups and
the order of the groups depend on the data type of the grouping variable. Suppose G is a
grouping variable.

+ If G is a numeric or logical vector, then the groups correspond to the distinct values in
G, in the sorted order of the unique values.

+ If Gis a string array or cell array of strings, then the groups correspond to the distinct
strings in G, in the order of their first appearance.

+ If G is a categorical vector, then the groups correspond to the unique category levels in
G, in the order returned by getlevels.

Some functions, such as grpstats, accept multiple grouping variables specified as a
cell array of grouping variables, for example, {G1,G2,G3%}. In this case, the groups are
defined by the unique combinations of values in the grouping variables. The order is
decided first by the order of the first grouping variable, then by the order of the second
grouping variable, and so on.

Analysis Using Grouping Variables

This table lists common tasks you might want to perform using grouping variables.

Grouping Task Function Accepting Grouping Variable
Draw side-by-side boxplots for data in boxplot
different groups.

Draw a scatter plot with markers colored |gscatter
by group.

Draw a scatter plot matrix with markers gplotmatrix
colored by group.

Compute summary statistics by group. grpstats

Test for differences between group means. |anovan
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Grouping Task Function Accepting Grouping Variable
Create an index vector from a grouping grp2idx

variable.

Missing Group Values

Grouping variables can have missing values provided you include a valid indicator.
Grouping Variable Data Type Missing Value Indicator

Numeric vector NaN

Logical vector (Cannot be missing)

String array Row of spaces

Cell array of strings "

Categorical vector <undefined>
See Also

nominal | ordinal

Related Examples
. “Plot Data Grouped by Category” on page 2-25

“Summary Statistics Grouped by Category” on page 2-38

More About

2-54

“Categorical Arrays” on page 2-42
“Advantages of Using Categorical Arrays” on page 2-44
Using nominal Objects

Using ordinal Objects
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Dummy Indicator Variables

In this section...
“What Are Dummy Variables?” on page 2-55
“Creating Dummy Variables” on page 2-56

What Are Dummy Variables?

When performing regression analysis, it is common to include both continuous and
categorical (quantitative and qualitative) predictor variables. When including a
categorical independent variable, it is important not to input the variable as a numeric
array. Numeric arrays have both order and magnitude. A categorical variable might have
order (for example, an ordinal variable), but it does not have magnitude. Using a numeric
array implies a known “distance” between the categories.

The appropriate way to include categorical predictors is as dummy indicator variables.
An indicator variable has values 0 and 1. A categorical variable with ¢ categories can be
represented by ¢ — 1 indicator variables.

For example, suppose you have a categorical variable with levels
{Small ,Medium,Large}. You can represent this variable using two dummy variables,
as shown in this figure.

X1 X2
Small
Medium 1 0 Reference
Large 0 1 Group
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In this example, X; is a dummy variable that has value 1 for the Medium group, and 0
otherwise. X; is a dummy variable that has value 1 for the Large group, and 0 otherwise.
Together, these two variables represent the three categories. Observations in the Small
group have Os for both dummy variables.

The category represented by all Os is the reference group. When you include the dummy
variables in a regression model, the coefficients of the dummy variables are interpreted
with respect to the reference group.

Creating Dummy Variables
Automatic Creation of Dummy Variables

The regression fitting functions, Fitlm, Fitglm, and fitnlm, recognize categorical
array inputs as categorical predictors. That is, if you input your categorical predictor

as a nominal or ordinal array, the fitting function automatically creates the required
dummy variables. The first level returned by getlevels is the reference group. To use a
different reference group, use reorderlevels to change the level order.

If there are c unique levels in the categorical array, then the fitting function estimates ¢ —
1 regression coefficients for the categorical predictor.

Note: The fitting functions use every level of the categorical array returned by
getlevels, even if there are levels with no observations. To remove levels from the
categorical array, use droplevels.

Manual Creation of Dummy Variables

If you prefer to create your own dummy variable design matrix, use dummyvar. This
function accepts a numeric or categorical column vector, and returns a matrix of indicator
variables. The dummy variable design matrix has a column for every group, and a row
for every observation.

For example,

gender = nominal({"Male";"Female®;"Female®;*Male®;"Female®});
dv = dummyvar(gender)

dv =
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RPORRO
oOrOoOOR

There are five rows corresponding to the number of rows in gender, and two columns
for the unique groups, Female and Male. Column order corresponds to the order of the
levels in gender. For nominal arrays, the default order is ascending alphabetical.

To use these dummy variables in a regression model, you must either delete a column
(to create a reference group), or fit a regression model with no intercept term. For the
gender example, only one dummy variable is needed to represent two genders. Notice
what happens if you add an intercept term to the complete design matrix, dv.

X = [ones(5,1) dv]
X =
1 0 1
1 1 0
1 1 0
1 0 1
1 1 0
rank(X)
ans =
2

The design matrix with an intercept term is not of full rank, and is not invertible.
Because of this linear dependence, use only ¢ — 1 indicator variables to represent a
categorical variable with c categories in a regression model with an intercept term.

See Also

dummyvar | fitgm | fitlm | fitnlm | nominal | ordinal

Related Examples
. “Regression with Categorical Covariates” on page 2-58

. “Test Differences Between Category Means” on page 2-29
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Regression with Categorical Covariates
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This example shows how to perform a regression with categorical covariates using
categorical arrays and Fitlm.

Load sample data.
load("carsmall™)

The variable MPG contains measurements on the miles per gallon of 100 sample cars. The
model year of each car is in the variable Model _Year, and Weight contains the weight of
each car.

Plot grouped data.
Draw a scatter plot of MPG against Weight, grouped by model year.
figureQ)

gscatter(Weight,MPG,Model_Year, "bgr®,"x.o")
title("MPG vs. Weight, Grouped by Model Year®)
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The grouping variable, Model Year, has three unique values, 70, 76, and 82,
corresponding to model years 1970, 1976, and 1982.

Create table and nominal arrays.

Create a table that contains the variables MPG, Weight, and Model_Year. Convert the
variable Model _Year to a nominal array.

cars = table(MPG,Weight,Model_Year);
cars.Model_Year = nominal (cars_-Model_Year);

Fit a regression model.

Fit a regression model using Fitlm with MPG as the dependent variable, and Weight
and Model _Year as the independent variables. Because Model _Year is a categorical
covariate with three levels, it should enter the model as two indicator variables.

The scatter plot suggests that the slope of MPG against Weight might differ for each
model year. To assess this, include weight-year interaction terms.

The proposed model is
E(MPG) = By + pyWeight + BoI11976]+ B3111982]+ B, Weight x 119761+ BsWeight x 1[1982],

where I[1976] and I[1982] are dummy variables indicating the model years 1976 and
1982, respectively. I[1976] takes the value 1 if model year is 1976 and takes the value 0 if
it is not. I[1982] takes the value 1 if model year is 1982 and takes the value 0 if it is not.
In this model, 1970 is the reference year.

fit = fitlm(cars, "MPG~Weight*Model_Year™)
fit =

Linear regression model:
MPG ~ 1 + Weight*Model_Year

Estimated Coefficients:

Estimate SE
(Intercept) 37.399 2.1466
Weight -0.0058437 0.00061765
Model Year_ 76 4.6903 2.8538
Model Year_ 82 21.051 4_.157
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Weight:Model _Year_76 -0.00082009 0.00085468
Weight:Model _Year_82 -0.0050551 0.0015636
tStat pvalue
(Intercept) 17.423 2.8607e-30
Weight -9.4612 4.6077e-15
Model Year_ 76 1.6435 0.10384
Model Year_ 82 5.0641 2.2364e-06
Weight:Model _Year_76 -0.95953 0.33992
Weight:Model _Year_82 -3.2329 0.0017256

Number of observations: 94, Error degrees of freedom: 88
Root Mean Squared Error: 2.79

R-squared: 0.886, Adjusted R-Squared 0.88

F-statistic vs. constant model: 137, p-value = 5.79e-40

The regression output shows:

+  Fitlmrecognizes Model Year as a nominal variable, and constructs the required
indicator (dummy) variables. By default, the first level, 70, is the reference group (use
reorderlevels to change the reference group).

* The model specification, MPG~Weight*Model_Year, specifies the first-order terms for
Weight and Model_Year, and all interactions.

The model R? = 0.886, meaning the variation in miles per gallon is reduced by 88.6%
when you consider weight, model year, and their interactions.
* The fitted model is

MPG = 37.4—0.006Weight +4.7I[1976]+ 21.11[1982]—0.0008Weight x I[19761— 0.005Weight x I[1¢

Thus, the estimated regression equations for the model years are as follows.

Model Year Predicted MPG Against Weight
1970

MPG = 37.4-0.006Weight

s MPG = (37.4+4.7)— (0.006 +0.0008)Weight
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Model Year Predicted MPG Against Weight
1982

MPG = (37.4+21.1)— (0.006 +0.005)Weight

The relationship between MPG and Weight has an increasingly negative slope as the
model year increases.

Plot fitted regression lines.

Plot the data and fitted regression lines.
w = linspace(min(Weight) ,max(Weight));

figure()

gscatter(Weight,MPG,Model_Year, "bgr=®,"x.o0")
line(w,feval(fit,w,"70%), "Color®,"b", "LineWidth*,2)
line(w,feval(Fit,w,"76%),"Color®,"g", "LineWidth",2)
line(w,feval (Fit,w,"82%),"Color®,"r", "LineWidth",2)
title("Fitted Regression Lines by Model Year®)

Fitted Regression Lines by Madel Year
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Test for different slopes.

Test for significant differences between the slopes. This is equivalent to testing the
hypothesis

H , :B; #0 for atleast one i.

anova(fit)
ans =
SumSq DF MeanSq F pvalue
Weight 2050.2 1 2050.2 263.87 3.2055e-28
Model_Year 807.69 2 403.84 51.976 1.2494e-15
Weight:Model_Year 81.219 2 40.609 5.2266 0.0071637
Error 683.74 88 7.7698

This output shows that the p-value for the test is 0.0072 (from the interaction row,
Weight:Model_Year), so the null hypothesis is rejected at the 0.05 significance level.
The value of the test statistic is 5.2266. The numerator degrees of freedom for the test is
2, which is the number of coefficients in the null hypothesis.

There is sufficient evidence that the slopes are not equal for all three model years.

See Also

dataset | fitlm | nominal | reorderlevels

Related Examples

. “Plot Data Grouped by Category” on page 2-25

. “Test Differences Between Category Means” on page 2-29
. “Summary Statistics Grouped by Category” on page 2-38

More About

. “Advantages of Using Categorical Arrays” on page 2-44
. “Grouping Variables” on page 2-52

. “Dummy Indicator Variables” on page 2-55
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Create a Dataset Array from Workspace Variables

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...

“Create a Dataset Array from a Numeric Array” on page 2-63

“Create Dataset Array from Heterogeneous Workspace Variables” on page 2-66

Create a Dataset Array from a Numeric Array

This example shows how to create a dataset array from a numeric array existing in the
MATLAB workspace.

Load sample data.
load("fisheriris®)

Two variables load into the workspace: meas, a 150-by-4 numeric array, and species, a
150-by-1 cell array of strings containing species labels.

Create a dataset array.

Use mat2dataset to convert the numeric array, meas, into a dataset array.

ds = mat2dataset(meas);

ds(1:10,:)

ans =
measl meas?2 meas3 meas4
5.1 3.5 1.4 0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2

5 3.6 1.4 0.2

5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
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5 3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1

The array, meas, has four columns, so the dataset array, ds, has four variables. The
default variable names are the array name, meas, with column numbers appended.

You can specify your own variable or observation names using the name-value pair
arguments VarNames and ObsNames, respectively.

If you use dataset to convert a numeric array to a dataset array, by default, the
resulting dataset array has one variable that is an array instead of separate variables for
each column.

Examine the dataset array.
Return the size of the dataset array, ds.
size(ds)
ans =
150 4

The dataset array, ds, is the same size as the numeric array, meas. Variable names and
observation names do not factor into the size of a dataset array.

Explore dataset array metadata.

Return the metadata properties of the dataset array, ds.
ds.Properties

ans =

Description: **
VarDescription: {}
Units: {}
DimNames: {"Observations® “Variables"}
UserData: []
ObsNames: {}
VarNames: {"measl® “meas2® "meas3" “meas4"}

You can also access the properties individually. For example, you can retrieve the
variable names using ds.Properties.VarNames.
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Access data in a dataset array variable.

You can use variable names with dot indexing to access the data in a dataset array. For
example, find the minimum value in the first variable, meas1.

min(ds.measl)
ans =
4 _3000
Change variable names.

The four variables in ds are actually measurements of sepal length, sepal width, petal
length, and petal width. Modify the variable names to be more descriptive.

ds.Properties.VarNames = {"SLength”,"SWidth","PLength", "PWidth"};

Add description.

you can add a description for the dataset array.

ds.Properties.Description = “Fisher iris data”;
ds.Properties

ans =

Description: "Fisher iris data“
VarDescription: {}
Units: {}
DimNames: {"Observations® “Variables"}
UserData: []
ObsNames: {}
VarNames: {"SLength®" “SWidth®" “PLength® "PWidth"}

The dataset array properties are updated with the new variable names and description.
Add a variable to the dataset array.

The variable species is a cell array of strings containing species labels. Add species
to the dataset array, ds, as a nominal array named Species. Display the first five
observations in the dataset array.

ds.Species = nominal (species);
ds(1:5,:)
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ans =
SLength Swidth PLength PWidth Species
5.1 3.5 1.4 0.2 setosa
4.9 3 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5 3.6 1.4 0.2 setosa

The dataset array, ds, now has the fifth variable, Species.

Create Dataset Array from Heterogeneous Workspace Variables

This example shows how to create a dataset array from heterogeneous variables existing
in the MATLAB workspace.

Load sample data.

load("carsmall™)

Create a dataset array.

Create a dataset array from a subset of the workspace variables.

ds = dataset(Origin,Acceleration,Cylinders,MPG);
ds.Properties.VarNames(:)

ans =
*Origin*
"Acceleration”
"Cylinders”
"MPG*

When creating the dataset array, you do not need to enter variable names. dataset
automatically uses the name of each workspace variable.

Notice that the dataset array, ds, contains a collection of variables with heterogeneous
data types. Origin is a character array, and the other variables are numeric.

Examine a dataset array.

Display the first five observations in the dataset array.
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ds(1:5,:)

ans =
Origin Acceleration Cylinders MPG
USA 12 8 18
USA 11.5 8 15
USA 11 8 18
USA 12 8 16
USA 10.5 8 17

Apply a function to a dataset array.

Use datasetfun to return the data type of each variable in ds.

varclass = datasetfun(@class,ds, "UniformOutput®,false);
varclass(:)

ans =
"char*®
"double*

"double*
"double*

You can get additional information about the variables using summary(ds).
Modify a dataset array.

Cylinders is a numeric variable that has values 4, 6, and 8 for the number of cylinders.
Convert Cylinders to a nominal array with levels four, six, and eight.

Display the country of origin and number of cylinders for the first 15 cars.

ds.Cylinders = nominal(ds.Cylinders,{"four®,"six","eight"});
ds(1:15,{"0Origin®, "Cylinders"})

ans =
Origin Cylinders
USA eight
USA eight
USA eight
USA eight
USA eight
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USA eight
USA eight
USA eight
USA eight
USA eight
France four

USA eight
USA eight
USA eight
USA eight

The variable Cylinders has a new data type.

See Also

dataset | datasetfun | mat2dataset | nominal

Related Examples

. “Create a Dataset Array from a File” on page 2-69

. “Export Dataset Arrays” on page 2-111

. “Dataset Arrays in the Variables Editor” on page 2-118
. “Index and Search Dataset Arrays” on page 2-135

More About
. “Dataset Arrays” on page 2-132
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Create a Dataset Array from a File

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...
“Create a Dataset Array from a Tab-Delimited Text File” on page 2-69

“Create a Dataset Array from a Comma-Separated Text File” on page 2-72
“Create a Dataset Array from an Excel File” on page 2-74

Create a Dataset Array from a Tab-Delimited Text File

This example shows how to create a dataset array from the contents of a tab-delimited
text file.

Create a dataset array using default settings.

Navigate to the folder containing sample data. Import the text file hospitalSmall .txt
as a dataset array using the default settings.

cd(matlabroot)
cd("help/toolbox/stats/examples®)
ds = dataset("File", "hospitalSmall.txt")

ds =
name sex age wgt smoke
"SMITH*® “m* 38 176 1
*JOHNSON* "m* 43 163 0
"WILLIAMS*™ “f 38 131 0
*JONES*™ “f 40 133 0
"BROWN*® “f 49 119 0
"DAVIS*® “f 46 142 0
"MILLER™ “f 33 142 1
"WILSON*® "m* 40 180 0
"MOORE™* "m* 28 183 0
"TAYLOR™ “f 31 132 0

2-69



2 Organizing Data

2-70

" ANDERSON* - 45 128 0
"THOMAS* - 42 137 0
" JACKSON* “m* 25 174 0
"WHITE" "m* 39 202 1

By default, dataset uses the first row of the text file for variable names. If the first row
does not contain variable names, you can specify the optional name-value pair argument
"ReadVarNames” ,false to change the default behavior.

The dataset array contains heterogeneous variables. The variables id, name, and sex are
cell arrays of strings, and the other variables are numeric.

Summarize the dataset array.

You can see the data type and other descriptive statistics for each variable by using
summary to summarize the dataset array.

summary(ds)

name: [14x1 cell string]
sex: [14x1 cell string]
age: [14x1 double]

min 1st quartile median 3rd quartile max
25 33 39.5 43 49

wgt: [14x1 double]

min 1st quartile median 3rd quartile max
119 132 142 176 202

smoke: [14x1 double]

min 1st quartile median 3rd quartile max
0 0 0 0 1

Import observation names.

Import the text file again, this time specifying that the first column contains observation
names.

ds = dataset("File", "hospitalSmall._txt", "ReadObsNames”,true)
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ds =
sex age wgt smoke
SMITH "m* 38 176 1
JOHNSON "m* 43 163 0
WILLIAMS “fT 38 131 0
JONES “fT 40 133 0
BROWN “fT 49 119 0
DAVIS “fT 46 142 0
MILLER “fT 33 142 1
WILSON "m* 40 180 0
MOORE "m* 28 183 0
TAYLOR “fT 31 132 0
ANDERSON “fT 45 128 0
THOMAS “fT 42 137 0
JACKSON "m* 25 174 0
WHITE "m* 39 202 1

The elements of the first column in the text file, last names, are now observation names.
Observation names and row names are dataset array properties. You can always add or
change the observation names of an existing dataset array by modifying the property
ObsNames.

Change dataset array properties.

By default, the DimNames property of the dataset array has name as the descriptor of
the observation (row) dimension. dataset got this name from the first row of the first
column in the text file.

Change the first element of DimNames to LastName.

ds.Properties.DimNames{1} = “LastName”;
ds.Properties

ans =
Description: **
VarDescription: {}
Units: {}

DimNames: {"LastName®" “Variables"}
UserData: []

ObsNames: {14x1 cell}
VarNames: {"sex" “age"

wgt® “smoke"}
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Index into dataset array.

You can use observation names to index into a dataset array. For example, return the
data for the patient with last name BROWN.

ds("BROWN", 1)
ans =

sex age wgt smoke
BROWN “f 49 119 0

Note that observation names must be unique.

Create a Dataset Array from a Comma-Separated Text File

This example shows how to create a dataset array from the contents of a comma-
separated text file.

Create a dataset array.

Navigate to the folder containing sample data. Import the file hospitalSmall.csv as a
dataset array, specifying the comma-delimited format.

cd(matlabroot)
cd("help/toolbox/stats/examples™)
ds = dataset("File", "hospitalSmall.csv®,"Delimiter”,",")

ds =
id name sex age wgt smoke
"YPL-320" "SMITH*® “m*" 38 176 1
"GLI1-532" " JOHNSON*™ "m* 43 163 0
"PNI-258" "WILLIAMS™ “f" 38 131 0
"M1J-579* "JONES* “f" 40 133 0
"XLK-030* "BROWN*® “f" 49 119 0
"TFP-518* "DAVIS* “f" 46 142 0
"LPD-746" "MILLER" “f" 33 142 1
"ATA-945" "WILSON™ “m*" 40 180 0
"VNL-702" "MOORE*" "m* 28 183 0
"LQW-768" "TAYLOR™ “f" 31 132 0
"QFY-472* "ANDERSON™ “f" 45 128 0
"UJG-627" "THOMAS™ “f" 42 137 0
"XUE-826" "JACKSON* “m*" 25 174 0
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"TRW-072* "WHITE" "m* 39 202 1
By default, dataset uses the first row in the text file as variable names.
Add observation names.

Use the unique identifiers in the variable id as observation names. Then, delete the
variable id from the dataset array.

ds.Properties._ObsNames = ds.id;

ds.id = []
ds =
name sex age wgt smoke

YPL-320 "SMITH*® “m* 38 176 1
GLI-532 *JOHNSON* “m* 43 163 0
PNI1-258 "WILLIAMS*™ "f 38 131 0
M1J-579 "JONES*™ "f 40 133 0
XLK-030 "BROWN™ "f 49 119 0
TFP-518 "DAVIS*® "f 46 142 0
LPD-746 *MILLER™ "f 33 142 1
ATA-945 "WILSON* “m* 40 180 0
VNL-702 "MOORE™* “m* 28 183 0
LQW-768 "TAYLOR™ "f 31 132 0
QFY-472 “ANDERSON* "f 45 128 0
UJG-627 "THOMAS* "f 42 137 0
XUE-826 " JACKSON* “m* 25 174 0
TRW-072 "WHITE*® “m* 39 202 1

Delete observations.

Delete any patients with the last name BROWN. You can use strcmp to match the string
"BROWN™ with the elements of the variable containing last names, name.

toDelete = strcmp(ds.name, "BROWN™);
ds(toDelete,:) = []

ds =
name sex age wgt smoke
YPL-320 "SMITH*® “m* 38 176 1
GLI-532 *JOHNSON* “m* 43 163 0
PNI1-258 "WILLIAMS*™ “f 38 131 0
M1J-579 “JONES*® “f 40 133 0
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TFP-518 "DAVIS*® “f- 46 142 0
LPD-746 "MILLER" “f- 33 142 1
ATA-945 "WILSON™ “m* 40 180 0
VNL-702 "MOORE*® “m* 28 183 0
LQW-768 "TAYLOR™ “f- 31 132 0
QFY-472 "ANDERSON* “f- 45 128 0
uJG-627 "THOMAS™ “f- 42 137 0
XUE-826 "JACKSON* “m* 25 174 0
TRW-072 "WHITE" “m* 39 202 1

One patient having last name BROWN is deleted from the dataset array.
Return size of dataset array.
The array now has 13 observations.
size(ds)
ans =
13 5

Note that the row and column corresponding to variable and observation names,
respectively, are not included in the size of a dataset array.

Create a Dataset Array from an Excel File

This example shows how to create a dataset array from the contents of an Excel®
spreadsheet file.

Create a dataset array.

Navigate to the folder containing sample data. Import the data from the first worksheet
in the file hospitalSmall . xIsx, specifying that the data file is an Excel spreadsheet.

cd(matlabroot)
cd("help/toolbox/stats/examples™)
ds = dataset("XLSFile","hospitalSmall_xlIsx")

ds =
id name sex age wgt smoke
"YPL-320" "SMITH*® “m*" 38 176 1
"GLI1-532" " JOHNSON ™ "m* 43 163 0
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"PNI1-258" "WILLIAMS*® " 38 131 0
"MIJ-579* "JONES* " 40 133 0
"XLK-030" "BROWN™ - 49 119 0
"TFP-518" "DAVIS* " 46 142 0
"LPD-746" "MILLER™ " 33 142 1
"ATA-945" "WILSON* "m* 40 180 0
"VNL-702" "MOORE™ "m* 28 183 0
"LQW-768" "TAYLOR™ " 31 132 0
"QFY-472* "ANDERSON* " 45 128 0
"UJG-627" "THOMAS* " 42 137 0
"XUE-826" "JACKSON*® "m* 25 174 0
"TRW-072" "WHITE" "m* 39 202 1

By default, dataset creates variable names using the contents of the first row in the
spreadsheet.

Specify which worksheet to import.
Import the data from the second worksheet into a new dataset array.

ds2 = dataset("XLSFile", "hospitalSmall._xlIsx","Sheet",2)

ds2 =
id name sex age wgt smoke
"TRW-072* "WHITE" “m*" 39 202 1
"ELG-976" "HARRIS* “fT 36 129 0
"KOQ-996" "MARTIN" “m*" 48 181 1
"YUZ-646" “THOMPSON* “m*" 32 191 1
"XBR-291* “"GARCIA* "f" 27 131 1
"KPW-846" "MARTINEZ*® “m*" 37 179 0
"XBA-581* “ROBINSON* “m*" 50 172 0
"BKD-785" "CLARK™ "f" 48 133 0

See Also

dataset | summary

Related Examples

. “Create a Dataset Array from Workspace Variables” on page 2-63
. “Clean Messy and Missing Data” on page 2-113

. “Export Dataset Arrays” on page 2-111
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. “Dataset Arrays in the Variables Editor” on page 2-118
. “Index and Search Dataset Arrays” on page 2-135

More About
. “Dataset Arrays” on page 2-132
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Add and Delete Observations

This example shows how to add and delete observations in a dataset array. You can also
edit dataset arrays using the Variables editor.

Load sample data.

Navigate to the folder containing sample data. Import the data from the first worksheet
in hospitalSmall .xIsx into a dataset array.

cd(matlabroot)
cd(“help/toolbox/stats/examples™)

ds = dataset("XLSFile", "hospitalSmall_xIsx");
size(ds)

ans =

14 6
The dataset array, ds, has 14 observations (rows) and 6 variables (columns).
Add observations by concatenation.

The second worksheet in hospitalSmall .xIsx has additional patient data. Append the
observations in this spreadsheet to the end of ds.

ds2 = dataset("XLSFile","hospitalSmall_xlIsx","Sheet”,2);
dsNew = [ds;ds2];
size(dsNew)

ans =
22 6

The dataset array dsNew has 22 observations. In order to vertically concatenate two
dataset arrays, both arrays must have the same number of variables, with the same
variable names.

Add observations from a cell array.

If you want to append new observations stored in a cell array, first convert the cell array
to a dataset array, and then concatenate the dataset arrays.

cellObs = {"id","name”, "sex”,"age”, "wgt", "smoke" ;
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"YQR-965", "BAKER", "M",36,160,0;

"LFG-497","WALL" ,"F",28,125,1;

"KSD-003", "REED" ,"M",32,187,0};
dsNew = [dsNew;cell2dataset(cellObs)];
size(dsNew)

ans =
25 6

Add observations from a structure.

You can also append new observations stored in a structure. Convert the structure to a
dataset array, and then concatenate the dataset arrays.

structObs(1,1).id = "GHK-842";
structObs(1,1).name = "GEORGE";

structObs(1,1).sex = "M";
structObs(1,1).age = 45;
structObs(1,1).wgt = 182;
structObs(1,1).smoke = 1;

structObs(2,1).id = "QRH-308";
structObs(2,1).name = "BAILEY";

structObs(2,1).sex = "F";
structObs(2,1).age = 29;
structObs(2,1).wgt = 120;
structObs(2,1).smoke = 0;
dsNew = [dsNew;struct2dataset(structObs)];
size(dsNew)
ans =

27 6

Delete duplicate observations.

Use unique to delete any observations in a dataset array that are duplicated.

dsNew = unique(dsNew);
size(dsNew)

ans =
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21 6
One duplicated observation is deleted.
Delete observations by observation number.

Delete observations 18, 20, and 21 from the dataset array.

dsNew([18,20,21],:) = [1;
size(dsNew)

ans =
18 6

The dataset array has only 18 observations now.

Delete observations by observation name.

First, specify the variable of identifiers, id, as observation names. Then, delete the
variable id from dsNew. You can use the observation name to index observations.
dsNew_Properties.ObsNames = dsNew.id;

dsNew.id = []:

dsNew("KOQ-996",:) = [1:

size(dsNew)

ans =
17 5

The dataset array now has one less observation and one less variable.

Search for observations to delete.

You can also search for observations in the dataset array. For example, delete
observations for any patients with the last name WILLIAMS.

toDelete = strcmp(dsNew.name, "WILLIAMS™);
dsNew(toDelete,:) = [1;
size(dsNew)

ans =

16 5
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The dataset array now has one less observation.

See Also

cell2dataset | dataset | struct2dataset

Related Examples

. “Add and Delete Variables” on page 2-81

. “Select Subsets of Observations” on page 2-91

. “Dataset Arrays in the Variables Editor” on page 2-118
. “Index and Search Dataset Arrays” on page 2-135

More About

. “Dataset Arrays” on page 2-132
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Add and Delete Variables

This example shows how to add and delete variables in a dataset array. You can also edit
dataset arrays using the Variables editor.

Load sample data.

Navigate to the folder containing sample data.

cd(matlabroot)
cd("help/toolbox/stats/examples®)

Import the data from the first worksheet in hospitalSmall.xIsx into a dataset array.

ds = dataset("XLSFile", "hospitalSmall_xIsx");
size(ds)

ans =

14 6
The dataset array, ds, has 14 observations (rows) and 6 variables (columns).
Add variables by concatenating dataset arrays.

The worksheet Heights in hospitalSmal l .xIsx has heights for the patients on the
first worksheet. Concatenate the data in this spreadsheet with ds.

ds2 = dataset("XLSFile","hospitalSmall _xlIsx","Sheet", "Heights");
ds = [ds ds2];

size(ds)

ans =

14 7

The dataset array now has seven variables. You can only horizontally concatenate
dataset arrays with observations in the same position, or with the same observation
names.

ds.Properties._VarNames{end}

ans =
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hgt

The name of the last variable in ds is hgt, which dataset read from the first row of the
imported spreadsheet.

Delete variables by variable name.

First, specify the unique identifiers in the variable id as observation names. Then, delete
the variable 1d from the dataset array.

ds.Properties.ObsNames = ds.id;
ds.id = [];

size(ds)

ans =

14 6

The dataset array now has six variables. List the variable names.
ds.Properties._VarNames(:)

ans =

"name*®
"sex”
"age”
“wgt"
"smoke*®
"hgt"

There is no longer a variable called id.
Add a new variable by name.

Add a new variable, bmi—which contains the body mass index (BMI) for each patient—to
the dataset array. BMI is a function of height and weight. Display the last name, gender,
and BMI for each patient.

ds.bmi = ds.wgt*703./ds.hgt."2;
ds(:,{"name”, "sex”,"bmi"})

ans =

name sex bmi
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YPL-320 "SMITH*® "m*
GL1-532 " JOHNSON*® "m*
PNI-258 "WILLIAMS*® “f-
MIJ-579 "JONES*® “f-
XLK-030 "BROWN*® “f-
TFP-518 "DAVIS*® “f-
LPD-746 "MILLER" “f-
ATA-945 "WILSON™ "m*
VNL-702 "MOORE*® "m*
LQW-768 "TAYLOR™ “f-
QFY-472 "ANDERSON* “f-
uJG-627 "THOMAS™ “f-
XUE-826 "JACKSON* "m*
TRW-072 "WHITE*® "m*

24.
24.
23.
25.
21.
27.
26.

544
068
958
127
078
729
828

24_41

27.
22.
23.
25.
24.
29.

822
655
409
883
265
827

The operators ./ and .” in the calculation of BMI indicate element-wise division and

exponentiation, respectively.

Delete variables by variable number.

Delete the variable wgt, the fourth variable in the dataset array.

ds(:,4) = [1:

ds.Properties.VarNames(:)

ans =

"name*®
"sex”
"age”
"smoke*®
"hgt"
"bmi*

The variable wgt is deleted from the dataset array.

See Also

dataset

Related Examples
. “Add and Delete Observations” on page 2-77
. “Merge Dataset Arrays” on page 2-99
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. “Calculations on Dataset Arrays” on page 2-108
. “Dataset Arrays in the Variables Editor” on page 2-118
. “Index and Search Dataset Arrays” on page 2-135

More About
. “Dataset Arrays” on page 2-132
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Access Data in Dataset Array Variables

This example shows how to work with dataset array variables and their data.

Access variables by name.

You can access variable data, or select a subset of variables, by using variable (column)
names and dot indexing. Load a sample dataset array. Display the names of the variables
in hospital.

load hospital
hospital .Properties.VarNames(:)

ans =

"LastName*®
"Sex*

"Age”

"Weight*
"Smoker*®
"BloodPressure”
"Trials”

The dataset array has 7 variables (columns) and 100 observations (rows). You can
double-click hospital in the Workspace window to view the dataset array in the
Variables editor.

Plot histogram.

Plot a histogram of the data in the variable Weight.

figure
histogram(hospital .Weight)
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100 120 140 160 180 200 220

The histogram shows that the weight distribution is bimodal.

Plot data grouped by category.

Draw box plots of Weight grouped by the values in Sex (Male and Female). That is, use
the variable Sex as a grouping variable.

figureQ)
boxplot(hospital .Weight,hospital.Sex)
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The box plot suggests that gender accounts for the bimodality in weight.
Select a subset of variables.

Create a new dataset array with only the variables LastName, Sex, and Weight. You
can access the variables by name or column number.

dsi
ds2

hospital (:,{"LastName", "Sex", "Weight"});
hospital (:,[1,2,4]);

The dataset arrays dsl and ds2 are equivalent. Use parentheses ( ) when indexing
dataset arrays to preserve the data type; that is, to create a dataset array from a subset
of a dataset array. You can also use the Variables editor to create a new dataset array
from a subset of variables and observations.

Convert the variable data type.

Convert the data type of the variable Smoker from logical to nominal with labels No and
Yes.
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hospital .Smoker = nominal (hospital._Smoker,{"No","Yes"});
class(hospital .Smoker)

ans =
nominal
Explore data.

Display the first 10 elements of Smoker.
hospital .Smoker(1:10)

ans =

Yes
No
No
No
No
No
Yes
No
No
No

If you want to change the level labels in a nominal array, use setlabels.
Add variables.

The variable BloodPressure is a 100-by-2 array. The first column corresponds to
systolic blood pressure, and the second column to diastolic blood pressure. Separate this
array into two new variables, SysPressure and DiaPressure.

hospital .SysPressure = hospital .BloodPressure(:,1);
hospital .DiaPressure = hospital .BloodPressure(:,2);
hospital .Properties._VarNames(:)

ans =

"LastName*
"Sex*

"Age”

"Weight*
"Smoker*
"BloodPressure”
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"Trials”
"SysPressure”
"DiaPressure”

The dataset array, hospital, has two new variables.
Search for variables by name.

Use regexp to find variables in hospital with the string "Pressure” in their name.
Create a new dataset array containing only these variables.

bp = regexp(hospital .Properties.VarNames, "Pressure”);
bpldx = cellfun(@isempty,bp);

bpData = hospital(:,~bpldx);
bpData.Properties.VarNames(:)

ans =

"BloodPressure”
"SysPressure”
"DiaPressure”

The new dataset array, bpData, contains only the blood pressure variables.
Delete variables.

Delete the variable BloodPressure from the dataset array, hospital.

hospital .BloodPressure = [];
hospital .Properties._VarNames(:)

ans =

"LastName*
"Sex*

"Age”
“"Weight*
"Smoker*
"Trials”
"SysPressure”
"DiaPressure”

The variable BloodPressure is no longer in the dataset array.

See Also

dataset
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Related Examples

. “Add and Delete Variables” on page 2-81

. “Calculations on Dataset Arrays” on page 2-108

. “Dataset Arrays in the Variables Editor” on page 2-118
. “Index and Search Dataset Arrays” on page 2-135

More About

. “Dataset Arrays” on page 2-132
. “Grouping Variables” on page 2-52
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Select Subsets of Observations

This example shows how to select an observation or subset of observations from a dataset
array.

Load sample data.

Load the sample dataset array, hospital. Dataset arrays can have observation (row)
names. This array has observation names corresponding to unique patient identifiers.

load("hospital *)
hospital .Properties._ObsNames(1:10)

ans =

"YPL-320"
"GLI1-532"
"PNI1-258"
"MIJ-579*
"XLK-030"
"TFP-518"
"LPD-746"
"ATA-945"
"VNL-702"
"LQW-768"

These are the first 10 observation names.
Index an observation by name.

You can use the observation names to index into the dataset array. For example, extract
the last name, sex, and age for the patient with identifier XLK-030.

hospital ("XLK-030",{"LastName", "Sex","Age"})

ans =

LastName Sex Age
XLK-030 "BROWN* Female 49

Index a subset of observations by number.

Create a new dataset array containing the first 50 patients.

ds50 = hospital(1:50,:);
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size(ds50)
ans =
50 7
Search observations using a logical condition.

Create a new dataset array containing only male patients. To find the male patients, use
a logical condition to search the variable containing gender information.

dsMale = hospital (hospital.Sex=="Male",:);
dsMale(1:10,{"LastName","Sex"})

ans =

LastName Sex
YPL-320 "SMITH*® Male
GLI-532 " JOHNSON* Male
ATA-945 "WILSON* Male
VNL-702 "MOORE* Male
XUE-826 *JACKSON*™ Male
TRW-072 "WHITE*® Male
KOQ-996 "MARTIN* Male
YUZ-646 "THOMPSON* Male
KPW-846 "MARTINEZ" Male
XBA-581 "ROBINSON* Male

Search observations using multiple conditions.

You can use multiple conditions to search the dataset array. For example, create a new
dataset array containing only female patients older than 40.

dsFemale = hospital (hospital.Sex=="Female” & hospital.Age > 40,:);
dsFemale(1:10,{"LastName”, "Sex", "Age"})

ans =

LastName Sex Age
XLK-030 "BROWN*® Female 49
TFP-518 "DAVIS*® Female 46
QFY-472 " ANDERSON* Female 45
UJG-627 "THOMAS™ Female 42
BKD-785 "CLARK™ Female 48
VWL-936 "LEWIS*® Female 41
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AAX-056 "LEE" Female 44
AFK-336 "WRIGHT" Female 45
KKL-155 "ADAMS* Female 48
RBA-579 "SANCHEZ* Female 44

Select a random subset of observations.

Create a new dataset array containing a random subset of 20 patients from the dataset
array hospital.

rng("default®) % For reproducibility
dsRandom = hospital (randsample(length(hospital),20),:);
dsRandom.Properties.ObsNames

ans =

"DAU-529"
" AGR-528"
"RBO-332"
*Q00-305"
"RVS-253"
"QEQ-082"
"EHE-616"
"HVR-372"
"K0Q-996"
"REV-997"
"PUE-347"
"LQW-768"
"YLN-495"
"HJQ-495"
"ELG-976"
"XUE-826"
"MEZ-469"
"UDS-151"
"M1J-579"
*DGC-290"

Delete observations by name.

Delete the data for the patient with observation name HVR-372.

hospital ("HVR-372",:) = [1;
size(hospital)

ans =
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The dataset array has one less observation.

See Also

dataset

Related Examples

. “Add and Delete Observations” on page 2-77

. “Clean Messy and Missing Data” on page 2-113

. “Dataset Arrays in the Variables Editor” on page 2-118
. “Sort Observations in Dataset Arrays” on page 2-95

. “Index and Search Dataset Arrays” on page 2-135

More About
. “Dataset Arrays” on page 2-132
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Sort Observations in Dataset Arrays

This example shows how to sort observations (rows) in a dataset array using the
command line. You can also sort rows using the Variables editor.

Sort observations in ascending order.

Load the sample dataset array, hospital. Sort the observations by the values in Age, in
ascending order.

load("hospital*)
dsAgeUp = sortrows(hospital,“Age”);
dsAgeUp(1:10,{"LastName~", "Age"})

ans =

LastName Age
XUE-826 " JACKSON* 25
FZR-250 "HALL* 25
PUE-347 "YOUNG*® 25
LIM-480 "HILL" 25
SCQ-914 *JAMES*® 25
REV-997 *ALEXANDER*® 25
XBR-291 "GARCIA* 27
VNL-702 “"MOORE* 28
DTT-578 "WALKER* 28
XAX-646 "COOPER* 28

The youngest patients are age 25.
Sort observations in descending order.

Sort the observations by Age in descending order.

dsAgeDown = sortrows(hospital,“Age”, "descend”);
dsAgeDown(1:10,{"LastName", "Age"})

ans =
LastName Age
XBA-581 "ROBINSON* 50
DAU-529 "REED* 50
XLK-030 "BROWN*® 49
FLJ-908 "STEWART* 49
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GGU-691 "HUGHES™ 49
MEZ-469 "GRIFFIN* 49
KOQ-996 "MARTIN" 48
BKD-785 "CLARK™® 48
KKL-155 "ADAMS* 48
NSK-403 "RAMIREZ* 48

The oldest patients are age 50.
Sort observations by the values of two variables.
Sort the observations in hospital by Age, and then by LastName.

dsName = sortrows(hospital,{"Age”, "LastName"});
dsName(1:10,{"LastName","Age"})

ans =
LastName Age

REV-997 "ALEXANDER* 25
FZR-250 "HALL* 25
LIM-480 "HILL*® 25
XUE-826 *JACKSON* 25
SCQ-914 "JAMES*® 25
PUE-347 "YOUNG*® 25
XBR-291 "GARCIA* 27
XAX-646 "COOPER™ 28
QEQ-082 "COX* 28
NSU-424 "JENKINS* 28

Now the names are sorted alphabetically within increasing age groups.
Sort observations in mixed order.

Sort the observations in hospital by Age in an increasing order, and then by Weight in
a decreasing order.

dsWeight = sortrows(hospital,{"Age", "Weight"},{"ascend”,"descend"});
dsWeight(1:10,{"LastName", "Age", "Weight"})

ans =
LastName Age Weight
FZR-250 "HALL" 25 189
SCQ-914 " JAMES™ 25 186
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XUE-826
REV-997
LIM-480
PUE-347
XBR-291
NSU-424
VNL-702
XAX-646

"JACKSON*
"ALEXANDER*
"HILL"
"YOUNG*®
"GARCIA*
"JENKINS*
"MOORE*®
"COOPER™

25
25
25
25
27
28
28
28

174
171
138
114
131
189
183
127

This shows that the maximum weight among patients that are age 25 is 189 1bs.

Sort observations by observation name.

Sort the observations in hospital by the observation names.

dsObs = sortrows(hospital, "obsnames™);
dsObs(1:10,{"LastName","Age"})

ans =

AAX-056
AFB-271
AFK-336
AGR-528
ATA-945
BEZ-311
BKD-785
DAU-529
DGC-290
DTT-578

LastName
"LEE"
"PEREZ*
"WRIGHT*™
"SIMMONS*
"WILSON™
"DIAZ"
"CLARK™
"REED"
"BUTLER"
"WALKER"

Ag
a4
44
45
45
40
45
48
50
38
28

e

The observations are sorted by observation name in ascending alphabetical order.

See Also

dataset | sortrows

Related Examples
. “Select Subsets of Observations” on page 2-91

. “Stack or Unstack Dataset Arrays” on page 2-103
. “Dataset Arrays in the Variables Editor” on page 2-118
. “Index and Search Dataset Arrays” on page 2-135

2-97



2 Organizing Data
9 d

More About

. “Dataset Arrays” on page 2-132
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Merge Dataset Arrays

This example shows how to merge dataset arrays using join.
Load sample data.

Navigate to a folder containing sample data. Import the data from the first worksheet in
hospitalSmall.xlIsx into a dataset array, then keep only a few of the variables.

cd(matlabroot)
cd("help/toolbox/stats/examples™)

dsl = dataset("XLSFile", "hospitalSmall_xlIsx™);

dsl = dsi(:,{"id","name", "sex","age"})

dsl =
id name sex age
"YPL-320" “SMITH* “m*" 38
"GLI-532" “JOHNSON*™ “m*" 43
"PNI-258" "WILLIAMS™ "f- 38
"M1J-579* “JONES*™ "f- 40
"XLK-030* “BROWN™ "f- 49
"TFP-518* "DAVIS* "f- 46
"LPD-746" "MILLER™ "f- 33
"ATA-945" “WILSON* “m*" 40
"VNL-702" “MOORE* “m*" 28
"LQW-768" "TAYLOR™ "f- 31
"QFY-472* “ANDERSON* "f- 45
"UJG-627" "THOMAS* "f- 42
"XUE-826" “JACKSON*™ “m*" 25
"TRW-072* "WHITE" “m*" 39

The dataset array, dsl, has 14 observations (rows) and 4 variables (columns).

Import the data from the worksheet Heights2 in hospitalSmall . xIsx.

ds2 = dataset("XLSFile", "hospitalSmall._xlIsx","Sheet”, "Heights2")
ds2 =

id hgt

"LPD-746" 61

"PNI-258" 62

"XUE-826" 71
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"ATA-945" 72
"XLK-030" 63

ds2 has height measurements for a subset of five individuals from the first dataset
array, dsl.

Merge only the matching subset of observations.

Use join to merge the two dataset arrays, dsl and ds2, keeping only the subset of
observations that are in ds2.

JoinSmall = join(ds2,dsl)

JoinSmall =
id hgt name sex age
"LPD-746" 61 "MILLER" "t 33
"PNI-258" 62 "WILLIAMS™ "t 38
"XUE-826* 71 *JACKSON*® “m*" 25
"ATA-945" 72 "WILSON™ “m*" 40
"XLK-030*" 63 "BROWN*® “f- 49

In JoinSmall, the variable id only appears once. This is because it is the key variable—
the variable that links observations between the two dataset arrays—and has the same
variable name in both dsl and ds2.

Include incomplete observations in the merge.

Merge dsl and ds2 keeping all observations in the larger dsl.

jJoinAll = join(ds2,dsl, “"type”, "rightouter®, "mergekeys” ,true)

JoinAll =
id hgt name sex age
"ATA-945* 72 "WILSON* "m* 40
"GLI1-532" NaN " JOHNSON*™ "m* 43
"LPD-746" 61 "MILLER™ £ 33
"LQW-768" NaN "TAYLOR* £ 31
"MIJ-579* NaN "JONES* £ 40
"PNI1-258" 62 "WILLIAMS* £ 38
"QFY-472* NaN "ANDERSON* £ 45
"TFP-518" NaN "DAVIS* £ 46
"TRW-072* NaN "WHITE" "m* 39
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"UJG-627" NaN "THOMAS* - 42
"VNL-702" NaN "MOORE*" “m* 28
"XLK-030" 63 "BROWN*® - 49
"XUE-826" 71 " JACKSON* “m* 25
"YPL-320" NaN "SMITH*® “m* 38

Each observation in ds1 without corresponding height measurements in ds2 has height
value NaN. Also, because there is no 1d value in ds2 for each observation in ds1, you
need to merge the keys using the option "MergeKeys" , true. This merges the key
variable, id.

Merge dataset arrays with different key variable names.

When using join, it is not necessary for the key variable to have the same name in the
dataset arrays to be merged. Import the data from the worksheet named Heights3 in
hospitalSmall._xlIsx.

ds3 = dataset("XLSFile","hospitalSmall _xlIsx","Sheet”, "Heights3")

ds3 =
identifier hgt
"GLI1-532" 69
"QFY-472" 62
"M1J-579* 61
"VNL-702" 68
"XLK-030*" 63
"LPD-746" 61
"TFP-518* 60
"YPL-320" 71
"ATA-945" 72
"LQW-768" 64
"PNI1-258" 62
"UJG-627" 61
"XUE-826" 71
"TRW-072" 69

ds3 has height measurements for each observation in dsl. This dataset array has the
same patient identifiers as dsl, but they are under the variable name identifier,
instead of 1d (and in a different order).

Specify key variable.

You can easily change the variable name of the key variable in ds3 by setting
d3.Properties.VarNames or using the Variables editor, but it is not required to
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perform a merge. Instead, you can specify the name of the key variable in each dataset
array using LeftKeys and RightKeys.

jJoinDiff = join(ds3,dsl, "LeftKeys®, "identifier”, "RightKeys®,"id")

joinDiff =
identifier hgt name sex age
"GLI-532" 69 “JOHNSON* “m*® 43
"QFY-472* 62 “ANDERSON*™ f- 45
*M1J-579" 61 *JONES*™ f- 40
"VNL-702" 68 “MOORE* “m*® 28
"XLK-030" 63 “"BROWN™ f- 49
"LPD-746" 61 *MILLER* f- 33
"TFP-518* 60 "DAVIS* f- 46
"YPL-320" 71 “SMITH* “m*® 38
"ATA-945* 72 “*WILSON* “m*® 40
"LQW-768" 64 “"TAYLOR™ f- 31
"PNI1-258* 62 "WILLIAMS*® f- 38
"UJG-627" 61 *THOMAS* f- 42
"XUE-826" 71 *JACKSON*® “m*® 25
*TRW-072* 69 "WHITE® “m*® 39

The merged dataset array, joinDiFF, has the same key variable order and name as the
first dataset array input to join, ds3.

See Also

dataset | join

Related Examples

. “Add and Delete Variables” on page 2-81

. “Stack or Unstack Dataset Arrays” on page 2-103

. “Dataset Arrays in the Variables Editor” on page 2-118
. “Index and Search Dataset Arrays” on page 2-135

More About
. “Dataset Arrays” on page 2-132
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Stack or Unstack Dataset Arrays

This example shows how to reformat dataset arrays between wide and tall (or long)
format using stack and unstack.

Load sample data.

Navigate to the folder containing sample data. Import the data from the comma-
separated text file testScores.csv.

cd(matlabroot)
cd("help/toolbox/stats/examples™)
ds = dataset("File", "testScores.csv®", "Delimiter”,",")

ds =
LastName Sex Testl Test2 Test3 Test4
"HOWARD*® "male” 90 87 93 92
"WARD* "male” 87 85 83 90
"TORRES* "male” 86 85 88 86
"PETERSON" "female” 75 80 72 77
"GRAY*" “"female” 89 86 87 90
"RAMIREZ* "female” 96 92 98 95
*JAMES* "male” 78 75 77 77
"WATSON* "female” 91 94 92 90
"BROOKS* "female” 86 83 85 89
"KELLY™ "male” 79 76 82 80

Each of the 10 students has 4 test scores, displayed here in wide format.

Perform calculations on dataset array.

With the data in this format, you can, for example, calculate the average test score for
each student. The test scores are in columns 3 to 6.

ds.TestAve = mean(double(ds(:,3:6)),2);
ds(:,{"LastName","Sex", "TestAve"})

ans =
LastName Sex TestAve
"HOWARD* "male” 90.5
"WARD* "male” 86.25
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"TORRES* "male” 86.25
"PETERSON*™ "female” 76
"GRAY" "female” 88
"RAMIREZ" "female” 95.25
*JAMES* "male” 76.75
"WATSON* "female” 91.75
"BROOKS* "female” 85.75
"KELLY" "male” 79.25

A new variable with average test scores is added to the dataset array, ds.
Reformat the dataset array into tall format.

Stack the test score variables into a new variable, Scores.

dsTall = stack(ds,{"Testl", "Test2","Test3", " Test4"},. ..
"newDataVarName*®, "Scores”)

dsTall =
LastName Sex TestAve Scores_Indicator Scores
"HOWARD*® "male” 90.5 Testl 90
"HOWARD*® "male” 90.5 Test2 87
"HOWARD*® "male” 90.5 Test3 93
"HOWARD*® "male” 90.5 Test4 92
"WARD* "male” 86.25 Testl 87
"WARD* "male” 86.25 Test2 85
"WARD* "male” 86.25 Test3 83
"WARD* "male” 86.25 Test4 90
"TORRES* "male” 86.25 Testl 86
"TORRES* "male” 86.25 Test2 85
"TORRES* "male” 86.25 Test3 88
"TORRES* "male” 86.25 Test4 86
"PETERSON* "female” 76 Testl 75
"PETERSON* "female” 76 Test2 80
"PETERSON* "female” 76 Test3 72
"PETERSON* "female” 76 Test4 77
"GRAY" "female” 88 Testl 89
"GRAY" "female” 88 Test2 86
"GRAY" "female” 88 Test3 87
"GRAY" "female” 88 Test4 90
"RAMIREZ*" "female” 95.25 Testl 96
"RAMIREZ*" "female” 95.25 Test2 92
"RAMIREZ*" "female” 95.25 Test3 98
"RAMIREZ*" "female” 95.25 Test4 95
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"JAMES*® "male*” 76.75 Testl 78
"JAMES*® "male*” 76.75 Test2 75
"JAMES*® "male*” 76.75 Test3 77
"JAMES*® "male*” 76.75 Test4d 77
"WATSON* “female® 91.75 Testl 91
"WATSON* “female* 91.75 Test2 94
"WATSON* “female* 91.75 Test3 92
"WATSON* “female* 91.75 Test4d 90
"BROOKS*™ “female* 85.75 Testl 86
"BROOKS*™ “female® 85.75 Test2 83
"BROOKS*™ “female* 85.75 Test3 85
"BROOKS*™ “female* 85.75 Test4d 89
"KELLY*" "male*” 79.25 Testl 79
"KELLY*" "male*” 79.25 Test2 76
"KELLY*" "male*” 79.25 Test3 82
"KELLY*" "male*” 79.25 Test4d 80

The original test variable names, Testl, Test2, Test3, and Test4, appear as levels in
the combined test scores indicator variable, Scores_Indicator.

Plot data grouped by category.

With the data in this format, you can use Scores_Indicator as a grouping variable,
and draw box plots of test scores grouped by test.

figureQ
boxplot(dsTall.Scores,dsTall.Scores_Indicator)
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Reformat the dataset array into wide format.

Reformat dsTal l back into its original wide format.

dsWide = unstack(dsTall,"Scores”, "Scores_Indicator”);
dsWide(:,{ "LastName","Testl","Test2", "Test3", "Test4"})

ans =
LastName Testl Test2 Test3 Test4
"HOWARD*® 90 87 93 92
"WARD* 87 85 83 90
"TORRES* 86 85 88 86
"PETERSON* 75 80 72 77
"GRAY*" 89 86 87 90
"RAMIREZ*" 96 92 98 95
*JAMES* 78 75 77 77
"WATSON* 91 94 92 90
"BROOKS* 86 83 85 89
"KELLY™ 79 76 82 80
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The dataset array is back in wide format. unstack reassigns the levels of the indicator
variable, Scores_Indicator, as variable names in the unstacked dataset array.

See Also

dataset | double | stack | unstack

Related Examples
. “Access Data in Dataset Array Variables” on page 2-85

. “Calculations on Dataset Arrays” on page 2-108

. “Index and Search Dataset Arrays” on page 2-135

More About

. “Dataset Arrays” on page 2-132
. “Grouping Variables” on page 2-52
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Calculations on Dataset Arrays

This example shows how to perform calculations on dataset arrays.
Load sample data.

Navigate to the folder containing sample data. Import the data from the comma-
separated text file testScores.csv.

cd(matlabroot)
cd("help/toolbox/stats/examples®)
ds = dataset("File", "testScores.csv®, "Delimiter”,",")

ds =
LastName Sex Testl Test2 Test3 Test4
"HOWARD* "male” 90 87 93 92
"WARD*® "male” 87 85 83 90
"TORRES* "male” 86 85 88 86
"PETERSON* "female* 75 80 72 77
"GRAY*™ "female* 89 86 87 90
"RAMIREZ" "female* 96 92 98 95
"JAMES*™ "male” 78 75 77 77
"WATSON* "female* 91 94 92 90
"BROOKS* "female* 86 83 85 89
"KELLY™ "male” 79 76 82 80

There are 4 test scores for each of 10 students, in wide format.
Average dataset array variables.

Compute the average (mean) test score for each student in the dataset array, and store it
in a new variable, TestAvg. Test scores are in columns 3 to 6.

Use doubl e to convert the specified dataset array variables into a numeric array. Then,
calculate the mean across the second dimension (across columns) to get the test average
for each student.

ds.TestAvg = mean(double(ds(:,3:6)),2);
ds(:,{"LastName", "TestAvg"})

ans =

LastName TestAvg
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"HOWARD* 90.5
"WARD* 86.25
"TORRES* 86.25
"PETERSON*" 76
"GRAY* 88
"RAMIREZ" 95.25
"JAMES*® 76.75
"WATSON* 91.75
"BROOKS*™ 85.75
"KELLY*" 79.25

Summarize the dataset array using a grouping variable.

Compute the mean and maximum average test scores for each gender.

stats = grpstats(ds, "Sex",{"mean”,"max"}, "DataVars”, "TestAvg")

stats =
Sex GroupCount mean_TestAvg max_TestAvg
male "male*” 5 83.8 90.5
female “"female” 5 87.35 95.25

This returns a new dataset array containing the specified summary statistics for each
level of the grouping variable, Sex.

Replace data values.
The denominator for each test score is 100. Convert the test score denominator to 25.
scores = double(ds(:,3:6));

newScores = scores*25/100;
ds = replacedata(ds,newScores,3:6)

ds =
LastName Sex Testl Test2 Test3 Test4
"HOWARD*® "male” 22.5 21.75 23.25 23
"WARD* "male” 21.75 21.25 20.75 22.5
"TORRES* "male” 21.5 21.25 22 21.5
"PETERSON* "female” 18.75 20 18 19.25
"GRAY*" "female” 22.25 21.5 21.75 22.5
"RAMIREZ*" "female” 24 23 24 .5 23.75
*JAMES* "male” 19.5 18.75 19.25 19.25
"WATSON* "female” 22.75 23.5 23 22.5

TestAvg
90.5
86.25
86.25
76
88
95.25
76.75
91.75
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"BROOKS*™ “female* 21.5 20.75 21.25 22.25 85.75
"KELLY* "male*” 19.75 19 20.5 20 79.25

The first two lines of code extract the test data and perform the desired calculation.
Then, replacedata inserts the new test scores back into the dataset array.

The variable of test score averages, TestAvg, is now the final score for each student.
Change variable name.

Change the variable name to Final.

ds.Properties._VarNames{end} = “Final"”;

ds

ds =
LastName Sex Testl Test2 Test3 Test4 Final
*HOWARD* "male” 22.5 21.75 23.25 23 90.5
"WARD*™ "male” 21.75 21.25 20.75 22.5 86.25
"TORRES* "male” 21.5 21.25 22 21.5 86.25
"PETERSON*® “"female* 18.75 20 18 19.25 76
"GRAY" "female” 22.25 21.5 21.75 22.5 88
"RAMIREZ" “"female* 24 23 24.5 23.75 95.25
"JAMES*® "male” 19.5 18.75 19.25 19.25 76.75
"WATSON* "female” 22.75 23.5 23 22.5 91.75
"BROOKS*™ “"female* 21.5 20.75 21.25 22.25 85.75
"KELLY™ "male” 19.75 19 20.5 20 79.25

See Also

dataset | double | grpstats | replacedata

Related Examples

. “Stack or Unstack Dataset Arrays” on page 2-103

. “Access Data in Dataset Array Variables” on page 2-85
. “Select Subsets of Observations” on page 2-91

. “Index and Search Dataset Arrays” on page 2-135

More About
. “Dataset Arrays” on page 2-132
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Export Dataset Arrays

This example shows how to export a dataset array from the MATLAB workspace to a text
or spreadsheet file.

Load sample data.

load("hospital*)

The dataset array has 100 observations and 7 variables.
Export to a text file.

Export the dataset array, hospital, to a text file named hospital . txt. By default,
export writes to a tab-delimited text file with the same name as the dataset array,
appended by . txt.

export(hospital)

This creates the file hospital . txt in the current working folder, if it does not
previously exist. If the file already exists in the current working folder, export
overwrites the existing file.

By default, variable names are in the first line of the text file. Observation names, if
present, are in the first column.

Export without variable names.

Export hospital with variable names suppressed to a text file named NoLabels. txt.
export(hospital,"File","NoLabels._txt", "WriteVarNames®,false)

There are no variable names in the first line of the created text file, NoLabels. txt.
Export to a comma-delimited format.

Export hospital to a comma-delimited text file, hospital .csv.
export(hospital,"File","hospital .csv®, "Delimiter=,",")

Export to an Excel spreadsheet.

Export hospital to an Excel spreadsheet named hospital . xIsx.
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export(hospital, "XLSFile","hospital .xIsx™)

By default, the first row of hospital .xIsx has variable names, and the first column has
observation names.

See Also

dataset | export

Related Examples

. “Create a Dataset Array from Workspace Variables” on page 2-63
. “Create a Dataset Array from a File” on page 2-69

More About
. “Dataset Arrays” on page 2-132
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Clean Messy and Missing Data

This example shows how to find, clean, and delete observations with missing data in a
dataset array.

Load sample data.

Navigate to the folder containing sample data. Import the data from the spreadsheet
messy . xIsx.

cd(matlabroot)
cd("help/toolbox/stats/examples”®)
messyData = dataset("XLSFile®, "messy.xlsx™)

messyData =
varl var?2 var3 var4 var5b
"afel” "3" "yes*® "3" 3
"egh3® . - "no" .- 7
"wth4* "3" "yes* "3" 3
"atn2* "23" "no* "23* 23
"argl® "5* "yes* "5" 5
"jre3" "34.6" "yes* "34.6" 34.6
"wen9* "234" "yes*® "234" 234
"ple2* 2" "no* 2" 2
"dbo8* "5" "no* "5* 5
"oii4g- "5* "yes* "5" 5
"wnk3* "245* "yes*® "245* 245
"abk6* "563" " "563" 563
"pnj5* "463" "no* "463* 463
"wnn3* 6" "no* 6" 6
"oks9* "23" "yes* "23" 23
"wba3* " "yes* “NaN* 14
"pkn4* 2" "no* 2" 2
"adw3* "22* "no* "22* 22
"poj2* "-99- "yes* "-99* -99
"bas8* "23" "no* "23* 23
"gry5” "NA* "yes* "NaN*® 21

When you import data from a spreadsheet, dataset reads any variables with
nonnumeric elements as a cell array of strings. This is why the variable var2 is a cell
array of strings. When importing data from a text file, you have more flexibility to specify
which nonnumeric expressions to treat as missing using the option TreatAsEmpty.
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There are many different missing data indicators in messy . xIsx, such as:

*  Empty cells
* A period (.)

* NA
* NaN
- -99

Find observations with missing values.

Display the subset of observations that have at least one missing value using
ismissing.

ix = ismissing(messyData, "NumericTreatAsMissing”,-99, ...
"StringTreatAsMissing”,{"NaN",".","NA"});
messyData(any(ix,2),:)

ans =
varl var?2 var3 var4 var5b
"egh3* o "no* T 7
"abk6* "563" " "563" 563
"wba3* " "yes* "NaN*® 14
"poj2- "-99* "yes* "-99* -99
"gry5* "NA* "yes* "NaN*® 21

By default, ismissing recognizes the following missing value indicators:

* NaN for numeric arrays
+ " " for string arrays

+ <undefined> for categorical arrays

Use the NumericTreatAsMissing and StringTreatAsMissing options to specify
other values to treat as missing.

Convert string arrays to double arrays.

You can convert the string variables that should be numeric using str2double.

messyData.var2
messyData.var4

str2double(messyData.var?);
str2double(messyData.var4)
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messyData

varl

"afel”
"egh3*
"wth4*
"atn2*
"argl-
"jre3d-
"wen9*
"ple2*
"dbo8*
"oii4"
"wnk3*
"abk6*
"pnjs"
"wnn3*
"oks9*
"wba3"
"pkn4*
"adw3"
"poj2"
"bas8*
"grys"

var?2

NaN

23

34.6
234

245
563
463
6
23
NaN
2
22
-99
23
NaN

var3
“yes
"no"
“yes
"no"
“yes
“yes
“yes
"no"
no-
“yes
“yes

no-
no*
“yes
“yes
"no"
"no"
“yes
"no"
“yes

var4

23

34.6
234

245
563
463
6
23
NaN
2
22
-99
23
NaN

varbs

23

34.6
234
2

5

5
245
563
463
6
23
14
2
22
-99
23
21

Now, var2 and var4 are numeric arrays. During the conversion, str2double replaces
the nonnumeric elements of the variables var2 and var4 with the value NaN. However,
there are no changes to the numeric missing value indicator, -99.

When applying the same function to many dataset array variables, it can sometimes be
more convenient to use datasetfun. For example, to convert both var2 and var4 to

numeric arrays simultaneously, you can use:

messyData(:,[2,4]) = datasetfun(@str2double,messyData, "DataVars~®,[2,4],...
"DatasetOutput”,true);

Replace missing value indicators.

Clean the data so that the missing values indicated by the code -99 have the standard
MATLAB numeric missing value indicator, NaN.

messyData

messyData

replaceWithMissing(messyData, "NumericValues®,-99)
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varl var2 var3 var4 vars
"afel” 3 "yes* 3 3
"egh3* NaN "no* 7 7
"wth4* 3 "yes* 3 3
"atn2- 23 "no* 23 23
"argl® 5 "yes*® 5 5
"jre3d- 34.6 "yes* 34.6 34.6
"wen9* 234 "yes*® 234 234
"ple2* 2 "no* 2 2
"dbo8* 5 "no* 5 5
"oli4- 5 "yes* 5 5
"wnk3*® 245 "yes* 245 245
"abk6*" 563 " 563 563
"pnj5° 463 “no* 463 463
"wnn3* 6 "no* 6 6
"oks9- 23 "yes* 23 23
"wba3* NaN "yes* NaN 14
"pkn4* 2 "no* 2 2
“adw3* 22 “no* 22 22
"poj2- NaN "yes* NaN NaN
"bas8- 23 “no* 23 23
"gry5* NaN "yes*® NaN 21

Create a dataset array with complete observations.

Create a new dataset array that contains only the complete observations—those without
missing data.

ix = ismissing(messyData);
completeData = messyData(~any(ix,2),:)

completeData =
varl var2 var3 var4 vars
"afel” 3 "yes* 3 3
"wth4* 3 "yes* 3 3
"atn2- 23 “no* 23 23
"argl® 5 "yes*® 5 5
"jre3d- 34.6 "yes* 34.6 34.6
"wen9* 234 "yes*® 234 234
"ple2* 2 "no* 2 2
"dbo8* 5 “no* 5 5
"oli4- 5 "yes* 5 5
"wnk3*® 245 "yes* 245 245
"pnj5° 463 “no* 463 463
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"wnn3* 6

"oks9* 23

"pkn4* 2

"adw3* 22

"bas8* 23
See Also

“ho*
-yes®
“ho*
“no*
“no*

23

22
23

dataset | ismissing | replaceWithMissing

Related Examples

. “Select Subsets of Observations” on page 2-91

. “Calculations on Dataset Arrays” on page 2-108

. “Index and Search Dataset Arrays” on page 2-135

More About

. “Dataset Arrays” on page 2-132

23

22
23
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Dataset Arrays in the Variables Editor

2-118

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...

“Open Dataset Arrays in the Variables Editor” on page 2-118
“Modify Variable and Observation Names” on page 2-119
“Reorder or Delete Variables” on page 2-121

“Add New Data” on page 2-123

“Sort Observations” on page 2-125

“Select a Subset of Data” on page 2-126

“Create Plots” on page 2-129

Open Dataset Arrays in the Variables Editor

The MATLAB Variables editor provides a convenient interface for viewing, modifying,
and plotting dataset arrays.

First, load the sample data set, hospital.

load hospital
The dataset array, hospital, is created in the MATLAB workspace.

4\ Workspace

Mame Value
aoc| Description ‘Simulated hospital data’
hospital 100x7 dataset

The dataset array has 100 observations and 7 variables.

To open hospital in the Variables editor, click Open Variable, and select hospital.



Dataset Arrays in the Variables Editor

| hospital
[ 100:7 dataset

iz, Mew Variable
;> Open Variable !

Description

E hospital

The Variables editor opens, displaying the contents of the dataset array (only the first 10
observations are shown here).

1 ¥PL-320
2 GLI-532
3 PMNI-258
4 MU-579
5 XLK-030
6 TFP-518
7 LPD-T46
8 ATA-945
9 VNL-702
10 LQW-768

1 2 3 4 5 6 7

LastName Sex Age Weight Smoker BloodPressure Trials
Male 38 176 1 124 93118
JOHNSON'  Male 43 163 0 109 77[11,13,22]
'WILLIAMS'  Female 38 131 0 125 8301
'JOMES' Fernale 40 133 0 117 75|[6,12]
‘BROWN' Fernale 49 119 0 122 80 [14,23]
‘DAVIS' Fernale 46 142 0 11 7019
‘MILLER' Fernale 33 142 1 130 8813
WILSON' Male 40 180 0 115 8211
‘MOORE' Male 28 183 0 115 782
‘TAYLOR! Fernale Eil 132 0 118 8611

In the Variables editor, you can see the names of the seven variables along the top row,
and the observations names down the first column.

Modify Variable and Observation Names

You can modify variable and observation names by double-clicking a name, and then
typing new text.
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| hospital
EEH 100x7 dataset

1 2
LastMame @
1 ¥YPL-3200  'SMITH' Male
2 GLI-532 JOHMSON'  [Male
3 PMI-258 "WILLIAMS'  [Female
4 MU-579 'JOMES' Female
5 KLK-030  'BROWMN' Female
| hospital [
EH 10047 dataset
1 2
LastMame Genderl
1 ¥PL-320  'SMITH' Male
2 GLI-532 JOHMSON'  [Male
3 PMI-258 "WILLIAMS'  |Female
4 MLU-579 JOMES' Female
5 KLK-030  'BROWN' Female

All changes made in the Variables editor are also sent to the command line.

Command Window

»>>» hospital.Properties.Varlame=s{2} = 'Gender';

- [

-

The sixth variable in the data set, BloodPressure, is a numeric array with two
columns. The first column shows systolic blood pressure, and the second column shows
diastolic blood pressure. Click the arrow that appears on the right side of the variable
name cell to see the units and description of the variable. You can type directly in the
units and description fields to modify the text. The variable data type and size are shown
under the variable description.
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{71l Ascending
:u Descending
LUNITS

DESCRIPTION
Systolic/Diastolic

1002 double
[

Reorder or Delete Variables

You can reorder variables in a dataset array using the Variables editor. Hover over the
left side of a variable name cell until a four-headed arrow appears.

4 5
Weight Smoker
176
163
131
133
119
142

1

o o ol o o=

After the arrow appears, click and drag the variable column to a new location.
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4 5 5 6
Weight Smukc%D Smoker BloodPressure
176 1 1 124
163 0 ] 109
131 0 ] 125
133 0 ] 117
119 a a 122
142 0 ] 121
142 1 1 130
180 0 ] 115
183 a a 115
132 0 ] 118
128 0 i} 114
137 0 ] 115
174 a a 127
5 6 7
BloodPressure Srmoker Trials
124 93 [» 118
109 17 0[11,13,22]
125 a3 01l
117 75 0/[6e,12]
122 a0 0/[14,23]
121 70 019

The command for the variable reordering appears in the command line.

Command Window

»» hospital = hospital(:,[1l:4 & 5 end]);
Jx s
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You can delete a variable in the Variables editor by selecting the variable column, right-
clicking, and selecting Delete Column Variable(s).

3 4 5 B 7
Age _ Weigl Cut Ctrl+X
3 C Ctrl+C
o rl+
13 Py
13 Paste Ctrl+V
10 HEH Paste as Mew Dataset Column Variable(s) to the left
49 HEH Paste as Mew Dataset Column Variable(s) to the right
46 HEH Delete Dataset Column Variable(s)
33
40 Sort Ascending
28 Sort Descending
3
45 Mew Workspace Variable from Selection k

The command for the variable deletion appears in the command line.

Command Window
»>» hospital(:, "Weight') = []1:

fx o

-

Add New Data

You can enter new data values directly into the Variables editor. For example, you can
add a new patient observation to the hospital data set. To enter a new last name, add a
string to the end of the variable LastName.

100 ZZB-405 |'HAYES' Male 48 114 86
101 JOMES'
102 %
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The variable Gender is a nominal array. The levels of the categorical variable appear in
a drop-down list when you double-click a cell in the Gender column. You can choose one
of the levels previously used, or create a new level by selecting New Item.

100 ZZB-405 'HAYES' Male 48
101 Obs101 ‘JOMES
102
103
104
105

| <undef.. -

You can continue to add data for the remaining variables.

To change the observation name, click the observation name and type the new name.

100 ZZB-405 'HAVES' Male 18
01 SIS | [JONES' Female 45
102

The commands for entering the new data appear at the command line.

Command Window

»>» hospital.LlLastName{l101} = "JCNES":
Warning: Observations with default wvalues added to dataset
ariables.
» In dataset.subsasgn at 534
»>» hospital.S5ex(101) = '"Female':
»» hospital.Age(101) = 45;
»>» hospital.BloodPressure (101,2) = 85;
»» hospital.BloodPressure (101,1) = 120;
»> hospital.Properties.CbhsHName={101} = "QPO-1387";
Jx =
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Notice the warning that appears after the first assignment. When you enter the first
piece of data in the new observation row—here, the last name—default values are
assigned to all other variables. Default assignments are:

* 0 for numeric variables

* <undefined> for categorical variables

* [ for cell arrays

You can also copy and paste data from one dataset array to another using the Variables
editor.

Sort Observations

You can use the Variables editor to sort dataset array observations by the values of one
or more variables. To sort by gender, for example, select the variable Gender. Then click
Sort, and choose to sort rows by ascending or descending values of the selected variable.

VARIABLE 12
E:]:I Open + Rows Columns D._:E_. .E.:_.D -+ Transpose
New from Print * 2 Insert Delete 2| st |
Selection « = - - zll D
- gﬂ Sart Ascending by Selected Columns
VARIABLE SELECTION EL
| hospital [ 2l sort Descendihg by Selected Columns
(EH 10046 dataset
1 2 3 4 5 [}
LastMame Gender Age BlocdPressure Smoker Trials
1 ¥VPL-320 'SMITH' hale 38 124 a3 118
2 GLI532  JOHNSON'  [Male | 43 109 77 0[11,12,22)
3 PNI258  WILLIAMS'  [Female | 38 125 83 0[]
4 MI-579  JONES' [Female | 40 117 75 0[5,12]
5 XLK-020 'BROWN' [Female | 49 122 80 0[14,23]

When sorting by variables that are cell arrays of strings or of nominal data type,
observations are sorted alphabetically. For ordinal variables, rows are sorted by the
ordering of the levels. For example, when the observations of hospital are sorted by the
values in Gender, the females are grouped together, followed by the males.
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hospital
B 100:5 dataset
1 2 3
LastMame Gender Age

1 PMI-258 "WILLLAMS' Female 38

2 ML-579 JOMES' Fermnale 40
- 3 XLK-030 'BROWN' Female 49

4 TFP-518 ‘DAVIS Fermnale 46
1[5 LPD-746  'MILLER Ferale 33

6 LQW-768 |'TAYLOR' Fermnale Ei

7 QFy-472  'ANDERSON' |Fernale 45

8 UG-627 ‘THOMAS' Fermnale 42

9 ELG-976 'HARRIS' Female 36

10 ¥BR-201 'GARCIA Fermnale 27

11 DEmoTes ' ARKE! Famala -]

To sort by the values of multiple variables, press Ctrl while you select multiple variables.

When you use the Variables editor to sort rows, it is the same as calling sortrows. You
can see this at the command line after executing the sorting.
Command Window

>>» hospital = sortrows (hospital, 'Gender', "ascend'):

F o

Select a Subset of Data

You can select a subset of data from a dataset array in the Variables editor, and create a
new dataset array from the selection. For example, to create a dataset array containing
only the variables LastName and Age:

1 Hold Ctrl while you click the variables LastName and Age.

2 Right-click, and select New Workspace Variable from Selection > New Dataset
Array.
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| hospital
FH 1006 dataset

1 PMI-258
2 MU-579
3 XLK-030
4 TFP-518
5 LPD-746
6 LQW-768
7 QFY-472
8 UIG-627
9 ELG-976
10 XBR-201
11 BKD-785
12 JHV-416
13 VWL-936
14 AAX-056
15 DTT-578

1 rI oaan

1
LastMame

"WILLLAMS'
'JONES'
'BROWN'

' DAVIS'
‘MILLER"
‘TAYLOR'
'AMDERSON'
'THOMAS'
'HARRIS'
'GARCIA'
'CLARK'
'RODRIGUEZ'
'LEWIS'

'LEE'
"WALKER'

a1 ERD

2 3 4 6 7 8
Gender A Ctrl+ X
Female - P
t

Female = o
F Paste Ctrl+V

emale
Female HEH Paste as New Dataset Column Variable(s) to the left
Femnale EEE Paste as New Dataset Column Variable(s) to the right
Femal

emae HEH Delete Dataset Colurmn VYariable(s)
Female
Female Sert Ascending
Female Sert Descending
Female
Fernale Mew Workspace Variable from Selection ' Mew Dataset Array
Female 39I 123 79 o SeparateWorkspac&ariable(s}
Female 4l| 114 a8 08 New Cell Array
Female a4 128 90 10
Female 2 129 9% 17
Crvnala Jnj 112 an nr>om

The new dataset array appears in the Workspace window with the name hospitall.
The Command Window shows the commands that execute the selection.

4\ Workspace

(o) o ]S

MName

2o Description

Walue

'Simulated hospital data’ )

4\ Command Window

Jx 3> hospitall = hospital(:,[1,3]):

You can use the same steps to select any subset of data. To select observations according
to some logical condition, you can use a combination of sorting and selecting. For
example, to create a new dataset array containing only males aged 45 and older:

1
2

Sort the observations of hospital by the values in Gender and Age, descending.

Select the male observations with age 45 and older.
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| hospital | hospitall |
FEH 10046 dataset
1 2 3 4 5 3
LastName Gender Age BloodPressure Smoker Trials
1 XBA-581 [ROBINSON' Male 50 125 76 0 [20,26,30]
2 DAU-529  [REED Male 50 129 89 122
3 FLJ-908 ‘STEWART' Male 49 129 a5 115
4 MEZ-469  [GRIFFIN' Male 49 119 74 09
5 KOQ-996  [MARTIN' Male 48 130 92 1[13,15,21,27]
6 FCD-425 [GOMNZALES' Male 48 123 79 01
7 ZZB-405  [HAYES' Male 48 114 86 028
8 YYV-570 [SCOTT Male 47 127 84 08
9 VDZ-577  [PHILLIPS Male 45 117 89 0[10,15,17,19]
10 WCJ-997 [BELL' Male 45 138 82 17
11 AGR-528 [SIMMONS'  Male 45 124 17 0[8,18,25]
12 BEZ-311 [DIAZ Male 45 136 a3 10
13 MSL-592 'GREEN' Male 44 121 92 0 v
14 WTL-804 'BAKER' Male 44 136 a0 11
15 AFB-271 'PEREZ Male 44 116 0 0[1219]
16 RVS-253 'ROBERTS Male 44 132 89 1]
17 HVR-372 'RUSSELL Male 44 124 92 122

3 Right-click, and select New Workspace Variables from Selection > New
Dataset Array. The new dataset array, hospital2, is created in the Workspace

window.
4\ Workspace EI@ 4\ Command Window
MName Value >» hospital = sortrows (hospital, {'Gender’',
Description ‘Simulated hospital data’ @ ¥» hospital? = hospital(l:12,1:6);
hospital fr >
hospitall

4  You can rename the dataset array in the Workspace window.

2-128

'hge'}, "de=scend")




Dataset Arrays in the Variables Editor

4\ Workspace E=N[ECR]
Mame = Value
Description ‘Simulated hospital data’
E hospital 100x6 dataset
FH hospitall _ 100x? dataset
[ Maleds| L | 126 dataset

Create Plots

You can plot data from a dataset array using plotting options in the Variables editor.
Available plot choices depend on the data types of variables to be plotted.

For example, if you select the variable Age, you can see in the Plots tab some plotting

options that are appropriate for a univariate, numeric variable.

BH hospital.Age

SELECTION

VARIABLE

"\ \

plot bar area

il AA D

pie

.

histogram

FPEHE

;¥ Vihome-00-ah'dresende » Documents ¥ MATLAE »

i Variables - hospital

| hospital .| hospitall .| haspital2 |
[ 10046 dataset
1 2 3 4 [
LastName Gender Age BloodPressure Smic
1 XBA-581 ‘ROBINSON'  Male 50 125 76
2 DAU-520 'REED' Male 50) 129 89
3 FLI-G08  'STEWART'  Male a9) 129 95
4 MEZ-469 'GRIFFIN' Male a9) 119 74
5 KOQ-096 ‘MARTIN'  Male ag 130 92
6 FCD-425 'GONZALES Male ag 123 79
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Sometimes, there are plot options for multiple variables, depending on their data types.
For example, if you select both Age and Gender, you can draw box plots of age, grouped
by gender.

4\ MATLAE R2014b

EE| hospital.Gender i nle E ] — Q:

¢ [ =R H

EH hospital.Age boxplot I} controlchart
SELECTION

<& = 5 ﬁ ;¥ Whome-00-ahtdresende » Document

P& Varables - hospital

| hospital | hospitall | hospital2 [
HH 100:6 dataset
1 2 3
LastMame Gender Age
1 ¥BA-581  'ROBINSON'  [Male 50
2 DAL-529 'REED’ Male a0
3 FLJ-908 'STEWART' Male 49|
4 MEZ-469 'GRIFFIN' Male 49
5 KOQ-996 'MARTIN' Male 48

See Also

dataset | sortrows

Related Examples

. “Add and Delete Observations” on page 2-77

. “Add and Delete Variables” on page 2-81

. “Access Data in Dataset Array Variables” on page 2-85
. “Select Subsets of Observations” on page 2-91

. “Sort Observations in Dataset Arrays” on page 2-95
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More About

. “Dataset Arrays” on page 2-132
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Dataset Arrays

2-132

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...

“What Are Dataset Arrays?” on page 2-132

“Dataset Array Conversion” on page 2-132

“Dataset Array Properties” on page 2-133

What Are Dataset Arrays?

Statistics and Machine Learning Toolbox has dataset arrays for storing variables with
heterogeneous data types. For example, you can combine numeric data, logical data, cell
arrays of strings, and categorical arrays in one dataset array variable.

Within a dataset array, each variable (column) must be one homogeneous data type, but
the different variables can be of heterogeneous data types. A dataset array is usually
interpreted as a set of variables measured on many units of observation. That is, each
row in a dataset array corresponds to an observation, and each column to a variable. In
this sense, a dataset array organizes data like a typical spreadsheet.

Dataset arrays are a unique data type, with a corresponding set of valid operations. Even
if a dataset array contains only numeric variables, you cannot operate on the dataset
array like a numeric variable. The valid operations for dataset arrays are the methods of
the dataset class.

Dataset Array Conversion

You can create a dataset array by combining variables that exist in the MATLAB
workspace, or directly importing data from a file, such as a text file or spreadsheet. This
table summarizes the functions you can use to create dataset arrays.

Data Source Conversion to Dataset Array

Data from a file dataset




Dataset Arrays

Data Source Conversion to Dataset Array
Heterogeneous collection of workspace dataset

variables

Numeric array mat2dataset

Cell array cell2dataset

Structure array struct2dataset

Table table2dataset

You can export dataset arrays to text or spreadsheet files using export. To convert a
dataset array to a cell array or structure array, use dataset2cell or dataset2struct.
To convert a dataset array to a table, use dataset2table.

Dataset Array Properties

In addition to storing data in a dataset array, you can store metadata such as:

* Variable and observation names
* Data descriptions
*  Units of measurement

* Variable descriptions

This information is stored as dataset array properties. For a dataset array named ds, you
can view the dataset array metadata by entering ds.Properties at the command line.
You can access a specific property, such as variable names—property VarNames—using
ds.Properties._VarNames. You can both retrieve and modify property values using
this syntax.

Variable and observation names are included in the display of a dataset array. Variable
names display across the top row, and observation names, if present, appear in the first
column. Note that variable and observation names do not affect the size of a dataset
array.

See Also
cell2dataset | dataset | dataset2cell | dataset2struct | dataset2table |
export | mat2dataset | struct2dataset | table2dataset
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Related Examples

“Create a Dataset Array from Workspace Variables” on page 2-63
“Create a Dataset Array from a File” on page 2-69

“Export Dataset Arrays” on page 2-111

“Dataset Arrays in the Variables Editor” on page 2-118

“Index and Search Dataset Arrays” on page 2-135
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Index and Search Dataset Arrays

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Ways To Index and Search

There are many ways to index into dataset arrays. For example, for a dataset array, ds,
you can:

+ Use () to create a new dataset array from a subset of ds. For example, ds1 =
ds(1:5, :) creates a new dataset array, dsl, consisting of the first five rows of ds.
Metadata, including variable and observation names, transfers to the new dataset
array.

* Use variable names with dot notation to index individual variables in a dataset array.
For example, ds.Height indexes the variable named Height.

+  Use observation names to index individual observations in a dataset array. For
example, ds("0Obsl1", :) gives data for the observation named Obs1.

* Use observation or variable numbers. For example, ds(:,[1,3,5]) gives the data in
the first, third, and fifth variables (columns) of ds.

* Use logical indexing to search for observations in ds that satisfy a logical condition.
For example, ds(ds.Gender=="Male", 1) gives the observations in ds where the
variable named Gender, a nominal array, has the value Male.

+ Use ismissing to find missing data in the dataset array.
Examples
Common Indexing and Searching Methods

This example shows several indexing and searching methods for categorical arrays.

Load the sample data.

load hospital;
size(hospital)
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ans =

100 7

The dataset array has 100 observations and 7 variables.

Index a variable by name. Return the minimum age in the dataset array.

minChospital .Age)

ans =

25

Delete the variable Trials.
hospital .Trials = [];
size(hospital)

ans =

100 6

Index an observation by name. Display measurements on the first five variables for the
observation named PUE-347.

hospital ("PUE-347",1:5)

ans =
LastName Sex Age Weight Smoker
PUE-347 "YOUNG*® Female 25 114 false

Index variables by number. Create a new dataset array containing the first four
variables of hospital.

dsNew = hospital(:,1:4);
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dsNew.Properties.VarNames(:)

ans

"LastName*
"Sex”
"Age”
“"Weight*

Index observations by number. Delete the last 10 observations.

hospital(end-9:end,:) = [1;
size(hospital)

ans

90 6

Search for observations by logical condition. Create a new dataset array containing only
females who smoke.

dsFS = hospital (hospital .Sex=="Female” & hospital.Smoker==true, :);
dsFS(:,{"LastName", "Sex", "Smoker"})

ans

LPD-746
XBR-291
AAX-056
DTT-578
AFK-336
RBA-579
HAK-381
NSK-403
1LS-109
JDR-456
HWz-321
GGU-691
WUS-105

LastName
*MILLER"
"GARCIA"
"LEE"
"WALKER*
"WRIGHT*
"SANCHEZ*"
"MORRIS*
"RAMIREZ"
"WATSON*
"SANDERS*
"PATTERSON*
"HUGHES*
"FLORES*

Sex

Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female

Smoker
true
true
true
true
true
true
true
true
true
true
true
true
true
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See Also

dataset

Related Examples

“Access Data in Dataset Array Variables” on page 2-85
. “Select Subsets of Observations” on page 2-91

More About

. “Dataset Arrays” on page 2-132
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Descriptive Statistics

*  “Introduction to Descriptive Statistics” on page 3-2
+ “Measures of Central Tendency” on page 3-3

+ “Measures of Dispersion” on page 3-5

*  “Quantiles and Percentiles” on page 3-7

+  “Exploratory Analysis of Data” on page 3-11

+ “Resampling Statistics” on page 3-17

+ “Data with Missing Values” on page 3-22



3 Descriptive Statistics

Introduction to Descriptive Statistics

You may need to summarize large, complex data sets—both numerically and visually—to
convey their essence to the data analyst and to allow for further processing.
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Measures of Central Tendency

Measures of central tendency locate a distribution of data along an appropriate scale.

The following table lists the functions that calculate the measures of central tendency.

Function Name Description

geomean Geometric mean
harmmean Harmonic mean
mean Arithmetic average
median 50th percentile
mode Most frequent value
trimmean Trimmed mean

The average is a simple and popular estimate of location. If the data sample comes from a
normal distribution, then the sample mean is also optimal (minimum variance unbiased
estimator (MVUE) of u).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The
sample mean is sensitive to these problems. One bad data value can move the average
away from the center of the rest of the data by an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to outliers.
The median is the 50th percentile of the sample, which will only change slightly if you
add a large perturbation to any value. The idea behind the trimmed mean is to ignore

a small percentage of the highest and lowest values of a sample when determining the
center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers.
They are useful when the sample is distributed lognormal or heavily skewed. This
example shows the behavior of the measures of location for a sample with one outlier:

X = [ones(1,6) 100];
locate = [geomean(x) harmmean(x) mean(x) median(X)...
trimmean(x,25)]

locate =
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1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the influence of the
outlier. The median and trimmed mean ignore the outlying value and describe the
location of the rest of the data values.



Measures of Dispersion

Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data values are
on the number line. Another term for these statistics is measures of spread.

The table gives the function names and descriptions.

Function Name  |Description

iqr Interquartile range

mad Mean absolute deviation
moment Central moment of all orders
range Range

std Standard deviation

var Variance

The range (the difference between the maximum and minimum values) is the simplest
measure of spread. But if there is an outlier in the data, it will be the minimum or
maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that are
optimal for normally distributed samples. The sample variance is the minimum variance

unbiased estimator (MVUE) of the normal parameter 0. The standard deviation is the
square root of the variance and has the desirable property of being in the same units as
the data. That is, if the data is in meters, the standard deviation is in meters as well. The

variance is in meters® which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value
that is separate from the body of the data can increase the value of the statistics by an
arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the MAD does not
move quite as much as the standard deviation or variance in response to bad data.

The interquartile range (IQR) is the difference between the 75th and 25th percentile
of the data. Since only the middle 50% of the data affects this measure, it is robust to
outliers.

This example shows the behavior of the measures of dispersion for a sample with one
outlier:



3 Descriptive Statistics

x = [ones(1,6) 100]
stats = [iqr(x) mad(x) range(x) std(x)]

1 1 1 1 1 1 100

stats =

0 24.2449 99.0000 37.4185



Quantiles and Percentiles

Quantiles and Percentiles

This section explains how the Statistics and Machine Learning Toolbox functions
quantile and prctile compute quantiles and percentiles.

The prctile function calculates the percentiles in a similar way as quantile
calculates quantiles. The following steps in the computation of quantiles are also true for
percentiles, given the fact that, for the same data sample, the quantile at the value Q is
the same as the percentile at the value P = 100*Q.

1 quantile initially assigns the sorted values in X to the (0.5/n), (1.5/n), ..., ([n —
0.5]/n) quantiles. For example:

+ For a data vector of six elements such as {6, 3, 2, 10, 8, 1}, the sorted elements {1,
2, 3, 6, 8, 10} respectively correspond to the (0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6),
and (5.5/6) quantiles.

+ For a data vector of five elements such as {2, 10, 5, 9, 13}, the sorted elements {2,
5, 9, 10, 13} respectively correspond to the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles.

The following figure illustrates this approach for data vector X = {2, 10, 5, 9, 13}.
The first observation corresponds to the cumulative probability 1/5 = 0.2, the second
observation corresponds to the cumulative probability 2/5 = 0.4, and so on. The step
function in this figure shows these cumulative probabilities. quanti le instead
places the observations in midpoints, such that the first corresponds to 0.5/5 = 0.1,
the second corresponds to 1.5/5 = 0.3, and so on, and then connects these midpoints.
The red lines in the following figure connect the midpoints.
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Assigning Observations to Quantiles

By switching the axes, as the next figure, you can see the values of the variable X
that correspond to the p quantiles.



Quantiles and Percentiles
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quanti le finds any quantiles between the data values using linear interpolation.

Linear interpolation uses linear polynomials to approximate a function f(x)

and construct new data points within the range of a known set of data points.
Algebraically, given the data points (x1, y1) and (xg, ¥s), where y; = f(x;) and ys = f(xy),
linear interpolation finds y = f(x) for a given x between x; and x, as follows:

(x=x)

y=f@) =y, + (y2 = m)-
(xZ_xl)
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Similarly, if the 1.5/n quantile is y; 5, and the 2.5/n quantile is ys 5/, then linear
interpolation finds the 2.3/n quantile ys 3/, as

23_15
n

n n n n

n
Y23 =Y15 T o e 15 Y26 TY15 |
[n_n)

3 quantile assigns the first and last values of X to the quantiles for probabilities less
than (0.5/n) and greater than ([n—0.5]/n), respectively.

References

[1] Langford, E. “Quartiles in Elementary Statistics”, Journal of Statistics Education.
Vol. 14, No. 3, 2006.

See Also

median | prctile | quantile
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Exploratory Analysis of Data

Exploratory Analysis of Data

This example shows how to explore the distribution of data using descriptive statistics.
Generate sample data.

rng("default®) % for reproducibility
X = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];

Create a histogram of data with normal density fit.

histfit(x)

?I:I T T T T T T
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The distribution of the data seems left skewed and normal distribution does not look like
a good fit to this distribution.

Obtain a normal probability plot.

probplot(“normal®,x)

Frobability plat for Marmal distribution

0.995
0.99 -
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m
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0.01 r
0.005 - ®

Data

This probability plot also clearly shows the deviation of data from normality.

Compute quantiles of data.

p = 0:0.25:1;
y = quantile(x,p);
z = [p;yl
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0 0.2500 0.5000 0.7500
1.0557 4_7375 5.6872 6.1526

Plot a box plot.

A box plot helps to visualize the statistics.

boxplot(x)

1.0000
7.5784
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i + -
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Column Number

You can also see the 0.25, 0.5, and 0.75 quantiles in the box plot. The long lower tail and
plus signs also show the lack of symmetry in the sample values.
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Compute the mean and median of data.
y = [mean(x) median(x)]
y =
5.3438 5.6872

The mean and median values seem close to each other, but a mean smaller than the
median usually flags left skewness of the data.

Compute the skewness and kurtosis of data.

y [skewness(x) kurtosis(x)]
y =
-1.0417 3.5895

A negative skewness value means the data is left skewed. The data has a larger
peakedness than a normal distribution because the kurtosis value is greater than 3.

Identify possible outliers.

Compute z-scores. Find the z-scores that are greater than 3 or less than —3.

Z = zscore(X);
find(abs(2)>3);

ans =
3 35
The 3rd and 35th observations might be outliers.

See Also

boxplot | histfit | kurtosis | mean | median | prctile | quantile | skewness

More About

. “Box Plots” on page 4-6

. “Measures of Central Tendency” on page 3-3
. “Measures of Dispersion” on page 3-5
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. “Quantiles and Percentiles” on page 3-7
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Resampling Statistics

In this section...

“Bootstrap Resampling” on page 3-17
“Jackknife Resampling” on page 3-20

“Parallel Computing Support for Resampling Methods” on page 3-21

Bootstrap Resampling

The bootstrap procedure involves choosing random samples with replacement from a
data set and analyzing each sample the same way. Sampling with replacement means
that each observation is selected separately at random from the original dataset. So a
particular data point from the original data set could appear multiple times in a given
bootstrap sample. The number of elements in each bootstrap sample equals the number
of elements in the original data set. The range of sample estimates you obtain enables
you to establish the uncertainty of the quantity you are estimating.

This example from Efron and Tibshirani compares Law School Admission Test (LSAT)
scores and subsequent law school grade point average (GPA) for a sample of 15 law
schools.

load lawdata

plot(lsat,gpa,"+%)
Isline

3-17



3 Descriptive Statistics

3.5 T T T T T T

32f - i

31r 7 -

|~
a8l + _

2. T I 1 I I I I
840 560 580 600 G20 640 660 G680

The least-squares fit line indicates that higher LSAT scores go with higher law school
GPAs. But how certain is this conclusion? The plot provides some intuition, but nothing
quantitative.

You can calculate the correlation coefficient of the variables using the |corr | function.

rhohat = corr(lsat,gpa)

rhohat

0.7764
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Now you have a number describing the positive connection between LSAT and GPA,;
though it may seem large, you still do not know if it is statistically significant.

Using the bootstrp function you can resample the Isat and gpa vectors as many times
as you like and consider the variation in the resulting correlation coefficients.

rng default % For reproducibility
rhos1000 = bootstrp(1000, "corr”,lsat,gpa);

This resamples the Isat and gpa vectors 1000 times and computes the corr function on
each sample. You can then plot the result in a histogram.

histogram(rhos1000, 30, "FaceColor®,[-.8 -8 1])
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80 ] 7

0 1 [ —
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Nearly all the estimates lie on the interval [0.4 1.0].

It is often desirable to construct a confidence interval for a parameter estimate in
statistical inferences. Using the bootci function, you can use bootstrapping to obtain a
confidence interval for the Isat and gpa data.

ci = bootci(5000,@corr, Isat,gpa)
ci =

0.3319

0.9427

Therefore, a 95% confidence interval for the correlation coefficient between LSAT and
GPA is [0.33 0.94]. This is strong quantitative evidence that LSAT and subsequent
GPA are positively correlated. Moreover, this evidence does not require any strong
assumptions about the probability distribution of the correlation coefficient.

Although the bootci function computes the Bias Corrected and accelerated (BCa)
interval as the default type, it is also able to compute various other types of bootstrap
confidence intervals, such as the studentized bootstrap confidence interval.

Jackknife Resampling

Similar to the bootstrap is the jackknife, which uses resampling to estimate the bias of

a sample statistic. Sometimes it is also used to estimate standard error of the sample
statistic. The jackknife is implemented by the Statistics and Machine Learning Toolbox™
function jackknife.

The jackknife resamples systematically, rather than at random as the bootstrap does.
For a sample with n points, the jackknife computes sample statistics on n separate
samples of size n-1. Each sample is the original data with a single observation omitted.

In the bootstrap example, you measured the uncertainty in estimating the correlation
coefficient. You can use the jackknife to estimate the bias, which is the tendency of the
sample correlation to over-estimate or under-estimate the true, unknown correlation.
First compute the sample correlation on the data.

load lawdata
rhohat = corr(lsat,gpa)

3-20



Resampling Statistics

rhohat =

0.7764

Next compute the correlations for jackknife samples, and compute their mean.

rng default; % For reproducibility
jJjackrho = jackknife(@corr,lsat,gpa);
meanrho mean(jJackrho)

meanrho

0.7759

Now compute an estimate of the bias.

n = length(lsat);
biasrho = (n-1) * (meanrho-rhohat)

biasrho =

-0.0065

The sample correlation probably underestimates the true correlation by about this
amount.

Parallel Computing Support for Resampling Methods

For information on computing resampling statistics in parallel, see Parallel Computing
Toolbox™,
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Data with Missing Values

3-22

Many data sets have one or more missing values. It is convenient to code missing values
as NaN (Not a Number) to preserve the structure of data sets across multiple variables
and observations.

For example:

X = magic(3);
X([1 51) = [NaN NaN]

X =
NaN 1 6
3 NaN 7
4 9 2

Normal MATLAB arithmetic operations yield NaN values when operands are NaN:

sl

sum(X)

sl

NaN NaN 15

Removing the NaN values would destroy the matrix structure. Removing the rows
containing the NaN values would discard data. Statistics and Machine Learning Toolbox
functions in the following table remove NaN values only for the purposes of computation.

Function Description

nancov Covariance matrix, ignoring NaN values
nanmax Maximum, ignoring NaN values
nanmean Mean, ignoring NaN values

nanmedian Median, ignoring NaN values

nanmin Minimum, ignoring NaN values

nanstd Standard deviation, ignoring NaN values




Data with Missing Values

Function Description
nansum Sum, ignoring NaN values
nanvar Variance, ignoring NaN values

For example:

s2 = nansum(X)

s2

10 15

Other Statistics and Machine Learning Toolbox functions also ignore NaN values. These
include igr, kurtosis, mad, prctile, range, skewness, and trimmean.

3-23






Statistical Visualization

*  “Introduction to Statistical Visualization” on page 4-2

+ “Create Scatter Plots Using Grouped Data” on page 4-3
* “Box Plots” on page 4-6

*  “Distribution Plots” on page 4-8
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Introduction to Statistical Visualization

Statistics and Machine Learning Toolbox data visualization functions add to the
extensive graphics capabilities already in MATLAB.

Scatter plots are a basic visualization tool for multivariate data. They are used to
identify relationships among variables. Grouped versions of these plots use different
plotting symbols to indicate group membership. The gname function is used to label
points on these plots with a text label or an observation number.

Box plots display a five-number summary of a set of data: the median, the two ends
of the interquartile range (the box), and two extreme values (the whiskers) above
and below the box. Because they show less detail than histograms, box plots are most
useful for side-by-side comparisons of two distributions.

Distribution plots help you identify an appropriate distribution family for your data.
They include normal and Weibull probability plots, quantile-quantile plots, and
empirical cumulative distribution plots.

Advanced Statistics and Machine Learning Toolbox visualization functions are available
for specialized statistical analyses.



Create Scatter Plots Using Grouped Data

Create Scatter Plots Using Grouped Data

This example shows how to create scatter plots using grouped sample data.

A scatter plot is a simple plot of one variable against another. The MATLAB® functions
plot and scatter produce scatter plots. The MATLAB function plotmatrix can
produce a matrix of such plots showing the relationship between several pairs of
variables.

Statistics and Machine Learning Toolbox™ functions gscatter and gplotmatrix
produce grouped versions of these plots. These are useful for determining whether the
values of two variables or the relationship between those variables is the same in each
group.

Suppose you want to examine the weight and mileage of cars from three different model
years.

load carsmall
gscatter(Weight,MPG,Model_Year, ™", "xos")
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This shows that not only is there a strong relationship between the weight of a car and
its mileage, but also that newer cars tend to be lighter and have better gas mileage than
older cars.

The default arguments for gscatter produce a scatter plot with the different groups
shown with the same symbol but different colors. The last two arguments above request
that all groups be shown in default colors and with different symbols.

The carsmall data set contains other variables that describe different aspects of cars.
You can examine several of them in a single display by creating a grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,

, "X0s")



Create Scatter Plots Using Grouped Data
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The upper right subplot displays MPG against Horsepower, and shows that over the
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The gplotmatrix function can also graph all pairs from a single list of variables, along
with histograms for each variable. See MANOVA.
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Box Plots

The graph below, created with the boxplot command, compares petal lengths in
samples from two species of iris.

load fisheriris

sl = meas(51:100,3);

s2 = meas(101:150,3);

figure;

boxplot([sl s2], "notch","on", ...
"labels*,{"versicolor”, "virginica®})

5.5 7

a5t —L -

I
I
35 7
1

3 + .
1

versicolor virginica

This plot has the following features:
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Box Plots

The tops and bottoms of each “box” are the 25th and 75th percentiles of the samples,
respectively. The distances between the tops and bottoms are the interquartile
ranges.

The line in the middle of each box is the sample median. If the median is not centered
in the box, it shows sample skewness.

The whiskers are lines extending above and below each box. Whiskers are drawn from
the ends of the interquartile ranges to the furthest observations within the whisker
length (the adjacent values).

Observations beyond the whisker length are marked as outliers. By default, an outlier
is a value that is more than 1.5 times the interquartile range away from the top or
bottom of the box, but this value can be adjusted with additional input arguments.
Outliers are displayed with a red + sign.

Notches display the variability of the median between samples. The width of a notch
is computed so that box plots whose notches do not overlap (as above) have different
medians at the 5% significance level. The significance level is based on a normal
distribution assumption, but comparisons of medians are reasonably robust for other
distributions. Comparing box-plot medians is like a visual hypothesis test, analogous
to the ¢ test used for means.
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Distribution Plots

In this section...

“Normal Probability Plots” on page 4-8
“Quantile-Quantile Plots” on page 4-10
“Cumulative Distribution Plots” on page 4-13
“Other Probability Plots” on page 4-14

Normal Probability Plots

Normal probability plots are used to assess whether data comes from a normal
distribution. Many statistical procedures make the assumption that an underlying
distribution is normal, so normal probability plots can provide some assurance that the
assumption is justified, or else provide a warning of problems with the assumption. An
analysis of normality typically combines normal probability plots with hypothesis tests
for normality.

This example generates a data sample of 25 random numbers from a normal distribution
withmu = 10 and sigma = 1, and creates a normal probability plot of the data.

rng default; % For reproducibility
X = normrnd(10,1,25,1);
normplot(x)




Distribution Plots

Probability
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The plus signs plot the empirical probability versus the data value for each point in the
data. A solid line connects the 25th and 75th percentiles in the data, and a dashed line
extends it to the ends of the data. The y-axis values are probabilities from zero to one,

but the scale is not linear. The distance between tick marks on the y-axis matches the
distance between the quantiles of a normal distribution. The quantiles are close together
near the median (probability = 0.5) and stretch out symmetrically as you move away from
the median.

In a normal probability plot, if all the data points fall near the line, an assumption of
normality is reasonable. Otherwise, the points will curve away from the line, and an

assumption of normality is not justified. For example, the following generates a data
sample of 100 random numbers from an exponential distribution with mu = 10, and
creates a normal probability plot of the data.
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Probability
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X = exprnd(10,100,1);

normplot(x)
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The plot is strong evidence that the underlying distribution is not normal.

Quantile-Quantile Plots

Quantile-quantile plots are used to determine whether two samples come from the same
distribution family. They are scatter plots of quantiles computed from each sample, with
a line drawn between the first and third quartiles. If the data falls near the line, it is
reasonable to assume that the two samples come from the same distribution. The method
is robust with respect to changes in the location and scale of either distribution.



Distribution Plots

Y Quantiles

To create a quantile-quantile plot, use the qqplot function.

The following example generates two data samples containing random numbers from
Poisson distributions with different parameter values, and creates a quantile-quantile
plot. The data in x is from a Poisson distribution with lambda = 10, and the data iny is
from a Poisson distribution with lambda = 5.

X = poissrnd(10,50,1);

y = poissrnd(5,100,1);

qgplot(x,y);
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Even though the parameters and sample sizes are different, the approximate linear
relationship suggests that the two samples may come from the same distribution family.
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As with normal probability plots, hypothesis tests can provide additional justification for
such an assumption. For statistical procedures that depend on the two samples coming
from the same distribution, however, a linear quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions are not
the same. Here, X contains 100 random numbers generated from a normal distribution
with mu = 5and sigma = 1, while y contains 100 random numbers generated from a
Weibull distribution with A = 2 and B = 0.5.

X = normrnd(5,1,100,1);
y = wblrnd(2,0.5,100,1);
qgplot(x,y);
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Y Quantiles
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[

X Quantiles

These samples clearly are not from the same distribution family.
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Cumulative Distribution Plots

An empirical cumulative distribution function (cdf) plot shows the proportion of data less
than each x value, as a function of x. The scale on the y-axis is linear; in particular, it is
not scaled to any particular distribution. Empirical cdf plots are used to compare data
cdfs to cdfs for particular distributions.

To create an empirical cdf plot, use the cdfplot function (or ecdf and stairs).

The following example compares the empirical cdf for a sample from an extreme value
distribution with a plot of the cdf for the sampling distribution. In practice, the sampling
distribution would be unknown, and would be chosen to match the empirical cdf.

y = evrnd(0,3,100,1);

cdfplot(y)

hold on

X = -20:0.1:10;

f = evedf(x,0,3);

plot(x,f,"m")
legend("Empirical”,"Theoretical ", "Location”, "NW")
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Other Probability Plots

A probability plot, like the normal probability plot, is just an empirical cdf plot scaled to a
particular distribution. The y-axis values are probabilities from zero to one, but the scale
1s not linear. The distance between tick marks is the distance between quantiles of the
distribution. In the plot, a line is drawn between the first and third quartiles in the data.
If the data falls near the line, it is reasonable to choose the distribution as a model for the
data.

To create probability plots for different distributions, use the probplot function.



Distribution Plots

Probability

The following example assesses two samples, one from a Weibull distribution with A = 3
and B = 3, and one from a Rayleigh distribution with B = 3, to see if either distribution

may have come from a Weibull population.

x1 = wblrnd(3,3,100,1);

x2 = raylrnd(3,100,1);

probplot("weibull”,[x1 x2])

legend("Weibull Sample®,"Rayleigh Sample®,"Location”, "NW®")
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The plot gives justification for modeling the first sample with a Weibull distribution;

much less so for the second sample.

A distribution analysis typically combines probability plots with hypothesis tests for a

particular distribution.
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“Model Data Using the Distribution Fitting App” on page 5-74

“Fit a Distribution Using the Distribution Fitting App” on page 5-101
“Custom Distributions Using the Distribution Fitting App” on page 5-111
“Explore the Random Number Generation UI” on page 5-114

“Compare Multiple Distribution Fits” on page 5-117

“Fit Probability Distribution Objects to Grouped Data” on page 5-124
“Multinomial Probability Distribution Objects” on page 5-128

“Multinomial Probability Distribution Functions” on page 5-132

“Generate Random Numbers Using Uniform Distribution Inversion” on page 5-135
“Represent Cauchy Distribution Using ¢ Location-Scale” on page 5-138
“Generate Cauchy Random Numbers Using Student’s ¢’ on page 5-142
“Generate Correlated Data Using Rank Correlation” on page 5-144
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* “Gaussian Mixture Models” on page 5-150
+ “Copulas: Generate Correlated Samples” on page 5-160
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Working with Probability Distributions

In this section...

“Types of Probability Distributions” on page 5-3

“Probability Distribution Objects” on page 5-4

“Probability Distribution Functions” on page 5-8

“Probability Distribution Apps and User Interfaces” on page 5-10

Types of Probability Distributions

Probability distributions are theoretical distributions based on assumptions about a
source population. The distributions assign probability to the event that a random
variable has a specific, discrete value, or falls within a specified range of continuous
values.

Statistics and Machine Learning Toolbox offers several ways to work with probability
distributions.

+ Use “Probability Distribution Objects” on page 5-4 to fit a probability distribution
object to sample data, or to create a probability distribution object with specified
parameter values.

*  Use “Probability Distribution Functions” on page 5-8 to work with data input
from matrices, tables, and dataset arrays.

*  Use “Probability Distribution Apps and User Interfaces” on page 5-10
to interactively fit, explore, and generate random numbers from probability
distributions. Available apps and user interfaces include:

The Distribution Fitting app (dfittool)
* The Probability Distribution Function user interface (disttool)

The Random Number Generation user interface (randtool)

For a list of distributions supported by Statistics and Machine Learning Toolbox, see
“Supported Distributions” on page 5-17.
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Probability Distribution Objects

Probability distribution objects allow you to fit a probability distribution to sample data,
or define a distribution by specifying parameter values. You can then perform a variety of
analyses on the distribution object.

Create Probability Distribution Objects

Estimate probability distribution parameters from sample data by fitting a probability
distribution object to the data using Fitdist. You can fit a single specified parametric
or nonparametric distribution to the sample data. You can also fit multiple distributions
of the same type to the sample data based on grouping variables. For most distributions,
Fitdist uses maximum likelihood estimation (MLE) to estimate the distribution
parameters from the sample data. For more information and additional syntax options,
see Fitdist.

Alternatively, you can create a probability distribution object with specified parameter
values using makedist.

Work with Probability Distribution Obijects
Once you create a probability distribution object, you can use object functions to:

*  Compute confidence intervals for the distribution parameters (paramci).

+  Compute summary statistics, including mean (mean), median (nedian), interquartile
range (iqr), variance (var), and standard deviation (std).

+ Evaluate the probability density function (pdf).

+ Evaluate the cumulative distribution function (cdf) or the inverse cumulative
distribution function (icdf).

+  Compute the negative log likelihood (neglogl ik) and profile likelihood function
(proflik) for the distribution.

* Generate random numbers from the distribution (random).

*  Truncate the distribution to specified lower and upper limits (€Eruncate).
Save a Probability Distribution Object
To save your probability distribution object to a .MAT file:

+ In the toolbar, click Save Workspace. This option saves all of the variables in your
workspace, including any probability distribution objects.
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* In the workspace browser, right-click the probability distribution object and select
Save as. This option saves only the selected probability distribution object, not the
other variables in your workspace.

Alternatively, you can save a probability distribution object directly from the command
line by using the save function. save enables you to choose a file name and specify
the probability distribution object you want to save. If you do not specify an object (or
other variable), MATLAB saves all of the variables in your workspace, including any
probability distribution objects, to the specified file name. For more information and
additional syntax options, see save.

Example

This example shows how to use probability distribution objects to perform a multistep
analysis on a fitted distribution.

The following analysis illustrates how to:

+ Fit a probability distribution object to sample data that contains 120 students’ exam
grades, using Fitdist.

*  Compute the mean of the exam grades, using mean.

+ Plot a histogram of the exam grade data, overlaid with a plot of the pdf of the fitted
distribution, using plot and pdf.

+  Compute the boundary for the top 10 percent of student grades, using icdf.
+ Save the fitted probability distribution object, using save.

Load the sample data.

load examgrades

The sample data contains a 120-by-5 matrix of students’ exam grades. The exams are
scored on a scale of 0 to 100.

Create a vector containing the first column of students’ exam grade data.
X = grades(:,1);
Fit a normal distribution to the sample data by using Fitdist to create a probability

distribution object.
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pd fitdist(x, "Normal *)
pd =
NormalDistribution
Normal distribution

mu = 75.0083  [73.4321, 76.5846]
sigma = 8.7202 [7.7391, 9.98843]

fitdist returns a probability distribution object, pd, of the type
NormalDistribution. This object contains the estimated parameter values, mu and
sigma, for the fitted normal distribution.

Compute the mean of the students’ exam grades using the fitted distribution object, pd.

m mean(pd)

m =
75.0083

The mean of the exam grades is equal to the mu parameter estimated by fitdist.

Plot a histogram of the exam grades. Overlay a scaled plot of the fitted pdf to visually
compare the fitted normal distribution with the actual exam grades.

x_pdf = [1:0.1:100];
y = pdf(pd,x_pdf);

figure
histogram(x)

hold on

scale = 10/max(y);

plot((x_pdf), (y.*scale))
hold off
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10 r r r r

The pdf of the fitted distribution follows the same shape as the histogram of the exam
grades.

Use the inverse cumulative distribution function (icdf) to determine the boundary for the
upper 10 percent of student exam grades. This boundary is equivalent to the value at
which the cdf of the probability distribution is equal to 0.9. In other words, 90 percent of
the exam grades are less than or equal to this boundary value.

A = icdf(pd,0.9)

A =

86.1837
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Based on the fitted distribution, 10 percent of students received an exam grade greater
than 86.1837. Equivalently, 90 percent of students received an exam grade less than or
equal to 86.1837.

Save the fitted probability distribution, pd, as a file named myobject.mat.

save myobject.mat pd

Probability Distribution Functions

You can also work with probability distributions using command-line functions.
Command-line functions let you further explore parametric and nonparametric
distributions, fit relevant models to your data, and generate random data from a
specified distribution. For a list of supported probability distributions, see “Supported
Distributions” on page 5-17.

Probability distribution functions are useful for generating random numbers and
computing summary statistics inside a loop or script, or passing a cdf or pdf as a function
handle (using the function_handle operator, @) to another function. You can also use
functions if your desired distribution is not available as a probability distribution object.

Examples

This example shows how to use the probability distribution function normcdf as a
function handle in the chi-square goodness of fit test (chi2go¥).

This example tests the null hypothesis that the sample data contained in the input
vector, X, comes from a normal distribution with parameters 4 and o equal to the mean
(mean) and standard deviation (std) of the sample data, respectively.

rng default
X = normrnd(50,5,100,1);
h chi2gof(x, “cdf" ,{@normcdf,mean(x),std(x)})

h =
0

The returned result h = 0 indicates that chi2go¥ does not reject the null hypothesis at
the default 5% significance level.

This next example illustrates how to use probability distribution functions as a function
handle in the slice sampler (slicesample). The example uses normpdf to generate



Working with Probability Distributions

a random sample of 2,000 values from a standard normal distribution, and plots a
histogram of the resulting values.

rng default

x = slicesample(1,2000, "pdf",@normpdf, "thin",5, "burnin®,1000) ;
h = histogram(x)
300 . r . . . .

The histogram shows that, when using normpdf, the resulting random sample has a
standard normal distribution.

If you pass the probability distribution function for the exponential distribution pdf
(exppdT) as a function handle instead of normpdf, then slicesample generates the
2,000 random samples from an exponential distribution with a default parameter value
of u equal to 1.
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rng default
x = slicesample(1,2000, “pdf*,@exppdf, "thin",5, "burnin®,1000);
h = histogram(x)

The histogram shows that the resulting random sample when using exppdf has an
exponential distribution.

Probability Distribution Apps and User Interfaces

Apps and user interfaces provide an interactive approach to working with parametric
and nonparametric probability distributions.
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Distribution Fitting App

The Distribution Fitting app allows you to interactively fit a probability distribution

to your data. You can display different types of plots, compute confidence bounds, and
evaluate the fit of the data. You can also exclude data from the fit. You can save the
data, and export the fit to your workspace as a probability distribution object to perform
further analysis.

Load the Distribution Fitting app from the Apps tab, or by entering dfittool in the
command window. For more information, see “Model Data Using the Distribution Fitting
App” on page 5-74.

5-11



5 Probability Distributions

Select display Select distribution (probability plot only)

J Distribution Fitting Tool | \ - O] x|

File View Tools Window Help
IR E \

Display type:IDensity (PDF)_'_l Distribution: [Mormal =

\L Data... | MNew Fit...l H?:_?ge | Evaluate...l Exclude. .. ‘%
Import data / 1 / : f ?

from workspace
09r .

08t .
07 .

06 .
Select "Data"[to begin

05} distributior fitting ]
04}t |
/ / —

Manage multiple fits Evaluate distribution Exclude data
at selected points from fit

N

Task buttons

Create a new fit

Density

Probability Distribution Function Tool
The Probability Distribution Function user interface visually explores probability

distributions. You can load the Probability Distribution Function user interface by
entering disttool in the command window.
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4| Probability Distribution Function Tool [o || @] =]
File Edit View Inset Tools Desktop Window Help k]
Distribution: | yormal +|  Function tvpe: |cpF -l
T T T I T T T
i
i
i
!
Probability: |
0.5 I
Upper bound ped - Upper bound Z -
Wu 0 Sigma 1
Lower bound -2 - Lower bound 0s -

Random Number Generation Tool

The Random Number Generation user interface generates random data from a specified
distribution and exports the results to your workspace. You can use this tool to explore
the effects of changing parameters and sample size on the distributions.

The Random Number Generation user interface allows you to set parameter values for
the distribution and change their lower and upper bounds; draw another sample from the
same distribution, using the same size and parameters; and export the current random
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sample to your workspace for use in further analysis. A dialog box enables you to provide
a name for the sample.
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Choose distribution Sample size

J Random Number Generation | - 0| x|
File Edit View Insert Tools Desktop Window Help ~
Distribution|Norma| .| SamplesI 100
25 - : .
20t .
Histogram >
‘(_2 15 B 7
=
=
(=3
10t ]
5t ]
Parameter 0 . !
bounds 5 0 5
Values
Upper Upper Upper
bound I 2 2 bound 2 A bouna
Sigma | 1 [
| Lower y Lower (g5 .| “ower [
bound hound DT
Parameter Resamplel Export .. |
value
1 X
Parameter Additional / Sample again  Export to
control
parameters from the same workspace
distribution
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See Also
dfittool | disttool | fitdist | makedist | randtool

More About
. “Supported Distributions” on page 5-17
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Supported Distributions

In this section...

“Continuous Distributions (Data)” on page 5-19
“Continuous Distributions (Statistics)” on page 5-23
“Discrete Distributions” on page 5-25

“Multivariate Distributions” on page 5-27

“Nonparametric Distributions” on page 5-29

“Flexible Distribution Families” on page 5-29

Statistics and Machine Learning Toolbox supports more than 30 probability
distributions, including parametric, nonparametric, continuous, and discrete
distributions.

The toolbox provides several ways to work with probability distributions.

+  Use probability distribution objects to fit a probability distribution object to sample
data, or to create a probability distribution object with specified parameter values.
The Using Objects page for each distribution provides information about the object’s
properties and the functions you can use to work with the object.

+  Use probability distribution functions to work with data input from matrices, tables,
and dataset arrays. Some of the supported distributions have distribution-specific
functions. These functions use the following abbreviations:

+  pdf — Probability density functions
+ cdf — Cumulative distribution functions
+ inv — Inverse cumulative distribution functions
+ stat — Distribution statistics functions
fit — Distribution fitting functions
+ like — Negative log-likelihood functions

rnd — Random number generators

You can also use the following generic functions to work with most of the
distributions:

*  pdf — Probability density function
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+ cdf — Cumulative distribution function

+ 1cdf — Inverse cumulative distribution function
mle — Distribution fitting function

+  random — Random number generating function

+  Use probability distribution apps and user interfaces to interactively fit, explore, and
generate random numbers from probability distributions. Available apps and user
interfaces include:

The Distribution Fitting app (dfittool), to interactively fit a distribution to
sample data, and export a probability distribution object to the workspace.

* The Probability Distribution Function user interface (disttool), to visually
explore the effect on the pdf and cdf of changing the distribution parameter values.

* The Random Number Generation user interface (randtool), to interactively
generate random numbers from a probability distribution with specified parameter
values and export them to the workspace.

For more information on the different ways to work with probability distributions, see
“Working with Probability Distributions” on page 5-3.
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Continuous Distributions (Data)

Distribution Using Objects Legacy Functions |Apps and Uls
Beta BetaDistribution |betapdf dfittool
betacdf disttool
betainv randtool
betastat
betafit
betalike
betarnd
Birnbaum-Saunders BirnbaumSaundersDijpdf dfittool
cdf
icdf
mle
random
Burr Type XII BurrDistribution |[pdf dfittool
cdf disttool
icdf randtool
mle
random
Exponential ExponentialDistrilexppdf dfittool
expcdf disttool
expinv randtool
expstat
expFit
explike
Extreme value ExtremeValueDistrievpdf dfittool
evcdf disttool
evinv randtool
evstat
evfit
evlike
evrnd
Gamma GammaDistribution gampdf dfittool
gamcdf disttool
gaminv randtool
gamstat
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Distribution

Using Obijects

Legacy Functions

Apps and Uls

gamfit
gamlike
gamrnd

Generalized extreme
value

General 1zedExtremg

gevpdf
gevcdf
gevinv
gevstat
gevfit
gevlike
gevrnd

dfittool
disttool
randtool

Generalized Pareto

General izedParetol

gppdf
gpcdf
gpinv
gpstat
gpfit
gplike
gprnd

dfittool
disttool
randtool

Inverse Gaussian

InverseGaussianDis

pdf
cdf
icdf
mle
random

dfittool

Logistic

LogisticDistribut

pdf
cdf
icdf
mle
random

dfittool

Loglogistic

LoglogisticDistril

pdf
cdf
icdf
mle
random

dfittool
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Distribution

Using Obijects

Legacy Functions

Apps and Uls

Lognormal

LognormalDistribut

lognpdf
logncdf
logninv
lognstat
lognfit
lognlike
lognrnd

dfittool
disttool
randtool

Nakagami

NakagamiDistribut

pdf
cdf
icdf
mle
random

dfittool

Normal (Gaussian)

NormalDistributior

normpdf
normcdf
norminv
normstat
normfit
normlike
normrnd

dfittool
disttool
randtool

Piecewise linear

PiecewiseLinearDig

pdf
cdf
icdf
random

Rayleigh

RayleighDistribut

raylpdf
raylcdf
raylinv
raylstat
raylfit
raylrnd

dfittool
disttool
randtool

Rician

RicianDistributior

pdf
cdf
icdf
mle
random

dfittool

Triangular

TriangularDistribt
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Distribution

Using Obijects

Legacy Functions

Apps and Uls

Uniform (continuous)

UniformDistributig

unifpdf
unifcdf
unifinv
unifstat
unifit
unifrnd

disttool
randtool

Weibull

Weibul IDistributig

wblpdf
wblcdf
wblinv
wblstat
wblfit
wbllike
wblrnd

dfittool
disttool
randtool




Supported Distributions

Continuous Distributions (Statistics)

Distribution

Using Obijects

Legacy Functions

Apps and Uls

Chi-square

chi2pdf
chi2cdf
chi2inv
chi2stat
chi2rnd

disttool
randtool

fpdf
fcdf
finv
fstat
frnd

disttool
randtool

Noncentral chi-square

ncx2pdf
ncx2cdf
ncx2inv
ncx2stat
ncx2rnd

disttool
randtool

Noncentral F

ncfpdf
ncfcdf
ncfinv
ncfstat
ncfrnd

disttool
randtool

Noncentral ¢

nctpdf
nctcdf
nctinv
nctstat
nctrnd

disttool
randtool

Student's ¢

tpdf
tcdf
tinv
tstat
trnd

disttool
randtool

t location- scale

tLocationScaleDistr

pdf
cdf
icdf
mle

dfittool
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random

5-24



Supported Distributions

Discrete Distributions

Distribution

Using Obijects

Legacy Functions

Apps/Uls

Binomial

BinomialDistributid

binopdf
binocdf
binoinv
binostat
binofit
binornd

disttool
randtool

Bernoulli

mle

Geometric

geopdf
geocdf
geoinv
geostat
mle
geornd

disttool
randtool

Hypergeometric

hygepdf
hygecdf
hygeinv
hygestat
hygernd

disttool
randtool

Multinomial

MultinomialDistribu

mnpdf
mnrnd

Negative binomial

NegativeBinomialDis

nbinpdf
nbincdf
nbininv
nbinstat
nbinfit
nbinrnd

dfittool
disttool
randtool

Poisson

PoissonDistribution

poisspdf
poisscdf
poissinv
poisstat
poissfit
poissrnd

dfittool
disttool
randtool

Uniform (discrete)

unidpdf

disttool
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Distribution

Using Obijects

Legacy Functions

Apps/Uls

unidcdf
unidinv
unidstat
mle
unidrnd

randtool
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Multivariate Distributions

Distribution

Object

Legacy Functions

Apps/Ul

Gaussian copula

copulapdf
copulacdf
copulastat
copulafit
copularnd

Gaussian mixture

gmdistribution

pdf
cdf
fit
random

t copula

copulapdf
copulacdf
copulastat
copulafit
copularnd

Clayton copula

copulapdf
copulacdf
copulastat
copulafit
copularnd

Frank copula

copulapdf
copulacdf
copulastat
copulafit
copularnd

Gumbel copula

copulapdf
copulacdf
copulastat
copulafit
copularnd

Inverse Wishart

iwishrnd

Multivariate normal

mvnpdf
mvncdf
mvnrnd
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Multivariate ¢ mvtpdf
mvtcdf
mvtrnd

Wishart wishrnd
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Nonparametric Distributions

Distribution Using Objects Legacy Functions Apps/Uls
Nonparametric (kernel) KernelDistribution |ksdensity dfittool
Pareto paretotails

Flexible Distribution Families

Distribution Using Objects Legacy Functions Apps/Uls
Pearson system pearsrnd
Johnson system jJjohnsrnd

More About

. “Working with Probability Distributions” on page 5-3

. “Nonparametric and Empirical Probability Distributions” on page 5-40
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Maximum Likelihood Estimation

5-30

The Statistics and Machine Learning Toolbox function mle is a convenient front end to
the individual distribution fitting functions, and more. The function computes maximum
likelihood estimates (MLEs) for distributions beyond those for which Statistics and
Machine Learning Toolbox software provides specific pdf functions.

For some pdfs, MLESs can be given in closed form and computed directly. For other pdfs, a
search for the maximum likelihood must be employed. The search can be controlled with

an options input argument, created using the statset function. For efficient searches,
it is important to choose a reasonable distribution model and set appropriate convergence
tolerances.

MLESs can be heavily biased, especially for small samples. As sample size increases,
however, MLEs become unbiased minimum variance estimators with approximate
normal distributions. This is used to compute confidence bounds for the estimates.

For example, consider the following distribution of means from repeated random samples
of an exponential distribution:

mu = 1; % Population parameter

n = 1e3; % Sample size

ns = le4; % Number of samples

rng default % For reproducibility

samples = exprnd(mu,n,ns); % Population samples
means = mean(samples); % Sample means

The Central Limit Theorem says that the means will be approximately normally
distributed, regardless of the distribution of the data in the samples. The normfit
function can be used to find the normal distribution that best fits the means:

[muhat,sigmahat,muci,sigmaci] = normfit(means)

muhat =

1.0000

sigmahat =
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0.0315

muci =

0.9994
1.0006

sigmaci =

0.0311
0.0319

The function returns MLEs for the mean and standard deviation and their 95%
confidence intervals.

To visualize the distribution of sample means together with the fitted normal
distribution, you must scale the fitted pdf, with area = 1, to the area of the histogram
being used to display the means:

numbins = 50;

histogram(means,numbins)

hold on

[bincounts,binpositions] = hist(means,numbins);
binwidth = binpositions(2) - binpositions(l);
histarea = binwidth*sum(bincounts);

X = binpositions(1):0.001:binpositions(end);

y = normpdf(x,muhat,sigmahat);
plot(x,histarea*y, "r", "LineWidth",2)
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Negative Loglikelihood Functions

Negative loglikelihood functions for supported Statistics and Machine Learning Toolbox
distributions all end with I'ike, as in explike. Each function represents a parametric
family of distributions. Input arguments are lists of parameter values specifying a
particular member of the distribution family followed by an array of data. Functions
return the negative log-likelihood of the parameters, given the data.

Negative log-likelihood functions are used as objective functions in search algorithms
such as the one implemented by the MATLAB function fminsearch. Additional
search algorithms are implemented by Optimization Toolbox™ functions and Global
Optimization Toolbox functions.

When used to compute maximum likelihood estimates (MLESs), negative log-likelihood
functions allow you to choose a search algorithm and exercise low-level control over
algorithm execution. By contrast, the functions discussed in “Maximum Likelihood
Estimation” on page 5-30 use preset algorithms with options limited to those set by the
statset function.

Likelihoods are conditional probability densities. A parametric family of distributions

1s specified by its pdf f(x,a), where x and a represent the variables and parameters,
respectively. When a is fixed, the pdf is used to compute the density at x, f(x | a). When x
1s fixed, the pdf is used to compute the likelihood of the parameters a, f(a | x). The joint
likelihood of the parameters over an independent random sample X is

L@)=[] flalx

xe X

Given X, MLEs maximize L(a) over all possible a.

In numerical algorithms, the log-likelihood function, log(L(a)), is (equivalently)
optimized. The logarithm transforms the product of potentially small likelihoods into
a sum of logs, which is easier to distinguish from 0 in computation. For convenience,
Statistics and Machine Learning Toolbox negative log-likelihood functions return the
negative of this sum, since the optimization algorithms to which the values are passed
typically search for minima rather than maxima.

For example, use gamrnd to generate a random sample from a specific gamma
distribution:
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rng default; % for reproducibility
a = [1,2];
X = gamrnd(a(l),a(2),1e3,1);

Given X, the gaml ike function can be used to visualize the likelihood surface in the
neighborhood of a:

mesh = 50;

delta = 0.5;

al = linspace(a(l)-delta,a(l)+delta,mesh);
a2 = linspace(a(2)-delta,a(2)+delta,mesh);
logL = zeros(mesh); % Preallocate memory

for i = 1:mesh
for j = 1:mesh
logL(i.j) = gamlike([al(i),a2()]1.x);
end
end

[A1,A2] = meshgrid(al,a2);
surfc(A1,A2,loglL)
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The MATLAB function fminsearch is used to search for the minimum of the likelihood
surface:

LL = @Cu)gamlike(fu(1),u(2)]1,.X); % Likelihood given X
MLES = fminsearch(LL,[1,2])

MLES =

0.9980 2.0172

These can be compared to the MLEs returned by the gamfit function, which uses a
combination search and solve algorithm:
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ahat

gamFit(X)

ahat

0.9980 2.0172

The MLEs can be added to the surface plot (rotated to show the minimum):

hold on

plot3(MLES(1) ,MLES(2),LL(MLES), - -.
“ro","MarkerSize®,5, ...
"MarkerFaceColor”®,"r")
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Random Number Generation

Statistics and Machine Learning Toolbox supports the generation of random numbers
from various distributions. Each RNG represents a parametric family of distributions.
RNGs return random numbers from the specified distribution in an array of the specified
dimensions.

Other random number generation functions which do not support specific distributions
include:

* cvpartition

+ datasample

* hmmgenerate

+ lhsdesign

+ Thsnorm

* mhsample

* random

* randsample

+ slicesample

RNGs in Statistics and Machine Learning Toolbox software depend on MATLAB's
default random number stream via the rand and randn functions, each RNG uses one of
the techniques discussed in “Common Generation Methods” on page 6-5 to generate
random numbers from a given distribution.

By controlling the default random number stream and its state, you can control how the
RNGs in Statistics and Machine Learning Toolbox software generate random values.
For example, to reproduce the same sequence of values from an RNG, you can save and
restore the default stream's state, or reset the default stream. For details on managing
the default random number stream, see “Managing the Global Stream”.

MATLAB initializes the default random number stream to the same state each time it
starts up. Thus, RNGs in Statistics and Machine Learning Toolbox software will generate
the same sequence of values for each MATLAB session unless you modify that state at
startup. One simple way to do that is to add commands to startup.m such as

rng shuffle
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that initialize MATLAB's default random number stream to a different state for each
session.

The following table lists the dependencies of Statistics and Machine Learning Toolbox
RNGs on the MATLAB base RNGs rand, randi, and/or randn.

RNG MATLAB Base RNG

betarnd rand, randn

binornd rand

chi2rnd rand, randn

evrnd rand

exprnd rand

datasample rand, randi, randperm

frnd rand, randn

gamrnd rand, randn

geornd rand

gevrnd rand

gprnd rand

hygernd rand

iwishrnd rand, randn

johnsrnd randn

Ihsdesign rand

lThsnorm rand

lognrnd randn

mhsample rand or randn, depending on the RNG
given for the proposal distribution

mvnrnd randn

mvtrnd rand, randn

nbinrnd rand, randn

ncfrnd rand, randn

nctrnd rand, randn
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RNG MATLAB Base RNG

ncx2rnd randn

normrnd randn

pearsrnd rand or randn, depending on the
distribution type

poissrnd rand, randn

random rand or randn, depending on the specified
distribution

randsample rand

raylrnd randn

slicesample rand

trnd rand, randn
unidrnd rand
unifrnd rand
wblrnd rand
wishrnd rand, randn
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Nonparametric and Empirical Probability Distributions
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In this section...

“Overview” on page 5-40

“Kernel Distribution” on page 5-40

“Empirical Cumulative Distribution Function” on page 5-42
“Piecewise Linear Distribution” on page 5-44

“Pareto Tails” on page 5-45

“Triangular Distribution” on page 5-46

Overview

In some situations, you cannot accurately describe a data sample using a parametric
distribution. Instead, the probability density function (pdf) or cumulative distribution
function (cdf) must be estimated from the data. Statistics and Machine Learning Toolbox
provides several options for estimating the pdf or cdf from sample data.

Kernel Distribution

A kernel distribution produces a nonparametric probability density estimate that adapts
itself to the data, rather than selecting a density with a particular parametric form and
estimating the parameters. This distribution is defined by a kernel density estimator, a
smoothing function that determines the shape of the curve used to generate the pdf, and
a bandwidth value that controls the smoothness of the resulting density curve.

Similar to a histogram, the kernel distribution builds a function to represent the
probability distribution using the sample data. But unlike a histogram, which places the
values into discrete bins, a kernel distribution sums the component smoothing functions
for each data value to produce a smooth, continuous probability curve. The following plot
shows a visual comparison of a histogram and a kernel distribution generated from the
same sample data.
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A histogram represents the probability distribution by establishing bins and placing each
data value in the appropriate bin. Because of this bin count approach, the histogram
produces a discrete probability density function. This might be unsuitable for certain
applications, such as generating random numbers from a fitted distribution.

Alternatively, the kernel distribution builds the probability density function (pdf) by
creating an individual probability density curve for each data value, then summing
the smooth curves. This approach creates one smooth, continuous probability density
function for the data set.

For more general information about kernel distributions, see “Kernel Distribution” on

page B-81. For information on how to work with a kernel distribution, see Using
KernelDistribution Objects and ksdensity.
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Empirical Cumulative Distribution Function

An empirical cumulative distribution function (ecdf) estimates the cdf of a random
variable by assigning equal probability to each observation in a sample. Because of this
approach, the ecdf is a discrete cumulative distribution function that creates an exact
match between the ecdf and the distribution of the sample data.

The following plot shows a visual comparison of the ecdf of 20 random numbers
generated from a standard normal distribution, and the theoretical cdf of a standard
normal distribution. The circles indicate the value of the ecdf calculated at each sample
data point. The dashed line that passes through each circle visually represents the ecdf,
although the ecdf is not a continuous function. The solid line shows the theoretical cdf of
the standard normal distribution from which the random numbers in the sample data
were drawn.
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The ecdf is similar in shape to the theoretical cdf, although it is not an exact match.
Instead, the ecdf is an exact match to the sample data. The ecdf is a discrete function,
and is not smooth, especially in the tails where data might be sparse. You can smooth the
distribution with Pareto tails, using the paretotails function.

For more information and additional syntax options, see ecdf. To construct a continuous

function based on cdf values computed from sample data, see “Piecewise Linear
Distribution” on page 5-44.
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Piecewise Linear Distribution

A piecewise linear distribution estimates an overall cdf for the sample data by computing
the cdf value at each individual point, and then linearly connecting these values to form a
continuous curve.

The following plot shows the cdf for a piecewise linear distribution based on a sample of
hospital patients’ weight measurements. The circles represent each individual data point
(weight measurement). The black line that passes through each data point represents the
piecewise linear distribution cdf for the sample data.
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A piecewise linear distribution linearly connects the cdf values calculated at each sample
data point to form a continuous curve. By contrast, an empirical cumulative distribution
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function constructed using the ecdf function produces a discrete cdf. For example,
random numbers generated from the ecdf can only include x values contained in the
original sample data. Random numbers generated from a piecewise linear distribution
can include any x value between the lower and upper boundaries of the sample data.

Because the piecewise linear distribution cdf is constructed from the values contained
in the sample data, the resulting curve is often not smooth, especially in the tails where
data might be sparse. You can smooth the distribution with Pareto tails, using the
paretotails function.

For information on how to work with a piecewise linear distribution, see Using
PiecewiseLinearDistribution Objects.

Pareto Tails

Pareto tails use a piecewise approach to improve the fit of a nonparametric cdf or pdf by
smoothing the tails of the distribution. You can fit a kernel distribution, empirical cdf,
or piecewise linear distribution to the middle data values, then fit generalized Pareto
distribution curves to the tails. This technique is especially useful when the sample data
is sparse in the tails.

The following plot shows the empirical cdf (ecdf) of a data sample containing 20 random
numbers. The solid line represents the ecdf, and the dashed line represents the empirical
cdf with Pareto tails fit to the lower and upper 10 percent of the data. The circles denote
the boundaries for the lower and upper 10 percent of the data.
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Fitting Pareto tails to the lower and upper 10 percent of the sample data makes the cdf
smoother in the tails, where the data is sparse. For more information on working with
Pareto tails, see paretotails.

Triangular Distribution

A “Triangular Distribution” on page B-157 provides a simplistic representation of
the probability distribution when limited sample data is available. This continuous
distribution is parameterized by a lower limit, peak location, and upper limit. These
points are linearly connected to estimate the pdf of the sample data. You can use the
mean, median, or mode of the data as the peak location.
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The following plot shows the triangular distribution pdf of a random sample of 10
integers from 0 to 5. The lower limit is the smallest integer in the sample data, and
the upper limit is the largest integer. The peak for this plot is at the mode, or most
frequently-occurring value, in the sample data.
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Business applications such as simulation and project management sometimes use a
triangular distribution to create models when limited sample data exists. For more
information, see “Triangular Distribution” on page B-157.

See Also

ecdf | ksdensity | paretotails
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Related Examples

“Fit a Nonparametric Distribution with Pareto Tails” on page 5-61

More About

. “Kernel Distribution” on page B-81

“Piecewise Linear Distribution” on page B-136

“Triangular Distribution” on page B-157
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Fit Kernel Distribution Object to Data

This example shows how to fit a kernel probability distribution object to sample data.
Step 1. Load sample data.
Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Year), and other vehicle
characteristics.

Step 2. Fit a kernel distribution object.

Use Fitdist to fit a kernel probability distribution object to the miles per gallon (MPG)
data for all makes of cars.

pd = Fitdist(MPG, "Kernel™)
pd =
KernelDistribution
Kernel = normal

Bandwidth = 4.11428
Support = unbounded

This creates a prob.KernelDistribution object. By default, fitdist uses a normal
kernel smoothing function and chooses an optimal bandwidth for estimating normal
densities, unless you specify otherwise. You can access information about the fit and
perform further calculations using the related object functions.

Step 3. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the fitted kernel distribution.

m = mean(pd)
med = median(pd)
s = std(pd)
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23.7181

med =

23.4841

8.9896
Step 4. Compute and plot the pdf.
Compute and plot the pdf of the fitted kernel distribution.

figure;

X = 0:1:60;

y = pdf(pd.x);
plot(x,y,"LineWidth",2);
title("Miles per Gallon™);
xlabel ("MPG™);
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The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of
cars. The distribution is smooth and fairly symmetrical, although it is slightly skewed
with a heavier right tail.

Step 5. Generate random numbers.

Generate a vector of random numbers from the fitted kernel distribution.

rng("default®) % For reproducibility

r = random(pd,1000,1);

figure;

hist(r);

set(get(gca, "Children®), "FaceColor”,[-8 .8 1]);
hold on;
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y = y*5000; % Scale pdf to overlay on histogram
plot(x,y, "LineWidth",2);

title("Random Numbers Generated From Distribution®);
hold off;

Random Mumbers Generated From Distribution
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The histogram has a similar shape to the pdf plot because the random numbers generate
from the nonparametric kernel distribution fit to the sample data.

See Also

fitdist
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Related Examples

“Fit Kernel Distribution Using ksdensity” on page 5-54

More About

. “Kernel Distribution” on page B-81
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Fit Kernel Distribution Using ksdensity
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This example shows how to generate a kernel probability density estimate from sample
data using the ksdensity function.

Step 1. Load sample data.

Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Year), and other vehicle
characteristics.

Step 2. Generate a kernel probability density estimate.

Use ksdensity to generate a kernel probability density estimate for the miles per gallon
(MPG) data.

[f.xi] = ksdensity(MPG);

By default, ksdensity uses a normal kernel smoothing function and chooses an optimal
bandwidth for estimating normal densities, unless you specify otherwise.

Step 3. Plot the kernel probability density estimate.

Plot the kernel probability density estimate to visualize the | MPG | distribution.

figure;

plot(xi,f, LineWidth",2);
title("Miles per Gallon®);
xlabel (*"MPG™);
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The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of
cars. The distribution is smooth and fairly symmetrical, although it is slightly skewed
with a heavier right tail.

See Also
ksdensity

Related Examples
“Fit Kernel Distribution Object to Data” on page 5-49
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More About

. “Kernel Distribution” on page B-81
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Fit Distributions to Grouped Data Using ksdensity

This example shows how to fit kernel distributions to grouped sample data using the
ksdensity function.

Step 1. Load sample data.

Load the sample data.

load carsmall;

The data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Model _Year), and other
vehicle characteristics.

Step 2. Group sample data by origin.

Group the MPG data by origin (Origin) for cars made in the USA, Japan, and Germany.
Origin = nominal(Origin);

MPG_USA = MPG(Origin=="USA");

MPG_Japan = MPG(Origin=="Japan~”);

MPG_Germany = MPG(Origin=="Germany");

Step 3. Compute and plot the pdf.

Compute and plot the pdf for each group.
figure;

[fi,xi] = ksdensity(MPG_USA);
plot(xi,fi,"r-");

hold on;

[fi.xJ] = ksdensity(MPG_Japan);
pIOt(Xj 1fj > "b-. .)

[fk,xk] = ksdensity(MPG_Germany) ;
plot(xk,fk, "k:")

legend("USA", "Japan®, "Germany™)

title("MPG by Origin®);
xlabel ("MPG™);
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hold off;

MPG by Origin
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The plot shows how miles per gallon (MPG) performance differs by country of origin
(Origin). Using this data, the USA has the widest distribution, and its peak is at the
lowest MPG value of the three origins. Japan has the most regular distribution with a
slightly heavier left tail, and its peak is at the highest MPG value of the three origins. The
peak for Germany is between the USA and Japan, and the second bump near 44 miles
per gallon suggests that there might be multiple modes in the data.

See Also

makedist
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Related Examples

“Fit Kernel Distribution Using ksdensity” on page 5-54
“Fit Probability Distribution Objects to Grouped Data” on page 5-124

More About

. “Kernel Distribution” on page B-81
. “Grouping Variables” on page 2-52
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Create and Plot Empirical Cumulative Distribution Functions

5-60

This example shows how to create and plot an empirical cumulative distribution function
based on sample data.

Step 1. Load sample data.
Load the sample data.
Step 2. Compute the empirical cumulative distribution.

The empirical cdf assigns the probability 1/n to each of n observations in a data

sample. It returns the values of a function F' such that F(x) represents the proportion of
observations in a sample less than or equal to x. The empirical distributions computed by
ecdf assign equal probability to each observation in a sample, providing an exact match
of the sample distribution. However, the distributions are not smooth, especially in the
tails where data may be sparse. In this situation, you can use Pareto tails to smooth the
cdf in the tails.

Step 3. Plot the ecdf.

The graph of an empirical cdf has a stair-step appearance. If a sample comes from a
distribution in a parametric family (such as a normal distribution), its empirical cdf is
likely to resemble the parametric distribution. If not, its empirical distribution still gives
an estimate of the cdf for the distribution that generated the data.
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Fit a Nonparametric Distribution with Pareto Tails

This example shows how to fit a nonparametric probability distribution to sample data
using Pareto tails to smooth the distribution in the tails.

Step 1. Generate sample data.

Generate sample data that contains more outliers than expected from a standard normal
distribution.

rng("default™) % For reproducibility
left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);

center = randn(80,1);

data = [left_tail;center;right_tail];

The data contains 80% values from a standard normal distribution, 10% from an
exponential distribution with a mean of 5, and 10% from an exponential distribution
with mean of —1. the data contains random numbers from an exponential distribution.
Compared to a standard normal distribution, the exponential values are more likely to be
outliers, especially in the upper tail.

Step 2. Fit probability distributions to the data.

Fit a normal distribution and a ¢ location-scale distribution to the data, and plot for a
visual comparison.

figure;

probplot(data);

p = fitdist(data, "tlocationscale™);

h = probplot(gca,p);

set(h, “color®,"r", "linestyle”,"-");

title("Probability Plot");

legend("Normal ", "Data”, "t location-scale”, "Location”,"SE");
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Frobability Plot
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Both distributions appear to fit reasonably well in the center, but neither the normal
distribution nor the ¢ location-scale distribution fit the tails very well.

Step 3. Generate an empirical distribution.
To obtain a better fit, use ecdf to generate an empirical cdf based on the sample data.

figure;
ecdf(data)
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The empirical distribution provides a perfect fit, but the outliers make the tails very
discrete. Random samples generated from this distribution using the inversion method
might include, for example, values near 4.33 and 9.25, but no values in between.

Step 4. Fit a distribution using Pareto tails.

Use paretotails to generate an empirical cdf for the middle 80% of the data and fit
generalized Pareto distributions to the lower and upper 10%.

pfit = paretotails(data,0.1,0.9)
pfit =

Piecewise distribution with 3 segments
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-Inf < x < -1.24623 (0 < p <0.1): lower tail, GPD(-0.334156,0.798745)
-1.24623 < x < 1.48551 (0.1 < p < 0.9): interpolated empirical cdf
1.48551 < x < Inf (0.9 < p < 1): upper tail, GPD(1.23681,0.581868)

To obtain a better fit, paretotails fits a distribution by piecing together an ecdf

or kernel distribution in the center of the sample, and smooth generalized Pareto
distributions (GPDs) in the tails. The paretotai Is function creates a paretotails
probability distribution object. You can access information about the fit and perform
further calculations on the object using the methods of the paretotails class. For
example, you can evaluate the cdf or generate random numbers from the distribution.

Step 5. Compute and plot the cdf.

Compute and plot the cdf of the fitted paretotai ls distribution.

X = -4:0.01:10;
plot(x,cdf(pfit,x));
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The paretotai ls cdf closely fits the data but is smoother in the tails than the ecdf
generated in Step 3.
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Generate Random Numbers Using the Triangular Distribution
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This example shows how to create a triangular probability distribution object based on
sample data, and generate random numbers for use in a simulation.

Step 1. Input sample data.

Input the data vector time, which contains the observed length of time (in seconds) that
10 different cars stopped at a highway tollbooth.

time = [6 14 8 7 16 8 23 6 7 15];

The data shows that, while most cars stopped for 6 to 16 seconds, one outlier stopped for
23 seconds.

Step 2. Estimate distribution parameters.

Estimate the triangular distribution parameters from the sample data.
lower = min(time);

peak = median(time);

upper = max(time);

A triangular distribution provides a simplistic representation of the probability
distribution when sample data is limited. Estimate the lower and upper boundaries of
the distribution by finding the minimum and maximum values of the sample data. For
the peak parameter, the median might provide a better estimate of the mode than the
mean, since the data includes an outlier.

Step 3. Create a probability distribution object.
Create a triangular probability distribution object using the estimated parameter values.
pd = makedist("Triangular®,"a",lower,"b",peak, "c" ,upper)
pd =
TriangularDistribution
A=6, B=8, C=23
Compute and plot the pdf of the triangular distribution.

figure;
X = 0:.1:230;
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y = pdf(pd,x);

plot(x,y);

title("Time Spent at Tollbooth®);
xlabel ("Time (seconds)®);
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The plot shows that this triangular distribution is skewed to the right. However, since
the estimated peak value is the sample median, the distribution should be symmetrical
about the peak. Because of its skew, this model might, for example, generate random
numbers that seem unusually high when compared to the initial sample data.

Step 4. Generate random numbers.

Generate random numbers from this distribution to simulate future traffic flow through
the tollbooth.
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rng("default®); % For reproducibility
r = random(pd,10,1)

16.1265
18.0987

8.0796
18.3001
13.3176

7.8211

9.4360
12.2508
19.7082
20.0078

The returned values in r are the time in seconds that the next 10 simulated cars spend at
the tollbooth. These values seem high compared to the values in the original data vector
time because the outlier skewed the distribution to the right. Using the second-highest
value as the upper limit parameter might mitigate the effects of the outlier and generate
a set of random numbers more similar to the initial sample data.

Step 5. Revise estimated parameters.

Estimate the upper boundary of the distribution using the second largest value in the
sample data.

sort_time = sort(time, "descend”);
secondLargest = sort_time(2);

Step 6. Create a new distribution object and plot the pdf.

Create a new triangular probability distribution object using the revised estimated
parameters, and plot its pdf.

figure;

pd2 = makedist("Triangular®,"a",lower,"b",peak, "c",secondLargest);
y2 = pdf(pd2,x);

plot(x,y2, "LineWidth",2);

title("Time Spent at Tollbooth™);

xlabel ("Time (seconds)”);
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The plot shows that this triangular distribution is still slightly skewed to the right.
However, it 1s much more symmetrical about the peak than the distribution that used
the maximum sample data value to estimate the upper limit.

Step 7. Generate new random numbers.

Generate new random numbers from the revised distribution.

rng(“default®); % For reproducibility
r2 = random(pd2,10,1)

r2 =

12.1501
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13.2547
7.5937
13.3675
10.5768
7.3967
8.4026
9.9792
14.1562
14.3240

These new values more closely resemble those in the original data vector time. They are
also closer to the sample median than the random numbers generated by the distribution
that used the outlier to estimate its upper limit. This example does not remove the
outlier from the sample data when computing the median. Other options for parameter
estimation include removing outliers from the sample data altogether, or using the mean
or mode of the sample data as the peak value.

See Also

makedist | pdf | random

More About

. “Triangular Distribution” on page B-157
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Explore the Probability Distribution Function UI

The Probability Distribution Function user interface (UI) interactively displays the
influence of parameter changes on the shapes of the pdfs and cdfs of supported Statistics
and Machine Learning Toolbox distributions.

Run the user interface by typing disttool at the command line.
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Choose Function type
distribution (cdf or pdf)
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Start by selecting a distribution. Then choose the function type: probability density
function (pdf) or cumulative distribution function (cdf).

After the plot appears, you can
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+ Calculate a new function value by

Typing a new X value in the text box on the x-axis
Dragging the vertical reference line.

Clicking in the figure where you want the line to be.

The new function value appears in the text box to the left of the plot.

+  For cdf plots, find critical values corresponding to a specific probability by typing
the desired probability in the text box on the y-axis or by dragging the horizontal
reference line.

* Use the controls at the bottom of the window to set parameter values for the
distribution and to change their upper and lower bounds.
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Model Data Using the Distribution Fitting App
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The Distribution Fitting app provides a visual, interactive approach to fitting univariate
distributions to data.

In this section...
“Explore Probability Distributions Interactively” on page 5-74

“Create and Manage Data Sets” on page 5-75

“Create a New Fit” on page 5-80

“Display Results” on page 5-85

“Manage Fits” on page 5-87

“Evaluate Fits” on page 5-88

“Exclude Data” on page 5-92

“Save and Load Sessions” on page 5-98

“Generate a File to Fit and Plot Distributions” on page 5-99

Explore Probability Distributions Interactively

You can use the Distribution Fitting app to interactively fit probability distributions to
data imported from the MATLAB workspace. You can choose from 22 built-in probability
distributions, or create your own custom distribution. The app displays the fitted
distribution over plots of the empirical distributions, including pdf, cdf, probability plots,
and survivor functions. You can export the fit data, including fitted parameter values, to
the workspace for further analysis.

Distribution Fitting App Workflow

To fit a probability distribution to your sample data:

1 On the MATLAB Toolstrip, click the Apps tab. In the Math, Statistics and
Optimization group, open the Distribution Fitting app. Alternatively, at the
command prompt, enter dfittool.

2 Import your sample data, or create a data vector directly in the app. You can also
manage your data sets and choose which one to fit. See “Create and Manage Data

Sets” on page 5-75.
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3 Create a new fit for your data. See “Create a New Fit” on page 5-80.

4 Display the results of the fit. You can choose to display the density (pdf), cumulative
probability (cdf), quantile (inverse cdf), probability plot (choose one of several
distributions), survivor function, and cumulative hazard. See “Display Results” on
page 5-85.

5 You can create additional fits, and manage multiple fits from within the app. See
“Manage Fits” on page 5-87.

6 Evaluate probability functions for the fit. You can choose to evaluate the density
(pdf), cumulative probability (cdf), quantile (inverse cdf), survivor function, and
cumulative hazard. See “Evaluate Fits” on page 5-88.

7 Improve the fit by excluding certain data. You can specify bounds for the data to
exclude, or you can exclude data graphically using a plot of the values in the sample
data. See “Exclude Data” on page 5-92.

8 Save your current Distribution Fitting app session so you can open it later. See “Save
and Load Sessions” on page 5-98.

Create and Manage Data Sets

To open the Data dialog box, click the Data button in the Distribution Fitting app.
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Data: (none) - Select Column or Row ...
Censoring:  |(none) - Select Column or Row ...
Frequency: |(none) - Select Column or Row ...
Data set name:
Create Data Set
Manage data sets:
No data sets have been created
View Set Bin Rules Rename Delete

Import Data

Create a data set by importing a vector from the MATLAB workspace using the Import
workspace vectors pane.

+ Data — In the Data field, the drop-down list contains the names of all matrices and
vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace. Select the
array containing the data that you want to fit. The actual data you import must be
a vector. If you select a matrix in the Data field, the first column of the matrix is
imported by default. To select a different column or row of the matrix, click Select
Column or Row. The matrix displays in the Variables editor. You can select a row or
column by highlighting it.

Alternatively, you can enter any valid MATLAB expression in the Data field.
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When you select a vector in the Data field, a histogram of the data appears in the
Data preview pane.

+ Censoring — If some of the points in the data set are censored, enter a Boolean
vector of the same size as the data vector, specifying the censored entries of the data.
A 1 in the censoring vector specifies that the corresponding entry of the data vector
is censored. A O specifies that the entry is not censored. If you enter a matrix, you
can select a column or row by clicking Select Column or Row. If you do not have
censored data, leave the Censoring field blank.

+ Frequency — Enter a vector of positive integers of the same size as the data vector
to specify the frequency of the corresponding entries of the data vector. For example,
a value of 7 in the 15th entry of frequency vector specifies that there are 7 data points
corresponding to the value in the 15th entry of the data vector. If all entries of the
data vector have frequency 1, leave the Frequency field blank.

+ Data set name — Enter a name for the data set that you import from the workspace,
such as My data.

After you have entered the information in the preceding fields, click Create Data Set to
create the data set My data.

Manage Data Sets
View and manage the data sets that you create using the Manage data sets pane. When

you create a data set, its name appears in the Data sets list. The following figure shows
the Manage data sets pane after creating the data set My data.

Plat | Conf bounds Data set
vl |Mydata

| View || SetBinRules || Rename || Delete |
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For each data set in the Data sets list, you can:

Select the Plot check box to display a plot of the data in the main Distribution Fitting
app window. When you create a new data set, Plot is selected by default. Clearing the
Plot check box removes the data from the plot in the main window. You can specify
the type of plot displayed in the Display type field in the main window.

If Plot is selected, you can also select Bounds to display confidence interval bounds

for the plot in the main window. These bounds are pointwise confidence bounds

around the empirical estimates of these functions. The bounds are displayed only

when you set Display Type in the main window to one of the following:
Cumulative probability (CDF)

+ Survivor function

+ Cumulative hazard

The Distribution Fitting app cannot display confidence bounds on density (PDF), quantile
(inverse CDF), or probability plots. Clearing the Bounds check box removes the
confidence bounds from the plot in the main window.

When you select a data set from the list, you can access the following buttons:

View — Display the data in a table in a new window.

Set Bin Rules — Defines the histogram bins used in a density (PDF) plot.
Rename — Rename the data set.

Delete — Delete the data set.

Set Bin Rules

To set bin rules for the histogram of a data set, click Set Bin Rules to open the Set Bin
Width Rules dialog box.
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P ™

Data: My data Data preview:

@ Freedman - Diaconis ruld

(71 Scott rule

() Mumber of bins:

() Bins centered on integers

() Bin width:

(@ Automatic bin placement

Bin boundary at:

[] Apply to all existing data sets

[7] Save as default

UpdatePreview | | OK || Cancel || Help |

You can select from the following rules:

* Freedman-Diaconis rule — Algorithm that chooses bin widths and locations
automatically, based on the sample size and the spread of the data. This rule, which is
the default, is suitable for many kinds of data.

*  Scott rule — Algorithm intended for data that are approximately normal. The
algorithm chooses bin widths and locations automatically.

* Number of bins — Enter the number of bins. All bins have equal widths.
+ Bins centered on integers — Specifies bins centered on integers.
+ Bin width — Enter the width of each bin. If you select this option, you can also

select:

+ Automatic bin placement — Place the edges of the bins at integer multiples of
the Bin width.
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* Bin boundary at — Enter a scalar to specify the boundaries of the bins. The

boundary of each bin is equal to this scalar plus an integer multiple of the Bin
width.

You can also:

+ Apply to all existing data sets — Apply the rule to all data sets. Otherwise, the
rule is applied only to the data set currently selected in the Data dialog box.

+ Save as default — Apply the current rule to any new data sets that you create. You
can set default bin width rules by selecting Set Default Bin Rules from the Tools
menu in the main window.

Create a New Fit

Click the New Fit button at the top of the main window to open the New Fit dialog box.
If you created the data set My data, it appears in the Data field.
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[ 4\ New Fit (=@ = |
Fit name: fit1l
Data: :M],r data v:
Distribution: :Normal -
Exclusion rule: :I{nune] v:
Mormal

Distribution parameters:
mu (location)
sigma (scale)

Click "Apply"™ to fit this distribution

Results:

Save to workspace... Manage Fits ” Close ” Help ]
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Field Name Description

Fit Name Enter a name for the fit.

Data Select the data set to which you want to fit a distribution from the
drop-down list.

Distribution Select the type of distribution to fit from the Distribution drop-down

list.

Only the distributions that apply to the values of the selected data
set appear in the Distribution field. For example, when the data
include values that are zero or negative, positive distributions are not
displayed .

You can specify either a parametric or a nonparametric distribution.
When you select a parametric distribution from the drop-down list, a
description of its parameters appears. The Distribution Fitting Tool
estimates these parameters to fit the distribution to the data set.

If you select the binomial distribution or the generalized extreme
value distribution, you must specify a fixed value for one of the
parameters. The pane contains a text field into which you can specify
that parameter.

When you select Nonparametric fit, options for the fit appear in
the pane, as described in “Further Options for Nonparametric Fits” on
page 5-84.

Exclusion rule

Specify a rule to exclude some data. Create an exclusion rule
by clicking Exclude in the Distribution Fitting app. For more
information, see “Exclude Data” on page 5-92.

Apply the New Fit

Click Apply to fit the distribution. For a parametric fit, the Results pane displays the
values of the estimated parameters. For a nonparametric fit, the Results pane displays
information about the fit.

When you click Apply, the Distribution Fitting app displays a plot of the distribution
and the corresponding data.




Model Data Using the Distribution Fitting App

Note When you click Apply, the title of the dialog box changes to Edit Fit. You can

now make changes to the fit you just created and click Apply again to save them. After
closing the Edit Fit dialog box, you can reopen it from the Fit Manager dialog box at any
time to edit the fit.

After applying the fit, you can save the information to the workspace using probability
distribution objects by clicking Save to workspace.

Available Distributions

All of the distributions available in the Distribution Fitting app are supported elsewhere
in Statistics and Machine Learning Toolbox software. You can use the Fitdist function
to fit any of the distributions supported by the app. Many distributions also have
dedicated fitting functions. These functions compute the majority of the fits in the
Distribution Fitting app, and are referenced in the following list. Other fits are computed
using functions internal to the Distribution Fitting app.

Not all of the distributions listed are available for all data sets. The Distribution Fitting
app determines the extent of the data (nonnegative, unit interval, etc.) and displays
appropriate distributions in the Distribution drop-down list. Distribution data ranges
are given parenthetically in the following list.

* Beta (unit interval values) distribution, fit using the function betafit.

*  Binomial (nonnegative integer values) distribution, fit using the function binopdf.
*  Birnbaum-Saunders (positive values) distribution.

*  Burr Type XII (positive values) distribution.

+ Exponential (nonnegative values) distribution, fit using the function expfit.

+  Extreme value (all values) distribution, fit using the function evfit.

*  Gamma (positive values) distribution, fit using the function gamfit.

* Generalized extreme value (all values) distribution, fit using the function gevfit.

* Generalized Pareto (all values) distribution, fit using the function gpfit.

+ Inverse Gaussian (positive values) distribution.

+ Logistic (all values) distribution.

* Loglogistic (positive values) distribution.

+  Lognormal (positive values) distribution, fit using the function lognfit.

* Nakagami (positive values) distribution.
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*  Negative binomial (nonnegative integer values) distribution, fit using the function
nbinpdf.

* Nonparametric (all values) distribution, fit using the function ksdensity.

+  Normal (all values) distribution, fit using the function normfit.

+ Poisson (nonnegative integer values) distribution, fit using the function poisspdf.
* Rayleigh (positive values) distribution using the function raylfit.

* Rician (positive values) distribution.

* tlocation-scale (all values) distribution.

* Weibull (positive values) distribution using the function wbl fit.
Further Options for Nonparametric Fits

When you select Non-parametric in the Distribution field, a set of options appears in
the Non-parametric pane, as shown in the following figure.

Mon-parametric

Kernel: | Mormal A

Bandwidth: @ Auto
Specify

Domain: @ Unbounded

Positive

Specify to

The options for nonparametric distributions are:
* Kernel — Type of kernel function to use.

Normal

Box

Triangle
Epanechnikov

+ Bandwidth — The bandwidth of the kernel smoothing window. Select Auto for a
default value that is optimal for estimating normal densities. After you click Apply,
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this value appears in the Fit results pane. Select Specify and enter a smaller value
to reveal features such as multiple modes or a larger value to make the fit smoother.

+ Domain — The allowed x-values for the density.

Unbounded — The density extends over the whole real line.
Positive — The density is restricted to positive values.

* Specify — Enter lower and upper bounds for the domain of the density.

When you select Positive or Specify, the nonparametric fit has zero probability
outside the specified domain.

Display Results

The Distribution Fitting app window displays plots of:

* The data sets for which you select Plot in the Data dialog box.
* The fits for which you select Plot in the Fit Manager dialog box.

*  Confidence bounds for:

* The data sets for which you select Bounds in the Data dialog box.
+ The fits for which you select Bounds in the Fit Manager dialog box.

Adjust the plot display using the buttons at the top of the tool:

) E — Toggle the legend on (default) or off.

* [ _ Toggle grid lines on or off (default).

" @ _ Restore default axes limits.

The following fields are available.

Display Type

Specify the type of plot to display using the Display Type field in the main app window.
Each type corresponds to a probability function, for example, a probability density

function. You can choose from the following display types:

+ Density (PDF) — Display a probability density function (PDF) plot for the fitted
distribution. The main window displays data sets using a probability histogram, in
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which the height of each rectangle is the fraction of data points that lie in the bin
divided by the width of the bin. This makes the sum of the areas of the rectangles
equal to 1.

Cumulative probability (CDF) — Display a cumulative probability plot

of the data. The main window displays data sets using a cumulative probability
step function. The height of each step is the cumulative sum of the heights of the
rectangles in the probability histogram.

Quantile (inverse CDF) — Display a quantile (inverse CDF) plot.
Probability plot — Display a probability plot of the data. Specify the type of
distribution used to construct the probability plot in the Distribution field. This
field is only available when you select Probability plot. The choices for the
distribution are:

Exponential
+ Extreme value

Logistic
+ Log-Logistic

Lognormal
+ Normal

Rayleigh
+ Weibull

You can also create a probability plot against a parametric fit that you create in
the New Fit pane. When you create these fits, they are added at the bottom of the
Distribution drop-down list.

Survivor function — Display survivor function plot of the data.
Cumulative hazard — Display cumulative hazard plot of the data.

Note If the plotted data includes O or negative values, some distributions are
unavailable.

Confidence Bounds

You can display confidence bounds for data sets and fits when you set Display Type to
Cumulative probability (CDF), Survivor function, Cumulative hazard, or,
for fits only, Quantile (inverse CDF).
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+ To display bounds for a data set, select Bounds next to the data set in the Data sets
pane of the Data dialog box.

+ To display bounds for a fit, select Bounds next to the fit in the Fit Manager dialog
box. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the View
menu in the main window and choose from the options.

Manage Fits

Click the Manage Fits button to open the Fit Manager dialog box.

Table of fits
Plot Conf bounds MName Data set Distribution
| [ |M3,rfit My data Mormal

Copy Edit Save to workspace... Delete

| Close || Help |

The Table of fits displays a list of the fits that you create, with the following options:

+  Plot — Displays a plot of the fit in the main window of the Distribution Fitting app.
When you create a new fit, Plot is selected by default. Clearing the Plot check box
removes the fit from the plot in the main window.
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+ Bounds — If you select Plot, you can also select Bounds to display confidence
bounds in the plot. The bounds are displayed when you set Display Type in the main
window to one of the following:

Cumulative probability (CDF)
* Quantile (inverse CDF)
Survivor function
* Cumulative hazard
The Distribution Fitting app cannot display confidence bounds on density (PDF)

or probability plots. Bounds are not supported for nonparametric fits and some
parametric fits.

Clearing the Bounds check box removes the confidence intervals from the plot in the
main window.

When you select a fit in the Table of fits, the following buttons are enabled below the
table:

New Fit — Open a New Fit window.

Copy — Create a copy of the selected fit.

Edit — Open an Edit Fit dialog box, to edit the fit.

Note You can edit only the currently selected fit in the Edit Fit dialog box. To edit
a different fit, select it in the Table of fits and click Edit to open another Edit Fit
dialog box.

+ Save to workspace — Save the selected fit as a distribution object.

+ Delete — Delete the selected fit.

Evaluate Fits

Use the Evaluate dialog box to evaluate your fitted distribution at any data points you
choose. To open the dialog box, click the Evaluate button.
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U e )

Click "Apply" to view results.

Function: | Density (PDF)

Atx=  |-416

Compute confidence bounds

Level (95 %

[ Plot function

Export to Workspace...

In the Evaluate dialog box, choose from the following items:

Fit pane — Display the names of existing fits. Select one or more fits that you want to
evaluate. Using your platform specific functionality, you can select multiple fits.

Function — Select the type of probability function that you want to evaluate for the
fit. The available functions are:
+ Density (PDF) — Computes a probability density function.

* Cumulative probability (CDF) — Computes a cumulative probability
function.

+ Quantile (inverse CDF) — Computes a quantile (inverse CDF) function.
+ Survivor function — Computes a survivor function.

+ Cumulative hazard — Computes a cumulative hazard function.
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+ Hazard rate — Computes the hazard rate.

At x =— Enter a vector of points or the name of a workspace variable containing a
vector of points at which you want to evaluate the distribution function. If you change
Function to Quantile (inverse CDF), the field name changes to At p =, and you
enter a vector of probability values.

Compute confidence bounds — Select this box to compute confidence bounds
for the selected fits. The check box is enabled only if you set Function to one of the
following:
Cumulative probability (CDF)
* Quantile (inverse CDF)
Survivor function
* Cumulative hazard
The Distribution Fitting app cannot compute confidence bounds for nonparametric fits
and for some parametric fits. In these cases, it returns NaN for the bounds.
Level — Set the level for the confidence bounds.

Plot function — Select this box to display a plot of the distribution function,
evaluated at the points you enter in the At x = field, in a new window.

Note The settings for Compute confidence bounds, Level, and Plot function do
not affect the plots that are displayed in the main window of the Distribution Fitting
app. The settings apply only to plots you create by clicking Plot function in the
Evaluate window.

To apply these evaluation settings to the selected fit, click Apply. The following figure
shows the results of evaluating the cumulative density function for the fit My Fit, at the
points in the vector -4:1:6.
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aowe I i

Fit: ¥ Sy

wa 00 | 15 | w
-4 000268 |0.00064 |0.0094
-3 0.01498 000568 |0.03518
-2 005984 003225 010321
-1 01732 011948 |0.24022

0 037179 |0.29863 |0.44992
1 061309 |0.53479 |0.68703
2 051644 (074822 |0.87178
3 093529 |0.89025 |0.96446
4
5
6

098345 (096201 |0.99356
0996098 098969 |0.99925
099951 (099782 |0.99995

Function: [Cumulati'.re probability (C... v]

Atx=  |-416

Compute confidence bounds

Level 95 | %

Plot function

Export to Workspace... ” Close ” Help ]

The columns of the table to the right of the Fit pane display the following values:

* X — The entries of the vector that you enter in At x = field.
*  F(X)— The corresponding values of the CDF at the entries of X.

* LB — The lower bounds for the confidence interval, if you select Compute
confidence bounds.

+ UB — The upper bounds for the confidence interval, if you select Compute
confidence bounds.
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To save the data displayed in the table to a matrix in the MATLAB workspace, click
Export to Workspace.

Exclude Data

To exclude values from fit, open the Exclude window by clicking the Exclude button. In
the Exclude window, you can create rules for excluding specified data values. When you
create a new fit in the New Fit window, you can use these rules to exclude data from the

fit.
i S
Exclusion rule name:l Existing exclusion rules:

Exclude sections

Lower limit: exclude data | <= =

Upper limit: exclude data ::\-: v:

Exclude graphically

Select data: :(none] v: Exclude Graphically

Copy View

Create Exclusion Rule ] Rename Delete

 — — o

To create an exclusion rule:

1 Exclusion Rule Name— Enter a name for the exclusion rule.

2 Exclude Sections— Specify bounds for the excluded data:

* In the Lower limit: exclude data drop-down list, select <= or < and enter a
scalar value in the field to the right. Depending on which operator you select, the
app excludes from the fit any data values that are less than or equal to the scalar
value, or less than the scalar value, respectively.

In the Upper limit: exclude data drop-down list, select >= or > and enter a
scalar value in the field to the right. Depending on which operator you select, the
app excludes from the fit any data values that are greater than or equal to the
scalar value, or greater than the scalar value, respectively.
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OR

Click the Exclude Graphically button to define the exclusion rule by displaying a
plot of the values in a data set and selecting the bounds for the excluded data. For
example, if you created the data set My data as described in Create and Manage
Data Sets, select it from the drop-down list next to Exclude graphically, and then
click the Exclude graphically button. The app displays the values in My datain a
new window.

i ™
B Define Boundary for Exclusion _@@g

Teols  Help
EXCY:

2 T T T T T T

18 .

16 .
141 .
121 .

1 & & Samaeiiniieg e sees & -
0.8 .
06 .

04} .

Add Lower Limit I l Add Upper Limit ] [ Close I

To set a lower limit for the boundary of the excluded region, click Add Lower Limit.
The app displays a vertical line on the left side of the plot window. Move the line to
the point you where you want the lower limit, as shown in the following figure.
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Tools  Help
EEYE
18- b

16 -

1.4-

Remowve Lower Limit ] [ Add Upper Limit I l Close ]

Move the vertical line to change the value displayed in the Lower limit: exclude
data field in the Exclude window.

Exclude sections

Lower limit: exclude data [ﬂ: - ] |-2.5 |

Upper limit: exclude data [>= - ] | |

The value displayed corresponds to the x-coordinate of the vertical line.
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Similarly, you can set the upper limit for the boundary of the excluded region by
clicking Add Upper Limit, and then moving the vertical line that appears at the
right side of the plot window. After setting the lower and upper limits, click Close
and return to the Exclude window.

Create Exclusion Rule—Once you have set the lower and upper limits for the
boundary of the excluded data, click Create Exclusion Rule to create the new rule.
The name of the new rule appears in the Existing exclusion rules pane.

Selecting an exclusion rule in the Existing exclusion rules pane enables the
following buttons:

Copy — Creates a copy of the rule, which you can then modify. To save the
modified rule under a different name, click Create Exclusion Rule.

View — Opens a new window in which you can see the data points excluded by
the rule. The following figure shows a typical example.
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L il
e

Exclusion rule: My rule Index Data Censoring Frequen...
Data: My data 1 111273 -
2 292744
3 -2.80239 =
4 1.56704
5 0.80627 | |
& -1.47076
7 -0.24703
a 0.83967
RN A g S.ETE
10 42371
11 -1.52984
12 460889
13 1.37557
14 0.27172
15 1.36064
Excluded sections: 16 0.07305
17 0.1862
Exclude data == -2.5 13 5 44558
Exclude data >= 4 19 2.33265
20 234407 s

The shaded areas in the plot graphically display which data points are excluded.
The table to the right lists all data points. The shaded rows indicate excluded

points:
* Rename — Rename the rule.

* Delete — Delete the rule.

After you define an exclusion rule, you can use it when you fit a distribution to your
data. The rule does not exclude points from the display of the data set.
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Save and Load Sessions

Save your work in the current session, and then load it in a subsequent session, so that
you can continue working where you left off.

Save a Session

To save the current session, from the File menu in the main window, select

Save Session. A dialog box opens and prompts you to enter a file name, for
examplemy_session.dfit. Click Save to save the following items created in the
current session:

* Data sets

+ Fits

+  Exclusion rules

* Plot settings

*  Bin width rules
Load a Session

To load a previously saved session, from the File menu in the main window, select
Load Session. Enter the name of a previously saved session. Click Open to restore the
information from the saved session to the current session.
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Generate a File to Fit and Plot Distributions

Use the Generate Code option in the File to create a file that:

+ Fits the distributions in the current session to any data vector in the MATLAB
workspace.

+ DPlots the data and the fits.

After you end the current session, you can use the file to create plots in a standard
MATLAB figure window, without reopening the Distribution Fitting app.

As an example, if you created the fit described in “Create a New Fit” on page 5-80, do the
following steps:

1 From the File menu, select Generate Code.

2 Inthe MATLAB Editor window, choose File > Save as. Save the file as
normal_Fit.min a folder on the MATLAB path.

You can then apply the function normal_Ffit to any vector of data in the MATLAB
workspace. For example, the following commands:

new_data = normrnd(4.1, 12.5, 100, 1);
newfit = normal_fit(new_data)
legend("New Data®, "My Fit")

generate newfit, a fitted normal distribution of the data. The commands also generate a
plot of the data and the fit.

newfit =
normal distribution

mu = 3.19148
sigma = 12.5631
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0.05 . . . .

Mew Data
My fit

0.04 .

0.045 -

0.035 .

.03 / .
0.025 [ | .
0.02 ¢ / .

0.015 .

Density

.01 ¢ .

0.005 .

Data

Note By default, the file labels the data in the legend using the same name as the data
set in the Distribution Fitting app. You can change the label using the legend command,
as illustrated by the preceding example.
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Fit a Distribution Using the Distribution Fitting App

This example shows how you can use the Distribution Fitting app to interactively fit a
probability distribution to data.

In this section...
“Step 1: Load Sample Data” on page 5-101

“Step 2: Import Data” on page 5-101
“Step 3: Create a New Fit” on page 5-103
“Step 4: Create and Manage Additional Fits” on page 5-108

Step 1: Load Sample Data

Load the sample data.

load carsmall

Step 2: Import Data

Open the distribution fitting tool.

dfittool

To import the vector MPG into the Distribution Fitting app, click the Data button. The
Data dialog box opens.
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4\ Data |D||E|||53|
Data preview:
I rt ke ctors:
mport workspace vectors: Select dala
Data: (nong) Select Column or Row ...
Censoring: | (none) Select Column or Row ...
Frequency: | (none) Select Column or Row ...
Data =zet name:
Create Data Set
Manage data sets:
Mo data sets have been created
WView Set Bin Rules Rename Delete
[ Close ] [ Help ]

The Data field displays all numeric arrays in the MATLAB workspace. From the drop-
down list, select MPG. A histogram of the selected data appears in the Data preview

pane.

In the Data set name field, type a name for the data set, such as MPG data, and click
Create Data Set. The main window of the Distribution Fitting app now displays a
larger version of the histogram in the Data preview pane.
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|4 Distribution Fitting Tool (o= =]
File View Tools Window Help

YR R

Display type: |Density (PDF) - | Normal

I Data. .. ll Mew Fit... l[ Manage Fits... l[ Evaluate. .. ]I Exclude. .. l

0.05 - |

0.045 .

0.04 7

0.035 [ 7

Density

0.02 .

0.015 .

0.01 7

0.005 7

Data

Step 3: Create a New Fit

To fit a distribution to the data, in the main window of the Distribution Fitting app, click
New Fit.
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Select data set name —— Specify distribution type
) Newrit_ | Ta Y
Fit name: [fit 1
Data: | ~]
Distrbution: | Normal ‘ ~|
Exclusion rule: | (none) -]
~Normal

Distribution parameters:
mu {Jocation)
sigma (scale)

ApplY |

Results:

Manage Fits | Close | Help |

To fit a normal distribution to My data:

1 In the Fit name field, enter a name for the fit, such as My fit.
2 From the drop-down list in the Data field, select MPG data.

3 Confirm that Normal is selected from the drop-down menu in the Distribution
field.
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4  Click Apply.

The Results pane displays the mean and standard deviation of the normal distribution

that best fits MPG data.

Results:

Distribution: Hormal

Log likelihood: —-328.7a7T
Domain: —-Inf <« v < Inf
Mean: 23.7181
Variance: 64.5729

Parameter Estimate 5td. Err.
i 23.7181 0.g2g822
=sigma B.03573 0.5907498

Estimated covariance of parameter estimates:

T sigma
ma 0.686946 1.9788e-17
sigma 1.3788e-17 0.349043
Save to workspace... ” Manage Fits ” Close ” Help ]

The Distribution Fitting app main window displays a plot of the normal distribution with

this mean and standard deviation.
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|4\ Distribution Fitting Tool [= [ =] =]
File View Tools Window Help

ilﬂ .+:\- ._:\- 'E.WF' ﬁ %
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Based on the plot, a normal distribution does not appear to provide a good fit for the MPG
data. To obtain a better evaluation, select Probability plot from the Display type drop-
down list. Confirm that the Distribution drop-down list is set to Normal. The main
window displays the following figure.
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The normal probability plot shows that the data deviates from normal, especially in the
tails.
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Step 4: Create and Manage Additional Fits

The MPG data pdf indicates that the data has two peaks. Try fitting a nonparametric
kernel distribution to obtain a better fit for this data.

AW N —

5

Click Manage Fits. In the dialog box, click New Fit.
In the Fit name field, enter a name for the fit, such as Kernel fit.
From the drop-down list in the Data field, select MPG data.

From the drop-down list in the Distribution field, select Non-parametric.
This enables several options in the Non-parametric pane, including Kernel,
Bandwidth, and Domain. For now, accept the default value to apply a normal
kernel shape and automatically determine the kernel bandwidth (using Auto).
For more information about nonparametric kernel distributions, see “Kernel
Distribution” on page B-81.

Click Apply.

The Results pane displays the kernel type, bandwidth, and domain of the nonparametric
distribution fit to MPG data.

Results:
Kernel: normal
Bandwidth: 4.11428
Domain: -Inf <« yv « Inf
Save to workspace... ” Manage Fits H Close H Help ‘

The main window displays plots of the original MPG data with the normal distribution
and nonparametric kernel distribution overlayed. To visually compare these two fits,
select Density (PDF) from the Display type drop-down list.
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|4\ Distribution Fitting Taol [o = | &=
File View Tools Window Help

qE‘! .+'\- ._'\- {ﬂ‘? % %

Display type: Density (PDF) vi MWormal
l Data... ] l MNew Fit... ] I Manage Fits... ] I Evaluate... ] [ Exclude... ]
0.05 MPG data | H
Kernel fit
0.045 My fit i
0.04 f 7
0.035 | \ |
2 0031 7
'E
&
o 0.025 b
0.02 - N 1
0.015 b
0.01 1 7
0.005 "_\. 7
0
5 10 15 20 25 30 35 40 45
Data

To include only the nonparametric kernel fit line (Kernel Fit) on the plot, click Manage
Fits. In the Table of fits pane, locate the row for the normal distribution fit My Fit)
and clear the box in the Plot column.
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Custom Distributions Using the Distribution Fitting App

You can use the Distribution Fitting app to fit distributions not supported by the
Statistics and Machine Learning Toolbox by defining a custom distribution.

Opening the Distribution Fitting App
To open the Distribution Fitting app, enter the command

dfittool
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Select display Select distribution (probability plot only)

J Distribution Fitting Tool \ - O] x|

File View Tools Window Help

EEIET: \
Display type:lDensity (PDF);' Distribution: |Mormal v|

Task buttons “
L Data... | MNew Fit...l l';f}?sr?ge | Evaluate...l Exclude. .. ‘%
Import data / 1 / : f ?

from workspace
09r¢ .

08t .
071 .

06 .
Select "Data"[to begin

05} distributior fitting |
04}t |
/ /T -

Manage multiple fits Evaluate distribution Exclude data
at selected points from fit

W

Create a new fit

Density

Alternatively, click Distribution Fitting on the Apps tab.
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Defining Custom Distributions

To define a custom distribution, select Define Custom Distribution from the File
menu. This opens a file template in the MATLAB editor. You then edit this file so that it
computes the distribution you want.

The template includes example code that computes the Laplace distribution. Follow the
instructions in the template to define your own custom distribution.

To save your custom distribution, create a directory called +prob on your path. Save the
file in this directory using a name that matches your distribution name. If you save the
template in a folder on the MATLAB path, under its default name dfittooldists.m,
the Distribution Fitting app reads it in automatically when you start the tool. You can
also save the template under a different name, such as laplace.m, and then import the
custom distribution as described in the following section.

Importing Custom Distributions

To import a custom distribution, select Import Custom Distributions from the
File menu. This opens a dialog box in which you can select the file that defines the
distribution. For example, if you created the file Laplace.m, as described in the
preceding section, the New Parametric Distribution List dialog that launches when
you select Import Custom Distributions now includes Laplace. In addition, the
Distribution field of the New Fit window also contains the option Laplace.
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Explore the Random Number Generation Ul

5-114

The Random Number Generation user interface (UI) generates random samples
from specified probability distributions, and displays the samples as histograms. Use
the interface to explore the effects of changing parameters and sample size on the
distributions.

Run the user interface by typing randtool at the command line.



Explore the Random Number Generation Ul

Choose distribution Sample size

J Random Number Generation - 0| x|
File Edit View Insert Tools Desktop Window Help
Distribution|Normal .| SamplesI 100
25 - : .
20t .
Histogram >
}2 15 B 7
=
=
(=3
10t ]
5t ]
Parameter 0 . !
bounds 5 0 5
Values
Upper Upper Upper
bound I 2 2 bound W E :
Sigma | 1 [
| Lower [ Lower [05 . L" ER
bound hound : BTt
Parameter Resamplel Export .. |
value
1 X
Parameter Additional / Sample again  Export to
control
parameters from the same workspace
distribution

Start by selecting a distribution, then enter the desired sample size.
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You can also

Use the controls at the bottom of the window to set parameter values for the
distribution and to change their upper and lower bounds.

Draw another sample from the same distribution, with the same size and parameters.

Export the current sample to your workspace. A dialog box enables you to provide a
name for the sample.
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Compare Multiple Distribution Fits

This example shows how to fit multiple probability distribution objects to the same set of
sample data, and obtain a visual comparison of how well each distribution fits the data.

Step 1. Load sample data.

Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Model Year), and other
vehicle characteristics.

Step 2. Create a nominal array.

Transform Origin into a nominal array and remove the Italian car from the sample
data.

Origin = nominal(Origin);

MPG2 = MPG(Origin~="ltaly”);

Origin2 = Origin(Origin~="ltaly®);
Origin2 = droplevels(Origin2,-ltaly”);

Since there is only one Italian car, Fitdist cannot fit a distribution to that group.
Removing the Italian car from the sample data prevents Fitdist from producing an
error.

Step 3. Fit multiple distributions by group.

Use Fitdist to fit Weibull, normal, logistic, and kernel distributions to each country of
origin group in the MPG data.

[WeiByOrig,Country] = Fitdist(MPG2, "weibull®,"by",0rigin2);
[NormByOrig,Country] = Ffitdist(MPG2, "normal®, "by",0rigin2);

[LogByOrig,Country] = Fitdist(MPG2, "logistic”,"by",0rigin2);
[KerByOrig,Country] = Fitdist(MPG2, “kernel”,"by",0rigin2);
WeiByOrig

Country

WeilByOrig =
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Collumn 1

[1x1 prob.WeibullDistribution]
Column 2

[1x1 prob.WeibullDistribution]
Collumn 3

[1x1 prob.WeibullDistribution]
Column 4

[1x1 prob.WeibullDistribution]
Collumn 5

[1x1 prob.WeibullDistribution]

Country =

"France”
"Germany "
"Japan*
"Sweden*
"USA*

Each country group now has four distribution objects associated with it. For example,

the cell array WeiByOrig contains five Weibull distribution objects, one for each

country represented in the sample data. Likewise, the cell array NormByOrig contains
five normal distribution objects, and so on. Each object contains properties that hold
information about the data, distribution, and parameters. The array Country lists the
country of origin for each group in the same order as the distribution objects are stored in
the cell arrays.

Step 4. Compute the pdf for each distribution.

Extract the four probability distribution objects for USA and compute the pdf for each
distribution. As shown in Step 3, USA is in position 5 in each cell array.

WeiUSA = WeiByOrig{5};
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NormUSA = NormByOrig{5};

LogUSA = LogByOrig{5};
KerUSA = KerByOrig{5};
X = 0:1:50;

pdf_Wei = pdf(WeiUSA,x);
pdf_Norm = pdf(NormUSA,x);
pdf_Log pdf(LogUSA,x) ;
pdf_Ker pdf(KerUSA,x);

Step 5. Plot pdf the for each distribution.

Plot the pdf for each distribution fit to the USA data, superimposed on a histogram of the
sample data. Scale the density by the histogram area for easier display.

% Create a histogram of the USA sample data
data = MPG(Origin2=="USA");

figure;

[n,y] = hist(data,10);

b = bar(y,n, "hist");

set(b, "FaceColor",[1,0.8,0]);

% Scale the density by the histogram area for easier display
area = sum(n)*(y(2)-y(1));

time = 0:50;

pdfWei = pdf(WeiUSA,time);

pdfNorm = pdf(NormUSA,time);

pdfLog = pdf(LogUSA,time);

pdfker = pdf(KerUSA,time);

% Plot the pdf of each fitted distribution
line(x,pdfWei*area, "LineStyle”,"-","Color”","r");

hold on;

line(x,pdfNorm*area, "LineStyle","-_","Color","b");
line(x,pdfLog*area, "LineStyle”,"--","Color”,"g");
line(x,pdfKer*area, "LineStyle”,":","Color","k");

I = legend("Data”, "Weibull®,"Normal ", "Logistic”, "Kernel");
set(l, "Location”, "Best");

title("MPG for Cars from USA™);

xlabel ("MPG™);

hold off;
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Superimposing the pdf plots over a histogram of the sample data provides a visual
comparison of how well each type of distribution fits the data. Only the nonparametric
kernel distribution KerUSA comes close to revealing the two modes in the original data.

Step 6. Further group USA data by year.

To investigate the two modes revealed in Step 5, group the MPG data by both country
of origin (Origin) and model year (Model Year), and use Fitdist to fit kernel

distributions to each group.

[KerByYearOrig,Names] = fitdist(MPG, "Kernel”, "By~ ,{Origin Model_Year});

Each unique combination of origin and model year now has a kernel distribution object

associated with it.
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Step 7. Compute the pdf for each group.

Extract the three probability distributions for each USA model year, which are in
positions 12, 13, and 14 in the cell array KerByYearOrig. Compute each pdf.

USA70 = KerByYearOrig{12};
USA76 = KerByYearOrig{13};
USA82 = KerByYearOrig{14};
pdf70 = pdf(USA70,x);
pdf76 = pdf(USA76,Xx);
pdf82 = pdf(USA82,x);

Step 8. Plot pdf for each group.

Plot the pdf for each group on the same figure.

figure;

plot(x,pdf70,"r-");

hold on;

plot(x,pdf76,"b-.");

plot(x,pdf82,"k:");
legend({"1970","1976","1982"}, "Location”, "NW");
title("MPG in USA Cars by Model Year®);

xlabel ("MPG");

hold off;
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When further grouped by model year, the pdf plots reveal two distinct peaks in the MPG
data for cars made in the USA — one for the model year 1970, and one for the model year
1982. This explains why the smooth curve produced by the kernel distribution for the
combined USA miles per gallon data shows two peaks instead of one.

See Also
fitdist

Related Examples
“Fit Probability Distribution Objects to Grouped Data” on page 5-124
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More About

. “Grouping Variables” on page 2-52
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Fit Probability Distribution Objects to Grouped Data

5-124

This example shows how to fit probability distribution objects to grouped sample data,
and create a plot to visually compare the pdf of each group.

Step 1. Load sample data.
Load the sample data.
load carsmall;

The data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Model _Year), and other
vehicle characteristics.

Step 2. Create a nominal array.

Transform Origin into a nominal array and remove the Italian car from the sample
data. Since there is only one Italian car, Fitdist cannot fit a distribution to that group.
Removing the Italian car from the sample data prevents Fitdist from returning an
error.

Origin = nominal(Origin);
MPG2 = MPG(Origin~="ltaly");
Origin2 = Origin(Origin~="ltaly");
Origin2 = droplevels(Origin2,"ltaly™);
Step 3. Fit kernel distributions to each group.
Use Fitdist to fit kernel distributions to each country of origin group in the MPG data.
[KerByOrig,Country] = fitdist(MPG2, "Kernel*,"by",0rigin2)
KerByOrig =

Column 1

[1x1 prob.KernelDistribution]

Column 2

[1x1 prob.KernelDistribution]
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Collumn 3

[1x1 prob.KernelDistribution]
Column 4

[1x1 prob.KernelDistribution]
Collumn 5

[1x1 prob.KernelDistribution]

Country =

"France*
"Germany*”
*Japan*
"Sweden*
"USA*

The cell array KerByOrig contains five kernel distribution objects, one for each country
represented in the sample data. Each object contains properties that hold information
about the data, the distribution, and the parameters. The array Country lists the
country of origin for each group in the same order as the distribution objects are stored in
KerByOrig.

Step 4. Compute the pdf for each group.

Extract the probability distribution objects for Germany, Japan, and USA. Use the
positions of each country in KerByOrig shown in Step 3, which indicates that Germany
is the second country, Japan is the third country, and USA is the fifth country. Compute
the pdf for each group.

Germany = KerByOrig{2};
Japan = KerByOrig{3};
USA = KerByOrig{5};

X = 0:1:50;

USA_pdf dF(USA,X);

=p
Japan_pdf = pdf(Japan,x);
Germany_pdf = pdf(Germany,x);
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Step 5. Plot the pdf for each group.

Plot the pdf for each group on the same figure.

figure;

plot(x,USA_pdf,"r-");

hold on;
plot(x,Japan_pdf,“b-_");

plot(x,Germany pdf, "k:");
legend({"USA*", "Japan®, "Germany"}, "Location”, "NW");

title("MPG by Country of Origin®);

xlabel ("MPG");
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The resulting plot shows how miles per gallon (MPG) performance differs by country of
origin (Origin). Using this data, the USA has the widest distribution, and its peak is at
the lowest MPG value of the three origins. Japan has the most regular distribution with a
slightly heavier left tail, and its peak is at the highest MPG value of the three origins. The
peak for Germany is between the USA and Japan, and the second bump near 44 miles
per gallon suggests that there might be multiple modes in the data.

See Also
fitdist | pdf

Related Examples
. “Fit Distributions to Grouped Data Using ksdensity” on page 5-57

More About

. “Kernel Distribution” on page B-81
. “Grouping Variables” on page 2-52
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Multinomial Probability Distribution Objects
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This example shows how to generate random numbers, compute and plot the pdf, and
compute descriptive statistics of a multinomial distribution using probability distribution
objects.

Step 1. Define the distribution parameters.

Create a vector p containing the probability of each outcome. Outcome 1 has a probability
of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6. The
number of trials n in each experiment is 5, and the number of repetitions reps of the
experiment is 8.

p [1/2 1/3 1/6];
n 5;

reps : 8;
Step 2. Create a multinomial probability distribution object.

Create a multinomial probability distribution object using the specified value p for the
Probabilities parameter.

pd = makedist("Multinomial®, "Probabilities”,p)
pd =
MultinomialDistribution

Probabilities:
0.5000 0.3333 0.1667

Step 3. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of
a single trial.

rng("default®) % For reproducibility
r = random(pd)

r =
2

This trial resulted in outcome 2.
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Step 4. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinomial distribution,
which reports the results of multiple experiments that each contain multiple trials.
Generate a matrix that contains the outcomes of an experiment with n = 5 trials and
reps = 8 repetitions.

r random(pd, reps,n)

WNRRPNWRW®
PRPNRFPWWRW®
NWWENWNW
RPRNRPNENN
PR WRPNNR R

Each element in the resulting matrix is the outcome of one trial. The columns correspond
to the five trials in each experiment, and the rows correspond to the eight experiments.
For example, in the first experiment (corresponding to the first row), one of the five trials
resulted in outcome 1, one of the five trials resulted in outcome 2, and three of the five
trials resulted in outcome 3.

Step 5. Compute and plot the pdf.

Compute the pdf of the distribution.

X = 1:3;
y = pdf(pd,x);
bar(x,y):;

xlabel ("Outcome™);
ylabel ("Probability Mass®);
title("Trinomial Distribution®);
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Trinormial Distribution
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The plot shows the probability mass for each k& possible outcome. For this distribution,
the pdf value for any X other than 1, 2, or 3 is 0.

Step 6. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the distribution.

m = mean(pd)
med = median(pd)
s = std(pd)
m =

1.6667
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med =

0.7454
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Multinomial Probability Distribution Functions

5-132

This example shows how to generate random numbers and compute and plot the pdf of a
multinomial distribution using probability distribution functions.

Step 1. Define the distribution parameters.

Create a vector p containing the probability of each outcome. Outcome 1 has a probability
of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6.

The number of trials in each experiment n is 5, and the number of repetitions of the
experiment reps is 8.

p = [1/2 1/3 1/6];
n 5;

reps 8;

Step 2. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of
a single trial.

rng("default®) % For reproducibility
r = mnrnd(1,p,1)

r =
0 1 0

The returned vector r contains three elements, which show the counts for each possible
outcome. This single trial resulted in outcome 2.

Step 3. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinomial distribution,
which reports the results of multiple experiments that each contain multiple trials.
Generate a matrix that contains the outcomes of an experiment with n = 5 trials and
reps = 8 repetitions.

r mnrnd(n,p,reps)

r =
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WWRUIOR WR
RPRNOAMARNER
RFRNOFRWOW

Each row in the resulting matrix contains counts for each of the £ multinomial bins. For
example, in the first experiment (corresponding to the first row), one of the five trials
resulted in outcome 1, one of the five trials resulted in outcome 2, and three of the five
trials resulted in outcome 3.

Step 4. Compute the pdf.

Since multinomial functions work with bin counts, create a multidimensional array of all
possible outcome combinations, and compute the pdf using mnpdTf.

[x1,x2] = me;hgrid(countl,countZ);
X3 = n-(xX1+x2);
y = mnpdf([x1(:),x2(:),x3(:)],repmat(p,(n)"2,1));

Step 5. Plot the pdf.

Create a 3-D bar graph to visualize the pdf for each combination of outcome frequencies.

figure;

y = reshape(y,n,n);
bar3(y);

set(gca, "XTickLabel",1:n);
set(gca, "YTickLabel",1:n);
xlabel ("x_1 Frequency®);
ylabel ("x_2 Frequency®);
zlabel ("Probability Mass®);
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Trinomial Distribution
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The plot shows the probability mass for each possible combination of outcomes. It does
not show x5, which is determined by the constraint x; + xo + x3=n.
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Generate Random Numbers Using Uniform Distribution Inversion

This example shows how to generate random numbers using the uniform distribution
inversion method. This is useful for distributions when it is possible to compute the
inverse cumulative distribution function, but there is no support for sampling from the
distribution directly.

Step 1. Generate random numbers from the standard uniform distribution.

Use rand to generate 1000 random numbers from the uniform distribution on the
interval (0,1).

rng("default®) % For reproducibility
u = rand(1000,1);

The inversion method relies on the principle that continuous cumulative distribution
functions (cdfs) range uniformly over the open interval (0,1). If  is a uniform random

number on (0,1), then x = F(x) generates a random number x from any continuous
distribution with the specified cdf F.

Step 2. Generate random numbers from the Weibull distribution.

Use the inverse cumulative distribution function to generate the random numbers
from a Weibull distribution with parameters A = 1 and B = 1 that correspond to the
probabilities in u. Plot the results.

figure;

x = wblinv(u,1,1);
hist(x,20);
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Randaom Mumbers Generated From Weibull Distribution
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The histogram shows that the random numbers generated using the Weibull inverse cdf
function wblinv have a Weibull distribution.

Step 3. Generate random numbers from the standard normal distribution.

The same values in U can generate random numbers from any distribution, for example
the standard normal, by following the same procedure using the inverse cdf of the desired
distribution.

figure;
x_norm = norminv(u,1,0);
hist = (x_norm,20);
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Randaom Mumbers Generated From Marmal Distribution
1""1":' T T T T T T T

120 .

100 ] .

80 .

41 — .

20 .

The histogram shows that, by using the standard normal inverse cdf horminv, the
random numbers generated from u now have a standard normal distribution.

See Also

hist | norminv | rand | wblinv

More About

. “Uniform Distribution (Continuous)” on page B-163
. “Weibull Distribution” on page B-172
. “Normal Distribution” on page B-130
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Represent Cauchy Distribution Using t Location-Scale
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This example shows how to use the ¢ location-scale probability distribution object to work
with a Cauchy distribution with nonstandard parameter values.

Step 1. Create a probability distribution object.

Create a ¢ location-scale probability distribution object with degrees of freedom nu = 1.
Specify mu = 3 to set the location parameter equal to 3, and sigma = 1 to set the scale
parameter equal to 1.

pd makedist("tLocationScale”,"mu*,3,"sigma”,1,"nu",1)
pd =
tLocationScaleDistribution

t Location-Scale distribution

mu = 3
sigma = 1
nu =1

Step 2. Compute descriptive statistics.

Use object functions to compute descriptive statistics for the Cauchy distribution.

= median(pd)
igqr(pd)
mean(pd)
std(pd)

3
0]
Inmnn

med =

m =
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NaN

Inf

The median of the Cauchy distribution is equal to its location parameter, and the
interquartile range is equal to two times its scale parameter. Its mean and standard
deviation are undefined.

Step 3. Compute and plot the pdf.
Compute and plot the pdf of the Cauchy distribution.
figure;

X = -20:1:20;

y = pdf(pd,x);
plot(x,y, "LineWidth",2);
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The peak of the pdf is centered at the location parameter mu = 3.
Step 4. Generate a vector of Cauchy random numbers.

Generate a column vector containing 10 random numbers from the Cauchy distribution
using the random function for the ¢ location-scale probability distribution object.

rng("default®); % For reproducibility
r = random(pd,10,1)

r =

3.2678
4.6547
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-0604
.7322
-1810
.6649
.8471
.2466
-4647
.8874

COuhrRrPFRPWADN

Step 5. Generate a matrix of Cauchy random numbers.
Generate a 5-by-5 matrix of Cauchy random numbers.
r = random(pd,5,5)

r =

2.2867 2.9692 -1.7003 5.5949 1.9806
2.7421 2.7180 3.2210 2.4233 3.1394
3.5966 3.9806 1.0182 6.4180 5.1367
5.4791  15.6472 0.7558 2.8908 5.9031
1.6863 4.0985 2.9934 13.9506 4.8792
See Also
makedist

Related Examples
. “Generate Cauchy Random Numbers Using Student’s £’ on page 5-142

More About

. “t Location-Scale Distribution” on page B-154
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Generate Cauchy Random Numbers Using Student’s #

This example shows how to use the Student’s ¢ distribution to generate random numbers
from a standard Cauchy distribution.

Step 1. Generate a vector of random numbers.

Generate a column vector containing 10 random numbers from a standard Cauchy
distribution, which has a location parameter mu = O and scale parameter sigma = 1.
Use trnd with degrees of freedom V = 1.

rng("default®); % For reproducibility
r = trnd(1,10,1)

r =

.2678
.6547
-9396
.7322
-1810
-3351
-1529
.2466
-4647
.8874

ONRRPRRORORO

Step 2. Generate a matrix of random numbers.

Generate a 5-by-5 matrix of random numbers from a standard Cauchy distribution.

r = trnd(1,5,5)

r =
-0.7133 -0.0308 -4.7003 2.5949 -1.0194
-0.2579 -0.2820 0.2210 -0.5767 0.1394
0.5966 0.9806 -1.9818 3.4180 2.1367
2.4791 12.6472 -2.2442 -0.1092 2.9031
-1.3137 1.0985 -0.0066 10.9506 1.8792

See Also

trnd

5-142



Generate Cauchy Random Numbers Using Student's

Related Examples

“Represent Cauchy Distribution Using ¢ Location-Scale” on page 5-138

More About

“Student's t Distribution” on page B-146
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Generate Correlated Data Using Rank Correlation

5-144

This example shows how to use a copula and rank correlation to generate correlated data
from probability distributions that do not have an inverse cdf function available, such as
the Pearson flexible distribution family.

Step 1. Generate Pearson random numbers.

Generate 1000 random numbers from two different Pearson distributions, using the
pearsrnd function. The first distribution has the parameter values mu equal to 0, sigma
equal to 1, skew equal to 1, and kurtosis equal to 4. The second distribution has the
parameter values mu equal to 0, sigma equal to 1, skew equal to 0.75, and kurtosis equal
to 3.

rng default % For reproducibility

pl pearsrnd(0,1,-1,4,1000,1);
p2 pearsrnd(0,1,0.75,3,1000,1);

At this stage, pl and p2 are independent samples from their respective Pearson
distributions, and are uncorrelated.

Step 2. Plot the Pearson random numbers.

Create a scatterhist plot to visualize the Pearson random numbers.

figure
scatterhist(pl,p2)
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The histograms show the marginal distributions for p1 and p2. The scatterplot shows the
joint distribution for pl and p2. The lack of pattern to the scatterplot shows that pl and
p2 are independent.

Step 3. Generate random numbers using a Gaussian copula.

Use copularnd to generate 1000 correlated random numbers with a correlation
coefficient equal to —0.8, using a Gaussian copula. Create a scatterhist plot to
visualize the random numbers generated from the copula.

u = copularnd(®"Gaussian®,-0.8,1000);

figure
scatterhist(u(:,1),u(:,2))
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The histograms show that the data in each column of the copula have a marginal uniform
distribution. The scatterplot shows that the data in the two columns are negatively
correlated.

Step 4. Sort the copula random numbers.

Using Spearman’s rank correlation, transform the two independent Pearson samples into
correlated data.

Use the sort function to sort the copula random numbers from smallest to largest, and
to return a vector of indices describing the rearranged order of the numbers.

[s1,i1] = sort(u(:,1));
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[s2,i2] = sort(u(:,2));

sl and s2 contain the numbers from the first and second columns of the copula, u,
sorted in order from smallest to largest. i1 and 12 are index vectors that describe the
rearranged order of the elements into s1 and s2. For example, if the first value in the
sorted vector s1 is the third value in the original unsorted vector, then the first value in
the index vector 11 is 3.

Step 5. Transform the Pearson samples using Spearman’s rank correlation.

Create two vectors of zeros, X1 and X2, that are the same size as the sorted copula
vectors, S1 and s2. Sort the values in pl and p2 from smallest to largest. Place the
values into X1 and X2, in the same order as the indices 11 and 12 generated by sorting
the copula random numbers.

x1
X2

zeros(size(sl));
zeros(size(s2));

x1(i1)
x2(i2)

sort(pl);
sort(p2);

Step 6. Plot the correlated Pearson random numbers.

Create a scatterhist plot to visualize the correlated Pearson data.

figure
scatterhist(x1,x2)
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The histograms show the marginal Pearson distributions for each column of data. The
scatterplot shows the joint distribution of p1 and p2, and indicates that the data are now
negatively correlated.

Step 7. Confirm Spearman rank correlation coefficient values.

Confirm that the Spearman rank correlation coefficient is the same for the copula
random numbers and the correlated Pearson random numbers.

copula_corr = corr(u,"Type", "spearman”)
pearson_corr = corr([x1,x2], Type", "spearman®)

copula_corr =
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1.0000 -0.7858
-0.7858 1.0000
pearson_corr =

1.0000 -0.7858
-0.7858 1.0000

The Spearman rank correlation is the same for the copula and the Pearson random
numbers.

See Also

copularnd | corr | sort

More About

. “Copulas: Generate Correlated Samples” on page 5-160
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Gaussian Mixture Models

In this section...

“Creating Gaussian Mixture Models” on page 5-150

“Simulating Gaussian Mixtures” on page 5-157

Gaussian mixture models are formed by combining multivariate normal density
components In Statistics and Machine Learning Toolbox software, use the
gmdistribution class to fit data using an expectation maximization (EM) algorithm,
which assigns posterior probabilities to each component density with respect to each
observation. The fitting method uses an iterative algorithm that converges to a local
optimum.

Clustering using Gaussian mixture models is sometimes considered a soft clustering
method. The posterior probabilities for each point indicate that each data point has
some probability of belonging to each cluster. For more information on clustering with
Gaussian mixture models, see “Clustering Using Gaussian Mixture Models” on page
14-29. This section describes their creation.

Creating Gaussian Mixture Models
+ “Specifying a Model” on page 5-150

+  “Fitting a Model to Data” on page 5-153
Specifying a Model

Use the gmdistribution constructor to create Gaussian mixture models with specified
means, covariances, and mixture proportions.

First, define the means, covariances, and mixture proportions.
MU = [1 2;-3 -5]; % Means

SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]); % Covariances

p = ones(1,2)/2; % Mixing proportions

Then, create an object of the gmdistribution class defining a two-component mixture
of bivariate Gaussian distributions:

obj = gmdistribution(MU,SIGMA,p);
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Display properties of the object with the MATLAB function Fieldnames:

properties = fieldnames(obj)

properties

"NumVariables*®
"DistributionName*
"NumComponents*
"ComponentProportion®
"SharedCovariance”
"Numlterations”
"Regularizationvalue®
"NegativelLogLikelihood”
"CovarianceType”

"mu*

"Sigma”

"AIC*

"BIC*

"Converged*®

The gmdistribution reference page describes these properties. To access the value of a
property, use dot indexing. For example, access the dimensions of the object.

dimension = obj.NDimensions

dimension

2

Access the distribution name.

name

name

gaussian mixture distribution

= obj .DistName

Use the methods pdf and cdf to compute values and visualize the object:
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figure
ezsurf(@(x,y)pdf(obj, [x y]),[-10 10],[-10 10])

pdf(obj.[x,y])

0.08 -

0.06 -

0.04

0.02 -

figure
ezsurf(@(x,y)cdf(obj,[x y]),[-10 10],[-10 10D
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Fitting a Model to Data

You can also create Gaussian mixture models by fitting a parametric model with

a specified number of components to data. Fitgmdist uses the syntax obj =
Fitgmdist(X, k), where X is a data matrix and K is the specified number of components.
Choosing a suitable number of components k is essential for creating a useful model of
the data—too few components fails to model the data accurately; too many components
leads to an over-fit model with singular covariance matrices.

The following example illustrates this approach.

First, create some data from a mixture of two bivariate Gaussian distributions using the
mvnrnd function:
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MUL = [1 2];

SIGMA1 = [2 0; O .5]:

MU2 = [-3 -5];

SIGMA2 = [1 0; 0 1];

X = [mvnrnd(MU1,SI1GMA1,1000);
mvnrnd(MU2,SI1GMA2,1000)] ;
figure
scatter(X(:,1),X(:,2),10,".%)

Next, fit a two-component Gaussian mixture model:
options = statset("Display”, final");

obj = fitgmdist(X,2,"Options”,options);
hold on
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h = ezcontour(@(x,y)pdf(obj,[x y1),[-8 6].[-8 6]1);:
hold off

18 iterations, log-likelihood = -7058.35

pdf(obj.[x,y])

Among the properties of the fit are the parameter estimates.

Display the estimates for mu, sigma, and mixture proportions

ComponentMeans = obj.mu
ComponentCovariances = obj.Sigma
MixtureProportions = obj.PComponents

ComponentMeans =
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-2.9617 -4.9727
0.9539 2.0261

ComponentCovariances(:,:,1)

1.0100 0.0059
0.0059 0.9897

ComponentCovariances(:,:,2) =

1.9939 -0.0092
-0.0092 0.4981

MixtureProportions =

0.5000 0.5000

The two-component model minimizes the Akaike information:

AlC zeros(1,4);

obj cell(1,4);

for k = 1:4
obj{k} = fitgmdist(X,k);
AIC(K)= obj{k}.-AIC;

end

[minAIC,numComponents] = min(AIC);
numComponents

numComponents =

2

Display the model.

model = obj{2}
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model =

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:

Mixing proportion: 0.500000

Mean: -2.9617 -4.9727

Component 2:
Mixing proportion: 0.500000
Mean: 0.9539 2.0261

Both the Akaike and Bayes information are negative log-likelihoods for the data with
penalty terms for the number of estimated parameters. You can use them to determine
an appropriate number of components for a model when the number of components is
unspecified.

Simulating Gaussian Mixtures

Use the method random of the gmdistribution class to generate random data from a
Gaussian mixture model created with gndistribution or Fitgmdist.

For example, the following specifies a gmdistribution object consisting of a two-
component mixture of bivariate Gaussian distributions:

MU = [1 2;-3 -5];

SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;

obj = gmdistribution(MU,SIGMA,p);

figure

ezcontour(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
hold on
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Use random(gmdistribution) to generate 1000 random values:

Y = random(obj,1000);
scatter(Y(:,1),Y(:,2),10,".")
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Copulas: Generate Correlated Samples

5-160

In this section...

“Determining Dependence Between Simulation Inputs” on page 5-160
“Constructing Dependent Bivariate Distributions” on page 5-164

“Using Rank Correlation Coefficients” on page 5-169

“Using Bivariate Copulas” on page 5-171

“Higher Dimension Copulas” on page 5-180

“Archimedean Copulas” on page 5-182

“Simulating Dependent Multivariate Data Using Copulas” on page 5-184

“Fitting Copulas to Data” on page 5-189

Copulas are functions that describe dependencies among variables, and provide a way
to create distributions that model correlated multivariate data. Using a copula, you can
construct a multivariate distribution by specifying marginal univariate distributions,
and then choose a copula to provide a correlation structure between variables. Bivariate
distributions, as well as distributions in higher dimensions, are possible.

Determining Dependence Between Simulation Inputs

One of the design decisions for a Monte Carlo simulation is a choice of probability
distributions for the random inputs. Selecting a distribution for each individual variable
is often straightforward, but deciding what dependencies should exist between the inputs
may not be. Ideally, input data to a simulation should reflect what you know about
dependence among the real quantities you are modeling. However, there may be little

or no information on which to base any dependence in the simulation. In such cases,

it is useful to experiment with different possibilities in order to determine the model's
sensitivity.

It can be difficult to generate random inputs with dependence when they have
distributions that are not from a standard multivariate distribution. Further, some of
the standard multivariate distributions can model only limited types of dependence. It is
always possible to make the inputs independent, and while that is a simple choice, it is
not always sensible and can lead to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk could have two random inputs
that represent different sources of insurance losses. You could model these inputs as
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lognormal random variables. A reasonable question to ask is how dependence between
these two inputs affects the results of the simulation. Indeed, you might know from real
data that the same random conditions affect both sources; ignoring that in the simulation
could lead to the wrong conclusions.

Generate and Exponentiate Normal Random Variables

The lognrnd function simulates independent lognormal random variables. In the
following example, the mvnrnd function generates n pairs of independent normal random
variables, and then exponentiates them. Notice that the covariance matrix used here is
diagonal.

n = 1000;

sigma = .5;
Sigmalnd = sigma.”~2 .* [1 0; 0 1]

rng("default®); % For reproducibility
ZInd = mvnrnd([O0 0],Sigmalnd,n);
XInd = exp(ZInd);

plot(XInd(:,1),XInd(:,2),"-")
axis([0 5 0 5]
axis equal

xlabel ("X17%)
ylabel ("X2%)
Sigmalnd =
0.2500 0
0 0.2500

5-161



5 Probability Distributions

Dependent bivariate lognormal random variables are also easy to generate using a
covariance matrix with nonzero off-diagonal terms.

rho = .7;

SigmaDep = sigma-~2 .* [1 rho; rho 1]

ZDep = mvnrnd([0 0],SigmaDep,n);
XDep = exp(ZDep);
SigmaDep =

0.2500 0.1750
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0.1750 0.2500

A second scatter plot demonstrates the difference between these two bivariate
distributions.

plot(XDep(:,1),XDep(:,2),".")
axis([0 5 0 5]

axis equal

xlabel ("X17)

ylabel ("X2%)

It is clear that there is a tendency in the second data set for large values of X1 to be
associated with large values of X2, and similarly for small values. The correlation
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parameter * of the underlying bivariate normal determines this dependence. The
conclusions drawn from the simulation could well depend on whether you generate X1
and X2 with dependence. The bivariate lognormal distribution is a simple solution in this
case; it easily generalizes to higher dimensions in cases where the marginal distributions
are different lognormals.

Other multivariate distributions also exist. For example, the multivariate ¢ and the
Dirichlet distributions simulate dependent ¢ and beta random variables, respectively.
But the list of simple multivariate distributions is not long, and they only apply in cases
where the marginals are all in the same family (or even the exact same distributions).
This can be a serious limitation in many situations.

Constructing Dependent Bivariate Distributions

Although the construction discussed in the previous section creates a bivariate lognormal
that is simple, it serves to illustrate a method that is more generally applicable.

1 Generate pairs of values from a bivariate normal distribution. There is statistical
dependence between these two variables, and each has a normal marginal
distribution.

2 Apply a transformation (the exponential function) separately to each variable,
changing the marginal distributions into lognormals. The transformed variables still
have a statistical dependence.

If a suitable transformation can be found, this method can be generalized to create
dependent bivariate random vectors with other marginal distributions. In fact, a general
method of constructing such a transformation does exist, although it is not as simple as
exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf), denoted here by
@, to a standard normal random variable results in a random variable that is uniform on
the interval [0,1]. To see this, if Z has a standard normal distribution, then the cdf of U =

D(2) is
Pr{U < u} = Pr{®(Z) <u} =Pr(Z <& Y(w) =u

and that is the cdf of a Unif(0,1) random variable. Histograms of some simulated normal
and transformed values demonstrate that fact:

n = 1000;
rng default % for reproducibility
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Frequency

z = normrnd(0,1,n,1); % generate standard normal data

histogram(z,-3.75:.5:3.75, "FaceColor",[-8 .8 1]) % plot the histogram of data
xhim([-4 41

title("1000 Simulated N(0,1) Random Values®)

xlabel ("Z")

ylabel ("Frequency™)

1000 Simulated N(0,1) Random Values

200 T

180 - i

160 7

-
3
=]
T
i

=

]

=
T

I

40 .

20 7

u = normcdf(z); % compute the cdf values of the sample data

figure

histogram(u, -05:.1: .95, "FaceColor®,[-8 -8 1]) % plot the histogram of the cdf values
title("1000 Simulated N(0,1) Values Transformed to Unif(0,1)")

xlabel ("U")

ylabel ("Frequency™)
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1000 Simulated N(0,1) Values Transformed to Unif{0,1)
120 T T T T T T T T T

100 4

60 T

Frequency

40 1

201 7

0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
u

Borrowing from the theory of univariate random number generation, applying the
inverse cdf of any distribution, F, to a Unif(0,1) random variable results in a random
variable whose distribution is exactly F (see “Inversion Methods” on page 6-7). The
proof is essentially the opposite of the preceding proof for the forward case. Another
histogram illustrates the transformation to a gamma distribution:

X = gaminv(u,2,1); % transform to gamma values

figure

histogram(x, .25:.5:9.75, "FaceColor”,[-8 .8 1]) % plot the histogram of gamma values
title("1000 Simulated N(0,1) Values Transformed to Gamma(2,1)")

xlabel ("X™)

ylabel (*Frequency™)
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Frequency

1000 Simulated N(0,1) Values Transformed to Gamma(2,1)

180

160 F — 4

140 | 1

120 7

100 4

[ma]

=
T
1

=]

]
T
1

=

=
T
1

0 1 2 3 4 & G 7 8 9 10
X

You can apply this two-step transformation to each variable of a standard bivariate
normal, creating dependent random variables with arbitrary marginal distributions.
Because the transformation works on each component separately, the two resulting
random variables need not even have the same marginal distributions. The
transformation is defined as:

_ ~ O plC
Z =(2,,Z,) N@O,O],Ep 1EE

U=§p(Z1),®(Z)H
X = (U,),G,(Us)B
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where G; and G, are inverse cdfs of two possibly different distributions. For example, the
following generates random vectors from a bivariate distribution with ¢5 and Gamma(2,1)
marginals:

1000; rho = .7;

mvnrnd([O0 0],[1 rho; rho 1],n);
normcdf(2);

[gaminv(U(:,1),2,1) tinv(U(:,2),5)]1;

X C N33

% draw the scatter plot of data with histograms
figure
scatterhist(X(:,1),X(:,2), "Direction”,"out”)

12
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This plot has histograms alongside a scatter plot to show both the marginal distributions,
and the dependence.

Using Rank Correlation Coefficients

The correlation parameter, p, of the underlying bivariate normal determines the
dependence between X1 and X2 in this construction. However, the linear correlation of
X1 and X2 is not p. For example, in the original lognormal case, a closed form for that
correlation is:

po’ _
or(X1,x2)=¢_~1

e’ -1

which is strictly less than p, unless p is exactly 1. In more general cases such as the
Gammal/t construction, the linear correlation between X1 and X2 is difficult or impossible
to express in terms of p, but simulations show that the same effect happens.

That is because the linear correlation coefficient expresses the linear dependence
between random variables, and when nonlinear transformations are applied to those
random variables, linear correlation is not preserved. Instead, a rank correlation
coefficient, such as Kendall's t© or Spearman's p, is more appropriate.

Roughly speaking, these rank correlations measure the degree to which large or

small values of one random variable associate with large or small values of another.
However, unlike the linear correlation coefficient, they measure the association only

in terms of ranks. As a consequence, the rank correlation is preserved under any
monotonic transformation. In particular, the transformation method just described
preserves the rank correlation. Therefore, knowing the rank correlation of the bivariate
normal Z exactly determines the rank correlation of the final transformed random
variables, X. While the linear correlation coefficient, p, is still needed to parameterize the
underlying bivariate normal, Kendall's 7 or Spearman's p are more useful in describing
the dependence between random variables, because they are invariant to the choice of
marginal distribution.

For the bivariate normal, there is a simple one-to-one mapping between Kendall's 7 or
Spearman's p, and the linear correlation coefficient p:
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The following plot shows the relationship.

rho = -1:.01:1;
tau = 2_*asin(rho)./pi;
rho_s = 6.*asin(rho./2)_/pi;

plot(rho,tau, "b-","LineWidth",2)

hold on

plot(rho,rho_s,"g-","LineWidth",2)

plot([-1 1],[-1 1], k:","LineWidth",2)

axis([-1 1 -1 1]

xlabel ("rho*)

ylabel ("Rank correlation coefficient®)

legend("Kendall""s {\it\tau}”",
"Spearman®*s {\it\rho_s}",
"location®, "NW®)
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Rank correlation coefficient

1 T T T T

Kendal's =
Spearman’s o

0.8
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_.1 1 1 1 1 1 1 1 1 1
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rho

Thus, it is easy to create the desired rank correlation between X1 and X2, regardless of
their marginal distributions, by choosing the correct p parameter value for the linear
correlation between Z1 and Z2.

For the multivariate normal distribution, Spearman's rank correlation is almost identical
to the linear correlation. However, this is not true once you transform to the final random
variables.

Using Bivariate Copulas

The first step of the construction described in the previous section defines what is known
as a bivariate Gaussian copula. A copula is a multivariate probability distribution, where
each random variable has a uniform marginal distribution on the unit interval [0,1].
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These variables may be completely independent, deterministically related (e.g., U2 =
Ul), or anything in between. Because of the possibility for dependence among variables,
you can use a copula to construct a new multivariate distribution for dependent
variables. By transforming each of the variables in the copula separately using the
inversion method, possibly using different cdfs, the resulting distribution can have
arbitrary marginal distributions. Such multivariate distributions are often useful in
simulations, when you know that the different random inputs are not independent of
each other.

Statistics and Machine Learning Toolbox functions compute:

* Probability density functions (copulapdf) and the cumulative distribution functions
(copulacdf) for Gaussian copulas

* Rank correlations from linear correlations (copulastat) and vice versa
(copulaparam)

* Random vectors (copularnd)
+  Parameters for copulas fit to data (copulaFit)

For example, use the copularnd function to create scatter plots of random values from
a bivariate Gaussian copula for various levels of p, to illustrate the range of different
dependence structures. The family of bivariate Gaussian copulas is parameterized by the
linear correlation matrix:

() !

Ul and U2 approach linear dependence as p approaches +1, and approach complete
independence as p approaches zero:

n = 500;

rng(“default®) % for reproducibility

U = copularnd(°Gaussian®,[1 -8; .8 1],n);
subplot(2,2,1)

plot(U(:,1),U(:,2),".7)

title(C"{\it\rho} = 0.8%)

xlabel ("U1")

ylabel ("U27)

U = copularnd("Gaussian®,[1 -1; -1 1],n);
subplot(2,2,2)
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plot(U(:,1),U(:,2),".7)
title(C"{\it\rho} = 0.1%)
xlabel ("U1")
ylabel ("U2%)

U = copularnd(®Gaussian®,[1 -.1; -.1 1],n);
subplot(2,2,3)

plot(U(:,1),U(:,2),".7)

title(C"{\it\rho} = -0.17)

xlabel ("U1")

ylabel ("U2%)

U = copularnd(®Gaussian®,[1 -.8; -.8 1],n);
subplot(2,2,4)

plot(U(:,1),U(:,2),".7)

title(C"{\it\rho} = -0.8")

xlabel ("U1")

ylabel ("U2%)
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The dependence between Ul and U2 is completely separate from the marginal
distributions of X1 = G(U1l) and X2 = G(U2). X1 and X2 can be given any marginal
distributions, and still have the same rank correlation. This is one of the main appeals of
copulas—they allow this separate specification of dependence and marginal distribution.
You can also compute the pdf (copulapdf) and the cdf (copulacdf) for a copula. For
example, these plots show the pdf and cdf for p = .8:

1 linspace(le-3,1-1e-3,50);
2 linspace(le-3,1-1e-3,50);
Ul,U2] = meshgrid(ul,u2);
ho = [1 .8; .8 1];
copulapdf("t",[U1(:) U2(:)],Rho,5);
reshape(f,size(Ul));
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Frobability Density

figureQ)
surf(ul,u2,log(f), “"FaceColor®, "interp”, "EdgeColor”, "none")
view([-15,20])

xlabel ("U1")

ylabel ("U27)

zlabel ("Probability Density®)

ul
u2

0.5

0.6 0.8
U1

linspace(le-3,1-1e-3,50);
linspace(le-3,1-1e-3,50);

[U1,U2] = meshgrid(ul,u2);

F
F

copulacdf("t",[U1(:) U2(:)],Rho,5);
reshape(F,size(Ul));
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figureQ)

surf(ul,u2,F, "FaceColor™", "interp”, "EdgeColor”, "none®)
view([-15,20])

xlabel ("U1")

ylabel ("U27)

zlabel ("Cumulative Probability®)

0.8 ]

0.6 .

0.4

Cumulative Frobability

0.2

0.6
u2 o 0 0.2 0.4

U1

A different family of copulas can be constructed by starting from a bivariate ¢ distribution
and transforming using the corresponding ¢ cdf. The bivariate ¢ distribution is
parameterized with P, the linear correlation matrix, and v, the degrees of freedom. Thus,
for example, you can speak of a ¢, or a t5 copula, based on the multivariate ¢ with one and
five degrees of freedom, respectively.
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Just as for Gaussian copulas, Statistics and Machine Learning Toolbox functions for ¢
copulas compute:

* Probability density functions (copulapdf) and the cumulative distribution functions
(copulacdf) for Gaussian copulas

* Rank correlations from linear correlations (copulastat) and vice versa
(copulaparam)

* Random vectors (copularnd)
*  Parameters for copulas fit to data (copulaFit)

For example, use the copularnd function to create scatter plots of random values from
a bivariate ¢; copula for various levels of p, to illustrate the range of different dependence
structures:

n = 500;
nu=1;

rng(“default®) % for reproducibility
U = copularnd("t",[1 .8; -8 1],nu,n);
subplot(2,2,1)
plot(U(:,1),U(:,2),".7)
title(C"{\it\rho} = 0.8%)

xlabel ("U1")

ylabel ("U2%)

U = copularnd("t",[1 .1; .1 1],nu,n);
subplot(2,2,2)
plot(U(:,1),U(:,2),".7)
title(C"{\it\rho} = 0.1%)

xlabel ("U1")

ylabel ("U2%)

U = copularnd("t",[1 -.1; -.1 1],nu,n);
subplot(2,2,3)

plot(U(:,1),U(:,2),"-7)
title(C"{\it\rho} = -0.17)

xlabel ("U1")

ylabel ("U2%)

U = copularnd("t",[1 -.8; -.8 1],nu, n);
subplot(2,2,4)

plot(U(:,1),U(:,2),".7)
title(C"{\it\rho} = -0.8")
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uz2

uz2
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A t copula has uniform marginal distributions for U1 and U2, just as a Gaussian copula
does. The rank correlation 7 or p; between components in a ¢ copula is also the same
function of p as for a Gaussian. However, as these plots demonstrate, a t; copula differs
quite a bit from a Gaussian copula, even when their components have the same rank
correlation. The difference is in their dependence structure. Not surprisingly, as the

degrees of freedom parameter v is made larger, a ¢, copula approaches the corresponding
Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over a ¢ copula.
For example, using a ¢ copula with 1 degree of freedom, you can again generate
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random vectors from a bivariate distribution with Gamma(2,1) and ¢; marginals using
copularnd:

n = 1000;
rho = .7;
nu=1;

rng("default™) % for reproducibility

U = copularnd("t",[1 rho; rho 1],nu,n);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];
figure()

scatterhist(X(:,1),X(:,2), "Direction”,"out™)
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Compared to the bivariate Gamma/t distribution constructed earlier, which was based
on a Gaussian copula, the distribution constructed here, based on a ¢; copula, has the
same marginal distributions and the same rank correlation between variables but a very
different dependence structure. This illustrates the fact that multivariate distributions
are not uniquely defined by their marginal distributions, or by their correlations. The
choice of a particular copula in an application may be based on actual observed data,

or different copulas may be used as a way of determining the sensitivity of simulation
results to the input distribution.

Higher Dimension Copulas

The Gaussian and ¢ copulas are known as elliptical copulas. It is easy to generalize
elliptical copulas to a higher number of dimensions. For example, simulate data from a
trivariate distribution with Gamma(2,1), Beta(2,2), and t; marginals using a Gaussian
copula and copularnd, as follows:

n = 1000;

Rho = [1 .4 .2; .41 -.8; .2 -.8 1];

rng("default®) % for reproducibility

U copularnd(“Gaussian®,Rho,n);

X [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];

Plot the data.

subplot(1,1,1)
plot3(X(:,1),X(:,2),X(:,3),"-.7)
grid on

view([-55, 15])

xlabel ("X1%)

ylabel ("X27%)

zlabel ("X37)
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10 ~

Notice that the relationship between the linear correlation parameter p and, for example,
Kendall's 7, holds for each entry in the correlation matrix P used here. You can verify
that the sample rank correlations of the data are approximately equal to the theoretical
values:

tauTheoretical = 2.*asin(Rho)./pi

tauTheoretical =
1.0000 0.2620 0.1282

0.2620 1.0000 -0.5903
0.1282 -0.5903 1.0000
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tauSample = corr(X, “"type®, "Kendall™)

tauSample

1.0000 0.2581 0.1414
0.2581 1.0000 -0.5790
0.1414 -0.5790 1.0000

Archimedean Copulas

Statistics and Machine Learning Toolbox functions are available for three bivariate
Archimedean copula families:

*  Clayton copulas

*  Frank copulas

*  Gumbel copulas

These are one-parameter families that are defined directly in terms of their cdfs, rather
than being defined constructively using a standard multivariate distribution.

To compare these three Archimedean copulas to the Gaussian and ¢ bivariate copulas,
first use the copulastat function to find the rank correlation for a Gaussian or ¢ copula
with linear correlation parameter of 0.8, and then use the copulaparam function to find
the Clayton copula parameter that corresponds to that rank correlation:

tau = copulastat(“Gaussian®,.8 ,"type”, "kendall™)

tau =

0.5903

alpha = copulaparam(“Clayton”,tau, "type”, "kendall™)

alpha =

2.8820
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Finally, plot a random sample from the Clayton copula with copularnd. Repeat the
same procedure for the Frank and Gumbel copulas:

n = 500;

U = copularnd("Clayton”,alpha,n);

subplot(3,1,1)

plot(U(:,1),U(:,2),".7);

title(["Clayton Copula, {\it\alpha} = ",sprintf("%0.2F",alpha)])
xlabel ("U1")

ylabel ("U27)

alpha = copulaparam(“Frank”,tau, "type”, "kendall");

U = copularnd("Frank”,alpha,n);

subplot(3,1,2)

plot(U(:,1),U(:,2),".7)

title(["Frank Copula, {\it\alpha} = ",sprintf("%0.2f",alpha)])
xlabel ("U1")

ylabel ("U27)

alpha = copulaparam(”Gumbel” ,tau, "type”, "kendall™);

U = copularnd("Gumbel* ,alpha,n);

subplot(3,1,3)

plot(U(:,1),U(:,2),".7)

title(["Gumbel Copula, {\it\alpha} = ",sprintf("%0.2f",alpha)])
xlabel ("U1")

ylabel ("U27)
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Simulating Dependent Multivariate Data Using Copulas

To simulate dependent multivariate data using a copula, you must specify each of the
following:

* The copula family (and any shape parameters)
* The rank correlations among variables

*  Marginal distributions for each variable

Suppose you have return data for two stocks and want to run a Monte Carlo simulation
with inputs that follow the same distributions as the data:

load stockreturns
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nobs = size(stocks,1);

subplot(2,1,1)

histogram(stocks(:,1),10, "FaceColor®,[-8 -8 1])
xIim([-3.5 3.5])

xlabel ("X1%)

ylabel ("Frequency™)

subplot(2,1,2)

histogram(stocks(:,2),10, "FaceColor®,[-8 -8 1])
xIim([-3.5 3.5])

xlabel ("X2%)

ylabel ("Frequency™)

[
=
T

Frequency
=

-3 -2 -1 0 2 3
*1
3'} T T T T T T
)
O 70 1
ik}
=
i
=10 -
0 1 1 1 1 — T
-3 =2 -1 0 2 3
X2

5-185



5 Probability Distributions

5-186

You could fit a parametric model separately to each dataset, and use those estimates as
the marginal distributions. However, a parametric model may not be sufficiently flexible.
Instead, you can use a nonparametric model to transform to the marginal distributions.
All that is needed is a way to compute the inverse cdf for the nonparametric model.

The simplest nonparametric model is the empirical cdf, as computed by the ecdf
function. For a discrete marginal distribution, this is appropriate. However, for a
continuous distribution, use a model that is smoother than the step function computed
by ecdf. One way to do that is to estimate the empirical cdf and interpolate between
the midpoints of the steps with a piecewise linear function. Another way is to use
kernel smoothing with ksdensity. For example, compare the empirical cdf to a kernel
smoothed cdf estimate for the first variable:

[Fi,xi] = ecdf(stocks(:,1));

figure()
stairs(xi,Fi,"b", "LineWidth",2)
hold on

Fi_sm = ksdensity(stocks(:,1),xi, "function®, “cdf", “width®, .15);

plot(xi,Fi_sm, r-","LineWidth",1.5)

xlabel ("X1%)

ylabel ("Cumulative Probability®)
legend("Empirical”, "Smoothed”, "Location®, "NW*")
grid on
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Cumulative Probability
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For the simulation, experiment with different copulas and correlations. Here, you
will use a bivariate ¢ copula with a fairly small degrees of freedom parameter. For the
correlation parameter, you can compute the rank correlation of the data.

nu=>5;

tau = corr(stocks(:,1),stocks(:,2), type”,"kendall")

tau =

0.5180

Find the corresponding linear correlation parameter for the ¢ copula using copulaparam.
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rho copulaparam("t®, tau, nu, “type®",“kendall®)

rho =

0.7268

Next, use copularnd to generate random values from the ¢ copula and transform using
the nonparametric inverse cdfs. The ksdensity function allows you to make a kernel
estimate of distribution and evaluate the inverse cdf at the copula points all in one step:

n
U

1000;
copularnd("t",[1 rho; rho 1],nu,n);

X1 = ksdensity(stocks(:,1),U(:,1),---
"function®, "icdf", "width", .15);

ksdensity(stocks(:,2),U(:,2),---
"function®, "icdf", "width", .15);

X2

Alternatively, when you have a large amount of data or need to simulate more than one
set of values, it may be more efficient to compute the inverse cdf over a grid of values in
the interval (0,1) and use interpolation to evaluate it at the copula points:

p = linspace(0.00001,0.99999,1000);

Gl = ksdensity(stocks(:,1),p, "function®,"icdf", "width",0.15);
X1 = interpl(p,G1,U(:,1), "spline”);
G2 = ksdensity(stocks(:,2),p, " "function®,"icdf", "width",0.15);
X2 = interpl(p,G2,U(:,2), "spline”);

scatterhist(X1,X2,"Direction”, "out"®)
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The marginal histograms of the simulated data are a smoothed version of the histograms
for the original data. The amount of smoothing is controlled by the bandwidth input to
ksdensity.

Fitting Copulas to Data

This example shows how to use copulafit to calibrate copulas with data. To
generate data Xsim with a distribution "just like" (in terms of marginal distributions
and correlations) the distribution of data in the matrix X , you need to fit marginal
distributions to the columns of X , use appropriate cdf functions to transform X to U, so
that U has values between 0 and 1, use copulafit to fit a copula to U, generate new
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data Usim from the copula, and use appropriate inverse cdf functions to transform Usim
to Xsim.

Load and plot the simulated stock return data.

load stockreturns
X stocks(:,1);
y stocks(:,2);

scatterhist(x,y, “Direction”, "out™)

Transform the data to the copula scale (unit square) using a kernel estimator of the
cumulative distribution function.
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ksdensity(x,x, “function”, "cdf");
ksdensity(y,y, "function®, "cdf");

u
\

scatterhist(u,v, "Direction”, "out™)
xlabel ("u®)
ylabel ("v™)

Fit a ¢ copula.

[Rho,nu] = copulafit("t",[u v], "Method", "ApproximateML")

Rho =
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1.0000 0.7220
0.7220 1.0000

2.6133e+06

Generate a random sample from the ¢ copula.

r = copularnd("t*,Rho,nu,1000);
ul = r(:,1);

vl = r(:,2);

scatterhist(ul,vl, "Direction®, “out”)
xlabel ("u®)

ylabel ("v")

set(get(gca, “children®), "marker®,".")
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Transform the random sample back to the original scale of the data.

x1
yl

ksdensity(x,ul, "function®, "icdf");
ksdensity(y,vl, "function®, "icdf");

scatterhist(x1l,yl, "Direction”, "out™)
set(get(gca, “children®), "marker®,".")
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As the example illustrates, copulas integrate naturally with other distribution fitting
functions.
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“Generating Random Data” on page 6-2
“Random Number Generation Functions” on page 6-3
“Common Generation Methods” on page 6-5

“Representing Sampling Distributions Using Markov Chain Samplers” on page
6-14

“Generating Quasi-Random Numbers” on page 6-16

“Generating Data Using Flexible Families of Distributions” on page 6-26
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Generating Random Data

6-2

Pseudorandom numbers are generated by deterministic algorithms. They are "random"
in the sense that, on average, they pass statistical tests regarding their distribution and
correlation. They differ from true random numbers in that they are generated by an
algorithm, rather than a truly random process.

Random number generators (RNGs) like those in MATLAB are algorithms for generating
pseudorandom numbers with a specified distribution.

For more information on the GUI for generating random numbers from supported
distributions, see “Explore the Random Number Generation UI” on page 5-114.
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Random Number Generation Functions

The following table lists the supported distributions and their respective random number

generation functions.

Distribution Random Number Generation Function
Beta betarnd, random, randtool
Binomial binornd, random, randtool
Chi-square chi2rnd, random, randtool
Clayton copula copularnd

Exponential exprnd, random, randtool

Extreme value

evrnd, random, randtool

F

frnd, random, randtool

Frank copula

copularnd

Gamma gamrnd, randg, random, randtool
Gaussian copula copularnd
Gaussian mixture random

Generalized extreme
value

gevrnd, random, randtool

Generalized Pareto

gprnd, random, randtool

Geometric

geornd, random, randtool

Gumbel copula

copularnd

Hypergeometric hygernd, random

Inverse Wishart iwishrnd

Johnson system jJjohnsrnd

Lognormal lognrnd, random, randtool
Multinomial mnrnd

Multivariate normal mvnrnd

Multivariate ¢ mvtrnd

Negative binomial

nbinrnd, random, randtool
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Distribution

Random Number Generation Function

Noncentral chi-square

ncx2rnd, random, randtool

Noncentral F

ncfrnd, random, randtool

Noncentral ¢

nctrnd, random, randtool

Normal (Gaussian)

normrnd, randn, random, randtool

Pearson system pearsrnd

Piecewise random

Poisson poissrnd, random, randtool
Rayleigh raylrnd, random, randtool
Student's ¢ trnd, random, randtool

t copula copularnd

Uniform (continuous)

unifrnd, rand, random

Uniform (discrete)

unidrnd, random, randtool

Weibull

wblrnd, random

Wishart

wishrnd
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Common Generation Methods

In this section...
“Direct Methods” on page 6-5

“Inversion Methods” on page 6-7

“Acceptance-Rejection Methods” on page 6-10

Methods for generating pseudorandom numbers usually start with uniform random
numbers, like the MATLAB rand function produces. The methods described in this
section detail how to produce random numbers from other distributions.

Direct Methods

Direct methods directly use the definition of the distribution.

For example, consider binomial random numbers. A binomial random number is the
number of heads in N tosses of a coin with probability p of a heads on any single toss. If
you generate N uniform random numbers on the interval (0,1) and count the number less
than p, then the count is a binomial random number with parameters N and p.

This function is a simple implementation of a binomial RNG using the direct approach:
function X = directbinornd(N,p,m,n)
X = zeros(m,n); % Preallocate memory
for 1 = 1:m*n
u = rand(N,1);
X(1) = sum(u < p);

end

end

For example:

X = directbinornd(100,0.3,1e4,1);
histogram(X,101)
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The Statistics and Machine Learning Toolbox function binornd uses a modified direct
method, based on the definition of a binomial random variable as the sum of Bernoulli
random variables.

You can easily convert the previous method to a random number generator for the
Poisson distribution with parameter A. The Poisson distribution is the limiting case of the
binomial distribution as NV approaches infinity, p approaches zero, and Np is held fixed at
A. To generate Poisson random numbers, create a version of the previous generator that
inputs A rather than N and p, and internally sets N to some large number and p to A/N.

The Statistics and Machine Learning Toolbox function poissrnd actually uses two
direct methods:
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+ A waiting time method for small values of A

+ A method due to Ahrens and Dieter for larger values of A

Inversion Methods

Inversion methods are based on the observation that continuous cumulative distribution
functions (cdfs) range uniformly over the interval (0,1). If u is a uniform random number

on (0,1), then using X = F '(U) generates a random number X from a continuous
distribution with specified cdf F.

For example, the following code generates random numbers from a specific exponential
distribution using the inverse cdf and the MATLAB uniform random number generator
rand:

mu = 1;
X = expinv(rand(le4,1),mu);

Compare the distribution of the generated random numbers to the pdf of the specified
exponential by scaling the pdf to the area of the histogram used to display the
distribution:

numbins = 50;
h = histogram(X,numbins)
hold on

histarea = h._BinWidth*sum(h.Values);
= h.BinEdges(1):0.001:h.BinEdges(end);

= exppdf(x,mu);

X
y
plot(x,histarea*y, "r", "LineWidth",2)
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Inversion methods also work for discrete distributions. To generate a random number X
from a discrete distribution with probability mass vector P(X=x;) = p; where xy<x;< x3<...,
generate a uniform random number « on (0,1) and then set X = x; if F(x;_;)<u<F(x;).

For example, the following function implements an inversion method for a discrete
distribution with probability mass vector p:

function X = discreteinvrnd(p,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

u rand;

1 find(u < cumsum(p));

X(1) = min(1);
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end

end

Use the function to generate random numbers from any discrete distribution:

[0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass vector
discreteinvrnd(p,le4,1);

histogram(X, length(p));

ar(1:length(p),h.Values)

p
X
h
b

3500 T T T T r T

3000

25800

2000

1500

1000

500
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Acceptance-Rejection Methods

The functional form of some distributions makes it difficult or time-consuming to
generate random numbers using direct or inversion methods. Acceptance-rejection
methods provide an alternative in these cases.

Acceptance-rejection methods begin with uniform random numbers, but require an
additional random number generator. If your goal is to generate a random number

from a continuous distribution with pdf f, acceptance-rejection methods first generate a
random number from a continuous distribution with pdf g satisfying f(x) < cg(x) for some
c and all x.

245

1.5

0.5

o

o a

A continuous acceptance-rejection RNG proceeds as follows:

Chooses a density g.
Finds a constant ¢ such that f(x)/g(x)<c for all x.
Generates a uniform random number u.

Generates a random number v from g.

A A ON —

If cu<f(v)/g (v), accepts and returns v.
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6 Otherwise, rejects v and goes to step 3.

For efficiency, a “cheap” method is necessary for generating random numbers from g,
and the scalar ¢ should be small. The expected number of iterations to produce a single
random number is c.

The following function implements an acceptance-rejection method for generating
random numbers from pdf £, given f, g, the RNG grnd for g, and the constant c:

function X = accrejrnd(f,g,grnd,c,m,n)
X = zeros(m,n); % Preallocate memory

for 1 = 1:m*n
accept = false;

while accept == false
u = randQ;
v = grndQ);
if c*u <= f(v)/g(v)
X(1) = v;
accept = true;
end
end

end

For example, the function f(x) = xe ™" satisfies the conditions for a pdf on [0,0)
(nonnegative and integrates to 1). The exponential pdf with mean 1, f(x) = ™, dominates
g for ¢ greater than about 2.2. Thus, you can use rand and exprnd to generate random
numbers from f:

@O)x.-*exp(-(x-"2)/2);
e()exp(-x);

rnd = @QQexprnd(1);

= accrejrnd(f,g,grnd,2.2,1e4,1);

The pdf fis actually a Rayleigh distribution with shape parameter 1. This example
compares the distribution of random numbers generated by the acceptance-rejection
method with those generated by raylrnd:

Y = raylrnd(1,1e4,1);
histogram(X)

hold on

histogram(Y)

legend("A-R RNG","Rayleigh RNG™)
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T A-R RNG
[ Rayleigh RNG

The Statistics and Machine Learning Toolbox function raylrnd uses a transformation
method, expressing a Rayleigh random variable in terms of a chi-square random
variable, which you compute using randn.

Acceptance-rejection methods also work for discrete distributions. In this case, the goal
is to generate random numbers from a distribution with probability mass P,(X =1) = p;,
assuming that you have a method for generating random numbers from a distribution
with probability mass Py(X = i) = g;. The RNG proceeds as follows:

1 Chooses a density P,.

2 Finds a constant ¢ such that p;/q;<c for all i .

3 Generates a uniform random number w.



Common Generation Methods

4  Generates a random number v from P,.
5 If cu<p,/q,, accepts and returns v.

6 Otherwise, rejects v and goes to step 3.

6-13



6 Random Number Generation

Representing Sampling Distributions Using Markov Chain
Samplers
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In this section...

“Using the Metropolis-Hastings Algorithm” on page 6-14

“Using Slice Sampling” on page 6-15

The methods in “Common Generation Methods” on page 6-5 might be inadequate when
sampling distributions are difficult to represent in computations. Such distributions
arise, for example, in Bayesian data analysis and in the large combinatorial problems of
Markov chain Monte Carlo (MCMC) simulations. An alternative is to construct a Markov
chain with a stationary distribution equal to the target sampling distribution, using the
states of the chain to generate random numbers after an initial burn-in period in which
the state distribution converges to the target.

Using the Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm draws samples from a distribution that is only known
up to a constant. Random numbers are generated from a distribution with a probability
density function that is equal to or proportional to a proposal function.

To generate random numbers:

1 Assume an initial value x(¢).
2 Draw a sample, y(¢), from a proposal distribution g(y | x(¢)).

3  Accept y(¢) as the next sample x(¢ + 1) with probability r(x(z),y(t)), and keep x(f) as the
next sample x(¢ + 1) with probability 1 — r(x(),y(t)), where:

@) gx]y) 1}

( 9y )= ; b
r(x,y mm{f(x) 4 [0)

4 Increment ¢t — t + 1, and repeat steps 2 and 3 until you get the desired number of
samples.

Generate random numbers using the Metropolis-Hastings method with the mhsample
function. To produce quality samples efficiently with the Metropolis-Hastings algorithm,
it is crucial to select a good proposal distribution. If it is difficult to find an efficient
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proposal distribution, use the slice sampling algorithm (slicesample) without explicitly
specifying a proposal distribution.

Using Slice Sampling

In instances where it is difficult to find an efficient Metropolis-Hastings proposal
distribution, the slice sampling algorithm does not require an explicit specification. The
slice sampling algorithm draws samples from the region under the density function using
a sequence of vertical and horizontal steps. First, it selects a height at random from 0

to the density function f (x). Then, it selects a new x value at random by sampling from
the horizontal “slice” of the density above the selected height. A similar slice sampling
algorithm is used for a multivariate distribution.

If a function f(x) proportional to the density function is given, then do the following to

generate random numbers:

1 Assume an initial value x(¢) within the domain of f(x).

2 Draw areal value y uniformly from (0, f(x(¢))), thereby defining a horizontal “slice” as
S ={xy < flx)).

3 Find an interval I = (L, R) around x(¢) that contains all, or much of the “slice” S.

4 Draw the new point x(¢ + 1) within this interval.

5 Increment ¢ — ¢ + 1 and repeat steps 2 through 4 until you get the desired number of
samples.

Slice sampling can generate random numbers from a distribution with an arbitrary form
of the density function, provided that an efficient numerical procedure is available to find
the interval I = (L,R), which is the “slice” of the density.

Generate random numbers using the slice sampling method with the slicesample
function.
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Generating Quasi-Random Numbers

In this section...

“Quasi-Random Sequences” on page 6-16

“Quasi-Random Point Sets” on page 6-17

“Quasi-Random Streams” on page 6-24

Quasi-Random Sequences

Quasi-random number generators (QRNGs) produce highly uniform samples of the unit
hypercube. QRNGs minimize the discrepancy between the distribution of generated
points and a distribution with equal proportions of points in each sub-cube of a uniform
partition of the hypercube. As a result, QRNGs systematically fill the “holes” in any
initial segment of the generated quasi-random sequence.

Unlike the pseudorandom sequences described in “Common Generation Methods”

on page 6-5, quasi-random sequences fail many statistical tests for randomness.
Approximating true randomness, however, is not their goal. Quasi-random sequences
seek to fill space uniformly, and to do so in such a way that initial segments approximate
this behavior up to a specified density.

QRNG applications include:

* Quasi-Monte Carlo (QMC) integration. Monte Carlo techniques are often used
to evaluate difficult, multi-dimensional integrals without a closed-form solution.
QMC uses quasi-random sequences to improve the convergence properties of these
techniques.

* Space-filling experimental designs. In many experimental settings, taking
measurements at every factor setting is expensive or infeasible. Quasi-random
sequences provide efficient, uniform sampling of the design space.

* Global optimization. Optimization algorithms typically find a local optimum in
the neighborhood of an initial value. By using a quasi-random sequence of initial
values, searches for global optima uniformly sample the basins of attraction of all
local minima.

Example: Using Scramble, Leap, and Skip

Imagine a simple 1-D sequence that produces the integers from 1 to 10. This is the basic
sequence and the first three points are [1,2,3]:
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12345678910

Now look at how Scramble, Leap, and SKip work together:

Scramble — Scrambling shuffles the points in one of several different ways. In this
example, assume a scramble turns the sequence into 1,3,5,7,9,2,4,6,8,10. The
first three points are now [1,3,5]:

139579246810

Skip — A SKip value specifies the number of initial points to ignore. In this example,
set the Skip value to 2. The sequence is now 5,7,9,2,4,6,8,10 and the first three
points are [5,7,9]:

)
136579246810

Leap — A Leap value specifies the number of points to ignore for each one you take.
Continuing the example with the SKkip set to 2, if you set the Leap to 1, the sequence
uses every other point. In this example, the sequence is now 5,9,4,8 and the first
three points are [5,9,4]:

ERYAVA
13[6|7[9 2[4l6 8 10

Quasi-Random Point Sets

Statistics and Machine Learning Toolbox functions support these quasi-random
sequences:

Halton sequences. Produced by the haltonset function. These sequences use
different prime bases to form successively finer uniform partitions of the unit interval
in each dimension.

6-17



6 Random Number Generation

6-18

+ Sobol sequences. Produced by the sobolset function. These sequences use a base
of 2 to form successively finer uniform partitions of the unit interval, and then reorder
the coordinates in each dimension.

* Latin hypercube sequences. Produced by the Ihsdesign function. Though not
quasi-random in the sense of minimizing discrepancy, these sequences nevertheless
produce sparse uniform samples useful in experimental designs.

Quasi-random sequences are functions from the positive integers to the unit hypercube.
To be useful in application, an initial point set of a sequence must be generated. Point
sets are matrices of size n-by-d, where n is the number of points and d is the dimension
of the hypercube being sampled. The functions haltonset and sobolset construct
point sets with properties of a specified quasi-random sequence. Initial segments of the
point sets are generated by the net method of the qrandset class (parent class of the
haltonset class and sobolset class), but points can be generated and accessed more
generally using parenthesis indexing.

Because of the way in which quasi-random sequences are generated, they may contain
undesirable correlations, especially in their initial segments, and especially in higher
dimensions. To address this issue, quasi-random point sets often skip, leap over, or
scramble values in a sequence. The haltonset and sobolset functions allow you to
specify both a SKip and a Leap property of a quasi-random sequence, and the scramble
method of the grandset class allows you apply a variety of scrambling techniques.
Scrambling reduces correlations while also improving uniformity.

Generate a Quasi-Random Point Set

This example shows how to use haltonset to construct a 2-D Halton quasi-random
point set.

Create a haltonset object p, that skips the first 1000 values of the sequence and then
retains every 101st point.

rng default % For reproducibility

p = haltonset(2,"Skip”,1e3, "Leap”,1e2)

p =

Halton point set in 2 dimensions (89180190640991 points)

Properties:
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Skip : 1000
Leap : 100
ScrambleMethod : none

The object p encapsulates properties of the specified quasi-random sequence. The point
set is finite, with a length determined by the Skip and Leap properties and by limits on
the size of point set indices.

Use scramble to apply reverse-radix scrambling.

p scramble(p, "RR2%)

p =
Halton point set in 2 dimensions (89180190640991 points)
Properties:

Skip : 1000

Leap - 100
ScrambleMethod : RR2

Use net to generate the first 500 points.
X0 = net(p,500);

This is equivalent to

X0 = p(1:500,:);

Values of the point set X0 are not generated and stored in memory until you access p
using net or parenthesis indexing.

To appreciate the nature of quasi-random numbers, create a scatter plot of the two
dimensions in XO.

scatter(X0(:,1),X0(:,2),5,"r")

axis square
title("{\bf Quasi-Random Scatter}")
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Quasi-Random Scatter
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Compare this to a scatter of uniform pseudorandom numbers generated by the rand

function.

X = rand(500,2);
scatter(X(:,1),X(:,2),5,"b")

axis square

title(C"{\bf Uniform Random Scatter}")
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Uniform Random Scatter
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The quasi-random scatter appears more uniform, avoiding the clumping in the
pseudorandom scatter.

In a statistical sense, quasi-random numbers are too uniform to pass traditional tests of
randomness. For example, a Kolmogorov-Smirnov test, performed by kstest, is used to
assess whether or not a point set has a uniform random distribution. When performed
repeatedly on uniform pseudorandom samples, such as those generated by rand, the test
produces a uniform distribution of p-values.

nTests = 1leb5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
X = rand(sampSize,1);
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[h,pval] = kstest(x,[x,x]);
PVALS(test) = pval;
end

histogram(PVALS, 100)

h = findobj(gca, "Type~", "patch”);
xlabel ("{\it p}-values®)

ylabel (*Number of Tests")

Mumber of Tests

0 01 02 03 04 05 06 07 08 09 1
p-values

The results are quite different when the test is performed repeatedly on uniform quasi-
random samples.

p = haltonset(l,"Skip~,1e3, "Leap”,1le2);
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Mumber of Tests

p = scramble(p,“RR2%);

nTests = leb5;

sampSize = 50;

PVALS = zeros(nTests,1);

for test = 1:nTests
X = p(test:test+(sampSize-1),:);
[h,pval] = kstest(x, [X,X]):
PVALS(test) = pval;

end

histogram(PVALS,100)

xlabel ("{\it p}-values™)
ylabel (*Number of Tests®)

< 10%

D 1 1

0.9997 09998 09998 09998 0.9999

p-values

0.9999

1

L0000
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Small p-values call into question the null hypothesis that the data are uniformly
distributed. If the hypothesis is true, about 5% of the p-values are expected to fall below
0.05. The results are remarkably consistent in their failure to challenge the hypothesis.

Quasi-Random Streams

Quasi-random streams, produced by the grandstream function, are used to generate
sequential quasi-random outputs, rather than point sets of a specific size. Streams are
used like pseudoRNGS, such as rand, when client applications require a source of quasi-
random numbers of indefinite size that can be accessed intermittently. Properties of

a quasi-random stream, such as its type (Halton or Sobol), dimension, skip, leap, and
scramble, are set when the stream is constructed.

In implementation, quasi-random streams are essentially very large quasi-random point
sets, though they are accessed differently. The state of a quasi-random stream is the
scalar index of the next point to be taken from the stream. Use the grand method of the
grandstream class to generate points from the stream, starting from the current state.
Use the reset method to reset the state to 1. Unlike point sets, streams do not support
parenthesis indexing.

Generate a Quasi-Random Stream
This example shows how to generate samples from a quasi-random point set.

Use haltonset to create a quasi-random point set p, then repeatedly increment the
index into the point set test to generate different samples.

haltonset(1, "Skip~”,l1le3, "Leap”,1le2);
scramble(p, "RR2%);

p
p

nTests = 1le5;

sampSize = 50;

PVALS = zeros(nTests,1);

for test = 1l:nTests
X = p(test:test+(sampSize-1),:);
[h,pval] = kstest(x,[x,x]);
PVALS(test) = pval;

end

The same results are obtained by using grandstream to construct a quasi-random
stream q based on the point set p and letting the stream take care of increments to the
index.
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haltonset(1, "Skip~”,l1le3, "Leap”,1le2);
scramble(p, "RR2%);
qrandstream(p);

p
p
q

nTests = leb5;

sampSize = 50;

PVALS = zeros(nTests,1);

for test = 1:nTests
X = grand(q,sampSize);
[h,pval] = kstest(X, [X,X]):
PVALS(test) = pval;

end
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Generating Data Using Flexible Families of Distributions
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In this section...

“Pearson and Johnson Systems” on page 6-26

“Generating Data Using the Pearson System” on page 6-27

“Generating Data Using the Johnson System” on page 6-29

Pearson and Johnson Systems

As described in “Working with Probability Distributions” on page 5-3, choosing an
appropriate parametric family of distributions to model your data can be based on a
priori or a posteriori knowledge of the data-producing process, but the choice is often
difficult. The Pearson and Johnson systems can make such a choice unnecessary. Each
system 1is a flexible parametric family of distributions that includes a wide range of
distribution shapes, and it is often possible to find a distribution within one of these two
systems that provides a good match to your data.

Data Input
The following parameters define each member of the Pearson and Johnson systems

* Mean — Estimated by mean

+ Standard deviation — Estimated by std
+ Skewness — Estimated by skewness

*  Kurtosis — Estimated by kurtosis

These statistics can also be computed with the moment function. The Johnson system,
while based on these four parameters, is more naturally described using quantiles,
estimated by the quanti le function.

The Statistics and Machine Learning Toolbox functions pearsrnd and johnsrnd take
input arguments defining a distribution (parameters or quantiles, respectively) and
return the type and the coefficients of the distribution in the corresponding system. Both
functions also generate random numbers from the specified distribution.

As an example, load the data in carbig.mat, which includes a variable MPG containing
measurements of the gas mileage for each car.
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load carbig
MPG = MPG(~isnan(MPG));
histogram(MPG, 15)

The following two sections model the distribution with members of the Pearson and
Johnson systems, respectively.

Generating Data Using the Pearson System
The statistician Karl Pearson devised a system, or family, of distributions that includes

a unique distribution corresponding to every valid combination of mean, standard
deviation, skewness, and kurtosis. If you compute sample values for each of these
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moments from data, it is easy to find the distribution in the Pearson system that matches
these four moments and to generate a random sample.

The Pearson system embeds seven basic types of distribution together in a single
parametric framework. It includes common distributions such as the normal and ¢
distributions, simple transformations of standard distributions such as a shifted and
scaled beta distribution and the inverse gamma distribution, and one distribution—the
Type IV—that is not a simple transformation of any standard distribution.

For a given set of moments, there are distributions that are not in the system that also
have those same first four moments, and the distribution in the Pearson system may not
be a good match to your data, particularly if the data are multimodal. But the system
does cover a wide range of distribution shapes, including both symmetric and skewed
distributions.

To generate a sample from the Pearson distribution that closely matches the MPG data,
simply compute the four sample moments and treat those as distribution parameters.

moments = {mean(MPG),std(MPG),skewness(MPG) ,kurtosis(MPG)};
rng default % For reproducibility
[r,type] = pearsrnd(moments{:},10000,1);

The optional second output from pearsrnd indicates which type of distribution within
the Pearson system matches the combination of moments.

type

type =

1

In this case, pearsrnd has determined that the data are best described with a Type I
Pearson distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical
cumulative distribution functions.

ecdf(MPG) ;

[Fi,xi] = ecdf(r);
hold on;
stairs(xi,Fi,"r");
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hold off

0.7

0.6
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Generating Data Using the Johnson System

Statistician Norman Johnson devised a different system of distributions that also
includes a unique distribution for every valid combination of mean, standard deviation,
skewness, and kurtosis. However, since it is more natural to describe distributions in the
Johnson system using quantiles, working with this system is different than working with
the Pearson system.

The Johnson system is based on three possible transformations of a normal random
variable, plus the identity transformation. The three nontrivial cases are known as SL,
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SU, and SB, corresponding to exponential, logistic, and hyperbolic sine transformations.
All three can be written as

0(z-€)

X=y+ &n—ﬁTE

where Z is a standard normal random variable, I is the transformation, and y, 6, §, and A
are scale and location parameters. The fourth case, SN, is the identity transformation.

To generate a sample from the Johnson distribution that matches the MPG data, first
define the four quantiles to which the four evenly spaced standard normal quantiles of
-1.5, -0.5, 0.5, and 1.5 should be transformed. That is, you compute the sample quantiles
of the data for the cumulative probabilities of 0.067, 0.309, 0.691, and 0.933.

probs = normcdf([-1.5 -0.5 0.5 1.5])

probs =

0.0668 0.3085 0.6915 0.9332
quantiles = quantile(MPG,probs)

quantiles =

13.0000 18.0000 27.2000 36.0000

Then treat those quantiles as distribution parameters.
[ri1,type] = johnsrnd(quantiles,10000,1);

The optional second output from johnsrnd indicates which type of distribution within
the Johnson system matches the quantiles.

type

type =

SB
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You can verify that the sample resembles the original data by overlaying the empirical
cumulative distribution functions.

ecdf(MPG) ;

[Fi,xi] = ecdf(rl);
hold on;
stairs(xi,Fi,"r");
hold off

09r

08
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06r
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041

0.3

0.2r

50

X

In some applications, it may be important to match the quantiles better in some regions
of the data than in others. To do that, specify four evenly spaced standard normal
quantiles at which you want to match the data, instead of the default -1.5, -0.5, 0.5, and
1.5. For example, you might care more about matching the data in the right tail than in
the left, and so you specify standard normal quantiles that emphasizes the right tail.
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gnorm [--5 -25 1 1.75];

probs normcdf(gnorm) ;

gemp = quantile(MPG,probs);

r2 = johnsrnd([gnorm; gemp],10000,1);

However, while the new sample matches the original data better in the right tail, it
matches much worse in the left tail.

[Fi.xJ] = ecdf(r2);
hold on;
stairs(xj,Fj,"9");
hold off

0.3

0.2r

01r

50
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*  “Introduction to Hypothesis Tests” on page 7-2
+ “Hypothesis Test Terminology” on page 7-3

+ “Hypothesis Test Assumptions” on page 7-5

* “Hypothesis Testing” on page 7-7

+ “Available Hypothesis Tests” on page 7-14
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Introduction to Hypothesis Tests

Hypothesis testing is a common method of drawing inferences about a population based
on statistical evidence from a sample.

As an example, suppose someone says that at a certain time in the state of
Massachusetts the average price of a gallon of regular unleaded gas was $1.15. How
could you determine the truth of the statement? You could try to find prices at every gas
station in the state at the time. That approach would be definitive, but it could be time-
consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly selected gas
stations around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the selection
process. Suppose your sample average comes out to be $1.18. Is the $0.03 difference an
artifact of random sampling or significant evidence that the average price of a gallon of
gas was in fact greater than $1.15? Hypothesis testing is a statistical method for making
such decisions.
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Hypothesis Test Terminology

All hypothesis tests share the same basic terminology and structure.

A null hypothesis is an assertion about a population that you would like to test. It is
“null” in the sense that it often represents a status quo belief, such as the absence

of a characteristic or the lack of an effect. It may be formalized by asserting that a
population parameter, or a combination of population parameters, has a certain value.
In the example given in the “Introduction to Hypothesis Tests” on page 7-2, the null
hypothesis would be that the average price of gas across the state was $1.15. This is
written Hy: u = 1.15.

An alternative hypothesis is a contrasting assertion about the population that can
be tested against the null hypothesis. In the example given in the “Introduction to
Hypothesis Tests” on page 7-2, possible alternative hypotheses are:

Hi: u#1.15 — State average was different from $1.15 (two-tailed test)
H,: 1 >1.15 — State average was greater than $1.15 (right-tail test)

Hi: u <1.15 — State average was less than $1.15 (left-tail test)

To conduct a hypothesis test, a random sample from the population is collected and

a relevant test statistic is computed to summarize the sample. This statistic varies
with the type of test, but its distribution under the null hypothesis must be known (or
assumed).

The p value of a test is the probability, under the null hypothesis, of obtaining a value
of the test statistic as extreme or more extreme than the value computed from the
sample.

The significance level of a test is a threshold of probability a agreed to before the test
is conducted. A typical value of a is 0.05. If the p value of a test is less than a, the
test rejects the null hypothesis. If the p value is greater than a, there is insufficient
evidence to reject the null hypothesis. Note that lack of evidence for rejecting the
null hypothesis is not evidence for accepting the null hypothesis. Also note that
substantive “significance” of an alternative cannot be inferred from the statistical
significance of a test.

The significance level a can be interpreted as the probability of rejecting the null
hypothesis when it is actually true—a type I error. The distribution of the test statistic
under the null hypothesis determines the probability a of a type I error. Even if the
null hypothesis is not rejected, it may still be false—a type II error. The distribution

of the test statistic under the alternative hypothesis determines the probability £ of a
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type II error. Type II errors are often due to small sample sizes. The power of a test, 1
— [, is the probability of correctly rejecting a false null hypothesis.

Results of hypothesis tests are often communicated with a confidence interval. A
confidence interval is an estimated range of values with a specified probability of
containing the true population value of a parameter. Upper and lower bounds for
confidence intervals are computed from the sample estimate of the parameter and the
known (or assumed) sampling distribution of the estimator. A typical assumption is
that estimates will be normally distributed with repeated sampling (as dictated by
the Central Limit Theorem). Wider confidence intervals correspond to poor estimates
(smaller samples); narrow intervals correspond to better estimates (larger samples).
If the null hypothesis asserts the value of a population parameter, the test rejects the
null hypothesis when the hypothesized value lies outside the computed confidence
interval for the parameter.
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Hypothesis Test Assumptions

Different hypothesis tests make different assumptions about the distribution of the
random variable being sampled in the data. These assumptions must be considered when
choosing a test and when interpreting the results.

For example, the z-test (ztest) and the ¢-test (ttest) both assume that the data are
independently sampled from a normal distribution. Statistics and Machine Learning
Toolbox functions are available for testing this assumption, such as chi2gof, jbtest,
lillietest, and normplot.

Both the z-test and the ¢-test are relatively robust with respect to departures from this
assumption, so long as the sample size n is large enough. Both tests compute a sample
mean x , which, by the Central Limit Theorem, has an approximately normal sampling
distribution with mean equal to the population mean y, regardless of the population
distribution being sampled.

The difference between the z-test and the ¢-test is in the assumption of the standard
deviation o of the underlying normal distribution. A z-test assumes that o is known; a -
test does not. As a result, a ¢-test must compute an estimate s of the standard deviation
from the sample.

Test statistics for the z-test and the ¢-test are, respectively,

z= .
o/~n
= XK
s/\n
Under the null hypothesis that the population is distributed with mean , the z-statistic
has a standard normal distribution, N(0,1). Under the same null hypothesis, the -
statistic has Student's ¢ distribution with n — 1 degrees of freedom. For small sample
sizes, Student's ¢ distribution is flatter and wider than N(0,1), compensating for the
decreased confidence in the estimate s. As sample size increases, however, Student's

t distribution approaches the standard normal distribution, and the two tests become
essentially equivalent.

Knowing the distribution of the test statistic under the null hypothesis allows for
accurate calculation of p-values. Interpreting p-values in the context of the test
assumptions allows for critical analysis of test results.
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Assumptions underlying Statistics and Machine Learning Toolbox hypothesis tests are
given in the reference pages for implementing functions.
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Hypothesis Testing

This example shows how to use hypothesis testing to analyze gas prices measured across
the state of Massachusetts during two separate months.

This example uses the gas price data in the file gas.mat. The file contains two random
samples of prices for a gallon of gas around the state of Massachusetts in 1993. The first
sample, pricel, contains 20 random observations around the state on a single day in
January. The second sample, price2, contains 20 random observations around the state
one month later.

load gas
prices = [pricel price2];

As a first step, you might want to test the assumption that the samples come from
normal distributions. A normal probability plot gives a quick idea.

normplot(prices)
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Both scatters approximately follow straight lines through the first and third quartiles
of the samples, indicating approximate normal distributions. The February sample (the
right-hand line) shows a slight departure from normality in the lower tail. A shift in the
mean from January to February is evident. A hypothesis test is used to quantify the test
of normality. Since each sample is relatively small, a Lilliefors test is recommended.

lillietest(pricel)
lillietest(price2)

ans =



Hypothesis Testing

ans =

The default significance level of lillietest is 5%. The logical 0 returned by each

test indicates a failure to reject the null hypothesis that the samples are normally
distributed. This failure may reflect normality in the population or it may reflect a lack of
strong evidence against the null hypothesis due to the small sample size.

Now compute the sample means.

sample_means = mean(prices)

sample_means

115.1500 118.5000

You might want to test the null hypothesis that the mean price across the state on
the day of the January sample was $1.15. If you know that the standard deviation in
prices across the state has historically, and consistently, been $0.04, then a z-test is
appropriate.

[h,pvalue,ci] = ztest(pricel/100,1.15,0.04)

h =
0
pvalue =
0.8668
ci =
1.1340
1.1690
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The logical output h = 0 indicates a failure to reject the null hypothesis at the default
significance level of 5%. This is a consequence of the high probability under the null
hypothesis, indicated by the p value, of observing a value as extreme or more extreme
of the z-statistic computed from the sample. The 95% confidence interval on the mean
[1.1340 1.1690] includes the hypothesized population mean of $1.15.

Does the later sample offer stronger evidence for rejecting a null hypothesis of a state-
wide average price of $1.15 in February? The shift shown in the probability plot and

the difference in the computed sample means suggest this. The shift might indicate a
significant fluctuation in the market, raising questions about the validity of using the
historical standard deviation. If a known standard deviation cannot be assumed, a ¢-test
1s more appropriate.

[h,pvalue,ci] = ttest(price2/100,1.15)

h =

pvalue =

4_.9517e-04

1.1675
1.2025

The logical output h = 1 indicates a rejection of the null hypothesis at the default
significance level of 5%. In this case, the 95% confidence interval on the mean does not
include the hypothesized population mean of $1.15.

You might want to investigate the shift in prices a little more closely. The function
ttest?2 tests if two independent samples come from normal distributions with equal
but unknown standard deviations and the same mean, against the alternative that the
means are unequal.

[h,sig,ci] = ttest2(pricel,price2)



Hypothesis Testing

h =
1
sig =
0.0083
ci =
-5.7845
-0.9155

The null hypothesis is rejected at the default 5% significance level, and the confidence
interval on the difference of means does not include the hypothesized value of 0. A
notched box plot is another way to visualize the shift.

boxplot(prices,1)

h = gca;

h_XTick = [1 2];

h_XTickLabel = {"January”,"February®};
xlabel ("Month*®)

ylabel("Prices ($0.01)")
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The plot displays the distribution of the samples around their medians. The heights of
the notches in each box are computed so that the side-by-side boxes have nonoverlapping
notches when their medians are different at a default 5% significance level. The
computation is based on an assumption of normality in the data, but the comparison is
reasonably robust for other distributions. The side-by-side plots provide a kind of visual
hypothesis test, comparing medians rather than means. The plot above appears to barely
reject the null hypothesis of equal medians.

The nonparametric Wilcoxon rank sum test, implemented by the function ranksum, can
be used to quantify the test of equal medians. It tests if two independent samples come
from identical continuous (not necessarily normal) distributions with equal medians,
against the alternative that they do not have equal medians.



Hypothesis Testing

[p,h] = ranksum(pricel,price2)

0.0095

The test rejects the null hypothesis of equal medians at the default 5% significance level.
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Function

Description

ansaribradley

Ansari-Bradley test. Tests if two independent samples come from
the same distribution, against the alternative that they come
from distributions that have the same median and shape but
different variances.

barttest

Bartlett’s test. Tests if the variances of the data values along each
principal component are equal, against the alternative that the
variances are not all equal.

chi2gof

Chi-square goodness-of-fit test. Tests if a sample comes from a
specified distribution, against the alternative that it does not
come from that distribution.

dwtest

Durbin-Watson test. Tests if the residuals from a linear
regression are uncorrelated, against the alternative that there is
autocorrelation among them.

friedman

Friedman’s test. Tests if the column effects in a two-way layout
are all the same, against the alternative that the column effects
are not all the same.

jbtest

Jarque-Bera test. Tests if a sample comes from a normal
distribution with unknown mean and variance, against the
alternative that it does not come from a normal distribution.

kruskalwallis

Kruskal-Wallis test. Tests if multiple samples are all drawn from
the same populations (or equivalently, from different populations
with the same distribution), against the alternative that they are
not all drawn from the same population.

kstest One-sample Kolmogorov-Smirnov test. Tests if a sample comes
from a continuous distribution with specified parameters, against
the alternative that it does not come from that distribution.

kstest2 Two-sample Kolmogorov-Smirnov test. Tests if two samples come

from the same continuous distribution, against the alternative
that they do not come from the same distribution.

lillietest

Lilliefors test. Tests if a sample comes from a distribution in the
normal family, against the alternative that it does not come from
a normal distribution.




Available Hypothesis Tests

Function

Description

linhyptest

Linear hypothesis test. Tests if H*b = c for parameter estimates
b with estimated covariance H and specified c, against the
alternative that H*b # c.

ranksum

Wilcoxon rank sum test. Tests if two independent samples come
from identical continuous distributions with equal medians,
against the alternative that they do not have equal medians.

runstest

Runs test. Tests if a sequence of values comes in random order,
against the alternative that the ordering is not random.

signrank

One-sample or paired-sample Wilcoxon signed rank test. Tests if
a sample comes from a continuous distribution symmetric about

a specified median, against the alternative that it does not have

that median.

signtest

One-sample or paired-sample sign test. Tests if a sample comes
from an arbitrary continuous distribution with a specified
median, against the alternative that it does not have that median.

ttest

One-sample or paired-sample ¢-test. Tests if a sample comes from
a normal distribution with unknown variance and a specified
mean, against the alternative that it does not have that mean.

ttest2

Two-sample t-test. Tests if two independent samples come from
normal distributions with unknown but equal (or, optionally,
unequal) variances and the same mean, against the alternative
that the means are unequal.

vartest

One-sample chi-square variance test. Tests if a sample comes
from a normal distribution with specified variance, against
the alternative that it comes from a normal distribution with a
different variance.

vartest2

Two-sample F-test for equal variances. Tests if two independent

samples come from normal distributions with the same variance,
against the alternative that they come from normal distributions
with different variances.

vartestn

Bartlett multiple-sample test for equal variances. Tests if
multiple samples come from normal distributions with the same
variance, against the alternative that they come from normal
distributions with different variances.
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Function Description

ztest One-sample z-test. Tests if a sample comes from a normal
distribution with known variance and specified mean, against the
alternative that it does not have that mean.

Note: In addition to the previous functions, Statistics and Machine Learning Toolbox
functions are available for analysis of variance (ANOVA), which perform hypothesis tests
in the context of linear modeling.
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*  “Introduction to Analysis of Variance” on page 8-2

+ “One-Way ANOVA” on page 8-3

+ “Two-Way ANOVA” on page 8-15

* “Multiple Comparisons” on page 8-26

+ “N-Way ANOVA” on page 8-36

+ “ANOVA with Random Effects” on page 8-48

+ “Other ANOVA Models” on page 8-57

+  “Analysis of Covariance” on page 8-58

+ “Nonparametric Methods” on page 8-67

+ “MANOVA” on page 8-70

+  “Model Specification for Repeated Measures Models” on page 8-77
* “Compound Symmetry Assumption and Epsilon Corrections” on page 8-79
+ “Mauchly’s Test of Sphericity” on page 8-81

* “Multivariate Analysis of Variance for Repeated Measures” on page 8-83
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Introduction to Analysis of Variance

Analysis of variance (ANOVA) is a procedure for assigning sample variance to different
sources and deciding whether the variation arises within or among different population
groups. Samples are described in terms of variation around group means and variation
of group means around an overall mean. If variations within groups are small relative to
variations between groups, a difference in group means may be inferred. Hypothesis tests
are used to quantify decisions.
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One-Way ANOVA

In this section...

“Introduction to One-Way ANOVA” on page 8-3
“Prepare Data for One-Way ANOVA” on page 8-4
“Perform One-Way ANOVA” on page 8-6
“Mathematical Details” on page 8-11

Introduction to One-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function anoval to perform
one-way analysis of variance (ANOVA). The purpose of one-way ANOVA is to determine
whether data from several groups (levels) of a factor have a common mean. That is, one-
way ANOVA enables you to find out whether different groups of an independent variable
have different effects on the response variable y. Suppose, a hospital wants to determine
if the two new proposed scheduling methods reduce patient wait times more than the old
way of scheduling appointments. In this case, the independent variable is the scheduling
method, and the response variable is the waiting time of the patients.

One-way ANOVA is a simple special case of the linear model. The one-way ANOVA form
of the model is

Yij =jtey

with the following assumptions:

* y;j1s an observation, in which ¢ represents the observation number, and j represents a
different group (level) of the predictor variable y. All y;; are independent.

* a;jrepresents the population mean for the jth group (level or treatment).

*  g;is the random error, independent and normally distributed, with zero mean and
constant variance, i.e., &; ~ N(0,6%).

This model is also called the means model. The model assumes that the columns of y are
the constant g; plus the error component &;;. ANOVA helps determine if the constants are

all the same.

ANOVA tests the hypothesis that all group means are equal versus the alternative
hypothesis that at least one group is different from the others.
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HO :(x]_ =a2=...=ak

H; : not all group means are equal

anoval(y) tests the equality of column means for the data in matrix y, where each
column is a different group and has the same number of observations (i.e., a balanced
design). anoval(y,group) tests the equality of group means, specified in group, for
the data in vector or matrix y. In this case, each group or column can have a different
number of observations (i.e., an unbalanced design).

ANOVA is based on the assumption that all sample populations are normally distributed.
It is known to be robust to modest violations of this assumption. You can check the
normality assumption visually by using a normality plot (hormplot). Alternatively,

you can use one of the Statistics and Machine Learning Toolbox functions that checks

for normality: the Anderson-Darling test (adtest), the chi-squared goodness of fit test
(chi2gof), the Jarque-Bera test (Jbtest), or the Lilliefors test (Iill1etest).

Prepare Data for One-Way ANOVA

You can provide sample data as a vector or a matrix.

+ If the sample data is in a vector, y, then you must provide grouping information using
the group input variable: anoval(y,group).

group must be a categorical variable, numeric vector, logical vector, string array, or
cell array of strings, with one name for each element of y. The anoval function treats
the y values corresponding to the same value of group as part of the same group. For

example,

y=1[y1 ¥2 ¥a Ya ys. . . yul
I T T | 4

g = {!Ai, r’A!’ ‘C,’ ‘B,! .I‘Bf,. . . s FD!}

Use this design when groups have different numbers of elements (unbalanced

ANOVA).

+ If the sample data is in a matrix, y, providing the group information is optional.



One-Way ANOVA

If you do not specify the input variable group, then anoval treats each column of

y as a separate group, and evaluates whether the population means of the columns
are equal. For example,

& group 1
& group 2

Y11 Viz

Yn1 Va2

& group k

Yok

Use this form of design when each group has the same number of elements

(balanced ANOVA).

If you specify the input variable group, then group must be a character array or
cell array of strings, with one name for each column of y. The anoval function
treats the columns with the same group name as part of the same group. For

example,

Y11
Y21

Y1

group = ['Red’, ‘Black’, ‘Red’, ‘Yellow’

Y1z
Yz

Yn2

Y1a
Y2a

Yoa

I

Y1k
Y

Yok

&

., 'Black’]
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If group contains empty or NaN valued cells or strings, anoval disregards the
corresponding observations in y.

Perform One-Way ANOVA

This example shows how to perform one-way ANOVA to determine whether data from
several groups have a common mean.

Load and display the sample data.

load hogg

hogg

hogg =
24 14 11 7 19
15 7 9 7 24
21 12 7 4 19
27 17 13 7 15
33 14 12 12 10
23 16 18 18 20

The data comes from a Hogg and Ledolter (1987) study on bacteria counts in shipments
of milk. The columns of the matrix hogg represent different shipments. The rows are
bacteria counts from cartons of milk chosen randomly from each shipment.

Test if some shipments have higher counts than others. By default, anoval returns two
figures. One is the standard ANOVA table, and the other one is the box plots of data by
group.

[p,tbl,stats] = anoval(hogg);
P
p =

1.1971e-04



One-Way ANOVA

ANOVA Table
Source 58 df M= F Prob=F -
Columns 203 4 Z00_75 S.01 o000l
Error EE7.17 Z5 Zz_Z287

Total 1360.17 £3
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The small p-value of about 0.0001 indicates that the bacteria counts from the different
shipments are not the same.

You can get some graphical assurance that the means are different by looking at the box
plots. The notches, however, compare the medians, not the means. For more information
on this display, see boxplot.

View the standard ANOVA table. anoval saves the standard ANOVA table as a cell
array in the output argument tbl.

tbl

tbl =



One-Way ANOVA

"Source” "SS* "df- "MS*

"Columns* [ 803.0000] [ 4] [200.7500]
"Error” [ 557.1667] [25] [ 22.2867]
"Total " [1.3602e+03] [29] 1

Save the F-statistic value in the variable Fstat.

Fstat = tbl{2,5}
Fstat =
9.0076

-
[9.0076]
]
]

"Prob>F"

[1.1971e-04]
(N
1

View the statistics necessary to make a multiple pairwise comparison of group means.

anoval saves these statistics in the structure stats.

stats

stats =

gnames: [5x1 char]
n: [6 6 6 6 6]

source: "anoval-®

means: [23.8333 13.3333 11.6667 9.1667 17.8333]
df: 25
s: 4.7209

ANOVA rejects the null hypothesis that all group means are equal, so you can use
the multiple comparisons to determine which group means are different from others.
To conduct multiple comparison tests, use the function multcompare, which accepts
stats as an input argument. In this example, anoval rejects the null hypothesis
that the mean bacteria counts from all four shipments are equal to each other, i.e.,

Ho:p = po=pz=py

Perform a multiple comparison test to determine which shipments are different than the

others in terms of mean bacteria counts.

multcompare(stats)
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ans =
1.0000 2.0000 2.4953 10.5000 18.5047 0.0059
1.0000 3.0000 4.1619 12.1667 20.1714 0.0013
1.0000 4.0000 6.6619 14.6667 22.6714 0.0001
1.0000 5.0000 -2.0047 6.0000  14.0047 0.2119
2.0000 3.0000 -6.3381 1.6667 9.6714 0.9719
2.0000 4.0000 -3.8381 4.1667 12.1714 0.5544
2.0000 5.0000 -12.5047 -4.5000 3.5047 0.4806
3.0000 4.0000 -5.5047 2.5000 10.5047 0.8876
3.0000 5.0000 -14.1714 -6.1667 1.8381 0.1905
4.0000 5.0000 -16.6714 -8.6667 -0.6619 0.0292

Click on the group you want to test
T T T T

1r =

Ir =

3r =

=
5k
I I 1 I
5 10 15 20 25

3 groups have means significantly different from Group 1




One-Way ANOVA

The first two columns show which group means are compared with each other. For
example, the first row compares the means for groups 1 and 2. The last column shows
the p-values for the tests. The p-values 0.0059, 0.0013, and 0.0001 indicate that the
mean bacteria counts in the milk from the first shipment is different from the ones from
the second, third, and fourth shipments. The p-value of 0.0292 indicates that the mean
bacteria counts in the milk from the fourth shipment is different from the ones from

the fifth. The procedure fails to reject the hypotheses that the other group means are
different from each other.

The figure also illustrates the same result. The blue bar shows the comparison interval
for the first group mean, which does not overlap with the comparison intervals for the
second, third, and fourth group means, shown in red. The comparison interval for the
mean of fifth group, shown in gray, overlaps with the comparison interval for the first
group mean. Hence, the group means for the first and fifth groups are not significantly
different from each other.

Mathematical Details

ANOVA tests for the difference in the group means by partitioning the total variation in
the data into two components:

Variation of group means from the overall mean, i.e., y ; —y (variation between

groups), where y ; is the sample mean of group j, and ¥ _ is the overall sample mean.

Variation of observations in each group from their group mean estimates, Vi = ¥j

(variation within group).

In other words, ANOVA partitions the total sum of squares (SST) into sum of squares
due to between-groups effect (SSR) and sum of squared errors(SSE).

2.2 3. =2 (3-8 POAC ALY ;.

SST SSR SSE

where n; is the sample size for the jth group,j=1, 2, ..., k.

Then ANOVA compares the variation between groups to the variation within groups.
If the ratio of within-group variation to between-group variation is significantly high,
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then you can conclude that the group means are significantly different from each other.
You can measure this using a test statistic that has an F-distribution with (¢ — 1, N - k)
degrees of freedom:

SSB, sk

F = = ~ F,
SSE k-1,N-k>
%v_k MSE

where MSR is the mean squared treatment, MSE is the mean squared error, & is the
number of groups, and N is the total number of observations. If the p-value for the F-
statistic is smaller than the significance level, then the test rejects the null hypothesis
that all group means are equal and concludes that at least one of the group means is
different from the others. The most common significance levels are 0.05 and 0.01.

ANOVA Table

The ANOVA table captures the variability in the model by source, the F-statistic for
testing the significance of this variability, and the p-value for deciding on the significance
of this variability. The p-value returned by anoval depends on assumptions about

the random disturbances &;; in the model equation. For the p-value to be correct, these

disturbances need to be independent, normally distributed, and have constant variance.
The standard ANOVA table has this form:

Source s df MS F p-value
Group (Between) S5R k-1  MSR=SSRf(k—1) MSR/MSE  P[F.iny)=>F
Error (Within) SSE N—k  MSE=3SE/(IN—k)

Total SET N-1

anoval returns the standard ANOVA table as a cell array with six columns.

Column Definition

Source Source of the variability.

SS Sum of squares due to each source.

df Degrees of freedom associated with each
source. Suppose N is the total number of
observations and k is the number of groups.
Then, N — k is the within-groups degrees
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Column

Definition

of freedom (Error), k£ — 1 is the between-
groups degrees of freedom (Columns), and
N — 1 is the total degrees of freedom: N — 1
=(N—-k)+(k-1).

MS

Mean squares for each source, which is the
ratio SS/dfF.

F-statistic, which is the ratio of the mean
squares.

Prob>F

p-value, which is the probability that the
F-statistic can take a value larger than
the computed test-statistic value. anoval
derives this probability from the cdf of the
F-distribution.

The rows of the ANOVA table show the variability in the data, divided by the source.

Row (Source)

Definition

Groups or Columns

Variability due to the differences among
the group means (variability between

groups)

Error Variability due to the differences between
the data in each group and the group mean
(variability within groups)

Total Total variability

References

[1] Wu, C. F. J., and M. Hamada. Experiments: Planning, Analysis, and Parameter

Design Optimization, 2000.
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See Also

anoval | kruskalwallis | multcompare
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More About

. “Two-Way ANOVA” on page 8-15
. “N-Way ANOVA” on page 8-36

“Multiple Comparisons” on page 8-26
“Nonparametric Methods” on page 8-67
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Two-Way ANOVA

In this section...

“Introduction to Two-Way ANOVA” on page 8-15

“Prepare Data for Balanced Two-Way ANOVA” on page 8-17
“Perform Two-Way ANOVA” on page 8-18

“Mathematical Details” on page 8-22

Introduction to Two-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function anova?2 to perform

a balanced two-way analysis of variance (ANOVA). To perform two-way ANOVA for an
unbalanced design, use anovan. For an example, see “Two-Way ANOVA for Unbalanced
Design” on page 22-88.

As in one-way ANOVA, the data for a two-way ANOVA study can be experimental or
observational. The difference between one-way and two-way ANOVA is that in two-
way ANOVA, the effects of two factors on a response variable are of interest. These two
factors can be independent, and have no interaction effect, or the impact of one factor
on the response variable can depend on the group (level) of the other factor. If the two
factors have no interactions, the model is called an additive model.

Suppose an automobile company has two factories, and each factory makes the same
three car models. The gas mileage in the cars can vary from factory to factory and

from model to model. These two factors, factory and model, explain the differences in
mileage, that is, the response. One measure of interest is the difference in mileage

due to the production methods between factories. Another measure of interest is the
difference in the mileage of the models (irrespective of the factory) due to different design
specifications. The effects of these measures of interest are additive. In addition, suppose
only one model has different gas mileage between factories, while the mileage of the
other two models is the same between factories. This is called an interaction effect. To
measure an interaction effect, there must be multiple observations for some combination
of factory and car model. These multiple observations are called replications.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA form of the
model is

Yijr =M+ + B +(aﬁ)ij +E
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where,
¥iir s an observation of the response variable.

* irepresents group i of row factor A,i1=1,2, ..., I
+ jrepresents group j of column factor B,j=1, 2, ..., J

r represents the replication number, r=1, 2, ..., R

There are a total of N = I*J*R observations.
*  1s the overall mean.

* @; are the deviations of groups of row factor A from the overall mean y due to row

. I
factor B. The values of a; sum to 0, i.e., 2i=10‘i =0.

*  pjare the deviations of groups in column factor B from the overall mean y due to row
factor B. All values in a given column of f; are identical, and the values of §; sum to 0,

i.e., Zi=1ﬁj =0.

* af; are the interactions. The values in each row and in each column of af;; sum to 0,

e, Yo (@B); =3, (aB); =0.

* & are the random disturbances. They are assumed to be independent, normally
distributed, and have constant variance.

In the mileage example:

* yjr are the gas mileage observations, y is the overall mean gas mileage.

* q; are the deviations of each car's gas mileage from the mean gas mileage y due to the
car's model.

* pf; are the deviations of each car's gas mileage from the mean gas mileage x due to the
car's factory.

anova?2 requires that data be balanced, so each combination of model and factory must
have the same number of cars.

Two-way ANOVA tests hypotheses about the effects of factors A and B, and their
interaction on the response variable y. The hypotheses about the equality of the mean
response for groups of row factor A are

8-16



Two-Way ANOVA

HO 10y =0y =0
H, : at least one ¢ is different, i=1, 2, ..., I.

The hypotheses about the equality of the mean response for groups of column factor B are

Hy:py=By=-=By
Hj : atleast one §; is different, j =1, 2, ..., J.

The hypotheses about the interaction of the column and row factors are

HO ((Xﬂ)y =0
Hj :at least one ((xﬁ)ij #0

Prepare Data for Balanced Two-Way ANOVA

To perform balanced two-way ANOVA using anova2, you must arrange data in a specific
matrix form. The columns of the matrix must correspond to groups of the column factor,
B. The rows must correspond to the groups of the row factor, A, with the same number of
replications for each combination of the groups of factors A and B.

Suppose that row factor A has three groups, and column factor B has two groups (levels).
Also suppose that each combination of factors A and B has two measurements or
observations (reps = 2). Then, each group of factor A has six observations and each
group of factor B four observations.

B=1 B=2
(11 et }A -1
Y112 Y122
Y211 Y221 }A —9
Y212 Y222
Y311 Y321
3 3 A=3
LY312 Y322 ]
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The subscripts indicate row, column, and replication, respectively. For example, ys2;
corresponds to the measurement for the second group of factor A, the second group of
factor B, and the first replication for this combination.

Perform Two-Way ANOVA

This example shows how to perform two-way ANOVA to determine the effect of car model
and factory on the mileage rating of cars.

Load and display the sample data.

load mileage
mileage

mileage =

33.3000 34.5000 37.4000
33.4000 34.8000 36.8000
32.9000 33.8000 37.6000
32.6000 33.4000 36.6000
32.5000 33.7000 37.0000
33.0000 33.9000 36.7000

There are three car models (columns) and two factories (rows). The data has six mileage
rows because each factory provided three cars of each model for the study (i.e, the
replication number is three). The data from the first factory is in the first three rows, and
the data from the second factory is in the last three rows.

Perform two-way ANOVA. Return the structure of statistics, stats, to use in multiple
comparisons.

nmbcars = 3; % Number of cars from each model, i.e., number of replications
[~,~,stats] = anova2(mileage,nmbcars);



Two-Way ANOVA

ANOVA Table
Source =3 df M= F Prob=F -
Columns E3_3E11 z ZE_E7EE 234 _ZZ u]
Rowrs 1._445 1 1._445 1Zz_ &9 o.onzs
Interaction 0_.04 z a.oz o.1ls 0.5411
Error 1.3667 1z 0.11332

Total L& Z0E3 17

You can use the F-statistics to do hypotheses tests to find out if the mileage is the same
across models, factories, and model - factory pairs. Before performing these tests, you
must adjust for the additive effects. anovaZ2 ret rns the p-value from these tests.

The p-value for the model effect (Columns) is zero to four decimal places. This result is a
strong indication that the mileage varies from one model to another.

The p-value for the factory effect (Rows) is 0.0039, which is also highly significant. This
value indicates that one factory is out-performing the other in the gas mileage of the cars
it produces. The observed p-value indicates that an F-statistic as extreme as the observed
F occurs by chance about four out of 1000 times, if the gas mileage were truly equal from
factory to factory.
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The factories and models appear to have no interaction. The p-value, 0.8411, means that
the observed result is likely (84 out 100 times), given that there is no interaction.

Perform “Multiple Comparisons” to find out which pair of the three car models is
significantly different.

c = multcompare(stats)

Note: Your model includes an interaction term. A test of main effects can be
difficult to interpret when the model includes interactions.

c =
1.0000 2.0000 -1.5865 -1.0667 -0.5469 0.0004

1.0000 3.0000 -4.5865 -4.0667 -3.5469 0.0000
2.0000 3.0000 -3.5198 -3.0000 -2.4802 0.0000



Two-Way ANOVA

Click on the group you want to test
T T T

32.5 33 33.5 34 34.5 35 355 36  36.5 ar 37.b
2 groups have column means significantly different from Group 1

In the matrix c, the first two columns show the pairs of car models that are compared.
By default, multcompare uses Tukey's honestly significant difference procedure. The last
column shows the p-values for the test. All p-values are small (0.0004, 0, and 0), which
indicates that the mean mileage of all car models are significantly different from each
other.

In the figure the blue bar is the comparison interval for the mean mileage of the first
car model. The red bars are the comparison intervals for the mean mileage of the second
and third car models. None of the second and third comparison intervals overlap with
the first comparison interval, indicating that the mean mileage of the first car model

is different from the mean mileage of the second and the third car models. If you click
on one of the other bars, you can test for the other car models. None of the comparison
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intervals overlap, indicating that the mean mileage of each car model is significantly
different from the other two.

Mathematical Details

The two-factor ANOVA partitions the total variation into the following components:

Variation of row factor group means from the overall mean, y;, -y
Variation of column factor group means from the overall mean, y; -y

+ Variation of overall mean plus the replication mean from the column factor group
mean plus row factor group mean, y; —y; —¥; +J..

Variation of observations from the replication means, y;iz —¥;;.

ANOVA partitions the total sum of squares (SST) into the sum of squares due to row
factor A (SS,), the sum of squares due to column factor B (SSg), the sum of squares due to
interaction between A and B (SS,p), and the sum of squares error (SSE).

m k R 92 m 9 k 9
D Z D (yijk - T) =kRY (3, -75.) +mRZ (yj —y...)
i=1j=1r=1 i=1 J=1
SST S8y SS,
m k 3 3 3 2 k R 2
+RY, D (5 =5 =540 22 2 (v )
i=1 j=1 i=1 j=1r=1
SS,p SSE

ANOVA takes the variation due to the factor or interaction and compares it to the
variation due to error. If the ratio of the two variations is high, then the effect of the
factor or the interaction effect is statistically significant. You can measure the statistical
significance using a test statistic that has an F-distribution.

For the null hypothesis that the mean response for groups of the row factor A are equal,
the test statistic is

SSIV

-1
F = oo~ Pt mi(r1)
Aﬂe(R -1)
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For the null hypothesis that the mean response for groups of the column factor B are
equal, the test statistic is

S8,
Fo /= F
SSE k-1,mk(R-1)"
mk(R-1)

For the null hypothesis that the interaction of the column and row factors are equal to
zero, the test statistic is

SS
*m -1
F=—c ~ Fln-1)(h-1)mk(R-1)-
B k(R-1)

If the p-value for the F-statistic is smaller than the significance level, then ANOVA
rejects the null hypothesis. The most common significance levels are 0.01 and 0.05.

ANOVA Table

The ANOVA table captures the variability in the model by the source, the F-statistic for
testing the significance of this variability, and the p-value for deciding on the significance
of this variability. The p-value returned by anova2 depends on assumptions about the
random disturbances, g;;, in the model equation. For the p-value to be correct, these
disturbances need to be independent, normally distributed, and have constant variance.
The standard ANOVA table has this form:

Source SS df MS F p-value
Columns 55_.5, k-1 MS,.:., MS:J‘MSE F"{F_f;-:[.m,k[ﬁ.j:.] =F
Rows SSg m-1 MSg MSs/MSE  P(Fm-1mkig-1y) > F

Interaction  SSaz (M -1)(k-1) MSgs MSag/MSE  P(Fim-1yk-1),miia-1)) > F

Error

SSE  mk(R-1)  MSE

Total

SS5T mkR -1

anovaz2 returns the standard ANOVA table as a cell array with six columns.
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Column

Definition

Source

The source of the variability.

SS

The sum of squares due to each source.

df

The degrees of freedom associated with
each source. Suppose ¢/ is the number

of groups in the column factor, I is the
number of groups in the row factor, and
R is the number of replications. Then,
the total number of observations is IJR
and the total degrees of freedom is IJJR —
1. -1 is the degrees of freedom for the
row factor,JJ — 1 is the degrees of freedom
for the column factor, (I — 1)(J — 1) is the
interaction degrees of freedom, and IJ(R —
1) is the error degrees of freedom.

MS

The mean squares for each source, which is
the ratio SS/df.

F-statistic, which is the ratio of the mean
squares.

Prob>F

The p-value, which is the probability that
the F-statistic can take a value larger than
the computed test-statistic value. anova2
derives this probability from the cdf of the
F-distribution.

The rows of the ANOVA table show the variability in the data that is divided by the

source.

Row (Source)

Definition

Columns Variability due to the column factor

Rows Variability due to the row factor

Interaction Variability due to the interaction of the row
and column factors

Error Variability due to the differences between

the data in each group and the group mean
(variability within groups)




Two-Way ANOVA

Row (Source) Definition
Total Total variability
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. “One-Way ANOVA” on page 8-3

. “N-Way ANOVA” on page 8-36

. “Multiple Comparisons” on page 8-26

. “Nonparametric Methods” on page 8-67
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In this section...

“Introduction” on page 8-26
“Multiple Comparisons Using One-Way ANOVA” on page 8-27
“Multiple Comparisons for Three-Way ANOVA” on page 8-29

“Multiple Comparison Procedures” on page 8-32

Introduction

Analysis of variance (ANOVA) techniques test whether a set of group means (treatment
effects) are equal or not. Rejection of the null hypothesis leads to the conclusion that not
all group means are the same. This result, however, does not provide further information
on which group means are different.

Performing a series of i-tests to determine which pairs of means are significantly
different is not recommended. When you perform multiple ¢-tests, the probability that
the means appear significant, and significant difference results might be due to large
number of tests. These ¢-tests use the data from the same sample, hence they are not
independent. This fact makes it more difficult to quantify the level of significance for
multiple tests.

Suppose that in a single ¢-test, the probability that the null hypothesis (Hy) is rejected
when it is actually true is a small value, say 0.05. Suppose also that you conduct six
independent ¢-tests. If the significance level for each test is 0.05, then the probability that
the tests correctly fail to reject Hy, when Hj is true for each case, is (0.95)° = 0.735. And
the probability that one of the tests incorrectly rejects the null hypothesisis 1 — 0.735 =
0.265, which is much higher than 0.05.

To compensate for multiple tests, you can use multiple comparison procedures. The
Statistics and Machine Learning Toolbox function multcompare performs multiple
pairwise comparison of the group means, or treatment effects. The options are Tukey’s
honestly significant difference criterion, the Bonferroni method, Scheffe’s procedure,
Fisher’s least significant differences (Isd) method, and Dunn & Sidak’s approach to ¢-test.

To perform multiple comparisons of group means, provide the structure stats as an
input for multcompare. You can obtain stats from one of the following functions :



Multiple Comparisons

* anoval — One-way ANOVA

+ anova2 — Two-way ANOVA

* anovan — N-way ANOVA

+ aoctool — Interactive ANCOVA

* kruskalwal lis — Nonparametric method for one-way layout
+  Ffriedman — Nonparametric method for two-way layout

For multiple comparison procedure options for repeated measures, see multcompare
(RepeatedMeasuresModel).

Multiple Comparisons Using One-Way ANOVA

Load the sample data.
load carsmall

MPG represents the miles per gallon for each car, and Cylinders represents the number
of cylinders in each car, either 4, 6, or 8 cylinders.

Test if the mean miles per gallon (mpg) is different across cars that have different
numbers of cylinders. Also compute the statistics needed for multiple comparison tests.

[p,~,stats] = anoval(MPG,Cylinders, "off");
P
p =

4.4902e-24

The small p-value of about 0 is a strong indication that mean miles per gallon is
significantly different across cars with different numbers of cylinders.

Perform a multiple comparison test, using the Bonferroni method, to determine which
numbers of cylinders make a difference in the performance of the cars.

[results,means] = multcompare(stats, "CType~, "bonferroni ™)

results =
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1.0000 2.0000 4.8605 7.9418 11.0230 0.0000

1.0000 3.0000 12.6127 15.2337 17.8548 0.0000

2.0000 3.0000 3.8940 7.2919 10.6899 0.0000
means =

29.5300 0.6363
21.5882 -0913
14.2963 0.8660

=

Click on the group you want to test

1 I I I I 1 I I I
12 14 16 18 20 22 24 26 28 30 32
2 groups have means significantly different from Group 4

In the results matrix, 1, 2, and 3 correspond to cars with 4, 6, and 8 cylinders,
respectively. The first two columns show which groups are compared. For example, the
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first row compares the cars with 4 and 6 cylinders. The fourth column shows the mean
mpg difference for the compared groups. The third and fifth columns show the lower and
upper limits for a 95% confidence interval for the difference in the group means. The last
column shows the p-values for the tests. All p-values are zero, which indicates that the
mean mpg for all groups differ across all groups.

In the figure the blue bar represents the group of cars with 4 cylinders. The red bars
represent the other groups. None of the red comparison intervals for the mean mpg of
cars overlap, which means that the mean mpg is significantly different for cars having 4,

6, or 8 cylinders.

The first column of the means matrix has the mean mpg estimates for each group of cars.
The second column contains the standard errors of the estimates.

Multiple Comparisons for Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]";

gl=[12121212];
g2 = {"hi";"hi";"lo";"lo";"hi";"hi";"10";"10"};
g3 = {"may";"may"; "may";"may";"june”;"june”;"june";"june"};

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each
factor has two levels, and every observation in Yy is identified by a combination of factor
levels. For example, observation y(1) is associated with level 1 of factor g1, level "hi "
of factor g2, and level "may " of factor g3. Similarly, observation y(6) is associated with
level 2 of factor g1, level "hi " of factor g2, and level " june*® of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required
for multiple comparison tests.

[~,~,stats] = anovan(y,{gl g2 g3}, "model”,"interaction”, ...
"varnames”®,{"gl","g2","g3"});
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4 Figure 1 M-Way AMNOVA |o || = || &= |
File Edit MView Insert Tools Desktop Window  Help &
Analysis of Variance
Source Buam S d_f Mean Sg F Prob=F -
gl 2.781 1 2,781 33611 00347
< o 195._ 001 1 195._ 001 17683 0. oo04g
o3 0o.0&8l1 1 0o.0&81 E_odd 0o.zE78
gl*¥ogi 18.301 1 18.301 162678 0o.0l1l53
gl*od 0o.z11 1 0o.z11 1a.78 01444

gz F g3 0.011 1 0.011 1 0.5
Error 0o.0l11 1 o.oll
Total £zl.373 7

Constrained (Type ) sums of squares.
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The p-value of 0.2578 indicates that the mean responses for levels "may” and " june” of
factor g3 are not significantly different. The p-value of 0.0347 indicates that the mean
responses for levels 1 and 2 of factor gl are significantly different. Similarly, the p-value
of 0.0048 indicates that the mean responses for levels "hi" and "10" of factor g2 are
significantly different.

Perform multiple comparison tests to find out which groups of the factors g1 and g2 are
significantly different.
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results = multcompare(stats, "Dimension”,[1 2])

results

1.0000 2.0000 -6.8604 -4.4000 -1.9396 0.0280
1.0000 3.0000 4.4896 6.9500 9.4104 0.0177
1.0000 4_.0000 6.1396 8.6000 11.0604 0.0143
2.0000 3.0000 8.8896 11.3500 13.8104 0.0108
2.0000 4_.0000 10.5396 13.0000 15.4604 0.0095
3.0000 4_.0000 -0.8104 1.6500 4.1104 0.0745

Click on the group you want to test

g1=1,g2=hi [ —6— .

g1=2,g2=hi [ —s— A

|

g1=1,g2=lo

gl=2g2=lo —S5— —

42 44 46 48 50 52 54 56 58 60
3 groups have population marginal means significantly different from g1=1,g2=hi
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multcompare compares the combinations of groups (levels) of the two grouping variables,
g1 and g2. In the results matrix, the number 1 corresponds to the combination of level
1 of g1 and level hi of g2, the number 2 correspond