
Statistics and Machine Learning Toolbox™

User's Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Statistics and Machine Learning Toolbox™ User's Guide
© COPYRIGHT 1993–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 1993 First printing Version 1.0
March 1996 Second printing Version 2.0
January 1997 Third printing Version 2.11
November 2000 Fourth printing Revised for Version 3.0 (Release 12)
May 2001 Fifth printing Minor revisions
July 2002 Sixth printing Revised for Version 4.0 (Release 13)
February 2003 Online only Revised for Version 4.1 (Release 13.0.1)
June 2004 Seventh printing Revised for Version 5.0 (Release 14)
October 2004 Online only Revised for Version 5.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 5.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 5.1 (Release 14SP3)
March 2006 Online only Revised for Version 5.2 (Release 2006a)
September 2006 Online only Revised for Version 5.3 (Release 2006b)
March 2007 Eighth printing Revised for Version 6.0 (Release 2007a)
September 2007 Ninth printing Revised for Version 6.1 (Release 2007b)
March 2008 Online only Revised for Version 6.2 (Release 2008a)
October 2008 Online only Revised for Version 7.0 (Release 2008b)
March 2009 Online only Revised for Version 7.1 (Release 2009a)
September 2009 Online only Revised for Version 7.2 (Release 2009b)
March 2010 Online only Revised for Version 7.3 (Release 2010a)
September 2010 Online only Revised for Version 7.4 (Release 2010b)
April 2011 Online only Revised for Version 7.5 (Release 2011a)
September 2011 Online only Revised for Version 7.6 (Release 2011b)
March 2012 Online only Revised for Version 8.0 (Release 2012a)
September 2012 Online only Revised for Version 8.1 (Release 2012b)
March 2013 Online only Revised for Version 8.2 (Release 2013a)
September 2013 Online only Revised for Version 8.3 (Release 2013b)
March 2014 Online only Revised for Version 9.0 (Release 2014a)
October 2014 Online only Revised for Version 9.1 (Release 2014b)
March 2015 Online only Revised for Version 10.0 (Release 2015a)

v

Contents

Getting Started
1

Statistics and Machine Learning Toolbox Product
Description . 1-2

Key Features . 1-2

Supported Data Types . 1-3

Organizing Data
2

Other MATLAB Functions Supporting Nominal and Ordinal
Arrays . 2-3

Create Nominal and Ordinal Arrays . 2-4
Create Nominal Arrays . 2-4
Create Ordinal Arrays . 2-6

Change Category Labels . 2-9

Reorder Category Levels . 2-11
Reorder Category Levels in Ordinal Arrays 2-11
Reorder Category Levels in Nominal Arrays 2-12

Categorize Numeric Data . 2-16

Merge Category Levels . 2-19

Add and Drop Category Levels . 2-21

Plot Data Grouped by Category . 2-25

vi Contents

Test Differences Between Category Means 2-29

Summary Statistics Grouped by Category 2-38

Sort Ordinal Arrays . 2-40

Categorical Arrays . 2-42
What Are Categorical Arrays? . 2-42
Categorical Array Conversion . 2-42

Advantages of Using Categorical Arrays 2-44
Manipulate Category Levels . 2-44
Analysis Using Categorical Arrays 2-44
Reduce Memory Requirements . 2-45

Index and Search Using Categorical Arrays 2-47
Index By Category . 2-47
Common Indexing and Searching Methods 2-47

Grouping Variables . 2-52
What Are Grouping Variables? . 2-52
Group Definition . 2-53
Analysis Using Grouping Variables 2-53
Missing Group Values . 2-54

Dummy Indicator Variables . 2-55
What Are Dummy Variables? . 2-55
Creating Dummy Variables . 2-56

Regression with Categorical Covariates 2-58

Create a Dataset Array from Workspace Variables 2-63
Create a Dataset Array from a Numeric Array 2-63
Create Dataset Array from Heterogeneous Workspace

Variables . 2-66

Create a Dataset Array from a File . 2-69
Create a Dataset Array from a Tab-Delimited Text File . . . 2-69
Create a Dataset Array from a Comma-Separated Text File 2-72
Create a Dataset Array from an Excel File 2-74

Add and Delete Observations . 2-77

vii

Add and Delete Variables . 2-81

Access Data in Dataset Array Variables 2-85

Select Subsets of Observations . 2-91

Sort Observations in Dataset Arrays 2-95

Merge Dataset Arrays . 2-99

Stack or Unstack Dataset Arrays . 2-103

Calculations on Dataset Arrays . 2-108

Export Dataset Arrays . 2-111

Clean Messy and Missing Data . 2-113

Dataset Arrays in the Variables Editor 2-118
Open Dataset Arrays in the Variables Editor 2-118
Modify Variable and Observation Names 2-119
Reorder or Delete Variables . 2-121
Add New Data . 2-123
Sort Observations . 2-125
Select a Subset of Data . 2-126
Create Plots . 2-129

Dataset Arrays . 2-132
What Are Dataset Arrays? . 2-132
Dataset Array Conversion . 2-132
Dataset Array Properties . 2-133

Index and Search Dataset Arrays . 2-135
Ways To Index and Search . 2-135
Examples . 2-135

Descriptive Statistics
3

Introduction to Descriptive Statistics 3-2

viii Contents

Measures of Central Tendency . 3-3

Measures of Dispersion . 3-5

Quantiles and Percentiles . 3-7

Exploratory Analysis of Data . 3-11

Resampling Statistics . 3-17
Bootstrap Resampling . 3-17
Jackknife Resampling . 3-20
Parallel Computing Support for Resampling Methods 3-21

Data with Missing Values . 3-22

Statistical Visualization
4

Introduction to Statistical Visualization 4-2

Create Scatter Plots Using Grouped Data 4-3

Box Plots . 4-6

Distribution Plots . 4-8
Normal Probability Plots . 4-8
Quantile-Quantile Plots . 4-10
Cumulative Distribution Plots . 4-13
Other Probability Plots . 4-14

Probability Distributions
5

Working with Probability Distributions 5-3
Types of Probability Distributions . 5-3
Probability Distribution Objects . 5-4
Probability Distribution Functions . 5-8

ix

Probability Distribution Apps and User Interfaces 5-10

Supported Distributions . 5-17
Continuous Distributions (Data) . 5-19
Continuous Distributions (Statistics) 5-23
Discrete Distributions . 5-25
Multivariate Distributions . 5-27
Nonparametric Distributions . 5-29
Flexible Distribution Families . 5-29

Maximum Likelihood Estimation . 5-30

Negative Loglikelihood Functions . 5-33

Random Number Generation . 5-37

Nonparametric and Empirical Probability Distributions . . 5-40
Overview . 5-40
Kernel Distribution . 5-40
Empirical Cumulative Distribution Function 5-42
Piecewise Linear Distribution . 5-44
Pareto Tails . 5-45
Triangular Distribution . 5-46

Fit Kernel Distribution Object to Data 5-49

Fit Kernel Distribution Using ksdensity 5-54

Fit Distributions to Grouped Data Using ksdensity 5-57

Create and Plot Empirical Cumulative Distribution
Functions . 5-60

Fit a Nonparametric Distribution with Pareto Tails 5-61

Generate Random Numbers Using the Triangular
Distribution . 5-66

Explore the Probability Distribution Function UI 5-71

Model Data Using the Distribution Fitting App 5-74
Explore Probability Distributions Interactively 5-74
Create and Manage Data Sets . 5-75

x Contents

Create a New Fit . 5-80
Display Results . 5-85
Manage Fits . 5-87
Evaluate Fits . 5-88
Exclude Data . 5-92
Save and Load Sessions . 5-98
Generate a File to Fit and Plot Distributions 5-99

Fit a Distribution Using the Distribution Fitting App . . . 5-101
Step 1: Load Sample Data . 5-101
Step 2: Import Data . 5-101
Step 3: Create a New Fit . 5-103
Step 4: Create and Manage Additional Fits 5-108

Custom Distributions Using the Distribution Fitting App 5-111
Opening the Distribution Fitting App 5-111
Defining Custom Distributions . 5-113
Importing Custom Distributions . 5-113

Explore the Random Number Generation UI 5-114

Compare Multiple Distribution Fits 5-117

Fit Probability Distribution Objects to Grouped Data . . . 5-124

Multinomial Probability Distribution Objects 5-128

Multinomial Probability Distribution Functions 5-132

Generate Random Numbers Using Uniform Distribution
Inversion . 5-135

Represent Cauchy Distribution Using t Location-Scale . . 5-138

Generate Cauchy Random Numbers Using Student’s t . . . 5-142

Generate Correlated Data Using Rank Correlation 5-144

Gaussian Mixture Models . 5-150
Creating Gaussian Mixture Models 5-150
Simulating Gaussian Mixtures . 5-157

xi

Copulas: Generate Correlated Samples 5-160
Determining Dependence Between Simulation Inputs 5-160
Constructing Dependent Bivariate Distributions 5-164
Using Rank Correlation Coefficients 5-169
Using Bivariate Copulas . 5-171
Higher Dimension Copulas . 5-180
Archimedean Copulas . 5-182
Simulating Dependent Multivariate Data Using Copulas . 5-184
Fitting Copulas to Data . 5-189

Random Number Generation
6

Generating Random Data . 6-2

Random Number Generation Functions 6-3

Common Generation Methods . 6-5
Direct Methods . 6-5
Inversion Methods . 6-7
Acceptance-Rejection Methods . 6-10

Representing Sampling Distributions Using Markov Chain
Samplers . 6-14

Using the Metropolis-Hastings Algorithm 6-14
Using Slice Sampling . 6-15

Generating Quasi-Random Numbers 6-16
Quasi-Random Sequences . 6-16
Quasi-Random Point Sets . 6-17
Quasi-Random Streams . 6-24

Generating Data Using Flexible Families of Distributions . 6-26
Pearson and Johnson Systems . 6-26
Generating Data Using the Pearson System 6-27
Generating Data Using the Johnson System 6-29

xii Contents

Hypothesis Tests
7

Introduction to Hypothesis Tests . 7-2

Hypothesis Test Terminology . 7-3

Hypothesis Test Assumptions . 7-5

Hypothesis Testing . 7-7

Available Hypothesis Tests . 7-14

Analysis of Variance
8

Introduction to Analysis of Variance 8-2

One-Way ANOVA . 8-3
Introduction to One-Way ANOVA . 8-3
Prepare Data for One-Way ANOVA 8-4
Perform One-Way ANOVA . 8-6
Mathematical Details . 8-11

Two-Way ANOVA . 8-15
Introduction to Two-Way ANOVA . 8-15
Prepare Data for Balanced Two-Way ANOVA 8-17
Perform Two-Way ANOVA . 8-18
Mathematical Details . 8-22

Multiple Comparisons . 8-26
Introduction . 8-26
Multiple Comparisons Using One-Way ANOVA 8-27
Multiple Comparisons for Three-Way ANOVA 8-29
Multiple Comparison Procedures . 8-32

N-Way ANOVA . 8-36
Introduction to N-Way ANOVA . 8-36
Prepare Data for N-Way ANOVA . 8-38

xiii

Perform N-Way ANOVA . 8-39

ANOVA with Random Effects . 8-48

Other ANOVA Models . 8-57

Analysis of Covariance . 8-58
Introduction to Analysis of Covariance 8-58
Analysis of Covariance Tool . 8-58
Confidence Bounds . 8-62
Multiple Comparisons . 8-65

Nonparametric Methods . 8-67
Introduction to Nonparametric Methods 8-67
Kruskal-Wallis Test . 8-67
Friedman's Test . 8-68

MANOVA . 8-70
Introduction to MANOVA . 8-70
ANOVA with Multiple Responses . 8-70

Model Specification for Repeated Measures Models 8-77
Wilkinson Notation . 8-77

Compound Symmetry Assumption and Epsilon
Corrections . 8-79

Mauchly’s Test of Sphericity . 8-81

Multivariate Analysis of Variance for Repeated Measures . 8-83

Parametric Regression Analysis
9

Parametric Regression Analysis . 9-3
What Is Parametric Regression? . 9-3
Choose a Regression Function . 9-3
Update Legacy Code with New Fitting Methods 9-4

What Are Linear Regression Models? 9-8

xiv Contents

Linear Regression . 9-11
Prepare Data . 9-11
Choose a Fitting Method . 9-13
Choose a Model or Range of Models 9-14
Fit Model to Data . 9-19
Examine Quality and Adjust the Fitted Model 9-20
Predict or Simulate Responses to New Data 9-37
Share Fitted Models . 9-40
Linear Regression Workflow . 9-41

Regression Using Dataset Arrays . 9-48

Regression Using Tables . 9-51

Linear Regression with Interaction Effects 9-54

Interpret Linear Regression Results 9-63

Cook’s Distance . 9-70
Purpose . 9-70
Definition . 9-70
How To . 9-71
Determine Outliers Using Cook's Distance 9-71

Coefficient Standard Errors and Confidence Intervals . . . 9-74
Coefficient Covariance and Standard Errors 9-74
Compute Coefficient Covariance and Standard Errors 9-74
Coefficient Confidence Intervals . 9-75
Compute Coefficient Confidence Intervals 9-76

Coefficient of Determination (R-Squared) 9-78
Purpose . 9-78
Definition . 9-78
How To . 9-78
Display Coefficient of Determination 9-79

Delete-1 Statistics . 9-81
Delete-1 Change in Covariance (covratio) 9-81
Determine Influential Observations Using CovRatio 9-82
Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas) 9-84
Determine Observations Influential on Coefficients Using

Dfbetas . 9-85
Delete-1 Scaled Change in Fitted Values (Dffits) 9-85

xv

Determine Observations Influential on Fitted Response Using
Dffits . 9-86

Delete-1 Variance (S2_i) . 9-88
Compute and Examine Delete-1 Variance Values 9-89

Durbin-Watson Test . 9-91
Purpose . 9-91
Definition . 9-91
How To . 9-91
Test for Autocorrelation Among Residuals 9-91

F-statistic and t-statistic . 9-93
F-statistic . 9-93
Assess Fit of Model Using F-statistic 9-93
t-statistic . 9-96
Assess Significance of Regression Coefficients Using t-

statistic . 9-97

Hat Matrix and Leverage . 9-99
Hat Matrix . 9-99
Leverage . 9-100
Determine High Leverage Observations 9-101

Residuals . 9-103
Purpose . 9-103
Definition . 9-103
How To . 9-104
Assess Model Assumptions Using Residuals 9-104

Summary of Output and Diagnostic Statistics 9-112

Wilkinson Notation . 9-114
Overview . 9-114
Formula Specification . 9-115
Linear Model Examples . 9-118
Linear Mixed-Effects Model Examples 9-120
Generalized Linear Model Examples 9-121
Generalized Linear Mixed-Effects Model Examples 9-122
Repeated Measures Model Examples 9-123

Stepwise Regression . 9-124
Stepwise Regression to Select Appropriate Models 9-124
Compare large and small stepwise models 9-124

xvi Contents

Robust Regression — Reduce Outlier Effects 9-128
What Is Robust Regression? . 9-128
Robust Regression versus Standard Least-Squares Fit . . . 9-128

Ridge Regression . 9-131
Introduction to Ridge Regression . 9-131
Ridge Regression . 9-131

Lasso and Elastic Net . 9-134
What Are Lasso and Elastic Net? 9-134
Lasso Regularization . 9-134
Lasso and Elastic Net with Cross Validation 9-137
Wide Data via Lasso and Parallel Computing 9-140
Lasso and Elastic Net Details . 9-144
References . 9-146

Partial Least Squares . 9-147
Introduction to Partial Least Squares 9-147
Partial Least Squares . 9-147

Linear Mixed-Effects Models . 9-152

Prepare Data for Linear Mixed-Effects Models 9-157
Tables and Dataset Arrays . 9-157
Design Matrices . 9-159
Relation of Matrix Form to Tables and Dataset Arrays . . . 9-161

Relationship Between Formula and Design Matrices 9-163
Formula . 9-163
Design Matrices for Fixed and Random Effects 9-165
Grouping Variables . 9-167

Estimating Parameters in Linear Mixed-Effects Models . . 9-170
Maximum Likelihood (ML) . 9-171
Restricted Maximum Likelihood (REML) 9-172

Linear Mixed-Effects Model Workflow 9-175

Fit Mixed-Effects Spline Regression 9-187

xvii

Generalized Linear Models
10

Multinomial Models for Nominal Responses 10-2

Multinomial Models for Ordinal Responses 10-5

Hierarchical Multinomial Models . 10-9

Generalized Linear Models . 10-12
What Are Generalized Linear Models? 10-12
Prepare Data . 10-13
Choose Generalized Linear Model and Link Function 10-15
Choose Fitting Method and Model 10-18
Fit Model to Data . 10-23
Examine Quality and Adjust the Fitted Model 10-23
Predict or Simulate Responses to New Data 10-34
Share Fitted Models . 10-38
Generalized Linear Model Workflow 10-39

Lasso Regularization of Generalized Linear Models 10-45
What is Generalized Linear Model Lasso Regularization? . 10-45
Regularize Poisson Regression . 10-45
Regularize Logistic Regression . 10-48
Regularize Wide Data in Parallel 10-55
Generalized Linear Model Lasso and Elastic Net 10-61
References . 10-63

Generalized Linear Mixed-Effects Models 10-64
What Are Generalized Linear Mixed-Effects Models? 10-64
GLME Model Equations . 10-64
Prepare Data for Model Fitting . 10-66
Choose a Distribution Type for the Model 10-66
Choose a Link Function for the Model 10-67
Specify the Model Formula . 10-68
Display the Model . 10-71
Work with the Model . 10-73

Estimating Parameters in Generalized Linear Mixed-Effects
Models . 10-76

Model Form . 10-76
Model Approximations . 10-77

xviii Contents

Integral Approximations . 10-78

Fit a Generalized Linear Mixed-Effects Model 10-79

Nonlinear Regression
11

Nonlinear Regression . 11-2
What Are Parametric Nonlinear Regression Models? 11-2
Prepare Data . 11-3
Represent the Nonlinear Model . 11-4
Choose Initial Vector beta0 . 11-6
Fit Nonlinear Model to Data . 11-7
Examine Quality and Adjust the Fitted Nonlinear Model . . 11-7
Predict or Simulate Responses Using a Nonlinear Model . . 11-10
Nonlinear Regression Workflow . 11-14

Mixed-Effects Models . 11-20
Introduction to Mixed-Effects Models 11-20
Mixed-Effects Model Hierarchy . 11-21
Specifying Mixed-Effects Models . 11-22
Specifying Covariate Models . 11-25
Choosing nlmefit or nlmefitsa . 11-26
Using Output Functions with Mixed-Effects Models 11-29
Mixed-Effects Models Using nlmefit and nlmefitsa 11-34
Examining Residuals for Model Verification 11-50

Pitfalls in Fitting Nonlinear Models by Transforming to
Linearity . 11-56

Survival Analysis
12

What Is Survival Analysis? . 12-2
Introduction . 12-2
Censoring . 12-2
Data . 12-3

xix

Survivor Function . 12-4
Hazard Function . 12-6

Kaplan-Meier Method . 12-11

Hazard and Survivor Functions for Different Groups . . . 12-18

Survivor Functions for Two Groups 12-25

Cox Proportional Hazards Regression 12-30

Cox Proportional Hazards Model for Censored Data 12-33

Multivariate Methods
13

Introduction to Multivariate Methods 13-2

Multivariate Linear Regression . 13-3
Multivariate Linear Regression Model 13-3
Solving Multivariate Regression Problems 13-4

Estimation of Multivariate Regression Models 13-6
Least Squares Estimation . 13-6
Maximum Likelihood Estimation 13-10
Missing Response Data . 13-12

Set Up Multivariate Regression Problems 13-15
Response Matrix . 13-15
Design Matrices . 13-20
Common Multivariate Regression Problems 13-21

Multivariate General Linear Model 13-29

Fixed Effects Panel Model with Concurrent Correlation . 13-34

Longitudinal Analysis . 13-42

Multidimensional Scaling . 13-49
Introduction to Multidimensional Scaling 13-49

xx Contents

Classical Multidimensional Scaling 13-49
Nonclassical Multidimensional Scaling 13-54
Nonmetric Multidimensional Scaling 13-56

Procrustes Analysis . 13-60
Compare Landmark Data . 13-60
Data Input . 13-60
Preprocess Data for Accurate Results 13-61
Compare Handwritten Shapes . 13-61

Feature Selection . 13-68
Introduction to Feature Selection 13-68
Sequential Feature Selection . 13-68

Feature Transformation . 13-72
Introduction to Feature Transformation 13-72
Nonnegative Matrix Factorization 13-72
Principal Component Analysis (PCA) 13-75
Quality of Life in U.S. Cities . 13-76
Factor Analysis . 13-88

Partial Least Squares Regression and Principal Components
Regression . 13-98

Cluster Analysis
14

Introduction to Cluster Analysis . 14-2

Hierarchical Clustering . 14-3
Introduction to Hierarchical Clustering 14-3
Algorithm Description . 14-3
Similarity Measures . 14-4
Linkages . 14-6
Dendrograms . 14-8
Verify the Cluster Tree . 14-9
Create Clusters . 14-16

k-Means Clustering . 14-21
Introduction to k-Means Clustering 14-21

xxi

Create Clusters and Determine Separation 14-22
Determine the Correct Number of Clusters 14-24
Avoid Local Minima . 14-27

Clustering Using Gaussian Mixture Models 14-29
Clustering Using Gaussian Mixture Distributions 14-29
Soft Clustering Using Gaussian Mixture Distributions . . . 14-33
Assign New Data to Clusters . 14-36

Parametric Classification
15

Parametric Classification . 15-2

Discriminant Analysis . 15-3
What Is Discriminant Analysis? . 15-3
Create Discriminant Analysis Classifiers 15-3
Creating a Classifier Using fitcdiscr 15-4
How the predict Method Classifies 15-6
Create and Visualize Discriminant Analysis Classifier 15-9
Improve a Discriminant Analysis Classifier 15-14
Regularize a Discriminant Analysis Classifier 15-21
Examine the Gaussian Mixture Assumption 15-24
Bibliography . 15-30

Naive Bayes Classification . 15-31
Supported Distributions . 15-31

Performance Curves . 15-35
Introduction to Performance Curves 15-35
What are ROC Curves? . 15-35
Evaluate Classifier Performance Using perfcurve 15-35

xxii Contents

Nonparametric Supervised Learning
16

Supervised Learning Workflow and Algorithms 16-2
Steps in Supervised Learning . 16-2
Characteristics of Classification Algorithms 16-6

Classification Using Nearest Neighbors 16-8
Pairwise Distance Metrics . 16-8
k-Nearest Neighbor Search and Radius Search 16-11
Classify Query Data . 16-16
Find Nearest Neighbors Using a Custom Distance Metric . 16-24
K-Nearest Neighbor Classification for Supervised Learning 16-28
Construct a KNN Classifier . 16-28
Examine the Quality of a KNN Classifier 16-29
Predict Classification Based on a KNN Classifier 16-30
Modify a KNN Classifier . 16-30

Classification Trees and Regression Trees 16-33
What Are Classification Trees and Regression Trees? 16-33
Creating a Classification Tree . 16-34
Creating a Regression Tree . 16-34
Viewing a Classification or Regression Tree 16-35
How the Fit Methods Create Trees 16-38
Predicting Responses With Classification and Regression

Trees . 16-40
Predict Out-of-Sample Responses of Subtrees 16-41
Improving Classification Trees and Regression Trees 16-44
Alternative: classregtree . 16-55

Splitting Categorical Predictors . 16-65
Challenges in Splitting Multilevel Predictors 16-65
Pull Left By Purity . 16-66
Principal Component-Based Partitioning 16-66
One Versus All By Class . 16-66

Ensemble Methods . 16-68
Framework for Ensemble Learning 16-68
Basic Ensemble Examples . 16-76
Test Ensemble Quality . 16-79
Classification with Imbalanced Data 16-84
Classification: Imbalanced Data or Unequal Misclassification

Costs . 16-89

xxiii

Classification with Many Categorical Levels 16-96
Surrogate Splits . 16-100
LPBoost and TotalBoost for Small Ensembles 16-103
Ensemble Regularization . 16-108
Tune RobustBoost . 16-121
Random Subspace Classification 16-124
TreeBagger Examples . 16-129
Ensemble Algorithms . 16-155

Support Vector Machines (SVM) . 16-170
Understanding Support Vector Machines 16-170
Using Support Vector Machines 16-176
Train SVM Classifiers Using a Gaussian Kernel 16-178
Train SVM Classifiers Using a Custom Kernel 16-183
Train and Cross Validate SVM Classifiers 16-189
Plot Posterior Probability Regions for SVM Classification

Models . 16-201
Analyze Images Using Linear Support Vector Machines . 16-204

Bibliography . 16-209

Classification Learner
17

Explore Classification Models Interactively 17-2

Select Data and Validation for Classification Problem 17-5
Select Data from the Workspace . 17-5
Choose Validation Scheme . 17-6

Choose a Classifier . 17-8
Choose a Classifier Type . 17-8
Decision Trees . 17-10
Support Vector Machines . 17-14
Nearest Neighbor Classifiers . 17-16
Ensemble Classifiers . 17-20

Select Features . 17-23

xxiv Contents

Assess Classifier Performance . 17-25
Check Performance in the History List 17-25
Understand the Confusion Matrix 17-25
Understand the ROC Curve . 17-27

Export Classification Model to Predict New Data 17-29
Export the Model to the Workspace to Make Predictions for

New Data . 17-29
Generate MATLAB Code to Train the Model with New

Data . 17-30

Explore Decision Trees Interactively 17-32

Explore Support Vector Machines Interactively 17-43

Explore Nearest Neighbor Classification Interactively . . 17-45

Explore Ensemble Classification Interactively 17-47

Markov Models
18

Introduction to Markov Models . 18-2

Markov Chains . 18-3

Hidden Markov Models (HMM) . 18-5
Introduction to Hidden Markov Models (HMM) 18-5
Analyzing Hidden Markov Models . 18-7

Design of Experiments
19

Design of Experiments . 19-2

Full Factorial Designs . 19-3
Multilevel Designs . 19-3

xxv

Two-Level Designs . 19-3

Fractional Factorial Designs . 19-5
Introduction to Fractional Factorial Designs 19-5
Plackett-Burman Designs . 19-5
General Fractional Designs . 19-6

Response Surface Designs . 19-9
Introduction to Response Surface Designs 19-9
Central Composite Designs . 19-9
Box-Behnken Designs . 19-13

D-Optimal Designs . 19-15
Introduction to D-Optimal Designs 19-15
Generate D-Optimal Designs . 19-16
Augment D-Optimal Designs . 19-18
Specify Fixed Covariate Factors . 19-19
Specify Categorical Factors . 19-20
Specify Candidate Sets . 19-21

Improve an Engine Cooling Fan Using Design for Six Sigma
Techniques . 19-24

Statistical Process Control
20

Introduction to Statistical Process Control 20-2

Control Charts . 20-3
. 20-6

Capability Studies . 20-7

xxvi Contents

Parallel Statistics
21

Quick Start Parallel Computing for Statistics and Machine
Learning Toolbox . 21-2

What Is Parallel Statistics Functionality? 21-2
How To Compute in Parallel . 21-4
Parallel Treebagger . 21-5

Concepts of Parallel Computing in Statistics and Machine
Learning Toolbox . 21-7

Subtleties in Parallel Computing . 21-7
Vocabulary for Parallel Computation 21-7

When to Run Statistical Functions in Parallel 21-8
Why Run in Parallel? . 21-8
Factors Affecting Speed . 21-8
Factors Affecting Results . 21-9

Working with parfor . 21-10
How Statistical Functions Use parfor 21-10
Characteristics of parfor . 21-11

Reproducibility in Parallel Statistical Computations 21-13
Issues and Considerations in Reproducing Parallel

Computations . 21-13
Running Reproducible Parallel Computations 21-13
Parallel Statistical Computation Using Random Numbers . 21-14

Examples of Parallel Statistical Functions 21-18
Parallel Jackknife . 21-18
Parallel Cross Validation . 21-19
Parallel Bootstrap . 21-21

xxvii

Functions — Alphabetical List
22

Sample Data Sets
A

Distribution Reference
B

Bernoulli Distribution . B-2
Overview . B-2
Parameters . B-2
Probability Mass Function . B-2
Mean and Variance . B-2
Relationship to Other Distributions B-3

Beta Distribution . B-4
Overview . B-4
Parameters . B-4
Probability Density Function . B-5
Cumulative Distribution Function . B-7
Example . B-7

Binomial Distribution . B-9
Overview . B-9
Parameters . B-9
Probability Density Function . B-9
Mean and Variance . B-10
Relationship to Other Distributions B-10
Example . B-10

Birnbaum-Saunders Distribution . B-13
Definition . B-13
Background . B-13
Parameters . B-14

xxviii Contents

Burr Type XII Distribution . B-15
Definition . B-15
Background . B-16
Parameters . B-17
Fit a Burr Distribution and Draw the cdf B-18
Compare Lognormal and Burr pdfs B-20
Burr pdf for Various Parameters . B-22
Survival and Hazard Functions of Burr Distribution B-24
Divergence of Parameter Estimates B-26

Chi-Square Distribution . B-29
Overview . B-29
Parameters . B-29
Probability Density Function . B-29
Cumulative Distribution Function B-30
Descriptive Statistics . B-30
Relationship to Other Distributions B-30
Examples . B-30

Copulas . B-33

Custom Distributions . B-34

Exponential Distribution . B-35
Definition . B-35
Background . B-35
Parameters . B-35
Examples . B-36

Extreme Value Distribution . B-39
Definition . B-39
Background . B-39
Parameters . B-41
Examples . B-42

F Distribution . B-45
Definition . B-45
Background . B-45
Examples . B-46

Gamma Distribution . B-48
Definition . B-48
Background . B-48

xxix

Parameters . B-49
Examples . B-50

Gaussian Distribution . B-52

Gaussian Mixture Distributions . B-53

Generalized Extreme Value Distribution B-54
Definition . B-54
Background . B-54
Parameters . B-55
Examples . B-56

Generalized Pareto Distribution . B-60
Definition . B-60
Background . B-60
Parameters . B-61
Examples . B-62

Geometric Distribution . B-65
Overview . B-65
Parameters . B-65
Probability Distribution Function . B-65
Cumulative Distribution Function B-68
Mean and Variance . B-70
Example . B-71

Hypergeometric Distribution . B-74
Definition . B-74
Background . B-74
Examples . B-75

Inverse Gaussian Distribution . B-77
Definition . B-77
Background . B-77
Parameters . B-77

Inverse Wishart Distribution . B-78
Definition . B-78
Background . B-78
Example . B-78
See Also . B-79

xxx Contents

Johnson System . B-80

Kernel Distribution . B-81
Overview . B-81
Kernel Density Estimator . B-81
Kernel Smoothing Function . B-81
Bandwidth . B-87

Logistic Distribution . B-91
Overview . B-91
Parameters . B-91
Probability Density Function . B-91
Relationship to Other Distributions B-91

Loglogistic Distribution . B-93
Overview . B-93
Parameters . B-93
Probability Density Function . B-93
Relationship to Other Distributions B-94

Lognormal Distribution . B-95
Overview . B-95
Parameters . B-95
Probability Density Function . B-95
Descriptive Statistics . B-96
Relationship to Other Distributions B-96
Examples . B-96

Multinomial Distribution . B-98
Overview . B-98
Parameter . B-98
Probability Density Function . B-98
Descriptive Statistics . B-99
Relationship to Other Distributions B-99

Multivariate Gaussian Distribution B-100

Multivariate Normal Distribution . B-101
Definition . B-101
Background . B-101
Examples . B-102

xxxi

Multivariate t Distribution . B-107
Definition . B-107
Background . B-107
Example . B-108

Nakagami Distribution . B-113
Definition . B-113
Background . B-113
Parameters . B-113

Negative Binomial Distribution . B-115
Definition . B-115
Background . B-115
Parameters . B-116
Example . B-118

Noncentral Chi-Square Distribution B-120
Definition . B-120
Background . B-120
Examples . B-121

Noncentral F Distribution . B-123
Definition . B-123
Background . B-123
Examples . B-124

Noncentral t Distribution . B-126
Definition . B-126
Background . B-126
Examples . B-127

Normal Distribution . B-130
Definition . B-130
Background . B-130
Parameters . B-130
Examples . B-132

Pareto Distribution . B-134

Pearson System . B-135

Piecewise Linear Distribution . B-136
Overview . B-136

xxxii Contents

Parameters . B-136
Cumulative Distribution Function B-136
Relationship to Other Distributions B-136

Poisson Distribution . B-138
Definition . B-138
Background . B-138
Parameters . B-139
Examples . B-139

Rayleigh Distribution . B-141
Definition . B-141
Background . B-141
Parameters . B-141
Examples . B-142

Rician Distribution . B-144
Definition . B-144
Background . B-144
Parameters . B-144

Student's t Distribution . B-146
Overview . B-146
Parameters . B-146
Probability Density Function . B-146
Cumulative Distribution Function B-149
Mean and Variance . B-151
Example . B-152

t Location-Scale Distribution . B-154
Overview . B-154
Parameters . B-154
Probability Density Function . B-154
Cumulative Distribution Function B-155
Descriptive Statistics . B-155
Relationship to Other Distributions B-156

Triangular Distribution . B-157
Overview . B-157
Parameters . B-157
Probability Density Function . B-158
Cumulative Distribution Function B-159
Descriptive Statistics . B-161

xxxiii

Uniform Distribution (Continuous) B-163
Overview . B-163
Parameters . B-163
Probability Density Function . B-163
Cumulative Distribution Function B-165
Descriptive Statistics . B-167
Relationship to Other Distributions B-168

Uniform Distribution (Discrete) . B-169
Definition . B-169
Background . B-169
Examples . B-169

Weibull Distribution . B-172
Definition . B-172
Background . B-172
Parameters . B-173
Example . B-173

Wishart Distribution . B-175
Overview . B-175
Parameters . B-175
Probability Density Function . B-175
Example . B-176

Bibliography
C

1

Getting Started

• “Statistics and Machine Learning Toolbox Product Description” on page 1-2
• “Supported Data Types” on page 1-3

1 Getting Started

1-2

Statistics and Machine Learning Toolbox Product Description
Analyze and model data using statistics and machine learning

Statistics and Machine Learning Toolbox™ provides functions and apps to describe,
analyze, and model data using statistics and machine learning. You can use descriptive
statistics and plots for exploratory data analysis, fit probability distributions to data,
generate random numbers for Monte Carlo simulations, and perform hypothesis tests.
Regression and classification algorithms let you draw inferences from data and build
predictive models.

For analyzing multidimensional data, Statistics and Machine Learning Toolbox lets
you identify key variables or features that impact your model with sequential feature
selection, stepwise regression, principal component analysis, regularization, and other
dimensionality reduction methods. The toolbox provides supervised and unsupervised
machine learning algorithms, including support vector machines (SVMs), boosted and
bagged decision trees, k-nearest neighbor, k-means, k-medoids, hierarchical clustering,
Gaussian mixture models, and hidden Markov models.

Key Features

• Regression techniques, including linear, generalized linear, nonlinear, robust,
regularized, ANOVA, and mixed-effects models

• Repeated measures modeling for data with multiple measurements per subject
• Univariate and multivariate probability distributions, including copulas and

Gaussian mixtures
• Random and quasi-random number generators and Markov chain samplers
• Hypothesis tests for distributions, dispersion, and location, and design of experiments

(DOE) techniques for optimal, factorial, and response surface designs
• Classification Learner app and algorithms for supervised machine learning, including

support vector machines (SVMs), boosted and bagged decision trees, k-nearest
neighbor, Naïve Bayes, and discriminant analysis

• Unsupervised machine learning algorithms, including k-means, k-medoids,
hierarchical clustering, Gaussian mixtures, and hidden Markov models

 Supported Data Types

1-3

Supported Data Types

Statistics and Machine Learning Toolbox supports the following data types for input
arguments:

• Numeric scalars, vectors, matrices, or arrays having single- or double-precision
entries. These data forms have data type single or double. Examples include
response variables, predictor variables, and numeric values.

• Cell vectors of strings; character, logical, or categorical arrays; or numeric vectors for
categorical variables representing grouping data. These data forms have data types
cellstr, char, logical, categorical, and single or double, respectively. An
example is an array of class labels in machine learning.

• You can also use nominal or ordinal arrays for categorical data. However, the
nominal and ordinal data types might be removed in a future release. To work
with nominal or ordinal categorical data, use the categorical data type instead.

• You can use signed or unsigned integers, e.g., int8 or uint8. However:

• Estimation functions might not support signed or unsigned integer data types
for nongrouping data.

• If you recast a single or double numeric vector containing NaN values to a
signed or unsigned integer, then the software converts the NaN elements to 0.

• Some functions support tabular arrays for heterogeneous data (for details, see
“Tables”). The table data type contains variables of any of the data types previously
listed. An example is mixed categorical and numerical predictor data for regression
analysis.

• For some functions, you can also use dataset arrays for heterogeneous data.
However, the dataset data type might be removed in a future release. To work
with heterogeneous data, use the table data type if the estimation function
supports it.

• Functions that do not support the table data type support sample data of type
single or double, e.g., matrices.

Statistics and Machine Learning Toolbox does not support the following data types:

• Complex numbers.
• Custom numeric data types, e.g., a variable that is double precision and an object.
• Numeric scalars, vectors, matrices, or arrays on a GPU.

1 Getting Started

1-4

• Signed or unsigned numeric integers for nongrouping data, e.g., unint8 and int16.
• Sparse matrices, i.e., matrix A such that issparse(A) returns 1. To use data that is

of data type sparse, recast the data to a matrix using full.

Note: If you specify data of an unsupported type, then the software might return an error
or unexpected results.

2

Organizing Data

• “Other MATLAB Functions Supporting Nominal and Ordinal Arrays” on page
2-3

• “Create Nominal and Ordinal Arrays” on page 2-4
• “Change Category Labels” on page 2-9
• “Reorder Category Levels” on page 2-11
• “Categorize Numeric Data” on page 2-16
• “Merge Category Levels” on page 2-19
• “Add and Drop Category Levels” on page 2-21
• “Plot Data Grouped by Category” on page 2-25
• “Test Differences Between Category Means” on page 2-29
• “Summary Statistics Grouped by Category” on page 2-38
• “Sort Ordinal Arrays” on page 2-40
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44
• “Index and Search Using Categorical Arrays” on page 2-47
• “Grouping Variables” on page 2-52
• “Dummy Indicator Variables” on page 2-55
• “Regression with Categorical Covariates” on page 2-58
• “Create a Dataset Array from Workspace Variables” on page 2-63
• “Create a Dataset Array from a File” on page 2-69
• “Add and Delete Observations” on page 2-77
• “Add and Delete Variables” on page 2-81
• “Access Data in Dataset Array Variables” on page 2-85
• “Select Subsets of Observations” on page 2-91
• “Sort Observations in Dataset Arrays” on page 2-95

2 Organizing Data

2-2

• “Merge Dataset Arrays” on page 2-99
• “Stack or Unstack Dataset Arrays” on page 2-103
• “Calculations on Dataset Arrays” on page 2-108
• “Export Dataset Arrays” on page 2-111
• “Clean Messy and Missing Data” on page 2-113
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Dataset Arrays” on page 2-132
• “Index and Search Dataset Arrays” on page 2-135

 Other MATLAB Functions Supporting Nominal and Ordinal Arrays

2-3

Other MATLAB Functions Supporting Nominal and Ordinal Arrays

Notable functions that operate on nominal and ordinal arrays are listed in Using
nominal Objects and Using ordinal Objects. In addition to these, many other functions
in MATLAB® operate on nominal and ordinal arrays in much the same way that they
operate on other arrays. A few functions might exhibit special behavior when operating
on categorical arrays:

• If multiple input arguments are categorical arrays, the function often requires that
they have the same set of categories, including order if ordinal.

• Relational functions, such as max and gt, require that the input arrays be ordinal.

The following table lists MATLAB functions that operate on nominal and ordinal arrays
in addition to other arrays.

size

length

ndims

numel

isrow

iscolumn

cat

horzcat

vertcat

isequal

isequaln

eq

ne

lt

le

ge

gt

min

max

median

mode

intersect

ismember

setdiff

setxor

unique

union

histogram

pietimes

sort

sortrows

issorted

permute

reshape

transpose

ctranspose

double

single

int8

int16

int32

int64

uint8

uint16

uint32

uint64

char

cellstr

See Also
Using nominal Objects | Using ordinal Objects

2 Organizing Data

2-4

Create Nominal and Ordinal Arrays

In this section...

“Create Nominal Arrays” on page 2-4
“Create Ordinal Arrays” on page 2-6

Create Nominal Arrays

This example shows how to create nominal arrays using nominal.

Load sample data.

The variable species is a 150-by-1 cell array of strings containing the species name for
each observation. The unique species types are setosa, versicolor, and virginica.

load('fisheriris')

unique(species)

ans =

 'setosa'

 'versicolor'

 'virginica'

Create a nominal array.

Convert species to a nominal array using the categories occurring in the data.

speciesNom = nominal(species);

class(speciesNom)

ans =

nominal

Explore category levels.

The nominal array, speciesNom, has three levels corresponding to the three unique
species. The levels of a nominal array are the set of possible values that its elements can
take.

getlevels(speciesNom)

 Create Nominal and Ordinal Arrays

2-5

ans =

 setosa versicolor virginica

A nominal array can have more levels than actually appear in the data. For example, a
nominal array named AllSizes might have levels small, medium, and large, but you
might only have observations that are medium and large in your data. To see which
levels of a nominal array are actually present in the data, use unique, for instance,
unique(AllSizes).

Explore category labels.

Each level has a label, which is a string used to name the level. By default, nominal
labels the category levels with the values occurring in the data. For speciesNom, these
labels are the species types.

getlabels(speciesNom)

ans =

 'setosa' 'versicolor' 'virginica'

Specify your own category labels.

You can specify your own labels for each category level. You can specify labels when you
create the nominal array.

speciesNom2 = nominal(species,{'seto','vers','virg'});

getlabels(speciesNom2)

ans =

 'seto' 'vers' 'virg'

You can also change category labels on an existing nominal array using setlabels

Verify new category labels.

Verify that the new labels correspond to the original labels in speciesNom.

isequal(speciesNom=='setosa',speciesNom2=='seto')

ans =

 1

2 Organizing Data

2-6

The logical value 1 indicates that the two labels, 'setosa' and 'seto', correspond to
the same observations.

Create Ordinal Arrays

This example shows how to create ordinal arrays using ordinal.

Load sample data.

AllSizes = {'medium','large','small','small','medium',...

 'large','medium','small'};

The created variable, AllSizes, is a cell array of strings containing size measurements
on eight objects.

Create an ordinal array.

Create an ordinal array with category levels and labels corresponding to the values in the
cell array (the default levels and labels).

sizeOrd = ordinal(AllSizes);

getlevels(sizeOrd)

ans =

 large medium small

Explore category labels.

By default, ordinal uses the original strings as category labels. The default order of the
categories is ascending alphabetical order.

getlabels(sizeOrd)

ans =

 'large' 'medium' 'small'

Add additional categories.

Suppose that you want to include additional levels for the ordinal array, xsmall and
xlarge, even though they do not occur in the original data. To specify additional levels,
use the third input argument to ordinal.

 Create Nominal and Ordinal Arrays

2-7

sizeOrd2 = ordinal(AllSizes,{},...

 {'xsmall','small','medium','large','xlarge'});

getlevels(sizeOrd2)

ans =

 xsmall small medium large xlarge

Explore category labels.

To see which levels are actually present in the data, use unique.

unique(sizeOrd2)

ans =

 small medium large

Specify the category order.

Convert AllSizes to an ordinal array with categories small < medium < large.
Generally, an ordinal array is distinct from a nominal array because there is a natural
ordering for levels of an ordinal array. You can use the third input argument to ordinal
to specify the ascending order of the levels. Here, the order of the levels is smallest to
largest.

sizeOrd = ordinal(AllSizes,{},{'small','medium','large'});

getlevels(sizeOrd)

ans =

 small medium large

The second input argument for ordinal is a list of labels for the category levels. When
you use braces {} for the level labels, ordinal uses the labels specified in the third
input argument (the labels come from the levels present in the data if only one input
argument is used).

Compare elements.

Verify that the first object (with size medium) is smaller than the second object (with size
large).

sizeOrd(1) < sizeOrd(2)

2 Organizing Data

2-8

ans =

 1

The logical value 1 indicates that the inequality holds.

See Also
getlabels | getlevels | nominal | ordinal

Related Examples
• “Change Category Labels” on page 2-9
• “Reorder Category Levels” on page 2-11
• “Merge Category Levels” on page 2-19
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

 Change Category Labels

2-9

Change Category Labels

This example shows how to change the labels for category levels in categorical arrays
using setlabels. You also have the option to specify labels when creating a categorical
array.

Load sample data.

The variable Cylinders contains the number of cylinders in 100 sample cars.

load('carsmall')

unique(Cylinders)

ans =

 4

 6

 8

The sample has 4-, 6-, and 8-cylinder cars.

Create an ordinal array.

Convert Cylinders to a nominal array with the default category labels (taken from the
values in the data).

cyl = ordinal(Cylinders);

getlabels(cyl)

ans =

 '4' '6' '8'

ordinal created labels using the integer values in Cylinders, but you should provide
labels for numeric data.

Change category labels.

Relabel the categories in cyl to Four, Six, and Eight.

cyl = setlabels(cyl ,{'Four','Six','Eight'});

getlabels(cyl)

ans =

2 Organizing Data

2-10

 'Four' 'Six' 'Eight'

Alternatively, you can specify category labels when you create a nominal or ordinal array
using the second input argument, for example by specifying ordinal(Cylinders,
{'Four','Six','Eight'}).

See Also
getlabels | nominal | ordinal | setlabels

Related Examples
• “Reorder Category Levels” on page 2-11
• “Add and Drop Category Levels” on page 2-21
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

 Reorder Category Levels

2-11

Reorder Category Levels

In this section...

“Reorder Category Levels in Ordinal Arrays” on page 2-11
“Reorder Category Levels in Nominal Arrays” on page 2-12

Reorder Category Levels in Ordinal Arrays

This example shows how to reorder the category levels in an ordinal array using
reorderlevels.

Load sample data.

AllSizes = {'medium','large','small','small','medium',...

 'large','medium','small'};

The created variable, AllSizes, is a cell array of strings containing size measurements
on eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array without specifying the order of the category levels.

size = ordinal(size);

getlevels(size)

ans =

 large medium small

By default, the categories are ordered by their labels in ascending alphabetical order,
large < medium < small.

Compare elements.

Check whether or not the first object (which has size medium) is smaller than the second
object (which has size large).

size(1) < size(2)

ans =

2 Organizing Data

2-12

 0

The logical value 0 indicates that the medium object is not smaller than the large object.

Reorder category levels.

Reorder the category levels so that small < medium < large.

size = reorderlevels(size,{'small','medium','large'});

getlevels(size)

ans =

 small medium large

Compare elements.

Verify that the first object is now smaller than the second object.

size(1) < size(2)

ans =

 1

The logical value 1 indicates that the expected inequality now holds.

Reorder Category Levels in Nominal Arrays

This example shows how to reorder the category levels in nominal arrays using
reorderlevels. By definition, nominal array categories have no natural ordering.
However, you might want to change the order of levels for display or analysis purposes.
For example, when fitting a regression model with categorical covariates, fitlm uses the
first level of a nominal independent variable as the reference category.

Load sample data.

The dataset array, hospital, contains variables measured on 100 sample patients.
The variable Weight contains the weight of each patient. The variable Sex is a nominal
variable containing the gender, Male or Female, for each patient.

load('hospital')

getlevels(hospital.Sex)

ans =

 Reorder Category Levels

2-13

 Female Male

By default, the order of the nominal categories is in ascending alphabetical order of the
labels.

Plot data grouped by category level.

Draw box plots of weight, grouped by gender.

figure()

boxplot(hospital.Weight,hospital.Sex)

title('Weight by Gender')

The box plots appear in the same alphabetical order returned by getlevels.

Change the category order.

Change the order of the category levels.

hospital.Sex = reorderlevels(hospital.Sex,{'Male','Female'});

2 Organizing Data

2-14

getlevels(hospital.Sex)

ans =

 Male Female

The levels are in the newly specified order.

Plot data in new order.

Draw box plots of weight by gender.

figure()

boxplot(hospital.Weight,hospital.Sex)

title('Weight by Gender')

The order of the box plots corresponds to the new level order.

See Also
fitlm | getlevels | nominal | ordinal | reorderlevels

 Reorder Category Levels

2-15

Related Examples
• “Change Category Labels” on page 2-9
• “Merge Category Levels” on page 2-19
• “Add and Drop Category Levels” on page 2-21
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

2 Organizing Data

2-16

Categorize Numeric Data

This example shows how to categorize numeric data into a categorical ordinal array using
ordinal. This is useful for discretizing continuous data.

Load sample data.

The dataset array, hospital, contains variables measured on a sample of patients.
Compute the minimum, median, and maximum of the variable Age.

load('hospital')

quantile(hospital.Age,[0,.5,1])

ans =

 25 39 50

The patient ages range from 25 to 50.

Convert a numeric array to an ordinal array.

Group patients into the age categories Under 30, 30-39, Over 40.

hospital.AgeCat = ordinal(hospital.Age,{'Under 30','30-39','Over 40'},...

 [],[25,30,40,50]);

getlevels(hospital.AgeCat)

ans =

 Under 30 30-39 Over 40

The last input argument to ordinal has the endpoints for the categories. The first
category begins at age 25, the second at age 30, and so on. The last category contains
ages 40 and above, so begins at 40 and ends at 50 (the maximum age in the data set). To
specify three categories, you must specify four endpoints (the last endpoint is the upper
bound of the last category).

Explore categories.

Display the age and age category for the second patient.

dataset({hospital.Age(2),'Age'},...

 {hospital.AgeCat(2),'AgeCategory'})

ans =

 Categorize Numeric Data

2-17

 Age AgeCategory

 43 Over 40

When you discretize a numeric array into categories, the categorical array loses all
information about the actual numeric values. In this example, AgeCat is not numeric,
and you cannot recover the raw data values from it.

Categorize a numeric array into quartiles.

The variable Weight has weight measurements for the sample patients. Categorize the
patient weights into four categories, by quartile.

p = 0:.25:1;

breaks = quantile(hospital.Weight,p);

hospital.WeightQ = ordinal(hospital.Weight,{'Q1','Q2','Q3','Q4'},...

 [],breaks);

getlevels(hospital.WeightQ)

ans =

 Q1 Q2 Q3 Q4

Explore categories.

Display the weight and weight quartile for the second patient.

dataset({hospital.Weight(2),'Weight'},...

 {hospital.WeightQ(2),'WeightQuartile'})

ans =

 Weight WeightQuartile

 163 Q3

Summary statistics grouped by category levels.

Compute the mean systolic and diastolic blood pressure for each age and weight category.

grpstats(hospital,{'AgeCat','WeightQ'},'mean','DataVars','BloodPressure')

ans =

 AgeCat WeightQ GroupCount mean_BloodPressure

 Under 30_Q1 Under 30 Q1 6 123.17 79.667

2 Organizing Data

2-18

 Under 30_Q2 Under 30 Q2 3 120.33 79.667

 Under 30_Q3 Under 30 Q3 2 127.5 86.5

 Under 30_Q4 Under 30 Q4 4 122 78

 30-39_Q1 30-39 Q1 12 121.75 81.75

 30-39_Q2 30-39 Q2 9 119.56 82.556

 30-39_Q3 30-39 Q3 9 121 83.222

 30-39_Q4 30-39 Q4 11 125.55 87.273

 Over 40_Q1 Over 40 Q1 7 122.14 84.714

 Over 40_Q2 Over 40 Q2 13 123.38 79.385

 Over 40_Q3 Over 40 Q3 14 123.07 84.643

 Over 40_Q4 Over 40 Q4 10 124.6 85.1

The variable BloodPressure is a matrix with two columns. The first column is systolic
blood pressure, and the second column is diastolic blood pressure. The group in the
sample with the highest mean diastolic blood pressure, 87.273, is aged 30–39 and in the
highest weight quartile, 30-39_Q4.

See Also
grpstats | ordinal

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-4
• “Merge Category Levels” on page 2-19
• “Plot Data Grouped by Category” on page 2-25
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

 Merge Category Levels

2-19

Merge Category Levels

This example shows how to merge categories in a categorical array using mergelevels.
This is useful for collapsing categories with few observations.

Load sample data.

load('carsmall')

Create a nominal array.

The variable Origin is a character array containing the country of origin for 100 sample
cars. Convert Origin to a nominal array.

Origin = nominal(Origin);

getlevels(Origin)

ans =

 France Germany Italy Japan Sweden USA

There are six unique countries of origin in the data.

Tabulate category counts.

Explore the elements of the categorical array.

tabulate(Origin)

 Value Count Percent

 France 4 4.00%

 Germany 9 9.00%

 Italy 1 1.00%

 Japan 15 15.00%

 Sweden 2 2.00%

 USA 69 69.00%

There are relatively few observations in each European country.

Merge categories.

Merge the categories France, Germany, Italy, and Sweden into one category called
Europe.

Origin = mergelevels(Origin,{'France','Germany','Italy','Sweden'},...

2 Organizing Data

2-20

 'Europe');

getlevels(Origin)

ans =

 Japan USA Europe

The variable Origin now has only three category levels.

Tabulate category counts.

Explore the elements of the merged categories.

tabulate(Origin)

 Value Count Percent

 Japan 15 15.00%

 USA 69 69.00%

 Europe 16 16.00%

The category Europe has the 16% of observations that were previously distributed across
four countries.

See Also
mergelevels | nominal

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-4
• “Add and Drop Category Levels” on page 2-21
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

 Add and Drop Category Levels

2-21

Add and Drop Category Levels

This example shows how to add and drop levels from a categorical array.

Load sample data.

load('examgrades')

The array grades contains exam scores from 0 to 100 on five exams for a sample of 120
students.

Create an ordinal array.

Assign letter grades to each student for each test using these categories.

Grade Range Letter Grade

100 A+
90–99 A
80–89 B
70–79 C
60–69 D

letter = ordinal(grades,{'D','C','B','A','A+'},[],...

 [60,70,80,90,100,100]);

getlevels(letter)

ans =

 D C B A A+

There are five grade categories, in the specified order D < C < B < A < A+.

Check for undefined categories.

Check whether or not there are any exam scores that do not fall into the five letter
categories.

any(isundefined(letter))

ans =

2 Organizing Data

2-22

 1 0 1 1 0

Recall that there are five exam scores for each student. The previous command returns
a logical value for each of the five exams, indicating whether there are any scores that
are <undefined>. There are scores for the first, third, and fourth exams that are
<undefined>, that is, missing a category level.

Identify elements in undefined categories.

You can find the exam scores that do not have a letter grade using the isundefined
logical condition.

grades(isundefined(letter))

ans =

 55

 59

 58

 59

 54

 57

 56

 59

 59

 50

 59

 52

The exam scores that are in the 50s do not have a letter grade.

Add a new category.

Put all scores that are <undefined> into a new category labeled D-.

letter(isundefined(letter)) = 'D-';

getlevels(letter)

Warning: Categorical level 'D-' being added.

> In categorical.subsasgn at 55

ans =

 D C B A A+ D-

The ordinal variable, letter, has a new category added to the end.

 Add and Drop Category Levels

2-23

Reorder category levels.

Reorder the categories so that D- < D.

letter = reorderlevels(letter,{'D-','D','C','B','A','A+'});

getlevels(letter)

ans =

 D- D C B A A+

Compare elements.

Now that all exam scores have a letter grade, count how many students received a higher
letter grade on the second test than on the first test.

sum(letter(:,2) > letter(:,1))

ans =

 32

Thirty-two students improved their letter grade between the first two exams.

Explore categories.

Count the number of A+ scores in each of the five exams.

sum(letter=='A+')

ans =

 0 0 0 0 0

There are no A+ scores on any of the five exams.

Drop a category.

Drop the category A+ from the ordinal variable, letter.

letter = droplevels(letter,'A+');

getlevels(letter)

ans =

 D- D C B A

2 Organizing Data

2-24

Category A+ is no longer in the ordinal variable, letter.

See Also
droplevels | ordinal | reorderlevels

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-4
• “Reorder Category Levels” on page 2-11
• “Merge Category Levels” on page 2-19
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

 Plot Data Grouped by Category

2-25

Plot Data Grouped by Category

This example shows how to plot data grouped by the levels of a categorical variable.

Load sample data.

load('carsmall')

The variable Acceleration contains acceleration measurements on 100 sample cars.
The variable Origin is a character array containing the country of origin for each car.

Create a nominal array.

Convert Origin to a nominal array.

Origin = nominal(Origin);

getlevels(Origin)

ans =

 France Germany Italy Japan Sweden USA

There are six unique countries of origin in the sample. By default, nominal orders the
countries in ascending alphabetical order.

Plot data grouped by category.

Draw box plots for Acceleration, grouped by Origin.

figure()

boxplot(Acceleration,Origin)

title('Acceleration, Grouped by Country of Origin')

2 Organizing Data

2-26

The box plots appear in the same order as the categorical levels (use reorderlevels to
change the order of the categories).

Few observations have Italy as the country of origin.

Tabulate category counts.

Tabulate the number of sample cars from each country.

tabulate(Origin)

 Value Count Percent

 France 4 4.00%

 Germany 9 9.00%

 Italy 1 1.00%

 Japan 15 15.00%

 Sweden 2 2.00%

 USA 69 69.00%

Only one car is made in Italy.

 Plot Data Grouped by Category

2-27

Drop a category.

Delete the Italian car from the sample.

Acceleration2 = Acceleration(Origin~='Italy');

Origin2 = Origin(Origin~='Italy');

getlevels(Origin2)

ans =

 France Germany Italy Japan Sweden USA

Even though the car from Italy is no longer in the sample, the nominal variable,
Origin2, still has the category Italy. Note that this is intentional—the levels of a
categorical array do not necessarily coincide with the values.

Drop a category level.

Use droplevels to remove the Italy category.

Origin2 = droplevels(Origin2,'Italy');

tabulate(Origin2)

tabulate(Origin2)

 Value Count Percent

 France 4 4.04%

 Germany 9 9.09%

 Japan 15 15.15%

 Sweden 2 2.02%

 USA 69 69.70%

The Italy category is no longer in the nominal array, Origin2.

Plot data grouped by category.

Draw box plots of Acceleration2, grouped by Origin2.

figure()

boxplot(Acceleration2,Origin2)

title('Acceleration, Grouped by Country of Origin')

2 Organizing Data

2-28

The plot no longer includes the car from Italy.

See Also
boxplot | droplevels | nominal | reorderlevels

Related Examples
• “Test Differences Between Category Means” on page 2-29
• “Summary Statistics Grouped by Category” on page 2-38
• “Regression with Categorical Covariates” on page 2-58

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44
• “Grouping Variables” on page 2-52

 Test Differences Between Category Means

2-29

Test Differences Between Category Means

This example shows how to test for significant differences between category (group)
means using a t-test, two-way ANOVA (analysis of variance), and ANOCOVA (analysis of
covariance) analysis.

The goal is determining if the expected miles per gallon for a car depends on the decade
in which it was manufactured, or the location where it was manufactured.

Load sample data.

load('carsmall')

unique(Model_Year)

ans =

 70

 76

 82

The variable MPG has miles per gallon measurements on a sample of 100 cars. The
variables Model_Year and Origin contain the model year and country of origin for each
car.

The first factor of interest is the decade of manufacture. There are three manufacturing
years in the data.

Create a factor for the decade of manufacture.

Create an ordinal array named Decade by merging the observations from years 70 and
76 into a category labeled 1970s, and putting the observations from 82 into a category
labeled 1980s.

Decade = ordinal(Model_Year,{'1970s','1980s'},[],[70 77 82]);

getlevels(Decade)

ans =

 1970s 1980s

Plot data grouped by category.

Draw a box plot of miles per gallon, grouped by the decade of manufacture.

figure()

2 Organizing Data

2-30

boxplot(MPG,Decade)

title('Miles per Gallon, Grouped by Decade of Manufacture')

The box plot suggests that miles per gallon is higher in cars manufactured during the
1980s compared to the 1970s.

Compute summary statistics.

Compute the mean and variance of miles per gallon for each decade.

[xbar,s2,grp] = grpstats(MPG,Decade,{'mean','var','gname'})

xbar =

 19.7857

 31.7097

s2 =

 Test Differences Between Category Means

2-31

 35.1429

 29.0796

grp =

 '1970s'

 '1980s'

This output shows that the mean miles per gallon in the 1980s was 31.71, compared to
19.79 in the 1970s. The variances in the two groups are similar.

Conduct a two-sample t-test for equal group means.

Conduct a two-sample t-test, assuming equal variances, to test for a significant difference
between the group means. The hypothesis is

H

H
A

0 70 80

70 80

:

: .

m m

m m

=

π

MPG70 = MPG(Decade=='1970s');

MPG80 = MPG(Decade=='1980s');

[h,p] = ttest2(MPG70,MPG80)

h =

 1

p =

 3.4809e-15

The logical value 1 indicates the null hypothesis is rejected at the default 0.05
significance level. The p-value for the test is very small. There is sufficient evidence that
the mean miles per gallon in the 1980s differs from the mean miles per gallon in the
1970s.

Create a factor for the location of manufacture.

The second factor of interest is the location of manufacture. First, convert Origin to a
nominal array.

Location = nominal(Origin);

tabulate(Location)

2 Organizing Data

2-32

tabulate(Location)

 Value Count Percent

 France 4 4.00%

 Germany 9 9.00%

 Italy 1 1.00%

 Japan 15 15.00%

 Sweden 2 2.00%

 USA 69 69.00%

There are six different countries of manufacture. The European countries have relatively
few observations.

Merge categories.

Combine the categories France, Germany, Italy, and Sweden into a new category
named Europe.

Location = mergelevels(Location,{'France','Germany','Italy','Sweden'},...

 'Europe');

tabulate(Location)

 Value Count Percent

 Japan 15 15.00%

 USA 69 69.00%

 Europe 16 16.00%

Compute summary statistics.

Compute the mean miles per gallon, grouped by the location of manufacture.

[xbar,grp] = grpstats(MPG,Location,{'mean','gname'})

xbar =

 31.8000

 21.1328

 26.6667

grp =

 'Japan'

 'USA'

 'Europe'

This result shows that average miles per gallon is lowest for the sample of cars
manufactured in the U.S.

 Test Differences Between Category Means

2-33

Conduct two-way ANOVA.

Conduct a two-way ANOVA to test for differences in expected miles per gallon between
factor levels for Decade and Location.

The statistical model is

MPG i jij i j ij= + + + = =m a b e , , ; , , ,1 2 1 2 3

where MPGij is the response, miles per gallon, for cars made in decade i at location j. The
treatment effects for the first factor, decade of manufacture, are the αi terms (constrained
to sum to zero). The treatment effects for the second factor, location of manufacture, are
the βj terms (constrained to sum to zero). The εij are uncorrelated, normally distributed
noise terms.

The hypotheses to test are equality of decade effects,

H

H at least oneA i

0 1 2 0

0

:

: ,

a a

a

= =

π

and equality of location effects,

H

H at least oneA j

0 1 2 3
0

0

:

: .

b b b

b

= = =

π

You can conduct a multiple-factor ANOVA using anovan.

anovan(MPG,{Decade,Location},'varnames',{'Decade','Location'});

2 Organizing Data

2-34

This output shows the results of the two-way ANOVA. The p-value for testing the
equality of decade effects is 2.88503e-18, so the null hypothesis is rejected at the 0.05
significance level. The p-value for testing the equality of location effects is 7.40416e-10,
so this null hypothesis is also rejected.

Conduct ANOCOVA analysis.

A potential confounder in this analysis is car weight. Cars with greater weight are
expected to have lower gas mileage. Include the variable Weight as a continuous
covariate in the ANOVA; that is, conduct an ANOCOVA analysis.

Assuming parallel lines, the statistical model is

MPG Weight i j kijk i j ijk ijk= + + + + = = =m a b g e , , ; , , ; ,..., .1 2 1 2 3 1 100

The difference between this model and the two-way ANOVA model is the inclusion of
the continuous predictor, Weightijk, the weight for the kth car, which was made in the ith
decade and in the jth location. The slope parameter is γ.

Add the continuous covariate as a third group in the second anovan input argument. Use
the name-value pair argument Continuous to specify that Weight (the third group) is
continuous.

anovan(MPG,{Decade,Location,Weight},'Continuous',3,...

 'varnames',{'Decade','Location','Weight'});

 Test Differences Between Category Means

2-35

This output shows that when car weight is considered, there is insufficient evidence of a
manufacturing location effect (p-value = 0.1044).

Use interactive tool.

You can use the interactive aoctool to explore this result.

aoctool(Weight,MPG,Location);

This command opens three dialog boxes. In the ANOCOVA Prediction Plot dialog box,
select the Separate Means model.

This output shows that when you do not include Weight in the model, there are fairly
large differences in the expected miles per gallon among the three manufacturing
locations. Note that here the model does not adjust for the decade of manufacturing.

2 Organizing Data

2-36

Now, select the Parallel Lines model.

When you include Weight in the model, the difference in expected miles per gallon
among the three manufacturing locations is much smaller.

See Also
anovan | aoctool | boxplot | grpstats | nominal | ordinal | ttest2

Related Examples
• “Plot Data Grouped by Category” on page 2-25
• “Summary Statistics Grouped by Category” on page 2-38
• “Regression with Categorical Covariates” on page 2-58

 Test Differences Between Category Means

2-37

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44
• “Grouping Variables” on page 2-52

2 Organizing Data

2-38

Summary Statistics Grouped by Category

This example shows how to compute summary statistics grouped by levels of a
categorical variable. You can compute group summary statistics for a numeric array or a
dataset array using grpstats.

Load sample data.

load('hospital')

The dataset array, hospital, has 7 variables (columns) and 100 observations (rows).

Compute summary statistics by category.

The variable Sex is a nominal array with two levels, Male and Female. Compute the
minimum and maximum weights for each gender.

stats = grpstats(hospital,'Sex',{'min','max'},'DataVars','Weight')

stats =

 Sex GroupCount min_Weight max_Weight

 Female Female 53 111 147

 Male Male 47 158 202

The dataset array, stats, has observations corresponding to the levels of the variable
Sex. The variable min_Weight contains the minimum weight for each group, and the
variable max_Weight contains the maximum weight for each group.

Compute summary statistics by multiple categories.

The variable Smoker is a logical array with value 1 for smokers and value 0 for
nonsmokers. Compute the minimum and maximum weights for each gender and smoking
combination.

stats = grpstats(hospital,{'Sex','Smoker'},{'min','max'},...

 'DataVars','Weight')

stats =

 Sex Smoker GroupCount min_Weight max_Weight

 Female_0 Female false 40 111 147

 Female_1 Female true 13 115 146

 Male_0 Male false 26 158 194

 Male_1 Male true 21 164 202

 Summary Statistics Grouped by Category

2-39

The dataset array, stats, has an observation row for each combination of levels of Sex
and Smoker in the original data.

See Also
dataset | grpstats | nominal

Related Examples
• “Plot Data Grouped by Category” on page 2-25
• “Test Differences Between Category Means” on page 2-29
• “Calculations on Dataset Arrays” on page 2-108

More About
• “Grouping Variables” on page 2-52
• “Categorical Arrays” on page 2-42
• “Dataset Arrays” on page 2-132

2 Organizing Data

2-40

Sort Ordinal Arrays

This example shows how to determine sorting order for ordinal arrays.

Load sample data.

AllSizes = {'medium','large','small','small','medium',...

 'large','medium','small'};

The created variable, AllSizes, is a cell array of strings containing size measurements
on eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array with levels small < medium < large.

AllSizes = ordinal(AllSizes,{},{'small','medium','large'});

getlevels(AllSizes)

ans =

 small medium large

Sort the ordinal array.

When you sort ordinal arrays, the sorted observations are in the same order as the
category levels.

sizeSort = sort(AllSizes);

sizeSort(:)

ans =

 small

 small

 small

 medium

 medium

 medium

 large

 large

 Sort Ordinal Arrays

2-41

The sorted ordinal array, sizeSort, contains the observations ordered from small to
large.

See Also
ordinal

Related Examples
• “Reorder Category Levels” on page 2-11
• “Add and Drop Category Levels” on page 2-21

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

2 Organizing Data

2-42

Categorical Arrays

Note: The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

In this section...

“What Are Categorical Arrays?” on page 2-42
“Categorical Array Conversion” on page 2-42

What Are Categorical Arrays?

Categorical arrays are Statistics and Machine Learning Toolbox data types for storing
categorical values. Categorical arrays store data that have a finite set of discrete levels,
which might or might not have a natural order. There are two types of categorical arrays:

• ordinal arrays store categorical values with ordered levels. For example, an ordinal
variable might have levels {small, medium, large}.

• nominal arrays store categorical values with unordered levels. For example, a
nominal variable might have levels {red, blue, green}.

In experimental design, these variables are often called factors, with ordered or
unordered factor levels.

Categorical arrays are convenient and memory efficient containers for storing categorical
variables. In addition to storing information about which category each observation
belongs to, categorical arrays store descriptive metadata including category labels and
order.

Categorical arrays have associated methods that streamline common tasks such as
merging categories, adding or dropping levels, and changing level labels.

Categorical Array Conversion

You can easily convert to and from categorical arrays. To create a nominal or ordinal
array, use nominal or ordinal, respectively. You can convert these data types to
categorical arrays:

 Categorical Arrays

2-43

• Numeric array
• Logical array
• Character array
• Cell array of strings

See Also
nominal | ordinal

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-4
• “Summary Statistics Grouped by Category” on page 2-38
• “Plot Data Grouped by Category” on page 2-25
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Advantages of Using Categorical Arrays” on page 2-44
• “Grouping Variables” on page 2-52

2 Organizing Data

2-44

Advantages of Using Categorical Arrays

Note: The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

In this section...

“Manipulate Category Levels” on page 2-44
“Analysis Using Categorical Arrays” on page 2-44
“Reduce Memory Requirements” on page 2-45

Manipulate Category Levels

When working with categorical variables and their levels, you’ll encounter some typical
challenges. This table summarizes the functions you can use with categorical arrays
to manipulate category levels. For additional functions, type methods nominal or
methods ordinal at the command line, or see the nominal and ordinal reference
pages.

Task Function

Add new category levels addlevels

Drop category levels droplevels

Combine category levels mergelevels

Reorder category levels reorderlevels

Count the number of observations in each category levelcounts

Change the label or name of category levels setlabels

Create an interaction factor times

Find observations that are not in a defined category isundefined

Analysis Using Categorical Arrays

You can use categorical arrays in a variety of statistical analyses. For example, you
might want to compute descriptive statistics for data grouped by the category levels,

 Advantages of Using Categorical Arrays

2-45

conduct statistical tests on differences between category means, or perform regression
analysis using categorical predictors.

Statistics and Machine Learning Toolbox functions that accept a grouping variable as an
input argument accept categorical arrays. This includes descriptive functions such as:

• grpstats

• gscatter

• boxplot

• gplotmatrix

You can also use categorical arrays as input arguments to analysis functions and
methods based on models, such as:

• anovan

• fitlm

• fitglm

• fitnlm

When you use a categorical array as a predictor in these functions, the fitting function
automatically recognizes the categorical predictor, and constructs appropriate dummy
indicator variables for analysis. Alternatively, you can construct your own dummy
indicator variables using dummyvar.

Reduce Memory Requirements

The levels of categorical variables are often defined as text strings, which can be costly
to store and manipulate in a cell array of strings or char array. Categorical arrays
separately store category membership and category labels, greatly reducing the amount
of memory required to store the variable.

For example, load some sample data:

load('fisheriris')

The variable species is a cell array of strings requiring 19,300 bytes of memory.

2 Organizing Data

2-46

Convert species to a nominal array:

species = nominal(species);

There is a 95% reduction in memory required to store the variable.

See Also
nominal | ordinal

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-4
• “Test Differences Between Category Means” on page 2-29
• “Regression with Categorical Covariates” on page 2-58
• “Index and Search Using Categorical Arrays” on page 2-47

More About
• “Categorical Arrays” on page 2-42
• “Grouping Variables” on page 2-52
• “Dummy Indicator Variables” on page 2-55

 Index and Search Using Categorical Arrays

2-47

Index and Search Using Categorical Arrays

Note: The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Index By Category

It is often useful to index and search data by its category, or group. If you store categories
as string labels inside a cell array of strings or char array, it can be difficult to index and
search the categories. When using categorical arrays, you can easily:

• Index elements from particular categories. For both nominal and ordinal arrays,
you can use the logical operators == and ~= to index the observations that are in, or
not in, a particular category. For ordinal arrays, which have an encoded order, you
can also use inequalities, >, >=, <, and <=, to find observations in categories above or
below a particular category.

• Search for members of a category. In addition to the logical operator ==, you can
use ismember to find observations in a particular group.

• Find elements that are not in a defined category. Categorical arrays indicate
which elements do not belong to a defined category by <undefined>. You can use
isundefined to find observations missing a category.

• Delete observations that are in a particular category. You can use logical
operators to include or exclude observations from particular categories. Even if you
remove all observations from a category, the category level remains defined unless
you remove it using droplevels.

Common Indexing and Searching Methods

This example shows several common indexing and searching methods.

Load the sample data.

load carsmall;

Convert the char array, Origin, to a nominal array. This variable contains the country
of origin, or manufacture, for each sample car.

2 Organizing Data

2-48

Origin = nominal(Origin);

Search for observations in a category. Determine if there are any cars in the sample that
were manufactured in Canada.

any(Origin=='Canada')

ans =

 0

There are no sample cars manufactured in Canada.

List the countries that are levels of Origin.

getlevels(Origin)

ans =

 France Germany Italy Japan Sweden USA

Index elements that are in a particular category. Plot a histogram of the acceleration
measurements for cars made in the U.S.

figure();

histogram(Acceleration(Origin=='USA'))

title('Acceleration of Cars Made in the USA')

 Index and Search Using Categorical Arrays

2-49

Delete observations that are in a particular category. Delete all cars made in Sweden
from Origin.

Origin = Origin(Origin~='Sweden');

any(ismember(Origin,'Sweden'))

ans =

 0

The cars made in Sweden are deleted from Origin, but Sweden is still a level of Origin.

getlevels(Origin)

2 Organizing Data

2-50

ans =

 France Germany Italy Japan Sweden USA

Remove Sweden from the levels of Origin.

Origin = droplevels(Origin,'Sweden');

getlevels(Origin)

ans =

 France Germany Italy Japan USA

Check for observations not in a defined category. Get the indices for the cars made in
France.

ix = find(Origin=='France')

ix =

 11

 27

 39

 61

There are four cars from France. Remove France from the levels of Origin.

Origin = droplevels(Origin,'France');

This returns a warning indicating that you are dropping a category level that has
elements in it. These observations are no longer in a defined category, indicated by
undefined.

Origin(ix)

ans =

 <undefined>

 Index and Search Using Categorical Arrays

2-51

 <undefined>

 <undefined>

 <undefined>

You can use isundefined to search for observations with an undefined category.

find(isundefined(Origin))

ans =

 11

 27

 39

 61

These indices correspond to the observations that were in category France, before that
category was dropped from Origin.

See Also
droplevels | nominal | ordinal

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-4
• “Reorder Category Levels” on page 2-11
• “Merge Category Levels” on page 2-19
• “Add and Drop Category Levels” on page 2-21

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44

2 Organizing Data

2-52

Grouping Variables

In this section...

“What Are Grouping Variables?” on page 2-52
“Group Definition” on page 2-53
“Analysis Using Grouping Variables” on page 2-53
“Missing Group Values” on page 2-54

What Are Grouping Variables?

Grouping variables are utility variables used to group, or categorize, observations.
Grouping variables are useful for summarizing or visualizing data by group. A grouping
variable can be any of these data types:

• Numeric vector
• Logical vector
• String array (also called character arrays)
• Cell array of strings
• Categorical vector

A grouping variable must have the same number of observations (rows) as the table,
dataset array, or numeric array you are grouping. Observations that have the same
grouping variable value belong to the same group.

For example, the following variables comprise the same groups. Each grouping variable
divides five observations into two groups. The first group contains the first and fourth
observations. The other three observations are in the second group.

Data Type Grouping Variable

Numeric vector [1 2 2 1 2]

Logical vector [0 1 1 0 1]

Cell array of strings {'Male','Female','Female','Male','Female'}

Categorical vector Male Female Female Male Female

 Grouping Variables

2-53

Grouping variables with string labels give each group a meaningful name. A categorical
array is an efficient and flexible choice of grouping variable.

Group Definition

Typically, there are as many groups as unique values in the grouping variable. However,
categorical arrays can have levels that are not represented in the data. The groups and
the order of the groups depend on the data type of the grouping variable. Suppose G is a
grouping variable.

• If G is a numeric or logical vector, then the groups correspond to the distinct values in
G, in the sorted order of the unique values.

• If G is a string array or cell array of strings, then the groups correspond to the distinct
strings in G, in the order of their first appearance.

• If G is a categorical vector, then the groups correspond to the unique category levels in
G, in the order returned by getlevels.

Some functions, such as grpstats, accept multiple grouping variables specified as a
cell array of grouping variables, for example, {G1,G2,G3}. In this case, the groups are
defined by the unique combinations of values in the grouping variables. The order is
decided first by the order of the first grouping variable, then by the order of the second
grouping variable, and so on.

Analysis Using Grouping Variables

This table lists common tasks you might want to perform using grouping variables.

Grouping Task Function Accepting Grouping Variable

Draw side-by-side boxplots for data in
different groups.

boxplot

Draw a scatter plot with markers colored
by group.

gscatter

Draw a scatter plot matrix with markers
colored by group.

gplotmatrix

Compute summary statistics by group. grpstats

Test for differences between group means. anovan

2 Organizing Data

2-54

Grouping Task Function Accepting Grouping Variable

Create an index vector from a grouping
variable.

grp2idx

Missing Group Values

Grouping variables can have missing values provided you include a valid indicator.

Grouping Variable Data Type Missing Value Indicator

Numeric vector NaN

Logical vector (Cannot be missing)
String array Row of spaces
Cell array of strings ''

Categorical vector <undefined>

See Also
nominal | ordinal

Related Examples
• “Plot Data Grouped by Category” on page 2-25
• “Summary Statistics Grouped by Category” on page 2-38

More About
• “Categorical Arrays” on page 2-42
• “Advantages of Using Categorical Arrays” on page 2-44
• Using nominal Objects
• Using ordinal Objects

 Dummy Indicator Variables

2-55

Dummy Indicator Variables

In this section...

“What Are Dummy Variables?” on page 2-55
“Creating Dummy Variables” on page 2-56

What Are Dummy Variables?

When performing regression analysis, it is common to include both continuous and
categorical (quantitative and qualitative) predictor variables. When including a
categorical independent variable, it is important not to input the variable as a numeric
array. Numeric arrays have both order and magnitude. A categorical variable might have
order (for example, an ordinal variable), but it does not have magnitude. Using a numeric
array implies a known “distance” between the categories.

The appropriate way to include categorical predictors is as dummy indicator variables.
An indicator variable has values 0 and 1. A categorical variable with c categories can be
represented by c – 1 indicator variables.

For example, suppose you have a categorical variable with levels
{Small,Medium,Large}. You can represent this variable using two dummy variables,
as shown in this figure.

X1 X2

Small

Medium

Large

0 0

1 0

0 1
Reference

 Group

2 Organizing Data

2-56

In this example, X1 is a dummy variable that has value 1 for the Medium group, and 0
otherwise. X2 is a dummy variable that has value 1 for the Large group, and 0 otherwise.
Together, these two variables represent the three categories. Observations in the Small
group have 0s for both dummy variables.

The category represented by all 0s is the reference group. When you include the dummy
variables in a regression model, the coefficients of the dummy variables are interpreted
with respect to the reference group.

Creating Dummy Variables

Automatic Creation of Dummy Variables

The regression fitting functions, fitlm, fitglm, and fitnlm, recognize categorical
array inputs as categorical predictors. That is, if you input your categorical predictor
as a nominal or ordinal array, the fitting function automatically creates the required
dummy variables. The first level returned by getlevels is the reference group. To use a
different reference group, use reorderlevels to change the level order.

If there are c unique levels in the categorical array, then the fitting function estimates c –
1 regression coefficients for the categorical predictor.

Note: The fitting functions use every level of the categorical array returned by
getlevels, even if there are levels with no observations. To remove levels from the
categorical array, use droplevels.

Manual Creation of Dummy Variables

If you prefer to create your own dummy variable design matrix, use dummyvar. This
function accepts a numeric or categorical column vector, and returns a matrix of indicator
variables. The dummy variable design matrix has a column for every group, and a row
for every observation.

For example,

gender = nominal({'Male';'Female';'Female';'Male';'Female'});

dv = dummyvar(gender)

dv =

 Dummy Indicator Variables

2-57

 0 1

 1 0

 1 0

 0 1

 1 0

There are five rows corresponding to the number of rows in gender, and two columns
for the unique groups, Female and Male. Column order corresponds to the order of the
levels in gender. For nominal arrays, the default order is ascending alphabetical.

To use these dummy variables in a regression model, you must either delete a column
(to create a reference group), or fit a regression model with no intercept term. For the
gender example, only one dummy variable is needed to represent two genders. Notice
what happens if you add an intercept term to the complete design matrix, dv.

X = [ones(5,1) dv]

X =

 1 0 1

 1 1 0

 1 1 0

 1 0 1

 1 1 0

rank(X)

ans =

 2

The design matrix with an intercept term is not of full rank, and is not invertible.
Because of this linear dependence, use only c – 1 indicator variables to represent a
categorical variable with c categories in a regression model with an intercept term.

See Also
dummyvar | fitglm | fitlm | fitnlm | nominal | ordinal

Related Examples
• “Regression with Categorical Covariates” on page 2-58
• “Test Differences Between Category Means” on page 2-29

2 Organizing Data

2-58

Regression with Categorical Covariates

This example shows how to perform a regression with categorical covariates using
categorical arrays and fitlm.

Load sample data.

load('carsmall')

The variable MPG contains measurements on the miles per gallon of 100 sample cars. The
model year of each car is in the variable Model_Year, and Weight contains the weight of
each car.

Plot grouped data.

Draw a scatter plot of MPG against Weight, grouped by model year.

figure()

gscatter(Weight,MPG,Model_Year,'bgr','x.o')

title('MPG vs. Weight, Grouped by Model Year')

 Regression with Categorical Covariates

2-59

The grouping variable, Model_Year, has three unique values, 70, 76, and 82,
corresponding to model years 1970, 1976, and 1982.

Create table and nominal arrays.

Create a table that contains the variables MPG, Weight, and Model_Year. Convert the
variable Model_Year to a nominal array.

cars = table(MPG,Weight,Model_Year);

cars.Model_Year = nominal(cars.Model_Year);

Fit a regression model.

Fit a regression model using fitlm with MPG as the dependent variable, and Weight
and Model_Year as the independent variables. Because Model_Year is a categorical
covariate with three levels, it should enter the model as two indicator variables.

The scatter plot suggests that the slope of MPG against Weight might differ for each
model year. To assess this, include weight-year interaction terms.

The proposed model is

E MPG Weight I I Weight I() [] [] []= + + + + ¥ +b b b b b b0 1 2 3 4 51976 1982 1976 WWeight I¥ [],1982

where I[1976] and I[1982] are dummy variables indicating the model years 1976 and
1982, respectively. I[1976] takes the value 1 if model year is 1976 and takes the value 0 if
it is not. I[1982] takes the value 1 if model year is 1982 and takes the value 0 if it is not.
In this model, 1970 is the reference year.

fit = fitlm(cars,'MPG~Weight*Model_Year')

fit =

Linear regression model:

 MPG ~ 1 + Weight*Model_Year

Estimated Coefficients:

 Estimate SE

 ___________ __________

 (Intercept) 37.399 2.1466

 Weight -0.0058437 0.00061765

 Model_Year_76 4.6903 2.8538

 Model_Year_82 21.051 4.157

2 Organizing Data

2-60

 Weight:Model_Year_76 -0.00082009 0.00085468

 Weight:Model_Year_82 -0.0050551 0.0015636

 tStat pValue

 ________ __________

 (Intercept) 17.423 2.8607e-30

 Weight -9.4612 4.6077e-15

 Model_Year_76 1.6435 0.10384

 Model_Year_82 5.0641 2.2364e-06

 Weight:Model_Year_76 -0.95953 0.33992

 Weight:Model_Year_82 -3.2329 0.0017256

Number of observations: 94, Error degrees of freedom: 88

Root Mean Squared Error: 2.79

R-squared: 0.886, Adjusted R-Squared 0.88

F-statistic vs. constant model: 137, p-value = 5.79e-40

The regression output shows:

• fitlmrecognizes Model_Year as a nominal variable, and constructs the required
indicator (dummy) variables. By default, the first level, 70, is the reference group (use
reorderlevels to change the reference group).

• The model specification, MPG~Weight*Model_Year, specifies the first-order terms for
Weight and Model_Year, and all interactions.

• The model R2 = 0.886, meaning the variation in miles per gallon is reduced by 88.6%
when you consider weight, model year, and their interactions.

• The fitted model is

MPG Weight I I Weightˆ . . . [] . [] .= - + + - ¥37 4 0 006 4 7 1976 21 1 1982 0 0008 II Weight I[] . [].1976 0 005 1982- ¥

Thus, the estimated regression equations for the model years are as follows.

Model Year Predicted MPG Against Weight

1970
MPG Weightˆ . .= -37 4 0 006

1976
MPG Weightˆ (. .) (. .)= + - +37 4 4 7 0 006 0 0008

 Regression with Categorical Covariates

2-61

Model Year Predicted MPG Against Weight

1982
MPG Weightˆ (. .) (. .)= + - +37 4 21 1 0 006 0 005

The relationship between MPG and Weight has an increasingly negative slope as the
model year increases.

Plot fitted regression lines.

Plot the data and fitted regression lines.

w = linspace(min(Weight),max(Weight));

figure()

gscatter(Weight,MPG,Model_Year,'bgr','x.o')

line(w,feval(fit,w,'70'),'Color','b','LineWidth',2)

line(w,feval(fit,w,'76'),'Color','g','LineWidth',2)

line(w,feval(fit,w,'82'),'Color','r','LineWidth',2)

title('Fitted Regression Lines by Model Year')

2 Organizing Data

2-62

Test for different slopes.

Test for significant differences between the slopes. This is equivalent to testing the
hypothesis

H

H iA i

0 4 5 0

0

:

: .

b b

b

= =

π for at least one

anova(fit)

ans =

 SumSq DF MeanSq F pValue

 Weight 2050.2 1 2050.2 263.87 3.2055e-28

 Model_Year 807.69 2 403.84 51.976 1.2494e-15

 Weight:Model_Year 81.219 2 40.609 5.2266 0.0071637

 Error 683.74 88 7.7698

This output shows that the p-value for the test is 0.0072 (from the interaction row,
Weight:Model_Year), so the null hypothesis is rejected at the 0.05 significance level.
The value of the test statistic is 5.2266. The numerator degrees of freedom for the test is
2, which is the number of coefficients in the null hypothesis.

There is sufficient evidence that the slopes are not equal for all three model years.

See Also
dataset | fitlm | nominal | reorderlevels

Related Examples
• “Plot Data Grouped by Category” on page 2-25
• “Test Differences Between Category Means” on page 2-29
• “Summary Statistics Grouped by Category” on page 2-38

More About
• “Advantages of Using Categorical Arrays” on page 2-44
• “Grouping Variables” on page 2-52
• “Dummy Indicator Variables” on page 2-55

 Create a Dataset Array from Workspace Variables

2-63

Create a Dataset Array from Workspace Variables

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...

“Create a Dataset Array from a Numeric Array” on page 2-63
“Create Dataset Array from Heterogeneous Workspace Variables” on page 2-66

Create a Dataset Array from a Numeric Array

This example shows how to create a dataset array from a numeric array existing in the
MATLAB workspace.

Load sample data.

load('fisheriris')

Two variables load into the workspace: meas, a 150-by-4 numeric array, and species, a
150-by-1 cell array of strings containing species labels.

Create a dataset array.

Use mat2dataset to convert the numeric array, meas, into a dataset array.

ds = mat2dataset(meas);

ds(1:10,:)

ans =

 meas1 meas2 meas3 meas4

 5.1 3.5 1.4 0.2

 4.9 3 1.4 0.2

 4.7 3.2 1.3 0.2

 4.6 3.1 1.5 0.2

 5 3.6 1.4 0.2

 5.4 3.9 1.7 0.4

 4.6 3.4 1.4 0.3

2 Organizing Data

2-64

 5 3.4 1.5 0.2

 4.4 2.9 1.4 0.2

 4.9 3.1 1.5 0.1

The array, meas, has four columns, so the dataset array, ds, has four variables. The
default variable names are the array name, meas, with column numbers appended.

You can specify your own variable or observation names using the name-value pair
arguments VarNames and ObsNames, respectively.

If you use dataset to convert a numeric array to a dataset array, by default, the
resulting dataset array has one variable that is an array instead of separate variables for
each column.

Examine the dataset array.

Return the size of the dataset array, ds.

size(ds)

ans =

 150 4

The dataset array, ds, is the same size as the numeric array, meas. Variable names and
observation names do not factor into the size of a dataset array.

Explore dataset array metadata.

Return the metadata properties of the dataset array, ds.

ds.Properties

ans =

 Description: ''

 VarDescription: {}

 Units: {}

 DimNames: {'Observations' 'Variables'}

 UserData: []

 ObsNames: {}

 VarNames: {'meas1' 'meas2' 'meas3' 'meas4'}

You can also access the properties individually. For example, you can retrieve the
variable names using ds.Properties.VarNames.

 Create a Dataset Array from Workspace Variables

2-65

Access data in a dataset array variable.

You can use variable names with dot indexing to access the data in a dataset array. For
example, find the minimum value in the first variable, meas1.

min(ds.meas1)

ans =

 4.3000

Change variable names.

The four variables in ds are actually measurements of sepal length, sepal width, petal
length, and petal width. Modify the variable names to be more descriptive.

ds.Properties.VarNames = {'SLength','SWidth','PLength','PWidth'};

Add description.

you can add a description for the dataset array.

ds.Properties.Description = 'Fisher iris data';

ds.Properties

ans =

 Description: 'Fisher iris data'

 VarDescription: {}

 Units: {}

 DimNames: {'Observations' 'Variables'}

 UserData: []

 ObsNames: {}

 VarNames: {'SLength' 'SWidth' 'PLength' 'PWidth'}

The dataset array properties are updated with the new variable names and description.

Add a variable to the dataset array.

The variable species is a cell array of strings containing species labels. Add species
to the dataset array, ds, as a nominal array named Species. Display the first five
observations in the dataset array.

ds.Species = nominal(species);

ds(1:5,:)

2 Organizing Data

2-66

ans =

 SLength SWidth PLength PWidth Species

 5.1 3.5 1.4 0.2 setosa

 4.9 3 1.4 0.2 setosa

 4.7 3.2 1.3 0.2 setosa

 4.6 3.1 1.5 0.2 setosa

 5 3.6 1.4 0.2 setosa

The dataset array, ds, now has the fifth variable, Species.

Create Dataset Array from Heterogeneous Workspace Variables

This example shows how to create a dataset array from heterogeneous variables existing
in the MATLAB workspace.

Load sample data.

load('carsmall')

Create a dataset array.

Create a dataset array from a subset of the workspace variables.

ds = dataset(Origin,Acceleration,Cylinders,MPG);

ds.Properties.VarNames(:)

ans =

 'Origin'

 'Acceleration'

 'Cylinders'

 'MPG'

When creating the dataset array, you do not need to enter variable names. dataset
automatically uses the name of each workspace variable.

Notice that the dataset array, ds, contains a collection of variables with heterogeneous
data types. Origin is a character array, and the other variables are numeric.

Examine a dataset array.

Display the first five observations in the dataset array.

 Create a Dataset Array from Workspace Variables

2-67

ds(1:5,:)

ans =

 Origin Acceleration Cylinders MPG

 USA 12 8 18

 USA 11.5 8 15

 USA 11 8 18

 USA 12 8 16

 USA 10.5 8 17

Apply a function to a dataset array.

Use datasetfun to return the data type of each variable in ds.

varclass = datasetfun(@class,ds,'UniformOutput',false);

varclass(:)

ans =

 'char'

 'double'

 'double'

 'double'

You can get additional information about the variables using summary(ds).

Modify a dataset array.

Cylinders is a numeric variable that has values 4, 6, and 8 for the number of cylinders.
Convert Cylinders to a nominal array with levels four, six, and eight.

Display the country of origin and number of cylinders for the first 15 cars.

ds.Cylinders = nominal(ds.Cylinders,{'four','six','eight'});

ds(1:15,{'Origin','Cylinders'})

ans =

 Origin Cylinders

 USA eight

 USA eight

 USA eight

 USA eight

 USA eight

2 Organizing Data

2-68

 USA eight

 USA eight

 USA eight

 USA eight

 USA eight

 France four

 USA eight

 USA eight

 USA eight

 USA eight

The variable Cylinders has a new data type.

See Also
dataset | datasetfun | mat2dataset | nominal

Related Examples
• “Create a Dataset Array from a File” on page 2-69
• “Export Dataset Arrays” on page 2-111
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

 Create a Dataset Array from a File

2-69

Create a Dataset Array from a File

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...

“Create a Dataset Array from a Tab-Delimited Text File” on page 2-69
“Create a Dataset Array from a Comma-Separated Text File” on page 2-72
“Create a Dataset Array from an Excel File” on page 2-74

Create a Dataset Array from a Tab-Delimited Text File

This example shows how to create a dataset array from the contents of a tab-delimited
text file.

Create a dataset array using default settings.

Navigate to the folder containing sample data. Import the text file hospitalSmall.txt
as a dataset array using the default settings.

cd(matlabroot)

cd('help/toolbox/stats/examples')

ds = dataset('File','hospitalSmall.txt')

ds =

 name sex age wgt smoke

 'SMITH' 'm' 38 176 1

 'JOHNSON' 'm' 43 163 0

 'WILLIAMS' 'f' 38 131 0

 'JONES' 'f' 40 133 0

 'BROWN' 'f' 49 119 0

 'DAVIS' 'f' 46 142 0

 'MILLER' 'f' 33 142 1

 'WILSON' 'm' 40 180 0

 'MOORE' 'm' 28 183 0

 'TAYLOR' 'f' 31 132 0

2 Organizing Data

2-70

 'ANDERSON' 'f' 45 128 0

 'THOMAS' 'f' 42 137 0

 'JACKSON' 'm' 25 174 0

 'WHITE' 'm' 39 202 1

By default, dataset uses the first row of the text file for variable names. If the first row
does not contain variable names, you can specify the optional name-value pair argument
'ReadVarNames',false to change the default behavior.

The dataset array contains heterogeneous variables. The variables id, name, and sex are
cell arrays of strings, and the other variables are numeric.

Summarize the dataset array.

You can see the data type and other descriptive statistics for each variable by using
summary to summarize the dataset array.

summary(ds)

name: [14x1 cell string]

sex: [14x1 cell string]

age: [14x1 double]

 min 1st quartile median 3rd quartile max

 25 33 39.5 43 49

wgt: [14x1 double]

 min 1st quartile median 3rd quartile max

 119 132 142 176 202

smoke: [14x1 double]

 min 1st quartile median 3rd quartile max

 0 0 0 0 1

Import observation names.

Import the text file again, this time specifying that the first column contains observation
names.

ds = dataset('File','hospitalSmall.txt','ReadObsNames',true)

 Create a Dataset Array from a File

2-71

ds =

 sex age wgt smoke

 SMITH 'm' 38 176 1

 JOHNSON 'm' 43 163 0

 WILLIAMS 'f' 38 131 0

 JONES 'f' 40 133 0

 BROWN 'f' 49 119 0

 DAVIS 'f' 46 142 0

 MILLER 'f' 33 142 1

 WILSON 'm' 40 180 0

 MOORE 'm' 28 183 0

 TAYLOR 'f' 31 132 0

 ANDERSON 'f' 45 128 0

 THOMAS 'f' 42 137 0

 JACKSON 'm' 25 174 0

 WHITE 'm' 39 202 1

The elements of the first column in the text file, last names, are now observation names.
Observation names and row names are dataset array properties. You can always add or
change the observation names of an existing dataset array by modifying the property
ObsNames.

Change dataset array properties.

By default, the DimNames property of the dataset array has name as the descriptor of
the observation (row) dimension. dataset got this name from the first row of the first
column in the text file.

Change the first element of DimNames to LastName.

ds.Properties.DimNames{1} = 'LastName';

ds.Properties

ans =

 Description: ''

 VarDescription: {}

 Units: {}

 DimNames: {'LastName' 'Variables'}

 UserData: []

 ObsNames: {14x1 cell}

 VarNames: {'sex' 'age' 'wgt' 'smoke'}

2 Organizing Data

2-72

Index into dataset array.

You can use observation names to index into a dataset array. For example, return the
data for the patient with last name BROWN.

ds('BROWN',:)

ans =

 sex age wgt smoke

 BROWN 'f' 49 119 0

Note that observation names must be unique.

Create a Dataset Array from a Comma-Separated Text File

This example shows how to create a dataset array from the contents of a comma-
separated text file.

Create a dataset array.

Navigate to the folder containing sample data. Import the file hospitalSmall.csv as a
dataset array, specifying the comma-delimited format.

cd(matlabroot)

cd('help/toolbox/stats/examples')

ds = dataset('File','hospitalSmall.csv','Delimiter',',')

ds =

 id name sex age wgt smoke

 'YPL-320' 'SMITH' 'm' 38 176 1

 'GLI-532' 'JOHNSON' 'm' 43 163 0

 'PNI-258' 'WILLIAMS' 'f' 38 131 0

 'MIJ-579' 'JONES' 'f' 40 133 0

 'XLK-030' 'BROWN' 'f' 49 119 0

 'TFP-518' 'DAVIS' 'f' 46 142 0

 'LPD-746' 'MILLER' 'f' 33 142 1

 'ATA-945' 'WILSON' 'm' 40 180 0

 'VNL-702' 'MOORE' 'm' 28 183 0

 'LQW-768' 'TAYLOR' 'f' 31 132 0

 'QFY-472' 'ANDERSON' 'f' 45 128 0

 'UJG-627' 'THOMAS' 'f' 42 137 0

 'XUE-826' 'JACKSON' 'm' 25 174 0

 Create a Dataset Array from a File

2-73

 'TRW-072' 'WHITE' 'm' 39 202 1

By default, dataset uses the first row in the text file as variable names.

Add observation names.

Use the unique identifiers in the variable id as observation names. Then, delete the
variable id from the dataset array.

ds.Properties.ObsNames = ds.id;

ds.id = []

ds =

 name sex age wgt smoke

 YPL-320 'SMITH' 'm' 38 176 1

 GLI-532 'JOHNSON' 'm' 43 163 0

 PNI-258 'WILLIAMS' 'f' 38 131 0

 MIJ-579 'JONES' 'f' 40 133 0

 XLK-030 'BROWN' 'f' 49 119 0

 TFP-518 'DAVIS' 'f' 46 142 0

 LPD-746 'MILLER' 'f' 33 142 1

 ATA-945 'WILSON' 'm' 40 180 0

 VNL-702 'MOORE' 'm' 28 183 0

 LQW-768 'TAYLOR' 'f' 31 132 0

 QFY-472 'ANDERSON' 'f' 45 128 0

 UJG-627 'THOMAS' 'f' 42 137 0

 XUE-826 'JACKSON' 'm' 25 174 0

 TRW-072 'WHITE' 'm' 39 202 1

Delete observations.

Delete any patients with the last name BROWN. You can use strcmp to match the string
'BROWN' with the elements of the variable containing last names, name.

toDelete = strcmp(ds.name,'BROWN');

ds(toDelete,:) = []

ds =

 name sex age wgt smoke

 YPL-320 'SMITH' 'm' 38 176 1

 GLI-532 'JOHNSON' 'm' 43 163 0

 PNI-258 'WILLIAMS' 'f' 38 131 0

 MIJ-579 'JONES' 'f' 40 133 0

2 Organizing Data

2-74

 TFP-518 'DAVIS' 'f' 46 142 0

 LPD-746 'MILLER' 'f' 33 142 1

 ATA-945 'WILSON' 'm' 40 180 0

 VNL-702 'MOORE' 'm' 28 183 0

 LQW-768 'TAYLOR' 'f' 31 132 0

 QFY-472 'ANDERSON' 'f' 45 128 0

 UJG-627 'THOMAS' 'f' 42 137 0

 XUE-826 'JACKSON' 'm' 25 174 0

 TRW-072 'WHITE' 'm' 39 202 1

One patient having last name BROWN is deleted from the dataset array.

Return size of dataset array.

The array now has 13 observations.

size(ds)

ans =

 13 5

Note that the row and column corresponding to variable and observation names,
respectively, are not included in the size of a dataset array.

Create a Dataset Array from an Excel File

This example shows how to create a dataset array from the contents of an Excel®

spreadsheet file.

Create a dataset array.

Navigate to the folder containing sample data. Import the data from the first worksheet
in the file hospitalSmall.xlsx, specifying that the data file is an Excel spreadsheet.

cd(matlabroot)

cd('help/toolbox/stats/examples')

ds = dataset('XLSFile','hospitalSmall.xlsx')

ds =

 id name sex age wgt smoke

 'YPL-320' 'SMITH' 'm' 38 176 1

 'GLI-532' 'JOHNSON' 'm' 43 163 0

 Create a Dataset Array from a File

2-75

 'PNI-258' 'WILLIAMS' 'f' 38 131 0

 'MIJ-579' 'JONES' 'f' 40 133 0

 'XLK-030' 'BROWN' 'f' 49 119 0

 'TFP-518' 'DAVIS' 'f' 46 142 0

 'LPD-746' 'MILLER' 'f' 33 142 1

 'ATA-945' 'WILSON' 'm' 40 180 0

 'VNL-702' 'MOORE' 'm' 28 183 0

 'LQW-768' 'TAYLOR' 'f' 31 132 0

 'QFY-472' 'ANDERSON' 'f' 45 128 0

 'UJG-627' 'THOMAS' 'f' 42 137 0

 'XUE-826' 'JACKSON' 'm' 25 174 0

 'TRW-072' 'WHITE' 'm' 39 202 1

By default, dataset creates variable names using the contents of the first row in the
spreadsheet.

Specify which worksheet to import.

Import the data from the second worksheet into a new dataset array.

ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2)

ds2 =

 id name sex age wgt smoke

 'TRW-072' 'WHITE' 'm' 39 202 1

 'ELG-976' 'HARRIS' 'f' 36 129 0

 'KOQ-996' 'MARTIN' 'm' 48 181 1

 'YUZ-646' 'THOMPSON' 'm' 32 191 1

 'XBR-291' 'GARCIA' 'f' 27 131 1

 'KPW-846' 'MARTINEZ' 'm' 37 179 0

 'XBA-581' 'ROBINSON' 'm' 50 172 0

 'BKD-785' 'CLARK' 'f' 48 133 0

See Also
dataset | summary

Related Examples
• “Create a Dataset Array from Workspace Variables” on page 2-63
• “Clean Messy and Missing Data” on page 2-113
• “Export Dataset Arrays” on page 2-111

2 Organizing Data

2-76

• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

 Add and Delete Observations

2-77

Add and Delete Observations

This example shows how to add and delete observations in a dataset array. You can also
edit dataset arrays using the Variables editor.

Load sample data.

Navigate to the folder containing sample data. Import the data from the first worksheet
in hospitalSmall.xlsx into a dataset array.

cd(matlabroot)

cd('help/toolbox/stats/examples')

ds = dataset('XLSFile','hospitalSmall.xlsx');

size(ds)

ans =

 14 6

The dataset array, ds, has 14 observations (rows) and 6 variables (columns).

Add observations by concatenation.

The second worksheet in hospitalSmall.xlsx has additional patient data. Append the
observations in this spreadsheet to the end of ds.

ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2);

dsNew = [ds;ds2];

size(dsNew)

ans =

 22 6

The dataset array dsNew has 22 observations. In order to vertically concatenate two
dataset arrays, both arrays must have the same number of variables, with the same
variable names.

Add observations from a cell array.

If you want to append new observations stored in a cell array, first convert the cell array
to a dataset array, and then concatenate the dataset arrays.

cellObs = {'id','name','sex','age','wgt','smoke';

2 Organizing Data

2-78

 'YQR-965','BAKER','M',36,160,0;

 'LFG-497','WALL' ,'F',28,125,1;

 'KSD-003','REED' ,'M',32,187,0};

dsNew = [dsNew;cell2dataset(cellObs)];

size(dsNew)

ans =

 25 6

Add observations from a structure.

You can also append new observations stored in a structure. Convert the structure to a
dataset array, and then concatenate the dataset arrays.

structObs(1,1).id = 'GHK-842';

structObs(1,1).name = 'GEORGE';

structObs(1,1).sex = 'M';

structObs(1,1).age = 45;

structObs(1,1).wgt = 182;

structObs(1,1).smoke = 1;

structObs(2,1).id = 'QRH-308';

structObs(2,1).name = 'BAILEY';

structObs(2,1).sex = 'F';

structObs(2,1).age = 29;

structObs(2,1).wgt = 120;

structObs(2,1).smoke = 0;

dsNew = [dsNew;struct2dataset(structObs)];

size(dsNew)

ans =

 27 6

Delete duplicate observations.

Use unique to delete any observations in a dataset array that are duplicated.

dsNew = unique(dsNew);

size(dsNew)

ans =

 Add and Delete Observations

2-79

 21 6

One duplicated observation is deleted.

Delete observations by observation number.

Delete observations 18, 20, and 21 from the dataset array.

dsNew([18,20,21],:) = [];

size(dsNew)

ans =

 18 6

The dataset array has only 18 observations now.

Delete observations by observation name.

First, specify the variable of identifiers, id, as observation names. Then, delete the
variable id from dsNew. You can use the observation name to index observations.

dsNew.Properties.ObsNames = dsNew.id;

dsNew.id = [];

dsNew('KOQ-996',:) = [];

size(dsNew)

ans =

 17 5

The dataset array now has one less observation and one less variable.

Search for observations to delete.

You can also search for observations in the dataset array. For example, delete
observations for any patients with the last name WILLIAMS.

toDelete = strcmp(dsNew.name,'WILLIAMS');

dsNew(toDelete,:) = [];

size(dsNew)

ans =

 16 5

2 Organizing Data

2-80

The dataset array now has one less observation.

See Also
cell2dataset | dataset | struct2dataset

Related Examples
• “Add and Delete Variables” on page 2-81
• “Select Subsets of Observations” on page 2-91
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

 Add and Delete Variables

2-81

Add and Delete Variables

This example shows how to add and delete variables in a dataset array. You can also edit
dataset arrays using the Variables editor.

Load sample data.

Navigate to the folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array.

ds = dataset('XLSFile','hospitalSmall.xlsx');

size(ds)

ans =

 14 6

The dataset array, ds, has 14 observations (rows) and 6 variables (columns).

Add variables by concatenating dataset arrays.

The worksheet Heights in hospitalSmall.xlsx has heights for the patients on the
first worksheet. Concatenate the data in this spreadsheet with ds.

ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet','Heights');

ds = [ds ds2];

size(ds)

ans =

 14 7

The dataset array now has seven variables. You can only horizontally concatenate
dataset arrays with observations in the same position, or with the same observation
names.

ds.Properties.VarNames{end}

ans =

2 Organizing Data

2-82

hgt

The name of the last variable in ds is hgt, which dataset read from the first row of the
imported spreadsheet.

Delete variables by variable name.

First, specify the unique identifiers in the variable id as observation names. Then, delete
the variable id from the dataset array.

ds.Properties.ObsNames = ds.id;

ds.id = [];

size(ds)

ans =

 14 6

The dataset array now has six variables. List the variable names.

ds.Properties.VarNames(:)

ans =

 'name'

 'sex'

 'age'

 'wgt'

 'smoke'

 'hgt'

There is no longer a variable called id.

Add a new variable by name.

Add a new variable, bmi—which contains the body mass index (BMI) for each patient—to
the dataset array. BMI is a function of height and weight. Display the last name, gender,
and BMI for each patient.

ds.bmi = ds.wgt*703./ds.hgt.^2;

ds(:,{'name','sex','bmi'})

ans =

 name sex bmi

 Add and Delete Variables

2-83

 YPL-320 'SMITH' 'm' 24.544

 GLI-532 'JOHNSON' 'm' 24.068

 PNI-258 'WILLIAMS' 'f' 23.958

 MIJ-579 'JONES' 'f' 25.127

 XLK-030 'BROWN' 'f' 21.078

 TFP-518 'DAVIS' 'f' 27.729

 LPD-746 'MILLER' 'f' 26.828

 ATA-945 'WILSON' 'm' 24.41

 VNL-702 'MOORE' 'm' 27.822

 LQW-768 'TAYLOR' 'f' 22.655

 QFY-472 'ANDERSON' 'f' 23.409

 UJG-627 'THOMAS' 'f' 25.883

 XUE-826 'JACKSON' 'm' 24.265

 TRW-072 'WHITE' 'm' 29.827

The operators ./ and .^ in the calculation of BMI indicate element-wise division and
exponentiation, respectively.

Delete variables by variable number.

Delete the variable wgt, the fourth variable in the dataset array.

ds(:,4) = [];

ds.Properties.VarNames(:)

ans =

 'name'

 'sex'

 'age'

 'smoke'

 'hgt'

 'bmi'

The variable wgt is deleted from the dataset array.

See Also
dataset

Related Examples
• “Add and Delete Observations” on page 2-77
• “Merge Dataset Arrays” on page 2-99

2 Organizing Data

2-84

• “Calculations on Dataset Arrays” on page 2-108
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

 Access Data in Dataset Array Variables

2-85

Access Data in Dataset Array Variables

This example shows how to work with dataset array variables and their data.

Access variables by name.

You can access variable data, or select a subset of variables, by using variable (column)
names and dot indexing. Load a sample dataset array. Display the names of the variables
in hospital.

load hospital

hospital.Properties.VarNames(:)

ans =

 'LastName'

 'Sex'

 'Age'

 'Weight'

 'Smoker'

 'BloodPressure'

 'Trials'

The dataset array has 7 variables (columns) and 100 observations (rows). You can
double-click hospital in the Workspace window to view the dataset array in the
Variables editor.

Plot histogram.

Plot a histogram of the data in the variable Weight.

figure

histogram(hospital.Weight)

2 Organizing Data

2-86

The histogram shows that the weight distribution is bimodal.

Plot data grouped by category.

Draw box plots of Weight grouped by the values in Sex (Male and Female). That is, use
the variable Sex as a grouping variable.

figure()

boxplot(hospital.Weight,hospital.Sex)

 Access Data in Dataset Array Variables

2-87

The box plot suggests that gender accounts for the bimodality in weight.

Select a subset of variables.

Create a new dataset array with only the variables LastName, Sex, and Weight. You
can access the variables by name or column number.

ds1 = hospital(:,{'LastName','Sex','Weight'});

ds2 = hospital(:,[1,2,4]);

The dataset arrays ds1 and ds2 are equivalent. Use parentheses () when indexing
dataset arrays to preserve the data type; that is, to create a dataset array from a subset
of a dataset array. You can also use the Variables editor to create a new dataset array
from a subset of variables and observations.

Convert the variable data type.

Convert the data type of the variable Smoker from logical to nominal with labels No and
Yes.

2 Organizing Data

2-88

hospital.Smoker = nominal(hospital.Smoker,{'No','Yes'});

class(hospital.Smoker)

ans =

nominal

Explore data.

Display the first 10 elements of Smoker.

hospital.Smoker(1:10)

ans =

 Yes

 No

 No

 No

 No

 No

 Yes

 No

 No

 No

If you want to change the level labels in a nominal array, use setlabels.

Add variables.

The variable BloodPressure is a 100-by-2 array. The first column corresponds to
systolic blood pressure, and the second column to diastolic blood pressure. Separate this
array into two new variables, SysPressure and DiaPressure.

hospital.SysPressure = hospital.BloodPressure(:,1);

hospital.DiaPressure = hospital.BloodPressure(:,2);

hospital.Properties.VarNames(:)

ans =

 'LastName'

 'Sex'

 'Age'

 'Weight'

 'Smoker'

 'BloodPressure'

 Access Data in Dataset Array Variables

2-89

 'Trials'

 'SysPressure'

 'DiaPressure'

The dataset array, hospital, has two new variables.

Search for variables by name.

Use regexp to find variables in hospital with the string 'Pressure' in their name.
Create a new dataset array containing only these variables.

bp = regexp(hospital.Properties.VarNames,'Pressure');

bpIdx = cellfun(@isempty,bp);

bpData = hospital(:,~bpIdx);

bpData.Properties.VarNames(:)

ans =

 'BloodPressure'

 'SysPressure'

 'DiaPressure'

The new dataset array, bpData, contains only the blood pressure variables.

Delete variables.

Delete the variable BloodPressure from the dataset array, hospital.

hospital.BloodPressure = [];

hospital.Properties.VarNames(:)

ans =

 'LastName'

 'Sex'

 'Age'

 'Weight'

 'Smoker'

 'Trials'

 'SysPressure'

 'DiaPressure'

The variable BloodPressure is no longer in the dataset array.

See Also
dataset

2 Organizing Data

2-90

Related Examples
• “Add and Delete Variables” on page 2-81
• “Calculations on Dataset Arrays” on page 2-108
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132
• “Grouping Variables” on page 2-52

 Select Subsets of Observations

2-91

Select Subsets of Observations

This example shows how to select an observation or subset of observations from a dataset
array.

Load sample data.

Load the sample dataset array, hospital. Dataset arrays can have observation (row)
names. This array has observation names corresponding to unique patient identifiers.

load('hospital')

hospital.Properties.ObsNames(1:10)

ans =

 'YPL-320'

 'GLI-532'

 'PNI-258'

 'MIJ-579'

 'XLK-030'

 'TFP-518'

 'LPD-746'

 'ATA-945'

 'VNL-702'

 'LQW-768'

These are the first 10 observation names.

Index an observation by name.

You can use the observation names to index into the dataset array. For example, extract
the last name, sex, and age for the patient with identifier XLK-030.

hospital('XLK-030',{'LastName','Sex','Age'})

ans =

 LastName Sex Age

 XLK-030 'BROWN' Female 49

Index a subset of observations by number.

Create a new dataset array containing the first 50 patients.

ds50 = hospital(1:50,:);

2 Organizing Data

2-92

size(ds50)

ans =

 50 7

Search observations using a logical condition.

Create a new dataset array containing only male patients. To find the male patients, use
a logical condition to search the variable containing gender information.

dsMale = hospital(hospital.Sex=='Male',:);

dsMale(1:10,{'LastName','Sex'})

ans =

 LastName Sex

 YPL-320 'SMITH' Male

 GLI-532 'JOHNSON' Male

 ATA-945 'WILSON' Male

 VNL-702 'MOORE' Male

 XUE-826 'JACKSON' Male

 TRW-072 'WHITE' Male

 KOQ-996 'MARTIN' Male

 YUZ-646 'THOMPSON' Male

 KPW-846 'MARTINEZ' Male

 XBA-581 'ROBINSON' Male

Search observations using multiple conditions.

You can use multiple conditions to search the dataset array. For example, create a new
dataset array containing only female patients older than 40.

dsFemale = hospital(hospital.Sex=='Female' & hospital.Age > 40,:);

dsFemale(1:10,{'LastName','Sex','Age'})

ans =

 LastName Sex Age

 XLK-030 'BROWN' Female 49

 TFP-518 'DAVIS' Female 46

 QFY-472 'ANDERSON' Female 45

 UJG-627 'THOMAS' Female 42

 BKD-785 'CLARK' Female 48

 VWL-936 'LEWIS' Female 41

 Select Subsets of Observations

2-93

 AAX-056 'LEE' Female 44

 AFK-336 'WRIGHT' Female 45

 KKL-155 'ADAMS' Female 48

 RBA-579 'SANCHEZ' Female 44

Select a random subset of observations.

Create a new dataset array containing a random subset of 20 patients from the dataset
array hospital.

rng('default') % For reproducibility

dsRandom = hospital(randsample(length(hospital),20),:);

dsRandom.Properties.ObsNames

ans =

 'DAU-529'

 'AGR-528'

 'RBO-332'

 'QOO-305'

 'RVS-253'

 'QEQ-082'

 'EHE-616'

 'HVR-372'

 'KOQ-996'

 'REV-997'

 'PUE-347'

 'LQW-768'

 'YLN-495'

 'HJQ-495'

 'ELG-976'

 'XUE-826'

 'MEZ-469'

 'UDS-151'

 'MIJ-579'

 'DGC-290'

Delete observations by name.

Delete the data for the patient with observation name HVR-372.

hospital('HVR-372',:) = [];

size(hospital)

ans =

2 Organizing Data

2-94

 99 7

The dataset array has one less observation.

See Also
dataset

Related Examples
• “Add and Delete Observations” on page 2-77
• “Clean Messy and Missing Data” on page 2-113
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Sort Observations in Dataset Arrays” on page 2-95
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

 Sort Observations in Dataset Arrays

2-95

Sort Observations in Dataset Arrays

This example shows how to sort observations (rows) in a dataset array using the
command line. You can also sort rows using the Variables editor.

Sort observations in ascending order.

Load the sample dataset array, hospital. Sort the observations by the values in Age, in
ascending order.

load('hospital')

dsAgeUp = sortrows(hospital,'Age');

dsAgeUp(1:10,{'LastName','Age'})

ans =

 LastName Age

 XUE-826 'JACKSON' 25

 FZR-250 'HALL' 25

 PUE-347 'YOUNG' 25

 LIM-480 'HILL' 25

 SCQ-914 'JAMES' 25

 REV-997 'ALEXANDER' 25

 XBR-291 'GARCIA' 27

 VNL-702 'MOORE' 28

 DTT-578 'WALKER' 28

 XAX-646 'COOPER' 28

The youngest patients are age 25.

Sort observations in descending order.

Sort the observations by Age in descending order.

dsAgeDown = sortrows(hospital,'Age','descend');

dsAgeDown(1:10,{'LastName','Age'})

ans =

 LastName Age

 XBA-581 'ROBINSON' 50

 DAU-529 'REED' 50

 XLK-030 'BROWN' 49

 FLJ-908 'STEWART' 49

2 Organizing Data

2-96

 GGU-691 'HUGHES' 49

 MEZ-469 'GRIFFIN' 49

 KOQ-996 'MARTIN' 48

 BKD-785 'CLARK' 48

 KKL-155 'ADAMS' 48

 NSK-403 'RAMIREZ' 48

The oldest patients are age 50.

Sort observations by the values of two variables.

Sort the observations in hospital by Age, and then by LastName.

dsName = sortrows(hospital,{'Age','LastName'});

dsName(1:10,{'LastName','Age'})

ans =

 LastName Age

 REV-997 'ALEXANDER' 25

 FZR-250 'HALL' 25

 LIM-480 'HILL' 25

 XUE-826 'JACKSON' 25

 SCQ-914 'JAMES' 25

 PUE-347 'YOUNG' 25

 XBR-291 'GARCIA' 27

 XAX-646 'COOPER' 28

 QEQ-082 'COX' 28

 NSU-424 'JENKINS' 28

Now the names are sorted alphabetically within increasing age groups.

Sort observations in mixed order.

Sort the observations in hospital by Age in an increasing order, and then by Weight in
a decreasing order.

dsWeight = sortrows(hospital,{'Age','Weight'},{'ascend','descend'});

dsWeight(1:10,{'LastName','Age','Weight'})

ans =

 LastName Age Weight

 FZR-250 'HALL' 25 189

 SCQ-914 'JAMES' 25 186

 Sort Observations in Dataset Arrays

2-97

 XUE-826 'JACKSON' 25 174

 REV-997 'ALEXANDER' 25 171

 LIM-480 'HILL' 25 138

 PUE-347 'YOUNG' 25 114

 XBR-291 'GARCIA' 27 131

 NSU-424 'JENKINS' 28 189

 VNL-702 'MOORE' 28 183

 XAX-646 'COOPER' 28 127

This shows that the maximum weight among patients that are age 25 is 189 lbs.

Sort observations by observation name.

Sort the observations in hospital by the observation names.

dsObs = sortrows(hospital,'obsnames');

dsObs(1:10,{'LastName','Age'})

ans =

 LastName Age

 AAX-056 'LEE' 44

 AFB-271 'PEREZ' 44

 AFK-336 'WRIGHT' 45

 AGR-528 'SIMMONS' 45

 ATA-945 'WILSON' 40

 BEZ-311 'DIAZ' 45

 BKD-785 'CLARK' 48

 DAU-529 'REED' 50

 DGC-290 'BUTLER' 38

 DTT-578 'WALKER' 28

The observations are sorted by observation name in ascending alphabetical order.

See Also
dataset | sortrows

Related Examples
• “Select Subsets of Observations” on page 2-91
• “Stack or Unstack Dataset Arrays” on page 2-103
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

2 Organizing Data

2-98

More About
• “Dataset Arrays” on page 2-132

 Merge Dataset Arrays

2-99

Merge Dataset Arrays

This example shows how to merge dataset arrays using join.

Load sample data.

Navigate to a folder containing sample data. Import the data from the first worksheet in
hospitalSmall.xlsx into a dataset array, then keep only a few of the variables.

cd(matlabroot)

cd('help/toolbox/stats/examples')

ds1 = dataset('XLSFile','hospitalSmall.xlsx');

ds1 = ds1(:,{'id','name','sex','age'})

ds1 =

 id name sex age

 'YPL-320' 'SMITH' 'm' 38

 'GLI-532' 'JOHNSON' 'm' 43

 'PNI-258' 'WILLIAMS' 'f' 38

 'MIJ-579' 'JONES' 'f' 40

 'XLK-030' 'BROWN' 'f' 49

 'TFP-518' 'DAVIS' 'f' 46

 'LPD-746' 'MILLER' 'f' 33

 'ATA-945' 'WILSON' 'm' 40

 'VNL-702' 'MOORE' 'm' 28

 'LQW-768' 'TAYLOR' 'f' 31

 'QFY-472' 'ANDERSON' 'f' 45

 'UJG-627' 'THOMAS' 'f' 42

 'XUE-826' 'JACKSON' 'm' 25

 'TRW-072' 'WHITE' 'm' 39

The dataset array, ds1, has 14 observations (rows) and 4 variables (columns).

Import the data from the worksheet Heights2 in hospitalSmall.xlsx.

ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet','Heights2')

ds2 =

 id hgt

 'LPD-746' 61

 'PNI-258' 62

 'XUE-826' 71

2 Organizing Data

2-100

 'ATA-945' 72

 'XLK-030' 63

ds2 has height measurements for a subset of five individuals from the first dataset
array, ds1.

Merge only the matching subset of observations.

Use join to merge the two dataset arrays, ds1 and ds2, keeping only the subset of
observations that are in ds2.

JoinSmall = join(ds2,ds1)

JoinSmall =

 id hgt name sex age

 'LPD-746' 61 'MILLER' 'f' 33

 'PNI-258' 62 'WILLIAMS' 'f' 38

 'XUE-826' 71 'JACKSON' 'm' 25

 'ATA-945' 72 'WILSON' 'm' 40

 'XLK-030' 63 'BROWN' 'f' 49

In JoinSmall, the variable id only appears once. This is because it is the key variable—
the variable that links observations between the two dataset arrays—and has the same
variable name in both ds1 and ds2.

Include incomplete observations in the merge.

Merge ds1 and ds2 keeping all observations in the larger ds1.

joinAll = join(ds2,ds1,'type','rightouter','mergekeys',true)

joinAll =

 id hgt name sex age

 'ATA-945' 72 'WILSON' 'm' 40

 'GLI-532' NaN 'JOHNSON' 'm' 43

 'LPD-746' 61 'MILLER' 'f' 33

 'LQW-768' NaN 'TAYLOR' 'f' 31

 'MIJ-579' NaN 'JONES' 'f' 40

 'PNI-258' 62 'WILLIAMS' 'f' 38

 'QFY-472' NaN 'ANDERSON' 'f' 45

 'TFP-518' NaN 'DAVIS' 'f' 46

 'TRW-072' NaN 'WHITE' 'm' 39

 Merge Dataset Arrays

2-101

 'UJG-627' NaN 'THOMAS' 'f' 42

 'VNL-702' NaN 'MOORE' 'm' 28

 'XLK-030' 63 'BROWN' 'f' 49

 'XUE-826' 71 'JACKSON' 'm' 25

 'YPL-320' NaN 'SMITH' 'm' 38

Each observation in ds1 without corresponding height measurements in ds2 has height
value NaN. Also, because there is no id value in ds2 for each observation in ds1, you
need to merge the keys using the option 'MergeKeys',true. This merges the key
variable, id.

Merge dataset arrays with different key variable names.

When using join, it is not necessary for the key variable to have the same name in the
dataset arrays to be merged. Import the data from the worksheet named Heights3 in
hospitalSmall.xlsx.

ds3 = dataset('XLSFile','hospitalSmall.xlsx','Sheet','Heights3')

ds3 =

 identifier hgt

 'GLI-532' 69

 'QFY-472' 62

 'MIJ-579' 61

 'VNL-702' 68

 'XLK-030' 63

 'LPD-746' 61

 'TFP-518' 60

 'YPL-320' 71

 'ATA-945' 72

 'LQW-768' 64

 'PNI-258' 62

 'UJG-627' 61

 'XUE-826' 71

 'TRW-072' 69

ds3 has height measurements for each observation in ds1. This dataset array has the
same patient identifiers as ds1, but they are under the variable name identifier,
instead of id (and in a different order).

Specify key variable.

You can easily change the variable name of the key variable in ds3 by setting
d3.Properties.VarNames or using the Variables editor, but it is not required to

2 Organizing Data

2-102

perform a merge. Instead, you can specify the name of the key variable in each dataset
array using LeftKeys and RightKeys.

joinDiff = join(ds3,ds1,'LeftKeys','identifier','RightKeys','id')

joinDiff =

 identifier hgt name sex age

 'GLI-532' 69 'JOHNSON' 'm' 43

 'QFY-472' 62 'ANDERSON' 'f' 45

 'MIJ-579' 61 'JONES' 'f' 40

 'VNL-702' 68 'MOORE' 'm' 28

 'XLK-030' 63 'BROWN' 'f' 49

 'LPD-746' 61 'MILLER' 'f' 33

 'TFP-518' 60 'DAVIS' 'f' 46

 'YPL-320' 71 'SMITH' 'm' 38

 'ATA-945' 72 'WILSON' 'm' 40

 'LQW-768' 64 'TAYLOR' 'f' 31

 'PNI-258' 62 'WILLIAMS' 'f' 38

 'UJG-627' 61 'THOMAS' 'f' 42

 'XUE-826' 71 'JACKSON' 'm' 25

 'TRW-072' 69 'WHITE' 'm' 39

The merged dataset array, joinDiff, has the same key variable order and name as the
first dataset array input to join, ds3.

See Also
dataset | join

Related Examples
• “Add and Delete Variables” on page 2-81
• “Stack or Unstack Dataset Arrays” on page 2-103
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

 Stack or Unstack Dataset Arrays

2-103

Stack or Unstack Dataset Arrays

This example shows how to reformat dataset arrays between wide and tall (or long)
format using stack and unstack.

Load sample data.

Navigate to the folder containing sample data. Import the data from the comma-
separated text file testScores.csv.

cd(matlabroot)

cd('help/toolbox/stats/examples')

ds = dataset('File','testScores.csv','Delimiter',',')

ds =

 LastName Sex Test1 Test2 Test3 Test4

 'HOWARD' 'male' 90 87 93 92

 'WARD' 'male' 87 85 83 90

 'TORRES' 'male' 86 85 88 86

 'PETERSON' 'female' 75 80 72 77

 'GRAY' 'female' 89 86 87 90

 'RAMIREZ' 'female' 96 92 98 95

 'JAMES' 'male' 78 75 77 77

 'WATSON' 'female' 91 94 92 90

 'BROOKS' 'female' 86 83 85 89

 'KELLY' 'male' 79 76 82 80

Each of the 10 students has 4 test scores, displayed here in wide format.

Perform calculations on dataset array.

With the data in this format, you can, for example, calculate the average test score for
each student. The test scores are in columns 3 to 6.

ds.TestAve = mean(double(ds(:,3:6)),2);

ds(:,{'LastName','Sex','TestAve'})

ans =

 LastName Sex TestAve

 'HOWARD' 'male' 90.5

 'WARD' 'male' 86.25

2 Organizing Data

2-104

 'TORRES' 'male' 86.25

 'PETERSON' 'female' 76

 'GRAY' 'female' 88

 'RAMIREZ' 'female' 95.25

 'JAMES' 'male' 76.75

 'WATSON' 'female' 91.75

 'BROOKS' 'female' 85.75

 'KELLY' 'male' 79.25

A new variable with average test scores is added to the dataset array, ds.

Reformat the dataset array into tall format.

Stack the test score variables into a new variable, Scores.

 dsTall = stack(ds,{'Test1','Test2','Test3','Test4'},...

 'newDataVarName','Scores')

dsTall =

 LastName Sex TestAve Scores_Indicator Scores

 'HOWARD' 'male' 90.5 Test1 90

 'HOWARD' 'male' 90.5 Test2 87

 'HOWARD' 'male' 90.5 Test3 93

 'HOWARD' 'male' 90.5 Test4 92

 'WARD' 'male' 86.25 Test1 87

 'WARD' 'male' 86.25 Test2 85

 'WARD' 'male' 86.25 Test3 83

 'WARD' 'male' 86.25 Test4 90

 'TORRES' 'male' 86.25 Test1 86

 'TORRES' 'male' 86.25 Test2 85

 'TORRES' 'male' 86.25 Test3 88

 'TORRES' 'male' 86.25 Test4 86

 'PETERSON' 'female' 76 Test1 75

 'PETERSON' 'female' 76 Test2 80

 'PETERSON' 'female' 76 Test3 72

 'PETERSON' 'female' 76 Test4 77

 'GRAY' 'female' 88 Test1 89

 'GRAY' 'female' 88 Test2 86

 'GRAY' 'female' 88 Test3 87

 'GRAY' 'female' 88 Test4 90

 'RAMIREZ' 'female' 95.25 Test1 96

 'RAMIREZ' 'female' 95.25 Test2 92

 'RAMIREZ' 'female' 95.25 Test3 98

 'RAMIREZ' 'female' 95.25 Test4 95

 Stack or Unstack Dataset Arrays

2-105

 'JAMES' 'male' 76.75 Test1 78

 'JAMES' 'male' 76.75 Test2 75

 'JAMES' 'male' 76.75 Test3 77

 'JAMES' 'male' 76.75 Test4 77

 'WATSON' 'female' 91.75 Test1 91

 'WATSON' 'female' 91.75 Test2 94

 'WATSON' 'female' 91.75 Test3 92

 'WATSON' 'female' 91.75 Test4 90

 'BROOKS' 'female' 85.75 Test1 86

 'BROOKS' 'female' 85.75 Test2 83

 'BROOKS' 'female' 85.75 Test3 85

 'BROOKS' 'female' 85.75 Test4 89

 'KELLY' 'male' 79.25 Test1 79

 'KELLY' 'male' 79.25 Test2 76

 'KELLY' 'male' 79.25 Test3 82

 'KELLY' 'male' 79.25 Test4 80

The original test variable names, Test1, Test2, Test3, and Test4, appear as levels in
the combined test scores indicator variable, Scores_Indicator.

Plot data grouped by category.

With the data in this format, you can use Scores_Indicator as a grouping variable,
and draw box plots of test scores grouped by test.

figure()

boxplot(dsTall.Scores,dsTall.Scores_Indicator)

2 Organizing Data

2-106

Reformat the dataset array into wide format.

Reformat dsTall back into its original wide format.

dsWide = unstack(dsTall,'Scores','Scores_Indicator');

dsWide(:,{'LastName','Test1','Test2','Test3','Test4'})

ans =

 LastName Test1 Test2 Test3 Test4

 'HOWARD' 90 87 93 92

 'WARD' 87 85 83 90

 'TORRES' 86 85 88 86

 'PETERSON' 75 80 72 77

 'GRAY' 89 86 87 90

 'RAMIREZ' 96 92 98 95

 'JAMES' 78 75 77 77

 'WATSON' 91 94 92 90

 'BROOKS' 86 83 85 89

 'KELLY' 79 76 82 80

 Stack or Unstack Dataset Arrays

2-107

The dataset array is back in wide format. unstack reassigns the levels of the indicator
variable, Scores_Indicator, as variable names in the unstacked dataset array.

See Also
dataset | double | stack | unstack

Related Examples
• “Access Data in Dataset Array Variables” on page 2-85
• “Calculations on Dataset Arrays” on page 2-108
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132
• “Grouping Variables” on page 2-52

2 Organizing Data

2-108

Calculations on Dataset Arrays

This example shows how to perform calculations on dataset arrays.

Load sample data.

Navigate to the folder containing sample data. Import the data from the comma-
separated text file testScores.csv.

cd(matlabroot)

cd('help/toolbox/stats/examples')

ds = dataset('File','testScores.csv','Delimiter',',')

ds =

 LastName Sex Test1 Test2 Test3 Test4

 'HOWARD' 'male' 90 87 93 92

 'WARD' 'male' 87 85 83 90

 'TORRES' 'male' 86 85 88 86

 'PETERSON' 'female' 75 80 72 77

 'GRAY' 'female' 89 86 87 90

 'RAMIREZ' 'female' 96 92 98 95

 'JAMES' 'male' 78 75 77 77

 'WATSON' 'female' 91 94 92 90

 'BROOKS' 'female' 86 83 85 89

 'KELLY' 'male' 79 76 82 80

There are 4 test scores for each of 10 students, in wide format.

Average dataset array variables.

Compute the average (mean) test score for each student in the dataset array, and store it
in a new variable, TestAvg. Test scores are in columns 3 to 6.

Use double to convert the specified dataset array variables into a numeric array. Then,
calculate the mean across the second dimension (across columns) to get the test average
for each student.

ds.TestAvg = mean(double(ds(:,3:6)),2);

ds(:,{'LastName','TestAvg'})

ans =

 LastName TestAvg

 Calculations on Dataset Arrays

2-109

 'HOWARD' 90.5

 'WARD' 86.25

 'TORRES' 86.25

 'PETERSON' 76

 'GRAY' 88

 'RAMIREZ' 95.25

 'JAMES' 76.75

 'WATSON' 91.75

 'BROOKS' 85.75

 'KELLY' 79.25

Summarize the dataset array using a grouping variable.

Compute the mean and maximum average test scores for each gender.

stats = grpstats(ds,'Sex',{'mean','max'},'DataVars','TestAvg')

stats =

 Sex GroupCount mean_TestAvg max_TestAvg

 male 'male' 5 83.8 90.5

 female 'female' 5 87.35 95.25

This returns a new dataset array containing the specified summary statistics for each
level of the grouping variable, Sex.

Replace data values.

The denominator for each test score is 100. Convert the test score denominator to 25.

scores = double(ds(:,3:6));

newScores = scores*25/100;

ds = replacedata(ds,newScores,3:6)

ds =

 LastName Sex Test1 Test2 Test3 Test4 TestAvg

 'HOWARD' 'male' 22.5 21.75 23.25 23 90.5

 'WARD' 'male' 21.75 21.25 20.75 22.5 86.25

 'TORRES' 'male' 21.5 21.25 22 21.5 86.25

 'PETERSON' 'female' 18.75 20 18 19.25 76

 'GRAY' 'female' 22.25 21.5 21.75 22.5 88

 'RAMIREZ' 'female' 24 23 24.5 23.75 95.25

 'JAMES' 'male' 19.5 18.75 19.25 19.25 76.75

 'WATSON' 'female' 22.75 23.5 23 22.5 91.75

2 Organizing Data

2-110

 'BROOKS' 'female' 21.5 20.75 21.25 22.25 85.75

 'KELLY' 'male' 19.75 19 20.5 20 79.25

The first two lines of code extract the test data and perform the desired calculation.
Then, replacedata inserts the new test scores back into the dataset array.

The variable of test score averages, TestAvg, is now the final score for each student.

Change variable name.

Change the variable name to Final.

ds.Properties.VarNames{end} = 'Final';

ds

ds =

 LastName Sex Test1 Test2 Test3 Test4 Final

 'HOWARD' 'male' 22.5 21.75 23.25 23 90.5

 'WARD' 'male' 21.75 21.25 20.75 22.5 86.25

 'TORRES' 'male' 21.5 21.25 22 21.5 86.25

 'PETERSON' 'female' 18.75 20 18 19.25 76

 'GRAY' 'female' 22.25 21.5 21.75 22.5 88

 'RAMIREZ' 'female' 24 23 24.5 23.75 95.25

 'JAMES' 'male' 19.5 18.75 19.25 19.25 76.75

 'WATSON' 'female' 22.75 23.5 23 22.5 91.75

 'BROOKS' 'female' 21.5 20.75 21.25 22.25 85.75

 'KELLY' 'male' 19.75 19 20.5 20 79.25

See Also
dataset | double | grpstats | replacedata

Related Examples
• “Stack or Unstack Dataset Arrays” on page 2-103
• “Access Data in Dataset Array Variables” on page 2-85
• “Select Subsets of Observations” on page 2-91
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

 Export Dataset Arrays

2-111

Export Dataset Arrays

This example shows how to export a dataset array from the MATLAB workspace to a text
or spreadsheet file.

Load sample data.

load('hospital')

The dataset array has 100 observations and 7 variables.

Export to a text file.

Export the dataset array, hospital, to a text file named hospital.txt. By default,
export writes to a tab-delimited text file with the same name as the dataset array,
appended by .txt.

export(hospital)

This creates the file hospital.txt in the current working folder, if it does not
previously exist. If the file already exists in the current working folder, export
overwrites the existing file.

By default, variable names are in the first line of the text file. Observation names, if
present, are in the first column.

Export without variable names.

Export hospital with variable names suppressed to a text file named NoLabels.txt.

export(hospital,'File','NoLabels.txt','WriteVarNames',false)

There are no variable names in the first line of the created text file, NoLabels.txt.

Export to a comma-delimited format.

Export hospital to a comma-delimited text file, hospital.csv.

export(hospital,'File','hospital.csv','Delimiter',',')

Export to an Excel spreadsheet.

Export hospital to an Excel spreadsheet named hospital.xlsx.

2 Organizing Data

2-112

export(hospital,'XLSFile','hospital.xlsx')

By default, the first row of hospital.xlsx has variable names, and the first column has
observation names.

See Also
dataset | export

Related Examples
• “Create a Dataset Array from Workspace Variables” on page 2-63
• “Create a Dataset Array from a File” on page 2-69

More About
• “Dataset Arrays” on page 2-132

 Clean Messy and Missing Data

2-113

Clean Messy and Missing Data

This example shows how to find, clean, and delete observations with missing data in a
dataset array.

Load sample data.

Navigate to the folder containing sample data. Import the data from the spreadsheet
messy.xlsx.

cd(matlabroot)

cd('help/toolbox/stats/examples')

messyData = dataset('XLSFile','messy.xlsx')

messyData =

 var1 var2 var3 var4 var5

 'afe1' '3' 'yes' '3' 3

 'egh3' '.' 'no' '7' 7

 'wth4' '3' 'yes' '3' 3

 'atn2' '23' 'no' '23' 23

 'arg1' '5' 'yes' '5' 5

 'jre3' '34.6' 'yes' '34.6' 34.6

 'wen9' '234' 'yes' '234' 234

 'ple2' '2' 'no' '2' 2

 'dbo8' '5' 'no' '5' 5

 'oii4' '5' 'yes' '5' 5

 'wnk3' '245' 'yes' '245' 245

 'abk6' '563' '' '563' 563

 'pnj5' '463' 'no' '463' 463

 'wnn3' '6' 'no' '6' 6

 'oks9' '23' 'yes' '23' 23

 'wba3' '' 'yes' 'NaN' 14

 'pkn4' '2' 'no' '2' 2

 'adw3' '22' 'no' '22' 22

 'poj2' '-99' 'yes' '-99' -99

 'bas8' '23' 'no' '23' 23

 'gry5' 'NA' 'yes' 'NaN' 21

When you import data from a spreadsheet, dataset reads any variables with
nonnumeric elements as a cell array of strings. This is why the variable var2 is a cell
array of strings. When importing data from a text file, you have more flexibility to specify
which nonnumeric expressions to treat as missing using the option TreatAsEmpty.

2 Organizing Data

2-114

There are many different missing data indicators in messy.xlsx, such as:

• Empty cells
• A period (.)
• NA

• NaN

• -99

Find observations with missing values.

Display the subset of observations that have at least one missing value using
ismissing.

ix = ismissing(messyData,'NumericTreatAsMissing',-99,...

 'StringTreatAsMissing',{'NaN','.','NA'});

messyData(any(ix,2),:)

ans =

 var1 var2 var3 var4 var5

 'egh3' '.' 'no' '7' 7

 'abk6' '563' '' '563' 563

 'wba3' '' 'yes' 'NaN' 14

 'poj2' '-99' 'yes' '-99' -99

 'gry5' 'NA' 'yes' 'NaN' 21

By default, ismissing recognizes the following missing value indicators:

• NaN for numeric arrays
• '' for string arrays
• <undefined> for categorical arrays

Use the NumericTreatAsMissing and StringTreatAsMissing options to specify
other values to treat as missing.

Convert string arrays to double arrays.

You can convert the string variables that should be numeric using str2double.

messyData.var2 = str2double(messyData.var2);

messyData.var4 = str2double(messyData.var4)

 Clean Messy and Missing Data

2-115

messyData =

 var1 var2 var3 var4 var5

 'afe1' 3 'yes' 3 3

 'egh3' NaN 'no' 7 7

 'wth4' 3 'yes' 3 3

 'atn2' 23 'no' 23 23

 'arg1' 5 'yes' 5 5

 'jre3' 34.6 'yes' 34.6 34.6

 'wen9' 234 'yes' 234 234

 'ple2' 2 'no' 2 2

 'dbo8' 5 'no' 5 5

 'oii4' 5 'yes' 5 5

 'wnk3' 245 'yes' 245 245

 'abk6' 563 '' 563 563

 'pnj5' 463 'no' 463 463

 'wnn3' 6 'no' 6 6

 'oks9' 23 'yes' 23 23

 'wba3' NaN 'yes' NaN 14

 'pkn4' 2 'no' 2 2

 'adw3' 22 'no' 22 22

 'poj2' -99 'yes' -99 -99

 'bas8' 23 'no' 23 23

 'gry5' NaN 'yes' NaN 21

Now, var2 and var4 are numeric arrays. During the conversion, str2double replaces
the nonnumeric elements of the variables var2 and var4 with the value NaN. However,
there are no changes to the numeric missing value indicator, -99.

When applying the same function to many dataset array variables, it can sometimes be
more convenient to use datasetfun. For example, to convert both var2 and var4 to
numeric arrays simultaneously, you can use:

messyData(:,[2,4]) = datasetfun(@str2double,messyData,'DataVars',[2,4],...

 'DatasetOutput',true);

Replace missing value indicators.

Clean the data so that the missing values indicated by the code -99 have the standard
MATLAB numeric missing value indicator, NaN.

messyData = replaceWithMissing(messyData,'NumericValues',-99)

messyData =

2 Organizing Data

2-116

 var1 var2 var3 var4 var5

 'afe1' 3 'yes' 3 3

 'egh3' NaN 'no' 7 7

 'wth4' 3 'yes' 3 3

 'atn2' 23 'no' 23 23

 'arg1' 5 'yes' 5 5

 'jre3' 34.6 'yes' 34.6 34.6

 'wen9' 234 'yes' 234 234

 'ple2' 2 'no' 2 2

 'dbo8' 5 'no' 5 5

 'oii4' 5 'yes' 5 5

 'wnk3' 245 'yes' 245 245

 'abk6' 563 '' 563 563

 'pnj5' 463 'no' 463 463

 'wnn3' 6 'no' 6 6

 'oks9' 23 'yes' 23 23

 'wba3' NaN 'yes' NaN 14

 'pkn4' 2 'no' 2 2

 'adw3' 22 'no' 22 22

 'poj2' NaN 'yes' NaN NaN

 'bas8' 23 'no' 23 23

 'gry5' NaN 'yes' NaN 21

Create a dataset array with complete observations.

Create a new dataset array that contains only the complete observations—those without
missing data.

ix = ismissing(messyData);

completeData = messyData(~any(ix,2),:)

completeData =

 var1 var2 var3 var4 var5

 'afe1' 3 'yes' 3 3

 'wth4' 3 'yes' 3 3

 'atn2' 23 'no' 23 23

 'arg1' 5 'yes' 5 5

 'jre3' 34.6 'yes' 34.6 34.6

 'wen9' 234 'yes' 234 234

 'ple2' 2 'no' 2 2

 'dbo8' 5 'no' 5 5

 'oii4' 5 'yes' 5 5

 'wnk3' 245 'yes' 245 245

 'pnj5' 463 'no' 463 463

 Clean Messy and Missing Data

2-117

 'wnn3' 6 'no' 6 6

 'oks9' 23 'yes' 23 23

 'pkn4' 2 'no' 2 2

 'adw3' 22 'no' 22 22

 'bas8' 23 'no' 23 23

See Also
dataset | ismissing | replaceWithMissing

Related Examples
• “Select Subsets of Observations” on page 2-91
• “Calculations on Dataset Arrays” on page 2-108
• “Index and Search Dataset Arrays” on page 2-135

More About
• “Dataset Arrays” on page 2-132

2 Organizing Data

2-118

Dataset Arrays in the Variables Editor

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...

“Open Dataset Arrays in the Variables Editor” on page 2-118
“Modify Variable and Observation Names” on page 2-119
“Reorder or Delete Variables” on page 2-121
“Add New Data” on page 2-123
“Sort Observations” on page 2-125
“Select a Subset of Data” on page 2-126
“Create Plots” on page 2-129

Open Dataset Arrays in the Variables Editor

The MATLAB Variables editor provides a convenient interface for viewing, modifying,
and plotting dataset arrays.

First, load the sample data set, hospital.

load hospital

The dataset array, hospital, is created in the MATLAB workspace.

The dataset array has 100 observations and 7 variables.

To open hospital in the Variables editor, click Open Variable, and select hospital.

 Dataset Arrays in the Variables Editor

2-119

The Variables editor opens, displaying the contents of the dataset array (only the first 10
observations are shown here).

In the Variables editor, you can see the names of the seven variables along the top row,
and the observations names down the first column.

Modify Variable and Observation Names

You can modify variable and observation names by double-clicking a name, and then
typing new text.

2 Organizing Data

2-120

All changes made in the Variables editor are also sent to the command line.

The sixth variable in the data set, BloodPressure, is a numeric array with two
columns. The first column shows systolic blood pressure, and the second column shows
diastolic blood pressure. Click the arrow that appears on the right side of the variable
name cell to see the units and description of the variable. You can type directly in the
units and description fields to modify the text. The variable data type and size are shown
under the variable description.

 Dataset Arrays in the Variables Editor

2-121

Reorder or Delete Variables

You can reorder variables in a dataset array using the Variables editor. Hover over the
left side of a variable name cell until a four-headed arrow appears.

After the arrow appears, click and drag the variable column to a new location.

2 Organizing Data

2-122

The command for the variable reordering appears in the command line.

 Dataset Arrays in the Variables Editor

2-123

You can delete a variable in the Variables editor by selecting the variable column, right-
clicking, and selecting Delete Column Variable(s).

The command for the variable deletion appears in the command line.

Add New Data

You can enter new data values directly into the Variables editor. For example, you can
add a new patient observation to the hospital data set. To enter a new last name, add a
string to the end of the variable LastName.

2 Organizing Data

2-124

The variable Gender is a nominal array. The levels of the categorical variable appear in
a drop-down list when you double-click a cell in the Gender column. You can choose one
of the levels previously used, or create a new level by selecting New Item.

You can continue to add data for the remaining variables.

To change the observation name, click the observation name and type the new name.

The commands for entering the new data appear at the command line.

 Dataset Arrays in the Variables Editor

2-125

Notice the warning that appears after the first assignment. When you enter the first
piece of data in the new observation row—here, the last name—default values are
assigned to all other variables. Default assignments are:

• 0 for numeric variables
• <undefined> for categorical variables
• [] for cell arrays

You can also copy and paste data from one dataset array to another using the Variables
editor.

Sort Observations

You can use the Variables editor to sort dataset array observations by the values of one
or more variables. To sort by gender, for example, select the variable Gender. Then click
Sort, and choose to sort rows by ascending or descending values of the selected variable.

When sorting by variables that are cell arrays of strings or of nominal data type,
observations are sorted alphabetically. For ordinal variables, rows are sorted by the
ordering of the levels. For example, when the observations of hospital are sorted by the
values in Gender, the females are grouped together, followed by the males.

2 Organizing Data

2-126

To sort by the values of multiple variables, press Ctrl while you select multiple variables.

When you use the Variables editor to sort rows, it is the same as calling sortrows. You
can see this at the command line after executing the sorting.

Select a Subset of Data

You can select a subset of data from a dataset array in the Variables editor, and create a
new dataset array from the selection. For example, to create a dataset array containing
only the variables LastName and Age:

1 Hold Ctrl while you click the variables LastName and Age.
2 Right-click, and select New Workspace Variable from Selection > New Dataset

Array.

 Dataset Arrays in the Variables Editor

2-127

The new dataset array appears in the Workspace window with the name hospital1.
The Command Window shows the commands that execute the selection.

You can use the same steps to select any subset of data. To select observations according
to some logical condition, you can use a combination of sorting and selecting. For
example, to create a new dataset array containing only males aged 45 and older:

1 Sort the observations of hospital by the values in Gender and Age, descending.
2 Select the male observations with age 45 and older.

2 Organizing Data

2-128

3 Right-click, and select New Workspace Variables from Selection > New
Dataset Array. The new dataset array, hospital2, is created in the Workspace
window.

4 You can rename the dataset array in the Workspace window.

 Dataset Arrays in the Variables Editor

2-129

Create Plots

You can plot data from a dataset array using plotting options in the Variables editor.
Available plot choices depend on the data types of variables to be plotted.

For example, if you select the variable Age, you can see in the Plots tab some plotting
options that are appropriate for a univariate, numeric variable.

2 Organizing Data

2-130

Sometimes, there are plot options for multiple variables, depending on their data types.
For example, if you select both Age and Gender, you can draw box plots of age, grouped
by gender.

See Also
dataset | sortrows

Related Examples
• “Add and Delete Observations” on page 2-77
• “Add and Delete Variables” on page 2-81
• “Access Data in Dataset Array Variables” on page 2-85
• “Select Subsets of Observations” on page 2-91
• “Sort Observations in Dataset Arrays” on page 2-95

 Dataset Arrays in the Variables Editor

2-131

More About
• “Dataset Arrays” on page 2-132

2 Organizing Data

2-132

Dataset Arrays

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

In this section...

“What Are Dataset Arrays?” on page 2-132
“Dataset Array Conversion” on page 2-132
“Dataset Array Properties” on page 2-133

What Are Dataset Arrays?

Statistics and Machine Learning Toolbox has dataset arrays for storing variables with
heterogeneous data types. For example, you can combine numeric data, logical data, cell
arrays of strings, and categorical arrays in one dataset array variable.

Within a dataset array, each variable (column) must be one homogeneous data type, but
the different variables can be of heterogeneous data types. A dataset array is usually
interpreted as a set of variables measured on many units of observation. That is, each
row in a dataset array corresponds to an observation, and each column to a variable. In
this sense, a dataset array organizes data like a typical spreadsheet.

Dataset arrays are a unique data type, with a corresponding set of valid operations. Even
if a dataset array contains only numeric variables, you cannot operate on the dataset
array like a numeric variable. The valid operations for dataset arrays are the methods of
the dataset class.

Dataset Array Conversion

You can create a dataset array by combining variables that exist in the MATLAB
workspace, or directly importing data from a file, such as a text file or spreadsheet. This
table summarizes the functions you can use to create dataset arrays.

Data Source Conversion to Dataset Array

Data from a file dataset

 Dataset Arrays

2-133

Data Source Conversion to Dataset Array

Heterogeneous collection of workspace
variables

dataset

Numeric array mat2dataset

Cell array cell2dataset

Structure array struct2dataset

Table table2dataset

You can export dataset arrays to text or spreadsheet files using export. To convert a
dataset array to a cell array or structure array, use dataset2cell or dataset2struct.
To convert a dataset array to a table, use dataset2table.

Dataset Array Properties

In addition to storing data in a dataset array, you can store metadata such as:

• Variable and observation names
• Data descriptions
• Units of measurement
• Variable descriptions

This information is stored as dataset array properties. For a dataset array named ds, you
can view the dataset array metadata by entering ds.Properties at the command line.
You can access a specific property, such as variable names—property VarNames—using
ds.Properties.VarNames. You can both retrieve and modify property values using
this syntax.

Variable and observation names are included in the display of a dataset array. Variable
names display across the top row, and observation names, if present, appear in the first
column. Note that variable and observation names do not affect the size of a dataset
array.

See Also
cell2dataset | dataset | dataset2cell | dataset2struct | dataset2table |
export | mat2dataset | struct2dataset | table2dataset

2 Organizing Data

2-134

Related Examples
• “Create a Dataset Array from Workspace Variables” on page 2-63
• “Create a Dataset Array from a File” on page 2-69
• “Export Dataset Arrays” on page 2-111
• “Dataset Arrays in the Variables Editor” on page 2-118
• “Index and Search Dataset Arrays” on page 2-135

 Index and Search Dataset Arrays

2-135

Index and Search Dataset Arrays

Note: The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Ways To Index and Search

There are many ways to index into dataset arrays. For example, for a dataset array, ds,
you can:

• Use () to create a new dataset array from a subset of ds. For example, ds1 =
ds(1:5,:) creates a new dataset array, ds1, consisting of the first five rows of ds.
Metadata, including variable and observation names, transfers to the new dataset
array.

• Use variable names with dot notation to index individual variables in a dataset array.
For example, ds.Height indexes the variable named Height.

• Use observation names to index individual observations in a dataset array. For
example, ds('Obs1',:) gives data for the observation named Obs1.

• Use observation or variable numbers. For example, ds(:,[1,3,5]) gives the data in
the first, third, and fifth variables (columns) of ds.

• Use logical indexing to search for observations in ds that satisfy a logical condition.
For example, ds(ds.Gender=='Male',:) gives the observations in ds where the
variable named Gender, a nominal array, has the value Male.

• Use ismissing to find missing data in the dataset array.

Examples

Common Indexing and Searching Methods

This example shows several indexing and searching methods for categorical arrays.

Load the sample data.

load hospital;

size(hospital)

2 Organizing Data

2-136

ans =

 100 7

The dataset array has 100 observations and 7 variables.

Index a variable by name. Return the minimum age in the dataset array.

min(hospital.Age)

ans =

 25

Delete the variable Trials.

hospital.Trials = [];

size(hospital)

ans =

 100 6

Index an observation by name. Display measurements on the first five variables for the
observation named PUE-347.

hospital('PUE-347',1:5)

ans =

 LastName Sex Age Weight Smoker

 PUE-347 'YOUNG' Female 25 114 false

Index variables by number. Create a new dataset array containing the first four
variables of hospital.

dsNew = hospital(:,1:4);

 Index and Search Dataset Arrays

2-137

dsNew.Properties.VarNames(:)

ans =

 'LastName'

 'Sex'

 'Age'

 'Weight'

Index observations by number. Delete the last 10 observations.

hospital(end-9:end,:) = [];

size(hospital)

ans =

 90 6

Search for observations by logical condition. Create a new dataset array containing only
females who smoke.

dsFS = hospital(hospital.Sex=='Female' & hospital.Smoker==true,:);

dsFS(:,{'LastName','Sex','Smoker'})

ans =

 LastName Sex Smoker

 LPD-746 'MILLER' Female true

 XBR-291 'GARCIA' Female true

 AAX-056 'LEE' Female true

 DTT-578 'WALKER' Female true

 AFK-336 'WRIGHT' Female true

 RBA-579 'SANCHEZ' Female true

 HAK-381 'MORRIS' Female true

 NSK-403 'RAMIREZ' Female true

 ILS-109 'WATSON' Female true

 JDR-456 'SANDERS' Female true

 HWZ-321 'PATTERSON' Female true

 GGU-691 'HUGHES' Female true

 WUS-105 'FLORES' Female true

2 Organizing Data

2-138

See Also
dataset

Related Examples
• “Access Data in Dataset Array Variables” on page 2-85
• “Select Subsets of Observations” on page 2-91

More About
• “Dataset Arrays” on page 2-132

3

Descriptive Statistics

• “Introduction to Descriptive Statistics” on page 3-2
• “Measures of Central Tendency” on page 3-3
• “Measures of Dispersion” on page 3-5
• “Quantiles and Percentiles” on page 3-7
• “Exploratory Analysis of Data” on page 3-11
• “Resampling Statistics” on page 3-17
• “Data with Missing Values” on page 3-22

3 Descriptive Statistics

3-2

Introduction to Descriptive Statistics

You may need to summarize large, complex data sets—both numerically and visually—to
convey their essence to the data analyst and to allow for further processing.

 Measures of Central Tendency

3-3

Measures of Central Tendency

Measures of central tendency locate a distribution of data along an appropriate scale.

The following table lists the functions that calculate the measures of central tendency.

Function Name Description

geomean Geometric mean
harmmean Harmonic mean
mean Arithmetic average
median 50th percentile
mode Most frequent value
trimmean Trimmed mean

The average is a simple and popular estimate of location. If the data sample comes from a
normal distribution, then the sample mean is also optimal (minimum variance unbiased
estimator (MVUE) of µ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The
sample mean is sensitive to these problems. One bad data value can move the average
away from the center of the rest of the data by an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to outliers.
The median is the 50th percentile of the sample, which will only change slightly if you
add a large perturbation to any value. The idea behind the trimmed mean is to ignore
a small percentage of the highest and lowest values of a sample when determining the
center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers.
They are useful when the sample is distributed lognormal or heavily skewed. This
example shows the behavior of the measures of location for a sample with one outlier:

x = [ones(1,6) 100];

locate = [geomean(x) harmmean(x) mean(x) median(x)...

 trimmean(x,25)]

locate =

3 Descriptive Statistics

3-4

 1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the influence of the
outlier. The median and trimmed mean ignore the outlying value and describe the
location of the rest of the data values.

 Measures of Dispersion

3-5

Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data values are
on the number line. Another term for these statistics is measures of spread.

The table gives the function names and descriptions.

Function Name Description

iqr Interquartile range
mad Mean absolute deviation
moment Central moment of all orders
range Range
std Standard deviation
var Variance

The range (the difference between the maximum and minimum values) is the simplest
measure of spread. But if there is an outlier in the data, it will be the minimum or
maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that are
optimal for normally distributed samples. The sample variance is the minimum variance
unbiased estimator (MVUE) of the normal parameter σ2. The standard deviation is the
square root of the variance and has the desirable property of being in the same units as
the data. That is, if the data is in meters, the standard deviation is in meters as well. The
variance is in meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value
that is separate from the body of the data can increase the value of the statistics by an
arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the MAD does not
move quite as much as the standard deviation or variance in response to bad data.

The interquartile range (IQR) is the difference between the 75th and 25th percentile
of the data. Since only the middle 50% of the data affects this measure, it is robust to
outliers.

This example shows the behavior of the measures of dispersion for a sample with one
outlier:

3 Descriptive Statistics

3-6

x = [ones(1,6) 100]

stats = [iqr(x) mad(x) range(x) std(x)]

x =

 1 1 1 1 1 1 100

stats =

 0 24.2449 99.0000 37.4185

 Quantiles and Percentiles

3-7

Quantiles and Percentiles

This section explains how the Statistics and Machine Learning Toolbox functions
quantile and prctile compute quantiles and percentiles.

The prctile function calculates the percentiles in a similar way as quantile
calculates quantiles. The following steps in the computation of quantiles are also true for
percentiles, given the fact that, for the same data sample, the quantile at the value Q is
the same as the percentile at the value P = 100*Q.

1 quantile initially assigns the sorted values in X to the (0.5/n), (1.5/n), ..., ([n –
0.5]/n) quantiles. For example:

• For a data vector of six elements such as {6, 3, 2, 10, 8, 1}, the sorted elements {1,
2, 3, 6, 8, 10} respectively correspond to the (0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6),
and (5.5/6) quantiles.

• For a data vector of five elements such as {2, 10, 5, 9, 13}, the sorted elements {2,
5, 9, 10, 13} respectively correspond to the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles.

The following figure illustrates this approach for data vector X = {2, 10, 5, 9, 13}.
The first observation corresponds to the cumulative probability 1/5 = 0.2, the second
observation corresponds to the cumulative probability 2/5 = 0.4, and so on. The step
function in this figure shows these cumulative probabilities. quantile instead
places the observations in midpoints, such that the first corresponds to 0.5/5 = 0.1,
the second corresponds to 1.5/5 = 0.3, and so on, and then connects these midpoints.
The red lines in the following figure connect the midpoints.

3 Descriptive Statistics

3-8

Assigning Observations to Quantiles

By switching the axes, as the next figure, you can see the values of the variable X
that correspond to the p quantiles.

 Quantiles and Percentiles

3-9

Quantiles of X

2 quantile finds any quantiles between the data values using linear interpolation.

Linear interpolation uses linear polynomials to approximate a function f(x)
and construct new data points within the range of a known set of data points.
Algebraically, given the data points (x1, y1) and (x2, y2), where y1 = f(x1) and y2 = f(x2),
linear interpolation finds y = f(x) for a given x between x1 and x2 as follows:

y f x y
x x

x x
y y= = +

-()

-()
-()() .1

1

2 1
2 1

3 Descriptive Statistics

3-10

Similarly, if the 1.5/n quantile is y1.5/n and the 2.5/n quantile is y2.5/n, then linear
interpolation finds the 2.3/n quantile y2.3/n as

y y
n n

n n

y y

n n n n

2 3 1 5 2 5 1 5

2 3 1 5

2 5 1 5
. . . .

. .

. .
= +

-Ê
ËÁ

ˆ
¯̃

-Ê
Ë
Á

ˆ
¯
˜

-
Ê

Ë

Á
Á

ˆ

¯̄

˜
˜
.

3 quantile assigns the first and last values of X to the quantiles for probabilities less
than (0.5/n) and greater than ([n–0.5]/n), respectively.

References

[1] Langford, E. “Quartiles in Elementary Statistics”, Journal of Statistics Education.
Vol. 14, No. 3, 2006.

See Also
median | prctile | quantile

 Exploratory Analysis of Data

3-11

Exploratory Analysis of Data

This example shows how to explore the distribution of data using descriptive statistics.

Generate sample data.

rng('default') % for reproducibility

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];

Create a histogram of data with normal density fit.

histfit(x)

3 Descriptive Statistics

3-12

The distribution of the data seems left skewed and normal distribution does not look like
a good fit to this distribution.

Obtain a normal probability plot.

probplot('normal',x)

This probability plot also clearly shows the deviation of data from normality.

Compute quantiles of data.

p = 0:0.25:1;

y = quantile(x,p);

z = [p;y]

 Exploratory Analysis of Data

3-13

z =

 0 0.2500 0.5000 0.7500 1.0000

 1.0557 4.7375 5.6872 6.1526 7.5784

Plot a box plot.

A box plot helps to visualize the statistics.

boxplot(x)

3 Descriptive Statistics

3-14

You can also see the 0.25, 0.5, and 0.75 quantiles in the box plot. The long lower tail and
plus signs also show the lack of symmetry in the sample values.

 Exploratory Analysis of Data

3-15

Compute the mean and median of data.

 y = [mean(x) median(x)]

y =

 5.3438 5.6872

The mean and median values seem close to each other, but a mean smaller than the
median usually flags left skewness of the data.

Compute the skewness and kurtosis of data.

y = [skewness(x) kurtosis(x)]

y =

 -1.0417 3.5895

A negative skewness value means the data is left skewed. The data has a larger
peakedness than a normal distribution because the kurtosis value is greater than 3.

Identify possible outliers.

Compute z-scores. Find the z-scores that are greater than 3 or less than –3.

Z = zscore(x);

find(abs(Z)>3);

ans =

 3 35

The 3rd and 35th observations might be outliers.

See Also
boxplot | histfit | kurtosis | mean | median | prctile | quantile | skewness

More About
• “Box Plots” on page 4-6
• “Measures of Central Tendency” on page 3-3
• “Measures of Dispersion” on page 3-5

3 Descriptive Statistics

3-16

• “Quantiles and Percentiles” on page 3-7

 Resampling Statistics

3-17

Resampling Statistics

In this section...

“Bootstrap Resampling” on page 3-17
“Jackknife Resampling” on page 3-20
“Parallel Computing Support for Resampling Methods” on page 3-21

Bootstrap Resampling

The bootstrap procedure involves choosing random samples with replacement from a
data set and analyzing each sample the same way. Sampling with replacement means
that each observation is selected separately at random from the original dataset. So a
particular data point from the original data set could appear multiple times in a given
bootstrap sample. The number of elements in each bootstrap sample equals the number
of elements in the original data set. The range of sample estimates you obtain enables
you to establish the uncertainty of the quantity you are estimating.

This example from Efron and Tibshirani compares Law School Admission Test (LSAT)
scores and subsequent law school grade point average (GPA) for a sample of 15 law
schools.

load lawdata

plot(lsat,gpa,'+')

lsline

3 Descriptive Statistics

3-18

The least-squares fit line indicates that higher LSAT scores go with higher law school
GPAs. But how certain is this conclusion? The plot provides some intuition, but nothing
quantitative.

You can calculate the correlation coefficient of the variables using the |corr|function.

rhohat = corr(lsat,gpa)

rhohat =

 0.7764

 Resampling Statistics

3-19

Now you have a number describing the positive connection between LSAT and GPA;
though it may seem large, you still do not know if it is statistically significant.

Using the bootstrp function you can resample the lsat and gpa vectors as many times
as you like and consider the variation in the resulting correlation coefficients.

rng default % For reproducibility

rhos1000 = bootstrp(1000,'corr',lsat,gpa);

This resamples the lsat and gpa vectors 1000 times and computes the corr function on
each sample. You can then plot the result in a histogram.

histogram(rhos1000,30,'FaceColor',[.8 .8 1])

3 Descriptive Statistics

3-20

Nearly all the estimates lie on the interval [0.4 1.0].

It is often desirable to construct a confidence interval for a parameter estimate in
statistical inferences. Using the bootci function, you can use bootstrapping to obtain a
confidence interval for the lsat and gpa data.

ci = bootci(5000,@corr,lsat,gpa)

ci =

 0.3319

 0.9427

Therefore, a 95% confidence interval for the correlation coefficient between LSAT and
GPA is [0.33 0.94]. This is strong quantitative evidence that LSAT and subsequent
GPA are positively correlated. Moreover, this evidence does not require any strong
assumptions about the probability distribution of the correlation coefficient.

Although the bootci function computes the Bias Corrected and accelerated (BCa)
interval as the default type, it is also able to compute various other types of bootstrap
confidence intervals, such as the studentized bootstrap confidence interval.

Jackknife Resampling

Similar to the bootstrap is the jackknife, which uses resampling to estimate the bias of
a sample statistic. Sometimes it is also used to estimate standard error of the sample
statistic. The jackknife is implemented by the Statistics and Machine Learning Toolbox™
function jackknife.

The jackknife resamples systematically, rather than at random as the bootstrap does.
For a sample with n points, the jackknife computes sample statistics on n separate
samples of size n-1. Each sample is the original data with a single observation omitted.

In the bootstrap example, you measured the uncertainty in estimating the correlation
coefficient. You can use the jackknife to estimate the bias, which is the tendency of the
sample correlation to over-estimate or under-estimate the true, unknown correlation.
First compute the sample correlation on the data.

load lawdata

rhohat = corr(lsat,gpa)

 Resampling Statistics

3-21

rhohat =

 0.7764

Next compute the correlations for jackknife samples, and compute their mean.

rng default; % For reproducibility

jackrho = jackknife(@corr,lsat,gpa);

meanrho = mean(jackrho)

meanrho =

 0.7759

Now compute an estimate of the bias.

n = length(lsat);

biasrho = (n-1) * (meanrho-rhohat)

biasrho =

 -0.0065

The sample correlation probably underestimates the true correlation by about this
amount.

Parallel Computing Support for Resampling Methods

For information on computing resampling statistics in parallel, see Parallel Computing
Toolbox™.

3 Descriptive Statistics

3-22

Data with Missing Values

Many data sets have one or more missing values. It is convenient to code missing values
as NaN (Not a Number) to preserve the structure of data sets across multiple variables
and observations.

For example:

X = magic(3);

X([1 5]) = [NaN NaN]

X =

 NaN 1 6

 3 NaN 7

 4 9 2

Normal MATLAB arithmetic operations yield NaN values when operands are NaN:

s1 = sum(X)

s1 =

 NaN NaN 15

Removing the NaN values would destroy the matrix structure. Removing the rows
containing the NaN values would discard data. Statistics and Machine Learning Toolbox
functions in the following table remove NaN values only for the purposes of computation.

Function Description

nancov Covariance matrix, ignoring NaN values
nanmax Maximum, ignoring NaN values
nanmean Mean, ignoring NaN values
nanmedian Median, ignoring NaN values
nanmin Minimum, ignoring NaN values
nanstd Standard deviation, ignoring NaN values

 Data with Missing Values

3-23

Function Description

nansum Sum, ignoring NaN values
nanvar Variance, ignoring NaN values

For example:

s2 = nansum(X)

s2 =

 7 10 15

Other Statistics and Machine Learning Toolbox functions also ignore NaN values. These
include iqr, kurtosis, mad, prctile, range, skewness, and trimmean.

4

Statistical Visualization

• “Introduction to Statistical Visualization” on page 4-2
• “Create Scatter Plots Using Grouped Data” on page 4-3
• “Box Plots” on page 4-6
• “Distribution Plots” on page 4-8

4 Statistical Visualization

4-2

Introduction to Statistical Visualization

Statistics and Machine Learning Toolbox data visualization functions add to the
extensive graphics capabilities already in MATLAB.

• Scatter plots are a basic visualization tool for multivariate data. They are used to
identify relationships among variables. Grouped versions of these plots use different
plotting symbols to indicate group membership. The gname function is used to label
points on these plots with a text label or an observation number.

• Box plots display a five-number summary of a set of data: the median, the two ends
of the interquartile range (the box), and two extreme values (the whiskers) above
and below the box. Because they show less detail than histograms, box plots are most
useful for side-by-side comparisons of two distributions.

• Distribution plots help you identify an appropriate distribution family for your data.
They include normal and Weibull probability plots, quantile-quantile plots, and
empirical cumulative distribution plots.

Advanced Statistics and Machine Learning Toolbox visualization functions are available
for specialized statistical analyses.

 Create Scatter Plots Using Grouped Data

4-3

Create Scatter Plots Using Grouped Data

This example shows how to create scatter plots using grouped sample data.

A scatter plot is a simple plot of one variable against another. The MATLAB® functions
plot and scatter produce scatter plots. The MATLAB function plotmatrix can
produce a matrix of such plots showing the relationship between several pairs of
variables.

Statistics and Machine Learning Toolbox™ functions gscatter and gplotmatrix
produce grouped versions of these plots. These are useful for determining whether the
values of two variables or the relationship between those variables is the same in each
group.

Suppose you want to examine the weight and mileage of cars from three different model
years.

load carsmall

gscatter(Weight,MPG,Model_Year,'','xos')

4 Statistical Visualization

4-4

This shows that not only is there a strong relationship between the weight of a car and
its mileage, but also that newer cars tend to be lighter and have better gas mileage than
older cars.

The default arguments for gscatter produce a scatter plot with the different groups
shown with the same symbol but different colors. The last two arguments above request
that all groups be shown in default colors and with different symbols.

The carsmall data set contains other variables that describe different aspects of cars.
You can examine several of them in a single display by creating a grouped plot matrix.

xvars = [Weight Displacement Horsepower];

yvars = [MPG Acceleration];

gplotmatrix(xvars,yvars,Model_Year,'','xos')

 Create Scatter Plots Using Grouped Data

4-5

The upper right subplot displays MPG against Horsepower, and shows that over the
years the horsepower of the cars has decreased but the gas mileage has improved.

The gplotmatrix function can also graph all pairs from a single list of variables, along
with histograms for each variable. See MANOVA.

4 Statistical Visualization

4-6

Box Plots

The graph below, created with the boxplot command, compares petal lengths in
samples from two species of iris.

load fisheriris

s1 = meas(51:100,3);

s2 = meas(101:150,3);

figure;

boxplot([s1 s2],'notch','on',...

 'labels',{'versicolor','virginica'})

This plot has the following features:

 Box Plots

4-7

• The tops and bottoms of each “box” are the 25th and 75th percentiles of the samples,
respectively. The distances between the tops and bottoms are the interquartile
ranges.

• The line in the middle of each box is the sample median. If the median is not centered
in the box, it shows sample skewness.

• The whiskers are lines extending above and below each box. Whiskers are drawn from
the ends of the interquartile ranges to the furthest observations within the whisker
length (the adjacent values).

• Observations beyond the whisker length are marked as outliers. By default, an outlier
is a value that is more than 1.5 times the interquartile range away from the top or
bottom of the box, but this value can be adjusted with additional input arguments.
Outliers are displayed with a red + sign.

• Notches display the variability of the median between samples. The width of a notch
is computed so that box plots whose notches do not overlap (as above) have different
medians at the 5% significance level. The significance level is based on a normal
distribution assumption, but comparisons of medians are reasonably robust for other
distributions. Comparing box-plot medians is like a visual hypothesis test, analogous
to the t test used for means.

4 Statistical Visualization

4-8

Distribution Plots

In this section...

“Normal Probability Plots” on page 4-8
“Quantile-Quantile Plots” on page 4-10
“Cumulative Distribution Plots” on page 4-13
“Other Probability Plots” on page 4-14

Normal Probability Plots

Normal probability plots are used to assess whether data comes from a normal
distribution. Many statistical procedures make the assumption that an underlying
distribution is normal, so normal probability plots can provide some assurance that the
assumption is justified, or else provide a warning of problems with the assumption. An
analysis of normality typically combines normal probability plots with hypothesis tests
for normality.

This example generates a data sample of 25 random numbers from a normal distribution
with mu = 10 and sigma = 1, and creates a normal probability plot of the data.

rng default; % For reproducibility

x = normrnd(10,1,25,1);

normplot(x)

 Distribution Plots

4-9

The plus signs plot the empirical probability versus the data value for each point in the
data. A solid line connects the 25th and 75th percentiles in the data, and a dashed line
extends it to the ends of the data. The y-axis values are probabilities from zero to one,
but the scale is not linear. The distance between tick marks on the y-axis matches the
distance between the quantiles of a normal distribution. The quantiles are close together
near the median (probability = 0.5) and stretch out symmetrically as you move away from
the median.

In a normal probability plot, if all the data points fall near the line, an assumption of
normality is reasonable. Otherwise, the points will curve away from the line, and an
assumption of normality is not justified. For example, the following generates a data
sample of 100 random numbers from an exponential distribution with mu = 10, and
creates a normal probability plot of the data.

4 Statistical Visualization

4-10

x = exprnd(10,100,1);

normplot(x)

The plot is strong evidence that the underlying distribution is not normal.

Quantile-Quantile Plots

Quantile-quantile plots are used to determine whether two samples come from the same
distribution family. They are scatter plots of quantiles computed from each sample, with
a line drawn between the first and third quartiles. If the data falls near the line, it is
reasonable to assume that the two samples come from the same distribution. The method
is robust with respect to changes in the location and scale of either distribution.

 Distribution Plots

4-11

To create a quantile-quantile plot, use the qqplot function.

The following example generates two data samples containing random numbers from
Poisson distributions with different parameter values, and creates a quantile-quantile
plot. The data in x is from a Poisson distribution with lambda = 10, and the data in y is
from a Poisson distribution with lambda = 5.

x = poissrnd(10,50,1);

y = poissrnd(5,100,1);

qqplot(x,y);

Even though the parameters and sample sizes are different, the approximate linear
relationship suggests that the two samples may come from the same distribution family.

4 Statistical Visualization

4-12

As with normal probability plots, hypothesis tests can provide additional justification for
such an assumption. For statistical procedures that depend on the two samples coming
from the same distribution, however, a linear quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions are not
the same. Here, x contains 100 random numbers generated from a normal distribution
with mu = 5 and sigma = 1, while y contains 100 random numbers generated from a
Weibull distribution with A = 2 and B = 0.5.

x = normrnd(5,1,100,1);

y = wblrnd(2,0.5,100,1);

qqplot(x,y);

These samples clearly are not from the same distribution family.

 Distribution Plots

4-13

Cumulative Distribution Plots

An empirical cumulative distribution function (cdf) plot shows the proportion of data less
than each x value, as a function of x. The scale on the y-axis is linear; in particular, it is
not scaled to any particular distribution. Empirical cdf plots are used to compare data
cdfs to cdfs for particular distributions.

To create an empirical cdf plot, use the cdfplot function (or ecdf and stairs).

The following example compares the empirical cdf for a sample from an extreme value
distribution with a plot of the cdf for the sampling distribution. In practice, the sampling
distribution would be unknown, and would be chosen to match the empirical cdf.

y = evrnd(0,3,100,1);

cdfplot(y)

hold on

x = -20:0.1:10;

f = evcdf(x,0,3);

plot(x,f,'m')

legend('Empirical','Theoretical','Location','NW')

4 Statistical Visualization

4-14

Other Probability Plots

A probability plot, like the normal probability plot, is just an empirical cdf plot scaled to a
particular distribution. The y-axis values are probabilities from zero to one, but the scale
is not linear. The distance between tick marks is the distance between quantiles of the
distribution. In the plot, a line is drawn between the first and third quartiles in the data.
If the data falls near the line, it is reasonable to choose the distribution as a model for the
data.

To create probability plots for different distributions, use the probplot function.

 Distribution Plots

4-15

The following example assesses two samples, one from a Weibull distribution with A = 3
and B = 3, and one from a Rayleigh distribution with B = 3, to see if either distribution
may have come from a Weibull population.

x1 = wblrnd(3,3,100,1);

x2 = raylrnd(3,100,1);

probplot('weibull',[x1 x2])

legend('Weibull Sample','Rayleigh Sample','Location','NW')

The plot gives justification for modeling the first sample with a Weibull distribution;
much less so for the second sample.

A distribution analysis typically combines probability plots with hypothesis tests for a
particular distribution.

5

Probability Distributions

• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17
• “Maximum Likelihood Estimation” on page 5-30
• “Negative Loglikelihood Functions” on page 5-33
• “Random Number Generation” on page 5-37
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit Kernel Distribution Object to Data” on page 5-49
• “Fit Kernel Distribution Using ksdensity” on page 5-54
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-57
• “Create and Plot Empirical Cumulative Distribution Functions” on page 5-60
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61
• “Generate Random Numbers Using the Triangular Distribution” on page 5-66
• “Explore the Probability Distribution Function UI” on page 5-71
• “Model Data Using the Distribution Fitting App” on page 5-74
• “Fit a Distribution Using the Distribution Fitting App” on page 5-101
• “Custom Distributions Using the Distribution Fitting App” on page 5-111
• “Explore the Random Number Generation UI” on page 5-114
• “Compare Multiple Distribution Fits” on page 5-117
• “Fit Probability Distribution Objects to Grouped Data” on page 5-124
• “Multinomial Probability Distribution Objects” on page 5-128
• “Multinomial Probability Distribution Functions” on page 5-132
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-135
• “Represent Cauchy Distribution Using t Location-Scale” on page 5-138
• “Generate Cauchy Random Numbers Using Student’s t” on page 5-142
• “Generate Correlated Data Using Rank Correlation” on page 5-144

5 Probability Distributions

5-2

• “Gaussian Mixture Models” on page 5-150
• “Copulas: Generate Correlated Samples” on page 5-160

 Working with Probability Distributions

5-3

Working with Probability Distributions

In this section...

“Types of Probability Distributions” on page 5-3
“Probability Distribution Objects” on page 5-4
“Probability Distribution Functions” on page 5-8
“Probability Distribution Apps and User Interfaces” on page 5-10

Types of Probability Distributions

Probability distributions are theoretical distributions based on assumptions about a
source population. The distributions assign probability to the event that a random
variable has a specific, discrete value, or falls within a specified range of continuous
values.

Statistics and Machine Learning Toolbox offers several ways to work with probability
distributions.

• Use “Probability Distribution Objects” on page 5-4 to fit a probability distribution
object to sample data, or to create a probability distribution object with specified
parameter values.

• Use “Probability Distribution Functions” on page 5-8 to work with data input
from matrices, tables, and dataset arrays.

• Use “Probability Distribution Apps and User Interfaces” on page 5-10
to interactively fit, explore, and generate random numbers from probability
distributions. Available apps and user interfaces include:

• The Distribution Fitting app (dfittool)
• The Probability Distribution Function user interface (disttool)
• The Random Number Generation user interface (randtool)

For a list of distributions supported by Statistics and Machine Learning Toolbox, see
“Supported Distributions” on page 5-17.

5 Probability Distributions

5-4

Probability Distribution Objects

Probability distribution objects allow you to fit a probability distribution to sample data,
or define a distribution by specifying parameter values. You can then perform a variety of
analyses on the distribution object.

Create Probability Distribution Objects

Estimate probability distribution parameters from sample data by fitting a probability
distribution object to the data using fitdist. You can fit a single specified parametric
or nonparametric distribution to the sample data. You can also fit multiple distributions
of the same type to the sample data based on grouping variables. For most distributions,
fitdist uses maximum likelihood estimation (MLE) to estimate the distribution
parameters from the sample data. For more information and additional syntax options,
see fitdist.

Alternatively, you can create a probability distribution object with specified parameter
values using makedist.

Work with Probability Distribution Objects

Once you create a probability distribution object, you can use object functions to:

• Compute confidence intervals for the distribution parameters (paramci).
• Compute summary statistics, including mean (mean), median (median), interquartile

range (iqr), variance (var), and standard deviation (std).
• Evaluate the probability density function (pdf).
• Evaluate the cumulative distribution function (cdf) or the inverse cumulative

distribution function (icdf).
• Compute the negative log likelihood (negloglik) and profile likelihood function

(proflik) for the distribution.
• Generate random numbers from the distribution (random).
• Truncate the distribution to specified lower and upper limits (truncate).

Save a Probability Distribution Object

To save your probability distribution object to a .MAT file:

• In the toolbar, click Save Workspace. This option saves all of the variables in your
workspace, including any probability distribution objects.

 Working with Probability Distributions

5-5

• In the workspace browser, right-click the probability distribution object and select
Save as. This option saves only the selected probability distribution object, not the
other variables in your workspace.

Alternatively, you can save a probability distribution object directly from the command
line by using the save function. save enables you to choose a file name and specify
the probability distribution object you want to save. If you do not specify an object (or
other variable), MATLAB saves all of the variables in your workspace, including any
probability distribution objects, to the specified file name. For more information and
additional syntax options, see save.

Example

This example shows how to use probability distribution objects to perform a multistep
analysis on a fitted distribution.

The following analysis illustrates how to:

• Fit a probability distribution object to sample data that contains 120 students’ exam
grades, using fitdist.

• Compute the mean of the exam grades, using mean.
• Plot a histogram of the exam grade data, overlaid with a plot of the pdf of the fitted

distribution, using plot and pdf.
• Compute the boundary for the top 10 percent of student grades, using icdf.
• Save the fitted probability distribution object, using save.

Load the sample data.

load examgrades

The sample data contains a 120-by-5 matrix of students’ exam grades. The exams are
scored on a scale of 0 to 100.

Create a vector containing the first column of students’ exam grade data.

x = grades(:,1);

Fit a normal distribution to the sample data by using fitdist to create a probability
distribution object.

5 Probability Distributions

5-6

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

fitdist returns a probability distribution object, pd, of the type
NormalDistribution. This object contains the estimated parameter values, mu and
sigma, for the fitted normal distribution.

Compute the mean of the students’ exam grades using the fitted distribution object, pd.

m = mean(pd)

m =

 75.0083

The mean of the exam grades is equal to the mu parameter estimated by fitdist.

Plot a histogram of the exam grades. Overlay a scaled plot of the fitted pdf to visually
compare the fitted normal distribution with the actual exam grades.

x_pdf = [1:0.1:100];

y = pdf(pd,x_pdf);

figure

histogram(x)

hold on

scale = 10/max(y);

plot((x_pdf),(y.*scale))

hold off

 Working with Probability Distributions

5-7

The pdf of the fitted distribution follows the same shape as the histogram of the exam
grades.

Use the inverse cumulative distribution function (icdf) to determine the boundary for the
upper 10 percent of student exam grades. This boundary is equivalent to the value at
which the cdf of the probability distribution is equal to 0.9. In other words, 90 percent of
the exam grades are less than or equal to this boundary value.

A = icdf(pd,0.9)

A =

 86.1837

5 Probability Distributions

5-8

Based on the fitted distribution, 10 percent of students received an exam grade greater
than 86.1837. Equivalently, 90 percent of students received an exam grade less than or
equal to 86.1837.

Save the fitted probability distribution, pd, as a file named myobject.mat.

save myobject.mat pd

Probability Distribution Functions

You can also work with probability distributions using command-line functions.
Command-line functions let you further explore parametric and nonparametric
distributions, fit relevant models to your data, and generate random data from a
specified distribution. For a list of supported probability distributions, see “Supported
Distributions” on page 5-17.

Probability distribution functions are useful for generating random numbers and
computing summary statistics inside a loop or script, or passing a cdf or pdf as a function
handle (using the function_handle operator, @) to another function. You can also use
functions if your desired distribution is not available as a probability distribution object.

Examples

This example shows how to use the probability distribution function normcdf as a
function handle in the chi-square goodness of fit test (chi2gof).

This example tests the null hypothesis that the sample data contained in the input
vector, x, comes from a normal distribution with parameters µ and σ equal to the mean
(mean) and standard deviation (std) of the sample data, respectively.

rng default

x = normrnd(50,5,100,1);

h = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})

h =

 0

The returned result h = 0 indicates that chi2gof does not reject the null hypothesis at
the default 5% significance level.

This next example illustrates how to use probability distribution functions as a function
handle in the slice sampler (slicesample). The example uses normpdf to generate

 Working with Probability Distributions

5-9

a random sample of 2,000 values from a standard normal distribution, and plots a
histogram of the resulting values.

rng default

x = slicesample(1,2000,'pdf',@normpdf,'thin',5,'burnin',1000);

h = histogram(x)

The histogram shows that, when using normpdf, the resulting random sample has a
standard normal distribution.

If you pass the probability distribution function for the exponential distribution pdf
(exppdf) as a function handle instead of normpdf, then slicesample generates the
2,000 random samples from an exponential distribution with a default parameter value
of µ equal to 1.

5 Probability Distributions

5-10

rng default

x = slicesample(1,2000,'pdf',@exppdf,'thin',5,'burnin',1000);

h = histogram(x)

The histogram shows that the resulting random sample when using exppdf has an
exponential distribution.

Probability Distribution Apps and User Interfaces

Apps and user interfaces provide an interactive approach to working with parametric
and nonparametric probability distributions.

 Working with Probability Distributions

5-11

Distribution Fitting App

The Distribution Fitting app allows you to interactively fit a probability distribution
to your data. You can display different types of plots, compute confidence bounds, and
evaluate the fit of the data. You can also exclude data from the fit. You can save the
data, and export the fit to your workspace as a probability distribution object to perform
further analysis.

Load the Distribution Fitting app from the Apps tab, or by entering dfittool in the
command window. For more information, see “Model Data Using the Distribution Fitting
App” on page 5-74.

5 Probability Distributions

5-12

Select display

Task buttons

Import data
from workspace

Select distribution (probability plot only)

Exclude data
from fit

Evaluate distribution
at selected points

Manage multiple fits

Create a new fit

Probability Distribution Function Tool

The Probability Distribution Function user interface visually explores probability
distributions. You can load the Probability Distribution Function user interface by
entering disttool in the command window.

 Working with Probability Distributions

5-13

Random Number Generation Tool

The Random Number Generation user interface generates random data from a specified
distribution and exports the results to your workspace. You can use this tool to explore
the effects of changing parameters and sample size on the distributions.

The Random Number Generation user interface allows you to set parameter values for
the distribution and change their lower and upper bounds; draw another sample from the
same distribution, using the same size and parameters; and export the current random

5 Probability Distributions

5-14

sample to your workspace for use in further analysis. A dialog box enables you to provide
a name for the sample.

 Working with Probability Distributions

5-15

Choose distribution Sample size

Parameter
bounds

Histogram

Parameter
value

Parameter
control Additional

parameters
Sample again
from the same
distribution

Export to
workspace

5 Probability Distributions

5-16

See Also
dfittool | disttool | fitdist | makedist | randtool

More About
• “Supported Distributions” on page 5-17

 Supported Distributions

5-17

Supported Distributions

In this section...

“Continuous Distributions (Data)” on page 5-19
“Continuous Distributions (Statistics)” on page 5-23
“Discrete Distributions” on page 5-25
“Multivariate Distributions” on page 5-27
“Nonparametric Distributions” on page 5-29
“Flexible Distribution Families” on page 5-29

Statistics and Machine Learning Toolbox supports more than 30 probability
distributions, including parametric, nonparametric, continuous, and discrete
distributions.

The toolbox provides several ways to work with probability distributions.

• Use probability distribution objects to fit a probability distribution object to sample
data, or to create a probability distribution object with specified parameter values.
The Using Objects page for each distribution provides information about the object’s
properties and the functions you can use to work with the object.

• Use probability distribution functions to work with data input from matrices, tables,
and dataset arrays. Some of the supported distributions have distribution-specific
functions. These functions use the following abbreviations:

• pdf — Probability density functions
• cdf — Cumulative distribution functions
• inv — Inverse cumulative distribution functions
• stat — Distribution statistics functions
• fit — Distribution fitting functions
• like — Negative log-likelihood functions
• rnd — Random number generators

You can also use the following generic functions to work with most of the
distributions:

• pdf — Probability density function

5 Probability Distributions

5-18

• cdf — Cumulative distribution function
• icdf — Inverse cumulative distribution function
• mle — Distribution fitting function
• random — Random number generating function

• Use probability distribution apps and user interfaces to interactively fit, explore, and
generate random numbers from probability distributions. Available apps and user
interfaces include:

• The Distribution Fitting app (dfittool), to interactively fit a distribution to
sample data, and export a probability distribution object to the workspace.

• The Probability Distribution Function user interface (disttool), to visually
explore the effect on the pdf and cdf of changing the distribution parameter values.

• The Random Number Generation user interface (randtool), to interactively
generate random numbers from a probability distribution with specified parameter
values and export them to the workspace.

For more information on the different ways to work with probability distributions, see
“Working with Probability Distributions” on page 5-3.

 Supported Distributions

5-19

Continuous Distributions (Data)

Distribution Using Objects Legacy Functions Apps and UIs

Beta BetaDistribution betapdf

betacdf

betainv

betastat

betafit

betalike

betarnd

dfittool

disttool

randtool

Birnbaum-Saunders BirnbaumSaundersDistributionpdf

cdf

icdf

mle

random

dfittool

Burr Type XII BurrDistribution pdf

cdf

icdf

mle

random

dfittool

disttool

randtool

Exponential ExponentialDistributionexppdf

expcdf

expinv

expstat

expfit

explike

dfittool

disttool

randtool

Extreme value ExtremeValueDistributionevpdf

evcdf

evinv

evstat

evfit

evlike

evrnd

dfittool

disttool

randtool

Gamma GammaDistribution gampdf

gamcdf

gaminv

gamstat

dfittool

disttool

randtool

5 Probability Distributions

5-20

Distribution Using Objects Legacy Functions Apps and UIs

gamfit

gamlike

gamrnd

Generalized extreme
value

GeneralizedExtremeValueDistributiongevpdf

gevcdf

gevinv

gevstat

gevfit

gevlike

gevrnd

dfittool

disttool

randtool

Generalized Pareto GeneralizedParetoDistributiongppdf

gpcdf

gpinv

gpstat

gpfit

gplike

gprnd

dfittool

disttool

randtool

Inverse Gaussian InverseGaussianDistributionpdf

cdf

icdf

mle

random

dfittool

Logistic LogisticDistributionpdf

cdf

icdf

mle

random

dfittool

Loglogistic LoglogisticDistributionpdf

cdf

icdf

mle

random

dfittool

 Supported Distributions

5-21

Distribution Using Objects Legacy Functions Apps and UIs

Lognormal LognormalDistributionlognpdf

logncdf

logninv

lognstat

lognfit

lognlike

lognrnd

dfittool

disttool

randtool

Nakagami NakagamiDistributionpdf

cdf

icdf

mle

random

dfittool

Normal (Gaussian) NormalDistributionnormpdf

normcdf

norminv

normstat

normfit

normlike

normrnd

dfittool

disttool

randtool

Piecewise linear PiecewiseLinearDistributionpdf

cdf

icdf

random

Rayleigh RayleighDistributionraylpdf

raylcdf

raylinv

raylstat

raylfit

raylrnd

dfittool

disttool

randtool

Rician RicianDistributionpdf

cdf

icdf

mle

random

dfittool

Triangular TriangularDistribution

5 Probability Distributions

5-22

Distribution Using Objects Legacy Functions Apps and UIs

Uniform (continuous) UniformDistributionunifpdf

unifcdf

unifinv

unifstat

unifit

unifrnd

disttool

randtool

Weibull WeibullDistributionwblpdf

wblcdf

wblinv

wblstat

wblfit

wbllike

wblrnd

dfittool

disttool

randtool

 Supported Distributions

5-23

Continuous Distributions (Statistics)

Distribution Using Objects Legacy Functions Apps and UIs

Chi-square chi2pdf

chi2cdf

chi2inv

chi2stat

chi2rnd

disttool

randtool

F fpdf

fcdf

finv

fstat

frnd

disttool

randtool

Noncentral chi-square ncx2pdf

ncx2cdf

ncx2inv

ncx2stat

ncx2rnd

disttool

randtool

Noncentral F ncfpdf

ncfcdf

ncfinv

ncfstat

ncfrnd

disttool

randtool

Noncentral t nctpdf

nctcdf

nctinv

nctstat

nctrnd

disttool

randtool

Student's t tpdf

tcdf

tinv

tstat

trnd

disttool

randtool

t location- scale tLocationScaleDistributionpdf

cdf

icdf

mle

dfittool

5 Probability Distributions

5-24

Distribution Using Objects Legacy Functions Apps and UIs

random

 Supported Distributions

5-25

Discrete Distributions

Distribution Using Objects Legacy Functions Apps/UIs

Binomial BinomialDistributionbinopdf

binocdf

binoinv

binostat

binofit

binornd

disttool

randtool

Bernoulli mle
Geometric geopdf

geocdf

geoinv

geostat

mle

geornd

disttool

randtool

Hypergeometric hygepdf

hygecdf

hygeinv

hygestat

hygernd

disttool

randtool

Multinomial MultinomialDistributionmnpdf

mnrnd

Negative binomial NegativeBinomialDistributionnbinpdf

nbincdf

nbininv

nbinstat

nbinfit

nbinrnd

dfittool

disttool

randtool

Poisson PoissonDistributionpoisspdf

poisscdf

poissinv

poisstat

poissfit

poissrnd

dfittool

disttool

randtool

Uniform (discrete) unidpdf disttool

5 Probability Distributions

5-26

Distribution Using Objects Legacy Functions Apps/UIs

unidcdf

unidinv

unidstat

mle

unidrnd

randtool

 Supported Distributions

5-27

Multivariate Distributions

Distribution Object Legacy Functions Apps/UI

Gaussian copula copulapdf

copulacdf

copulastat

copulafit

copularnd

Gaussian mixture gmdistribution pdf

cdf

fit

random

t copula copulapdf

copulacdf

copulastat

copulafit

copularnd

Clayton copula copulapdf

copulacdf

copulastat

copulafit

copularnd

Frank copula copulapdf

copulacdf

copulastat

copulafit

copularnd

Gumbel copula copulapdf

copulacdf

copulastat

copulafit

copularnd

Inverse Wishart iwishrnd
Multivariate normal mvnpdf

mvncdf

mvnrnd

5 Probability Distributions

5-28

Distribution Object Legacy Functions Apps/UI

Multivariate t mvtpdf

mvtcdf

mvtrnd

Wishart wishrnd

 Supported Distributions

5-29

Nonparametric Distributions

Distribution Using Objects Legacy Functions Apps/UIs

Nonparametric (kernel) KernelDistribution ksdensity dfittool

Pareto paretotails

Flexible Distribution Families

Distribution Using Objects Legacy Functions Apps/UIs

Pearson system pearsrnd
Johnson system johnsrnd

More About
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40

5 Probability Distributions

5-30

Maximum Likelihood Estimation

The Statistics and Machine Learning Toolbox function mle is a convenient front end to
the individual distribution fitting functions, and more. The function computes maximum
likelihood estimates (MLEs) for distributions beyond those for which Statistics and
Machine Learning Toolbox software provides specific pdf functions.

For some pdfs, MLEs can be given in closed form and computed directly. For other pdfs, a
search for the maximum likelihood must be employed. The search can be controlled with
an options input argument, created using the statset function. For efficient searches,
it is important to choose a reasonable distribution model and set appropriate convergence
tolerances.

MLEs can be heavily biased, especially for small samples. As sample size increases,
however, MLEs become unbiased minimum variance estimators with approximate
normal distributions. This is used to compute confidence bounds for the estimates.

For example, consider the following distribution of means from repeated random samples
of an exponential distribution:

mu = 1; % Population parameter

n = 1e3; % Sample size

ns = 1e4; % Number of samples

rng default % For reproducibility

samples = exprnd(mu,n,ns); % Population samples

means = mean(samples); % Sample means

The Central Limit Theorem says that the means will be approximately normally
distributed, regardless of the distribution of the data in the samples. The normfit
function can be used to find the normal distribution that best fits the means:

[muhat,sigmahat,muci,sigmaci] = normfit(means)

muhat =

 1.0000

sigmahat =

 Maximum Likelihood Estimation

5-31

 0.0315

muci =

 0.9994

 1.0006

sigmaci =

 0.0311

 0.0319

The function returns MLEs for the mean and standard deviation and their 95%
confidence intervals.

To visualize the distribution of sample means together with the fitted normal
distribution, you must scale the fitted pdf, with area = 1, to the area of the histogram
being used to display the means:

numbins = 50;

histogram(means,numbins)

hold on

[bincounts,binpositions] = hist(means,numbins);

binwidth = binpositions(2) - binpositions(1);

histarea = binwidth*sum(bincounts);

x = binpositions(1):0.001:binpositions(end);

y = normpdf(x,muhat,sigmahat);

plot(x,histarea*y,'r','LineWidth',2)

5 Probability Distributions

5-32

 Negative Loglikelihood Functions

5-33

Negative Loglikelihood Functions

Negative loglikelihood functions for supported Statistics and Machine Learning Toolbox
distributions all end with like, as in explike. Each function represents a parametric
family of distributions. Input arguments are lists of parameter values specifying a
particular member of the distribution family followed by an array of data. Functions
return the negative log-likelihood of the parameters, given the data.

Negative log-likelihood functions are used as objective functions in search algorithms
such as the one implemented by the MATLAB function fminsearch. Additional
search algorithms are implemented by Optimization Toolbox™ functions and Global
Optimization Toolbox functions.

When used to compute maximum likelihood estimates (MLEs), negative log-likelihood
functions allow you to choose a search algorithm and exercise low-level control over
algorithm execution. By contrast, the functions discussed in “Maximum Likelihood
Estimation” on page 5-30 use preset algorithms with options limited to those set by the
statset function.

Likelihoods are conditional probability densities. A parametric family of distributions
is specified by its pdf f(x,a), where x and a represent the variables and parameters,
respectively. When a is fixed, the pdf is used to compute the density at x, f(x|a). When x
is fixed, the pdf is used to compute the likelihood of the parameters a, f(a|x). The joint
likelihood of the parameters over an independent random sample X is

L a f a x

x X

() (|)=

Œ

’

Given X, MLEs maximize L(a) over all possible a.

In numerical algorithms, the log-likelihood function, log(L(a)), is (equivalently)
optimized. The logarithm transforms the product of potentially small likelihoods into
a sum of logs, which is easier to distinguish from 0 in computation. For convenience,
Statistics and Machine Learning Toolbox negative log-likelihood functions return the
negative of this sum, since the optimization algorithms to which the values are passed
typically search for minima rather than maxima.

For example, use gamrnd to generate a random sample from a specific gamma
distribution:

5 Probability Distributions

5-34

rng default; % for reproducibility

a = [1,2];

X = gamrnd(a(1),a(2),1e3,1);

Given X, the gamlike function can be used to visualize the likelihood surface in the
neighborhood of a:

mesh = 50;

delta = 0.5;

a1 = linspace(a(1)-delta,a(1)+delta,mesh);

a2 = linspace(a(2)-delta,a(2)+delta,mesh);

logL = zeros(mesh); % Preallocate memory

for i = 1:mesh

 for j = 1:mesh

 logL(i,j) = gamlike([a1(i),a2(j)],X);

 end

end

[A1,A2] = meshgrid(a1,a2);

surfc(A1,A2,logL)

 Negative Loglikelihood Functions

5-35

The MATLAB function fminsearch is used to search for the minimum of the likelihood
surface:

LL = @(u)gamlike([u(1),u(2)],X); % Likelihood given X

MLES = fminsearch(LL,[1,2])

MLES =

 0.9980 2.0172

These can be compared to the MLEs returned by the gamfit function, which uses a
combination search and solve algorithm:

5 Probability Distributions

5-36

ahat = gamfit(X)

ahat =

 0.9980 2.0172

The MLEs can be added to the surface plot (rotated to show the minimum):

hold on

plot3(MLES(1),MLES(2),LL(MLES),...

 'ro','MarkerSize',5,...

 'MarkerFaceColor','r')

 Random Number Generation

5-37

Random Number Generation

Statistics and Machine Learning Toolbox supports the generation of random numbers
from various distributions. Each RNG represents a parametric family of distributions.
RNGs return random numbers from the specified distribution in an array of the specified
dimensions.

Other random number generation functions which do not support specific distributions
include:

• cvpartition

• datasample

• hmmgenerate

• lhsdesign

• lhsnorm

• mhsample

• random

• randsample

• slicesample

RNGs in Statistics and Machine Learning Toolbox software depend on MATLAB's
default random number stream via the rand and randn functions, each RNG uses one of
the techniques discussed in “Common Generation Methods” on page 6-5 to generate
random numbers from a given distribution.

By controlling the default random number stream and its state, you can control how the
RNGs in Statistics and Machine Learning Toolbox software generate random values.
For example, to reproduce the same sequence of values from an RNG, you can save and
restore the default stream's state, or reset the default stream. For details on managing
the default random number stream, see “Managing the Global Stream”.

MATLAB initializes the default random number stream to the same state each time it
starts up. Thus, RNGs in Statistics and Machine Learning Toolbox software will generate
the same sequence of values for each MATLAB session unless you modify that state at
startup. One simple way to do that is to add commands to startup.m such as

rng shuffle

5 Probability Distributions

5-38

that initialize MATLAB's default random number stream to a different state for each
session.

The following table lists the dependencies of Statistics and Machine Learning Toolbox
RNGs on the MATLAB base RNGs rand, randi, and/or randn.

RNG MATLAB Base RNG

betarnd rand, randn

binornd rand

chi2rnd rand, randn

evrnd rand

exprnd rand

datasample rand, randi, randperm

frnd rand, randn

gamrnd rand, randn

geornd rand

gevrnd rand

gprnd rand

hygernd rand

iwishrnd rand, randn

johnsrnd randn

lhsdesign rand

lhsnorm rand

lognrnd randn

mhsample rand or randn, depending on the RNG
given for the proposal distribution

mvnrnd randn

mvtrnd rand, randn

nbinrnd rand, randn

ncfrnd rand, randn

nctrnd rand, randn

 Random Number Generation

5-39

RNG MATLAB Base RNG

ncx2rnd randn

normrnd randn

pearsrnd rand or randn, depending on the
distribution type

poissrnd rand, randn

random rand or randn, depending on the specified
distribution

randsample rand

raylrnd randn

slicesample rand

trnd rand, randn

unidrnd rand

unifrnd rand

wblrnd rand

wishrnd rand, randn

5 Probability Distributions

5-40

Nonparametric and Empirical Probability Distributions

In this section...

“Overview” on page 5-40
“Kernel Distribution” on page 5-40
“Empirical Cumulative Distribution Function” on page 5-42
“Piecewise Linear Distribution” on page 5-44
“Pareto Tails” on page 5-45
“Triangular Distribution” on page 5-46

Overview

In some situations, you cannot accurately describe a data sample using a parametric
distribution. Instead, the probability density function (pdf) or cumulative distribution
function (cdf) must be estimated from the data. Statistics and Machine Learning Toolbox
provides several options for estimating the pdf or cdf from sample data.

Kernel Distribution

A kernel distribution produces a nonparametric probability density estimate that adapts
itself to the data, rather than selecting a density with a particular parametric form and
estimating the parameters. This distribution is defined by a kernel density estimator, a
smoothing function that determines the shape of the curve used to generate the pdf, and
a bandwidth value that controls the smoothness of the resulting density curve.

Similar to a histogram, the kernel distribution builds a function to represent the
probability distribution using the sample data. But unlike a histogram, which places the
values into discrete bins, a kernel distribution sums the component smoothing functions
for each data value to produce a smooth, continuous probability curve. The following plot
shows a visual comparison of a histogram and a kernel distribution generated from the
same sample data.

 Nonparametric and Empirical Probability Distributions

5-41

A histogram represents the probability distribution by establishing bins and placing each
data value in the appropriate bin. Because of this bin count approach, the histogram
produces a discrete probability density function. This might be unsuitable for certain
applications, such as generating random numbers from a fitted distribution.

Alternatively, the kernel distribution builds the probability density function (pdf) by
creating an individual probability density curve for each data value, then summing
the smooth curves. This approach creates one smooth, continuous probability density
function for the data set.

For more general information about kernel distributions, see “Kernel Distribution” on
page B-81. For information on how to work with a kernel distribution, see Using
KernelDistribution Objects and ksdensity.

5 Probability Distributions

5-42

Empirical Cumulative Distribution Function

An empirical cumulative distribution function (ecdf) estimates the cdf of a random
variable by assigning equal probability to each observation in a sample. Because of this
approach, the ecdf is a discrete cumulative distribution function that creates an exact
match between the ecdf and the distribution of the sample data.

The following plot shows a visual comparison of the ecdf of 20 random numbers
generated from a standard normal distribution, and the theoretical cdf of a standard
normal distribution. The circles indicate the value of the ecdf calculated at each sample
data point. The dashed line that passes through each circle visually represents the ecdf,
although the ecdf is not a continuous function. The solid line shows the theoretical cdf of
the standard normal distribution from which the random numbers in the sample data
were drawn.

 Nonparametric and Empirical Probability Distributions

5-43

The ecdf is similar in shape to the theoretical cdf, although it is not an exact match.
Instead, the ecdf is an exact match to the sample data. The ecdf is a discrete function,
and is not smooth, especially in the tails where data might be sparse. You can smooth the
distribution with Pareto tails, using the paretotails function.

For more information and additional syntax options, see ecdf. To construct a continuous
function based on cdf values computed from sample data, see “Piecewise Linear
Distribution” on page 5-44.

5 Probability Distributions

5-44

Piecewise Linear Distribution

A piecewise linear distribution estimates an overall cdf for the sample data by computing
the cdf value at each individual point, and then linearly connecting these values to form a
continuous curve.

The following plot shows the cdf for a piecewise linear distribution based on a sample of
hospital patients’ weight measurements. The circles represent each individual data point
(weight measurement). The black line that passes through each data point represents the
piecewise linear distribution cdf for the sample data.

A piecewise linear distribution linearly connects the cdf values calculated at each sample
data point to form a continuous curve. By contrast, an empirical cumulative distribution

 Nonparametric and Empirical Probability Distributions

5-45

function constructed using the ecdf function produces a discrete cdf. For example,
random numbers generated from the ecdf can only include x values contained in the
original sample data. Random numbers generated from a piecewise linear distribution
can include any x value between the lower and upper boundaries of the sample data.

Because the piecewise linear distribution cdf is constructed from the values contained
in the sample data, the resulting curve is often not smooth, especially in the tails where
data might be sparse. You can smooth the distribution with Pareto tails, using the
paretotails function.

For information on how to work with a piecewise linear distribution, see Using
PiecewiseLinearDistribution Objects.

Pareto Tails

Pareto tails use a piecewise approach to improve the fit of a nonparametric cdf or pdf by
smoothing the tails of the distribution. You can fit a kernel distribution, empirical cdf,
or piecewise linear distribution to the middle data values, then fit generalized Pareto
distribution curves to the tails. This technique is especially useful when the sample data
is sparse in the tails.

The following plot shows the empirical cdf (ecdf) of a data sample containing 20 random
numbers. The solid line represents the ecdf, and the dashed line represents the empirical
cdf with Pareto tails fit to the lower and upper 10 percent of the data. The circles denote
the boundaries for the lower and upper 10 percent of the data.

5 Probability Distributions

5-46

Fitting Pareto tails to the lower and upper 10 percent of the sample data makes the cdf
smoother in the tails, where the data is sparse. For more information on working with
Pareto tails, see paretotails.

Triangular Distribution

A “Triangular Distribution” on page B-157 provides a simplistic representation of
the probability distribution when limited sample data is available. This continuous
distribution is parameterized by a lower limit, peak location, and upper limit. These
points are linearly connected to estimate the pdf of the sample data. You can use the
mean, median, or mode of the data as the peak location.

 Nonparametric and Empirical Probability Distributions

5-47

The following plot shows the triangular distribution pdf of a random sample of 10
integers from 0 to 5. The lower limit is the smallest integer in the sample data, and
the upper limit is the largest integer. The peak for this plot is at the mode, or most
frequently-occurring value, in the sample data.

Business applications such as simulation and project management sometimes use a
triangular distribution to create models when limited sample data exists. For more
information, see “Triangular Distribution” on page B-157.

See Also
ecdf | ksdensity | paretotails

5 Probability Distributions

5-48

Related Examples
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61

More About
• “Kernel Distribution” on page B-81
• “Piecewise Linear Distribution” on page B-136
• “Triangular Distribution” on page B-157

 Fit Kernel Distribution Object to Data

5-49

Fit Kernel Distribution Object to Data

This example shows how to fit a kernel probability distribution object to sample data.

Step 1. Load sample data.

Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Year), and other vehicle
characteristics.

Step 2. Fit a kernel distribution object.

Use fitdist to fit a kernel probability distribution object to the miles per gallon (MPG)
data for all makes of cars.

pd = fitdist(MPG,'Kernel')

pd =

 KernelDistribution

 Kernel = normal

 Bandwidth = 4.11428

 Support = unbounded

This creates a prob.KernelDistribution object. By default, fitdist uses a normal
kernel smoothing function and chooses an optimal bandwidth for estimating normal
densities, unless you specify otherwise. You can access information about the fit and
perform further calculations using the related object functions.

Step 3. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the fitted kernel distribution.

m = mean(pd)

med = median(pd)

s = std(pd)

m =

5 Probability Distributions

5-50

 23.7181

med =

 23.4841

s =

 8.9896

Step 4. Compute and plot the pdf.

Compute and plot the pdf of the fitted kernel distribution.

figure;

x = 0:1:60;

y = pdf(pd,x);

plot(x,y,'LineWidth',2);

title('Miles per Gallon');

xlabel('MPG');

 Fit Kernel Distribution Object to Data

5-51

The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of
cars. The distribution is smooth and fairly symmetrical, although it is slightly skewed
with a heavier right tail.

Step 5. Generate random numbers.

Generate a vector of random numbers from the fitted kernel distribution.

rng('default') % For reproducibility

r = random(pd,1000,1);

figure;

hist(r);

set(get(gca,'Children'),'FaceColor',[.8 .8 1]);

hold on;

5 Probability Distributions

5-52

y = y*5000; % Scale pdf to overlay on histogram

plot(x,y,'LineWidth',2);

title('Random Numbers Generated From Distribution');

hold off;

The histogram has a similar shape to the pdf plot because the random numbers generate
from the nonparametric kernel distribution fit to the sample data.

See Also
fitdist

 Fit Kernel Distribution Object to Data

5-53

Related Examples
• “Fit Kernel Distribution Using ksdensity” on page 5-54

More About
• “Kernel Distribution” on page B-81

5 Probability Distributions

5-54

Fit Kernel Distribution Using ksdensity

This example shows how to generate a kernel probability density estimate from sample
data using the ksdensity function.

Step 1. Load sample data.

Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Year), and other vehicle
characteristics.

Step 2. Generate a kernel probability density estimate.

Use ksdensity to generate a kernel probability density estimate for the miles per gallon
(MPG) data.

[f,xi] = ksdensity(MPG);

By default, ksdensity uses a normal kernel smoothing function and chooses an optimal
bandwidth for estimating normal densities, unless you specify otherwise.

Step 3. Plot the kernel probability density estimate.

Plot the kernel probability density estimate to visualize the |MPG| distribution.

figure;

plot(xi,f,'LineWidth',2);

title('Miles per Gallon');

xlabel('MPG');

 Fit Kernel Distribution Using ksdensity

5-55

The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of
cars. The distribution is smooth and fairly symmetrical, although it is slightly skewed
with a heavier right tail.

See Also
ksdensity

Related Examples
• “Fit Kernel Distribution Object to Data” on page 5-49

5 Probability Distributions

5-56

More About
• “Kernel Distribution” on page B-81

 Fit Distributions to Grouped Data Using ksdensity

5-57

Fit Distributions to Grouped Data Using ksdensity

This example shows how to fit kernel distributions to grouped sample data using the
ksdensity function.

Step 1. Load sample data.

Load the sample data.

load carsmall;

The data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Model_Year), and other
vehicle characteristics.

Step 2. Group sample data by origin.

Group the MPG data by origin (Origin) for cars made in the USA, Japan, and Germany.

Origin = nominal(Origin);

MPG_USA = MPG(Origin=='USA');

MPG_Japan = MPG(Origin=='Japan');

MPG_Germany = MPG(Origin=='Germany');

Step 3. Compute and plot the pdf.

Compute and plot the pdf for each group.

figure;

[fi,xi] = ksdensity(MPG_USA);

plot(xi,fi,'r-');

hold on;

[fj,xj] = ksdensity(MPG_Japan);

plot(xj,fj,'b-.')

[fk,xk] = ksdensity(MPG_Germany);

plot(xk,fk,'k:')

legend('USA','Japan','Germany')

title('MPG by Origin');

xlabel('MPG');

5 Probability Distributions

5-58

hold off;

The plot shows how miles per gallon (MPG) performance differs by country of origin
(Origin). Using this data, the USA has the widest distribution, and its peak is at the
lowest MPG value of the three origins. Japan has the most regular distribution with a
slightly heavier left tail, and its peak is at the highest MPG value of the three origins. The
peak for Germany is between the USA and Japan, and the second bump near 44 miles
per gallon suggests that there might be multiple modes in the data.

See Also
makedist

 Fit Distributions to Grouped Data Using ksdensity

5-59

Related Examples
• “Fit Kernel Distribution Using ksdensity” on page 5-54
• “Fit Probability Distribution Objects to Grouped Data” on page 5-124

More About
• “Kernel Distribution” on page B-81
• “Grouping Variables” on page 2-52

5 Probability Distributions

5-60

Create and Plot Empirical Cumulative Distribution Functions

This example shows how to create and plot an empirical cumulative distribution function
based on sample data.

Step 1. Load sample data.

Load the sample data.

Step 2. Compute the empirical cumulative distribution.

The empirical cdf assigns the probability 1/n to each of n observations in a data
sample. It returns the values of a function F such that F(x) represents the proportion of
observations in a sample less than or equal to x. The empirical distributions computed by
ecdf assign equal probability to each observation in a sample, providing an exact match
of the sample distribution. However, the distributions are not smooth, especially in the
tails where data may be sparse. In this situation, you can use Pareto tails to smooth the
cdf in the tails.

Step 3. Plot the ecdf.

The graph of an empirical cdf has a stair-step appearance. If a sample comes from a
distribution in a parametric family (such as a normal distribution), its empirical cdf is
likely to resemble the parametric distribution. If not, its empirical distribution still gives
an estimate of the cdf for the distribution that generated the data.

 Fit a Nonparametric Distribution with Pareto Tails

5-61

Fit a Nonparametric Distribution with Pareto Tails

This example shows how to fit a nonparametric probability distribution to sample data
using Pareto tails to smooth the distribution in the tails.

Step 1. Generate sample data.

Generate sample data that contains more outliers than expected from a standard normal
distribution.

rng('default') % For reproducibility

left_tail = -exprnd(1,10,1);

right_tail = exprnd(5,10,1);

center = randn(80,1);

data = [left_tail;center;right_tail];

The data contains 80% values from a standard normal distribution, 10% from an
exponential distribution with a mean of 5, and 10% from an exponential distribution
with mean of –1. the data contains random numbers from an exponential distribution.
Compared to a standard normal distribution, the exponential values are more likely to be
outliers, especially in the upper tail.

Step 2. Fit probability distributions to the data.

Fit a normal distribution and a t location-scale distribution to the data, and plot for a
visual comparison.

figure;

probplot(data);

p = fitdist(data,'tlocationscale');

h = probplot(gca,p);

set(h,'color','r','linestyle','-');

title('Probability Plot');

legend('Normal','Data','t location-scale','Location','SE');

5 Probability Distributions

5-62

Both distributions appear to fit reasonably well in the center, but neither the normal
distribution nor the t location-scale distribution fit the tails very well.

Step 3. Generate an empirical distribution.

To obtain a better fit, use ecdf to generate an empirical cdf based on the sample data.

figure;

ecdf(data)

 Fit a Nonparametric Distribution with Pareto Tails

5-63

The empirical distribution provides a perfect fit, but the outliers make the tails very
discrete. Random samples generated from this distribution using the inversion method
might include, for example, values near 4.33 and 9.25, but no values in between.

Step 4. Fit a distribution using Pareto tails.

Use paretotails to generate an empirical cdf for the middle 80% of the data and fit
generalized Pareto distributions to the lower and upper 10%.

pfit = paretotails(data,0.1,0.9)

pfit =

Piecewise distribution with 3 segments

5 Probability Distributions

5-64

 -Inf < x < -1.24623 (0 < p < 0.1): lower tail, GPD(-0.334156,0.798745)

 -1.24623 < x < 1.48551 (0.1 < p < 0.9): interpolated empirical cdf

 1.48551 < x < Inf (0.9 < p < 1): upper tail, GPD(1.23681,0.581868)

To obtain a better fit, paretotails fits a distribution by piecing together an ecdf
or kernel distribution in the center of the sample, and smooth generalized Pareto
distributions (GPDs) in the tails. The paretotails function creates a paretotails
probability distribution object. You can access information about the fit and perform
further calculations on the object using the methods of the paretotails class. For
example, you can evaluate the cdf or generate random numbers from the distribution.

Step 5. Compute and plot the cdf.

Compute and plot the cdf of the fitted paretotails distribution.

x = -4:0.01:10;

plot(x,cdf(pfit,x));

 Fit a Nonparametric Distribution with Pareto Tails

5-65

The paretotails cdf closely fits the data but is smoother in the tails than the ecdf
generated in Step 3.

5 Probability Distributions

5-66

Generate Random Numbers Using the Triangular Distribution

This example shows how to create a triangular probability distribution object based on
sample data, and generate random numbers for use in a simulation.

Step 1. Input sample data.

Input the data vector time, which contains the observed length of time (in seconds) that
10 different cars stopped at a highway tollbooth.

time = [6 14 8 7 16 8 23 6 7 15];

The data shows that, while most cars stopped for 6 to 16 seconds, one outlier stopped for
23 seconds.

Step 2. Estimate distribution parameters.

Estimate the triangular distribution parameters from the sample data.

lower = min(time);

peak = median(time);

upper = max(time);

A triangular distribution provides a simplistic representation of the probability
distribution when sample data is limited. Estimate the lower and upper boundaries of
the distribution by finding the minimum and maximum values of the sample data. For
the peak parameter, the median might provide a better estimate of the mode than the
mean, since the data includes an outlier.

Step 3. Create a probability distribution object.

Create a triangular probability distribution object using the estimated parameter values.

pd = makedist('Triangular','a',lower,'b',peak,'c',upper)

pd =

 TriangularDistribution

A = 6, B = 8, C = 23

Compute and plot the pdf of the triangular distribution.

figure;

x = 0:.1:230;

 Generate Random Numbers Using the Triangular Distribution

5-67

y = pdf(pd,x);

plot(x,y);

title('Time Spent at Tollbooth');

xlabel('Time (seconds)');

The plot shows that this triangular distribution is skewed to the right. However, since
the estimated peak value is the sample median, the distribution should be symmetrical
about the peak. Because of its skew, this model might, for example, generate random
numbers that seem unusually high when compared to the initial sample data.

Step 4. Generate random numbers.

Generate random numbers from this distribution to simulate future traffic flow through
the tollbooth.

5 Probability Distributions

5-68

rng('default'); % For reproducibility

r = random(pd,10,1)

r =

 16.1265

 18.0987

 8.0796

 18.3001

 13.3176

 7.8211

 9.4360

 12.2508

 19.7082

 20.0078

The returned values in r are the time in seconds that the next 10 simulated cars spend at
the tollbooth. These values seem high compared to the values in the original data vector
time because the outlier skewed the distribution to the right. Using the second-highest
value as the upper limit parameter might mitigate the effects of the outlier and generate
a set of random numbers more similar to the initial sample data.

Step 5. Revise estimated parameters.

Estimate the upper boundary of the distribution using the second largest value in the
sample data.

sort_time = sort(time,'descend');

secondLargest = sort_time(2);

Step 6. Create a new distribution object and plot the pdf.

Create a new triangular probability distribution object using the revised estimated
parameters, and plot its pdf.

figure;

pd2 = makedist('Triangular','a',lower,'b',peak,'c',secondLargest);

y2 = pdf(pd2,x);

plot(x,y2,'LineWidth',2);

title('Time Spent at Tollbooth');

xlabel('Time (seconds)');

 Generate Random Numbers Using the Triangular Distribution

5-69

The plot shows that this triangular distribution is still slightly skewed to the right.
However, it is much more symmetrical about the peak than the distribution that used
the maximum sample data value to estimate the upper limit.

Step 7. Generate new random numbers.

Generate new random numbers from the revised distribution.

rng('default'); % For reproducibility

r2 = random(pd2,10,1)

r2 =

 12.1501

5 Probability Distributions

5-70

 13.2547

 7.5937

 13.3675

 10.5768

 7.3967

 8.4026

 9.9792

 14.1562

 14.3240

These new values more closely resemble those in the original data vector time. They are
also closer to the sample median than the random numbers generated by the distribution
that used the outlier to estimate its upper limit. This example does not remove the
outlier from the sample data when computing the median. Other options for parameter
estimation include removing outliers from the sample data altogether, or using the mean
or mode of the sample data as the peak value.

See Also
makedist | pdf | random

More About
• “Triangular Distribution” on page B-157

 Explore the Probability Distribution Function UI

5-71

Explore the Probability Distribution Function UI

The Probability Distribution Function user interface (UI) interactively displays the
influence of parameter changes on the shapes of the pdfs and cdfs of supported Statistics
and Machine Learning Toolbox distributions.

Run the user interface by typing disttool at the command line.

5 Probability Distributions

5-72

Choose
distribution

Function
value

Function type
(cdf or pdf)

Function
plot

Draggable
reference
lines

Parameter
bounds

Parameter
value

Parameter
control

Additional
parameters

Start by selecting a distribution. Then choose the function type: probability density
function (pdf) or cumulative distribution function (cdf).

After the plot appears, you can

 Explore the Probability Distribution Function UI

5-73

• Calculate a new function value by

• Typing a new x value in the text box on the x-axis
• Dragging the vertical reference line.
• Clicking in the figure where you want the line to be.

The new function value appears in the text box to the left of the plot.
• For cdf plots, find critical values corresponding to a specific probability by typing

the desired probability in the text box on the y-axis or by dragging the horizontal
reference line.

• Use the controls at the bottom of the window to set parameter values for the
distribution and to change their upper and lower bounds.

5 Probability Distributions

5-74

Model Data Using the Distribution Fitting App

The Distribution Fitting app provides a visual, interactive approach to fitting univariate
distributions to data.

In this section...

“Explore Probability Distributions Interactively” on page 5-74
“Create and Manage Data Sets” on page 5-75
“Create a New Fit” on page 5-80
“Display Results” on page 5-85
“Manage Fits” on page 5-87
“Evaluate Fits” on page 5-88
“Exclude Data” on page 5-92
“Save and Load Sessions” on page 5-98
“Generate a File to Fit and Plot Distributions” on page 5-99

Explore Probability Distributions Interactively

You can use the Distribution Fitting app to interactively fit probability distributions to
data imported from the MATLAB workspace. You can choose from 22 built-in probability
distributions, or create your own custom distribution. The app displays the fitted
distribution over plots of the empirical distributions, including pdf, cdf, probability plots,
and survivor functions. You can export the fit data, including fitted parameter values, to
the workspace for further analysis.

Distribution Fitting App Workflow

To fit a probability distribution to your sample data:

1 On the MATLAB Toolstrip, click the Apps tab. In the Math, Statistics and
Optimization group, open the Distribution Fitting app. Alternatively, at the
command prompt, enter dfittool.

2 Import your sample data, or create a data vector directly in the app. You can also
manage your data sets and choose which one to fit. See “Create and Manage Data
Sets” on page 5-75.

 Model Data Using the Distribution Fitting App

5-75

3 Create a new fit for your data. See “Create a New Fit” on page 5-80.
4 Display the results of the fit. You can choose to display the density (pdf), cumulative

probability (cdf), quantile (inverse cdf), probability plot (choose one of several
distributions), survivor function, and cumulative hazard. See “Display Results” on
page 5-85.

5 You can create additional fits, and manage multiple fits from within the app. See
“Manage Fits” on page 5-87.

6 Evaluate probability functions for the fit. You can choose to evaluate the density
(pdf), cumulative probability (cdf), quantile (inverse cdf), survivor function, and
cumulative hazard. See “Evaluate Fits” on page 5-88.

7 Improve the fit by excluding certain data. You can specify bounds for the data to
exclude, or you can exclude data graphically using a plot of the values in the sample
data. See “Exclude Data” on page 5-92.

8 Save your current Distribution Fitting app session so you can open it later. See “Save
and Load Sessions” on page 5-98.

Create and Manage Data Sets

To open the Data dialog box, click the Data button in the Distribution Fitting app.

5 Probability Distributions

5-76

Import Data

Create a data set by importing a vector from the MATLAB workspace using the Import
workspace vectors pane.

• Data — In the Data field, the drop-down list contains the names of all matrices and
vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace. Select the
array containing the data that you want to fit. The actual data you import must be
a vector. If you select a matrix in the Data field, the first column of the matrix is
imported by default. To select a different column or row of the matrix, click Select
Column or Row. The matrix displays in the Variables editor. You can select a row or
column by highlighting it.

Alternatively, you can enter any valid MATLAB expression in the Data field.

 Model Data Using the Distribution Fitting App

5-77

When you select a vector in the Data field, a histogram of the data appears in the
Data preview pane.

• Censoring — If some of the points in the data set are censored, enter a Boolean
vector of the same size as the data vector, specifying the censored entries of the data.
A 1 in the censoring vector specifies that the corresponding entry of the data vector
is censored. A 0 specifies that the entry is not censored. If you enter a matrix, you
can select a column or row by clicking Select Column or Row. If you do not have
censored data, leave the Censoring field blank.

• Frequency — Enter a vector of positive integers of the same size as the data vector
to specify the frequency of the corresponding entries of the data vector. For example,
a value of 7 in the 15th entry of frequency vector specifies that there are 7 data points
corresponding to the value in the 15th entry of the data vector. If all entries of the
data vector have frequency 1, leave the Frequency field blank.

• Data set name — Enter a name for the data set that you import from the workspace,
such as My data.

After you have entered the information in the preceding fields, click Create Data Set to
create the data set My data.

Manage Data Sets

View and manage the data sets that you create using the Manage data sets pane. When
you create a data set, its name appears in the Data sets list. The following figure shows
the Manage data sets pane after creating the data set My data.

5 Probability Distributions

5-78

For each data set in the Data sets list, you can:

• Select the Plot check box to display a plot of the data in the main Distribution Fitting
app window. When you create a new data set, Plot is selected by default. Clearing the
Plot check box removes the data from the plot in the main window. You can specify
the type of plot displayed in the Display type field in the main window.

• If Plot is selected, you can also select Bounds to display confidence interval bounds
for the plot in the main window. These bounds are pointwise confidence bounds
around the empirical estimates of these functions. The bounds are displayed only
when you set Display Type in the main window to one of the following:

• Cumulative probability (CDF)

• Survivor function

• Cumulative hazard

The Distribution Fitting app cannot display confidence bounds on density (PDF), quantile
(inverse CDF), or probability plots. Clearing the Bounds check box removes the
confidence bounds from the plot in the main window.

When you select a data set from the list, you can access the following buttons:

• View — Display the data in a table in a new window.
• Set Bin Rules — Defines the histogram bins used in a density (PDF) plot.
• Rename — Rename the data set.
• Delete — Delete the data set.

Set Bin Rules

To set bin rules for the histogram of a data set, click Set Bin Rules to open the Set Bin
Width Rules dialog box.

 Model Data Using the Distribution Fitting App

5-79

You can select from the following rules:

• Freedman-Diaconis rule — Algorithm that chooses bin widths and locations
automatically, based on the sample size and the spread of the data. This rule, which is
the default, is suitable for many kinds of data.

• Scott rule — Algorithm intended for data that are approximately normal. The
algorithm chooses bin widths and locations automatically.

• Number of bins — Enter the number of bins. All bins have equal widths.
• Bins centered on integers — Specifies bins centered on integers.
• Bin width — Enter the width of each bin. If you select this option, you can also

select:

• Automatic bin placement — Place the edges of the bins at integer multiples of
the Bin width.

5 Probability Distributions

5-80

• Bin boundary at — Enter a scalar to specify the boundaries of the bins. The
boundary of each bin is equal to this scalar plus an integer multiple of the Bin
width.

You can also:

• Apply to all existing data sets — Apply the rule to all data sets. Otherwise, the
rule is applied only to the data set currently selected in the Data dialog box.

• Save as default — Apply the current rule to any new data sets that you create. You
can set default bin width rules by selecting Set Default Bin Rules from the Tools
menu in the main window.

Create a New Fit

Click the New Fit button at the top of the main window to open the New Fit dialog box.
If you created the data set My data, it appears in the Data field.

 Model Data Using the Distribution Fitting App

5-81

5 Probability Distributions

5-82

Field Name Description

Fit Name Enter a name for the fit.
Data Select the data set to which you want to fit a distribution from the

drop-down list.
Distribution Select the type of distribution to fit from the Distribution drop-down

list.

Only the distributions that apply to the values of the selected data
set appear in the Distribution field. For example, when the data
include values that are zero or negative, positive distributions are not
displayed .

You can specify either a parametric or a nonparametric distribution.
When you select a parametric distribution from the drop-down list, a
description of its parameters appears. The Distribution Fitting Tool
estimates these parameters to fit the distribution to the data set.
If you select the binomial distribution or the generalized extreme
value distribution, you must specify a fixed value for one of the
parameters. The pane contains a text field into which you can specify
that parameter.

When you select Nonparametric fit, options for the fit appear in
the pane, as described in “Further Options for Nonparametric Fits” on
page 5-84.

Exclusion rule Specify a rule to exclude some data. Create an exclusion rule
by clicking Exclude in the Distribution Fitting app. For more
information, see “Exclude Data” on page 5-92.

Apply the New Fit

Click Apply to fit the distribution. For a parametric fit, the Results pane displays the
values of the estimated parameters. For a nonparametric fit, the Results pane displays
information about the fit.

When you click Apply, the Distribution Fitting app displays a plot of the distribution
and the corresponding data.

 Model Data Using the Distribution Fitting App

5-83

Note When you click Apply, the title of the dialog box changes to Edit Fit. You can
now make changes to the fit you just created and click Apply again to save them. After
closing the Edit Fit dialog box, you can reopen it from the Fit Manager dialog box at any
time to edit the fit.

After applying the fit, you can save the information to the workspace using probability
distribution objects by clicking Save to workspace.

Available Distributions

All of the distributions available in the Distribution Fitting app are supported elsewhere
in Statistics and Machine Learning Toolbox software. You can use the fitdist function
to fit any of the distributions supported by the app. Many distributions also have
dedicated fitting functions. These functions compute the majority of the fits in the
Distribution Fitting app, and are referenced in the following list. Other fits are computed
using functions internal to the Distribution Fitting app.

Not all of the distributions listed are available for all data sets. The Distribution Fitting
app determines the extent of the data (nonnegative, unit interval, etc.) and displays
appropriate distributions in the Distribution drop-down list. Distribution data ranges
are given parenthetically in the following list.

• Beta (unit interval values) distribution, fit using the function betafit.
• Binomial (nonnegative integer values) distribution, fit using the function binopdf.
• Birnbaum-Saunders (positive values) distribution.
• Burr Type XII (positive values) distribution.
• Exponential (nonnegative values) distribution, fit using the function expfit.
• Extreme value (all values) distribution, fit using the function evfit.
• Gamma (positive values) distribution, fit using the function gamfit.
• Generalized extreme value (all values) distribution, fit using the function gevfit.
• Generalized Pareto (all values) distribution, fit using the function gpfit.
• Inverse Gaussian (positive values) distribution.
• Logistic (all values) distribution.
• Loglogistic (positive values) distribution.
• Lognormal (positive values) distribution, fit using the function lognfit.
• Nakagami (positive values) distribution.

5 Probability Distributions

5-84

• Negative binomial (nonnegative integer values) distribution, fit using the function
nbinpdf.

• Nonparametric (all values) distribution, fit using the function ksdensity.
• Normal (all values) distribution, fit using the function normfit.
• Poisson (nonnegative integer values) distribution, fit using the function poisspdf.
• Rayleigh (positive values) distribution using the function raylfit.
• Rician (positive values) distribution.
• t location-scale (all values) distribution.
• Weibull (positive values) distribution using the function wblfit.

Further Options for Nonparametric Fits

When you select Non-parametric in the Distribution field, a set of options appears in
the Non-parametric pane, as shown in the following figure.

The options for nonparametric distributions are:

• Kernel — Type of kernel function to use.

• Normal

• Box

• Triangle

• Epanechnikov

• Bandwidth — The bandwidth of the kernel smoothing window. Select Auto for a
default value that is optimal for estimating normal densities. After you click Apply,

 Model Data Using the Distribution Fitting App

5-85

this value appears in the Fit results pane. Select Specify and enter a smaller value
to reveal features such as multiple modes or a larger value to make the fit smoother.

• Domain — The allowed x-values for the density.

• Unbounded — The density extends over the whole real line.
• Positive — The density is restricted to positive values.
• Specify — Enter lower and upper bounds for the domain of the density.

When you select Positive or Specify, the nonparametric fit has zero probability
outside the specified domain.

Display Results

The Distribution Fitting app window displays plots of:

• The data sets for which you select Plot in the Data dialog box.
• The fits for which you select Plot in the Fit Manager dialog box.
• Confidence bounds for:

• The data sets for which you select Bounds in the Data dialog box.
• The fits for which you select Bounds in the Fit Manager dialog box.

Adjust the plot display using the buttons at the top of the tool:

• — Toggle the legend on (default) or off.
• — Toggle grid lines on or off (default).
• — Restore default axes limits.

The following fields are available.

Display Type

Specify the type of plot to display using the Display Type field in the main app window.
Each type corresponds to a probability function, for example, a probability density
function. You can choose from the following display types:

• Density (PDF) — Display a probability density function (PDF) plot for the fitted
distribution. The main window displays data sets using a probability histogram, in

5 Probability Distributions

5-86

which the height of each rectangle is the fraction of data points that lie in the bin
divided by the width of the bin. This makes the sum of the areas of the rectangles
equal to 1.

• Cumulative probability (CDF) — Display a cumulative probability plot
of the data. The main window displays data sets using a cumulative probability
step function. The height of each step is the cumulative sum of the heights of the
rectangles in the probability histogram.

• Quantile (inverse CDF) — Display a quantile (inverse CDF) plot.
• Probability plot — Display a probability plot of the data. Specify the type of

distribution used to construct the probability plot in the Distribution field. This
field is only available when you select Probability plot. The choices for the
distribution are:

• Exponential

• Extreme value

• Logistic

• Log-Logistic

• Lognormal

• Normal

• Rayleigh

• Weibull

You can also create a probability plot against a parametric fit that you create in
the New Fit pane. When you create these fits, they are added at the bottom of the
Distribution drop-down list.

• Survivor function — Display survivor function plot of the data.
• Cumulative hazard — Display cumulative hazard plot of the data.

Note If the plotted data includes 0 or negative values, some distributions are
unavailable.

Confidence Bounds

You can display confidence bounds for data sets and fits when you set Display Type to
Cumulative probability (CDF), Survivor function, Cumulative hazard, or,
for fits only, Quantile (inverse CDF).

 Model Data Using the Distribution Fitting App

5-87

• To display bounds for a data set, select Bounds next to the data set in the Data sets
pane of the Data dialog box.

• To display bounds for a fit, select Bounds next to the fit in the Fit Manager dialog
box. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the View
menu in the main window and choose from the options.

Manage Fits

Click the Manage Fits button to open the Fit Manager dialog box.

The Table of fits displays a list of the fits that you create, with the following options:

• Plot — Displays a plot of the fit in the main window of the Distribution Fitting app.
When you create a new fit, Plot is selected by default. Clearing the Plot check box
removes the fit from the plot in the main window.

5 Probability Distributions

5-88

• Bounds — If you select Plot, you can also select Bounds to display confidence
bounds in the plot. The bounds are displayed when you set Display Type in the main
window to one of the following:

• Cumulative probability (CDF)

• Quantile (inverse CDF)

• Survivor function

• Cumulative hazard

The Distribution Fitting app cannot display confidence bounds on density (PDF)
or probability plots. Bounds are not supported for nonparametric fits and some
parametric fits.

Clearing the Bounds check box removes the confidence intervals from the plot in the
main window.

When you select a fit in the Table of fits, the following buttons are enabled below the
table:

• New Fit — Open a New Fit window.
• Copy — Create a copy of the selected fit.
• Edit — Open an Edit Fit dialog box, to edit the fit.

Note You can edit only the currently selected fit in the Edit Fit dialog box. To edit
a different fit, select it in the Table of fits and click Edit to open another Edit Fit
dialog box.

• Save to workspace — Save the selected fit as a distribution object.
• Delete — Delete the selected fit.

Evaluate Fits

Use the Evaluate dialog box to evaluate your fitted distribution at any data points you
choose. To open the dialog box, click the Evaluate button.

 Model Data Using the Distribution Fitting App

5-89

In the Evaluate dialog box, choose from the following items:

• Fit pane — Display the names of existing fits. Select one or more fits that you want to
evaluate. Using your platform specific functionality, you can select multiple fits.

• Function — Select the type of probability function that you want to evaluate for the
fit. The available functions are:

• Density (PDF) — Computes a probability density function.
• Cumulative probability (CDF) — Computes a cumulative probability

function.
• Quantile (inverse CDF) — Computes a quantile (inverse CDF) function.
• Survivor function — Computes a survivor function.
• Cumulative hazard — Computes a cumulative hazard function.

5 Probability Distributions

5-90

• Hazard rate — Computes the hazard rate.
• At x = — Enter a vector of points or the name of a workspace variable containing a

vector of points at which you want to evaluate the distribution function. If you change
Function to Quantile (inverse CDF), the field name changes to At p =, and you
enter a vector of probability values.

• Compute confidence bounds — Select this box to compute confidence bounds
for the selected fits. The check box is enabled only if you set Function to one of the
following:

• Cumulative probability (CDF)

• Quantile (inverse CDF)

• Survivor function

• Cumulative hazard

The Distribution Fitting app cannot compute confidence bounds for nonparametric fits
and for some parametric fits. In these cases, it returns NaN for the bounds.

• Level — Set the level for the confidence bounds.
• Plot function — Select this box to display a plot of the distribution function,

evaluated at the points you enter in the At x = field, in a new window.

Note The settings for Compute confidence bounds, Level, and Plot function do
not affect the plots that are displayed in the main window of the Distribution Fitting
app. The settings apply only to plots you create by clicking Plot function in the
Evaluate window.

To apply these evaluation settings to the selected fit, click Apply. The following figure
shows the results of evaluating the cumulative density function for the fit My fit, at the
points in the vector -4:1:6.

 Model Data Using the Distribution Fitting App

5-91

The columns of the table to the right of the Fit pane display the following values:

• X — The entries of the vector that you enter in At x = field.
• F(X)— The corresponding values of the CDF at the entries of X.
• LB — The lower bounds for the confidence interval, if you select Compute

confidence bounds.
• UB — The upper bounds for the confidence interval, if you select Compute

confidence bounds.

5 Probability Distributions

5-92

To save the data displayed in the table to a matrix in the MATLAB workspace, click
Export to Workspace.

Exclude Data

To exclude values from fit, open the Exclude window by clicking the Exclude button. In
the Exclude window, you can create rules for excluding specified data values. When you
create a new fit in the New Fit window, you can use these rules to exclude data from the
fit.

To create an exclusion rule:

1 Exclusion Rule Name— Enter a name for the exclusion rule.
2 Exclude Sections— Specify bounds for the excluded data:

• In the Lower limit: exclude data drop-down list, select <= or < and enter a
scalar value in the field to the right. Depending on which operator you select, the
app excludes from the fit any data values that are less than or equal to the scalar
value, or less than the scalar value, respectively.

• In the Upper limit: exclude data drop-down list, select >= or > and enter a
scalar value in the field to the right. Depending on which operator you select, the
app excludes from the fit any data values that are greater than or equal to the
scalar value, or greater than the scalar value, respectively.

 Model Data Using the Distribution Fitting App

5-93

OR

Click the Exclude Graphically button to define the exclusion rule by displaying a
plot of the values in a data set and selecting the bounds for the excluded data. For
example, if you created the data set My data as described in Create and Manage
Data Sets, select it from the drop-down list next to Exclude graphically, and then
click the Exclude graphically button. The app displays the values in My data in a
new window.

To set a lower limit for the boundary of the excluded region, click Add Lower Limit.
The app displays a vertical line on the left side of the plot window. Move the line to
the point you where you want the lower limit, as shown in the following figure.

5 Probability Distributions

5-94

Move the vertical line to change the value displayed in the Lower limit: exclude
data field in the Exclude window.

The value displayed corresponds to the x-coordinate of the vertical line.

 Model Data Using the Distribution Fitting App

5-95

Similarly, you can set the upper limit for the boundary of the excluded region by
clicking Add Upper Limit, and then moving the vertical line that appears at the
right side of the plot window. After setting the lower and upper limits, click Close
and return to the Exclude window.

3 Create Exclusion Rule—Once you have set the lower and upper limits for the
boundary of the excluded data, click Create Exclusion Rule to create the new rule.
The name of the new rule appears in the Existing exclusion rules pane.

Selecting an exclusion rule in the Existing exclusion rules pane enables the
following buttons:

• Copy — Creates a copy of the rule, which you can then modify. To save the
modified rule under a different name, click Create Exclusion Rule.

• View — Opens a new window in which you can see the data points excluded by
the rule. The following figure shows a typical example.

5 Probability Distributions

5-96

The shaded areas in the plot graphically display which data points are excluded.
The table to the right lists all data points. The shaded rows indicate excluded
points:

• Rename — Rename the rule.
• Delete — Delete the rule.

After you define an exclusion rule, you can use it when you fit a distribution to your
data. The rule does not exclude points from the display of the data set.

 Model Data Using the Distribution Fitting App

5-97

5 Probability Distributions

5-98

Save and Load Sessions

Save your work in the current session, and then load it in a subsequent session, so that
you can continue working where you left off.

Save a Session

To save the current session, from the File menu in the main window, select
Save Session. A dialog box opens and prompts you to enter a file name, for
examplemy_session.dfit. Click Save to save the following items created in the
current session:

• Data sets
• Fits
• Exclusion rules
• Plot settings
• Bin width rules

Load a Session

To load a previously saved session, from the File menu in the main window, select
Load Session. Enter the name of a previously saved session. Click Open to restore the
information from the saved session to the current session.

 Model Data Using the Distribution Fitting App

5-99

Generate a File to Fit and Plot Distributions

Use the Generate Code option in the File to create a file that:

• Fits the distributions in the current session to any data vector in the MATLAB
workspace.

• Plots the data and the fits.

After you end the current session, you can use the file to create plots in a standard
MATLAB figure window, without reopening the Distribution Fitting app.

As an example, if you created the fit described in “Create a New Fit” on page 5-80, do the
following steps:

1 From the File menu, select Generate Code.
2 In the MATLAB Editor window, choose File > Save as. Save the file as

normal_fit.m in a folder on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the MATLAB
workspace. For example, the following commands:

new_data = normrnd(4.1, 12.5, 100, 1);

newfit = normal_fit(new_data)

legend('New Data', 'My fit')

generate newfit, a fitted normal distribution of the data. The commands also generate a
plot of the data and the fit.

newfit =

normal distribution

 mu = 3.19148

 sigma = 12.5631

5 Probability Distributions

5-100

Note By default, the file labels the data in the legend using the same name as the data
set in the Distribution Fitting app. You can change the label using the legend command,
as illustrated by the preceding example.

 Fit a Distribution Using the Distribution Fitting App

5-101

Fit a Distribution Using the Distribution Fitting App

This example shows how you can use the Distribution Fitting app to interactively fit a
probability distribution to data.

In this section...

“Step 1: Load Sample Data” on page 5-101
“Step 2: Import Data” on page 5-101
“Step 3: Create a New Fit” on page 5-103
“Step 4: Create and Manage Additional Fits” on page 5-108

Step 1: Load Sample Data

Load the sample data.

load carsmall

Step 2: Import Data

Open the distribution fitting tool.

dfittool

To import the vector MPG into the Distribution Fitting app, click the Data button. The
Data dialog box opens.

5 Probability Distributions

5-102

The Data field displays all numeric arrays in the MATLAB workspace. From the drop-
down list, select MPG. A histogram of the selected data appears in the Data preview
pane.

In the Data set name field, type a name for the data set, such as MPG data, and click
Create Data Set. The main window of the Distribution Fitting app now displays a
larger version of the histogram in the Data preview pane.

 Fit a Distribution Using the Distribution Fitting App

5-103

Step 3: Create a New Fit

To fit a distribution to the data, in the main window of the Distribution Fitting app, click
New Fit.

5 Probability Distributions

5-104

Select data set name Specify distribution type

To fit a normal distribution to My data:

1 In the Fit name field, enter a name for the fit, such as My fit.
2 From the drop-down list in the Data field, select MPG data.
3 Confirm that Normal is selected from the drop-down menu in the Distribution

field.

 Fit a Distribution Using the Distribution Fitting App

5-105

4 Click Apply.

The Results pane displays the mean and standard deviation of the normal distribution
that best fits MPG data.

The Distribution Fitting app main window displays a plot of the normal distribution with
this mean and standard deviation.

5 Probability Distributions

5-106

Based on the plot, a normal distribution does not appear to provide a good fit for the MPG
data. To obtain a better evaluation, select Probability plot from the Display type drop-
down list. Confirm that the Distribution drop-down list is set to Normal. The main
window displays the following figure.

 Fit a Distribution Using the Distribution Fitting App

5-107

The normal probability plot shows that the data deviates from normal, especially in the
tails.

5 Probability Distributions

5-108

Step 4: Create and Manage Additional Fits

The MPG data pdf indicates that the data has two peaks. Try fitting a nonparametric
kernel distribution to obtain a better fit for this data.

1 Click Manage Fits. In the dialog box, click New Fit.
2 In the Fit name field, enter a name for the fit, such as Kernel fit.
3 From the drop-down list in the Data field, select MPG data.
4 From the drop-down list in the Distribution field, select Non-parametric.

This enables several options in the Non-parametric pane, including Kernel,
Bandwidth, and Domain. For now, accept the default value to apply a normal
kernel shape and automatically determine the kernel bandwidth (using Auto).
For more information about nonparametric kernel distributions, see “Kernel
Distribution” on page B-81.

5 Click Apply.

The Results pane displays the kernel type, bandwidth, and domain of the nonparametric
distribution fit to MPG data.

The main window displays plots of the original MPG data with the normal distribution
and nonparametric kernel distribution overlayed. To visually compare these two fits,
select Density (PDF) from the Display type drop-down list.

 Fit a Distribution Using the Distribution Fitting App

5-109

To include only the nonparametric kernel fit line (Kernel fit) on the plot, click Manage
Fits. In the Table of fits pane, locate the row for the normal distribution fit (My fit)
and clear the box in the Plot column.

5 Probability Distributions

5-110

 Custom Distributions Using the Distribution Fitting App

5-111

Custom Distributions Using the Distribution Fitting App

You can use the Distribution Fitting app to fit distributions not supported by the
Statistics and Machine Learning Toolbox by defining a custom distribution.

Opening the Distribution Fitting App

To open the Distribution Fitting app, enter the command

dfittool

5 Probability Distributions

5-112

Select display

Task buttons

Import data
from workspace

Select distribution (probability plot only)

Exclude data
from fit

Evaluate distribution
at selected points

Manage multiple fits

Create a new fit

Alternatively, click Distribution Fitting on the Apps tab.

 Custom Distributions Using the Distribution Fitting App

5-113

Defining Custom Distributions

To define a custom distribution, select Define Custom Distribution from the File
menu. This opens a file template in the MATLAB editor. You then edit this file so that it
computes the distribution you want.

The template includes example code that computes the Laplace distribution. Follow the
instructions in the template to define your own custom distribution.

To save your custom distribution, create a directory called +prob on your path. Save the
file in this directory using a name that matches your distribution name. If you save the
template in a folder on the MATLAB path, under its default name dfittooldists.m,
the Distribution Fitting app reads it in automatically when you start the tool. You can
also save the template under a different name, such as laplace.m, and then import the
custom distribution as described in the following section.

Importing Custom Distributions

To import a custom distribution, select Import Custom Distributions from the
File menu. This opens a dialog box in which you can select the file that defines the
distribution. For example, if you created the file Laplace.m, as described in the
preceding section, the New Parametric Distribution List dialog that launches when
you select Import Custom Distributions now includes Laplace. In addition, the
Distribution field of the New Fit window also contains the option Laplace.

5 Probability Distributions

5-114

Explore the Random Number Generation UI

The Random Number Generation user interface (UI) generates random samples
from specified probability distributions, and displays the samples as histograms. Use
the interface to explore the effects of changing parameters and sample size on the
distributions.

Run the user interface by typing randtool at the command line.

 Explore the Random Number Generation UI

5-115

Choose distribution Sample size

Parameter
bounds

Histogram

Parameter
value

Parameter
control Additional

parameters
Sample again
from the same
distribution

Export to
workspace

Start by selecting a distribution, then enter the desired sample size.

5 Probability Distributions

5-116

You can also

• Use the controls at the bottom of the window to set parameter values for the
distribution and to change their upper and lower bounds.

• Draw another sample from the same distribution, with the same size and parameters.
• Export the current sample to your workspace. A dialog box enables you to provide a

name for the sample.

 Compare Multiple Distribution Fits

5-117

Compare Multiple Distribution Fits

This example shows how to fit multiple probability distribution objects to the same set of
sample data, and obtain a visual comparison of how well each distribution fits the data.

Step 1. Load sample data.

Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Model_Year), and other
vehicle characteristics.

Step 2. Create a nominal array.

Transform Origin into a nominal array and remove the Italian car from the sample
data.

Origin = nominal(Origin);

MPG2 = MPG(Origin~='Italy');

Origin2 = Origin(Origin~='Italy');

Origin2 = droplevels(Origin2,'Italy');

Since there is only one Italian car, fitdist cannot fit a distribution to that group.
Removing the Italian car from the sample data prevents fitdist from producing an
error.

Step 3. Fit multiple distributions by group.

Use fitdist to fit Weibull, normal, logistic, and kernel distributions to each country of
origin group in the MPG data.

[WeiByOrig,Country] = fitdist(MPG2,'weibull','by',Origin2);

[NormByOrig,Country] = fitdist(MPG2,'normal','by',Origin2);

[LogByOrig,Country] = fitdist(MPG2,'logistic','by',Origin2);

[KerByOrig,Country] = fitdist(MPG2,'kernel','by',Origin2);

WeiByOrig

Country

WeiByOrig =

5 Probability Distributions

5-118

 Column 1

 [1x1 prob.WeibullDistribution]

 Column 2

 [1x1 prob.WeibullDistribution]

 Column 3

 [1x1 prob.WeibullDistribution]

 Column 4

 [1x1 prob.WeibullDistribution]

 Column 5

 [1x1 prob.WeibullDistribution]

Country =

 'France'

 'Germany'

 'Japan'

 'Sweden'

 'USA'

Each country group now has four distribution objects associated with it. For example,
the cell array WeiByOrig contains five Weibull distribution objects, one for each
country represented in the sample data. Likewise, the cell array NormByOrig contains
five normal distribution objects, and so on. Each object contains properties that hold
information about the data, distribution, and parameters. The array Country lists the
country of origin for each group in the same order as the distribution objects are stored in
the cell arrays.

Step 4. Compute the pdf for each distribution.

Extract the four probability distribution objects for USA and compute the pdf for each
distribution. As shown in Step 3, USA is in position 5 in each cell array.

WeiUSA = WeiByOrig{5};

 Compare Multiple Distribution Fits

5-119

NormUSA = NormByOrig{5};

LogUSA = LogByOrig{5};

KerUSA = KerByOrig{5};

x = 0:1:50;

pdf_Wei = pdf(WeiUSA,x);

pdf_Norm = pdf(NormUSA,x);

pdf_Log = pdf(LogUSA,x);

pdf_Ker = pdf(KerUSA,x);

Step 5. Plot pdf the for each distribution.

Plot the pdf for each distribution fit to the USA data, superimposed on a histogram of the
sample data. Scale the density by the histogram area for easier display.

% Create a histogram of the USA sample data

data = MPG(Origin2=='USA');

figure;

[n,y] = hist(data,10);

b = bar(y,n,'hist');

set(b,'FaceColor',[1,0.8,0]);

% Scale the density by the histogram area for easier display

area = sum(n)*(y(2)-y(1));

time = 0:50;

pdfWei = pdf(WeiUSA,time);

pdfNorm = pdf(NormUSA,time);

pdfLog = pdf(LogUSA,time);

pdfKer = pdf(KerUSA,time);

% Plot the pdf of each fitted distribution

line(x,pdfWei*area,'LineStyle','-','Color','r');

hold on;

line(x,pdfNorm*area,'LineStyle','-.','Color','b');

line(x,pdfLog*area,'LineStyle','--','Color','g');

line(x,pdfKer*area,'LineStyle',':','Color','k');

l = legend('Data','Weibull','Normal','Logistic','Kernel');

set(l,'Location','Best');

title('MPG for Cars from USA');

xlabel('MPG');

hold off;

5 Probability Distributions

5-120

Superimposing the pdf plots over a histogram of the sample data provides a visual
comparison of how well each type of distribution fits the data. Only the nonparametric
kernel distribution KerUSA comes close to revealing the two modes in the original data.

Step 6. Further group USA data by year.

To investigate the two modes revealed in Step 5, group the MPG data by both country
of origin (Origin) and model year (Model_Year), and use fitdist to fit kernel
distributions to each group.

[KerByYearOrig,Names] = fitdist(MPG,'Kernel','By',{Origin Model_Year});

Each unique combination of origin and model year now has a kernel distribution object
associated with it.

 Compare Multiple Distribution Fits

5-121

Step 7. Compute the pdf for each group.

Extract the three probability distributions for each USA model year, which are in
positions 12, 13, and 14 in the cell array KerByYearOrig. Compute each pdf.

USA70 = KerByYearOrig{12};

USA76 = KerByYearOrig{13};

USA82 = KerByYearOrig{14};

pdf70 = pdf(USA70,x);

pdf76 = pdf(USA76,x);

pdf82 = pdf(USA82,x);

Step 8. Plot pdf for each group.

Plot the pdf for each group on the same figure.

figure;

plot(x,pdf70,'r-');

hold on;

plot(x,pdf76,'b-.');

plot(x,pdf82,'k:');

legend({'1970','1976','1982'},'Location','NW');

title('MPG in USA Cars by Model Year');

xlabel('MPG');

hold off;

5 Probability Distributions

5-122

When further grouped by model year, the pdf plots reveal two distinct peaks in the MPG
data for cars made in the USA — one for the model year 1970, and one for the model year
1982. This explains why the smooth curve produced by the kernel distribution for the
combined USA miles per gallon data shows two peaks instead of one.

See Also
fitdist

Related Examples
• “Fit Probability Distribution Objects to Grouped Data” on page 5-124

 Compare Multiple Distribution Fits

5-123

More About
• “Grouping Variables” on page 2-52

5 Probability Distributions

5-124

Fit Probability Distribution Objects to Grouped Data

This example shows how to fit probability distribution objects to grouped sample data,
and create a plot to visually compare the pdf of each group.

Step 1. Load sample data.

Load the sample data.

load carsmall;

The data contains miles per gallon (MPG) measurements for different makes and models
of cars, grouped by country of origin (Origin), model year (Model_Year), and other
vehicle characteristics.

Step 2. Create a nominal array.

Transform Origin into a nominal array and remove the Italian car from the sample
data. Since there is only one Italian car, fitdist cannot fit a distribution to that group.
Removing the Italian car from the sample data prevents fitdist from returning an
error.

Origin = nominal(Origin);

MPG2 = MPG(Origin~='Italy');

Origin2 = Origin(Origin~='Italy');

Origin2 = droplevels(Origin2,'Italy');

Step 3. Fit kernel distributions to each group.

Use fitdist to fit kernel distributions to each country of origin group in the MPG data.

[KerByOrig,Country] = fitdist(MPG2,'Kernel','by',Origin2)

KerByOrig =

 Column 1

 [1x1 prob.KernelDistribution]

 Column 2

 [1x1 prob.KernelDistribution]

 Fit Probability Distribution Objects to Grouped Data

5-125

 Column 3

 [1x1 prob.KernelDistribution]

 Column 4

 [1x1 prob.KernelDistribution]

 Column 5

 [1x1 prob.KernelDistribution]

Country =

 'France'

 'Germany'

 'Japan'

 'Sweden'

 'USA'

The cell array KerByOrig contains five kernel distribution objects, one for each country
represented in the sample data. Each object contains properties that hold information
about the data, the distribution, and the parameters. The array Country lists the
country of origin for each group in the same order as the distribution objects are stored in
KerByOrig.

Step 4. Compute the pdf for each group.

Extract the probability distribution objects for Germany, Japan, and USA. Use the
positions of each country in KerByOrig shown in Step 3, which indicates that Germany
is the second country, Japan is the third country, and USA is the fifth country. Compute
the pdf for each group.

Germany = KerByOrig{2};

Japan = KerByOrig{3};

USA = KerByOrig{5};

x = 0:1:50;

USA_pdf = pdf(USA,x);

Japan_pdf = pdf(Japan,x);

Germany_pdf = pdf(Germany,x);

5 Probability Distributions

5-126

Step 5. Plot the pdf for each group.

Plot the pdf for each group on the same figure.

figure;

plot(x,USA_pdf,'r-');

hold on;

plot(x,Japan_pdf,'b-.');

plot(x,Germany_pdf,'k:');

legend({'USA','Japan','Germany'},'Location','NW');

title('MPG by Country of Origin');

xlabel('MPG');

 Fit Probability Distribution Objects to Grouped Data

5-127

The resulting plot shows how miles per gallon (MPG) performance differs by country of
origin (Origin). Using this data, the USA has the widest distribution, and its peak is at
the lowest MPG value of the three origins. Japan has the most regular distribution with a
slightly heavier left tail, and its peak is at the highest MPG value of the three origins. The
peak for Germany is between the USA and Japan, and the second bump near 44 miles
per gallon suggests that there might be multiple modes in the data.

See Also
fitdist | pdf

Related Examples
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-57

More About
• “Kernel Distribution” on page B-81
• “Grouping Variables” on page 2-52

5 Probability Distributions

5-128

Multinomial Probability Distribution Objects

This example shows how to generate random numbers, compute and plot the pdf, and
compute descriptive statistics of a multinomial distribution using probability distribution
objects.

Step 1. Define the distribution parameters.

Create a vector p containing the probability of each outcome. Outcome 1 has a probability
of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6. The
number of trials n in each experiment is 5, and the number of repetitions reps of the
experiment is 8.

p = [1/2 1/3 1/6];

n = 5;

reps = 8;

Step 2. Create a multinomial probability distribution object.

Create a multinomial probability distribution object using the specified value p for the
Probabilities parameter.

pd = makedist('Multinomial','Probabilities',p)

pd =

 MultinomialDistribution

 Probabilities:

 0.5000 0.3333 0.1667

Step 3. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of
a single trial.

rng('default') % For reproducibility

r = random(pd)

r =

 2

This trial resulted in outcome 2.

 Multinomial Probability Distribution Objects

5-129

Step 4. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinomial distribution,
which reports the results of multiple experiments that each contain multiple trials.
Generate a matrix that contains the outcomes of an experiment with n = 5 trials and
reps = 8 repetitions.

r = random(pd,reps,n)

r =

 3 3 3 2 1

 1 1 2 2 1

 3 3 3 1 2

 2 3 2 2 2

 1 1 1 1 1

 1 2 3 2 3

 2 1 3 1 1

 3 1 2 1 1

Each element in the resulting matrix is the outcome of one trial. The columns correspond
to the five trials in each experiment, and the rows correspond to the eight experiments.
For example, in the first experiment (corresponding to the first row), one of the five trials
resulted in outcome 1, one of the five trials resulted in outcome 2, and three of the five
trials resulted in outcome 3.

Step 5. Compute and plot the pdf.

Compute the pdf of the distribution.

x = 1:3;

y = pdf(pd,x);

bar(x,y);

xlabel('Outcome');

ylabel('Probability Mass');

title('Trinomial Distribution');

5 Probability Distributions

5-130

The plot shows the probability mass for each k possible outcome. For this distribution,
the pdf value for any x other than 1, 2, or 3 is 0.

Step 6. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the distribution.

m = mean(pd)

med = median(pd)

s = std(pd)

m =

 1.6667

 Multinomial Probability Distribution Objects

5-131

med =

 1

s =

 0.7454

5 Probability Distributions

5-132

Multinomial Probability Distribution Functions

This example shows how to generate random numbers and compute and plot the pdf of a
multinomial distribution using probability distribution functions.

Step 1. Define the distribution parameters.

Create a vector p containing the probability of each outcome. Outcome 1 has a probability
of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6.
The number of trials in each experiment n is 5, and the number of repetitions of the
experiment reps is 8.

p = [1/2 1/3 1/6];

n = 5;

reps = 8;

Step 2. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of
a single trial.

rng('default') % For reproducibility

r = mnrnd(1,p,1)

r =

 0 1 0

The returned vector r contains three elements, which show the counts for each possible
outcome. This single trial resulted in outcome 2.

Step 3. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinomial distribution,
which reports the results of multiple experiments that each contain multiple trials.
Generate a matrix that contains the outcomes of an experiment with n = 5 trials and
reps = 8 repetitions.

r = mnrnd(n,p,reps)

r =

 Multinomial Probability Distribution Functions

5-133

 1 1 3

 3 2 0

 1 1 3

 0 4 1

 5 0 0

 1 2 2

 3 1 1

 3 1 1

Each row in the resulting matrix contains counts for each of the k multinomial bins. For
example, in the first experiment (corresponding to the first row), one of the five trials
resulted in outcome 1, one of the five trials resulted in outcome 2, and three of the five
trials resulted in outcome 3.

Step 4. Compute the pdf.

Since multinomial functions work with bin counts, create a multidimensional array of all
possible outcome combinations, and compute the pdf using mnpdf.

count1 = 1:n;

count2 = 1:n;

[x1,x2] = meshgrid(count1,count2);

x3 = n-(x1+x2);

y = mnpdf([x1(:),x2(:),x3(:)],repmat(p,(n)^2,1));

Step 5. Plot the pdf.

Create a 3-D bar graph to visualize the pdf for each combination of outcome frequencies.

figure;

y = reshape(y,n,n);

bar3(y);

set(gca,'XTickLabel',1:n);

set(gca,'YTickLabel',1:n);

xlabel('x_1 Frequency');

ylabel('x_2 Frequency');

zlabel('Probability Mass');

5 Probability Distributions

5-134

The plot shows the probability mass for each possible combination of outcomes. It does
not show x3 , which is determined by the constraint x1 + x2 + x3 = n .

 Generate Random Numbers Using Uniform Distribution Inversion

5-135

Generate Random Numbers Using Uniform Distribution Inversion

This example shows how to generate random numbers using the uniform distribution
inversion method. This is useful for distributions when it is possible to compute the
inverse cumulative distribution function, but there is no support for sampling from the
distribution directly.

Step 1. Generate random numbers from the standard uniform distribution.

Use rand to generate 1000 random numbers from the uniform distribution on the
interval (0,1).

rng('default') % For reproducibility

u = rand(1000,1);

The inversion method relies on the principle that continuous cumulative distribution
functions (cdfs) range uniformly over the open interval (0,1). If u is a uniform random
number on (0,1), then x = F–1(u) generates a random number x from any continuous
distribution with the specified cdf F.

Step 2. Generate random numbers from the Weibull distribution.

Use the inverse cumulative distribution function to generate the random numbers
from a Weibull distribution with parameters A = 1 and B = 1 that correspond to the
probabilities in u. Plot the results.

figure;

x = wblinv(u,1,1);

hist(x,20);

5 Probability Distributions

5-136

The histogram shows that the random numbers generated using the Weibull inverse cdf
function wblinv have a Weibull distribution.

Step 3. Generate random numbers from the standard normal distribution.

The same values in u can generate random numbers from any distribution, for example
the standard normal, by following the same procedure using the inverse cdf of the desired
distribution.

figure;

x_norm = norminv(u,1,0);

hist = (x_norm,20);

 Generate Random Numbers Using Uniform Distribution Inversion

5-137

The histogram shows that, by using the standard normal inverse cdf norminv, the
random numbers generated from u now have a standard normal distribution.

See Also
hist | norminv | rand | wblinv

More About
• “Uniform Distribution (Continuous)” on page B-163
• “Weibull Distribution” on page B-172
• “Normal Distribution” on page B-130

5 Probability Distributions

5-138

Represent Cauchy Distribution Using t Location-Scale

This example shows how to use the t location-scale probability distribution object to work
with a Cauchy distribution with nonstandard parameter values.

Step 1. Create a probability distribution object.

Create a t location-scale probability distribution object with degrees of freedom nu = 1.
Specify mu = 3 to set the location parameter equal to 3, and sigma = 1 to set the scale
parameter equal to 1.

pd = makedist('tLocationScale','mu',3,'sigma',1,'nu',1)

pd =

 tLocationScaleDistribution

 t Location-Scale distribution

 mu = 3

 sigma = 1

 nu = 1

Step 2. Compute descriptive statistics.

Use object functions to compute descriptive statistics for the Cauchy distribution.

med = median(pd)

r = iqr(pd)

m = mean(pd)

s = std(pd)

med =

 3

r =

 2

m =

 Represent Cauchy Distribution Using t Location-Scale

5-139

 NaN

s =

 Inf

The median of the Cauchy distribution is equal to its location parameter, and the
interquartile range is equal to two times its scale parameter. Its mean and standard
deviation are undefined.

Step 3. Compute and plot the pdf.

Compute and plot the pdf of the Cauchy distribution.

figure;

x = -20:1:20;

y = pdf(pd,x);

plot(x,y,'LineWidth',2);

5 Probability Distributions

5-140

The peak of the pdf is centered at the location parameter mu = 3.

Step 4. Generate a vector of Cauchy random numbers.

Generate a column vector containing 10 random numbers from the Cauchy distribution
using the random function for the t location-scale probability distribution object.

rng('default'); % For reproducibility

r = random(pd,10,1)

r =

 3.2678

 4.6547

 Represent Cauchy Distribution Using t Location-Scale

5-141

 2.0604

 4.7322

 3.1810

 1.6649

 1.8471

 4.2466

 5.4647

 8.8874

Step 5. Generate a matrix of Cauchy random numbers.

Generate a 5-by-5 matrix of Cauchy random numbers.

r = random(pd,5,5)

r =

 2.2867 2.9692 -1.7003 5.5949 1.9806

 2.7421 2.7180 3.2210 2.4233 3.1394

 3.5966 3.9806 1.0182 6.4180 5.1367

 5.4791 15.6472 0.7558 2.8908 5.9031

 1.6863 4.0985 2.9934 13.9506 4.8792

See Also
makedist

Related Examples
• “Generate Cauchy Random Numbers Using Student’s t” on page 5-142

More About
• “t Location-Scale Distribution” on page B-154

5 Probability Distributions

5-142

Generate Cauchy Random Numbers Using Student’s t

This example shows how to use the Student’s t distribution to generate random numbers
from a standard Cauchy distribution.

Step 1. Generate a vector of random numbers.

Generate a column vector containing 10 random numbers from a standard Cauchy
distribution, which has a location parameter mu = 0 and scale parameter sigma = 1.
Use trnd with degrees of freedom V = 1.

rng('default'); % For reproducibility

r = trnd(1,10,1)

r =

 0.2678

 1.6547

 -0.9396

 1.7322

 0.1810

 -1.3351

 -1.1529

 1.2466

 2.4647

 5.8874

Step 2. Generate a matrix of random numbers.

Generate a 5-by-5 matrix of random numbers from a standard Cauchy distribution.

r = trnd(1,5,5)

r =

 -0.7133 -0.0308 -4.7003 2.5949 -1.0194

 -0.2579 -0.2820 0.2210 -0.5767 0.1394

 0.5966 0.9806 -1.9818 3.4180 2.1367

 2.4791 12.6472 -2.2442 -0.1092 2.9031

 -1.3137 1.0985 -0.0066 10.9506 1.8792

See Also
trnd

 Generate Cauchy Random Numbers Using Student’s t

5-143

Related Examples
• “Represent Cauchy Distribution Using t Location-Scale” on page 5-138

More About
• “Student's t Distribution” on page B-146

5 Probability Distributions

5-144

Generate Correlated Data Using Rank Correlation

This example shows how to use a copula and rank correlation to generate correlated data
from probability distributions that do not have an inverse cdf function available, such as
the Pearson flexible distribution family.

Step 1. Generate Pearson random numbers.

Generate 1000 random numbers from two different Pearson distributions, using the
pearsrnd function. The first distribution has the parameter values mu equal to 0, sigma
equal to 1, skew equal to 1, and kurtosis equal to 4. The second distribution has the
parameter values mu equal to 0, sigma equal to 1, skew equal to 0.75, and kurtosis equal
to 3.

rng default % For reproducibility

p1 = pearsrnd(0,1,-1,4,1000,1);

p2 = pearsrnd(0,1,0.75,3,1000,1);

At this stage, p1 and p2 are independent samples from their respective Pearson
distributions, and are uncorrelated.

Step 2. Plot the Pearson random numbers.

Create a scatterhist plot to visualize the Pearson random numbers.

figure

scatterhist(p1,p2)

 Generate Correlated Data Using Rank Correlation

5-145

The histograms show the marginal distributions for p1 and p2. The scatterplot shows the
joint distribution for p1 and p2. The lack of pattern to the scatterplot shows that p1 and
p2 are independent.

Step 3. Generate random numbers using a Gaussian copula.

Use copularnd to generate 1000 correlated random numbers with a correlation
coefficient equal to –0.8, using a Gaussian copula. Create a scatterhist plot to
visualize the random numbers generated from the copula.

u = copularnd('Gaussian',-0.8,1000);

figure

scatterhist(u(:,1),u(:,2))

5 Probability Distributions

5-146

The histograms show that the data in each column of the copula have a marginal uniform
distribution. The scatterplot shows that the data in the two columns are negatively
correlated.

Step 4. Sort the copula random numbers.

Using Spearman’s rank correlation, transform the two independent Pearson samples into
correlated data.

Use the sort function to sort the copula random numbers from smallest to largest, and
to return a vector of indices describing the rearranged order of the numbers.

[s1,i1] = sort(u(:,1));

 Generate Correlated Data Using Rank Correlation

5-147

[s2,i2] = sort(u(:,2));

s1 and s2 contain the numbers from the first and second columns of the copula, u,
sorted in order from smallest to largest. i1 and i2 are index vectors that describe the
rearranged order of the elements into s1 and s2. For example, if the first value in the
sorted vector s1 is the third value in the original unsorted vector, then the first value in
the index vector i1 is 3.

Step 5. Transform the Pearson samples using Spearman’s rank correlation.

Create two vectors of zeros, x1 and x2, that are the same size as the sorted copula
vectors, s1 and s2. Sort the values in p1 and p2 from smallest to largest. Place the
values into x1 and x2, in the same order as the indices i1 and i2 generated by sorting
the copula random numbers.

x1 = zeros(size(s1));

x2 = zeros(size(s2));

x1(i1) = sort(p1);

x2(i2) = sort(p2);

Step 6. Plot the correlated Pearson random numbers.

Create a scatterhist plot to visualize the correlated Pearson data.

figure

scatterhist(x1,x2)

5 Probability Distributions

5-148

The histograms show the marginal Pearson distributions for each column of data. The
scatterplot shows the joint distribution of p1 and p2, and indicates that the data are now
negatively correlated.

Step 7. Confirm Spearman rank correlation coefficient values.

Confirm that the Spearman rank correlation coefficient is the same for the copula
random numbers and the correlated Pearson random numbers.

copula_corr = corr(u,'Type','spearman')

pearson_corr = corr([x1,x2],'Type','spearman')

copula_corr =

 Generate Correlated Data Using Rank Correlation

5-149

 1.0000 -0.7858

 -0.7858 1.0000

pearson_corr =

 1.0000 -0.7858

 -0.7858 1.0000

The Spearman rank correlation is the same for the copula and the Pearson random
numbers.

See Also
copularnd | corr | sort

More About
• “Copulas: Generate Correlated Samples” on page 5-160

5 Probability Distributions

5-150

Gaussian Mixture Models

In this section...

“Creating Gaussian Mixture Models” on page 5-150
“Simulating Gaussian Mixtures” on page 5-157

Gaussian mixture models are formed by combining multivariate normal density
components In Statistics and Machine Learning Toolbox software, use the
gmdistribution class to fit data using an expectation maximization (EM) algorithm,
which assigns posterior probabilities to each component density with respect to each
observation. The fitting method uses an iterative algorithm that converges to a local
optimum.

Clustering using Gaussian mixture models is sometimes considered a soft clustering
method. The posterior probabilities for each point indicate that each data point has
some probability of belonging to each cluster. For more information on clustering with
Gaussian mixture models, see “Clustering Using Gaussian Mixture Models” on page
14-29. This section describes their creation.

Creating Gaussian Mixture Models

• “Specifying a Model” on page 5-150
• “Fitting a Model to Data” on page 5-153

Specifying a Model

Use the gmdistribution constructor to create Gaussian mixture models with specified
means, covariances, and mixture proportions.

First, define the means, covariances, and mixture proportions.

MU = [1 2;-3 -5]; % Means

SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]); % Covariances

p = ones(1,2)/2; % Mixing proportions

Then, create an object of the gmdistribution class defining a two-component mixture
of bivariate Gaussian distributions:

obj = gmdistribution(MU,SIGMA,p);

 Gaussian Mixture Models

5-151

Display properties of the object with the MATLAB function fieldnames:

properties = fieldnames(obj)

properties =

 'NumVariables'

 'DistributionName'

 'NumComponents'

 'ComponentProportion'

 'SharedCovariance'

 'NumIterations'

 'RegularizationValue'

 'NegativeLogLikelihood'

 'CovarianceType'

 'mu'

 'Sigma'

 'AIC'

 'BIC'

 'Converged'

The gmdistribution reference page describes these properties. To access the value of a
property, use dot indexing. For example, access the dimensions of the object.

dimension = obj.NDimensions

dimension =

 2

Access the distribution name.

name = obj.DistName

name =

gaussian mixture distribution

Use the methods pdf and cdf to compute values and visualize the object:

5 Probability Distributions

5-152

figure

ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])

figure

ezsurf(@(x,y)cdf(obj,[x y]),[-10 10],[-10 10])

 Gaussian Mixture Models

5-153

Fitting a Model to Data

You can also create Gaussian mixture models by fitting a parametric model with
a specified number of components to data. fitgmdist uses the syntax obj =
fitgmdist(X,k), where X is a data matrix and k is the specified number of components.
Choosing a suitable number of components k is essential for creating a useful model of
the data—too few components fails to model the data accurately; too many components
leads to an over-fit model with singular covariance matrices.

The following example illustrates this approach.

First, create some data from a mixture of two bivariate Gaussian distributions using the
mvnrnd function:

5 Probability Distributions

5-154

MU1 = [1 2];

SIGMA1 = [2 0; 0 .5];

MU2 = [-3 -5];

SIGMA2 = [1 0; 0 1];

X = [mvnrnd(MU1,SIGMA1,1000);

mvnrnd(MU2,SIGMA2,1000)];

figure

scatter(X(:,1),X(:,2),10,'.')

Next, fit a two-component Gaussian mixture model:

options = statset('Display','final');

obj = fitgmdist(X,2,'Options',options);

hold on

 Gaussian Mixture Models

5-155

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

hold off

18 iterations, log-likelihood = -7058.35

Among the properties of the fit are the parameter estimates.

Display the estimates for mu, sigma, and mixture proportions

ComponentMeans = obj.mu

ComponentCovariances = obj.Sigma

MixtureProportions = obj.PComponents

ComponentMeans =

5 Probability Distributions

5-156

 -2.9617 -4.9727

 0.9539 2.0261

ComponentCovariances(:,:,1) =

 1.0100 0.0059

 0.0059 0.9897

ComponentCovariances(:,:,2) =

 1.9939 -0.0092

 -0.0092 0.4981

MixtureProportions =

 0.5000 0.5000

The two-component model minimizes the Akaike information:

AIC = zeros(1,4);

obj = cell(1,4);

for k = 1:4

 obj{k} = fitgmdist(X,k);

 AIC(k)= obj{k}.AIC;

end

[minAIC,numComponents] = min(AIC);

numComponents

numComponents =

 2

Display the model.

model = obj{2}

 Gaussian Mixture Models

5-157

model =

Gaussian mixture distribution with 2 components in 2 dimensions

Component 1:

Mixing proportion: 0.500000

Mean: -2.9617 -4.9727

Component 2:

Mixing proportion: 0.500000

Mean: 0.9539 2.0261

Both the Akaike and Bayes information are negative log-likelihoods for the data with
penalty terms for the number of estimated parameters. You can use them to determine
an appropriate number of components for a model when the number of components is
unspecified.

Simulating Gaussian Mixtures

Use the method random of the gmdistribution class to generate random data from a
Gaussian mixture model created with gmdistribution or fitgmdist.

For example, the following specifies a gmdistribution object consisting of a two-
component mixture of bivariate Gaussian distributions:

MU = [1 2;-3 -5];

SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);

p = ones(1,2)/2;

obj = gmdistribution(MU,SIGMA,p);

figure

ezcontour(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])

hold on

5 Probability Distributions

5-158

Use random(gmdistribution) to generate 1000 random values:

Y = random(obj,1000);

scatter(Y(:,1),Y(:,2),10,'.')

 Gaussian Mixture Models

5-159

5 Probability Distributions

5-160

Copulas: Generate Correlated Samples

In this section...

“Determining Dependence Between Simulation Inputs” on page 5-160
“Constructing Dependent Bivariate Distributions” on page 5-164
“Using Rank Correlation Coefficients” on page 5-169
“Using Bivariate Copulas” on page 5-171
“Higher Dimension Copulas” on page 5-180
“Archimedean Copulas” on page 5-182
“Simulating Dependent Multivariate Data Using Copulas” on page 5-184
“Fitting Copulas to Data” on page 5-189

Copulas are functions that describe dependencies among variables, and provide a way
to create distributions that model correlated multivariate data. Using a copula, you can
construct a multivariate distribution by specifying marginal univariate distributions,
and then choose a copula to provide a correlation structure between variables. Bivariate
distributions, as well as distributions in higher dimensions, are possible.

Determining Dependence Between Simulation Inputs

One of the design decisions for a Monte Carlo simulation is a choice of probability
distributions for the random inputs. Selecting a distribution for each individual variable
is often straightforward, but deciding what dependencies should exist between the inputs
may not be. Ideally, input data to a simulation should reflect what you know about
dependence among the real quantities you are modeling. However, there may be little
or no information on which to base any dependence in the simulation. In such cases,
it is useful to experiment with different possibilities in order to determine the model's
sensitivity.

It can be difficult to generate random inputs with dependence when they have
distributions that are not from a standard multivariate distribution. Further, some of
the standard multivariate distributions can model only limited types of dependence. It is
always possible to make the inputs independent, and while that is a simple choice, it is
not always sensible and can lead to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk could have two random inputs
that represent different sources of insurance losses. You could model these inputs as

 Copulas: Generate Correlated Samples

5-161

lognormal random variables. A reasonable question to ask is how dependence between
these two inputs affects the results of the simulation. Indeed, you might know from real
data that the same random conditions affect both sources; ignoring that in the simulation
could lead to the wrong conclusions.

Generate and Exponentiate Normal Random Variables

The lognrnd function simulates independent lognormal random variables. In the
following example, the mvnrnd function generates n pairs of independent normal random
variables, and then exponentiates them. Notice that the covariance matrix used here is
diagonal.

n = 1000;

sigma = .5;

SigmaInd = sigma.^2 .* [1 0; 0 1]

rng('default'); % For reproducibility

ZInd = mvnrnd([0 0],SigmaInd,n);

XInd = exp(ZInd);

plot(XInd(:,1),XInd(:,2),'.')

axis([0 5 0 5])

axis equal

xlabel('X1')

ylabel('X2')

SigmaInd =

 0.2500 0

 0 0.2500

5 Probability Distributions

5-162

Dependent bivariate lognormal random variables are also easy to generate using a
covariance matrix with nonzero off-diagonal terms.

rho = .7;

SigmaDep = sigma.^2 .* [1 rho; rho 1]

ZDep = mvnrnd([0 0],SigmaDep,n);

XDep = exp(ZDep);

SigmaDep =

 0.2500 0.1750

 Copulas: Generate Correlated Samples

5-163

 0.1750 0.2500

A second scatter plot demonstrates the difference between these two bivariate
distributions.

plot(XDep(:,1),XDep(:,2),'.')

axis([0 5 0 5])

axis equal

xlabel('X1')

ylabel('X2')

It is clear that there is a tendency in the second data set for large values of X1 to be
associated with large values of X2, and similarly for small values. The correlation

5 Probability Distributions

5-164

parameter of the underlying bivariate normal determines this dependence. The
conclusions drawn from the simulation could well depend on whether you generate X1
and X2 with dependence. The bivariate lognormal distribution is a simple solution in this
case; it easily generalizes to higher dimensions in cases where the marginal distributions
are different lognormals.

Other multivariate distributions also exist. For example, the multivariate t and the
Dirichlet distributions simulate dependent t and beta random variables, respectively.
But the list of simple multivariate distributions is not long, and they only apply in cases
where the marginals are all in the same family (or even the exact same distributions).
This can be a serious limitation in many situations.

Constructing Dependent Bivariate Distributions

Although the construction discussed in the previous section creates a bivariate lognormal
that is simple, it serves to illustrate a method that is more generally applicable.

1 Generate pairs of values from a bivariate normal distribution. There is statistical
dependence between these two variables, and each has a normal marginal
distribution.

2 Apply a transformation (the exponential function) separately to each variable,
changing the marginal distributions into lognormals. The transformed variables still
have a statistical dependence.

If a suitable transformation can be found, this method can be generalized to create
dependent bivariate random vectors with other marginal distributions. In fact, a general
method of constructing such a transformation does exist, although it is not as simple as
exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf), denoted here by
Φ, to a standard normal random variable results in a random variable that is uniform on
the interval [0,1]. To see this, if Z has a standard normal distribution, then the cdf of U =
Φ(Z) is

Pr{ } Pr{ () } Pr(()}U u Z u Z u u≤ = ≤ = ≤ =−Φ Φ 1

and that is the cdf of a Unif(0,1) random variable. Histograms of some simulated normal
and transformed values demonstrate that fact:

n = 1000;

rng default % for reproducibility

 Copulas: Generate Correlated Samples

5-165

z = normrnd(0,1,n,1); % generate standard normal data

histogram(z,-3.75:.5:3.75,'FaceColor',[.8 .8 1]) % plot the histogram of data

xlim([-4 4])

title('1000 Simulated N(0,1) Random Values')

xlabel('Z')

ylabel('Frequency')

u = normcdf(z); % compute the cdf values of the sample data

figure

histogram(u,.05:.1:.95,'FaceColor',[.8 .8 1]) % plot the histogram of the cdf values

title('1000 Simulated N(0,1) Values Transformed to Unif(0,1)')

xlabel('U')

ylabel('Frequency')

5 Probability Distributions

5-166

Borrowing from the theory of univariate random number generation, applying the
inverse cdf of any distribution, F, to a Unif(0,1) random variable results in a random
variable whose distribution is exactly F (see “Inversion Methods” on page 6-7). The
proof is essentially the opposite of the preceding proof for the forward case. Another
histogram illustrates the transformation to a gamma distribution:

x = gaminv(u,2,1); % transform to gamma values

figure

histogram(x,.25:.5:9.75,'FaceColor',[.8 .8 1]) % plot the histogram of gamma values

title('1000 Simulated N(0,1) Values Transformed to Gamma(2,1)')

xlabel('X')

ylabel('Frequency')

 Copulas: Generate Correlated Samples

5-167

You can apply this two-step transformation to each variable of a standard bivariate
normal, creating dependent random variables with arbitrary marginal distributions.
Because the transformation works on each component separately, the two resulting
random variables need not even have the same marginal distributions. The
transformation is defined as:

Z Z Z N

U Z Z

X G U

= [] [] 



















= () () 
= ()

1 2

1 2

1 1

0 0
1

1
, , ,

,

∼

r

r

Φ Φ

,,G U2 2() 

5 Probability Distributions

5-168

where G1 and G2 are inverse cdfs of two possibly different distributions. For example, the
following generates random vectors from a bivariate distribution with t5 and Gamma(2,1)
marginals:

n = 1000; rho = .7;

Z = mvnrnd([0 0],[1 rho; rho 1],n);

U = normcdf(Z);

X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

% draw the scatter plot of data with histograms

figure

scatterhist(X(:,1),X(:,2),'Direction','out')

 Copulas: Generate Correlated Samples

5-169

This plot has histograms alongside a scatter plot to show both the marginal distributions,
and the dependence.

Using Rank Correlation Coefficients

The correlation parameter, ρ, of the underlying bivariate normal determines the
dependence between X1 and X2 in this construction. However, the linear correlation of
X1 and X2 is not ρ. For example, in the original lognormal case, a closed form for that
correlation is:

cor X X
e

e

(,)1 2
1

1

2

2
=

-

-

rs

s

which is strictly less than ρ, unless ρ is exactly 1. In more general cases such as the
Gamma/t construction, the linear correlation between X1 and X2 is difficult or impossible
to express in terms of ρ, but simulations show that the same effect happens.

That is because the linear correlation coefficient expresses the linear dependence
between random variables, and when nonlinear transformations are applied to those
random variables, linear correlation is not preserved. Instead, a rank correlation
coefficient, such as Kendall's τ or Spearman's ρ, is more appropriate.

Roughly speaking, these rank correlations measure the degree to which large or
small values of one random variable associate with large or small values of another.
However, unlike the linear correlation coefficient, they measure the association only
in terms of ranks. As a consequence, the rank correlation is preserved under any
monotonic transformation. In particular, the transformation method just described
preserves the rank correlation. Therefore, knowing the rank correlation of the bivariate
normal Z exactly determines the rank correlation of the final transformed random
variables, X. While the linear correlation coefficient, ρ, is still needed to parameterize the
underlying bivariate normal, Kendall's τ or Spearman's ρ are more useful in describing
the dependence between random variables, because they are invariant to the choice of
marginal distribution.

For the bivariate normal, there is a simple one-to-one mapping between Kendall's τ or
Spearman's ρ, and the linear correlation coefficient ρ:

5 Probability Distributions

5-170

t
p

r r t
p

r
p

r

 =
2

 or = sin

 =
6

s

arcsin

arcsin

() 







2

2













 or = 2sin sr r
p

6

The following plot shows the relationship.

rho = -1:.01:1;

tau = 2.*asin(rho)./pi;

rho_s = 6.*asin(rho./2)./pi;

plot(rho,tau,'b-','LineWidth',2)

hold on

plot(rho,rho_s,'g-','LineWidth',2)

plot([-1 1],[-1 1],'k:','LineWidth',2)

axis([-1 1 -1 1])

xlabel('rho')

ylabel('Rank correlation coefficient')

legend('Kendall''s {\it\tau}', ...

 'Spearman''s {\it\rho_s}', ...

 'location','NW')

 Copulas: Generate Correlated Samples

5-171

Thus, it is easy to create the desired rank correlation between X1 and X2, regardless of
their marginal distributions, by choosing the correct ρ parameter value for the linear
correlation between Z1 and Z2.

For the multivariate normal distribution, Spearman's rank correlation is almost identical
to the linear correlation. However, this is not true once you transform to the final random
variables.

Using Bivariate Copulas

The first step of the construction described in the previous section defines what is known
as a bivariate Gaussian copula. A copula is a multivariate probability distribution, where
each random variable has a uniform marginal distribution on the unit interval [0,1].

5 Probability Distributions

5-172

These variables may be completely independent, deterministically related (e.g., U2 =
U1), or anything in between. Because of the possibility for dependence among variables,
you can use a copula to construct a new multivariate distribution for dependent
variables. By transforming each of the variables in the copula separately using the
inversion method, possibly using different cdfs, the resulting distribution can have
arbitrary marginal distributions. Such multivariate distributions are often useful in
simulations, when you know that the different random inputs are not independent of
each other.

Statistics and Machine Learning Toolbox functions compute:

• Probability density functions (copulapdf) and the cumulative distribution functions
(copulacdf) for Gaussian copulas

• Rank correlations from linear correlations (copulastat) and vice versa
(copulaparam)

• Random vectors (copularnd)
• Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random values from
a bivariate Gaussian copula for various levels of ρ, to illustrate the range of different
dependence structures. The family of bivariate Gaussian copulas is parameterized by the
linear correlation matrix:

R =
Ê

Ë
Á

ˆ

¯
˜

1

1

r
r

U1 and U2 approach linear dependence as ρ approaches ±1, and approach complete
independence as ρ approaches zero:

n = 500;

rng('default') % for reproducibility

U = copularnd('Gaussian',[1 .8; .8 1],n);

subplot(2,2,1)

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = 0.8')

xlabel('U1')

ylabel('U2')

U = copularnd('Gaussian',[1 .1; .1 1],n);

subplot(2,2,2)

 Copulas: Generate Correlated Samples

5-173

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = 0.1')

xlabel('U1')

ylabel('U2')

U = copularnd('Gaussian',[1 -.1; -.1 1],n);

subplot(2,2,3)

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = -0.1')

xlabel('U1')

ylabel('U2')

U = copularnd('Gaussian',[1 -.8; -.8 1],n);

subplot(2,2,4)

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = -0.8')

xlabel('U1')

ylabel('U2')

5 Probability Distributions

5-174

The dependence between U1 and U2 is completely separate from the marginal
distributions of X1 = G(U1) and X2 = G(U2). X1 and X2 can be given any marginal
distributions, and still have the same rank correlation. This is one of the main appeals of
copulas—they allow this separate specification of dependence and marginal distribution.
You can also compute the pdf (copulapdf) and the cdf (copulacdf) for a copula. For
example, these plots show the pdf and cdf for ρ = .8:

u1 = linspace(1e-3,1-1e-3,50);

u2 = linspace(1e-3,1-1e-3,50);

[U1,U2] = meshgrid(u1,u2);

Rho = [1 .8; .8 1];

f = copulapdf('t',[U1(:) U2(:)],Rho,5);

f = reshape(f,size(U1));

 Copulas: Generate Correlated Samples

5-175

figure()

surf(u1,u2,log(f),'FaceColor','interp','EdgeColor','none')

view([-15,20])

xlabel('U1')

ylabel('U2')

zlabel('Probability Density')

u1 = linspace(1e-3,1-1e-3,50);

u2 = linspace(1e-3,1-1e-3,50);

[U1,U2] = meshgrid(u1,u2);

F = copulacdf('t',[U1(:) U2(:)],Rho,5);

F = reshape(F,size(U1));

5 Probability Distributions

5-176

figure()

surf(u1,u2,F,'FaceColor','interp','EdgeColor','none')

view([-15,20])

xlabel('U1')

ylabel('U2')

zlabel('Cumulative Probability')

A different family of copulas can be constructed by starting from a bivariate t distribution
and transforming using the corresponding t cdf. The bivariate t distribution is
parameterized with P, the linear correlation matrix, and ν, the degrees of freedom. Thus,
for example, you can speak of a t1 or a t5 copula, based on the multivariate t with one and
five degrees of freedom, respectively.

 Copulas: Generate Correlated Samples

5-177

Just as for Gaussian copulas, Statistics and Machine Learning Toolbox functions for t
copulas compute:

• Probability density functions (copulapdf) and the cumulative distribution functions
(copulacdf) for Gaussian copulas

• Rank correlations from linear correlations (copulastat) and vice versa
(copulaparam)

• Random vectors (copularnd)
• Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random values from
a bivariate t1 copula for various levels of ρ, to illustrate the range of different dependence
structures:

n = 500;

nu = 1;

rng('default') % for reproducibility

U = copularnd('t',[1 .8; .8 1],nu,n);

subplot(2,2,1)

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = 0.8')

xlabel('U1')

ylabel('U2')

U = copularnd('t',[1 .1; .1 1],nu,n);

subplot(2,2,2)

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = 0.1')

xlabel('U1')

ylabel('U2')

U = copularnd('t',[1 -.1; -.1 1],nu,n);

subplot(2,2,3)

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = -0.1')

xlabel('U1')

ylabel('U2')

U = copularnd('t',[1 -.8; -.8 1],nu, n);

subplot(2,2,4)

plot(U(:,1),U(:,2),'.')

title('{\it\rho} = -0.8')

5 Probability Distributions

5-178

xlabel('U1')

ylabel('U2')

A t copula has uniform marginal distributions for U1 and U2, just as a Gaussian copula
does. The rank correlation τ or ρs between components in a t copula is also the same
function of ρ as for a Gaussian. However, as these plots demonstrate, a t1 copula differs
quite a bit from a Gaussian copula, even when their components have the same rank
correlation. The difference is in their dependence structure. Not surprisingly, as the
degrees of freedom parameter ν is made larger, a tν copula approaches the corresponding
Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over a t copula.
For example, using a t copula with 1 degree of freedom, you can again generate

 Copulas: Generate Correlated Samples

5-179

random vectors from a bivariate distribution with Gamma(2,1) and t5 marginals using
copularnd:

n = 1000;

rho = .7;

nu = 1;

rng('default') % for reproducibility

U = copularnd('t',[1 rho; rho 1],nu,n);

X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

figure()

scatterhist(X(:,1),X(:,2),'Direction','out')

5 Probability Distributions

5-180

Compared to the bivariate Gamma/t distribution constructed earlier, which was based
on a Gaussian copula, the distribution constructed here, based on a t1 copula, has the
same marginal distributions and the same rank correlation between variables but a very
different dependence structure. This illustrates the fact that multivariate distributions
are not uniquely defined by their marginal distributions, or by their correlations. The
choice of a particular copula in an application may be based on actual observed data,
or different copulas may be used as a way of determining the sensitivity of simulation
results to the input distribution.

Higher Dimension Copulas

The Gaussian and t copulas are known as elliptical copulas. It is easy to generalize
elliptical copulas to a higher number of dimensions. For example, simulate data from a
trivariate distribution with Gamma(2,1), Beta(2,2), and t5 marginals using a Gaussian
copula and copularnd, as follows:

n = 1000;

Rho = [1 .4 .2; .4 1 -.8; .2 -.8 1];

rng('default') % for reproducibility

U = copularnd('Gaussian',Rho,n);

X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];

Plot the data.

subplot(1,1,1)

plot3(X(:,1),X(:,2),X(:,3),'.')

grid on

view([-55, 15])

xlabel('X1')

ylabel('X2')

zlabel('X3')

 Copulas: Generate Correlated Samples

5-181

Notice that the relationship between the linear correlation parameter ρ and, for example,
Kendall's τ, holds for each entry in the correlation matrix P used here. You can verify
that the sample rank correlations of the data are approximately equal to the theoretical
values:

tauTheoretical = 2.*asin(Rho)./pi

tauTheoretical =

 1.0000 0.2620 0.1282

 0.2620 1.0000 -0.5903

 0.1282 -0.5903 1.0000

5 Probability Distributions

5-182

tauSample = corr(X,'type','Kendall')

tauSample =

 1.0000 0.2581 0.1414

 0.2581 1.0000 -0.5790

 0.1414 -0.5790 1.0000

Archimedean Copulas

Statistics and Machine Learning Toolbox functions are available for three bivariate
Archimedean copula families:

• Clayton copulas
• Frank copulas
• Gumbel copulas

These are one-parameter families that are defined directly in terms of their cdfs, rather
than being defined constructively using a standard multivariate distribution.

To compare these three Archimedean copulas to the Gaussian and t bivariate copulas,
first use the copulastat function to find the rank correlation for a Gaussian or t copula
with linear correlation parameter of 0.8, and then use the copulaparam function to find
the Clayton copula parameter that corresponds to that rank correlation:

tau = copulastat('Gaussian',.8 ,'type','kendall')

tau =

 0.5903

alpha = copulaparam('Clayton',tau,'type','kendall')

alpha =

 2.8820

 Copulas: Generate Correlated Samples

5-183

Finally, plot a random sample from the Clayton copula with copularnd. Repeat the
same procedure for the Frank and Gumbel copulas:

n = 500;

U = copularnd('Clayton',alpha,n);

subplot(3,1,1)

plot(U(:,1),U(:,2),'.');

title(['Clayton Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])

xlabel('U1')

ylabel('U2')

alpha = copulaparam('Frank',tau,'type','kendall');

U = copularnd('Frank',alpha,n);

subplot(3,1,2)

plot(U(:,1),U(:,2),'.')

title(['Frank Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])

xlabel('U1')

ylabel('U2')

alpha = copulaparam('Gumbel',tau,'type','kendall');

U = copularnd('Gumbel',alpha,n);

subplot(3,1,3)

plot(U(:,1),U(:,2),'.')

title(['Gumbel Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])

xlabel('U1')

ylabel('U2')

5 Probability Distributions

5-184

Simulating Dependent Multivariate Data Using Copulas

To simulate dependent multivariate data using a copula, you must specify each of the
following:

• The copula family (and any shape parameters)
• The rank correlations among variables
• Marginal distributions for each variable

Suppose you have return data for two stocks and want to run a Monte Carlo simulation
with inputs that follow the same distributions as the data:

load stockreturns

 Copulas: Generate Correlated Samples

5-185

nobs = size(stocks,1);

subplot(2,1,1)

histogram(stocks(:,1),10,'FaceColor',[.8 .8 1])

xlim([-3.5 3.5])

xlabel('X1')

ylabel('Frequency')

subplot(2,1,2)

histogram(stocks(:,2),10,'FaceColor',[.8 .8 1])

xlim([-3.5 3.5])

xlabel('X2')

ylabel('Frequency')

5 Probability Distributions

5-186

You could fit a parametric model separately to each dataset, and use those estimates as
the marginal distributions. However, a parametric model may not be sufficiently flexible.
Instead, you can use a nonparametric model to transform to the marginal distributions.
All that is needed is a way to compute the inverse cdf for the nonparametric model.

The simplest nonparametric model is the empirical cdf, as computed by the ecdf
function. For a discrete marginal distribution, this is appropriate. However, for a
continuous distribution, use a model that is smoother than the step function computed
by ecdf. One way to do that is to estimate the empirical cdf and interpolate between
the midpoints of the steps with a piecewise linear function. Another way is to use
kernel smoothing with ksdensity. For example, compare the empirical cdf to a kernel
smoothed cdf estimate for the first variable:

[Fi,xi] = ecdf(stocks(:,1));

figure()

stairs(xi,Fi,'b','LineWidth',2)

hold on

Fi_sm = ksdensity(stocks(:,1),xi,'function','cdf','width',.15);

plot(xi,Fi_sm,'r-','LineWidth',1.5)

xlabel('X1')

ylabel('Cumulative Probability')

legend('Empirical','Smoothed','Location','NW')

grid on

 Copulas: Generate Correlated Samples

5-187

For the simulation, experiment with different copulas and correlations. Here, you
will use a bivariate t copula with a fairly small degrees of freedom parameter. For the
correlation parameter, you can compute the rank correlation of the data.

nu = 5;

tau = corr(stocks(:,1),stocks(:,2),'type','kendall')

tau =

 0.5180

Find the corresponding linear correlation parameter for the t copula using copulaparam.

5 Probability Distributions

5-188

rho = copulaparam('t', tau, nu, 'type','kendall')

rho =

 0.7268

Next, use copularnd to generate random values from the t copula and transform using
the nonparametric inverse cdfs. The ksdensity function allows you to make a kernel
estimate of distribution and evaluate the inverse cdf at the copula points all in one step:

n = 1000;

U = copularnd('t',[1 rho; rho 1],nu,n);

X1 = ksdensity(stocks(:,1),U(:,1),...

 'function','icdf','width',.15);

X2 = ksdensity(stocks(:,2),U(:,2),...

 'function','icdf','width',.15);

Alternatively, when you have a large amount of data or need to simulate more than one
set of values, it may be more efficient to compute the inverse cdf over a grid of values in
the interval (0,1) and use interpolation to evaluate it at the copula points:

p = linspace(0.00001,0.99999,1000);

G1 = ksdensity(stocks(:,1),p,'function','icdf','width',0.15);

X1 = interp1(p,G1,U(:,1),'spline');

G2 = ksdensity(stocks(:,2),p,'function','icdf','width',0.15);

X2 = interp1(p,G2,U(:,2),'spline');

scatterhist(X1,X2,'Direction','out')

 Copulas: Generate Correlated Samples

5-189

The marginal histograms of the simulated data are a smoothed version of the histograms
for the original data. The amount of smoothing is controlled by the bandwidth input to
ksdensity.

Fitting Copulas to Data

This example shows how to use copulafit to calibrate copulas with data. To
generate data Xsim with a distribution "just like" (in terms of marginal distributions
and correlations) the distribution of data in the matrix X , you need to fit marginal
distributions to the columns of X , use appropriate cdf functions to transform X to U , so
that U has values between 0 and 1, use copulafit to fit a copula to U , generate new

5 Probability Distributions

5-190

data Usim from the copula, and use appropriate inverse cdf functions to transform Usim
to Xsim .

Load and plot the simulated stock return data.

load stockreturns

x = stocks(:,1);

y = stocks(:,2);

scatterhist(x,y,'Direction','out')

Transform the data to the copula scale (unit square) using a kernel estimator of the
cumulative distribution function.

 Copulas: Generate Correlated Samples

5-191

u = ksdensity(x,x,'function','cdf');

v = ksdensity(y,y,'function','cdf');

scatterhist(u,v,'Direction','out')

xlabel('u')

ylabel('v')

Fit a t copula.

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')

Rho =

5 Probability Distributions

5-192

 1.0000 0.7220

 0.7220 1.0000

nu =

 2.6133e+06

Generate a random sample from the t copula.

r = copularnd('t',Rho,nu,1000);

u1 = r(:,1);

v1 = r(:,2);

scatterhist(u1,v1,'Direction','out')

xlabel('u')

ylabel('v')

set(get(gca,'children'),'marker','.')

 Copulas: Generate Correlated Samples

5-193

Transform the random sample back to the original scale of the data.

x1 = ksdensity(x,u1,'function','icdf');

y1 = ksdensity(y,v1,'function','icdf');

scatterhist(x1,y1,'Direction','out')

set(get(gca,'children'),'marker','.')

5 Probability Distributions

5-194

As the example illustrates, copulas integrate naturally with other distribution fitting
functions.

6

Random Number Generation

• “Generating Random Data” on page 6-2
• “Random Number Generation Functions” on page 6-3
• “Common Generation Methods” on page 6-5
• “Representing Sampling Distributions Using Markov Chain Samplers” on page

6-14
• “Generating Quasi-Random Numbers” on page 6-16
• “Generating Data Using Flexible Families of Distributions” on page 6-26

6 Random Number Generation

6-2

Generating Random Data

Pseudorandom numbers are generated by deterministic algorithms. They are "random"
in the sense that, on average, they pass statistical tests regarding their distribution and
correlation. They differ from true random numbers in that they are generated by an
algorithm, rather than a truly random process.

Random number generators (RNGs) like those in MATLAB are algorithms for generating
pseudorandom numbers with a specified distribution.

For more information on the GUI for generating random numbers from supported
distributions, see “Explore the Random Number Generation UI” on page 5-114.

 Random Number Generation Functions

6-3

Random Number Generation Functions

The following table lists the supported distributions and their respective random number
generation functions.

Distribution Random Number Generation Function

Beta betarnd, random, randtool
Binomial binornd, random, randtool
Chi-square chi2rnd, random, randtool
Clayton copula copularnd

Exponential exprnd, random, randtool
Extreme value evrnd, random, randtool
F frnd, random, randtool
Frank copula copularnd

Gamma gamrnd, randg, random, randtool
Gaussian copula copularnd

Gaussian mixture random

Generalized extreme
value

gevrnd, random, randtool

Generalized Pareto gprnd, random, randtool
Geometric geornd, random, randtool
Gumbel copula copularnd

Hypergeometric hygernd, random
Inverse Wishart iwishrnd

Johnson system johnsrnd

Lognormal lognrnd, random, randtool
Multinomial mnrnd

Multivariate normal mvnrnd

Multivariate t mvtrnd

Negative binomial nbinrnd, random, randtool

6 Random Number Generation

6-4

Distribution Random Number Generation Function

Noncentral chi-square ncx2rnd, random, randtool
Noncentral F ncfrnd, random, randtool
Noncentral t nctrnd, random, randtool
Normal (Gaussian) normrnd, randn, random, randtool
Pearson system pearsrnd

Piecewise random

Poisson poissrnd, random, randtool
Rayleigh raylrnd, random, randtool
Student's t trnd, random, randtool
t copula copularnd

Uniform (continuous) unifrnd, rand, random
Uniform (discrete) unidrnd, random, randtool
Weibull wblrnd, random
Wishart wishrnd

 Common Generation Methods

6-5

Common Generation Methods

In this section...

“Direct Methods” on page 6-5
“Inversion Methods” on page 6-7
“Acceptance-Rejection Methods” on page 6-10

Methods for generating pseudorandom numbers usually start with uniform random
numbers, like the MATLAB rand function produces. The methods described in this
section detail how to produce random numbers from other distributions.

Direct Methods

Direct methods directly use the definition of the distribution.

For example, consider binomial random numbers. A binomial random number is the
number of heads in N tosses of a coin with probability p of a heads on any single toss. If
you generate N uniform random numbers on the interval (0,1) and count the number less
than p, then the count is a binomial random number with parameters N and p.

This function is a simple implementation of a binomial RNG using the direct approach:

function X = directbinornd(N,p,m,n)

X = zeros(m,n); % Preallocate memory

 for i = 1:m*n

 u = rand(N,1);

 X(i) = sum(u < p);

 end

end

For example:

X = directbinornd(100,0.3,1e4,1);

histogram(X,101)

6 Random Number Generation

6-6

The Statistics and Machine Learning Toolbox function binornd uses a modified direct
method, based on the definition of a binomial random variable as the sum of Bernoulli
random variables.

You can easily convert the previous method to a random number generator for the
Poisson distribution with parameter λ. The Poisson distribution is the limiting case of the
binomial distribution as N approaches infinity, p approaches zero, and Np is held fixed at
λ. To generate Poisson random numbers, create a version of the previous generator that
inputs λ rather than N and p, and internally sets N to some large number and p to λ/N.

The Statistics and Machine Learning Toolbox function poissrnd actually uses two
direct methods:

 Common Generation Methods

6-7

• A waiting time method for small values of λ
• A method due to Ahrens and Dieter for larger values of λ

Inversion Methods

Inversion methods are based on the observation that continuous cumulative distribution
functions (cdfs) range uniformly over the interval (0,1). If u is a uniform random number
on (0,1), then using X = F -1(U) generates a random number X from a continuous
distribution with specified cdf F.

For example, the following code generates random numbers from a specific exponential
distribution using the inverse cdf and the MATLAB uniform random number generator
rand:

mu = 1;

X = expinv(rand(1e4,1),mu);

Compare the distribution of the generated random numbers to the pdf of the specified
exponential by scaling the pdf to the area of the histogram used to display the
distribution:

numbins = 50;

h = histogram(X,numbins)

hold on

histarea = h.BinWidth*sum(h.Values);

x = h.BinEdges(1):0.001:h.BinEdges(end);

y = exppdf(x,mu);

plot(x,histarea*y,'r','LineWidth',2)

6 Random Number Generation

6-8

Inversion methods also work for discrete distributions. To generate a random number X
from a discrete distribution with probability mass vector P(X=xi) = pi where x0<x1< x2<...,
generate a uniform random number u on (0,1) and then set X = xi if F(xi–1)<u<F(xi).

For example, the following function implements an inversion method for a discrete
distribution with probability mass vector p:

function X = discreteinvrnd(p,m,n)

 X = zeros(m,n); % Preallocate memory

 for i = 1:m*n

 u = rand;

 I = find(u < cumsum(p));

 X(i) = min(I);

 Common Generation Methods

6-9

 end

end

Use the function to generate random numbers from any discrete distribution:

p = [0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass vector

X = discreteinvrnd(p,1e4,1);

h = histogram(X,length(p));

bar(1:length(p),h.Values)

6 Random Number Generation

6-10

Acceptance-Rejection Methods

The functional form of some distributions makes it difficult or time-consuming to
generate random numbers using direct or inversion methods. Acceptance-rejection
methods provide an alternative in these cases.

Acceptance-rejection methods begin with uniform random numbers, but require an
additional random number generator. If your goal is to generate a random number
from a continuous distribution with pdf f, acceptance-rejection methods first generate a
random number from a continuous distribution with pdf g satisfying f(x) ≤ cg(x) for some
c and all x.

A continuous acceptance-rejection RNG proceeds as follows:

1 Chooses a density g.
2 Finds a constant c such that f(x)/g(x)≤c for all x.
3 Generates a uniform random number u.
4 Generates a random number v from g.
5 If cu≤f(v)/g (v), accepts and returns v.

 Common Generation Methods

6-11

6 Otherwise, rejects v and goes to step 3.

For efficiency, a “cheap” method is necessary for generating random numbers from g,
and the scalar c should be small. The expected number of iterations to produce a single
random number is c.

The following function implements an acceptance-rejection method for generating
random numbers from pdf f, given f, g, the RNG grnd for g, and the constant c:

function X = accrejrnd(f,g,grnd,c,m,n)

X = zeros(m,n); % Preallocate memory

for i = 1:m*n

 accept = false;

 while accept == false

 u = rand();

 v = grnd();

 if c*u <= f(v)/g(v)

 X(i) = v;

 accept = true;

 end

 end

end

For example, the function f(x) = xe–x2/2 satisfies the conditions for a pdf on [0,∞)
(nonnegative and integrates to 1). The exponential pdf with mean 1, f(x) = e–x, dominates
g for c greater than about 2.2. Thus, you can use rand and exprnd to generate random
numbers from f:

f = @(x)x.*exp(-(x.^2)/2);

g = @(x)exp(-x);

grnd = @()exprnd(1);

X = accrejrnd(f,g,grnd,2.2,1e4,1);

The pdf f is actually a Rayleigh distribution with shape parameter 1. This example
compares the distribution of random numbers generated by the acceptance-rejection
method with those generated by raylrnd:

Y = raylrnd(1,1e4,1);

histogram(X)

hold on

histogram(Y)

legend('A-R RNG','Rayleigh RNG')

6 Random Number Generation

6-12

The Statistics and Machine Learning Toolbox function raylrnd uses a transformation
method, expressing a Rayleigh random variable in terms of a chi-square random
variable, which you compute using randn.

Acceptance-rejection methods also work for discrete distributions. In this case, the goal
is to generate random numbers from a distribution with probability mass Pp(X = i) = pi,
assuming that you have a method for generating random numbers from a distribution
with probability mass Pq(X = i) = qi. The RNG proceeds as follows:

1 Chooses a density Pq.
2 Finds a constant c such that pi/qi≤c for all i .
3 Generates a uniform random number u.

 Common Generation Methods

6-13

4 Generates a random number v from Pq.
5 If cu≤pv/qv, accepts and returns v.
6 Otherwise, rejects v and goes to step 3.

6 Random Number Generation

6-14

Representing Sampling Distributions Using Markov Chain
Samplers

In this section...

“Using the Metropolis-Hastings Algorithm” on page 6-14
“Using Slice Sampling” on page 6-15

The methods in “Common Generation Methods” on page 6-5 might be inadequate when
sampling distributions are difficult to represent in computations. Such distributions
arise, for example, in Bayesian data analysis and in the large combinatorial problems of
Markov chain Monte Carlo (MCMC) simulations. An alternative is to construct a Markov
chain with a stationary distribution equal to the target sampling distribution, using the
states of the chain to generate random numbers after an initial burn-in period in which
the state distribution converges to the target.

Using the Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm draws samples from a distribution that is only known
up to a constant. Random numbers are generated from a distribution with a probability
density function that is equal to or proportional to a proposal function.

To generate random numbers:

1 Assume an initial value x(t).
2 Draw a sample, y(t), from a proposal distribution q(y|x(t)).
3 Accept y(t) as the next sample x(t + 1) with probability r(x(t),y(t)), and keep x(t) as the

next sample x(t + 1) with probability 1 – r(x(t),y(t)), where:

r x y min
f y

f x

q x y

q y x
(,)

()

()

(|)

(|)
,= 1

Ï
Ì
Ó

¸
˝
˛

4 Increment t → t + 1, and repeat steps 2 and 3 until you get the desired number of
samples.

Generate random numbers using the Metropolis-Hastings method with the mhsample
function. To produce quality samples efficiently with the Metropolis-Hastings algorithm,
it is crucial to select a good proposal distribution. If it is difficult to find an efficient

 Representing Sampling Distributions Using Markov Chain Samplers

6-15

proposal distribution, use the slice sampling algorithm (slicesample) without explicitly
specifying a proposal distribution.

Using Slice Sampling

In instances where it is difficult to find an efficient Metropolis-Hastings proposal
distribution, the slice sampling algorithm does not require an explicit specification. The
slice sampling algorithm draws samples from the region under the density function using
a sequence of vertical and horizontal steps. First, it selects a height at random from 0
to the density function f (x). Then, it selects a new x value at random by sampling from
the horizontal “slice” of the density above the selected height. A similar slice sampling
algorithm is used for a multivariate distribution.

If a function f(x) proportional to the density function is given, then do the following to
generate random numbers:

1 Assume an initial value x(t) within the domain of f(x).
2 Draw a real value y uniformly from (0, f(x(t))), thereby defining a horizontal “slice” as

S = {x: y < f(x)}.
3 Find an interval I = (L, R) around x(t) that contains all, or much of the “slice” S.
4 Draw the new point x(t + 1) within this interval.
5 Increment t → t + 1 and repeat steps 2 through 4 until you get the desired number of

samples.

Slice sampling can generate random numbers from a distribution with an arbitrary form
of the density function, provided that an efficient numerical procedure is available to find
the interval I = (L,R), which is the “slice” of the density.

Generate random numbers using the slice sampling method with the slicesample
function.

6 Random Number Generation

6-16

Generating Quasi-Random Numbers

In this section...

“Quasi-Random Sequences” on page 6-16
“Quasi-Random Point Sets” on page 6-17
“Quasi-Random Streams” on page 6-24

Quasi-Random Sequences

Quasi-random number generators (QRNGs) produce highly uniform samples of the unit
hypercube. QRNGs minimize the discrepancy between the distribution of generated
points and a distribution with equal proportions of points in each sub-cube of a uniform
partition of the hypercube. As a result, QRNGs systematically fill the “holes” in any
initial segment of the generated quasi-random sequence.

Unlike the pseudorandom sequences described in “Common Generation Methods”
on page 6-5, quasi-random sequences fail many statistical tests for randomness.
Approximating true randomness, however, is not their goal. Quasi-random sequences
seek to fill space uniformly, and to do so in such a way that initial segments approximate
this behavior up to a specified density.

QRNG applications include:

• Quasi-Monte Carlo (QMC) integration. Monte Carlo techniques are often used
to evaluate difficult, multi-dimensional integrals without a closed-form solution.
QMC uses quasi-random sequences to improve the convergence properties of these
techniques.

• Space-filling experimental designs. In many experimental settings, taking
measurements at every factor setting is expensive or infeasible. Quasi-random
sequences provide efficient, uniform sampling of the design space.

• Global optimization. Optimization algorithms typically find a local optimum in
the neighborhood of an initial value. By using a quasi-random sequence of initial
values, searches for global optima uniformly sample the basins of attraction of all
local minima.

Example: Using Scramble, Leap, and Skip

Imagine a simple 1-D sequence that produces the integers from 1 to 10. This is the basic
sequence and the first three points are [1,2,3]:

 Generating Quasi-Random Numbers

6-17

Now look at how Scramble, Leap, and Skip work together:

• Scramble — Scrambling shuffles the points in one of several different ways. In this
example, assume a scramble turns the sequence into 1,3,5,7,9,2,4,6,8,10. The
first three points are now [1,3,5]:

• Skip — A Skip value specifies the number of initial points to ignore. In this example,
set the Skip value to 2. The sequence is now 5,7,9,2,4,6,8,10 and the first three
points are [5,7,9]:

• Leap — A Leap value specifies the number of points to ignore for each one you take.
Continuing the example with the Skip set to 2, if you set the Leap to 1, the sequence
uses every other point. In this example, the sequence is now 5,9,4,8 and the first
three points are [5,9,4]:

Quasi-Random Point Sets

Statistics and Machine Learning Toolbox functions support these quasi-random
sequences:

• Halton sequences. Produced by the haltonset function. These sequences use
different prime bases to form successively finer uniform partitions of the unit interval
in each dimension.

6 Random Number Generation

6-18

• Sobol sequences. Produced by the sobolset function. These sequences use a base
of 2 to form successively finer uniform partitions of the unit interval, and then reorder
the coordinates in each dimension.

• Latin hypercube sequences. Produced by the lhsdesign function. Though not
quasi-random in the sense of minimizing discrepancy, these sequences nevertheless
produce sparse uniform samples useful in experimental designs.

Quasi-random sequences are functions from the positive integers to the unit hypercube.
To be useful in application, an initial point set of a sequence must be generated. Point
sets are matrices of size n-by-d, where n is the number of points and d is the dimension
of the hypercube being sampled. The functions haltonset and sobolset construct
point sets with properties of a specified quasi-random sequence. Initial segments of the
point sets are generated by the net method of the qrandset class (parent class of the
haltonset class and sobolset class), but points can be generated and accessed more
generally using parenthesis indexing.

Because of the way in which quasi-random sequences are generated, they may contain
undesirable correlations, especially in their initial segments, and especially in higher
dimensions. To address this issue, quasi-random point sets often skip, leap over, or
scramble values in a sequence. The haltonset and sobolset functions allow you to
specify both a Skip and a Leap property of a quasi-random sequence, and the scramble
method of the qrandset class allows you apply a variety of scrambling techniques.
Scrambling reduces correlations while also improving uniformity.

Generate a Quasi-Random Point Set

This example shows how to use haltonset to construct a 2-D Halton quasi-random
point set.

Create a haltonset object p, that skips the first 1000 values of the sequence and then
retains every 101st point.

rng default % For reproducibility

p = haltonset(2,'Skip',1e3,'Leap',1e2)

p =

Halton point set in 2 dimensions (89180190640991 points)

Properties:

 Generating Quasi-Random Numbers

6-19

 Skip : 1000

 Leap : 100

 ScrambleMethod : none

The object p encapsulates properties of the specified quasi-random sequence. The point
set is finite, with a length determined by the Skip and Leap properties and by limits on
the size of point set indices.

Use scramble to apply reverse-radix scrambling.

p = scramble(p,'RR2')

p =

Halton point set in 2 dimensions (89180190640991 points)

Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : RR2

Use net to generate the first 500 points.

X0 = net(p,500);

This is equivalent to

X0 = p(1:500,:);

Values of the point set X0 are not generated and stored in memory until you access p
using net or parenthesis indexing.

To appreciate the nature of quasi-random numbers, create a scatter plot of the two
dimensions in X0.

scatter(X0(:,1),X0(:,2),5,'r')

axis square

title('{\bf Quasi-Random Scatter}')

6 Random Number Generation

6-20

Compare this to a scatter of uniform pseudorandom numbers generated by the rand
function.

X = rand(500,2);

scatter(X(:,1),X(:,2),5,'b')

axis square

title('{\bf Uniform Random Scatter}')

 Generating Quasi-Random Numbers

6-21

The quasi-random scatter appears more uniform, avoiding the clumping in the
pseudorandom scatter.

In a statistical sense, quasi-random numbers are too uniform to pass traditional tests of
randomness. For example, a Kolmogorov-Smirnov test, performed by kstest, is used to
assess whether or not a point set has a uniform random distribution. When performed
repeatedly on uniform pseudorandom samples, such as those generated by rand, the test
produces a uniform distribution of p-values.

nTests = 1e5;

sampSize = 50;

PVALS = zeros(nTests,1);

for test = 1:nTests

 x = rand(sampSize,1);

6 Random Number Generation

6-22

 [h,pval] = kstest(x,[x,x]);

 PVALS(test) = pval;

end

histogram(PVALS,100)

h = findobj(gca,'Type','patch');

xlabel('{\it p}-values')

ylabel('Number of Tests')

The results are quite different when the test is performed repeatedly on uniform quasi-
random samples.

p = haltonset(1,'Skip',1e3,'Leap',1e2);

 Generating Quasi-Random Numbers

6-23

p = scramble(p,'RR2');

nTests = 1e5;

sampSize = 50;

PVALS = zeros(nTests,1);

for test = 1:nTests

 x = p(test:test+(sampSize-1),:);

 [h,pval] = kstest(x,[x,x]);

 PVALS(test) = pval;

end

histogram(PVALS,100)

xlabel('{\it p}-values')

ylabel('Number of Tests')

6 Random Number Generation

6-24

Small p-values call into question the null hypothesis that the data are uniformly
distributed. If the hypothesis is true, about 5% of the p-values are expected to fall below
0.05. The results are remarkably consistent in their failure to challenge the hypothesis.

Quasi-Random Streams

Quasi-random streams, produced by the qrandstream function, are used to generate
sequential quasi-random outputs, rather than point sets of a specific size. Streams are
used like pseudoRNGS, such as rand, when client applications require a source of quasi-
random numbers of indefinite size that can be accessed intermittently. Properties of
a quasi-random stream, such as its type (Halton or Sobol), dimension, skip, leap, and
scramble, are set when the stream is constructed.

In implementation, quasi-random streams are essentially very large quasi-random point
sets, though they are accessed differently. The state of a quasi-random stream is the
scalar index of the next point to be taken from the stream. Use the qrand method of the
qrandstream class to generate points from the stream, starting from the current state.
Use the reset method to reset the state to 1. Unlike point sets, streams do not support
parenthesis indexing.

Generate a Quasi-Random Stream

This example shows how to generate samples from a quasi-random point set.

Use haltonset to create a quasi-random point set p, then repeatedly increment the
index into the point set test to generate different samples.

p = haltonset(1,'Skip',1e3,'Leap',1e2);

p = scramble(p,'RR2');

nTests = 1e5;

sampSize = 50;

PVALS = zeros(nTests,1);

for test = 1:nTests

 x = p(test:test+(sampSize-1),:);

 [h,pval] = kstest(x,[x,x]);

 PVALS(test) = pval;

end

The same results are obtained by using qrandstream to construct a quasi-random
stream q based on the point set p and letting the stream take care of increments to the
index.

 Generating Quasi-Random Numbers

6-25

p = haltonset(1,'Skip',1e3,'Leap',1e2);

p = scramble(p,'RR2');

q = qrandstream(p);

nTests = 1e5;

sampSize = 50;

PVALS = zeros(nTests,1);

for test = 1:nTests

 X = qrand(q,sampSize);

 [h,pval] = kstest(X,[X,X]);

 PVALS(test) = pval;

end

6 Random Number Generation

6-26

Generating Data Using Flexible Families of Distributions

In this section...

“Pearson and Johnson Systems” on page 6-26
“Generating Data Using the Pearson System” on page 6-27
“Generating Data Using the Johnson System” on page 6-29

Pearson and Johnson Systems

As described in “Working with Probability Distributions” on page 5-3, choosing an
appropriate parametric family of distributions to model your data can be based on a
priori or a posteriori knowledge of the data-producing process, but the choice is often
difficult. The Pearson and Johnson systems can make such a choice unnecessary. Each
system is a flexible parametric family of distributions that includes a wide range of
distribution shapes, and it is often possible to find a distribution within one of these two
systems that provides a good match to your data.

Data Input

The following parameters define each member of the Pearson and Johnson systems

• Mean — Estimated by mean
• Standard deviation — Estimated by std
• Skewness — Estimated by skewness
• Kurtosis — Estimated by kurtosis

These statistics can also be computed with the moment function. The Johnson system,
while based on these four parameters, is more naturally described using quantiles,
estimated by the quantile function.

The Statistics and Machine Learning Toolbox functions pearsrnd and johnsrnd take
input arguments defining a distribution (parameters or quantiles, respectively) and
return the type and the coefficients of the distribution in the corresponding system. Both
functions also generate random numbers from the specified distribution.

As an example, load the data in carbig.mat, which includes a variable MPG containing
measurements of the gas mileage for each car.

 Generating Data Using Flexible Families of Distributions

6-27

load carbig

MPG = MPG(~isnan(MPG));

histogram(MPG,15)

The following two sections model the distribution with members of the Pearson and
Johnson systems, respectively.

Generating Data Using the Pearson System

The statistician Karl Pearson devised a system, or family, of distributions that includes
a unique distribution corresponding to every valid combination of mean, standard
deviation, skewness, and kurtosis. If you compute sample values for each of these

6 Random Number Generation

6-28

moments from data, it is easy to find the distribution in the Pearson system that matches
these four moments and to generate a random sample.

The Pearson system embeds seven basic types of distribution together in a single
parametric framework. It includes common distributions such as the normal and t
distributions, simple transformations of standard distributions such as a shifted and
scaled beta distribution and the inverse gamma distribution, and one distribution—the
Type IV—that is not a simple transformation of any standard distribution.

For a given set of moments, there are distributions that are not in the system that also
have those same first four moments, and the distribution in the Pearson system may not
be a good match to your data, particularly if the data are multimodal. But the system
does cover a wide range of distribution shapes, including both symmetric and skewed
distributions.

To generate a sample from the Pearson distribution that closely matches the MPG data,
simply compute the four sample moments and treat those as distribution parameters.

moments = {mean(MPG),std(MPG),skewness(MPG),kurtosis(MPG)};

rng default % For reproducibility

[r,type] = pearsrnd(moments{:},10000,1);

The optional second output from pearsrnd indicates which type of distribution within
the Pearson system matches the combination of moments.

type

type =

 1

In this case, pearsrnd has determined that the data are best described with a Type I
Pearson distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical
cumulative distribution functions.

ecdf(MPG);

[Fi,xi] = ecdf(r);

hold on;

stairs(xi,Fi,'r');

 Generating Data Using Flexible Families of Distributions

6-29

hold off

Generating Data Using the Johnson System

Statistician Norman Johnson devised a different system of distributions that also
includes a unique distribution for every valid combination of mean, standard deviation,
skewness, and kurtosis. However, since it is more natural to describe distributions in the
Johnson system using quantiles, working with this system is different than working with
the Pearson system.

The Johnson system is based on three possible transformations of a normal random
variable, plus the identity transformation. The three nontrivial cases are known as SL,

6 Random Number Generation

6-30

SU, and SB, corresponding to exponential, logistic, and hyperbolic sine transformations.
All three can be written as

Χ Γ
Ζ

 = +

-

γ δ
ξ

λ
⋅

()









where Z is a standard normal random variable, Γ is the transformation, and γ, δ, ξ, and λ
are scale and location parameters. The fourth case, SN, is the identity transformation.

To generate a sample from the Johnson distribution that matches the MPG data, first
define the four quantiles to which the four evenly spaced standard normal quantiles of
-1.5, -0.5, 0.5, and 1.5 should be transformed. That is, you compute the sample quantiles
of the data for the cumulative probabilities of 0.067, 0.309, 0.691, and 0.933.

probs = normcdf([-1.5 -0.5 0.5 1.5])

probs =

 0.0668 0.3085 0.6915 0.9332

quantiles = quantile(MPG,probs)

quantiles =

 13.0000 18.0000 27.2000 36.0000

Then treat those quantiles as distribution parameters.

[r1,type] = johnsrnd(quantiles,10000,1);

The optional second output from johnsrnd indicates which type of distribution within
the Johnson system matches the quantiles.

type

type =

SB

 Generating Data Using Flexible Families of Distributions

6-31

You can verify that the sample resembles the original data by overlaying the empirical
cumulative distribution functions.

ecdf(MPG);

[Fi,xi] = ecdf(r1);

hold on;

stairs(xi,Fi,'r');

hold off

In some applications, it may be important to match the quantiles better in some regions
of the data than in others. To do that, specify four evenly spaced standard normal
quantiles at which you want to match the data, instead of the default -1.5, -0.5, 0.5, and
1.5. For example, you might care more about matching the data in the right tail than in
the left, and so you specify standard normal quantiles that emphasizes the right tail.

6 Random Number Generation

6-32

qnorm = [-.5 .25 1 1.75];

probs = normcdf(qnorm);

qemp = quantile(MPG,probs);

r2 = johnsrnd([qnorm; qemp],10000,1);

However, while the new sample matches the original data better in the right tail, it
matches much worse in the left tail.

[Fj,xj] = ecdf(r2);

hold on;

stairs(xj,Fj,'g');

hold off

7

Hypothesis Tests

• “Introduction to Hypothesis Tests” on page 7-2
• “Hypothesis Test Terminology” on page 7-3
• “Hypothesis Test Assumptions” on page 7-5
• “Hypothesis Testing” on page 7-7
• “Available Hypothesis Tests” on page 7-14

7 Hypothesis Tests

7-2

Introduction to Hypothesis Tests

Hypothesis testing is a common method of drawing inferences about a population based
on statistical evidence from a sample.

As an example, suppose someone says that at a certain time in the state of
Massachusetts the average price of a gallon of regular unleaded gas was $1.15. How
could you determine the truth of the statement? You could try to find prices at every gas
station in the state at the time. That approach would be definitive, but it could be time-
consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly selected gas
stations around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the selection
process. Suppose your sample average comes out to be $1.18. Is the $0.03 difference an
artifact of random sampling or significant evidence that the average price of a gallon of
gas was in fact greater than $1.15? Hypothesis testing is a statistical method for making
such decisions.

 Hypothesis Test Terminology

7-3

Hypothesis Test Terminology
All hypothesis tests share the same basic terminology and structure.

• A null hypothesis is an assertion about a population that you would like to test. It is
“null” in the sense that it often represents a status quo belief, such as the absence
of a characteristic or the lack of an effect. It may be formalized by asserting that a
population parameter, or a combination of population parameters, has a certain value.
In the example given in the “Introduction to Hypothesis Tests” on page 7-2, the null
hypothesis would be that the average price of gas across the state was $1.15. This is
written H0: µ = 1.15.

• An alternative hypothesis is a contrasting assertion about the population that can
be tested against the null hypothesis. In the example given in the “Introduction to
Hypothesis Tests” on page 7-2, possible alternative hypotheses are:

H1: µ ≠ 1.15 — State average was different from $1.15 (two-tailed test)

H1: µ > 1.15 — State average was greater than $1.15 (right-tail test)

H1: µ < 1.15 — State average was less than $1.15 (left-tail test)
• To conduct a hypothesis test, a random sample from the population is collected and

a relevant test statistic is computed to summarize the sample. This statistic varies
with the type of test, but its distribution under the null hypothesis must be known (or
assumed).

• The p value of a test is the probability, under the null hypothesis, of obtaining a value
of the test statistic as extreme or more extreme than the value computed from the
sample.

• The significance level of a test is a threshold of probability α agreed to before the test
is conducted. A typical value of α is 0.05. If the p value of a test is less than α, the
test rejects the null hypothesis. If the p value is greater than α, there is insufficient
evidence to reject the null hypothesis. Note that lack of evidence for rejecting the
null hypothesis is not evidence for accepting the null hypothesis. Also note that
substantive “significance” of an alternative cannot be inferred from the statistical
significance of a test.

• The significance level α can be interpreted as the probability of rejecting the null
hypothesis when it is actually true—a type I error. The distribution of the test statistic
under the null hypothesis determines the probability α of a type I error. Even if the
null hypothesis is not rejected, it may still be false—a type II error. The distribution
of the test statistic under the alternative hypothesis determines the probability β of a

7 Hypothesis Tests

7-4

type II error. Type II errors are often due to small sample sizes. The power of a test, 1
– β, is the probability of correctly rejecting a false null hypothesis.

• Results of hypothesis tests are often communicated with a confidence interval. A
confidence interval is an estimated range of values with a specified probability of
containing the true population value of a parameter. Upper and lower bounds for
confidence intervals are computed from the sample estimate of the parameter and the
known (or assumed) sampling distribution of the estimator. A typical assumption is
that estimates will be normally distributed with repeated sampling (as dictated by
the Central Limit Theorem). Wider confidence intervals correspond to poor estimates
(smaller samples); narrow intervals correspond to better estimates (larger samples).
If the null hypothesis asserts the value of a population parameter, the test rejects the
null hypothesis when the hypothesized value lies outside the computed confidence
interval for the parameter.

 Hypothesis Test Assumptions

7-5

Hypothesis Test Assumptions
Different hypothesis tests make different assumptions about the distribution of the
random variable being sampled in the data. These assumptions must be considered when
choosing a test and when interpreting the results.

For example, the z-test (ztest) and the t-test (ttest) both assume that the data are
independently sampled from a normal distribution. Statistics and Machine Learning
Toolbox functions are available for testing this assumption, such as chi2gof, jbtest,
lillietest, and normplot.

Both the z-test and the t-test are relatively robust with respect to departures from this
assumption, so long as the sample size n is large enough. Both tests compute a sample
mean x , which, by the Central Limit Theorem, has an approximately normal sampling
distribution with mean equal to the population mean μ, regardless of the population
distribution being sampled.

The difference between the z-test and the t-test is in the assumption of the standard
deviation σ of the underlying normal distribution. A z-test assumes that σ is known; a t-
test does not. As a result, a t-test must compute an estimate s of the standard deviation
from the sample.

Test statistics for the z-test and the t-test are, respectively,

z
x

n

t
x

s n

=
-

=
-

m

s

m

/

/

Under the null hypothesis that the population is distributed with mean μ, the z-statistic
has a standard normal distribution, N(0,1). Under the same null hypothesis, the t-
statistic has Student's t distribution with n – 1 degrees of freedom. For small sample
sizes, Student's t distribution is flatter and wider than N(0,1), compensating for the
decreased confidence in the estimate s. As sample size increases, however, Student's
t distribution approaches the standard normal distribution, and the two tests become
essentially equivalent.

Knowing the distribution of the test statistic under the null hypothesis allows for
accurate calculation of p-values. Interpreting p-values in the context of the test
assumptions allows for critical analysis of test results.

7 Hypothesis Tests

7-6

Assumptions underlying Statistics and Machine Learning Toolbox hypothesis tests are
given in the reference pages for implementing functions.

 Hypothesis Testing

7-7

Hypothesis Testing

This example shows how to use hypothesis testing to analyze gas prices measured across
the state of Massachusetts during two separate months.

This example uses the gas price data in the file gas.mat. The file contains two random
samples of prices for a gallon of gas around the state of Massachusetts in 1993. The first
sample, price1, contains 20 random observations around the state on a single day in
January. The second sample, price2, contains 20 random observations around the state
one month later.

load gas

prices = [price1 price2];

As a first step, you might want to test the assumption that the samples come from
normal distributions. A normal probability plot gives a quick idea.

normplot(prices)

7 Hypothesis Tests

7-8

Both scatters approximately follow straight lines through the first and third quartiles
of the samples, indicating approximate normal distributions. The February sample (the
right-hand line) shows a slight departure from normality in the lower tail. A shift in the
mean from January to February is evident. A hypothesis test is used to quantify the test
of normality. Since each sample is relatively small, a Lilliefors test is recommended.

lillietest(price1)

lillietest(price2)

ans =

 0

 Hypothesis Testing

7-9

ans =

 0

The default significance level of lillietest is 5%. The logical 0 returned by each
test indicates a failure to reject the null hypothesis that the samples are normally
distributed. This failure may reflect normality in the population or it may reflect a lack of
strong evidence against the null hypothesis due to the small sample size.

Now compute the sample means.

sample_means = mean(prices)

sample_means =

 115.1500 118.5000

You might want to test the null hypothesis that the mean price across the state on
the day of the January sample was $1.15. If you know that the standard deviation in
prices across the state has historically, and consistently, been $0.04, then a z-test is
appropriate.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)

h =

 0

pvalue =

 0.8668

ci =

 1.1340

 1.1690

7 Hypothesis Tests

7-10

The logical output h = 0 indicates a failure to reject the null hypothesis at the default
significance level of 5%. This is a consequence of the high probability under the null
hypothesis, indicated by the p value, of observing a value as extreme or more extreme
of the z-statistic computed from the sample. The 95% confidence interval on the mean
[1.1340 1.1690] includes the hypothesized population mean of $1.15.

Does the later sample offer stronger evidence for rejecting a null hypothesis of a state-
wide average price of $1.15 in February? The shift shown in the probability plot and
the difference in the computed sample means suggest this. The shift might indicate a
significant fluctuation in the market, raising questions about the validity of using the
historical standard deviation. If a known standard deviation cannot be assumed, a t-test
is more appropriate.

[h,pvalue,ci] = ttest(price2/100,1.15)

h =

 1

pvalue =

 4.9517e-04

ci =

 1.1675

 1.2025

The logical output h = 1 indicates a rejection of the null hypothesis at the default
significance level of 5%. In this case, the 95% confidence interval on the mean does not
include the hypothesized population mean of $1.15.

You might want to investigate the shift in prices a little more closely. The function
ttest2 tests if two independent samples come from normal distributions with equal
but unknown standard deviations and the same mean, against the alternative that the
means are unequal.

[h,sig,ci] = ttest2(price1,price2)

 Hypothesis Testing

7-11

h =

 1

sig =

 0.0083

ci =

 -5.7845

 -0.9155

The null hypothesis is rejected at the default 5% significance level, and the confidence
interval on the difference of means does not include the hypothesized value of 0. A
notched box plot is another way to visualize the shift.

boxplot(prices,1)

h = gca;

h.XTick = [1 2];

h.XTickLabel = {'January','February'};

xlabel('Month')

ylabel('Prices ($0.01)')

7 Hypothesis Tests

7-12

The plot displays the distribution of the samples around their medians. The heights of
the notches in each box are computed so that the side-by-side boxes have nonoverlapping
notches when their medians are different at a default 5% significance level. The
computation is based on an assumption of normality in the data, but the comparison is
reasonably robust for other distributions. The side-by-side plots provide a kind of visual
hypothesis test, comparing medians rather than means. The plot above appears to barely
reject the null hypothesis of equal medians.

The nonparametric Wilcoxon rank sum test, implemented by the function ranksum, can
be used to quantify the test of equal medians. It tests if two independent samples come
from identical continuous (not necessarily normal) distributions with equal medians,
against the alternative that they do not have equal medians.

 Hypothesis Testing

7-13

[p,h] = ranksum(price1,price2)

p =

 0.0095

h =

 1

The test rejects the null hypothesis of equal medians at the default 5% significance level.

7 Hypothesis Tests

7-14

Available Hypothesis Tests

Function Description

ansaribradley Ansari-Bradley test. Tests if two independent samples come from
the same distribution, against the alternative that they come
from distributions that have the same median and shape but
different variances.

barttest Bartlett’s test. Tests if the variances of the data values along each
principal component are equal, against the alternative that the
variances are not all equal.

chi2gof Chi-square goodness-of-fit test. Tests if a sample comes from a
specified distribution, against the alternative that it does not
come from that distribution.

dwtest Durbin-Watson test. Tests if the residuals from a linear
regression are uncorrelated, against the alternative that there is
autocorrelation among them.

friedman Friedman’s test. Tests if the column effects in a two-way layout
are all the same, against the alternative that the column effects
are not all the same.

jbtest Jarque-Bera test. Tests if a sample comes from a normal
distribution with unknown mean and variance, against the
alternative that it does not come from a normal distribution.

kruskalwallis Kruskal-Wallis test. Tests if multiple samples are all drawn from
the same populations (or equivalently, from different populations
with the same distribution), against the alternative that they are
not all drawn from the same population.

kstest One-sample Kolmogorov-Smirnov test. Tests if a sample comes
from a continuous distribution with specified parameters, against
the alternative that it does not come from that distribution.

kstest2 Two-sample Kolmogorov-Smirnov test. Tests if two samples come
from the same continuous distribution, against the alternative
that they do not come from the same distribution.

lillietest Lilliefors test. Tests if a sample comes from a distribution in the
normal family, against the alternative that it does not come from
a normal distribution.

 Available Hypothesis Tests

7-15

Function Description

linhyptest Linear hypothesis test. Tests if H*b = c for parameter estimates
b with estimated covariance H and specified c, against the
alternative that H*b ≠ c.

ranksum Wilcoxon rank sum test. Tests if two independent samples come
from identical continuous distributions with equal medians,
against the alternative that they do not have equal medians.

runstest Runs test. Tests if a sequence of values comes in random order,
against the alternative that the ordering is not random.

signrank One-sample or paired-sample Wilcoxon signed rank test. Tests if
a sample comes from a continuous distribution symmetric about
a specified median, against the alternative that it does not have
that median.

signtest One-sample or paired-sample sign test. Tests if a sample comes
from an arbitrary continuous distribution with a specified
median, against the alternative that it does not have that median.

ttest One-sample or paired-sample t-test. Tests if a sample comes from
a normal distribution with unknown variance and a specified
mean, against the alternative that it does not have that mean.

ttest2 Two-sample t-test. Tests if two independent samples come from
normal distributions with unknown but equal (or, optionally,
unequal) variances and the same mean, against the alternative
that the means are unequal.

vartest One-sample chi-square variance test. Tests if a sample comes
from a normal distribution with specified variance, against
the alternative that it comes from a normal distribution with a
different variance.

vartest2 Two-sample F-test for equal variances. Tests if two independent
samples come from normal distributions with the same variance,
against the alternative that they come from normal distributions
with different variances.

vartestn Bartlett multiple-sample test for equal variances. Tests if
multiple samples come from normal distributions with the same
variance, against the alternative that they come from normal
distributions with different variances.

7 Hypothesis Tests

7-16

Function Description

ztest One-sample z-test. Tests if a sample comes from a normal
distribution with known variance and specified mean, against the
alternative that it does not have that mean.

Note: In addition to the previous functions, Statistics and Machine Learning Toolbox
functions are available for analysis of variance (ANOVA), which perform hypothesis tests
in the context of linear modeling.

8

Analysis of Variance

• “Introduction to Analysis of Variance” on page 8-2
• “One-Way ANOVA” on page 8-3
• “Two-Way ANOVA” on page 8-15
• “Multiple Comparisons” on page 8-26
• “N-Way ANOVA” on page 8-36
• “ANOVA with Random Effects” on page 8-48
• “Other ANOVA Models” on page 8-57
• “Analysis of Covariance” on page 8-58
• “Nonparametric Methods” on page 8-67
• “MANOVA” on page 8-70
• “Model Specification for Repeated Measures Models” on page 8-77
• “Compound Symmetry Assumption and Epsilon Corrections” on page 8-79
• “Mauchly’s Test of Sphericity” on page 8-81
• “Multivariate Analysis of Variance for Repeated Measures” on page 8-83

8 Analysis of Variance

8-2

Introduction to Analysis of Variance

Analysis of variance (ANOVA) is a procedure for assigning sample variance to different
sources and deciding whether the variation arises within or among different population
groups. Samples are described in terms of variation around group means and variation
of group means around an overall mean. If variations within groups are small relative to
variations between groups, a difference in group means may be inferred. Hypothesis tests
are used to quantify decisions.

 One-Way ANOVA

8-3

One-Way ANOVA

In this section...

“Introduction to One-Way ANOVA” on page 8-3
“Prepare Data for One-Way ANOVA” on page 8-4
“Perform One-Way ANOVA” on page 8-6
“Mathematical Details” on page 8-11

Introduction to One-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function anova1 to perform
one-way analysis of variance (ANOVA). The purpose of one-way ANOVA is to determine
whether data from several groups (levels) of a factor have a common mean. That is, one-
way ANOVA enables you to find out whether different groups of an independent variable
have different effects on the response variable y. Suppose, a hospital wants to determine
if the two new proposed scheduling methods reduce patient wait times more than the old
way of scheduling appointments. In this case, the independent variable is the scheduling
method, and the response variable is the waiting time of the patients.

One-way ANOVA is a simple special case of the linear model. The one-way ANOVA form
of the model is

yij j ij= +a e
.

with the following assumptions:

• yij is an observation, in which i represents the observation number, and j represents a
different group (level) of the predictor variable y. All yij are independent.

• αj represents the population mean for the jth group (level or treatment).
• εij is the random error, independent and normally distributed, with zero mean and

constant variance, i.e., εij ~ N(0,σ2).

This model is also called the means model. The model assumes that the columns of y are
the constant αj plus the error component εij. ANOVA helps determine if the constants are
all the same.

ANOVA tests the hypothesis that all group means are equal versus the alternative
hypothesis that at least one group is different from the others.

8 Analysis of Variance

8-4

H

H

k0 1 2

1

: ...

:

a a a= = =

not all group means are equal

anova1(y) tests the equality of column means for the data in matrix y, where each
column is a different group and has the same number of observations (i.e., a balanced
design). anova1(y,group) tests the equality of group means, specified in group, for
the data in vector or matrix y. In this case, each group or column can have a different
number of observations (i.e., an unbalanced design).

ANOVA is based on the assumption that all sample populations are normally distributed.
It is known to be robust to modest violations of this assumption. You can check the
normality assumption visually by using a normality plot (normplot). Alternatively,
you can use one of the Statistics and Machine Learning Toolbox functions that checks
for normality: the Anderson-Darling test (adtest), the chi-squared goodness of fit test
(chi2gof), the Jarque-Bera test (jbtest), or the Lilliefors test (lillietest).

Prepare Data for One-Way ANOVA

You can provide sample data as a vector or a matrix.

• If the sample data is in a vector, y, then you must provide grouping information using
the group input variable: anova1(y,group).

group must be a categorical variable, numeric vector, logical vector, string array, or
cell array of strings, with one name for each element of y. The anova1 function treats
the y values corresponding to the same value of group as part of the same group. For
example,

Use this design when groups have different numbers of elements (unbalanced
ANOVA).

• If the sample data is in a matrix, y, providing the group information is optional.

 One-Way ANOVA

8-5

• If you do not specify the input variable group, then anova1 treats each column of
y as a separate group, and evaluates whether the population means of the columns
are equal. For example,

Use this form of design when each group has the same number of elements
(balanced ANOVA).

• If you specify the input variable group, then group must be a character array or
cell array of strings, with one name for each column of y. The anova1 function
treats the columns with the same group name as part of the same group. For
example,

8 Analysis of Variance

8-6

If group contains empty or NaN valued cells or strings, anova1 disregards the
corresponding observations in y.

Perform One-Way ANOVA

This example shows how to perform one-way ANOVA to determine whether data from
several groups have a common mean.

Load and display the sample data.

load hogg

hogg

hogg =

 24 14 11 7 19

 15 7 9 7 24

 21 12 7 4 19

 27 17 13 7 15

 33 14 12 12 10

 23 16 18 18 20

The data comes from a Hogg and Ledolter (1987) study on bacteria counts in shipments
of milk. The columns of the matrix hogg represent different shipments. The rows are
bacteria counts from cartons of milk chosen randomly from each shipment.

Test if some shipments have higher counts than others. By default, anova1 returns two
figures. One is the standard ANOVA table, and the other one is the box plots of data by
group.

[p,tbl,stats] = anova1(hogg);

p

p =

 1.1971e-04

 One-Way ANOVA

8-7

8 Analysis of Variance

8-8

The small p-value of about 0.0001 indicates that the bacteria counts from the different
shipments are not the same.

You can get some graphical assurance that the means are different by looking at the box
plots. The notches, however, compare the medians, not the means. For more information
on this display, see boxplot.

View the standard ANOVA table. anova1 saves the standard ANOVA table as a cell
array in the output argument tbl.

tbl

tbl =

 One-Way ANOVA

8-9

 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'

 'Columns' [803.0000] [4] [200.7500] [9.0076] [1.1971e-04]

 'Error' [557.1667] [25] [22.2867] [] []

 'Total' [1.3602e+03] [29] [] [] []

Save the F-statistic value in the variable Fstat.

Fstat = tbl{2,5}

Fstat =

 9.0076

View the statistics necessary to make a multiple pairwise comparison of group means.
anova1 saves these statistics in the structure stats.

stats

stats =

 gnames: [5x1 char]

 n: [6 6 6 6 6]

 source: 'anova1'

 means: [23.8333 13.3333 11.6667 9.1667 17.8333]

 df: 25

 s: 4.7209

ANOVA rejects the null hypothesis that all group means are equal, so you can use
the multiple comparisons to determine which group means are different from others.
To conduct multiple comparison tests, use the function multcompare, which accepts
stats as an input argument. In this example, anova1 rejects the null hypothesis
that the mean bacteria counts from all four shipments are equal to each other, i.e.,

.

Perform a multiple comparison test to determine which shipments are different than the
others in terms of mean bacteria counts.

multcompare(stats)

8 Analysis of Variance

8-10

ans =

 1.0000 2.0000 2.4953 10.5000 18.5047 0.0059

 1.0000 3.0000 4.1619 12.1667 20.1714 0.0013

 1.0000 4.0000 6.6619 14.6667 22.6714 0.0001

 1.0000 5.0000 -2.0047 6.0000 14.0047 0.2119

 2.0000 3.0000 -6.3381 1.6667 9.6714 0.9719

 2.0000 4.0000 -3.8381 4.1667 12.1714 0.5544

 2.0000 5.0000 -12.5047 -4.5000 3.5047 0.4806

 3.0000 4.0000 -5.5047 2.5000 10.5047 0.8876

 3.0000 5.0000 -14.1714 -6.1667 1.8381 0.1905

 4.0000 5.0000 -16.6714 -8.6667 -0.6619 0.0292

 One-Way ANOVA

8-11

The first two columns show which group means are compared with each other. For
example, the first row compares the means for groups 1 and 2. The last column shows
the p-values for the tests. The p-values 0.0059, 0.0013, and 0.0001 indicate that the
mean bacteria counts in the milk from the first shipment is different from the ones from
the second, third, and fourth shipments. The p-value of 0.0292 indicates that the mean
bacteria counts in the milk from the fourth shipment is different from the ones from
the fifth. The procedure fails to reject the hypotheses that the other group means are
different from each other.

The figure also illustrates the same result. The blue bar shows the comparison interval
for the first group mean, which does not overlap with the comparison intervals for the
second, third, and fourth group means, shown in red. The comparison interval for the
mean of fifth group, shown in gray, overlaps with the comparison interval for the first
group mean. Hence, the group means for the first and fifth groups are not significantly
different from each other.

Mathematical Details

ANOVA tests for the difference in the group means by partitioning the total variation in
the data into two components:

• Variation of group means from the overall mean, i.e., y yj. ..

- (variation between

groups), where y j.

 is the sample mean of group j, and y
..

 is the overall sample mean.

• Variation of observations in each group from their group mean estimates, y yij j-
.

(variation within group).

In other words, ANOVA partitions the total sum of squares (SST) into sum of squares
due to between-groups effect (SSR) and sum of squared errors(SSE).

y y n y y yij

ji

SST

j j

j

SSR

ij-() = -() + -ÂÂ Â.. . ..

2 2

1 2444 3444 1 2444 3444

yy j

ji

SSE

. ,()ÂÂ
2

1 2444 3444

where nj is the sample size for the jth group, j = 1, 2, ..., k.

Then ANOVA compares the variation between groups to the variation within groups.
If the ratio of within-group variation to between-group variation is significantly high,

8 Analysis of Variance

8-12

then you can conclude that the group means are significantly different from each other.
You can measure this using a test statistic that has an F-distribution with (k – 1, N – k)
degrees of freedom:

F

SSR
k

SSE
N k

MSR

MSE
Fk N k=

-

-

=
- -

1
1~ ,,

where MSR is the mean squared treatment, MSE is the mean squared error, k is the
number of groups, and N is the total number of observations. If the p-value for the F-
statistic is smaller than the significance level, then the test rejects the null hypothesis
that all group means are equal and concludes that at least one of the group means is
different from the others. The most common significance levels are 0.05 and 0.01.

ANOVA Table

The ANOVA table captures the variability in the model by source, the F-statistic for
testing the significance of this variability, and the p-value for deciding on the significance
of this variability. The p-value returned by anova1 depends on assumptions about
the random disturbances εij in the model equation. For the p-value to be correct, these
disturbances need to be independent, normally distributed, and have constant variance.
The standard ANOVA table has this form:

anova1 returns the standard ANOVA table as a cell array with six columns.

Column Definition

Source Source of the variability.
SS Sum of squares due to each source.
df Degrees of freedom associated with each

source. Suppose N is the total number of
observations and k is the number of groups.
Then, N – k is the within-groups degrees

 One-Way ANOVA

8-13

Column Definition

of freedom (Error), k – 1 is the between-
groups degrees of freedom (Columns), and
N – 1 is the total degrees of freedom: N – 1
= (N – k) + (k – 1).

MS Mean squares for each source, which is the
ratio SS/df.

F F-statistic, which is the ratio of the mean
squares.

Prob>F p-value, which is the probability that the
F-statistic can take a value larger than
the computed test-statistic value. anova1
derives this probability from the cdf of the
F-distribution.

The rows of the ANOVA table show the variability in the data, divided by the source.

Row (Source) Definition

Groups or Columns Variability due to the differences among
the group means (variability between
groups)

Error Variability due to the differences between
the data in each group and the group mean
(variability within groups)

Total Total variability

References

[1] Wu, C. F. J., and M. Hamada. Experiments: Planning, Analysis, and Parameter
Design Optimization, 2000.

[2] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 4th ed. Applied Linear
Statistical Models. Irwin Press, 1996.

See Also
anova1 | kruskalwallis | multcompare

8 Analysis of Variance

8-14

More About
• “Two-Way ANOVA” on page 8-15
• “N-Way ANOVA” on page 8-36
• “Multiple Comparisons” on page 8-26
• “Nonparametric Methods” on page 8-67

 Two-Way ANOVA

8-15

Two-Way ANOVA

In this section...

“Introduction to Two-Way ANOVA” on page 8-15
“Prepare Data for Balanced Two-Way ANOVA” on page 8-17
“Perform Two-Way ANOVA” on page 8-18
“Mathematical Details” on page 8-22

Introduction to Two-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function anova2 to perform
a balanced two-way analysis of variance (ANOVA). To perform two-way ANOVA for an
unbalanced design, use anovan. For an example, see “Two-Way ANOVA for Unbalanced
Design” on page 22-88.

As in one-way ANOVA, the data for a two-way ANOVA study can be experimental or
observational. The difference between one-way and two-way ANOVA is that in two-
way ANOVA, the effects of two factors on a response variable are of interest. These two
factors can be independent, and have no interaction effect, or the impact of one factor
on the response variable can depend on the group (level) of the other factor. If the two
factors have no interactions, the model is called an additive model.

Suppose an automobile company has two factories, and each factory makes the same
three car models. The gas mileage in the cars can vary from factory to factory and
from model to model. These two factors, factory and model, explain the differences in
mileage, that is, the response. One measure of interest is the difference in mileage
due to the production methods between factories. Another measure of interest is the
difference in the mileage of the models (irrespective of the factory) due to different design
specifications. The effects of these measures of interest are additive. In addition, suppose
only one model has different gas mileage between factories, while the mileage of the
other two models is the same between factories. This is called an interaction effect. To
measure an interaction effect, there must be multiple observations for some combination
of factory and car model. These multiple observations are called replications.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA form of the
model is

yijr i j ij ijr= + + + () +m a b ab e

8 Analysis of Variance

8-16

where,

• yijr is an observation of the response variable.

• i represents group i of row factor A, i = 1, 2, ..., I
• j represents group j of column factor B, j = 1, 2, ..., J
• r represents the replication number, r = 1, 2, ..., R

There are a total of N = I*J*R observations.
• μ is the overall mean.
• αi are the deviations of groups of row factor A from the overall mean μ due to row

factor B. The values of αi sum to 0, i.e., a
ii

I

=Â =
1

0 .

• βj are the deviations of groups in column factor B from the overall mean μ due to row
factor B. All values in a given column of βj are identical, and the values of βj sum to 0,

i.e., b jj

J

=Â =
1

0 .

• αβij are the interactions. The values in each row and in each column of αβij sum to 0,

i.e., ab ab() = () =
= =Â Âiji

I

ijj

J

1 1
0 .

• εijr are the random disturbances. They are assumed to be independent, normally
distributed, and have constant variance.

In the mileage example:

• yijr are the gas mileage observations, μ is the overall mean gas mileage.
• αi are the deviations of each car's gas mileage from the mean gas mileage μ due to the

car's model.
• βj are the deviations of each car's gas mileage from the mean gas mileage μ due to the

car's factory.

anova2 requires that data be balanced, so each combination of model and factory must
have the same number of cars.

Two-way ANOVA tests hypotheses about the effects of factors A and B, and their
interaction on the response variable y. The hypotheses about the equality of the mean
response for groups of row factor A are

 Two-Way ANOVA

8-17

H

H i

I

i

0 1 2

1 1 2

:

: , , , ...,

a a a

a

= =

=

L

 at least one is different I.

The hypotheses about the equality of the mean response for groups of column factor B are

H

H j

J

j

0 1 2

1 1 2

:

: , , ..

b b b

b

= = =

=

L

 at least one is different, .., . J

The hypotheses about the interaction of the column and row factors are

H

H

ij

ij

0

1

0

0

:

:

ab

ab

() =

() πat least one

Prepare Data for Balanced Two-Way ANOVA

To perform balanced two-way ANOVA using anova2, you must arrange data in a specific
matrix form. The columns of the matrix must correspond to groups of the column factor,
B. The rows must correspond to the groups of the row factor, A, with the same number of
replications for each combination of the groups of factors A and B.

Suppose that row factor A has three groups, and column factor B has two groups (levels).
Also suppose that each combination of factors A and B has two measurements or
observations (reps = 2). Then, each group of factor A has six observations and each
group of factor B four observations.

B B

y y

y y

y y

y y

y y

y y

= =

È

Î

Í
Í

1 2

111 121

112 122

211 221

212 222

311 321

312 322

ÍÍ
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

¸
˝
˛

=

¸
˝
˛

=

¸
˝
˛

=

A

A

A

1

2

3

8 Analysis of Variance

8-18

The subscripts indicate row, column, and replication, respectively. For example, y221
corresponds to the measurement for the second group of factor A, the second group of
factor B, and the first replication for this combination.

Perform Two-Way ANOVA

This example shows how to perform two-way ANOVA to determine the effect of car model
and factory on the mileage rating of cars.

Load and display the sample data.

load mileage

mileage

mileage =

 33.3000 34.5000 37.4000

 33.4000 34.8000 36.8000

 32.9000 33.8000 37.6000

 32.6000 33.4000 36.6000

 32.5000 33.7000 37.0000

 33.0000 33.9000 36.7000

There are three car models (columns) and two factories (rows). The data has six mileage
rows because each factory provided three cars of each model for the study (i.e, the
replication number is three). The data from the first factory is in the first three rows, and
the data from the second factory is in the last three rows.

Perform two-way ANOVA. Return the structure of statistics, stats, to use in multiple
comparisons.

nmbcars = 3; % Number of cars from each model, i.e., number of replications

[~,~,stats] = anova2(mileage,nmbcars);

 Two-Way ANOVA

8-19

You can use the F-statistics to do hypotheses tests to find out if the mileage is the same
across models, factories, and model - factory pairs. Before performing these tests, you
must adjust for the additive effects. anova2 ret rns the p-value from these tests.

The p-value for the model effect (Columns) is zero to four decimal places. This result is a
strong indication that the mileage varies from one model to another.

The p-value for the factory effect (Rows) is 0.0039, which is also highly significant. This
value indicates that one factory is out-performing the other in the gas mileage of the cars
it produces. The observed p-value indicates that an F-statistic as extreme as the observed
F occurs by chance about four out of 1000 times, if the gas mileage were truly equal from
factory to factory.

8 Analysis of Variance

8-20

The factories and models appear to have no interaction. The p-value, 0.8411, means that
the observed result is likely (84 out 100 times), given that there is no interaction.

Perform “Multiple Comparisons” to find out which pair of the three car models is
significantly different.

c = multcompare(stats)

Note: Your model includes an interaction term. A test of main effects can be

difficult to interpret when the model includes interactions.

c =

 1.0000 2.0000 -1.5865 -1.0667 -0.5469 0.0004

 1.0000 3.0000 -4.5865 -4.0667 -3.5469 0.0000

 2.0000 3.0000 -3.5198 -3.0000 -2.4802 0.0000

 Two-Way ANOVA

8-21

In the matrix c, the first two columns show the pairs of car models that are compared.
By default, multcompare uses Tukey's honestly significant difference procedure. The last
column shows the p-values for the test. All p-values are small (0.0004, 0, and 0), which
indicates that the mean mileage of all car models are significantly different from each
other.

In the figure the blue bar is the comparison interval for the mean mileage of the first
car model. The red bars are the comparison intervals for the mean mileage of the second
and third car models. None of the second and third comparison intervals overlap with
the first comparison interval, indicating that the mean mileage of the first car model
is different from the mean mileage of the second and the third car models. If you click
on one of the other bars, you can test for the other car models. None of the comparison

8 Analysis of Variance

8-22

intervals overlap, indicating that the mean mileage of each car model is significantly
different from the other two.

Mathematical Details

The two-factor ANOVA partitions the total variation into the following components:

• Variation of row factor group means from the overall mean, y yi.. ...

-

• Variation of column factor group means from the overall mean, y yj.

-

• Variation of overall mean plus the replication mean from the column factor group
mean plus row factor group mean, y y y yij i j.

- - +

• Variation of observations from the replication means, y yijk ij-
.

ANOVA partitions the total sum of squares (SST) into the sum of squares due to row
factor A (SSA), the sum of squares due to column factor B (SSB), the sum of squares due to
interaction between A and B (SSAB), and the sum of squares error (SSE).

y y kR y yijk
r

R

j

k

i

m

SST

i
i

-() = -()
=== =
ÂÂÂ

2

111

2

1 24444 34444
11

2

1

m

SS

j
j

k

SS

ij i

B A

mR y y

R y y

Â Â+ -()

+ -

=
1 2444 3444 1 2444 3444

.

.
- +() + -()

==

ÂÂ y y y yj
j

k

i

m

SS

ijk ij
r

AB

2

11

2

1 2444444 3444444
====

ÂÂÂ
111

R

j

k

i

m

SSE

1 24444 34444

ANOVA takes the variation due to the factor or interaction and compares it to the
variation due to error. If the ratio of the two variations is high, then the effect of the
factor or the interaction effect is statistically significant. You can measure the statistical
significance using a test statistic that has an F-distribution.

For the null hypothesis that the mean response for groups of the row factor A are equal,
the test statistic is

F

SS

m

SSE
mk R

F

B

m mk R=
-

-()
- -()

1

1

1 1∼ , .

 Two-Way ANOVA

8-23

For the null hypothesis that the mean response for groups of the column factor B are
equal, the test statistic is

F

SS

k

SSE
mk R

F

A

k mk R=
-

-()
- -()

1

1

1 1∼ , .

For the null hypothesis that the interaction of the column and row factors are equal to
zero, the test statistic is

F

SS

m k

SSE
mk R

F

AB

m k mk R=
-() -()

-()
-() -() -()

1 1

1

1 1 1∼ , .

If the p-value for the F-statistic is smaller than the significance level, then ANOVA
rejects the null hypothesis. The most common significance levels are 0.01 and 0.05.

ANOVA Table

The ANOVA table captures the variability in the model by the source, the F-statistic for
testing the significance of this variability, and the p-value for deciding on the significance
of this variability. The p-value returned by anova2 depends on assumptions about the
random disturbances, εij, in the model equation. For the p-value to be correct, these
disturbances need to be independent, normally distributed, and have constant variance.
The standard ANOVA table has this form:

anova2 returns the standard ANOVA table as a cell array with six columns.

8 Analysis of Variance

8-24

Column Definition

Source The source of the variability.
SS The sum of squares due to each source.
df The degrees of freedom associated with

each source. Suppose J is the number
of groups in the column factor, I is the
number of groups in the row factor, and
R is the number of replications. Then,
the total number of observations is IJR
and the total degrees of freedom is IJR –
1. I – 1 is the degrees of freedom for the
row factor,J – 1 is the degrees of freedom
for the column factor, (I – 1)(J – 1) is the
interaction degrees of freedom, and IJ(R –
1) is the error degrees of freedom.

MS The mean squares for each source, which is
the ratio SS/df.

F F-statistic, which is the ratio of the mean
squares.

Prob>F The p-value, which is the probability that
the F-statistic can take a value larger than
the computed test-statistic value. anova2
derives this probability from the cdf of the
F-distribution.

The rows of the ANOVA table show the variability in the data that is divided by the
source.

Row (Source) Definition

Columns Variability due to the column factor
Rows Variability due to the row factor
Interaction Variability due to the interaction of the row

and column factors
Error Variability due to the differences between

the data in each group and the group mean
(variability within groups)

 Two-Way ANOVA

8-25

Row (Source) Definition

Total Total variability

References

[1] Wu, C. F. J., and M. Hamada. Experiments: Planning, Analysis, and Parameter
Design Optimization, 2000.

[2] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 4th ed. Applied Linear
Statistical Models. Irwin Press, 1996.

See Also
anova1 | anova2 | anovan | multcompare

Related Examples
• “Two-Way ANOVA for Unbalanced Design” on page 22-88

More About
• “One-Way ANOVA” on page 8-3
• “N-Way ANOVA” on page 8-36
• “Multiple Comparisons” on page 8-26
• “Nonparametric Methods” on page 8-67

8 Analysis of Variance

8-26

Multiple Comparisons

In this section...

“Introduction” on page 8-26
“Multiple Comparisons Using One-Way ANOVA” on page 8-27
“Multiple Comparisons for Three-Way ANOVA” on page 8-29
“Multiple Comparison Procedures” on page 8-32

Introduction

Analysis of variance (ANOVA) techniques test whether a set of group means (treatment
effects) are equal or not. Rejection of the null hypothesis leads to the conclusion that not
all group means are the same. This result, however, does not provide further information
on which group means are different.

Performing a series of t-tests to determine which pairs of means are significantly
different is not recommended. When you perform multiple t-tests, the probability that
the means appear significant, and significant difference results might be due to large
number of tests. These t-tests use the data from the same sample, hence they are not
independent. This fact makes it more difficult to quantify the level of significance for
multiple tests.

Suppose that in a single t-test, the probability that the null hypothesis (H0) is rejected
when it is actually true is a small value, say 0.05. Suppose also that you conduct six
independent t-tests. If the significance level for each test is 0.05, then the probability that
the tests correctly fail to reject H0, when H0 is true for each case, is (0.95)6 = 0.735. And
the probability that one of the tests incorrectly rejects the null hypothesis is 1 – 0.735 =
0.265, which is much higher than 0.05.

To compensate for multiple tests, you can use multiple comparison procedures. The
Statistics and Machine Learning Toolbox function multcompare performs multiple
pairwise comparison of the group means, or treatment effects. The options are Tukey’s
honestly significant difference criterion, the Bonferroni method, Scheffe’s procedure,
Fisher’s least significant differences (lsd) method, and Dunn & Sidak’s approach to t-test.

To perform multiple comparisons of group means, provide the structure stats as an
input for multcompare. You can obtain stats from one of the following functions :

 Multiple Comparisons

8-27

• anova1 — One-way ANOVA
• anova2 — Two-way ANOVA
• anovan — N-way ANOVA
• aoctool — Interactive ANCOVA
• kruskalwallis — Nonparametric method for one-way layout
• friedman — Nonparametric method for two-way layout

For multiple comparison procedure options for repeated measures, see multcompare
(RepeatedMeasuresModel).

Multiple Comparisons Using One-Way ANOVA

Load the sample data.

load carsmall

MPG represents the miles per gallon for each car, and Cylinders represents the number
of cylinders in each car, either 4, 6, or 8 cylinders.

Test if the mean miles per gallon (mpg) is different across cars that have different
numbers of cylinders. Also compute the statistics needed for multiple comparison tests.

[p,~,stats] = anova1(MPG,Cylinders,'off');

p

p =

 4.4902e-24

The small p-value of about 0 is a strong indication that mean miles per gallon is
significantly different across cars with different numbers of cylinders.

Perform a multiple comparison test, using the Bonferroni method, to determine which
numbers of cylinders make a difference in the performance of the cars.

[results,means] = multcompare(stats,'CType','bonferroni')

results =

8 Analysis of Variance

8-28

 1.0000 2.0000 4.8605 7.9418 11.0230 0.0000

 1.0000 3.0000 12.6127 15.2337 17.8548 0.0000

 2.0000 3.0000 3.8940 7.2919 10.6899 0.0000

means =

 29.5300 0.6363

 21.5882 1.0913

 14.2963 0.8660

In the results matrix, 1, 2, and 3 correspond to cars with 4, 6, and 8 cylinders,
respectively. The first two columns show which groups are compared. For example, the

 Multiple Comparisons

8-29

first row compares the cars with 4 and 6 cylinders. The fourth column shows the mean
mpg difference for the compared groups. The third and fifth columns show the lower and
upper limits for a 95% confidence interval for the difference in the group means. The last
column shows the p-values for the tests. All p-values are zero, which indicates that the
mean mpg for all groups differ across all groups.

In the figure the blue bar represents the group of cars with 4 cylinders. The red bars
represent the other groups. None of the red comparison intervals for the mean mpg of
cars overlap, which means that the mean mpg is significantly different for cars having 4,
6, or 8 cylinders.

The first column of the means matrix has the mean mpg estimates for each group of cars.
The second column contains the standard errors of the estimates.

Multiple Comparisons for Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';

g1 = [1 2 1 2 1 2 1 2];

g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};

g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each
factor has two levels, and every observation in y is identified by a combination of factor
levels. For example, observation y(1) is associated with level 1 of factor g1, level 'hi'
of factor g2, and level 'may' of factor g3. Similarly, observation y(6) is associated with
level 2 of factor g1, level 'hi' of factor g2, and level 'june' of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required
for multiple comparison tests.

[~,~,stats] = anovan(y,{g1 g2 g3},'model','interaction',...

 'varnames',{'g1','g2','g3'});

8 Analysis of Variance

8-30

The p-value of 0.2578 indicates that the mean responses for levels 'may' and 'june' of
factor g3 are not significantly different. The p-value of 0.0347 indicates that the mean
responses for levels 1 and 2 of factor g1 are significantly different. Similarly, the p-value
of 0.0048 indicates that the mean responses for levels 'hi' and 'lo' of factor g2 are
significantly different.

Perform multiple comparison tests to find out which groups of the factors g1 and g2 are
significantly different.

 Multiple Comparisons

8-31

results = multcompare(stats,'Dimension',[1 2])

results =

 1.0000 2.0000 -6.8604 -4.4000 -1.9396 0.0280

 1.0000 3.0000 4.4896 6.9500 9.4104 0.0177

 1.0000 4.0000 6.1396 8.6000 11.0604 0.0143

 2.0000 3.0000 8.8896 11.3500 13.8104 0.0108

 2.0000 4.0000 10.5396 13.0000 15.4604 0.0095

 3.0000 4.0000 -0.8104 1.6500 4.1104 0.0745

8 Analysis of Variance

8-32

multcompare compares the combinations of groups (levels) of the two grouping variables,
g1 and g2. In the results matrix, the number 1 corresponds to the combination of level
1 of g1 and level hi of g2, the number 2 corresponds to the combination of level 2 of g1
and level hi of g2. Similarly, the number 3 corresponds to the combination of level 1 of
g1 and level lo of g2, and the number 4 corresponds to the combination of level 2 of g1
and level lo of g2. The last column of the matrix contains the p-values.

For example, the first row of the matrix shows that the combination of level 1 of g1 and
level hi of g2 has the same mean response values as the combination of level 2 of g1
and level hi of g2. The p-value corresponding to this test is 0.0280, which indicates that
the mean responses are significantly different. You can also see this result in the figure.
The blue bar shows the comparison interval for the mean response for the combination of
level 1 of g1 and level hi of g2. The red bars are the comparison intervals for the mean
response for other group combinations. None of the red bars overlap with the blue bar,
which means the mean response for the combination of level 1 of g1 and level hi of g2 is
significantly different from the mean response for other group combinations.

You can test the other groups by clicking on the corresponding comparison interval
for the group. The bar you click on turns to blue. The bars for the groups that are
significantly different are red. The bars for the groups that are not significantly different
are gray. For example, if you click on the comparison interval for the combination of
level 1 of g1 and level lo of g2, the comparison interval for the combination of level 2 of
g1 and level lo of g2 overlaps, and is therefore gray. Conversely, the other comparison
intervals are red, indicating significant difference.

Multiple Comparison Procedures

To specify the multiple comparison procedure you want multcompare to conduct use the
'CType' name-value pair argument. multcompare provides the following procedures:

• “Tukey’s Honestly Significant Difference Procedure” on page 8-33
• “Bonferroni Method” on page 8-33
• “Dunn & Sidák’s Approach” on page 8-34
• “Least Significant Difference” on page 8-34
• “Scheffe’s Procedure” on page 8-35

 Multiple Comparisons

8-33

Tukey’s Honestly Significant Difference Procedure

You can specify Tukey’s honestly significant difference procedure using the
'CType','Tukey-Kramer' or 'CType','hsd' name-value pair argument. The test is
based on studentized range distribution. Reject H0:αi = αj if

t
y y

MSE
n n

q
i j

i j

k N k=
-

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

> -
1 1

1

2
a, , ,

where q k N ka , , -
 is the upper 100*(1 – α)th percentile of the studentized range

distribution with parameter k and N – k degrees of freedom. k is the number of groups
(treatments or marginal means) and N is the total number of observations.

Tukey’s honestly significant difference procedure is optimal for balanced one-way
ANOVA and similar procedures with equal sample sizes. It has been proven to be
conservative for one-way ANOVA with different sample sizes. According to the unproven
Tukey-Kramer conjecture, it is also accurate for problems where the quantities being
compared are correlated, as in analysis of covariance with unbalanced covariate values.

Bonferroni Method

You can specify the Bonferroni method using the 'CType','bonferroni' name-value
pair. This method uses critical values from Student’s t-distribution after an adjustment

to compensate for multiple comparisons. The test rejects H0:αi = αj at the a 2
2

kÊ

Ë
Á

ˆ

¯
˜

significance level, where k is the number of groups if

t
y y

MSE
n n

t
i j

i j

k
N k

=
-

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

>
Ê

Ë
Á

ˆ

¯
˜

-
1 1 2

2

a , ,

where N is the total number of observations and k is the number of groups (marginal
means). This procedure is conservative, but usually less so than the Scheffé procedure.

8 Analysis of Variance

8-34

Dunn & Sidák’s Approach

You can specify Dunn & Sidak’s approach using the 'CType','dunn-sidak' name-
value pair argument. It uses critical values from the t-distribution, after an adjustment
for multiple comparisons that was proposed by Dunn and proved accurate by Sidák. This
test rejects H0:αi = αj if

t
y y

MSE
n n

t
i j

i j

v=
-

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

> -
1 1

1 2h , ,

where

h a= - -()
()

1 1

1

2

k

and k is the number of groups. This procedure is similar to, but less conservative than,
the Bonferroni procedure.

Least Significant Difference

You can specify the least significance difference procedure using the 'CType','lsd'
name-value pair argument. This test uses the test statistic

t
y y

MSE
n n

i j

i j

=
-

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

1 1

.

It rejects H0:αi = αj if

y y t MSE
n n

i j N k
i j

LSD

- > +
Ê

Ë
ÁÁ

ˆ

¯
˜̃-a

2

1 1

,
.

1 244444 344444

Fisher suggests a protection against multiple comparisons by performing LSD only when
the null hypothesis H0: α1 = α2 = ... = αk is rejected by ANOVA F-test. Even in this case,

 Multiple Comparisons

8-35

LSD might not reject any of the individual hypotheses. It is also possible that ANOVA
does not reject H0, even when there are differences between some group means. This
behavior occurs because the equality of the remaining group means can cause the F-test
statistic to be nonsignificant. Without any condition, LSD does not provide any protection
against the multiple comparison problem.

Scheffe’s Procedure

You can specify Scheffe’s procedure using the 'CType','scheffe' name-value pair
argument. The critical values are derived from the F distribution. The test rejects H0:αi =
αj if

y y

MSE
n n

k F
i j

i j

k N k

-

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

> -() - -
1 1

1 1, ,a

This procedure provides a simultaneous confidence level for comparisons of all linear
combinations of the means. It is conservative for comparisons of simple differences of
pairs.

References

[1] Milliken G. A. and D. E. Johnson. Analysis of Messy Data. Volume I: Designed
Experiments. Boca Raton, FL: Chapman & Hall/CRC Press, 1992.

[2] Neter J., M. H. Kutner, C. J. Nachtsheim, W. Wasserman. 4th ed. Applied Linear
Statistical Models.Irwin Press, 1996.

[3] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ:
John Wiley & Sons, 1987.

See Also
anova1 | anova2 | anovan | aoctool | friedman | kruskalwallis | multcompare

Related Examples
• “Perform One-Way ANOVA” on page 8-6
• “Perform Two-Way ANOVA” on page 8-18

8 Analysis of Variance

8-36

N-Way ANOVA

In this section...

“Introduction to N-Way ANOVA” on page 8-36
“Prepare Data for N-Way ANOVA ” on page 8-38
“Perform N-Way ANOVA” on page 8-39

Introduction to N-Way ANOVA

You can use the Statistics and Machine Learning Toolbox function anovan to perform
N-way ANOVA. Use N-way ANOVA to determine if the means in a set of data differ
with respect to groups (levels) of multiple factors. By default, anovan treats all grouping
variables as fixed effects. For an example of ANOVA with random effects, see “ANOVA
with Random Effects” on page 8-48.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, for example,
the model can be written as

yijkr i j k ij ik jk ijk ijkr= + + + + + + + +m a b g ab ag bg abg e() () () () ,

where

• yijkr is an observation of the response variable. i represents group i of factor A, i = 1,
2, ..., I, j represents group j of factor B, j = 1, 2, ..., J, k represents group k of factor C,
and r represents the replication number, r = 1, 2, ..., R. For constant R, there are a
total of N = I*J*K*R observations, but the number of observations does not have to be
the same for each combination of groups of factors.

• μ is the overall mean.
• αi are the deviations of groups of factor A from the overall mean μ due to factor A. The

values of αi sum to 0, i.e., a
ii

I

=Â =
1

0 .

• βj are the deviations of groups in factor B from the overall mean μ due to factor B. The

values of βj sum to 0, i.e., b jj

J

=Â =
1

0 .

 N-Way ANOVA

8-37

• γk are the deviations of groups in factor C from the overall mean μ due to factor C. The

values of γk sum to 0, i.e., gkk

K

=Â =
1

0 .

• (αβ)ij is the interaction term between factors A and B. (αβ)ij sum to 0 over either index,

i.e., ab ab() = () =
= =Â Âiji

I

ijj

J

1 1
0 .

• (αγ)ik is the interaction term between factors A and C. The values of (αγ)ik sum to 0

over either index, i.e., ag ag() = () =
= =Â Âiki

I

ikk

K

1 1
0 .

• (βγ)jk is the interaction term between factors B and C. The values of (βγ)jk sum to 0

over either index, i.e., bg bg() = () =
= =Â Âjkj

J

jkk

K

1 1
0 .

• (αβγ)ijk is the three-way interaction term between factors A, B, and C. The values of

(αβγ)ijk sum to 0 over any index, i.e., abg abg abg() = () = () =
= = =Â Â Âijki

I

ijkj

J

ijkk

K

1 1 1
0 .

• εijkr are the random disturbances. They are assumed to be independent, normally
distributed, and have constant variance.

Three-way ANOVA tests hypotheses about the effects of factors A, B, C, and their
interactions on the response variable y. The hypotheses about the equality of the mean
responses for groups of factor A are

H

H i

I

i

0 1 2

1 1 2

:

: , , , ...,

a a a

a

= =

=

L

 at least one is different I.

The hypotheses about the equality of the mean response for groups of factor B are

H

H j

J

j

0 1 2

1 1 2

:

: , , ..

b b b

b

= = =

=

L

 at least one is different, .., . J

The hypotheses about the equality of the mean response for groups of factor C are

H

H k

K

k

0 1 2

1 1 2

:

: , , , ...

g g g

g

= = =

=

L

 at least one is different ,, . K

The hypotheses about the interaction of the factors are

8 Analysis of Variance

8-38

H

H

ij

ij

0

1

0

0

:

:

ab

ab

() =

() πat least one

H

H

H

H

ik

ik

jk

0

1

0

1

0

0

0

:

:

:

:

ag

ag

bg

() =

() π

() =

at least one

at least oone

at least one

bg

abg

abg

() π

() =

() π

jk

ijk

ijk

H

H

0

0

0

0

1

:

:

In this notation parameters with two subscripts, such as (αβ)ij, represent the interaction
effect of two factors. The parameter (αβγ)ijk represents the three-way interaction. An
ANOVA model can have the full set of parameters or any subset, but conventionally it
does not include complex interaction terms unless it also includes all simpler terms for
those factors. For example, one would generally not include the three-way interaction
without also including all two-way interactions.

Prepare Data for N-Way ANOVA

Unlike anova1 and anova2, anovan does not expect data in a tabular form. Instead,
it expects a vector of response measurements and a separate vector (or text array)
containing the values corresponding to each factor. This input data format is more
convenient than matrices when there are more than two factors or when the number of
measurements per factor combination is not constant.

y y y y y y y

g A A C B B D

N= ¢

≠ ≠ ≠ ≠ ≠ ≠

=

[, , , , , ,]

{ ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, , ’

1 2 3 4 5

1

L

L ’’ }

[,]

{ ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, , ’ ’ }

g

g

2 1 2 1 3 1 2

3

=

=

L

Lhi mid low mid hi low

 N-Way ANOVA

8-39

Perform N-Way ANOVA

This example shows how to perform N-way ANOVA on car data with mileage and other
information on 406 cars made between 1970 and 1982.

Load the sample data.

load carbig

The example focusses on four variables. MPG is the number of miles per gallon for each
of 406 cars (though some have missing values coded as NaN). The other three variables
are factors: cyl4 (four-cylinder car or not), org (car originated in Europe, Japan, or the
USA), and when (car was built early in the period, in the middle of the period, or late in
the period).

Fit the full model, requesting up to three-way interactions and Type 3 sums-of-squares.

varnames = {'Origin';'4Cyl';'MfgDate'};

anovan(MPG,{org cyl4 when},3,3,varnames)

ans =

 0.0000

 NaN

 0.0000

 0.7032

 0.0001

 0.2072

 0.6990

8 Analysis of Variance

8-40

Note that many terms are marked by a # symbol as not having full rank, and one of them
has zero degrees of freedom and is missing a p-value. This can happen when there are
missing factor combinations and the model has higher-order terms. In this case, the
cross-tabulation below shows that there are no cars made in Europe during the early part
of the period with other than four cylinders, as indicated by the 0 in tbl(2,1,1).

[tbl,chi2,p,factorvals] = crosstab(org,when,cyl4)

 N-Way ANOVA

8-41

tbl(:,:,1) =

 82 75 25

 0 4 3

 3 3 4

tbl(:,:,2) =

 12 22 38

 23 26 17

 12 25 32

chi2 =

 207.7689

p =

 8.0973e-38

factorvals =

 'USA' 'Early' 'Other'

 'Europe' 'Mid' 'Four'

 'Japan' 'Late' []

Consequently it is impossible to estimate the three-way interaction effects, and including
the three-way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, you can see that the
three-way interaction has a p-value of 0.699, so it is not significant.

Examine only two-way interactions.

[p,tbl2,stats,terms] = anovan(MPG,{org cyl4 when},2,3,varnames);

terms

terms =

8 Analysis of Variance

8-42

 1 0 0

 0 1 0

 0 0 1

 1 1 0

 1 0 1

 0 1 1

Now all terms are estimable. The p-values for interaction term 4 (Origin*4Cyl) and
interaction term 6 (4Cyl*MfgDate) are much larger than a typical cutoff value of 0.05,

 N-Way ANOVA

8-43

indicating these terms are not significant. You could choose to omit these terms and pool
their effects into the error term. The output terms variable returns a matrix of codes,
each of which is a bit pattern representing a term.

Omit terms from the model by deleting their entries from terms.

terms([4 6],:) = []

terms =

 1 0 0

 0 1 0

 0 0 1

 1 0 1

Run anovan again, this time supplying the resulting vector as the model argument. Also
return the statistics required for multiple comparisons of factors.

[~,~,stats] = anovan(MPG,{org cyl4 when},terms,3,varnames)

stats =

 source: 'anovan'

 resid: [1x406 double]

 coeffs: [18x1 double]

 Rtr: [10x10 double]

 rowbasis: [10x18 double]

 dfe: 388

 mse: 14.1056

 nullproject: [18x10 double]

 terms: [4x3 double]

 nlevels: [3x1 double]

 continuous: [0 0 0]

 vmeans: [3x1 double]

 termcols: [5x1 double]

 coeffnames: {18x1 cell}

 vars: [18x3 double]

 varnames: {3x1 cell}

 grpnames: {3x1 cell}

 vnested: []

 ems: []

8 Analysis of Variance

8-44

 denom: []

 dfdenom: []

 msdenom: []

 varest: []

 varci: []

 txtdenom: []

 txtems: []

 rtnames: []

 N-Way ANOVA

8-45

Now you have a more parsimonious model indicating that the mileage of these cars
seems to be related to all three factors, and that the effect of the manufacturing date
depends on where the car was made.

Perform multiple comparisons for Origin and Cylinder.

results = multcompare(stats,'Dimension',[1,2])

results =

 1.0000 2.0000 -5.4891 -3.8412 -2.1932 0.0000

 1.0000 3.0000 -4.4146 -2.7251 -1.0356 0.0001

 1.0000 4.0000 -9.9992 -8.5828 -7.1664 0.0000

 1.0000 5.0000 -14.0237 -12.4240 -10.8242 0.0000

 1.0000 6.0000 -12.8980 -11.3080 -9.7180 0.0000

 2.0000 3.0000 -0.7171 1.1160 2.9492 0.5085

 2.0000 4.0000 -7.3655 -4.7417 -2.1179 0.0000

 2.0000 5.0000 -9.9992 -8.5828 -7.1664 0.0000

 2.0000 6.0000 -9.7464 -7.4668 -5.1872 0.0000

 3.0000 4.0000 -8.5396 -5.8577 -3.1757 0.0000

 3.0000 5.0000 -12.0518 -9.6988 -7.3459 0.0000

 3.0000 6.0000 -9.9992 -8.5828 -7.1664 0.0000

 4.0000 5.0000 -5.4891 -3.8412 -2.1932 0.0000

 4.0000 6.0000 -4.4146 -2.7251 -1.0356 0.0001

 5.0000 6.0000 -0.7171 1.1160 2.9492 0.5085

8 Analysis of Variance

8-46

See Also
anova1 | anovan | kruskalwallis | multcompare

Related Examples
• “ANOVA with Random Effects” on page 8-48

More About
• “One-Way ANOVA” on page 8-3
• “Two-Way ANOVA” on page 8-15
• “Multiple Comparisons” on page 8-26

 N-Way ANOVA

8-47

• “Nonparametric Methods” on page 8-67

8 Analysis of Variance

8-48

ANOVA with Random Effects

This example shows how to use anovan to fit models where a factor's levels represent a
random selection from a larger (infinite) set of possible levels.

In an ordinary ANOVA model, each grouping variable represents a fixed factor. The
levels of that factor are a fixed set of values. The goal is to determine whether different
factor levels lead to different response values.

Set Up the Model

Load the sample data.

load mileage

The anova2 function works only with balanced data, and it infers the values of the
grouping variables from the row and column numbers of the input matrix. The anovan
function, on the other hand, requires you to explicitly create vectors of grouping variable
values. Create these vectors in the following way.

Create an array indicating the factory for each value in mileage. This array is 1 for the
first column, 2 for the second, and 3 for the third.

factory = repmat(1:3,6,1);

Create an array indicating the car model for each mileage value. This array is 1 for the
first three rows of mileage, and 2 for the remaining three rows.

carmod = [ones(3,3); 2*ones(3,3)];

Turn these matrices into vectors and display them.

mileage = mileage(:);

factory = factory(:);

carmod = carmod(:);

[mileage factory carmod]

ans =

 33.3000 1.0000 1.0000

 33.4000 1.0000 1.0000

 ANOVA with Random Effects

8-49

 32.9000 1.0000 1.0000

 32.6000 1.0000 2.0000

 32.5000 1.0000 2.0000

 33.0000 1.0000 2.0000

 34.5000 2.0000 1.0000

 34.8000 2.0000 1.0000

 33.8000 2.0000 1.0000

 33.4000 2.0000 2.0000

 33.7000 2.0000 2.0000

 33.9000 2.0000 2.0000

 37.4000 3.0000 1.0000

 36.8000 3.0000 1.0000

 37.6000 3.0000 1.0000

 36.6000 3.0000 2.0000

 37.0000 3.0000 2.0000

 36.7000 3.0000 2.0000

Fit a Random Effects Model

Suppose you are studying a few factories but you want information about what would
happen if you build these same car models in a different factory, either one that you
already have or another that you might construct. To get this information, fit the
analysis of variance model, specifying a model that includes an interaction term and that
the factory factor is random.

[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...

'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});

8 Analysis of Variance

8-50

In the fixed effects version of this fit, which you get by omitting the inputs 'random',1
in the preceding code, the effect of car model is significant, with a p -value of 0.0039.
But in this example, which takes into account the random variation of the effect of the
variable 'Car Model' from one factory to another, the effect is still significant, but with
a higher p -value of 0.0136.

 ANOVA with Random Effects

8-51

F-Statistics for Models with Random Effects

The F -statistic in a model having random effects is defined differently than in a model
having all fixed effects. In the fixed effects model, you compute the F -statistic for any
term by taking the ratio of the mean square for that term with the mean square for error.
In a random effects model, however, some F -statistics use a different mean square in the
denominator.

In the example described in Setting Up the Model , the effect of the variable
'Factory' could vary across car models. In this case, the interaction mean square takes
the place of the error mean square in the F -statistic.

Find the F -statistic.

F = 26.6756 / 0.02

F =

 1.3338e+03

The degrees of freedom for the statistic are the degrees of freedom for the numerator (2)
and denominator (2) mean squares.

Find the p -value.

pval = 1 - fcdf(F,2,2)

pval =

 7.4919e-04

With random effects, the expected value of each mean square depends not only on the
variance of the error term, but also on the variances contributed by the random effects.
You can see these dependencies by writing the expected values as linear combinations of
contributions from the various model terms.

Find the coefficients of these linear combinations.

stats.ems

8 Analysis of Variance

8-52

ans =

 6.0000 0.0000 3.0000 1.0000

 0.0000 9.0000 3.0000 1.0000

 0.0000 0.0000 3.0000 1.0000

 0 0 0 1.0000

This returns the |ems| field of the |stats| structure.

Display text representations of the linear combinations.

stats.txtems

ans =

 '6*V(Factory)+3*V(Factory*Car Model)+V(Error)'

 '9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'

 '3*V(Factory*Car Model)+V(Error)'

 'V(Error)'

The expected value for the mean square due to car model (second term) includes
contributions from a quadratic function of the car model effects, plus three times the
variance of the interaction term's effect, plus the variance of the error term. Notice that
if the car model effects were all zero, the expression would reduce to the expected mean
square for the third term (the interaction term). That is why the F -statistic for the car
model effect uses the interaction mean square in the denominator.

In some cases there is no single term whose expected value matches the one required for
the denominator of the F -statistic. In that case, the denominator is a linear combination
of mean squares. The stats structure contains fields giving the definitions of the
denominators for each F -statistic. The txtdenom field, stats.txtdenom , contains
a text representation, and the denom field contains a matrix that defines a linear
combination of the variances of terms in the model. For balanced models like this one,
the denom matrix, stats.denom , contains zeros and ones, because the denominator is
just a single term's mean square.

Display the txtdenom field.

stats.txtdenom

 ANOVA with Random Effects

8-53

ans =

 'MS(Factory*Car Model)'

 'MS(Factory*Car Model)'

 'MS(Error)'

Display the denom field.

stats.denom

ans =

 0.0000 1.0000 0.0000

 0.0000 1.0000 -0.0000

 0.0000 0 1.0000

Variance Components

For the model described in Setting Up the Model , consider the mileage for a particular
car of a particular model made at a random factory. The variance of that car is the sum of
components, or contributions, one from each of the random terms.

Display the names of the random terms.

stats.rtnames

ans =

 'Factory'

 'Factory*Car Model'

 'Error'

You do not know the variances, but you can estimate them from the data. Recall that
the ems field of the stats structure expresses the expected value of each term's mean
square as a linear combination of unknown variances for random terms, and unknown
quadratic forms for fixed terms. If you take the expected mean square expressions for the
random terms, and equate those expected values to the computed mean squares, you get
a system of equations that you can solve for the unknown variances. These solutions are
the variance component estimates.

8 Analysis of Variance

8-54

Display the variance component estimate for each term.

stats.varest

ans =

 4.4426

 -0.0313

 0.1139

Under some conditions, the variability attributed to a term is unusually low, and that
term's variance component estimate is negative. In those cases it is common to set
the estimate to zero, which you might do, for example, to create a bar graph of the
components.

Create a bar graph of the components.

bar(max(0,stats.varest))

gca.xtick = 1:3;

gca.xticklabel = stats.rtnames;

 ANOVA with Random Effects

8-55

You can also compute confidence bounds for the variance estimate. The anovan function
does this by computing confidence bounds for the variance expected mean squares,
and finding lower and upper limits on each variance component containing all of these
bounds. This procedure leads to a set of bounds that is conservative for balanced data.
(That is, 95% confidence bounds will have a probability of at least 95% of containing the
true variances if the number of observations for each combination of grouping variables
is the same.) For unbalanced data, these are approximations that are not guaranteed to
be conservative.

Display the variance estimates and the confidence limits for the variance estimates of
each component.

[{'Term' 'Estimate' 'Lower' 'Upper'};

8 Analysis of Variance

8-56

 stats.rtnames, num2cell([stats.varest stats.varci])]

ans =

 'Term' 'Estimate' 'Lower' 'Upper'

 'Factory' [4.4426] [1.0736] [175.6038]

 'Factory*Car Model' [-0.0313] [NaN] [NaN]

 'Error' [0.1139] [0.0586] [0.3103]

 Other ANOVA Models

8-57

Other ANOVA Models

The anovan function also has arguments that enable you to specify two other types of
model terms. First, the 'nested' argument specifies a matrix that indicates which
factors are nested within other factors. A nested factor is one that takes different values
within each level its nested factor.

For example, the mileage data from the previous section assumed that the two car
models produced in each factory were the same. Suppose instead, each factory produced
two distinct car models for a total of six car models, and we numbered them 1 and 2 for
each factory for convenience. Then, the car model is nested in factory. A more accurate
and less ambiguous numbering of car model would be as follows:

Factory Car Model

1 1
1 2
2 3
2 4
3 5
3 6

However, it is common with nested models to number the nested factor the same way in
each nested factor.

Second, the 'continuous' argument specifies that some factors are to be treated as
continuous variables. The remaining factors are categorical variables. Although the
anovan function can fit models with multiple continuous and categorical predictors,
the simplest model that combines one predictor of each type is known as an analysis of
covariance model. The next section describes a specialized tool for fitting this model.

8 Analysis of Variance

8-58

Analysis of Covariance

In this section...

“Introduction to Analysis of Covariance” on page 8-58
“Analysis of Covariance Tool” on page 8-58
“Confidence Bounds” on page 8-62
“Multiple Comparisons” on page 8-65

Introduction to Analysis of Covariance

Analysis of covariance is a technique for analyzing grouped data having a response (y,
the variable to be predicted) and a predictor (x, the variable used to do the prediction).
Using analysis of covariance, you can model y as a linear function of x, with the
coefficients of the line possibly varying from group to group.

Analysis of Covariance Tool

The aoctool function opens an interactive graphical environment for fitting and
prediction with analysis of covariance (ANOCOVA) models. It fits the following models
for the ith group:

Same mean y = α + ε
Separate means y = (α + αi) + ε
Same line y = α + βx + ε
Parallel lines y = (α + αi) + βx + ε
Separate lines y = (α + αi) + (β + βi)x + ε

For example, in the parallel lines model the intercept varies from one group to the next,
but the slope is the same for each group. In the same mean model, there is a common
intercept and no slope. In order to make the group coefficients well determined, the tool
imposes the constraints

a bj j= =∑∑ 0

 Analysis of Covariance

8-59

The following steps describe the use of aoctool.

1 Load the data. The Statistics and Machine Learning Toolbox data set
carsmall.mat contains information on cars from the years 1970, 1976, and
1982. This example studies the relationship between the weight of a car and its
mileage, and whether this relationship has changed over the years. To start the
demonstration, load the data set.

load carsmall

The Workspace Browser shows the variables in the data set.

You can also use aoctool with your own data.
2 Start the tool. The following command calls aoctool to fit a separate line to

the column vectors Weight and MPG for each of the three model group defined in
Model_Year. The initial fit models the y variable, MPG, as a linear function of the
x variable, Weight.

[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);

See the aoctool function reference page for detailed information about calling
aoctool.

3 Examine the output. The graphical output consists of a main window with a plot,
a table of coefficient estimates, and an analysis of variance table. In the plot, each

8 Analysis of Variance

8-60

Model_Year group has a separate line. The data points for each group are coded
with the same color and symbol, and the fit for each group has the same color as the
data points.

The coefficients of the three lines appear in the figure titled ANOCOVA Coefficients.
You can see that the slopes are roughly –0.0078, with a small deviation for each
group:

• Model year 1970: y = (45.9798 – 8.5805) + (–0.0078 + 0.002)x + ε

 Analysis of Covariance

8-61

• Model year 1976: y = (45.9798 – 3.8902) + (–0.0078 + 0.0011)x + ε
• Model year 1982: y = (45.9798 + 12.4707) + (–0.0078 – 0.0031)x + ε

Because the three fitted lines have slopes that are roughly similar, you may wonder
if they really are the same. The Model_Year*Weight interaction expresses the
difference in slopes, and the ANOVA table shows a test for the significance of this
term. With an F statistic of 5.23 and a p value of 0.0072, the slopes are significantly
different.

4 Constrain the slopes to be the same. To examine the fits when the slopes are
constrained to be the same, return to the ANOCOVA Prediction Plot window and use
the Model pop-up menu to select a Parallel Lines model. The window updates to
show the following graph.

8 Analysis of Variance

8-62

Though this fit looks reasonable, it is significantly worse than the Separate Lines
model. Use the Model pop-up menu again to return to the original model.

Confidence Bounds

The example in “Analysis of Covariance Tool” on page 8-58 provides estimates of the
relationship between MPG and Weight for each Model_Year, but how accurate are these
estimates? To find out, you can superimpose confidence bounds on the fits by examining
them one group at a time.

 Analysis of Covariance

8-63

1 In the Model_Year menu at the lower right of the figure, change the setting
from All Groups to 82. The data and fits for the other groups are dimmed, and
confidence bounds appear around the 82 fit.

The dashed lines form an envelope around the fitted line for model year 82. Under
the assumption that the true relationship is linear, these bounds provide a 95%
confidence region for the true line. Note that the fits for the other model years are
well outside these confidence bounds for Weight values between 2000 and 3000.

2 Sometimes it is more valuable to be able to predict the response value for a new
observation, not just estimate the average response value. Use the aoctool
function Bounds menu to change the definition of the confidence bounds from

8 Analysis of Variance

8-64

Line to Observation. The resulting wider intervals reflect the uncertainty in the
parameter estimates as well as the randomness of a new observation.

Like the polytool function, the aoctool function has cross hairs that you can use
to manipulate the Weight and watch the estimate and confidence bounds along the
y-axis update. These values appear only when a single group is selected, not when
All Groups is selected.

 Analysis of Covariance

8-65

Multiple Comparisons

You can perform a multiple comparison test by using the stats output structure from
aoctool as input to the multcompare function. The multcompare function can test
either slopes, intercepts, or population marginal means (the predicted MPG of the mean
weight for each group). The example in “Analysis of Covariance Tool” on page 8-58
shows that the slopes are not all the same, but could it be that two are the same and only
the other one is different? You can test that hypothesis.

multcompare(stats,0.05,'on','','s')

ans =

 1.0000 2.0000 -0.0012 0.0008 0.0029

 1.0000 3.0000 0.0013 0.0051 0.0088

 2.0000 3.0000 0.0005 0.0042 0.0079

This matrix shows that the estimated difference between the intercepts of groups
1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the difference is [–
0.0012, 0.0029]. There is no significant difference between the two. There are significant
differences, however, between the intercept for 1982 and each of the other two. The graph
shows the same information.

8 Analysis of Variance

8-66

Note that the stats structure was created in the initial call to the aoctool function,
so it is based on the initial model fit (typically a separate-lines model). If you change the
model interactively and want to base your multiple comparisons on the new model, you
need to run aoctool again to get another stats structure, this time specifying your new
model as the initial model.

 Nonparametric Methods

8-67

Nonparametric Methods

In this section...

“Introduction to Nonparametric Methods” on page 8-67
“Kruskal-Wallis Test” on page 8-67
“Friedman's Test” on page 8-68

Introduction to Nonparametric Methods

Statistics and Machine Learning Toolbox functions include nonparametric versions of
one-way and two-way analysis of variance. Unlike classical tests, nonparametric tests
make only mild assumptions about the data, and are appropriate when the distribution
of the data is non-normal. On the other hand, they are less powerful than classical
methods for normally distributed data.

Both of the nonparametric functions described here will return a stats structure that
can be used as an input to the multcompare function for multiple comparisons.

Kruskal-Wallis Test

The example “Perform One-Way ANOVA” on page 8-6 uses one-way analysis of variance
to determine if the bacteria counts of milk varied from shipment to shipment. The one-
way analysis rests on the assumption that the measurements are independent, and
that each has a normal distribution with a common variance and with a mean that was
constant in each column. You can conclude that the column means were not all the same.
The following example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of variance.
The assumption behind this test is that the measurements come from a continuous
distribution, but not necessarily a normal distribution. The test is based on an analysis
of variance using the ranks of the data values, not the data values themselves. Output
includes a table similar to an ANOVA table, and a box plot.

You can run this test as follows:

load hogg

p = kruskalwallis(hogg)

8 Analysis of Variance

8-68

p =

 0.0020

The low p value means the Kruskal-Wallis test results agree with the one-way analysis of
variance results.

Friedman's Test

“Perform Two-Way ANOVA” on page 8-18 uses two-way analysis of variance to study
the effect of car model and factory on car mileage. The example tests whether either of
these factors has a significant effect on mileage, and whether there is an interaction
between these factors. The conclusion of the example is there is no interaction, but that
each individual factor has a significant effect. The next example examines whether a
nonparametric analysis leads to the same conclusion.

Friedman's test is a nonparametric test for data having a two-way layout (data grouped
by two categorical factors). Unlike two-way analysis of variance, Friedman's test does not
treat the two factors symmetrically and it does not test for an interaction between them.
Instead, it is a test for whether the columns are different after adjusting for possible
row differences. The test is based on an analysis of variance using the ranks of the data
across categories of the row factor. Output includes a table similar to an ANOVA table.

You can run Friedman's test as follows.

load mileage

p = friedman(mileage,3)

p =

 7.4659e-004

Recall the classical analysis of variance gave a p value to test column effects, row effects,
and interaction effects. This p value is for column effects. Using either this p value or the
p value from ANOVA (p < 0.0001), you conclude that there are significant column effects.

In order to test for row effects, you need to rearrange the data to swap the roles of the
rows in columns. For a data matrix x with no replications, you could simply transpose
the data and type

p = friedman(x')

With replicated data it is slightly more complicated. A simple way is to transform
the matrix into a three-dimensional array with the first dimension representing the
replicates, swapping the other two dimensions, and restoring the two-dimensional shape.

 Nonparametric Methods

8-69

x = reshape(mileage, [3 2 3]);

x = permute(x,[1 3 2]);

x = reshape(x,[9 2])

x =

 33.3000 32.6000

 33.4000 32.5000

 32.9000 33.0000

 34.5000 33.4000

 34.8000 33.7000

 33.8000 33.9000

 37.4000 36.6000

 36.8000 37.0000

 37.6000 36.7000

friedman(x,3)

ans =

 0.0082

Again, the conclusion is similar to that of the classical analysis of variance. Both this
p value and the one from ANOVA (p = 0.0039) lead you to conclude that there are
significant row effects.

You cannot use Friedman's test to test for interactions between the row and column
factors.

8 Analysis of Variance

8-70

MANOVA

In this section...

“Introduction to MANOVA” on page 8-70
“ANOVA with Multiple Responses” on page 8-70

Introduction to MANOVA

The analysis of variance technique in “Perform One-Way ANOVA” on page 8-6 takes a
set of grouped data and determine whether the mean of a variable differs significantly
among groups. Often there are multiple response variables, and you are interested in
determining whether the entire set of means is different from one group to the next.
There is a multivariate version of analysis of variance that can address the problem.

ANOVA with Multiple Responses

The carsmall data set has measurements on a variety of car models from the years
1970, 1976, and 1982. Suppose you are interested in whether the characteristics of the
cars have changed over time.

Load the sample data.

load carsmall

whos

 Name Size Bytes Class Attributes

 Acceleration 100x1 800 double

 Cylinders 100x1 800 double

 Displacement 100x1 800 double

 Horsepower 100x1 800 double

 MPG 100x1 800 double

 Mfg 100x13 2600 char

 Model 100x33 6600 char

 Model_Year 100x1 800 double

 Origin 100x7 1400 char

 Weight 100x1 800 double

Four of these variables (Acceleration, Displacement, Horsepower, and MPG) are
continuous measurements on individual car models. The variable Model_Year indicates

 MANOVA

8-71

the year in which the car was made. You can create a grouped plot matrix of these
variables using the gplotmatrix function.

Create a grouped plot matrix of these variables using the gplotmatrix function.

x = [MPG Horsepower Displacement Weight];

gplotmatrix(x,[],Model_Year,[],'+xo')

(When the second argument of gplotmatrix is empty, the function graphs the columns
of the x argument against each other, and places histograms along the diagonals. The
empty fourth argument produces a graph with the default colors. The fifth argument
controls the symbols used to distinguish between groups.)

8 Analysis of Variance

8-72

It appears the cars do differ from year to year. The upper right plot, for example, is a
graph of MPG versus Weight. The 1982 cars appear to have higher mileage than the
older cars, and they appear to weigh less on average. But as a group, are the three
years significantly different from one another? The manova1 function can answer that
question.

[d,p,stats] = manova1(x,Model_Year)

d =

 2

p =

 1.0e-06 *

 0.0000

 0.1141

stats =

 W: [4x4 double]

 B: [4x4 double]

 T: [4x4 double]

 dfW: 90

 dfB: 2

 dfT: 92

 lambda: [2x1 double]

 chisq: [2x1 double]

 chisqdf: [2x1 double]

 eigenval: [4x1 double]

 eigenvec: [4x4 double]

 canon: [100x4 double]

 mdist: [1x100 double]

 gmdist: [3x3 double]

 gnames: {3x1 cell}

The manova1 function produces three outputs:

 MANOVA

8-73

• The first output, d, is an estimate of the dimension of the group means. If the means
were all the same, the dimension would be 0, indicating that the means are at the
same point. If the means differed but fell along a line, the dimension would be 1. In
the example the dimension is 2, indicating that the group means fall in a plane but
not along a line. This is the largest possible dimension for the means of three groups.

• The second output, p, is a vector of p-values for a sequence of tests. The first p value
tests whether the dimension is 0, the next whether the dimension is 1, and so on. In
this case both p-values are small. That's why the estimated dimension is 2.

• The third output, stats, is a structure containing several fields, described in the
following section.

The Fields of the stats Structure

The W, B, and T fields are matrix analogs to the within, between, and total sums of
squares in ordinary one-way analysis of variance. The next three fields are the degrees of
freedom for these matrices. Fields lambda, chisq, and chisqdf are the ingredients of
the test for the dimensionality of the group means. (The p-values for these tests are the
first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in principal
components analysis (“Principal Component Analysis (PCA)” on page 13-75) you
look for the combination of the original variables that has the largest possible variation.
In multivariate analysis of variance, you instead look for the linear combination of
the original variables that has the largest separation between groups. It is the single
variable that would give the most significant result in a univariate one-way analysis of
variance. Having found that combination, you next look for the combination with the
second highest separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear combinations
of the original variables. The eigenval field is a vector measuring the ratio of the
between-group variance to the within-group variance for the corresponding linear
combination. The canon field is a matrix of the canonical variable values. Each column is
a linear combination of the mean-centered original variables, using coefficients from the
eigenvec matrix.

c1 = stats.canon(:,1);

c2 = stats.canon(:,2);

Plot the grouped scatter plot of the first two canonical variables.

figure()

gscatter(c2,c1,Model_Year,[],'oxs')

8 Analysis of Variance

8-74

A grouped scatter plot of the first two canonical variables shows more separation
between groups then a grouped scatter plot of any pair of original variables. In this
example, it shows three clouds of points, overlapping but with distinct centers. One point
in the bottom right sits apart from the others. You can mark this point on the plot using
the gname function.

Roughly speaking, the first canonical variable, c1, separates the 1982 cars (which have
high values of c1) from the older cars. The second canonical variable, c2, reveals some
separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The mdist field
measures the distance from each point to its group mean. Points with large values may
be outliers. In this data set, the largest outlier is the one in the scatter plot, the Buick

 MANOVA

8-75

Estate station wagon. (Note that you could have supplied the model name to the gname
function above if you wanted to label the point with its model name rather than its row
number.)

Find the largest distance from the group mean.

max(stats.mdist)

ans =

 31.5273

Find the point that has the largest distance from the group mean.

find(stats.mdist == ans)

ans =

 20

Find the car model that corresponds to the largest distance from the group mean.

Model(20,:)

ans =

buick estate wagon (sw)

The gmdist field measures the distances between each pair of group means. Examine
the group means using grpstats.

grpstats(x, Model_Year)

ans =

 1.0e+03 *

 0.0177 0.1489 0.2869 3.4413

8 Analysis of Variance

8-76

 0.0216 0.1011 0.1978 3.0787

 0.0317 0.0815 0.1289 2.4535

Find the distances between the each pair of group means.

stats.gmdist

ans =

 0 3.8277 11.1106

 3.8277 0 6.1374

 11.1106 6.1374 0

As might be expected, the multivariate distance between the extreme years 1970 and
1982 (11.1) is larger than the difference between more closely spaced years (3.8 and 6.1).
This is consistent with the scatter plots, where the points seem to follow a progression
as the year changes from 1970 through 1976 to 1982. If you had more groups, you might
find it instructive to use the manovacluster function to draw a diagram that presents
clusters of the groups, formed using the distances between their means.

 Model Specification for Repeated Measures Models

8-77

Model Specification for Repeated Measures Models

Model specification for a repeated measures model is a string representing a formula in
the form
'y1-yk ~ terms',
where the responses and terms are in Wilkinson notation.

For example, if you have five repeated measures y1, y2, y3, y4, and y5, and you include
the terms X1, X2, X3, X4, and X3:X4 in your linear model, then you can specify
modelspec as follows:

Wilkinson Notation

Wilkinson notation describes the factors present in models. It does not describe the
multipliers (coefficients) of those factors.

Use these rules to specify the responses in modelspec.

Wilkinson Notation Description

Y1,Y2,Y3 Specific list of variables
Y1-Y5 All table variables from Y1 through Y5

The following rules are for specifying terms in modelspec.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1*X2
X1:X2 X1*X2 only
-X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

8 Analysis of Variance

8-78

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

See Also
fitrm

 Compound Symmetry Assumption and Epsilon Corrections

8-79

Compound Symmetry Assumption and Epsilon Corrections

The regular p-value calculations in the repeated measures anova (ranova) are accurate
if the theoretical distribution of the response variables has compound symmetry. This
means that all response variables have the same variance, and each pair of response
variables share a common correlation. That is,

S =

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

s

r r
r r

r r

2

1

1

1

L

L

M M O M

L

.

Under the compound symmetry assumption, the F-statistics in the repeated measures
anova table have an F-distribution with degrees of freedom (v1, v2). Here, v1 is the rank
of the contrast being tested, and v2 is the degrees of freedom for error. If the compound
symmetry assumption is not true, the F-statistic has an approximate F-distribution with
degrees of freedom (εv1, εv2), where ε is the correction factor. Then, the p-value must be
computed using the adjusted values. The three different correction factor computations
are as follows:

• Greenhouse-Geisser approximation

e

l

l
GG

i
i

p

i
i

p

d

=

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=

=

Â

Â

1

2

2

1

,

where λi i = 1, 2, .., p are the eigenvalues of the covariance matrix. p is the number of
variables, and d is equal to p-1.

• Huynh-Feldt approximation

e
e

e
HF

GG

GG

nd

d n rx d

=
-

-() -

Ê

Ë
Á
Á

ˆ

¯
˜
˜

min , ,1
2

2

8 Analysis of Variance

8-80

where n is the number of rows in the design matrix and r is the rank of the design
matrix.

• Lower bound on the true p-value

e
LB

d
=

1
.

References

[1] Huynh, H., and L. S. Feldt. “Estimation of the Box Correction for Degrees of Freedom
from Sample Data in Randomized Block and Split-Plot Designs.” Journal of
Educational Statistics. Vol. 1, 1976, pp. 69–82.

[2] Greenhouse, S. W., and S. Geisser. “An Extension of Box’s Result on the Use of F-
Distribution in Multivariate Analysis.” Annals of Mathematical Statistics. Vol.
29, 1958, pp. 885–891.

See Also
epsilon | mauchly | ranova

More About
• “Mauchly’s Test of Sphericity” on page 8-81

 Mauchly’s Test of Sphericity

8-81

Mauchly’s Test of Sphericity

The regular p-value calculations in the repeated measures anova (ranova) are accurate
if the theoretical distribution of the response variables have compound symmetry. This
means that all response variables have the same variance, and each pair of response
variables share a common correlation. That is,

S =

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

s

r r
r r

r r

2

1

1

1

L

L

M M O M

L

.

If the compound symmetry assumption is false, then the degrees of freedom for the
repeated measures anova test must be adjusted by a factor ε, and the p-value must be
computed using the adjusted values.

Compound symmetry implies sphericity.

For a repeated measures model with responses y1, y2, ..., sphericity means that all pair-
wise differences y1 – y2, y1 – y3, ... have the same theoretical variance. Mauchly’s test is
the most accepted test for sphericity.

Mauchly’s W statistic is

W
T

trace T p
d

=

()()/
,

where

T M M= Â’ � .

M is a p-by-d orthogonal contrast matrix, Σ is the covariance matrix, p is the number of
variables, and d = p – 1.

A chi-square test statistic assesses the significance of W. If n is the number of rows in the
design matrix, and r is the rank of the design matrix, then the chi-square statistic is

C n r W D= - -() ()log ,

8 Analysis of Variance

8-82

where

D
d d

d n r
= -

+ +

-()
1

2 2

6

2

.

The C test statistic has a chi-square distribution with (p(p – 1)/2) – 1 degrees of freedom.
A small p-value for the Mauchly’s test indicates that the sphericity assumption does not
hold.

The rmanova method computes the p-values for the repeated measures anova based on
the results of the Mauchly’s test and each epsilon value.

References

[1] Mauchly, J. W. “Significance Test for Sphericity of a Normal n-Variate Distribution.
The Annals of Mathematical Statistics. Vol. 11, 1940, pp. 204–209.

See Also
epsilon | mauchly | ranova

More About
• “Compound Symmetry Assumption and Epsilon Corrections” on page 8-79

 Multivariate Analysis of Variance for Repeated Measures

8-83

Multivariate Analysis of Variance for Repeated Measures

Multivariate analysis of variance analysis is a test of the form A*B*C = D, where B is
the p-by-r matrix of coefficients. p is the number of terms, such as the constant, linear
predictors, dummy variables for categorical predictors, and products and powers, r is the
number of repeated measures, and n is the number of subjects. A is an a-by-p matrix,
with rank a ≤ p, defining hypotheses based on the between-subjects model. C is an r-by-c
matrix, with rank c ≤ r ≤ n – p, defining hypotheses based on the within-subjects model,
and D is an a-by-c matrix, containing the hypothesized value.

manova tests if the model terms are significant in their effect on the response by
measuring how they contribute to the overall covariance. It includes all terms in the
between-subjects model. manova always takes D as zero. The multivariate response for
each observation (subject) is the vector of repeated measures.

manova uses four different methods to measure these contributions: Wilks’ lambda,
Pillai’s trace, Hotelling-Lawley trace, Roy’s maximum root statistic. Define

T ABC D

Z A X X A

= -

= ¢() ¢
-

ˆ ,

.
1

Then, the hypotheses sum of squares and products matrix is

Q T Z Th = ¢
-1

,

and the residuals sum of squares and products matrix is

Q C R R Ce = ¢ ¢() ,

where

R Y XB= -
ˆ .

The matrix Qh is analogous to the numerator of a univariate F-test, and Qe is analogous
to the error sum of squares. Hence, the four statistics manova uses are:

• Wilks’ lambda

8 Analysis of Variance

8-84

L =
+

=
+

’
Q

Q Q

e

h e i

1

1 l
,

where λi are the solutions of the characteristic equation |Qh – λQe| = 0.
• Pillai’s trace

V trace Q Q Qh h e i= +()() =
-

Â
1

q ,

where θi values are the solutions of the characteristic equation Qh – θ(Qh + Qe) = 0.
• Hotelling-Lawley trace

U trace Q Qh e i= () =- Â1 l .

• Roy’s maximum root statistic

Q = ()()-
max .eig Q Qh e

1

References

[1] Charles, S. D. Statistical Methods for the Analysis of Repeated Measurements.
Springer Texts in Statistics. Springer-Verlag, New York, Inc., 2002.

See Also
coeftest | manova

9

Parametric Regression Analysis

• “Parametric Regression Analysis” on page 9-3
• “What Are Linear Regression Models?” on page 9-8
• “Linear Regression” on page 9-11
• “Regression Using Dataset Arrays” on page 9-48
• “Regression Using Tables” on page 9-51
• “Linear Regression with Interaction Effects” on page 9-54
• “Interpret Linear Regression Results” on page 9-63
• “Cook’s Distance” on page 9-70
• “Coefficient Standard Errors and Confidence Intervals” on page 9-74
• “Coefficient of Determination (R-Squared)” on page 9-78
• “Delete-1 Statistics” on page 9-81
• “Durbin-Watson Test” on page 9-91
• “F-statistic and t-statistic” on page 9-93
• “Hat Matrix and Leverage” on page 9-99
• “Residuals” on page 9-103
• “Summary of Output and Diagnostic Statistics” on page 9-112
• “Wilkinson Notation” on page 9-114
• “Stepwise Regression” on page 9-124
• “Robust Regression — Reduce Outlier Effects” on page 9-128
• “Ridge Regression” on page 9-131
• “Lasso and Elastic Net” on page 9-134
• “Partial Least Squares” on page 9-147
• “Linear Mixed-Effects Models” on page 9-152
• “Prepare Data for Linear Mixed-Effects Models” on page 9-157
• “Relationship Between Formula and Design Matrices” on page 9-163

9 Parametric Regression Analysis

9-2

• “Estimating Parameters in Linear Mixed-Effects Models” on page 9-170
• “Linear Mixed-Effects Model Workflow” on page 9-175
• “Fit Mixed-Effects Spline Regression ” on page 9-187

 Parametric Regression Analysis

9-3

Parametric Regression Analysis

In this section...

“What Is Parametric Regression?” on page 9-3
“Choose a Regression Function” on page 9-3
“Update Legacy Code with New Fitting Methods” on page 9-4

What Is Parametric Regression?

Regression is the process of fitting models to data. The models must have numerical
responses. For models with categorical responses, see “Parametric Classification” on page
15-2 or “Supervised Learning Workflow and Algorithms” on page 16-2. The
regression process depends on the model. If a model is parametric, regression estimates
the parameters from the data. If a model is linear in the parameters, estimation is based
on methods from linear algebra that minimize the norm of a residual vector. If a model
is nonlinear in the parameters, estimation is based on search methods from optimization
that minimize the norm of a residual vector.

Choose a Regression Function

You have: You want: Use this:

Continuous or categorical
predictors, continuous
response, linear model

Fitted model coefficients fitlm. See “Linear Regression”
on page 9-11.

Continuous or categorical
predictors, continuous
response, linear model of
unknown complexity

Fitted model and fitted
coefficients

stepwiselm. See “Stepwise
Regression” on page 9-124.

Continuous or categorical
predictors, response possibly
with restrictions such as
nonnegative or integer-valued,
generalized linear model

Fitted generalized linear model
coefficients

fitglm or stepwiseglm. See
“Generalized Linear Models” on
page 10-12.

Continuous predictors with a
continuous nonlinear response,
parametrized nonlinear model

Fitted nonlinear model
coefficients

fitnlm. See “Nonlinear
Regression” on page 11-2.

9 Parametric Regression Analysis

9-4

You have: You want: Use this:

Continuous predictors,
continuous response, linear
model

Set of models from ridge, lasso,
or elastic net regression

lasso or ridge
See “Lasso and Elastic Net”
on page 9-134 or “Ridge
Regression” on page 9-131.

Correlated continuous
predictors, continuous
response, linear model

Fitted model and fitted
coefficients

plsregress

See “Partial Least Squares” on
page 9-147.

Continuous or categorical
predictors, continuous
response, unknown model

Nonparametric model fitrtree or fitensemble
See “Classification Trees
and Regression Trees” on
page 16-33 or “Ensemble
Methods” on page 16-68.

Categorical predictors only ANOVA anova, anova1, anova2,
anovan

Continuous predictors,
multivariable response, linear
model

Fitted multivariate regression
model coefficients

mvregress

Continuous predictors,
continuous response, mixed-
effects model

Fitted mixed-effects model
coefficients

nlmefit or nlmefitsa
See “Mixed-Effects Models” on
page 11-20.

Update Legacy Code with New Fitting Methods

There are several Statistics and Machine Learning Toolbox functions for performing
regression. The following sections describe how to replace calls to older functions to new
versions:

• “regress into fitlm” on page 9-5
• “regstats into fitlm” on page 9-5
• “robustfit into fitlm” on page 9-5
• “stepwisefit into stepwiselm” on page 9-6
• “glmfit into fitglm” on page 9-6
• “nlinfit into fitnlm” on page 9-6

 Parametric Regression Analysis

9-5

regress into fitlm

Previous Syntax

[b,bint,r,rint,stats] = regress(y,X)

where X contains a column of ones.

Current Syntax

mdl = fitlm(X,y)

where you do not add a column of ones to X.

Equivalent values of the previous outputs:

• b — mdl.Coefficients.Estimate
• bint — coefCI(mdl)
• r — mdl.Residuals.Raw
• rint — There is no exact equivalent. Try examining mdl.Residuals.Studentized

to find outliers.
• stats — mdl contains various properties that replace components of stats.

regstats into fitlm

Previous Syntax

stats = regstats(y,X,model,whichstats)

Current Syntax

mdl = fitlm(X,y,model)

Obtain statistics from the properties and methods of mdl. For example, see the
mdl.Diagnostics and mdl.Residuals properties.

robustfit into fitlm

Previous Syntax

[b,stats] = robustfit(X,y,wfun,tune,const)

Current Syntax

mdl = fitlm(X,y,'robust','on') % bisquare

9 Parametric Regression Analysis

9-6

Or to use the wfun weight and the tune tuning parameter:

opt.RobustWgtFun = 'wfun';

opt.Tune = tune; % optional

mdl = fitlm(X,y,'robust',opt)

Obtain statistics from the properties and methods of mdl. For example, see the
mdl.Diagnostics and mdl.Residuals properties.

stepwisefit into stepwiselm

Previous Syntax

[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(X,y,Name,Value)

Current Syntax

mdl = stepwiselm(ds,modelspec,Name,Value)

or

mdl = stepwiselm(X,y,modelspec,Name,Value)

Obtain statistics from the properties and methods of mdl. For example, see the
mdl.Diagnostics and mdl.Residuals properties.

glmfit into fitglm

Previous Syntax

[b,dev,stats] = glmfit(X,y,distr,param1,val1,...)

Current Syntax

mdl = fitglm(X,y,distr,...)

Obtain statistics from the properties and methods of mdl. For example, the
deviance is mdl.Deviance, and to compare mdl against a constant model, use
devianceTest(mdl).

nlinfit into fitnlm

Previous Syntax

[beta,r,J,COVB,mse] = nlinfit(X,y,fun,beta0,options)

 Parametric Regression Analysis

9-7

Current Syntax

mdl = fitnlm(X,y,fun,beta0,'Options',options)

Equivalent values of the previous outputs:

• beta — mdl.Coefficients.Estimate
• r — mdl.Residuals.Raw
• covb — mdl.CoefficientCovariance
• mse — mdl.mse

mdl does not provide the Jacobian (J) output. The primary purpose of J was to pass it
into nlparci or nlpredci to obtain confidence intervals for the estimated coefficients
(parameters) or predictions. Obtain those confidence intervals as:

parci = coefCI(mdl)

[pred,predci] = predict(mdl)

9 Parametric Regression Analysis

9-8

What Are Linear Regression Models?

Regression models describe the relationship between a dependent variable, y, and
independent variable or variables, X. The dependent variable is also called the response
variable. Independent variables are also called explanatory or predictor variables.
Continuous predictor variables might be called covariates, whereas categorical predictor
variables might be also referred to as factors. The matrix, X, of observations on predictor
variables is usually called the design matrix.

A multiple linear regression model is

y X X X i ni i i p ip i= + + + + + =b b b b e0 1 1 2 2 1L L, , , ,

where

• yi is the ith response.
• βk is the kth coefficient, where β0 is the constant term in the model. Sometimes, design

matrices might include information about the constant term. However, fitlm or
stepwiselm by default includes a constant term in the model, so you must not enter
a column of 1s into your design matrix X.

• Xij is the ith observation on the jth predictor variable, j = 1, ..., p.
• εi is the ith noise term, that is, random error.

In general, a linear regression model can be a model of the form

y f X X X i ni k k i i ip
k

K

i= + () + =
=
Âb b e0 1 2

1

1, , , , , , ,L L

where f (.) is a scalar-valued function of the independent variables, Xijs. The functions,
f (X), might be in any form including nonlinear functions or polynomials. The linearity,
in the linear regression models, refers to the linearity of the coefficients βk. That is, the
response variable, y, is a linear function of the coefficients, βk.

Some examples of linear models are:

y X X X

y X X X X

i i i i i

i i i i i

= + + + +

= + + + + +

b b b b e

b b b b b

0 1 1 2 2 3 3

0 1 1 2 2 3 1
3

4 2
2 ee

b b b b b e

i

i i i i i i iy X X X X X= + + + + +0 1 1 2 2 3 1 2 4 3log

 What Are Linear Regression Models?

9-9

The following, however, are not linear models since they are not linear in the unknown
coefficients, βk.

log y X X

y X
X

e

i i i i

i i
i

X X
i

i i

= + + +

= + + + +

b b b e

b b
b

e
b

0 1 1 2 2

0 1 1
2 2

1
3 1 2

The usual assumptions for linear regression models are:

• The noise terms, εi, are uncorrelated.
• The noise terms, εi, have independent and identical normal distributions with mean

zero and constant variance, σ2. Thus

E y E f X X X

f X X X

i k k i i ip

k

K

i

k k i i

() = () +
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=

=
Â b e

b

1 2

0

1 2

, , ,

, , ,

L

L iip

k

K

i

k k i i ip

k

K

E

f X X X

() + ()

= ()
=

=

Â

Â

0

1 2

0

e

b , , ,L

and

V y V f X X X Vi k k i i ip

k

K

i i() = () +
Ê

Ë
ÁÁ

ˆ

¯
˜̃ = () =

=
Â b e e s1 2

0

2
, , ,L

So the variance of yi is the same for all levels of Xij.
• The responses yi are uncorrelated.

The fitted linear function is

ˆ , , , , , , ,y b b f X X X i ni k k i i ip
k

K

= + () =

=
Â0 1 2

1

1L L

9 Parametric Regression Analysis

9-10

where ŷi is the estimated response and bks are the fitted coefficients. The coefficients are
estimated so as to minimize the mean squared difference between the prediction vector
bf(X) and the true response vector y, that is ŷ y- . This method is called the method of
least squares. Under the assumptions on the noise terms, these coefficients also maximize
the likelihood of the prediction vector.

In a linear regression model of the form y = β1X1 + β2X2 + ... + βpXp, the coefficient βk
expresses the impact of a one-unit change in predictor variable, Xj, on the mean of
the response, E(y) provided that all other variables are held constant. The sign of the
coefficient gives the direction of the effect. For example, if the linear model is E(y) = 1.8
– 2.35X1 + X2, then –2.35 indicates a 2.35 unit decrease in the mean response with a one-
unit increase in X1, given X2 is held constant. If the model is E(y) = 1.1 + 1.5X1

2 + X2, the
coefficient of X1

2 indicates a 1.5 unit increase in the mean of Y with a one-unit increase in
X1

2 given all else held constant. However, in the case of E(y) = 1.1 + 2.1X1 + 1.5X1
2, it is

difficult to interpret the coefficients similarly, since it is not possible to hold X1 constant
when X1

2 changes or vice versa.

References

[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear
Statistical Models. IRWIN, The McGraw-Hill Companies, Inc., 1996.

[2] Seber, G. A. F. Linear Regression Analysis. Wiley Series in Probability and
Mathematical Statistics. John Wiley and Sons, Inc., 1977.

See Also
fitlm | LinearModel | stepwiselm

Related Examples
• “Interpret Linear Regression Results” on page 9-63
• “Regression Using Dataset Arrays” on page 9-48
• “Linear Regression with Interaction Effects” on page 9-54
• “Regression with Categorical Covariates” on page 2-58
• “Linear Regression Workflow” on page 9-41

 Linear Regression

9-11

Linear Regression

In this section...

“Prepare Data” on page 9-11
“Choose a Fitting Method” on page 9-13
“Choose a Model or Range of Models” on page 9-14
“Fit Model to Data” on page 9-19
“Examine Quality and Adjust the Fitted Model” on page 9-20
“Predict or Simulate Responses to New Data” on page 9-37
“Share Fitted Models” on page 9-40
“Linear Regression Workflow” on page 9-41

Prepare Data

To begin fitting a regression, put your data into a form that fitting functions expect.
All regression techniques begin with input data in an array X and response data in a
separate vector y, or input data in a table or dataset array tbl and response data as
a column in tbl. Each row of the input data represents one observation. Each column
represents one predictor (variable).

For a table or dataset array tbl, indicate the response variable with the
'ResponseVar' name-value pair:

mdl = fitlm(tbl,'ResponseVar','BloodPressure');

% or

mdl = fitglm(tbl,'ResponseVar','BloodPressure');

The response variable is the last column by default.

You can use numeric categorical predictors. A categorical predictor is one that takes
values from a fixed set of possibilities.

• For a numeric array X, indicate the categorical predictors using the 'Categorical'
name-value pair. For example, to indicate that predictors 2 and 3 out of six are
categorical:

mdl = fitlm(X,y,'Categorical',[2,3]);

% or

mdl = fitglm(X,y,'Categorical',[2,3]);

9 Parametric Regression Analysis

9-12

% or equivalently

mdl = fitlm(X,y,'Categorical',logical([0 1 1 0 0 0]));

• For a table or dataset array tbl, fitting functions assume that these data types are
categorical:

• Logical
• Categorical (nominal or ordinal)
• String or character array

If you want to indicate that a numeric predictor is categorical, use the
'Categorical' name-value pair.

Represent missing numeric data as NaN. To represent missing data for other data types,
see “Missing Group Values” on page 2-54.

Dataset Array for Input and Response Data

To create a dataset array from an Excel spreadsheet:

ds = dataset('XLSFile','hospital.xls',...

 'ReadObsNames',true);

To create a dataset array from workspace variables:

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

Table for Input and Response Data

To create a table from an Excel spreadsheet:

tbl = readtable('hospital.xls',...

 'ReadRowNames',true);

To create a table from workspace variables:

load carsmall

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

Numeric Matrix for Input Data, Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

 Linear Regression

9-13

load carsmall

X = [Weight Horsepower Cylinders Model_Year];

y = MPG;

To create numeric arrays from an Excel spreadsheet:

[X Xnames] = xlsread('hospital.xls');

y = X(:,4); % response y is systolic pressure

X(:,4) = []; % remove y from the X matrix

Notice that the nonnumeric entries, such as sex, do not appear in X.

Choose a Fitting Method

There are three ways to fit a model to data:

• “Least-Squares Fit” on page 9-13
• “Robust Fit” on page 9-13
• “Stepwise Fit” on page 9-13

Least-Squares Fit

Use fitlm to construct a least-squares fit of a model to the data. This method is best
when you are reasonably certain of the model’s form, and mainly need to find its
parameters. This method is also useful when you want to explore a few models. The
method requires you to examine the data manually to discard outliers, though there are
techniques to help (see “Residuals — Model Quality for Training Data” on page 9-23).

Robust Fit

Use fitlm with the RobustOpts name-value pair to create a model that is little
affected by outliers. Robust fitting saves you the trouble of manually discarding outliers.
However, step does not work with robust fitting. This means that when you use robust
fitting, you cannot search stepwise for a good model.

Stepwise Fit

Use stepwiselm to find a model, and fit parameters to the model. stepwiselm starts
from one model, such as a constant, and adds or subtracts terms one at a time, choosing
an optimal term each time in a greedy fashion, until it cannot improve further. Use
stepwise fitting to find a good model, which is one that has only relevant terms.

9 Parametric Regression Analysis

9-14

The result depends on the starting model. Usually, starting with a constant model leads
to a small model. Starting with more terms can lead to a more complex model, but one
that has lower mean squared error. See “Compare large and small stepwise models” on
page 9-124.

You cannot use robust options along with stepwise fitting. So after a stepwise fit,
examine your model for outliers (see “Residuals — Model Quality for Training Data” on
page 9-23).

Choose a Model or Range of Models

There are several ways of specifying a model for linear regression. Use whichever you
find most convenient.

• “Brief String” on page 9-14
• “Terms Matrix” on page 9-15
• “Formula” on page 9-18

For fitlm, the model specification you give is the model that is fit. If you do not give a
model specification, the default is 'linear'.

For stepwiselm, the model specification you give is the starting model, which the
stepwise procedure tries to improve. If you do not give a model specification, the
default starting model is 'constant', and the default upper bounding model is
'interactions'. Change the upper bounding model using the Upper name-value pair.

Note: There are other ways of selecting models, such as using lasso, lassoglm,
sequentialfs, or plsregress.

Brief String

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared terms).

 Linear Regression

9-15

String Model Type

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and also
contains terms with predictor 1 squared.

For example, to specify an interaction model using fitlm with matrix predictors:

mdl = fitlm(X,y,'interactions');

To specify a model using stepwiselm and a table or dataset array tbl of predictors,
suppose you want to start from a constant and have a linear model upper bound. Assume
the response variable in tbl is in the third column.

mdl2 = stepwiselm(tbl,'constant',...

 'Upper','linear','ResponseVar',3);

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

9 Parametric Regression Analysis

9-16

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

 Linear Regression

9-17

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

9 Parametric Regression Analysis

9-18

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for a model specification is a string of the form
'Y ~ terms',

• Y is the response name.
• terms contains

• Variable names
• + to include the next variable
• - to exclude the next variable
• : to define an interaction, a product of terms
• * to define an interaction and all lower-order terms
• ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () to group terms

 Linear Regression

9-19

Tip Formulas include a constant (intercept) term by default. To exclude a constant term
from the model, include -1 in the formula.

Examples:
'Y ~ A + B + C' is a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example, since B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example, since A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

For example, to specify an interaction model using fitlm with matrix predictors:

mdl = fitlm(X,y,'y ~ x1*x2*x3 - x1:x2:x3');

To specify a model using stepwiselm and a table or dataset array tbl of predictors,
suppose you want to start from a constant and have a linear model upper bound. Assume
the response variable in tbl is named 'y', and the predictor variables are named 'x1',
'x2', and 'x3'.

mdl2 = stepwiselm(tbl,'y ~ 1','Upper','y ~ x1 + x2 + x3');

Fit Model to Data

The most common optional arguments for fitting:

• For robust regression in fitlm, set the 'RobustOpts' name-value pair to 'on'.
• Specify an appropriate upper bound model in stepwiselm, such as set 'Upper' to

'linear'.
• Indicate which variables are categorical using the 'CategoricalVars' name-

value pair. Provide a vector with column numbers, such as [1 6] to specify that
predictors 1 and 6 are categorical. Alternatively, give a logical vector the same
length as the data columns, with a 1 entry indicating that variable is categorical.
If there are seven predictors, and predictors 1 and 6 are categorical, specify
logical([1,0,0,0,0,1,0]).

9 Parametric Regression Analysis

9-20

• For a table or dataset array, specify the response variable using the 'ResponseVar'
name-value pair. The default is the last column in the array.

For example,

mdl = fitlm(X,y,'linear',...

 'RobustOpts','on','CategoricalVars',3);

mdl2 = stepwiselm(tbl,'constant',...

 'ResponseVar','MPG','Upper','quadratic');

Examine Quality and Adjust the Fitted Model

After fitting a model, examine the result.

• “Model Display” on page 9-20
• “ANOVA” on page 9-21
• “Diagnostic Plots” on page 9-22
• “Residuals — Model Quality for Training Data” on page 9-23
• “Plots to Understand Predictor Effects” on page 9-28
• “Plots to Understand Terms Effects” on page 9-33
• “Change Models” on page 9-35

Model Display

A linear regression model shows several diagnostics when you enter its name or enter
disp(mdl). This display gives some of the basic information to check whether the fitted
model represents the data adequately.

For example, fit a linear model to data constructed with two out of five predictors not
present and with no intercept term:

X = randn(100,5);

y = X*[1;0;3;0;-1]+randn(100,1);

mdl = fitlm(X,y)

mdl =

Linear regression model:

 y ~ 1 + x1 + x2 + x3 + x4 + x5

Estimated Coefficients:

 Estimate SE tStat pValue

 Linear Regression

9-21

 (Intercept) 0.038164 0.099458 0.38372 0.70205

 x1 0.92794 0.087307 10.628 8.5494e-18

 x2 -0.075593 0.10044 -0.75264 0.45355

 x3 2.8965 0.099879 29 1.1117e-48

 x4 0.045311 0.10832 0.41831 0.67667

 x5 -0.99708 0.11799 -8.4504 3.593e-13

Number of observations: 100, Error degrees of freedom: 94

Root Mean Squared Error: 0.972

R-squared: 0.93, Adjusted R-Squared 0.926

F-statistic vs. constant model: 248, p-value = 1.5e-52

Notice that:

• The display contains the estimated values of each coefficient in the Estimate column.
These values are reasonably near the true values [0;1;0;3;0;-1].

• There is a standard error column for the coefficient estimates.
• The reported pValue (which are derived from the t statistics under the assumption

of normal errors) for predictors 1, 3, and 5 are extremely small. These are the three
predictors that were used to create the response data y.

• The pValue for (Intercept), x2 and x4 are much larger than 0.01. These three
predictors were not used to create the response data y.

• The display contains R2, adjusted R2, and F statistics.

ANOVA

To examine the quality of the fitted model, consult an ANOVA table. For example, use
anova on a linear model with five predictors:

X = randn(100,5);

y = X*[1;0;3;0;-1]+randn(100,1);

mdl = fitlm(X,y);

tbl = anova(mdl)

tbl =

 SumSq DF MeanSq F pValue

 x1 106.62 1 106.62 112.96 8.5494e-18

 x2 0.53464 1 0.53464 0.56646 0.45355

 x3 793.74 1 793.74 840.98 1.1117e-48

 x4 0.16515 1 0.16515 0.17498 0.67667

 x5 67.398 1 67.398 71.41 3.593e-13

 Error 88.719 94 0.94382

9 Parametric Regression Analysis

9-22

This table gives somewhat different results than the default display (see “Model
Display” on page 9-20). The table clearly shows that the effects of x2 and x4 are not
significant. Depending on your goals, consider removing x2 and x4 from the model.

Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or
fit. For example, load the carsmall data, and make a model of MPG as a function of
Cylinders (nominal) and Weight:

load carsmall

tbl = table(Weight,MPG,Cylinders);

tbl.Cylinders = ordinal(tbl.Cylinders);

mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');#

Make a leverage plot of the data and model.

plotDiagnostics(mdl)

 Linear Regression

9-23

There are a few points with high leverage. But this plot does not reveal whether the high-
leverage points are outliers.

Look for points with large Cook’s distance.

plotDiagnostics(mdl,'cookd')

There is one point with large Cook’s distance. Identify it and remove it from the
model. You can use the Data Cursor to click the outlier and identify it, or identify it
programmatically:

[~,larg] = max(mdl.Diagnostics.CooksDistance);

mdl2 = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2',...

 'Exclude',larg);

Residuals — Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in
the model or data. The simplest residual plots are the default histogram plot, which

9 Parametric Regression Analysis

9-24

shows the range of the residuals and their frequencies, and the probability plot, which
shows how the distribution of the residuals compares to a normal distribution with
matched variance.

Load the carsmall data, and make a model of MPG as a function of Cylinders
(nominal) and Weight:

load carsmall

tbl = table(Weight,MPG,Cylinders);

tbl.Cylinders = ordinal(tbl.Cylinders);

mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');

Examine the residuals:

plotResiduals(mdl)

The observations above 12 are potential outliers.

 Linear Regression

9-25

plotResiduals(mdl,'probability')

The two potential outliers appear on this plot as well. Otherwise, the probability plot
seems reasonably straight, meaning a reasonable fit to normally distributed residuals.

You can identify the two outliers and remove them from the data:

outl = find(mdl.Residuals.Raw > 12)

outl =

 90

 97

To remove the outliers, use the Exclude name-value pair:

mdl2 = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2',...

9 Parametric Regression Analysis

9-26

 'Exclude',outl);

Examine a residuals plot of mdl2:

plotResiduals(mdl2)

The new residuals plot looks fairly symmetric, without obvious problems. However, there
might be some serial correlation among the residuals. Create a new plot to see if such an
effect exists.

plotResiduals(mdl2,'lagged')

 Linear Regression

9-27

The scatter plot shows many more crosses in the upper-right and lower-left quadrants
than in the other two quadrants, indicating positive serial correlation among the
residuals.

Another potential issue is when residuals are large for large observations. See if the
current model has this issue.

plotResiduals(mdl2,'fitted')

9 Parametric Regression Analysis

9-28

There is some tendency for larger fitted values to have larger residuals. Perhaps the
model errors are proportional to the measured values.

Plots to Understand Predictor Effects

This example shows how to understand the effect each predictor has on a regression
model using a variety of available plots.

1 Create a model of mileage from some predictors in the carsmall data.

load carsmall

tbl = table(Weight,MPG,Cylinders);

tbl.Cylinders = ordinal(tbl.Cylinders);

mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');

2 Examine a slice plot of the responses. This displays the effect of each predictor
separately.

 Linear Regression

9-29

plotSlice(mdl)

You can drag the individual predictor values, which are represented by dashed blue
vertical lines. You can also choose between simultaneous and non-simultaneous
confidence bounds, which are represented by dashed red curves.

9 Parametric Regression Analysis

9-30

3 Use an effects plot to show another view of the effect of predictors on the response.

plotEffects(mdl)

 Linear Regression

9-31

This plot shows that changing Weight from about 2500 to 4732 lowers MPG by about
30 (the location of the upper blue circle). It also shows that changing the number of
cylinders from 8 to 4 raises MPG by about 10 (the lower blue circle). The horizontal
blue lines represent confidence intervals for these predictions. The predictions come
from averaging over one predictor as the other is changed. In cases such as this,
where the two predictors are correlated, be careful when interpreting the results.

4 Instead of viewing the effect of averaging over a predictor as the other is changed,
examine the joint interaction in an interaction plot.

plotInteraction(mdl,'Weight','Cylinders')

The interaction plot shows the effect of changing one predictor with the other held
fixed. In this case, the plot is much more informative. It shows, for example, that
lowering the number of cylinders in a relatively light car (Weight = 1795) leads to an

9 Parametric Regression Analysis

9-32

increase in mileage, but lowering the number of cylinders in a relatively heavy car
(Weight = 4732) leads to a decrease in mileage.

5 For an even more detailed look at the interactions, look at an interaction plot with
predictions. This plot holds one predictor fixed while varying the other, and plots the
effect as a curve. Look at the interactions for various fixed numbers of cylinders.

plotInteraction(mdl,'Cylinders','Weight','predictions')

Now look at the interactions with various fixed levels of weight.

plotInteraction(mdl,'Weight','Cylinders','predictions')

 Linear Regression

9-33

Plots to Understand Terms Effects

This example shows how to understand the effect of each term in a regression model
using a variety of available plots.

1 Create a model of mileage from some predictors in the carsmall data.

load carsmall

tbl = table(Weight,MPG,Cylinders);

tbl.Cylinders = ordinal(tbl.Cylinders);

mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');

2 Create an added variable plot with Weight^2 as the added variable.

plotAdded(mdl,'Weight^2')

9 Parametric Regression Analysis

9-34

This plot shows the results of fitting both Weight^2 and MPG to the terms other
than Weight^2. The reason to use plotAdded is to understand what additional
improvement in the model you get by adding Weight^2. The coefficient of a line
fit to these points is the coefficient of Weight^2 in the full model. The Weight^2
predictor is just over the edge of significance (pValue < 0.05) as you can see in the
coefficients table display. You can see that in the plot as well. The confidence bounds
look like they could not contain a horizontal line (constant y), so a zero-slope model is
not consistent with the data.

3 Create an added variable plot for the model as a whole.

plotAdded(mdl)

 Linear Regression

9-35

The model as a whole is very significant, so the bounds don't come close to containing
a horizontal line. The slope of the line is the slope of a fit to the predictors projected
onto their best-fitting direction, or in other words, the norm of the coefficient vector.

Change Models

There are two ways to change a model:

• step — Add or subtract terms one at a time, where step chooses the most important
term to add or remove.

• addTerms and removeTerms — Add or remove specified terms. Give the terms in any
of the forms described in “Choose a Model or Range of Models” on page 9-14.

If you created a model using stepwiselm, step can have an effect only if you give
different upper or lower models. step does not work when you fit a model using
RobustOpts.

9 Parametric Regression Analysis

9-36

For example, start with a linear model of mileage from the carbig data:

load carbig

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

mdl = fitlm(tbl,'linear','ResponseVar','MPG')

mdl =

Linear regression model:

 MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 45.251 2.456 18.424 7.0721e-55

 Acceleration -0.023148 0.1256 -0.1843 0.85388

 Displacement -0.0060009 0.0067093 -0.89441 0.37166

 Horsepower -0.043608 0.016573 -2.6312 0.008849

 Weight -0.0052805 0.00081085 -6.5123 2.3025e-10

Number of observations: 392, Error degrees of freedom: 387

Root Mean Squared Error: 4.25

R-squared: 0.707, Adjusted R-Squared 0.704

F-statistic vs. constant model: 233, p-value = 9.63e-102

Try to improve the model using step for up to 10 steps:

mdl1 = step(mdl,'NSteps',10)

1. Adding Displacement:Horsepower, FStat = 87.4802, pValue = 7.05273e-19

mdl1 =

Linear regression model:

 MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 61.285 2.8052 21.847 1.8593e-69

 Acceleration -0.34401 0.11862 -2.9 0.0039445

 Displacement -0.081198 0.010071 -8.0623 9.5014e-15

 Horsepower -0.24313 0.026068 -9.3265 8.6556e-19

 Weight -0.0014367 0.00084041 -1.7095 0.088166

 Displacement:Horsepower 0.00054236 5.7987e-05 9.3531 7.0527e-19

Number of observations: 392, Error degrees of freedom: 386

Root Mean Squared Error: 3.84

R-squared: 0.761, Adjusted R-Squared 0.758

F-statistic vs. constant model: 246, p-value = 1.32e-117

 Linear Regression

9-37

step stopped after just one change.

To try to simplify the model, remove the Acceleration and Weight terms from mdl1:

mdl2 = removeTerms(mdl1,'Acceleration + Weight')

mdl2 =

Linear regression model:

 MPG ~ 1 + Displacement*Horsepower

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 53.051 1.526 34.765 3.0201e-121

 Displacement -0.098046 0.0066817 -14.674 4.3203e-39

 Horsepower -0.23434 0.019593 -11.96 2.8024e-28

 Displacement:Horsepower 0.00058278 5.193e-05 11.222 1.6816e-25

Number of observations: 392, Error degrees of freedom: 388

Root Mean Squared Error: 3.94

R-squared: 0.747, Adjusted R-Squared 0.745

F-statistic vs. constant model: 381, p-value = 3e-115

mdl2 uses just Displacement and Horsepower, and has nearly as good a fit to the data
as mdl1 in the Adjusted R-Squared metric.

Predict or Simulate Responses to New Data

There are three ways to use a linear model to predict or simulate the response to new
data:

• “predict” on page 9-37
• “feval” on page 9-38
• “random” on page 9-39

predict

This example shows how to predict and obtain confidence intervals on the predictions
using the predict method.

1 Load the carbig data and make a default linear model of the response MPG to the
Acceleration, Displacement, Horsepower, and Weight predictors.

load carbig

X = [Acceleration,Displacement,Horsepower,Weight];

mdl = fitlm(X,MPG);

9 Parametric Regression Analysis

9-38

2 Create a three-row array of predictors from the minimal, mean, and maximal values.
There are some NaN values, so use functions that ignore NaN values.

Xnew = [nanmin(X);nanmean(X);nanmax(X)]; % new data

3 Find the predicted model responses and confidence intervals on the predictions.

[NewMPG NewMPGCI] = predict(mdl,Xnew)

NewMPG =

 34.1345

 23.4078

 4.7751

NewMPGCI =

 31.6115 36.6575

 22.9859 23.8298

 0.6134 8.9367

The confidence bound on the mean response is narrower than those for the minimum
or maximum responses, which is quite sensible.

feval

When you construct a model from a table or dataset array, feval is often more
convenient for predicting mean responses than predict. However, feval does not
provide confidence bounds.

This example shows how to predict mean responses using the feval method.

1 Load the carbig data and make a default linear model of the response MPG to the
Acceleration, Displacement, Horsepower, and Weight predictors.

load carbig

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

mdl = fitlm(tbl,'linear','ResponseVar','MPG');

2 Create a three-row array of predictors from the minimal, mean, and maximal values.
There are some NaN values, so use functions that ignore NaN values.

X = [Acceleration,Displacement,Horsepower,Weight];

Xnew = [nanmin(X);nanmean(X);nanmax(X)]; % new data

The Xnew array has the correct number of columns for prediction, so feval can use
it for predictions.

 Linear Regression

9-39

3 Find the predicted model responses.

NewMPG = feval(mdl,Xnew)

NewMPG =

 34.1345

 23.4078

 4.7751

random

The random method simulates new random response values, equal to the mean
prediction plus a random disturbance with the same variance as the training data.

This example shows how to simulate responses using the random method.

1 Load the carbig data and make a default linear model of the response MPG to the
Acceleration, Displacement, Horsepower, and Weight predictors.

load carbig

X = [Acceleration,Displacement,Horsepower,Weight];

mdl = fitlm(X,MPG);

2 Create a three-row array of predictors from the minimal, mean, and maximal values.
There are some NaN values, so use functions that ignore NaN values.

Xnew = [nanmin(X);nanmean(X);nanmax(X)]; % new data

3 Generate new predicted model responses including some randomness.

rng('default') % for reproducibility

NewMPG = random(mdl,Xnew)

NewMPG =

 36.4178

 31.1958

 -4.8176

4 Because a negative value of MPG does not seem sensible, try predicting two more
times.

NewMPG = random(mdl,Xnew)

NewMPG =

9 Parametric Regression Analysis

9-40

 37.7959

 24.7615

 -0.7783

NewMPG = random(mdl,Xnew)

NewMPG =

 32.2931

 24.8628

 19.9715

Clearly, the predictions for the third (maximal) row of Xnew are not reliable.

Share Fitted Models

Suppose you have a linear regression model, such as mdl from the following commands:

load carbig

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

mdl = fitlm(tbl,'linear','ResponseVar','MPG');

To share the model with other people, you can:

• Provide the model display.

mdl

mdl =

Linear regression model:

 MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 45.251 2.456 18.424 7.0721e-55

 Acceleration -0.023148 0.1256 -0.1843 0.85388

 Displacement -0.0060009 0.0067093 -0.89441 0.37166

 Horsepower -0.043608 0.016573 -2.6312 0.008849

 Weight -0.0052805 0.00081085 -6.5123 2.3025e-10

Number of observations: 392, Error degrees of freedom: 387

 Linear Regression

9-41

Root Mean Squared Error: 4.25

R-squared: 0.707, Adjusted R-Squared 0.704

F-statistic vs. constant model: 233, p-value = 9.63e-102

• Provide just the model definition and coefficients.

mdl.CoefficientNames

ans =

 '(Intercept)' 'Acceleration' 'Displacement' 'Horsepower' 'Weight'

mdl.Coefficients.Estimate

ans =

 45.2511

 -0.0231

 -0.0060

 -0.0436

 -0.0053

mdl.Formula

ans =

MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Linear Regression Workflow

This example shows how to fit a linear regression model. A typical workflow involves the
following: import data, fit a regression, test its quality, modify it to improve the quality,
and share it.

Step 1. Import the data into a dataset array.

hospital.xls is an Excel® spreadsheet containing patient names, sex, age, weight,
blood pressure, and dates of treatment in an experimental protocol. First read the data
into a table.

patients = readtable('hospital.xls',...

 'ReadRowNames',true);

Examine the first row of data.

9 Parametric Regression Analysis

9-42

patients(1,:)

ans =

 name sex age wgt smoke sys dia trial1 trial2 trial3 trial4

 _______ ___ ___ ___ _____ ___ ___ ______ ______ ______ ______

 YPL-320 'SMITH' 'm' 38 176 1 124 93 18 -99 -99 -99

The sex and smoke fields seem to have two choices each. So change these fields to
nominal.

patients.smoke = nominal(patients.smoke,{'No','Yes'});

patients.sex = nominal(patients.sex);

Step 2. Create a fitted model.

Your goal is to model the systolic pressure as a function of a patient's age, weight, sex,
and smoking status. Create a linear formula for 'sys' as a function of 'age', 'wgt',
'sex', and 'smoke' .

modelspec = 'sys ~ age + wgt + sex + smoke';

mdl = fitlm(patients,modelspec)

mdl =

Linear regression model:

 sys ~ 1 + sex + age + wgt + smoke

Estimated Coefficients:

 Estimate SE tStat pValue

 _________ ________ ________ __________

 (Intercept) 118.28 7.6291 15.504 9.1557e-28

 sex_m 0.88162 2.9473 0.29913 0.76549

 age 0.08602 0.06731 1.278 0.20438

 wgt -0.016685 0.055714 -0.29947 0.76524

 smoke_Yes 9.884 1.0406 9.498 1.9546e-15

Number of observations: 100, Error degrees of freedom: 95

 Linear Regression

9-43

Root Mean Squared Error: 4.81

R-squared: 0.508, Adjusted R-Squared 0.487

F-statistic vs. constant model: 24.5, p-value = 5.99e-14

The sex, age, and weight predictors have rather high -values, indicating that some of
these predictors might be unnecessary.

Step 3. Locate and remove outliers.

See if there are outliers in the data that should be excluded from the fit. Plot the
residuals.

plotResiduals(mdl)

9 Parametric Regression Analysis

9-44

There is one possible outlier, with a value greater than 12. This is probably not truly an
outlier. For demonstration, here is how to find and remove it.

Find the outlier.

outlier = mdl.Residuals.Raw > 12;

find(outlier)

ans =

 84

Remove the outlier.

mdl = fitlm(patients,modelspec,...

 'Exclude',84);

mdl.ObservationInfo(84,:)

ans =

 Weights Excluded Missing Subset

 _______ ________ _______ ______

 WXM-486 1 true false false

Observation 84 is no longer in the model.

Step 4. Simplify the model.

Try to obtain a simpler model, one with fewer predictors but the same predictive
accuracy. step looks for a better model by adding or removing one term at a time. Allow
step take up to 10 steps.

mdl1 = step(mdl,'NSteps',10)

1. Removing wgt, FStat = 4.6001e-05, pValue = 0.9946

2. Removing sex, FStat = 0.063241, pValue = 0.80199

mdl1 =

 Linear Regression

9-45

Linear regression model:

 sys ~ 1 + age + smoke

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ________ ______ __________

 (Intercept) 115.11 2.5364 45.383 1.1407e-66

 age 0.10782 0.064844 1.6628 0.09962

 smoke_Yes 10.054 0.97696 10.291 3.5276e-17

Number of observations: 99, Error degrees of freedom: 96

Root Mean Squared Error: 4.61

R-squared: 0.536, Adjusted R-Squared 0.526

F-statistic vs. constant model: 55.4, p-value = 1.02e-16

step took two steps. This means it could not improve the model further by adding or
subtracting a single term.

Plot the effectiveness of the simpler model on the training data.

plotResiduals(mdl1)

9 Parametric Regression Analysis

9-46

The residuals look about as small as those of the original model.

Step 5. Predict responses to new data.

Suppose you have four new people, aged 25, 30, 40, and 65, and the first and third smoke.
Predict their systolic pressure using mdl1.

ages = [25;30;40;65];

smoker = {'Yes';'No';'Yes';'No'};

systolicnew = feval(mdl1,ages,smoker)

systolicnew =

 Linear Regression

9-47

 127.8561

 118.3412

 129.4734

 122.1149

To make predictions, you need only the variables that mdl1 uses.

Step 6. Share the model.

You might want others to be able to use your model for prediction. Access the terms in
the linear model.

coefnames = mdl1.CoefficientNames

coefnames =

 '(Intercept)' 'age' 'smoke_Yes'

View the model formula.

mdl1.Formula

ans =

sys ~ 1 + age + smoke

Access the coefficients of the terms.

coefvals = mdl1.Coefficients(:,1); % table

coefvals = table2array(coefvals)

coefvals =

 115.1066

 0.1078

 10.0540

The model is sys = 115.1066 + 0.1078*age + 10.0540*smoke, where smoke is 1
for a smoker, and 0 otherwise.

9 Parametric Regression Analysis

9-48

Regression Using Dataset Arrays

This example shows how to perform linear and stepwise regression analyses using
dataset arrays.

Load sample data.

load imports-85

Store predictor and response variables in dataset array.

ds = dataset(X(:,7),X(:,8),X(:,9),X(:,15),'Varnames',...

{'curb_weight','engine_size','bore','price'});

Fit linear regression model.

Fit a linear regression model that explains the price of a car in terms of its curb weight,
engine size, and bore.

fitlm(ds,'price~curb_weight+engine_size+bore')

ans =

Linear regression model:

 price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 64.095 3.703 17.309 2.0481e-41

 curb_weight -0.0086681 0.0011025 -7.8623 2.42e-13

 engine_size -0.015806 0.013255 -1.1925 0.23452

 bore -2.6998 1.3489 -2.0015 0.046711

Number of observations: 201, Error degrees of freedom: 197

Root Mean Squared Error: 3.95

R-squared: 0.674, Adjusted R-Squared 0.669

F-statistic vs. constant model: 136, p-value = 1.14e-47

The command fitlm(ds) also returns the same result because fitlm, by default,
assumes the predictor variable is in the last column of the dataset array ds.

 Regression Using Dataset Arrays

9-49

Recreate dataset array and repeat analysis.

This time, put the response variable in the first column of the dataset array.

 ds = dataset(X(:,15),X(:,7),X(:,8),X(:,9),'Varnames',...

{'price','curb_weight','engine_size','bore'});

When the response variable is in the first column of ds, define its location. For example,
fitlm, by default, assumes that bore is the response variable. You can define the
response variable in the model using either:

fitlm(ds,'ResponseVar','price');

or

fitlm(ds,'ResponseVar',logical([1 0 0 0]));

Perform stepwise regression.

stepwiselm(ds,'quadratic','lower','price~1',...

'ResponseVar','price')

1. Removing bore^2, FStat = 0.01282, pValue = 0.90997

2. Removing engine_size^2, FStat = 0.078043, pValue = 0.78027

3. Removing curb_weight:bore, FStat = 0.70558, pValue = 0.40195

ans =

Linear regression model:

 price ~ 1 + curb_weight*engine_size + engine_size*bore + curb_weight^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 131.13 14.273 9.1873 6.2319e-17

 curb_weight -0.043315 0.0085114 -5.0891 8.4682e-07

 engine_size -0.17102 0.13844 -1.2354 0.21819

 bore -12.244 4.999 -2.4493 0.015202

 curb_weight:engine_size -6.3411e-05 2.6577e-05 -2.386 0.017996

 engine_size:bore 0.092554 0.037263 2.4838 0.013847

 curb_weight^2 8.0836e-06 1.9983e-06 4.0451 7.5432e-05

Number of observations: 201, Error degrees of freedom: 194

Root Mean Squared Error: 3.59

9 Parametric Regression Analysis

9-50

R-squared: 0.735, Adjusted R-Squared 0.726

F-statistic vs. constant model: 89.5, p-value = 3.58e-53

The initial model is a quadratic formula, and the lowest model considered is the constant.
Here, stepwiselm performs a backward elimination technique to determine the
terms in the model. The final model is price ~ 1 + curb_weight*engine_size +
engine_size*bore + curb_weight^2, which corresponds to

P = + + + + + + +b b b b b b b e0
2

2C E B CE EB C
C E B CE EB C

where P is price, C is curb weight, E is engine size, B is bore, βi is the coefficient for the
corresponding term in the model, and ε is the error term. The final model includes all
three main effects, the interaction effects for curb weight and engine size and engine size
and bore, and the second-order term for curb weight.

See Also
fitlm | LinearModel | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

 Regression Using Tables

9-51

Regression Using Tables

This example shows how to perform linear and stepwise regression analyses using tables.

Load sample data.

load imports-85

Store predictor and response variables in a table.

tbl = table(X(:,7),X(:,8),X(:,9),X(:,15),'VariableNames',...

{'curb_weight','engine_size','bore','price'});

Fit linear regression model.

Fit a linear regression model that explains the price of a car in terms of its curb weight,
engine size, and bore.

fitlm(tbl,'price~curb_weight+engine_size+bore')

ans =

Linear regression model:

 price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:

 Estimate SE tStat

 __________ _________ _______

 (Intercept) 64.095 3.703 17.309

 curb_weight -0.0086681 0.0011025 -7.8623

 engine_size -0.015806 0.013255 -1.1925

 bore -2.6998 1.3489 -2.0015

 pValue

 (Intercept) 2.0481e-41

 curb_weight 2.42e-13

 engine_size 0.23452

 bore 0.046711

9 Parametric Regression Analysis

9-52

Number of observations: 201, Error degrees of freedom: 197

Root Mean Squared Error: 3.95

R-squared: 0.674, Adjusted R-Squared 0.669

F-statistic vs. constant model: 136, p-value = 1.14e-47

The command fitlm(tbl) also returns the same result because fitlm, by default,
assumes the predictor variable is in the last column of the table tbl.

Recreate table and repeat analysis.

This time, put the response variable in the first column of the table.

 tbl = table(X(:,15),X(:,7),X(:,8),X(:,9),'VariableNames',...

{'price','curb_weight','engine_size','bore'});

When the response variable is in the first column of tbl, define its location. For example,
fitlm, by default, assumes that bore is the response variable. You can define the
response variable in the model using either:

fitlm(tbl,'ResponseVar','price');

or

fitlm(tbl,'ResponseVar',logical([1 0 0 0]));

Perform stepwise regression.

stepwiselm(tbl,'quadratic','lower','price~1',...

'ResponseVar','price')

ans =

Linear regression model:

 price ~ [Linear formula with 7 terms in 3 predictors]

Estimated Coefficients:

 Estimate SE

 ___________ __________

 (Intercept) 131.13 14.273

 curb_weight -0.043315 0.0085114

 engine_size -0.17102 0.13844

 bore -12.244 4.999

 curb_weight:engine_size -6.3411e-05 2.6577e-05

 Regression Using Tables

9-53

 engine_size:bore 0.092554 0.037263

 curb_weight^2 8.0836e-06 1.9983e-06

 tStat pValue

 _______ __________

 (Intercept) 9.1873 6.2319e-17

 curb_weight -5.0891 8.4682e-07

 engine_size -1.2354 0.21819

 bore -2.4493 0.015202

 curb_weight:engine_size -2.386 0.017996

 engine_size:bore 2.4838 0.013847

 curb_weight^2 4.0451 7.5432e-05

Number of observations: 201, Error degrees of freedom: 194

Root Mean Squared Error: 3.59

R-squared: 0.735, Adjusted R-Squared 0.726

F-statistic vs. constant model: 89.5, p-value = 3.58e-53

The initial model is a quadratic formula, and the lowest model considered is the constant.
Here, stepwiselm performs a backward elimination technique to determine the
terms in the model. The final model is price ~ 1 + curb_weight*engine_size +
engine_size*bore + curb_weight^2, which corresponds to

P = + + + + + + +b b b b b b b e0
2

2C E B CE EB C
C E B CE EB C

where P is price, C is curb weight, E is engine size, B is bore, βi is the coefficient for the
corresponding term in the model, and ε is the error term. The final model includes all
three main effects, the interaction effects for curb weight and engine size and engine size
and bore, and the second-order term for curb weight.

See Also
fitlm | LinearModel | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

9 Parametric Regression Analysis

9-54

Linear Regression with Interaction Effects

This example shows how to construct and analyze a linear regression model with
interaction effects and interpret the results.

Load sample data.

load hospital

To retain only the first column of blood pressure, store data in a new dataset array.

ds = dataset(hospital.Sex,hospital.Age,hospital.Weight,hospital.Smoker,...

hospital.BloodPressure(:,1),'Varnames',{'Sex','Age','Weight','Smoker',...

'BloodPressure'});

Perform stepwise linear regression.

For the initial model, use the full model with all terms and their pairwise interactions.

mdl = stepwiselm(ds,'interactions')

1. Removing Sex:Smoker, FStat = 0.050738, pValue = 0.8223

2. Removing Weight:Smoker, FStat = 0.07758, pValue = 0.78124

3. Removing Age:Weight, FStat = 1.9717, pValue = 0.16367

4. Removing Sex:Age, FStat = 0.32389, pValue = 0.57067

5. Removing Age:Smoker, FStat = 2.4939, pValue = 0.11768

mdl =

Linear regression model:

 BloodPressure ~ 1 + Age + Smoker + Sex*Weight

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 133.17 10.337 12.883 1.76e-22

 Sex_Male -35.269 17.524 -2.0126 0.047015

 Age 0.11584 0.067664 1.712 0.090198

 Weight -0.1393 0.080211 -1.7367 0.085722

 Smoker_1 9.8307 1.0229 9.6102 1.2391e-15

 Sex_Male:Weight 0.2341 0.11192 2.0917 0.039162

Number of observations: 100, Error degrees of freedom: 94

Root Mean Squared Error: 4.72

 Linear Regression with Interaction Effects

9-55

R-squared: 0.53, Adjusted R-Squared 0.505

F-statistic vs. constant model: 21.2, p-value = 4e-14

The final model in formula form is BloodPressure ~ 1 + Age + Smoker +
Sex*Weight. This model includes all four main effects (Age, Smoker, Sex, Weight) and
the two-way interaction between Sex and Weight. This model corresponds to

BP X I I X X IA A Sm Sm S S W W SW W S= + + + + + +b b b b b b e0 ,

where

• BP is the blood pressure
• βi are the coefficients
• ISm is the indicator variable for smoking; ISm = 1 indicates a smoking patient whereas

ISm = 0 indicates a nonsmoking patient
• IS is the indicator variable for sex; IS = 1 indicates a male patient whereas IS = 0

indicates a female patient
• XA is the Age variable
• XW is the Weight variable
• ε is the error term

The following table shows the fitted linear model for each gender and smoking
combination.

ISm IS Linear Model

1 (Male) 1 (Smoker) BP X X

BP X

Sm S A A W SW W

A

= + +() + + +()

= + +

b b b b b b
0

107 5617 0 11584 0 118
·

. . . 226XW

1 (Male) 0 (Nonsmoker) BP X X

BP X X

Sm A A W W

A W

= +() + +

= + -

b b b b
0

143 0007 0 11584 0 1393
·

. . .

0 (Female) 1 (Smoker) BP X X

BP X X

S A A W SW W

A W

= +() + + +()

= + +

b b b b b
0

97 901 0 11584 0 11826
·

. . .

0 (Female) 0 (Nonsmoker) BP X X

BP X X

A A W W

A W

= + +

= + -

b b b
0

133 17 0 11584 0 1393· . . .

9 Parametric Regression Analysis

9-56

As seen from these models, βSm and βS show how much the intercept of the response
function changes when the indicator variable takes the value 1 compared to when it
takes the value 0. βSW, however, shows the effect of the Weight variable on the response
variable when the indicator variable for sex takes the value 1 compared to when it takes
the value 0. You can explore the main and interaction effects in the final model using the
methods of the LinearModel class as follows.

Plot prediction slice plots.

figure()

plotSlice(mdl)

This plot shows the main effects for all predictor variables. The green line in each panel
shows the change in the response variable as a function of the predictor variable when
all other predictor variables are held constant. For example, for a smoking male patient
aged 37.5, the expected blood pressure increases as the weight of the patient increases,
given all else the same.

 Linear Regression with Interaction Effects

9-57

The dashed red curves in each panel show the 95% confidence bounds for the predicted
response values.

The horizontal dashed blue line in each panel shows the predicted response for the
specific value of the predictor variable corresponding to the vertical dashed blue line. You
can drag these lines to get the predicted response values at other predictor values, as
shown next.

For example, the predicted value of the response variable is 118.3497 when a patient
is female, nonsmoking, age 40.3788, and weighs 139.9545 pounds. The values in the
square brackets, [114.621, 122.079], show the lower and upper limits of a 95% confidence

9 Parametric Regression Analysis

9-58

interval for the estimated response. Note that, for a nonsmoking female patient, the
expected blood pressure decreases as the weight increases, given all else is held constant.

Plot main effects.

figure()

plotEffects(mdl)

This plot displays the main effects. The circles show the magnitude of the effect and the
blue lines show the upper and lower confidence limits for the main effect. For example,
being a smoker increases the expected blood pressure by 10 units, compared to being
a nonsmoker, given all else is held constant. Expected blood pressure increases about
two units for males compared to females, again, given other predictors held constant. An

 Linear Regression with Interaction Effects

9-59

increase in age from 25 to 50 causes an expected increase of 4 units, whereas a change
in weight from 111 to 202 causes about a 4-unit decrease in the expected blood pressure,
given all else held constant.

Plot interaction effects.

figure()

plotInteraction(mdl,'Sex','Weight')

This plot displays the impact of a change in one factor given the other factor is fixed at a
value.

Be cautious while interpreting the interaction effects. When there is not enough data on
all factor combinations or the data is highly correlated, it might be difficult to determine

9 Parametric Regression Analysis

9-60

the interaction effect of changing one factor while keeping the other fixed. In such cases,
the estimated interaction effect is an extrapolation from the data.

The blue circles show the main effect of a specific term, as in the main effects plot.
The red circles show the impact of a change in one term for fixed values of the other
term. For example, in the bottom half of this plot, the red circles show the impact of a
weight change in female and male patients, separately. You can see that an increase
in a female’s weight from 111 to 202 pounds causes about a 14-unit decrease in the
expected blood pressure, while an increase of the same amount in the weight of a male
patient causes about a 5-unit increase in the expected blood pressure, again given other
predictors are held constant.

Plot prediction effects.

figure()

plotInteraction(mdl,'Sex','Weight','predictions')

 Linear Regression with Interaction Effects

9-61

This plot shows the effect of changing one variable as the other predictor variable is held
constant. In this example, the last figure shows the response variable, blood pressure,
as a function of weight, when the variable sex is fixed at males and females. The lines
for males and females are crossing which indicates a strong interaction between weight
and sex. You can see that the expected blood pressure increases as the weight of a male
patient increases, but decreases as the weight of a female patient increases.

See Also
LinearModel.fit | LinearModel.stepwise | LinearModel | plotEffects |
plotInteraction | plotSlice

9 Parametric Regression Analysis

9-62

Related Examples
• “Plots to Understand Predictor Effects” on page 9-28

 Interpret Linear Regression Results

9-63

Interpret Linear Regression Results

This example shows how to display and interpret linear regression output statistics.

Load sample data and define predictor variables.

load carsmall

X = [Weight,Horsepower,Acceleration];

Fit linear regression model.

lm = fitlm(X,MPG,'linear')

lm =

Linear regression model:

 y ~ 1 + x1 + x2 + x3

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 47.977 3.8785 12.37 4.8957e-21

 x1 -0.0065416 0.0011274 -5.8023 9.8742e-08

 x2 -0.042943 0.024313 -1.7663 0.08078

 x3 -0.011583 0.19333 -0.059913 0.95236

Number of observations: 93, Error degrees of freedom: 89

Root Mean Squared Error: 4.09

R-squared: 0.752, Adjusted R-Squared 0.744

F-statistic vs. constant model: 90, p-value = 7.38e-27

This linear regression outputs display shows the following.

y ~ 1 + x1 + x2 +

x3

Linear regression model in the formula form using Wilkinson
notation. Here it corresponds to:

y X X X= + + + +b b b b e
0 1 1 2 2 3 3

.

First column
(under Estimated
Coefficients)

Terms included in the model.

9 Parametric Regression Analysis

9-64

Estimate Coefficient estimates for each corresponding term in the model.
For example, the estimate for the constant term (intercept)
is 47.977.

SE Standard error of the coefficients.
tStat t-statistic for each coefficient to test the null hypothesis that

the corresponding coefficient is zero against the alternative
that it is different from zero, given the other predictors in the
model. Note that tStat = Estimate/SE. For example, the t-
statistic for the intercept is 47.977/3.8785 = 12.37.

pValue p-value for the F statistic of the hypotheses test that the
corresponding coefficient is equal to zero or not. For example,
the p-value of the F-statistic for x2 is greater than 0.05, so this
term is not significant at the 5% significance level given the
other terms in the model.

Number of

observations

Number of rows without any NaN values. For example, Number
of observations is 93 because the MPG data vector has 6
NaN values and one of the data vectors, Horsepower, has one
NaN value for a different observation.

Error degrees of

freedom

n – p, where n is the number of observations, and p is the
number of coefficients in the model, including the intercept.
For example, the model has four predictors, so the Error
degrees of freedom is 93 – 4 = 89.

Root mean squared

error

Square root of the mean squared error, which estimates the
standard deviation of the error distribution.

R-squared and
Adjusted R-squared

Coefficient of determination and adjusted coefficient of
determination, respectively. For example, the R-squared
value suggests that the model explains approximately 75% of
the variability in the response variable MPG.

F-statistic vs.

constant model

Test statistic for the F-test on the regression model. It tests
for a significant linear regression relationship between the
response variable and the predictor variables.

p-value p-value for the F-test on the model. For example, the model is
significant with a p-value of 7.3816e-27.

You can request this display by using disp. For example, if you name your model lm,
then you can display the outputs using disp(lm).

 Interpret Linear Regression Results

9-65

Perform analysis of variance (ANOVA) for the model.

anova(lm,'summary')

ans =

 SumSq DF MeanSq F pValue

 Total 6004.8 92 65.269

 Model 4516 3 1505.3 89.987 7.3816e-27

 Residual 1488.8 89 16.728

This ANOVA display shows the following.

SumSq Sum of squares for the regression model, Model, the error term, Residual,
and the total, Total.

DF Degrees of freedom for each term. Degrees of freedom is n – 1 for the total,
p – 1 for the model, and n – p for the error term, where n is the number of
observations, and p is the number of coefficients in the model, including the
intercept. For example, MPG data vector has six NaN values and one of the
data vectors, Horsepower, has one NaN value for a different observation, so
the total degrees of freedom is 93 – 1 = 92. There are four coefficients in the
model, so the model DF is 4 – 1 = 3, and the DF for error term is 93 – 4 = 89.

MeanSq Mean squared error for each term. Note that MeanSq = SumSq/DF. For
example, the mean squared error for the error term is 1488.8/89 = 16.728.
The square root of this value is the root mean squared error in the
linear regression display, or 4.09.

F F-statistic value, which is the same as F-statistic vs. constant
model in the linear regression display. In this example, it is 89.987, and in
the linear regression display this F-statistic value is rounded up to 90.

pValue p-value for the F-test on the model. In this example, it is 7.3816e-27.

If there are higher-order terms in the regression model, anova partitions the model
SumSq into the part explained by the higher-order terms and the rest. The corresponding
F-statistics are for testing the significance of the linear terms and higher-order terms as
separate groups.

If the data includes replicates, or multiple measurements at the same predictor values,
then the anova partitions the error SumSq into the part for the replicates and the
rest. The corresponding F-statistic is for testing the lack-of-fit by comparing the model
residuals with the model-free variance estimate computed on the replicates.

9 Parametric Regression Analysis

9-66

See the anova method for details.

Decompose ANOVA table for model terms.

anova(lm)

ans =

 SumSq DF MeanSq F pValue

 x1 563.18 1 563.18 33.667 9.8742e-08

 x2 52.187 1 52.187 3.1197 0.08078

 x3 0.060046 1 0.060046 0.0035895 0.95236

 Error 1488.8 89 16.728

This anova display shows the following:

First column Terms included in the model.
SumSq Sum of squared error for each term except for the constant.
DF Degrees of freedom. In this example, DF is 1 for each term in the model

and n – p for the error term, where n is the number of observations, and
p is the number of coefficients in the model, including the intercept. For
example, the DF for the error term in this model is 93 – 4 = 89.
If any of the variables in the model is a categorical variable, the DF
for that variable is the number of indicator variables created for its
categories (number of categories – 1).

MeanSq Mean squared error for each term. Note that MeanSq = SumSq/DF. For
example, the mean squared error for the error term is 1488.8/89 = 16.728.

F F-values for each coefficient. The F-value is the ratio of the mean
squared of each term and mean squared error, that is, F = MeanSq(xi)/
MeanSq(Error). Each F-statistic has an F distribution, with the
numerator degrees of freedom, DF value for the corresponding term,
and the denominator degrees of freedom, n – p. n is the number of
observations, and p is the number of coefficients in the model. In this
example, each F-statistic has an F(1, 89) distribution.

pValue p-value for each hypothesis test on the coefficient of the corresponding
term in the linear model. For example, the p-value for the F-statistic
coefficient of x2 is 0.08078, and is not significant at the 5% significance
level given the other terms in the model.

 Interpret Linear Regression Results

9-67

Display coefficient confidence intervals.

coefCI(lm)

ans =

 40.2702 55.6833

 -0.0088 -0.0043

 -0.0913 0.0054

 -0.3957 0.3726

The values in each row are the lower and upper confidence limits, respectively, for the
default 95% confidence intervals for the coefficients. For example, the first row shows the
lower and upper limits, 40.2702 and 55.6833, for the intercept, β0. Likewise, the second
row shows the limits for β1 and so on. Confidence intervals provide a measure of precision
for linear regression coefficient estimates. A 100(1–α)% confidence interval gives the
range the corresponding regression coefficient will be in with 100(1–α)% confidence.

You can also change the confidence level. Find the 99% confidence intervals for the
coefficients.

coefCI(lm,0.01)

ans =

 37.7677 58.1858

 -0.0095 -0.0036

 -0.1069 0.0211

 -0.5205 0.4973

Perform hypothesis test on coefficients.

Test the null hypothesis that all predictor variable coefficients are equal to zero versus
the alternate hypothesis that at least one of them is different from zero.

[p,F,d] = coefTest(lm)

p =

 7.3816e-27

F =

9 Parametric Regression Analysis

9-68

 89.9874

d =

 3

Here, coefTest performs an F-test for the hypothesis that all regression coefficients
(except for the intercept) are zero versus at least one differs from zero, which essentially
is the hypothesis on the model. It returns p, the p-value, F, the F-statistic, and d, the
numerator degrees of freedom. The F-statistic and p-value are the same as the ones in
the linear regression display and ANOVA for the model. The degrees of freedom is 4 – 1 =
3 because there are four predictors (including the intercept) in the model.

Now, perform a hypothesis test on the coefficients of the first and second predictor
variables.

H = [0 1 0 0; 0 0 1 0];

[p,F,d] = coefTest(lm,H)

p =

 5.1702e-23

F =

 96.4873

d =

 2

The numerator degrees of freedom is the number of coefficients tested, which is 2 in this
example. The results indicate that at least one of β2 and β3 differs from zero.

See Also
anova | fitlm | LinearModel | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20

 Interpret Linear Regression Results

9-69

More About
• “Coefficient Standard Errors and Confidence Intervals” on page 9-74
• “Coefficient of Determination (R-Squared)” on page 9-78
• “F-statistic and t-statistic” on page 9-93
• “Summary of Output and Diagnostic Statistics” on page 9-112

9 Parametric Regression Analysis

9-70

Cook’s Distance

Purpose

Cook’s distance is useful for identifying outliers in the X values (observations for
predictor variables). It also shows the influence of each observation on the fitted response
values. An observation with Cook’s distance larger than three times the mean Cook’s
distance might be an outlier.

Definition

Cook’s distance is the scaled change in fitted values. Each element in CooksDistance is
the normalized change in the vector of coefficients due to the deletion of an observation.
The Cook’s distance, Di, of observation i is

D

y y

p MSE
i

j j i
j

n

=

-()
=
Â ˆ ˆ

,

()
2

1

where

• ŷ j is the jth fitted response value.

• ˆ ()y j i is the jth fitted response value, where the fit does not include observation i.

• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

D
r

p MSE

h

h
i

i ii

ii

=
-()

Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

2
1

,

where ri is the ith residual, and hii is the ith leverage value.

 Cook’s Distance

9-71

CooksDistance is an n-by-1 column vector in the Diagnostics table of the
LinearModel object.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the Cook’s distance values by indexing into the property using dot notation,

mdl.Diagnostics.CooksDistance

• Plot the Cook’s distance values using

plotDiagnostics(mdl,'cookd')

For details, see the plotDiagnostics method of the LinearModel class.

Determine Outliers Using Cook's Distance

This example shows how to use Cook's Distance to determine the outliers in the data.

Load the sample data and define the independent and response variables.

load hospital

X = double(hospital(:,2:5));

y = hospital.BloodPressure(:,1);

Fit the linear regression model.

mdl = fitlm(X,y);

Plot the Cook's distance values.

plotDiagnostics(mdl,'cookd')

9 Parametric Regression Analysis

9-72

The dashed line in the figure corresponds to the recommended threshold value,
3*mean(mdl.Diagnostics.CooksDistance). The plot has some observations
with Cook's distance values greater than the threshold value, which for this example
is 3*(0.0108) = 0.0324. In particular, there are two Cook's distance values that are
relatively higher than the others, which exceed the threshold value. You might want to
find and omit these from your data and rebuild your model.

Find the observations with Cook's distance values that exceed the threshold value.

find((mdl.Diagnostics.CooksDistance)>3*mean(mdl.Diagnostics.CooksDistance))

ans =

 Cook’s Distance

9-73

 2

 13

 28

 44

 58

 70

 71

 84

 93

 95

Find the observations with Cook's distance values that are relatively larger than the
other observations with Cook's distances exceeding the threshold value.

find((mdl.Diagnostics.CooksDistance)>5*mean(mdl.Diagnostics.CooksDistance))

ans =

 2

 84

See Also
fitlm | LinearModel | plotDiagnostics | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

9 Parametric Regression Analysis

9-74

Coefficient Standard Errors and Confidence Intervals

In this section...

“Coefficient Covariance and Standard Errors” on page 9-74
“Compute Coefficient Covariance and Standard Errors” on page 9-74
“Coefficient Confidence Intervals” on page 9-75
“Compute Coefficient Confidence Intervals” on page 9-76

Coefficient Covariance and Standard Errors

Purpose

Estimated coefficient variances and covariances capture the precision of regression
coefficient estimates. The coefficient variances and their square root, the standard errors,
are useful in testing hypotheses for coefficients.

Definition

The estimated covariance matrix is

Â = ¢()-
MSE X X

1
,

where MSE is the mean squared error, and X is the matrix of observations on the
predictor variables. CoefficientCovariance, a property of the fitted model, is a p-
by-p covariance matrix of regression coefficient estimates. p is the number of coefficients
in the regression model. The diagonal elements are the variances of the individual
coefficients.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can display
the coefficient covariances using

mdl.CoefficientCovariance

Compute Coefficient Covariance and Standard Errors

This example shows how to compute the covariance matrix and standard errors of the
coefficients.

 Coefficient Standard Errors and Confidence Intervals

9-75

Load the sample data and define the predictor and response variables.

load hospital

y = hospital.BloodPressure(:,1);

X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Display the coefficient covariance matrix.

CM = mdl.CoefficientCovariance

CM =

 27.5113 11.0027 -0.1542 -0.2444 0.2702

 11.0027 8.6864 0.0021 -0.1547 -0.0838

 -0.1542 0.0021 0.0045 -0.0001 -0.0029

 -0.2444 -0.1547 -0.0001 0.0031 -0.0026

 0.2702 -0.0838 -0.0029 -0.0026 1.0829

Compute the coefficient standard errors.

SE = diag(sqrt(CM))

SE =

 5.2451

 2.9473

 0.0673

 0.0557

 1.0406

Coefficient Confidence Intervals

Purpose

The coefficient confidence intervals provide a measure of precision for linear regression
coefficient estimates. A 100(1–α)% confidence interval gives the range that the
corresponding regression coefficient will be in with 100(1–α)% confidence.

9 Parametric Regression Analysis

9-76

Definition

The 100*(1–α)% confidence intervals for linear regression coefficients are

b t SE bi n p i± ()- -()1 2a / ,
,

where bi is the coefficient estimate, SE(bi) is the standard error of the coefficient
estimate, and t(1–α/2,n–p) is the 100(1–α/2) percentile of t-distribution with n – p degrees of
freedom. n is the number of observations and p is the number of regression coefficients.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain the
default 95% confidence intervals for coefficients using

coefCI(mdl)

You can also change the confidence level using

coefCI(mdl,alpha)

For details, see the coefCI and coefTest methods of LinearModel class.

Compute Coefficient Confidence Intervals

This example shows how to compute coefficient confidence intervals.

Load the sample data and fit a linear regression model.

load hald

mdl = fitlm(ingredients,heat);

Display the 95% coefficient confidence intervals.

coefCI(mdl)

ans =

 -99.1786 223.9893

 -0.1663 3.2685

 -1.1589 2.1792

 Coefficient Standard Errors and Confidence Intervals

9-77

 -1.6385 1.8423

 -1.7791 1.4910

The values in each row are the lower and upper confidence limits, respectively, for the
default 95% confidence intervals for the coefficients. For example, the first row shows the
lower and upper limits, -99.1786 and 223.9893, for the intercept, . Likewise, the second
row shows the limits for and so on.

Display the 90% confidence intervals for the coefficients (= 0.1).

coefCI(mdl,0.1)

ans =

 -67.8949 192.7057

 0.1662 2.9360

 -0.8358 1.8561

 -1.3015 1.5053

 -1.4626 1.1745

The confidence interval limits become narrower as the confidence level decreases.

See Also
anova | coefCI | coefTest | fitlm | LinearModel | plotDiagnostics |
stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

9 Parametric Regression Analysis

9-78

Coefficient of Determination (R-Squared)

Purpose

Coefficient of determination (R-squared) indicates the proportionate amount of variation
in the response variable y explained by the independent variables X in the linear
regression model. The larger the R-squared is, the more variability is explained by the
linear regression model.

Definition

R-squared is the proportion of the total sum of squares explained by the model.
Rsquared, a property of the fitted model, is a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared

R
SSR

SST

SSE

SST

2
1= = - .

• Adjusted — R-squared adjusted for the number of coefficients

R
n

n p

SSE

SST
adj
2

1
1

= -
-
-

Ê

Ë
Á

ˆ

¯
˜ .

SSE is the sum of squared error, SSR is the sum of squared regression, SST is
the sum of squared total, n is the number of observations, and p is the number of
regression coefficients (including the intercept). Because R-squared increases with
added predictor variables in the regression model, the adjusted R-squared adjusts
for the number of predictor variables in the model. This makes it more useful for
comparing models with a different number of predictors.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain
either R-squared value as a scalar by indexing into the property using dot notation, for
example,

mdl.Rsquared.Ordinary

mdl.Rsquared.Adjusted

 Coefficient of Determination (R-Squared)

9-79

You can also obtain the SSE, SSR, and SST using the properties with the same name.

mdl.SSE

mdl.SSR

mdl.SST

Display Coefficient of Determination

This example shows how to display R-squared (coefficient of determination) and adjusted
R-squared. Load the sample data and define the response and independent variables.

load hospital

y = hospital.BloodPressure(:,1);

X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y)

mdl =

Linear regression model:

 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 _________ ________ ________ __________

 (Intercept) 117.4 5.2451 22.383 1.1667e-39

 x1 0.88162 2.9473 0.29913 0.76549

 x2 0.08602 0.06731 1.278 0.20438

 x3 -0.016685 0.055714 -0.29947 0.76524

 x4 9.884 1.0406 9.498 1.9546e-15

Number of observations: 100, Error degrees of freedom: 95

Root Mean Squared Error: 4.81

R-squared: 0.508, Adjusted R-Squared 0.487

F-statistic vs. constant model: 24.5, p-value = 5.99e-14

The R-squared and adjusted R-squared values are 0.508 and 0.487, respectively. Model
explains about 50% of the variability in the response variable.

9 Parametric Regression Analysis

9-80

Access the R-squared and adjusted R-squared values using the property of the fitted
LinearModel object.

mdl.Rsquared.Ordinary

ans =

 0.5078

mdl.Rsquared.Adjusted

ans =

 0.4871

The adjusted R-squared value is smaller than the ordinary R-squared value.

See Also
anova | fitlm | LinearModel | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

 Delete-1 Statistics

9-81

Delete-1 Statistics

In this section...

“Delete-1 Change in Covariance (covratio)” on page 9-81
“Determine Influential Observations Using CovRatio” on page 9-82
“Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)” on page 9-84
“Determine Observations Influential on Coefficients Using Dfbetas” on page 9-85
“Delete-1 Scaled Change in Fitted Values (Dffits)” on page 9-85
“Determine Observations Influential on Fitted Response Using Dffits” on page 9-86
“Delete-1 Variance (S2_i)” on page 9-88
“Compute and Examine Delete-1 Variance Values” on page 9-89

Delete-1 Change in Covariance (covratio)

Purpose

Delete-1 change in covariance (covratio) identifies the observations that are influential
in the regression fit. An influential observation is one where its exclusion from the model
might significantly alter the regression function. Values of covratio larger than 1 + 3*p/n
or smaller than 1 – 3*p/n indicate influential points, where p is the number of regression
coefficients, and n is the number of observations.

Definition

The covratio statistic is the ratio of the determinant of the coefficient covariance matrix
with observation i deleted to the determinant of the covariance matrix for the full model:

cov

det

det

.ratio

MSE i X i X i

MSE X X

=
() ¢() ()ÈÎ ˘̊{ }

¢()È
ÎÍ

˘
˚̇

-

-

1

1

CovRatio is an n-by-1 vector in the Diagnostics table of the fitted LinearModel
object. Each element is the ratio of the generalized variance of the estimated coefficients
when the corresponding element is deleted to the generalized variance of the coefficients
using all the data.

9 Parametric Regression Analysis

9-82

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the CovRatio by indexing into the property using dot notation

mdl.Diagnostics.CovRatio

• Plot the delete-1 change in covariance using

plotDiagnostics(mdl,'CovRatio')

For details, see the plotDiagnostics method of the LinearModel class.

Determine Influential Observations Using CovRatio

This example shows how to use the CovRatio statistics to determine the influential
points in data. Load the sample data and define the response and predictor variables.

load hospital

y = hospital.BloodPressure(:,1);

X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Plot the CovRatio statistics.

plotDiagnostics(mdl,'CovRatio')

 Delete-1 Statistics

9-83

For this example, the threshold limits are 1 + 3*5/100 = 1.15 and 1 - 3*5/100 = 0.85.
There are a few points beyond the limits, which might be influential points.

Find the observations that are beyond the limits.

find((mdl.Diagnostics.CovRatio)>1.15|(mdl.Diagnostics.CovRatio)<0.85)

ans =

 2

 14

 84

 93

9 Parametric Regression Analysis

9-84

 96

Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)

Purpose

The sign of a delete-1 scaled difference in coefficient estimate (Dfbetas) for coefficient j
and observation i indicates whether that observation causes an increase or decrease in
the estimate of the regression coefficient. The absolute value of a Dfbetas indicates the
magnitude of the difference relative to the estimated standard deviation of the regression
coefficient. A Dfbetas value larger than 3/sqrt(n) in absolute value indicates that the
observation has a large influence on the corresponding coefficient.

Definition

Dfbetas for coefficient j and observation i is the ratio of the difference in the estimate of
coefficient j using all observations and the one obtained by removing observation i, and
the standard error of the coefficient estimate obtained by removing observation i. The
Dfbetas for coefficient j and observation i is

Dfbetas
b b

MSE h
ij

j j i

i ii

=
-

-()

()

() 1
,

where bj is the estimate for coefficient j, bj(i) is the estimate for coefficient j by removing
observation i, MSE(i) is the mean squared error of the regression fit by removing
observation i, and hii is the leverage value for observation i. Dfbetas is an n-by-p matrix
in the Diagnostics table of the fitted LinearModel object. Each cell of Dfbetas
corresponds to the Dfbetas value for the corresponding coefficient obtained by removing
the corresponding observation.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain the
Dfbetas values as an n-by-p matrix by indexing into the property using dot notation,

mdl.Diagnostics.Dfbetas

 Delete-1 Statistics

9-85

Determine Observations Influential on Coefficients Using Dfbetas

This example shows how to determine the observations that have large influence
on coefficients using Dfbetas. Load the sample data and define the response and
independent variables.

load hospital

y = hospital.BloodPressure(:,1);

X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Find the Dfbetas values that are high in absolute value.

[row,col] = find(abs(mdl.Diagnostics.Dfbetas)>3/sqrt(100));

disp([row col])

 2 1

 28 1

 84 1

 93 1

 2 2

 13 3

 84 3

 2 4

 84 4

Delete-1 Scaled Change in Fitted Values (Dffits)

Purpose

The delete-1 scaled change in fitted values (Dffits) show the influence of each observation
on the fitted response values. Dffits values with an absolute value larger than 2*sqrt(p/n)
might be influential.

Definition

Dffits for observation i is

Dffits sr
h

h
i i

ii

ii

=

-1
,

9 Parametric Regression Analysis

9-86

where sri is the studentized residual, and hii is the leverage value of the fitted
LinearModel object. Dffits is an n-by-1 column vector in the Diagnostics table of
the fitted LinearModel object. Each element in Dffits is the change in the fitted value
caused by deleting the corresponding observation and scaling by the standard error.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the Dffits values by indexing into the property using dot notation

mdl.Diagnostics.Dffits

• Plot the delete-1 scaled change in fitted values using

plotDiagnostics(mdl,'Dffits')

For details, see the plotDiagnostics method of the LinearModel class for details.

Determine Observations Influential on Fitted Response Using Dffits

This example shows how to determine the observations that are influential on the fitted
response values using Dffits values. Load the sample data and define the response and
independent variables.

load hospital

y = hospital.BloodPressure(:,1);

X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Plot the Dffits values.

plotDiagnostics(mdl,'Dffits')

 Delete-1 Statistics

9-87

The influential threshold limit for the absolute value of Dffits in this example is
2*sqrt(5/100) = 0.45. Again, there are some observations with Dffits values beyond the
recommended limits.

Find the Dffits values that are large in absolute value.

find(abs(mdl.Diagnostics.Dffits)>2*sqrt(4/100))

ans =

 2

 13

 28

9 Parametric Regression Analysis

9-88

 44

 58

 70

 71

 84

 93

 95

Delete-1 Variance (S2_i)

Purpose

The delete-1 variance (S2_i) shows how the mean squared error changes when an
observation is removed from the data set. You can compare the S2_i values with the
value of the mean squared error.

Definition

S2_i is a set of residual variance estimates obtained by deleting each observation in turn.
The S2_i value for observation i is

S i MSE

y y

n pi

j j i
j i

n

2
1

2

_

�

,= =

-È
ÎÍ

˘
˚̇

- -()

()
π
Â

where yj is the jth observed response value. S2_i is an n-by-1 vector in the Diagnostics
table of the fitted LinearModel object. Each element in S2_i is the mean squared error
of the regression obtained by deleting that observation.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the S2_i vector by indexing into the property using dot notation

mdl.Diagnostics.S2_i

• Plot the delete-1 variance values using

 Delete-1 Statistics

9-89

plotDiagnostics(mdl,'S2_i')

For details, see the plotDiagnostics method of the LinearModel class.

Compute and Examine Delete-1 Variance Values

This example shows how to compute and plot S2_i values to examine the change in the
mean squared error when an observation is removed from the data. Load the sample data
and define the response and independent variables.

load hospital

y = hospital.BloodPressure(:,1);

X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Display the MSE value for the model.

mdl.MSE

ans =

 23.1140

Plot the S2_i values.

plotDiagnostics(mdl,'S2_i')

9 Parametric Regression Analysis

9-90

This plot makes it easy to compare the S2_i values to the MSE value of 23.114, indicated
by the horizontal dashed lines. You can see how deleting one observation changes the
error variance.

See Also
fitlm | LinearModel | plotDiagnostics | plotResiduals | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

 Durbin-Watson Test

9-91

Durbin-Watson Test

Purpose

The Durbin-Watson test assesses whether there is autocorrelation among the residuals
or not.

Definition

The Durbin-Watson test statistic, DW, is

DW

r r

r

i i

i

n

i

i

n
=

-()+
=

-

=

Â

Â

1

2

1

1

2

1

.

Here, ri is the ith raw residual, and n is the number of observations.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can perform
the Durbin-Watson test using

dwtest(mdl)

For details, see the dwtest method of the LinearModel class.

Test for Autocorrelation Among Residuals

This example shows how to test for autocorrelation among the residuals of a linear
regression model.

Load the sample data and fit a linear regression model.

load hald

mdl = fitlm(ingredients,heat);

Perform a two-sided Durbin-Watson test to determine if there is any autocorrelation
among the residuals of the linear model, mdl.

9 Parametric Regression Analysis

9-92

[p,DW] = dwtest(mdl,'exact','both')

p =

 0.6285

DW =

 2.0526

The value of the Durbin-Watson test statistic is 2.0526. The -value of 0.6285 suggest
that the residuals are not autocorrelated.

See Also
dwtest | fitlm | LinearModel | plotResiduals | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

 F-statistic and t-statistic

9-93

F-statistic and t-statistic

In this section...

“F-statistic” on page 9-93
“Assess Fit of Model Using F-statistic” on page 9-93
“t-statistic” on page 9-96
“Assess Significance of Regression Coefficients Using t-statistic” on page 9-97

F-statistic

Purpose

In linear regression, the F-statistic is the test statistic for the analysis of variance
(ANOVA) approach to test the significance of the model or the components in the model.

Definition

The F-statistic in the linear model output display is the test statistic for testing the
statistical significance of the model. The F-statistic values in the anova display are for
assessing the significance of the terms or components in the model.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Find the F-statistic vs. constant model in the output display or by using

disp(mdl)

• Display the ANOVA for the model using

anova(mdl,'summary')

• Obtain the F-statistic values for the components, except for the constant term using

anova(mdl)

For details, see the anova method of the LinearModel class.

Assess Fit of Model Using F-statistic

This example shows how to use assess the fit of the model and the significance of the
regression coefficients using F-statistic.

9 Parametric Regression Analysis

9-94

Load the sample data.

load carbig

tbl = table(Acceleration,Cylinders,Weight,MPG);

tbl.Cylinders = ordinal(Cylinders);

Fit a linear regression model.

mdl = fitlm(tbl,'MPG~Acceleration*Weight+Cylinders+Weight^2')

mdl =

Linear regression model:

 MPG ~ 1 + Cylinders + Acceleration*Weight + Weight^2

Estimated Coefficients:

 Estimate SE tStat pValue

 __________ __________ ________ __________

 (Intercept) 50.816 7.5669 6.7156 6.661e-11

 Acceleration 0.023343 0.33931 0.068796 0.94519

 Cylinders_4 7.167 2.0596 3.4798 0.0005587

 Cylinders_5 10.963 3.1299 3.5028 0.00051396

 Cylinders_6 4.7415 2.1257 2.2306 0.026279

 Cylinders_8 5.057 2.2981 2.2005 0.028356

 Weight -0.017497 0.0034674 -5.0461 6.9371e-07

 Acceleration:Weight 7.0745e-05 0.00011171 0.6333 0.52691

 Weight^2 1.5767e-06 3.6909e-07 4.2719 2.4396e-05

Number of observations: 398, Error degrees of freedom: 389

Root Mean Squared Error: 4.02

R-squared: 0.741, Adjusted R-Squared 0.736

F-statistic vs. constant model: 139, p-value = 2.94e-109

The F-statistic of the linear fit versus the constant model is 139, with a p-value of
2.94e-109. The model is significant at the 5% significance level. The R-squared value of
0.741 means the model explains about 74% of the variability in the response.

Display the ANOVA table for the fitted model.

anova(mdl,'summary')

 F-statistic and t-statistic

9-95

ans =

 SumSq DF MeanSq F pValue

 ______ ___ ______ ______ ___________

 Total 24253 397 61.09

 Model 17981 8 2247.6 139.41 2.9432e-109

 . Linear 17667 6 2944.4 182.63 7.5446e-110

 . Nonlinear 314.36 2 157.18 9.7492 7.3906e-05

 Residual 6271.6 389 16.122

 . Lack of fit 6267.1 387 16.194 7.1973 0.12968

 . Pure error 4.5 2 2.25

This display separates the variability in the model into linear and nonlinear terms.
Since there are two non-linear terms (Weight^2 and the interaction between Weight
and Acceleration), the nonlinear degrees of freedom in the DF column is 2. There
are six linear terms in the model (four Cylinders indicator variables, Weight, and
Acceleration). The corresponding F-statistics in the F column are for testing the
significance of the linear and nonlinear terms as separate groups.

The residual term is also separated into two parts; first is the error due to the lack of fit,
and second is the pure error independent from the model, obtained from the replicated
observations. The corresponding F-statistics in the F column are for testing the lack of fit,
that is, whether the proposed model is an adequate fit or not.

Display the ANOVA table for the model terms.

anova(mdl)

ans =

 SumSq DF MeanSq F pValue

 ______ ___ ______ _______ __________

 Acceleration 104.99 1 104.99 6.5122 0.011095

 Cylinders 408.94 4 102.23 6.3412 5.9573e-05

 Weight 2187.5 1 2187.5 135.68 4.1974e-27

 Acceleration:Weight 6.4662 1 6.4662 0.40107 0.52691

 Weight^2 294.22 1 294.22 18.249 2.4396e-05

 Error 6271.6 389 16.122

9 Parametric Regression Analysis

9-96

This display decomposes the ANOVA table into the model terms. The corresponding F-
statistics in the F column are for assessing the statistical significance of each term. The
F-test for Cylinders test whether at least one of the coefficients of indicator variables
for cylinders categories is different from zero or not. That is, whether different numbers
of cylinders have a significant effect on MPG or not. The degrees of freedom for each model
term is the numerator degrees of freedom for the corresponding F-test. Most of the terms
have 1 degree of freedom, but the degrees of freedom for Cylinders is 4. Because there
are four indicator variables for this term.

t-statistic

Purpose

In linear regression, the t-statistic is useful for making inferences about the regression
coefficients. The hypothesis test on coefficient i tests the null hypothesis that it is equal
to zero – meaning the corresponding term is not significant – versus the alternate
hypothesis that the coefficient is different from zero.

Definition

For a hypotheses test on coefficient i, with

H0 : βi = 0

H1 : βi ≠ 0,

the t-statistic is:

t
b

SE b

i

i

=

()
,

where SE(bi) is the standard error of the estimated coefficient bi.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Find the coefficient estimates, the standard errors of the estimates (SE), and the t-
statistic values of hypothesis tests for the corresponding coefficients (tStat) in the
output display.

 F-statistic and t-statistic

9-97

• Call for the display using

display(mdl)

Assess Significance of Regression Coefficients Using t-statistic

This example shows how to test for the significance of the regression coefficients using t-
statistic.

Load the sample data and fit the linear regression model.

load hald

mdl = fitlm(ingredients,heat)

mdl =

Linear regression model:

 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ________ ________

 (Intercept) 62.405 70.071 0.8906 0.39913

 x1 1.5511 0.74477 2.0827 0.070822

 x2 0.51017 0.72379 0.70486 0.5009

 x3 0.10191 0.75471 0.13503 0.89592

 x4 -0.14406 0.70905 -0.20317 0.84407

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 2.45

R-squared: 0.982, Adjusted R-Squared 0.974

F-statistic vs. constant model: 111, p-value = 4.76e-07

You can see that for each coefficient, tStat = Estimate/SE. The -values for the
hypotheses tests are in the pValue column. Each -statistic tests for the significance
of each term given other terms in the model. According to these results, none of the
coefficients seem significant at the 5% significance level, although the R-squared value
for the model is really high at 0.97. This often indicates possible multicollinearity among
the predictor variables.

9 Parametric Regression Analysis

9-98

Use stepwise regression to decide which variables to include in the model.

load hald

mdl = stepwiselm(ingredients,heat)

1. Adding x4, FStat = 22.7985, pValue = 0.000576232

2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06

mdl =

Linear regression model:

 y ~ 1 + x1 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ________ _______ __________

 (Intercept) 103.1 2.124 48.54 3.3243e-13

 x1 1.44 0.13842 10.403 1.1053e-06

 x4 -0.61395 0.048645 -12.621 1.8149e-07

Number of observations: 13, Error degrees of freedom: 10

Root Mean Squared Error: 2.73

R-squared: 0.972, Adjusted R-Squared 0.967

F-statistic vs. constant model: 177, p-value = 1.58e-08

In this example, stepwiselm starts with the constant model (default) and uses forward
selection to incrementally add x4 and x1. Each predictor variable in the final model is
significant given the other one is in the model. The algorithm stops when adding none of
the other predictor variables significantly improves in the model. For details on stepwise
regression, see stepwiselm.

See Also
anova | coefCI | coefTest | fitlm | LinearModel | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

 Hat Matrix and Leverage

9-99

Hat Matrix and Leverage

In this section...

“Hat Matrix” on page 9-99
“Leverage” on page 9-100
“Determine High Leverage Observations” on page 9-101

Hat Matrix

Purpose

The hat matrix provides a measure of leverage. It is useful for investigating whether one
or more observations are outlying with regard to their X values, and therefore might be
excessively influencing the regression results.

Definition

The hat matrix is also known as the projection matrix because it projects the vector of
observations, y, onto the vector of predictions, ŷ , thus putting the "hat" on y. The hat
matrix H is defined in terms of the data matrix X:
H = X(XTX)–1XT

and determines the fitted or predicted values since

ˆ .y Hy Xb= =

The diagonal elements of H, hii, are called leverages and satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

where p is the number of coefficients, and n is the number of observations (rows of X) in
the regression model. HatMatrix is an n-by-n matrix in the Diagnostics table.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

9 Parametric Regression Analysis

9-100

• Display the HatMatrix by indexing into the property using dot notation

mdl.Diagnostics.HatMatrix

When n is large, HatMatrix might be computationally expensive. In those cases, you
can obtain the diagonal values directly, using

mdl.Diagnostics.Leverage

Leverage

Purpose

Leverage is a measure of the effect of a particular observation on the regression
predictions due to the position of that observation in the space of the inputs. In general,
the farther a point is from the center of the input space, the more leverage it has.
Because the sum of the leverage values is p, an observation i can be considered as an
outlier if its leverage substantially exceeds the mean leverage value, p/n, for example, a
value larger than 2*p/n.

Definition

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix,
H, where
H = X(XTX)–1XT.
The diagonal terms satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

where p is the number of coefficients in the regression model, and n is the number
of observations. The minimum value of hii is 1/n for a model with a constant term. If
the fitted model goes through the origin, then the minimum leverage value is 0 for an
observation at x = 0.

It is possible to express the fitted values, ŷ , by the observed values, y, since

ˆ .y Hy Xb= =

 Hat Matrix and Leverage

9-101

Hence, hii expresses how much the observation yi has impact on ŷi . A large value of hii
indicates that the ith case is distant from the center of all X values for all n cases and has
more leverage. Leverage is an n-by-1 column vector in the Diagnostics table.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the Leverage vector by indexing into the property using dot notation

mdl.Diagnostics.Leverage

• Plot the leverage for the values fitted by your model using

plotDiagnostics(mdl)

See the plotDiagnostics method of the LinearModel class for details.

Determine High Leverage Observations

This example shows how to compute Leverage values and assess high leverage
observations. Load the sample data and define the response and independent variables.

load hospital

y = hospital.BloodPressure(:,1);

X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Plot the leverage values.

plotDiagnostics(mdl)

9 Parametric Regression Analysis

9-102

For this example, the recommended threshold value is 2*5/100 = 0.1. There is no
indication of high leverage observations.

See Also
fitlm | LinearModel | plotDiagnostics | stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

 Residuals

9-103

Residuals

Purpose

Residuals are useful for detecting outlying y values and checking the linear regression
assumptions with respect to the error term in the regression model. High-leverage
observations have smaller residuals because they often shift the regression line
or surface closer to them. You can also use residuals to detect some forms of
heteroscedasticity and autocorrelation.

Definition

The Residuals matrix is an n-by-4 table containing four types of residuals, with one row
for each observation.

Raw Residuals

Observed minus fitted values, that is,

r y yi i i= - ˆ .

Pearson Residuals

Raw residuals divided by the root mean squared error, that is,

pr
r

MSE
i

i
= ,

where ri is the raw residual and MSE is the mean squared error.

Standardized Residuals

Standardized residuals are raw residuals divided by their estimated standard deviation.
The standardized residual for observation i is

st
r

MSE h
i

i

ii

=
-()1

,

9 Parametric Regression Analysis

9-104

where MSE is the mean squared error and hii is the leverage value for observation i.

Studentized Residuals

Studentized residuals are the raw residuals divided by an independent estimate of the
residual standard deviation. The residual for observation i is divided by an estimate of
the error standard deviation based on all observations except for observation i.

sr
r

MSE h
i

i

i ii

=
-()() 1

,

where MSE(i) is the mean squared error of the regression fit calculated by removing
observation i, and hii is the leverage value for observation i. The studentized residual sri
has a t-distribution with n – p – 1 degrees of freedom.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Find the Residuals table under mdl object.
• Obtain any of these columns as a vector by indexing into the property using dot

notation, for example,

mdl.Residuals.Raw

• Plot any of the residuals for the values fitted by your model using

plotResiduals(mdl)

For details, see the plotResiduals method of the LinearModel class.

Assess Model Assumptions Using Residuals

This example shows how to assess the model assumptions by examining the residuals of
a fitted linear regression model.

Load the sample data and store the independent and response variables in a table.

 load imports-85

 Residuals

9-105

 tbl = table(X(:,7),X(:,8),X(:,9),X(:,15),'VariableNames',...

{'curb_weight','engine_size','bore','price'});

Fit a linear regression model.

mdl = fitlm(tbl)

mdl =

Linear regression model:

 price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:

 Estimate SE tStat pValue

 __________ _________ _______ __________

 (Intercept) 64.095 3.703 17.309 2.0481e-41

 curb_weight -0.0086681 0.0011025 -7.8623 2.42e-13

 engine_size -0.015806 0.013255 -1.1925 0.23452

 bore -2.6998 1.3489 -2.0015 0.046711

Number of observations: 201, Error degrees of freedom: 197

Root Mean Squared Error: 3.95

R-squared: 0.674, Adjusted R-Squared 0.669

F-statistic vs. constant model: 136, p-value = 1.14e-47

Plot the histogram of raw residuals.

plotResiduals(mdl)

9 Parametric Regression Analysis

9-106

The histogram shows that the residuals are slightly right skewed.

Plot the box plot of all four types of residuals.

 Res = table2array(mdl.Residuals);

You can see the right-skewed structure of the residuals in the box plot as well.

Plot the normal probability plot of the raw residuals.

plotResiduals(mdl,'probability')

boxplot(Res)

 Residuals

9-107

This normal probability plot also shows the deviation from normality and the skewness
on the right tail of the distribution of residuals.

Plot the residuals versus lagged residuals.

plotResiduals(mdl,'lagged')

9 Parametric Regression Analysis

9-108

This graph shows a trend, which indicates a possible correlation among the residuals.
You can further check this using dwtest(mdl). Serial correlation among residuals
usually means that the model can be improved.

Plot the symmetry plot of residuals.

plotResiduals(mdl,'symmetry')

 Residuals

9-109

This plot also suggests that the residuals are not distributed equally around their
median, as would be expected for normal distribution.

Plot the residuals versus the fitted values.

plotResiduals(mdl,'fitted')

9 Parametric Regression Analysis

9-110

The increase in the variance as the fitted values increase suggests possible
heteroscedasticity.

References

[1] Atkinson, A. T. Plots, Transformations, and Regression. An Introduction to Graphical
Methods of Diagnostic Regression Analysis. New York: Oxford Statistical Science
Series, Oxford University Press, 1987.

[2] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear
Statistical Models. IRWIN, The McGraw-Hill Companies, Inc., 1996.

 Residuals

9-111

[3] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics, Identifying
Influential Data and Sources of Collinearity. Wiley Series in Probability and
Mathematical Statistics, John Wiley and Sons, Inc., 1980.

See Also
dwtest | fitlm | LinearModel | plotDiagnostics | plotResiduals |
stepwiselm

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

9 Parametric Regression Analysis

9-112

Summary of Output and Diagnostic Statistics
Name LinearModel regstats

“Cook’s Distance” on page 9-70 CooksDistance and
cookd

cookd

“Coefficient Confidence
Intervals” on page 9-75

coefCI N/A

“Coefficient Covariance and
Standard Errors” on page 9-74

CoefficientCovariance covb

“Coefficient of Determination (R-
Squared)” on page 9-78

Rsquared: Ordinary,
Adjusted

rsquare, adjrsquare

“Delete-1 Change in Covariance
(covratio)” on page 9-81

CovRatio covratio

“Delete-1 Scaled Difference in
Coefficient Estimates (Dfbetas)”
on page 9-84

Dfbetas dfbetas

“Delete-1 Scaled Change in
Fitted Values (Dffits)” on page
9-85

Dffits dffits

“Delete-1 Variance (S2_i)” on
page 9-88

S2_i s2_i

“Durbin-Watson Test” on page
9-91

dwtest dwstat

“F-statistic” on page 9-93 Fstat fstat

“Hat Matrix” on page 9-99 HatMatrix hatmat

“Leverage” on page 9-100 Leverage leverage

“Residuals” on page 9-103 Residuals: Raw,
Pearson, Studentized,
Standardized

r, studres, standres

“t-statistic” on page 9-96 tstats tstat

See Also
dwtest | fitlm | LinearModel | plotDiagnostics | plotResiduals |
stepwiselm

 Summary of Output and Diagnostic Statistics

9-113

Related Examples
• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Interpret Linear Regression Results” on page 9-63

9 Parametric Regression Analysis

9-114

Wilkinson Notation

In this section...

“Overview” on page 9-114
“Formula Specification” on page 9-115
“Linear Model Examples” on page 9-118
“Linear Mixed-Effects Model Examples” on page 9-120
“Generalized Linear Model Examples” on page 9-121
“Generalized Linear Mixed-Effects Model Examples” on page 9-122
“Repeated Measures Model Examples” on page 9-123

Overview

Wilkinson notation provides a way to describe regression and repeated measures models
without specifying coefficient values. This specialized notation identifies the response
variable and which predictor variables to include or exclude from the model. You can also
include squared and higher-order terms, interaction terms, and grouping variables in the
model formula.

Specifying a model using Wilkinson notation provides several advantages:

• You can include or exclude individual predictors and interaction terms from the
model. For example, using the 'Interactions' name-value pair available in
each model fitting functions includes interaction terms for all pairs of variables.
Using Wilkinson notation instead allows you to include only the interaction terms of
interest.

• You can change the model formula without changing the design matrix, if your input
data uses the table data type. For example, if you fit an initial model using all the
available predictor variables, but decide to remove a variable that is not statistically
significant, then you can re-write the model formula to include only the variables of
interest. You do not need to make any changes to the input data itself.

Statistics and Machine Learning Toolbox offers several model fitting functions that use
Wilkinson notation, including:

• Linear models (using fitlm and stepwiselm)
• Generalized linear models (using fitglm)

 Wilkinson Notation

9-115

• Linear mixed-effects models (using fitlme and fitlmematrix)
• Generalized linear mixed-effects models (using fitglme)
• Repeated measures models (using fitrm)

Formula Specification

A formula for model specification is a string of the form y ~ terms, where y is the name
of the response variable, and terms defines the model using the predictor variable names
and the following operators.

Predictor Variables

Predictor Terms in Model Wilkinson Notation
intercept 1

no intercept –1

x1 x1

x1, x2 x1 + x2

x1, x2, x1x2 x1*x2 or x1 + x2 + x1:x2
x1x2 x1:x2

x1, x1
2 x1^2

x1
2 x1^2 – x1

Wilkinson notation includes an intercept term in the model by default, even if you do
not add 1 to the model formula. To exclude the intercept from the model, use -1 in the
formula.

The * operator (for interactions) and the ^ operator (for power and exponents)
automatically include all lower-order terms. For example, if you specify x^3, the model
will automatically include x3, x2, and x. If you want to exclude certain variables from the
model, use the – operator to remove the unwanted terms.

Random-Effects and Mixed-Effects Models

For random-effects and mixed-effects models, the formula specification includes the
names of the predictor variables and the grouping variables. For example, if the predictor

9 Parametric Regression Analysis

9-116

variable x1 is a random effect grouped by the variable g, then represent this in Wilkinson
notation as follows:

(x1 | g)

Repeated Measures Models

For repeated measures models, the formula specification includes all of the repeated
measures as responses, and the factors as predictor variables. Specify the response
variables for repeated measures models as described in the following table.

Response Terms in Model Wilkinson Notation

y1 y1

y1, y2, y3 y1,y2,y3

y1, y2, y3, y4, y5, y1–y5

For example, if you have three repeated measures as responses and the factors x1, x2,
and x3 as the predictor variables, then you can define the repeated measures model using
Wilkinson notation as follows:

y1,y2,y3 ~ x1 + x2 + x3

or

y1-y3 ~ x1 + x2 + x3

Variable Names

If the input data (response and predictor variables) is stored in a table or dataset array,
you can specify the formula using the variable names. For example, load the carsmall
sample data. Create a table containing Weight, Acceleration, and MPG. Name each
variable using the 'VariableNames' name-value pair argument of the fitting function
fitlm. Then fit the following model to the data:

MPG Weight Acceleration= + +b b b
0 1 2

load carsmall

tbl = table(Weight,Acceleration,MPG,'VariableNames',{'Weight','Acceleration','MPG'});

mdl = fitlm(tbl,'MPG ~ Weight + Acceleration')

mdl =

 Wilkinson Notation

9-117

Linear regression model:

 MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:

 Estimate SE tStat pValue

 __________ __________ _______ __________

 (Intercept) 45.155 3.4659 13.028 1.6266e-22

 Weight -0.0082475 0.00059836 -13.783 5.3165e-24

 Acceleration 0.19694 0.14743 1.3359 0.18493

Number of observations: 94, Error degrees of freedom: 91

Root Mean Squared Error: 4.12

R-squared: 0.743, Adjusted R-Squared 0.738

F-statistic vs. constant model: 132, p-value = 1.38e-27

The model object display uses the variable names provided in the input table.

If the input data is stored as a matrix, you can specify the formula using default variable
names such as y, x1, and x2. For example, load the carsmall sample data. Create a
matrix containing the predictor variables Weight and Acceleration. Then fit the
following model to the data:

MPG Weight Acceleration= + +b b b
0 1 2

load carsmall

X = [Weight,Acceleration];

y = MPG;

mdl = fitlm(X,y,'y ~ x1 + x2')

mdl =

Linear regression model:

 y ~ 1 + x1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 __________ __________ _______ __________

 (Intercept) 45.155 3.4659 13.028 1.6266e-22

9 Parametric Regression Analysis

9-118

 x1 -0.0082475 0.00059836 -13.783 5.3165e-24

 x2 0.19694 0.14743 1.3359 0.18493

Number of observations: 94, Error degrees of freedom: 91

Root Mean Squared Error: 4.12

R-squared: 0.743, Adjusted R-Squared 0.738

F-statistic vs. constant model: 132, p-value = 1.38e-27

The term x1 in the model specification formula corresponds to the first column of the
predictor variable matrix X. The term x2 corresponds to the second column of the input
matrix. The term y corresponds to the response variable.

Linear Model Examples

Use fitlm and stepwiselm to fit linear models.

Intercept and Two Predictors

For a linear regression model with an intercept and two fixed-effects predictors, such as

y x xi i i i= + + +b b b e0 1 1 2 2 ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1 + x2'

No Intercept and Two Predictors

For a linear regression model with no intercept and two fixed-effects predictors, such as

y x xi i i i= + +b b e1 1 2 2 ,

specify the model formula using Wilkinson notation as follows:

'y ~ -1 + x1 + x2'

Intercept, Two Predictors, and an Interaction Term

For a linear regression model with an intercept, two fixed-effects predictors, and an
interaction term, such as

 Wilkinson Notation

9-119

y x x x xi i i i i i= + + + +b b b b e0 1 1 2 2 3 1 2 ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2'

or

'y ~ x1 + x2 + x1:x2'

Intercept, Three Predictors, and All Interaction Effects

For a linear regression model with an intercept, three fixed-effects predictors, and
interaction effects between all three predictors plus all lower-order terms, such as

y xi x x x x x x x x x x xi i i i i i i i i= + + + + + + +b b b b b b b b0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 2 33 +e i ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2*x3'

Intercept, Three Predictors, and Selected Interaction Effects

For a linear regression model with an intercept, three fixed-effects predictors, and
interaction effects between two of the predictors, such as

y x x x x xi i i i i i= + + + + +b b b b b e0 1 1 2 2 3 3 4 1 2 ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2 + x3'

or

'y ~ x1 + x2 + x3 + x1:x2'

Intercept, Three Predictors, and Lower-Order Interaction Effects Only

For a linear regression model with an intercept, three fixed-effects predictors, and
pairwise interaction effects between all three predictors, but excluding an interaction
effect between all three predictors simultaneously, such as

y x x x x x x x x xi i i i i i i i i i= + + + + + + +b b b b b b b e0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 ,

9 Parametric Regression Analysis

9-120

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2*x3 - x1:x2:x3'

Linear Mixed-Effects Model Examples

Use fitlme and fitlmematrix to fit linear mixed-effects models.

Random Effect Intercept, No Predictors

For a linear mixed-effects model that contains a random intercept but no predictor terms,
such as

yim m= b0 ,

where

b b s0 00 0 0 0
2

0m m mb b N= + (), ,∼

and g is the grouping variable with m levels, specify the model formula using Wilkinson
notation as follows:

'y ~ (1 | g)'

Random Intercept and Fixed Slope for One Predictor

For a linear mixed-effects model that contains a fixed intercept, random intercept, and
fixed slope for the continuous predictor variable, such as

y xim m im= +b b0 1 ,

where

b b s0 00 0 0 0
2

0m m mb b N= + (), ,∼

and g is the grouping variable with m levels, specify the model formula using Wilkinson
notation as follows:

'y ~ x1 + (1 | g)'

 Wilkinson Notation

9-121

Random Intercept and Random Slope for One Predictor

For a linear mixed-effects model that contains a fixed intercept, plus a random intercept
and a random slope that have a possible correlation between them, such as

y xim m m im= +b b0 1 ,

where

b b
0 00 0m mb= +

b b
1 10 1m mb= +

b

b
N D

m

m

0

1

2
0

È

Î
Í

˘

˚
˙ (){ }∼ ,s q

and D is a 2-by-2 symmetric and positive semidefinite covariance matrix, parameterized
by a variance component vector θ, specify the model formula using Wilkinson notation as
follows:

'y ~ x1 + (x1 | g)'

The pattern of the random effects covariance matrix is determined by the model fitting
function. To specify the covariance matrix pattern, use the name-value pairs available
through fitlme when fitting the model. For example, you can specify the assumption
that the random intercept and random slope are independent of one another using the
'CovariancePattern' name-value pair argument in fitlme.

Generalized Linear Model Examples

Use fitglm and stepwiseglm to fit generalized linear models.

In a generalized linear model, the y response variable has a distribution other than
normal, but you can represent the model as an equation that is linear in the regression
coefficients. Specifying a generalized linear model requires three parts:

• Distribution of the response variable
• Link function
• Linear predictor

9 Parametric Regression Analysis

9-122

The distribution of the response variable and the link function are specified using name-
value pair arguments in the fit function fitglm or stepwiseglm.

The linear predictor portion of the equation, which appears on the right side of the ~
symbol in the model specification formula, uses Wilkinson notation in the same way as
for the linear model examples.

A generalized linear model models the link function, rather than the actual response, as
y. This is reflected in the output display for the model object.

Intercept and Two Predictors

For a generalized linear regression model with an intercept and two predictors, such as

log() ,y x xi i i= + +b b b0 1 1 2 2

specify the model formula using Wilkinson notation as follows:

'y ~ x1 + x2'

Generalized Linear Mixed-Effects Model Examples

Use fitglme to fit generalized linear mixed-effects models.

In a generalized linear mixed-effects model, the y response variable has a distribution
other than normal, but you can represent the model as an equation that is linear in the
regression coefficients. Specifying a generalized linear model requires three parts:

• Distribution of the response variable
• Link function
• Linear predictor

The distribution of the response variable and the link function are specified using name-
value pair arguments in the fit function fitglme.

The linear predictor portion of the equation, which appears on the right side of the ~
symbol in the model specification formula, uses Wilkinson notation in the same way as
for the linear mixed-effects model examples.

A generalized linear model models the link function as y, not the response itself. This is
reflected in the output display for the model object.

 Wilkinson Notation

9-123

The pattern of the random effects covariance matrix is determined by the model fitting
function. To specify the covariance matrix pattern, use the name-value pairs available
through fitglme when fitting the model. For example, you can specify the assumption
that the random intercept and random slope are independent of one another using the
'CovariancePattern' name-value pair argument in fitglme.

Random Intercept and Fixed Slope for One Predictor

For a generalized linear mixed-effects model that contains a fixed intercept, random
intercept, and fixed slope for the continuous predictor variable, where the response can
be modeled using a Poisson distribution, such as

log() ,y x bim im i= + +b b0 1

where

b Ni b∼ 0
2

,s()

and g is the grouping variable with m levels, specify the model formula using Wilkinson
notation as follows:

'y ~ x1 + (1 | g)'

Repeated Measures Model Examples

Use fitrm to fit repeated measures models.

One Predictor

For a repeated measures model with five response measurements and one predictor
variable, specify the model formula using Wilkinson notation as follows:

'y1-y5 ~ x1'

Three Predictors and an Interaction Term

For a repeated measures model with five response measurements and three predictor
variables, plus an interaction between two of the predictor variables, specify the model
formula using Wilkinson notation as follows:

'y1-y5 ~ x1*x2 + x3'

9 Parametric Regression Analysis

9-124

Stepwise Regression

In this section...

“Stepwise Regression to Select Appropriate Models” on page 9-124
“Compare large and small stepwise models” on page 9-124

Stepwise Regression to Select Appropriate Models

stepwiselm creates a linear model and automatically adds to or trims the model. To
create a small model, start from a constant model. To create a large model, start with a
model containing many terms. A large model usually has lower error as measured by the
fit to the original data, but might not have any advantage in predicting new data.

stepwiselm can use all the name-value options from fitlm, with additional options
relating to the starting and bounding models. In particular:

• For a small model, start with the default lower bounding model: 'constant' (a
model that has no predictor terms).

• The default upper bounding model has linear terms and interaction terms (products
of pairs of predictors). For an upper bounding model that also includes squared terms,
set the Upper name-value pair to 'quadratic'.

Compare large and small stepwise models

This example shows how to compare models that stepwiselm returns starting from a
constant model and starting from a full interaction model.

Load the carbig data and create a table from some of the data.

load carbig

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Create a mileage model stepwise starting from the constant model.

mdl1 = stepwiselm(tbl,'constant','ResponseVar','MPG')

1. Adding Weight, FStat = 888.8507, pValue = 2.9728e-103

2. Adding Horsepower, FStat = 3.8217, pValue = 0.00049608

3. Adding Horsepower:Weight, FStat = 64.8709, pValue = 9.93362e-15

mdl1 =

 Stepwise Regression

9-125

Linear regression model:

 MPG ~ 1 + Horsepower*Weight

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 63.558 2.3429 27.127 1.2343e-91

 Horsepower -0.25084 0.027279 -9.1952 2.3226e-18

 Weight -0.010772 0.00077381 -13.921 5.1372e-36

 Horsepower:Weight 5.3554e-05 6.6491e-06 8.0542 9.9336e-15

Number of observations: 392, Error degrees of freedom: 388

Root Mean Squared Error: 3.93

R-squared: 0.748, Adjusted R-Squared 0.746

F-statistic vs. constant model: 385, p-value = 7.26e-116

Create a mileage model stepwise starting from the full interaction model.

mdl2 = stepwiselm(tbl,'interactions','ResponseVar','MPG')

1. Removing Acceleration:Displacement, FStat = 0.024186, pValue = 0.8765

2. Removing Displacement:Weight, FStat = 0.33103, pValue = 0.56539

3. Removing Acceleration:Horsepower, FStat = 1.7334, pValue = 0.18876

4. Removing Acceleration:Weight, FStat = 0.93269, pValue = 0.33477

5. Removing Horsepower:Weight, FStat = 0.64486, pValue = 0.42245

mdl2 =

Linear regression model:

 MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 61.285 2.8052 21.847 1.8593e-69

 Acceleration -0.34401 0.11862 -2.9 0.0039445

 Displacement -0.081198 0.010071 -8.0623 9.5014e-15

 Horsepower -0.24313 0.026068 -9.3265 8.6556e-19

 Weight -0.0014367 0.00084041 -1.7095 0.088166

 Displacement:Horsepower 0.00054236 5.7987e-05 9.3531 7.0527e-19

Number of observations: 392, Error degrees of freedom: 386

Root Mean Squared Error: 3.84

R-squared: 0.761, Adjusted R-Squared 0.758

F-statistic vs. constant model: 246, p-value = 1.32e-117

Notice that:

• mdl1 has four coefficients (the Estimate column), and mdl2 has six coefficients.
• The adjusted R-squared of mdl1 is 0.746, which is slightly less (worse) than that of

mdl2, 0.758.

Create a mileage model stepwise with a full quadratic model as the upper bound, starting
from the full quadratic model:

9 Parametric Regression Analysis

9-126

mdl3 = stepwiselm(tbl,'quadratic',...

 'ResponseVar','MPG','Upper','quadratic');

Compare the three model complexities by examining their formulas.

mdl1.Formula

ans =

MPG ~ 1 + Horsepower*Weight

mdl2.Formula

ans =

MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

mdl3.Formula

ans =

MPG ~ 1 + Weight + Acceleration*Displacement

 + Displacement*Horsepower + Acceleration^2

The adjusted R2 values improve slightly as the models become more complex:

RSquared = [mdl1.Rsquared.Adjusted, ...

 mdl2.Rsquared.Adjusted, mdl3.Rsquared.Adjusted]

RSquared =

 0.7465 0.7580 0.7599

Compare residual plots of the three models.

subplot(3,1,1)

plotResiduals(mdl1)

subplot(3,1,2)

plotResiduals(mdl2)

subplot(3,1,3)

plotResiduals(mdl3)

 Stepwise Regression

9-127

The models have similar residuals. It is not clear which fits the data better.

Interestingly, the more complex models have larger maximum deviations of the
residuals:

Rrange1 = [min(mdl1.Residuals.Raw),max(mdl1.Residuals.Raw)];

Rrange2 = [min(mdl2.Residuals.Raw),max(mdl2.Residuals.Raw)];

Rrange3 = [min(mdl3.Residuals.Raw),max(mdl3.Residuals.Raw)];

Rranges = [Rrange1;Rrange2;Rrange3]

Rranges =

 -10.7725 14.7314

 -11.4407 16.7562

 -12.2723 16.7927

9 Parametric Regression Analysis

9-128

Robust Regression — Reduce Outlier Effects
In this section...

“What Is Robust Regression?” on page 9-128
“Robust Regression versus Standard Least-Squares Fit” on page 9-128

What Is Robust Regression?

The models described in “What Are Linear Regression Models?” on page 9-8 are based on
certain assumptions, such as a normal distribution of errors in the observed responses.
If the distribution of errors is asymmetric or prone to outliers, model assumptions
are invalidated, and parameter estimates, confidence intervals, and other computed
statistics become unreliable. Use fitlm with the RobustOpts name-value pair to create
a model that is not much affected by outliers. The robust fitting method is less sensitive
than ordinary least squares to large changes in small parts of the data.

Robust regression works by assigning a weight to each data point. Weighting is done
automatically and iteratively using a process called iteratively reweighted least squares.
In the first iteration, each point is assigned equal weight and model coefficients
are estimated using ordinary least squares. At subsequent iterations, weights are
recomputed so that points farther from model predictions in the previous iteration are
given lower weight. Model coefficients are then recomputed using weighted least squares.
The process continues until the values of the coefficient estimates converge within a
specified tolerance.

Robust Regression versus Standard Least-Squares Fit

This example shows how to use robust regression. It compares the results of a robust fit
to a standard least-squares fit.

Step 1. Prepare data.

Load the moore data. The data is in the first five columns, and the response in the sixth.

load moore

X = [moore(:,1:5)];

y = moore(:,6);

Step 2. Fit robust and nonrobust models.

Fit two linear models to the data, one using robust fitting, one not.

 Robust Regression — Reduce Outlier Effects

9-129

mdl = fitlm(X,y); % not robust

mdlr = fitlm(X,y,'RobustOpts','on');

Step 3. Examine model residuals.

Examine the residuals of the two models.

subplot(1,2,1);plotResiduals(mdl,'probability')

subplot(1,2,2);plotResiduals(mdlr,'probability')

The residuals from the robust fit (right half of the plot) are nearly all closer to the
straight line, except for the one obvious outlier.

4. Remove the outlier from the standard model

Find the index of the outlier. Examine the weight of the outlier in the robust fit.

[~,outlier] = max(mdlr.Residuals.Raw);

mdlr.Robust.Weights(outlier)

9 Parametric Regression Analysis

9-130

ans =

 0.0246

Check the median weight.

median(mdlr.Robust.Weights)

ans =

 0.9718

This weight of the outlier in the robust fit is much less than a typical weight of an
observation.

 Ridge Regression

9-131

Ridge Regression

In this section...

“Introduction to Ridge Regression” on page 9-131
“Ridge Regression” on page 9-131

Introduction to Ridge Regression

Coefficient estimates for the models described in “Linear Regression” on page 9-11 rely
on the independence of the model terms. When terms are correlated and the columns of
the design matrix X have an approximate linear dependence, the matrix (XTX)–1 becomes
close to singular. As a result, the least-squares estimate

ˆ ()b = -X X X yT T1

becomes highly sensitive to random errors in the observed response y, producing a
large variance. This situation of multicollinearity can arise, for example, when data are
collected without an experimental design.

Ridge regression addresses the problem by estimating regression coefficients using

ˆ ()b = + -X X kI X yT T1

where k is the ridge parameter and I is the identity matrix. Small positive values of k
improve the conditioning of the problem and reduce the variance of the estimates. While
biased, the reduced variance of ridge estimates often result in a smaller mean square
error when compared to least-squares estimates.

The Statistics and Machine Learning Toolbox function ridge carries out ridge
regression.

Ridge Regression

For example, load the data in acetylene.mat, with observations of the predictor
variables x1, x2, x3, and the response variable y:

load acetylene

9 Parametric Regression Analysis

9-132

Plot the predictor variables against each other:

subplot(1,3,1)

plot(x1,x2,'.')

xlabel('x1'); ylabel('x2'); grid on; axis square

subplot(1,3,2)

plot(x1,x3,'.')

xlabel('x1'); ylabel('x3'); grid on; axis square

subplot(1,3,3)

plot(x2,x3,'.')

xlabel('x2'); ylabel('x3'); grid on; axis square

Note the correlation between x1 and the other two predictor variables.

Use ridge and x2fx to compute coefficient estimates for a multilinear model with
interaction terms, for a range of ridge parameters:

X = [x1 x2 x3];

D = x2fx(X,'interaction');

D(:,1) = []; % No constant term

k = 0:1e-5:5e-3;

betahat = ridge(y,D,k);

Plot the ridge trace:

figure

plot(k,betahat,'LineWidth',2)

ylim([-100 100])

grid on

xlabel('Ridge Parameter')

ylabel('Standardized Coefficient')

 Ridge Regression

9-133

title('{\bf Ridge Trace}')

legend('x1','x2','x3','x1x2','x1x3','x2x3')

The estimates stabilize to the right of the plot. Note that the coefficient of the x2x3
interaction term changes sign at a value of the ridge parameter ≈ 5 × 10–4.

9 Parametric Regression Analysis

9-134

Lasso and Elastic Net

In this section...

“What Are Lasso and Elastic Net?” on page 9-134
“Lasso Regularization” on page 9-134
“Lasso and Elastic Net with Cross Validation” on page 9-137
“Wide Data via Lasso and Parallel Computing” on page 9-140
“Lasso and Elastic Net Details” on page 9-144
“References” on page 9-146

What Are Lasso and Elastic Net?

Lasso is a regularization technique. Use lasso to:

• Reduce the number of predictors in a regression model.
• Identify important predictors.
• Select among redundant predictors.
• Produce shrinkage estimates with potentially lower predictive errors than ordinary

least squares.

Elastic net is a related technique. Use elastic net when you have several highly
correlated variables. lasso provides elastic net regularization when you set the Alpha
name-value pair to a number strictly between 0 and 1.

See “Lasso and Elastic Net Details” on page 9-144.

For lasso regularization of regression ensembles, see regularize.

Lasso Regularization

To see how lasso identifies and discards unnecessary predictors:

1 Generate 200 samples of five-dimensional artificial data X from exponential
distributions with various means:

rng(3,'twister') % for reproducibility

X = zeros(200,5);

 Lasso and Elastic Net

9-135

for ii = 1:5

 X(:,ii) = exprnd(ii,200,1);

end

2 Generate response data Y = X*r + eps where r has just two nonzero components,
and the noise eps is normal with standard deviation 0.1:

r = [0;2;0;-3;0];

Y = X*r + randn(200,1)*.1;

3 Fit a cross-validated sequence of models with lasso, and plot the result:

[b fitinfo] = lasso(X,Y,'CV',10);

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');

The plot shows the nonzero coefficients in the regression for various values of the
Lambda regularization parameter. Larger values of Lambda appear on the left side
of the graph, meaning more regularization, resulting in fewer nonzero regression
coefficients.

9 Parametric Regression Analysis

9-136

The dashed vertical lines represent the Lambda value with minimal mean squared
error (on the right), and the Lambda value with minimal mean squared error plus
one standard deviation. This latter value is a recommended setting for Lambda.
These lines appear only when you perform cross validation. Cross validate by setting
the 'CV' name-value pair. This example uses 10-fold cross validation.

The upper part of the plot shows the degrees of freedom (df), meaning the number
of nonzero coefficients in the regression, as a function of Lambda. On the left, the
large value of Lambda causes all but one coefficient to be 0. On the right all five
coefficients are nonzero, though the plot shows only two clearly. The other three
coefficients are so small that you cannot visually distinguish them from 0.

For small values of Lambda (toward the right in the plot), the coefficient values are
close to the least-squares estimate. See step 5.

4 Find the Lambda value of the minimal cross-validated mean squared error plus one
standard deviation. Examine the MSE and coefficients of the fit at that Lambda:

lam = fitinfo.Index1SE;

fitinfo.MSE(lam)

ans =

 0.1398

b(:,lam)

ans =

 0

 1.8855

 0

 -2.9367

 0

lasso did a good job finding the coefficient vector r.
5 For comparison, find the least-squares estimate of r:

rhat = X\Y

rhat =

 -0.0038

 1.9952

 Lasso and Elastic Net

9-137

 0.0014

 -2.9993

 0.0031

The estimate b(:,lam) has slightly more mean squared error than the mean
squared error of rhat:

res = X*rhat - Y; % calculate residuals

MSEmin = res'*res/200 % b(:,lam) value is 0.1398

MSEmin =

 0.0088

But b(:,lam) has only two nonzero components, and therefore can provide better
predictive estimates on new data.

Lasso and Elastic Net with Cross Validation

Consider predicting the mileage (MPG) of a car based on its weight, displacement,
horsepower, and acceleration. The carbig data contains these measurements. The data
seem likely to be correlated, making elastic net an attractive choice.

1 Load the data:

load carbig

2 Extract the continuous (noncategorical) predictors (lasso does not handle
categorical predictors):

X = [Acceleration Displacement Horsepower Weight];

3 Perform a lasso fit with 10-fold cross validation:

[b fitinfo] = lasso(X,MPG,'CV',10);

4 Plot the result:

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');

9 Parametric Regression Analysis

9-138

5 Calculate the correlation of the predictors:

% Eliminate NaNs so corr runs

nonan = ~any(isnan([X MPG]),2);

Xnonan = X(nonan,:);

MPGnonan = MPG(nonan,:);

corr(Xnonan)

ans =

 1.0000 -0.5438 -0.6892 -0.4168

 -0.5438 1.0000 0.8973 0.9330

 -0.6892 0.8973 1.0000 0.8645

 -0.4168 0.9330 0.8645 1.0000

6 Because some predictors are highly correlated, perform elastic net fitting. Use
Alpha = 0.5:

[ba fitinfoa] = lasso(X,MPG,'CV',10,'Alpha',.5);

 Lasso and Elastic Net

9-139

7 Plot the result. Name each predictor so you can tell which curve is which:

pnames = {'Acceleration','Displacement',...

 'Horsepower','Weight'};

lassoPlot(ba,fitinfoa,'PlotType','Lambda',...

 'XScale','log','PredictorNames',pnames);

When you activate the data cursor

and click the plot, you see the name of the predictor, the coefficient, the value of
Lambda, and the index of that point, meaning the column in b associated with that
fit.

9 Parametric Regression Analysis

9-140

Here, the elastic net and lasso results are not very similar. Also, the elastic net plot
reflects a notable qualitative property of the elastic net technique. The elastic net retains
three nonzero coefficients as Lambda increases (toward the left of the plot), and these
three coefficients reach 0 at about the same Lambda value. In contrast, the lasso plot
shows two of the three coefficients becoming 0 at the same value of Lambda, while
another coefficient remains nonzero for higher values of Lambda.

This behavior exemplifies a general pattern. In general, elastic net tends to retain or
drop groups of highly correlated predictors as Lambda increases. In contrast, lasso tends
to drop smaller groups, or even individual predictors.

Wide Data via Lasso and Parallel Computing

Lasso and elastic net are especially well suited to wide data, meaning data with more
predictors than observations. Obviously, there are redundant predictors in this type of
data. Use lasso along with cross validation to identify important predictors.

Cross validation can be slow. If you have a Parallel Computing Toolbox license, speed the
computation using parallel computing.

1 Load the spectra data:
load spectra

Description

Description =

== Spectral and octane data of gasoline ==

NIR spectra and octane numbers of 60 gasoline samples

NIR: NIR spectra, measured in 2 nm intervals from 900 nm to 1700 nm

octane: octane numbers

spectra: a dataset array containing variables for NIR and octane

Reference:

Kalivas, John H., "Two Data Sets of Near Infrared Spectra," Chemometrics

and Intelligent Laboratory Systems, v.37 (1997) pp.255–259

2 Compute the default lasso fit:

[b fitinfo] = lasso(NIR,octane);

3 Plot the number of predictors in the fitted lasso regularization as a function of
Lambda, using a logarithmic x-axis:

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');

 Lasso and Elastic Net

9-141

4 It is difficult to tell which value of Lambda is appropriate. To determine a good value,
try fitting with cross validation:

tic

[b fitinfo] = lasso(NIR,octane,'CV',10);

% A time-consuming operation

toc

Elapsed time is 226.876926 seconds.

5 Plot the result:

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');

9 Parametric Regression Analysis

9-142

You can see the suggested value of Lambda is over 1e-2, and the Lambda with
minimal MSE is under 1e-2. These values are in the fitinfo structure:

fitinfo.LambdaMinMSE

ans =

 0.0057

fitinfo.Lambda1SE

ans =

 0.0190

6 Examine the quality of the fit for the suggested value of Lambda:

lambdaindex = fitinfo.Index1SE;

fitinfo.MSE(lambdaindex)

ans =

 Lasso and Elastic Net

9-143

 0.0532

fitinfo.DF(lambdaindex)

ans =

 11

The fit uses just 11 of the 401 predictors, and achieves a cross-validated MSE of
0.0532.

7 Examine the plot of cross-validated MSE:

lassoPlot(b,fitinfo,'PlotType','CV');

% Use a log scale for MSE to see small MSE values better

set(gca,'YScale','log');

As Lambda increases (toward the left), MSE increases rapidly. The coefficients are
reduced too much and they do not adequately fit the responses.

9 Parametric Regression Analysis

9-144

As Lambda decreases, the models are larger (have more nonzero coefficients). The
increasing MSE suggests that the models are overfitted.

The default set of Lambda values does not include values small enough to include
all predictors. In this case, there does not appear to be a reason to look at smaller
values. However, if you want smaller values than the default, use the LambdaRatio
parameter, or supply a sequence of Lambda values using the Lambda parameter. For
details, see the lasso reference page.

8 To compute the cross-validated lasso estimate faster, use parallel computing
(available with a Parallel Computing Toolbox license):

parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

ans =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 IdleTimeout: 30

 Cluster: [1x1 parallel.cluster.Local]

 RequestQueue: [1x1 parallel.RequestQueue]

 SpmdEnabled: 1

opts = statset('UseParallel',true);

tic;

[b fitinfo] = lasso(NIR,octane,'CV',10,'Options',opts);

toc

Elapsed time is 114.712260 seconds.

Computing in parallel using two workers is faster on this problem.

Lasso and Elastic Net Details

Overview of Lasso and Elastic Net

Lasso is a regularization technique for performing linear regression. Lasso includes
a penalty term that constrains the size of the estimated coefficients. Therefore, it
resembles ridge regression. Lasso is a shrinkage estimator: it generates coefficient
estimates that are biased to be small. Nevertheless, a lasso estimator can have smaller

 Lasso and Elastic Net

9-145

mean squared error than an ordinary least-squares estimator when you apply it to new
data.

Unlike ridge regression, as the penalty term increases, lasso sets more coefficients to
zero. This means that the lasso estimator is a smaller model, with fewer predictors.
As such, lasso is an alternative to stepwise regression and other model selection and
dimensionality reduction techniques.

Elastic net is a related technique. Elastic net is a hybrid of ridge regression and lasso
regularization. Like lasso, elastic net can generate reduced models by generating zero-
valued coefficients. Empirical studies have suggested that the elastic net technique can
outperform lasso on data with highly correlated predictors.

Definition of Lasso

The lasso technique solves this regularization problem. For a given value of λ, a
nonnegative parameter, lasso solves the problem

min ,
,b b

b b l b
0

1

2
0

2

1 1
N

y xi i
T

i

N

j

j

p

- -() +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

= =
Â Â

where

• N is the number of observations.
• yi is the response at observation i.
• xi is data, a vector of p values at observation i.
• λ is a positive regularization parameter corresponding to one value of Lambda.
• The parameters β0 and β are scalar and p-vector respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Definition of Elastic Net

The elastic net technique solves this regularization problem. For an α strictly between 0
and 1, and a nonnegative λ, elastic net solves the problem

9 Parametric Regression Analysis

9-146

min ,
,b b

ab b l b
0

1

2
0

2

1
N

y x Pi i
T

i

N

- -() + ()
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â

where

P j j

j

p

a b
a

b a b
a

b a b() =
-

+ =
-

+Ê
ËÁ

ˆ
¯̃=

Â() ()
.

1

2

1

22

2

1
2

1

Elastic net is the same as lasso when α = 1. As α shrinks toward 0, elastic net approaches
ridge regression. For other values of α, the penalty term Pα(β) interpolates between the
L1 norm of β and the squared L2 norm of β.

References

[1] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, Vol 58, No. 1, pp. 267–288, 1996.

[2] Zou, H. and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B, Vol. 67, No. 2, pp. 301–320,
2005.

[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, Vol 33, No. 1,
2010. http://www.jstatsoft.org/v33/i01

[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd
edition. Springer, New York, 2008.

http://www.jstatsoft.org/v33/i01

 Partial Least Squares

9-147

Partial Least Squares
In this section...

“Introduction to Partial Least Squares” on page 9-147
“Partial Least Squares” on page 9-147

Introduction to Partial Least Squares

Partial least-squares (PLS) regression is a technique used with data that contain
correlated predictor variables. This technique constructs new predictor variables,
known as components, as linear combinations of the original predictor variables. PLS
constructs these components while considering the observed response values, leading to a
parsimonious model with reliable predictive power.

The technique is something of a cross between multiple linear regression and principal
component analysis:

• Multiple linear regression finds a combination of the predictors that best fit a
response.

• Principal component analysis finds combinations of the predictors with large
variance, reducing correlations. The technique makes no use of response values.

• PLS finds combinations of the predictors that have a large covariance with the
response values.

PLS therefore combines information about the variances of both the predictors and the
responses, while also considering the correlations among them.

PLS shares characteristics with other regression and feature transformation techniques.
It is similar to ridge regression in that it is used in situations with correlated predictors.
It is similar to stepwise regression (or more general feature selection techniques) in that
it can be used to select a smaller set of model terms. PLS differs from these methods,
however, by transforming the original predictor space into the new component space.

The Statistics and Machine Learning Toolbox function plsregress carries out PLS
regression.

Partial Least Squares

For example, consider the data on biochemical oxygen demand in moore.mat, padded
with noisy versions of the predictors to introduce correlations:

9 Parametric Regression Analysis

9-148

load moore

y = moore(:,6); % Response

X0 = moore(:,1:5); % Original predictors

X1 = X0+10*randn(size(X0)); % Correlated predictors

X = [X0,X1];

Use plsregress to perform PLS regression with the same number of components as
predictors, then plot the percentage variance explained in the response as a function of
the number of components:

[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');

xlabel('Number of PLS components');

ylabel('Percent Variance Explained in y');

Choosing the number of components in a PLS model is a critical step. The plot
gives a rough indication, showing nearly 80% of the variance in y explained by the
first component, with as many as five additional components making significant
contributions.

 Partial Least Squares

9-149

The following computes the six-component model:

[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(X,y,6);

yfit = [ones(size(X,1),1) X]*beta;

plot(y,yfit,'o')

The scatter shows a reasonable correlation between fitted and observed responses, and
this is confirmed by the R2 statistic:

TSS = sum((y-mean(y)).^2);

RSS = sum((y-yfit).^2);

Rsquared = 1 - RSS/TSS

Rsquared =

 0.8421

A plot of the weights of the ten predictors in each of the six components shows that two of
the components (the last two computed) explain the majority of the variance in X:

plot(1:10,stats.W,'o-');

9 Parametric Regression Analysis

9-150

legend({'c1','c2','c3','c4','c5','c6'},'Location','NW')

xlabel('Predictor');

ylabel('Weight');

A plot of the mean-squared errors suggests that as few as two components may provide
an adequate model:

[axes,h1,h2] = plotyy(0:6,MSE(1,:),0:6,MSE(2,:));

set(h1,'Marker','o')

set(h2,'Marker','o')

legend('MSE Predictors','MSE Response')

xlabel('Number of Components')

 Partial Least Squares

9-151

The calculation of mean-squared errors by plsregress is controlled by optional
parameter name/value pairs specifying cross-validation type and the number of Monte
Carlo repetitions.

9 Parametric Regression Analysis

9-152

Linear Mixed-Effects Models

Linear mixed-effects models are extensions of linear regression models for data that are
collected and summarized in groups. These models describe the relationship between
a response variable and independent variables, with coefficients that can vary with
respect to one or more grouping variables. A mixed-effects model consists of two parts,
fixed effects and random effects. Fixed-effects terms are usually the conventional linear
regression part, and the random effects are associated with individual experimental
units drawn at random from a population. The random effects have prior distributions
whereas fixed effects do not. Mixed-effects models can represent the covariance structure
related to the grouping of data by associating the common random effects to observations
that have the same level of a grouping variable. The standard form of a linear mixed-
effects model is

y X Zb

fixed random error

= + +b e
{ { {

,

where

• y is the n-by-1 response vector, and n is the number of observations.
• X is an n-by-p fixed-effects design matrix.
• β is a p-by-1 fixed-effects vector.
• Z is an n-by-q random-effects design matrix.
• b is a q-by-1 random-effects vector.
• ε is the n-by-1 observation error vector.

The assumptions for the linear mixed-effects model are:

• Random-effects vector, b, and the error vector, ε, have the following prior
distributions:

b N D

N I

~ , ,

~ , ,

0

0

2

2

s q

e s

()()

()

where D is a symmetric and positive semidefinite matrix, parameterized by a variance
component vector θ, I is an n-by-n identity matrix, and σ2 is the error variance.

 Linear Mixed-Effects Models

9-153

• Random-effects vector, b, and the error vector, ε, are independent from each other.

Mixed-effects models are also called multilevel models or hierarchical models depending
on the context. Mixed-effects models is a more general term than the latter two. Mixed-
effects models might include factors that are not necessarily multilevel or hierarchical,
for example crossed factors. That is why mixed-effects is the terminology preferred here.
Sometimes mixed-effects models are expressed as multilevel regression models (first level
and grouping level models) that are fit simultaneously. For example, a varying or random
intercept model, with one continuous predictor variable x and one grouping variable with
M levels, can be expressed as

y x i n m M Nim m im im im

m

= + + = = ()
=

b b e e s

b b

0 1
2

0

1 2 1 2 0, , , .., , , , ..., , ~ , ,

000 0 0 0
2

0+ ()b b Nm m, ~ , ,s

where yim corresponds to data for observation i and group m, n is the total number
of observations, and b0m and εim are independent of each other. After substituting
the group-level parameters in the first-level model, the model for the response vector
becomes

y x bim im

fixed effects

m

random effects

im= + + +b b e
00 1 0
1 244 344 {

.

A random intercept and slope model with one continuous predictor variable x, where both
the intercept and slope vary independently by a grouping variable with M levels is

y x i n m M Nim m m im im im

m

= + + = = ()b b e e s

b

0 1
2

0

1 2 1 2 0, , , ..., , , ,..., , ~ , ,

== + ()
= + ()

b s

b b s

00 0 0 0
2

1 10 1 1 1
2

0

0

b b N

b b N

m m

m m m

, ~ , ,

, ~ , ,

or

b
b

b
Nm

m

m

=
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

0

1

0
2

1
2

0
0

0
~ , .

s

s

9 Parametric Regression Analysis

9-154

You might also have correlated random effects. In general, for a model with a random
intercept and slope, the distribution of the random effects is

b
b

b
N Dm

m

m

=
Ê

Ë
Á

ˆ

¯
˜ ()()0

1

2
0~ , ,s q

where D is a 2-by-2 symmetric and positive semidefinite matrix, parameterized by a
variance component vector θ.

After substituting the group-level parameters in the first-level model, the model for the
response vector is

y x b b xim im

fixed effects

m m im

random effects

= + + +b b00 10 0 1
1 244 344 1 2244 344

+ = =e im i n m M, , , ..., , , ,..., .1 2 1 2

If you express the group-level variable, xim, in the random-effects term by zim, this model
is

y x b b zim im

fixed effects

m m im

random effects

= + + +b b00 10 0 1
1 244 344 1 2244 344

+ = =e im i n m M, , ,..., , , ,..., .1 2 1 2

In this case, the same terms appear in both the fixed-effects design matrix and random-
effects design matrix. Each zim and xim correspond to the level m of the grouping variable.

It is also possible to explain more of the group-level variations by adding more group-
level predictor variables. A random-intercept and random-slope model with one
continuous predictor variable x, where both the intercept and slope vary independently
by a grouping variable with M levels, and one group-level predictor variable vm is

y x i n m M Nim im im im im im= + + = = ()b b e e s

b

0 1
2

1 2 1 2 0, , ,..., , , , ..., , ~ , ,

00 00 01 0 0 0
2

1 10 11 1 1

0im im m m

im im m m

v b b N

v b b N

= + + ()
= + +

b b s

b b b

, ~ , ,

, ~ 00 1
2

, .s()

This model results in main effects of the group-level predictor and an interaction term
between the first-level and group-level predictor variables in the model for the response
variable as

 Linear Mixed-Effects Models

9-155

y v b v b x i n mim im m im m im im= + + + + +() + = =b b b b e00 01 0 10 11 1 1 2 1, , , ..., , ,, ,..., ,2

00 10 01 11

M

x v v xim im im im

fixed effects

= + + +b b b b
1 244444444 34444444 1 244 344

+ + +b b xm m im

random effects

im0 1 e .

The term β11vmxim is often called a cross-level interaction in many textbooks on multilevel
models. The model for the response variable y can be expressed as

y x v v x x
b

bim im im im im im
m= []

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+ []1 11 1

00

10

01

11

1
0

1

b

b

b

b
mm

im i n m M
È

Î
Í

˘

˚
˙ + = =e , , , ..., , , ,..., ,1 2 1 2

which corresponds to the standard form given earlier,

y X Zb= + +b e .

In general, if there are R grouping variables, and m(r,i) shows the level of grouping
variable r, for observation i, then the model for the response variable for observation i is

y x z b i ni i
T

ir m r i
r

r

R

i= + + =
=
Âb e

(,)
() , , ,..., ,

1

1 2

where β is a p-by-1 fixed-effects vector, b(r)
m(r,i) is a q(r)-by-1 random-effects vector for the

rth grouping variable and level m(r,i), and εi is a 1-by-1 error term for observation i.

References

[1] Pinherio, J. C., and D. M. Bates. Mixed-Effects Models in S and S-PLUS. Statistics
and Computing Series, Springer, 2004.

[2] Hariharan, S. and J. H. Rogers. “Estimation Procedures for Hierarchical Linear
Models.” Multilevel Modeling of Educational Data (A. A. Connell and D. B.
McCoach, eds.). Charlotte, NC: Information Age Publishing, Inc., 2008.

9 Parametric Regression Analysis

9-156

[3] Hox, J. Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum
Associates, Inc., 2002

[4] Snidjers, T. and R. Bosker. Multilevel Analysis. Thousand Oaks, CA: Sage
Publications, 1999.

[5] Gelman, A. and J. Hill. Data Analysis Using Regression and Multilevel/Hierarchical
Models. New York, NY: Cambridge University Press, 2007.

See Also
fitlme | fitlmematrix | LinearMixedModel

More About
• “Prepare Data for Linear Mixed-Effects Models” on page 9-157

 Prepare Data for Linear Mixed-Effects Models

9-157

Prepare Data for Linear Mixed-Effects Models

In this section...

“Tables and Dataset Arrays” on page 9-157
“Design Matrices” on page 9-159
“Relation of Matrix Form to Tables and Dataset Arrays” on page 9-161

Tables and Dataset Arrays

To fit a linear-mixed effects model, you must store your data in a table or dataset array.
In your table or dataset array, you must have a column for each variable including the
response variable. More specifically, the table or dataset array, say tbl, must contain the
following:

• A response variable y
• Predictive variables Xjwhich can be continuous or grouping variables
• Grouping variables g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, or
a cell arrays of strings, r = 1, 2, ..., R.

You must organize your data so that each row represents an observation. And each row
should contain the value of variables and the levels of grouping variables corresponding
to that observation. For example, if you have data from an experiment with four
treatment options, on five different types of individuals chosen randomly from a
population of individuals (blocks), the table or dataset array must look like this.

Block Treatment Response

1 1 y11
1 2 y12
1 3 y13
1 4 y14
...
5 1 y51
5 2 y52

9 Parametric Regression Analysis

9-158

Block Treatment Response

5 3 y53
5 4 y54

Now, consider a split-plot experiment, where the effect of four different types of fertilizers
on the yield of tomato plants is studied. The soil where the tomato plants are planted is
divided into three blocks based on the soil type: sandy, silty, and loamy. Each block is
divided into five plots, where five types of tomato plants, (cherry, heirloom, grape, vine,
and plum) are randomly assigned to these plots. Then, the tomato plants in the plots are
divided into subplots, where each subplot is treated by one of the four fertilizers. The
data from this experiment looks like:

Soil Tomato Fertilizer Yield

'Sandy' 'Plum' 1 104
'Sandy' 'Plum' 2 136
'Sandy' 'Plum' 3 158
'Sandy' 'Plum' 4 174
'Sandy' 'Cherry' 1 57
'Sandy' 'Cherry' 2 86
...
'Sandy' 'Vine' 3 99
'Sandy' 'Vine' 4 117
'Silty' 'Plum' 1 120
'Silty' 'Plum' 2 115
...
'Loamy' 'Vine' 3 111
'Loamy' 'Vine' 4 105

You must specify the model you want to fit using the formula input argument to
fitlme.

In general, a formula for model specification is a string of the term 'y ~ terms'. For
linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed contains the fixed-

 Prepare Data for Linear Mixed-Effects Models

9-159

effects terms and random1, ..., randomR contain the random-effects terms. For
example, for the previous fertilizer experiment, consider the following mixed-effects
model

y I F I T b S b S Timjk m im
m

j ij
j

k k jk jk= + [] + [] + + +
= =

Â Âb b b e0 1

2

4

2

2

5

0 0 (*) iimjk,

where i = 1, 2, ..., 60, the index m corresponds to the fertilizer types, j corresponds to the
tomato types, and k = 1, 2, 3 corresponds to the blocks (soil). Sk represents the kth soil
type, and I[F]im is the dummy variable representing level m of the fertilizer. Similarly,
I[T]ij is the dummy variable representing the level j of the tomato type.

You can fit this model using the formula 'Yield ~ 1 + Fertilizer + Tomato +
(1|Soil)+(1|Soil:Tomato)'.

For detailed information on how to specify your model using formula, see “Relationship
Between Formula and Design Matrices” on page 9-163.

Design Matrices

If you cannot easily describe your model using a formula, you can create
design matrices to define the fixed and random effects, and fit the model using
fitlmematrix(X,y,Z,G). You must create your design matrices as follows.

Fixed-effects and random-effects design matrices X and Z:

• Enter a column of 1s for the intercept using ones(n,1), where n is the total number
of observations.

• If X1 is a continuous variable, then enter X1 as it is in a separate column.
• If X1 is a categorical variable with m levels, then there must be m – 1 dummy

variables for m – 1 levels of X1 in X.

For example, consider an experiment where you want to study the impact of quality
of raw materials from four different providers on the productivity of a production line.
If you fit a linear mixed-effects model with intercept and provider as the fixed-effects
terms, intercept is the random-effects term, and you use reference contrasts coding,
then you must construct your fixed- and random-effects design matrices as follows.

D = dummyvar(provider); % Create dummy variables

9 Parametric Regression Analysis

9-160

X = [ones(n,1) D(:,2) D(:,3) D(:,4)];

Z = [ones(n,1)];

Because reference contrast coding uses the first provider as the reference, and the
model has an intercept, you must use the dummy variables for only the last three
providers.

• If there is an interaction term of predictor variables X1 and X2, then you must enter a
column that you form by elementwise product of the vectors X1 and X2.

For example, if you want to fit a model, where there is an intercept, a continuous
treatment factor, a continuous time factor, and their interaction as the fixed-effects
in a longitudinal study, and time is the random-effects term, then your fixed- and
random-effects design matrices should look like

X = [ones(n,1),treatment,time,treatment.*time];

y = response;

Z = [time];

Grouping variables G:

There is one column for each grouping variable and a column of elementwise product of
the grouping variables in case of a nesting.

For example, if you want to group plots (plot) within blocks (block), then you must add
a column of elementwise product of plot by block. More specifically, if you want to fit a
model where there is intercept and a continuous treatment factor as the fixed-effects in a
split-block experiment, and the intercept and treatment are grouped by the plots nested
within blocks, then the design matrices should look like this.

X = [ones(n,1),treatment];

y = response;

Z = [ones(n,1),treatment];

G = [block.*plot];

Suppose in the earlier quality of raw materials example, the raw materials arrive in
bulks, and the bulks are nested within providers. If you want to fit a linear mixed-
effects model, where intercept is grouped by the bulks within providers, then your design
matrices should look like this.

D = dummyvar(provider);

X = [ones(n,1) D(:,2) D(:,3) D(:,4)];

y = response;

Z = ones(n,1);

 Prepare Data for Linear Mixed-Effects Models

9-161

G = [provider.*bulks];

In the earlier longitudinal study example, if you want to add random effects for intercept
and time grouped by subjects that participated in the study, then your design matrices
should look like

X = [ones(n,1),treatment,time, treatment.*time];

y = response;

Z = [ones(n,1),time];

G = subject;

Relation of Matrix Form to Tables and Dataset Arrays

fitlme(tbl,formula) and fitlmematrix(X,y,Z,G) are equivalent in functionality,
such that

• y is the n-by-1 response vector.
• X is an n-by-p fixed-effects design matrix. fitlme constructs this from the expression

fixed in formula.
• Z is an R-by-1 cell array with Z{r} being an n-by-q(r) random-effects design matrix

constructed from the rth expression in random in formula, r = 1, 2, ..., R.
• G is an R-by-1 cell array with G{r} being an n-by-1 grouping variable, gr, in formula

with M(r) levels or groups.

For example, if tbl is a table or dataset array containing the response variable y, the
continuous variables X1 and X2, and the grouping variable g, then to fit a linear mixed-
effects model that corresponds to the formula expression 'y ~ X1+ X2+ (X1*X2|g)'
using fitlmematrix(X,y,Z,G) the input arguments must correspond to the following:

y = tbl.y

X = [ones(n,1), tbl.X1, tbl.X2]

Z = [ones(n,1), tbl.X1, tbl.X2, tbl.X1.*tbl.X2]

G = ds.g

See Also
fitlme | fitlmematrix | LinearMixedModel

More About
• “Linear Mixed-Effects Models” on page 9-152

9 Parametric Regression Analysis

9-162

• “Relationship Between Formula and Design Matrices” on page 9-163

 Relationship Between Formula and Design Matrices

9-163

Relationship Between Formula and Design Matrices

In this section...

“Formula” on page 9-163
“Design Matrices for Fixed and Random Effects” on page 9-165
“Grouping Variables” on page 9-167

Formula

In general, a formula for model specification is a string of the form 'y ~ terms'. For
the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed and random contain
the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, or
cell arrays of strings.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|
gR)', the term fixed corresponds to a specification of the fixed-effects design matrix
X, random1 is a specification of the random-effects design matrix Z1 corresponding to
grouping variable g1, and similarly randomR is a specification of the random-effects
design matrix ZR corresponding to grouping variable gR. You can express the fixed and
random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term

9 Parametric Regression Analysis

9-164

Wilkinson Notation Factors in Standard Notation

X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)

X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1. Here are some examples for linear
mixed-effects model specification.

Examples:

Formula Description

'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2.
This is equivalent to 'y ~ 1 + X1 + X2'.

'y ~ -1 + X1 + X2' No intercept and fixed effects for X1
and X2. The implicit intercept term is
suppressed by including -1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random
effect for the intercept for each level of the
grouping variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with

possible correlation between them. This is
equivalent to 'y ~ 1 + X1 + (1 + X1|
g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 |

g1)'

Independent random effects terms for
intercept and slope.

 Relationship Between Formula and Design Matrices

9-165

Formula Description

'y ~ 1 + (1 | g1) + (1 | g2) + (1

| g1:g2)'

Random intercept model with independent
main effects for g1 and g2, plus an
independent interaction effect.

Design Matrices for Fixed and Random Effects

fitlme converts the expressions in the fixed and random parts (not grouping
variables) of a formula into design matrices as follows:

• Each term in a formula adds one or more columns to the corresponding design matrix.
• A term containing a single continuous variable adds one column to the design matrix.
• A fixed term containing a categorical variable X with k levels adds (k – 1) dummy

variables to the design matrix.

For example, if the variable Supplier represents three different suppliers a
manufacturer receives parts from, i.e. a categorical variable with three levels, and
out of six batches of parts, the first two batches come from supplier 1 (level 1), the
second two batches come from supplier 2 (level 2), and the last two batches come from
supplier 3 (level 3), such as

Supplier =

 1

 1

 2

 2

 3

 3

Then, adding Supplier to the formula as a fixed-effects or random-effects term adds
the following two dummy variables to the corresponding design matrix, using the
'reference' contrast:

 0 0

 0 0

 1 0

 1 0

 0 1

 0 1

9 Parametric Regression Analysis

9-166

For more details on dummy variables, see “Dummy Indicator Variables” on page 2-55.
For other contrast options, see the 'DummyVarCoding' name-value pair argument of
fitlme.

• If X1 and X2 are continuous variables, the product term X1:X2 adds one column
obtained by elementwise multiplication of X1 and X2 to the design matrix.

• If X1 is continuous and X2 is categorical with k levels, the product term X1:X2
multiplies elementwise X1 with the (k – 1) dummy variables representing X2, and
adds these (k – 1) columns to the design matrix.

For example, if Drug is the amount of a drug given to patients, a continuous
treatment, and Time is three distinct points in time when the health measures are
taken, a categorical variable with three levels, and out of nine observations, the first
three are observed at time point 1, the second three are observed at time point 2, and
the last three are observed at time point 3 so that

[Drug Time] =

 0.1000 1.0000

 0.2000 1.0000

 0.5000 2.0000

 0.6000 2.0000

 0.3000 3.0000

 0.8000 3.0000

Then, the product term Drug:Time adds the following two variables to the design
matrix:

 0 0

 0 0

0.5000 0

0.6000 0

 0 0.3000

 0 0.8000

• If X1 and X2 are categorical variables with k and m levels respectively, the product
term X1:X2 adds (k – 1)*(m – 1) dummy variables to the design matrix formed by
taking the elementwise product of each dummy variable representing X1 with each
dummy variable representing X2.

For example, in an experiment to determine the impact of the type of corn and the
popping method on the yield, suppose there are three types of Corn and two types of
Method as follows:

 Relationship Between Formula and Design Matrices

9-167

 1 oil

 1 oil

 1 air

 1 air

 2 oil

 2 oil

 2 air

 2 air

 3 oil

 3 oil

 3 air

 3 air

Then, the interaction term Corn:Method adds the following to the design matrix:

 0 0

 0 0

 0 0

 0 0

 1 0

 1 0

 0 0

 0 0

 0 1

 0 1

 0 0

 0 0

• The term X1*X2 adds the necessary number of columns for X1, X2, and X1:X2 to the
design matrix.

• The term X1^2 adds the necessary number of columns for X1 and X1:X1 to the design
matrix.

• The symbol 1 (one) in the formula stands for a column of all 1s. By default a column
of 1s is included in the design matrix. To exclude a column of ones from the design
matrix, you must explicitly specify –1 as a term in the expression.

Grouping Variables

fitlme handles the grouping variables in the (.|group) part of a formula as follows:

• If a grouping variable has k levels, then k dummy variables represent this grouping.

9 Parametric Regression Analysis

9-168

For example, suppose District is a categorical grouping variable with three levels,
showing the three types of districts, and out of six schools, the first two are in district
1, the second two are in district 2, and the last two are in district 3, so that

District =

 1

 1

 2

 2

 3

 3

Then, the dummy variables that represent this grouping are:

 1 0 0

 1 0 0

 0 1 0

 0 1 0

 0 0 1

 0 0 1

• If X1 is a continuous random-effects variable and X2 is a grouping variable with k
levels, then the random term (X1 – 1|X2) multiplies elementwise X1 with the k
dummy variables representing X2 and adds these k columns to the random-effects
design matrix.

For example, suppose Score is a continuous variable showing the scores of students
from a math exam in a school, and Class is a categorical variable with three levels,
showing the three different classes in a school. Also, suppose out of nine observations
first three correspond to the scores of students in the first class, the second three
correspond to scores of students in the second class, and the last three correspond to
the scores of students in the third class, such as

[Score Class] =

 78.0000 1.0000

 68.0000 1.0000

 81.0000 2.0000

 53.0000 2.0000

 85.0000 3.0000

 72.0000 3.0000

Then, the random term (Score – 1|Class) adds the following three columns to the
random-effects design matrix:

 Relationship Between Formula and Design Matrices

9-169

 78.0000 0 0

 68.0000 0 0

 0 81.0000 0

 0 53.0000 0

 0 0 85.0000

 0 0 72.0000

• If X1 is a continuous predictor variable and X2 and X3 are grouping variables with
k and m levels respectively, the term (X1|X2:X3) represents this grouping of X1
with k*m dummy variables formed by taking the elementwise product of each dummy
variable representing X2 with each dummy variable representing X3.

For example, suppose Treatment is a continuous predictor variable, and there are
three levels of Block and two levels of Plot nested within the block as follows:

 0.1000 1 a

 0.2000 1 b

 0.5000 2 a

 0.6000 2 b

 0.3000 3 a

 0.8000 3 b

Then, the random term (Treatment – 1|Block:Plot) adds the following to the
random-effects design matrix:

 0.1000 0 0 0 0 0

 0 0.2000 0 0 0 0

 0 0 0.5000 0 0 0

 0 0 0 0.6000 0 0

 0 0 0 0 0.3000 0

 0 0 0 0 0 0.8000

See Also
fitlme | fitlmematrix | LinearMixedModel

More About
• “Prepare Data for Linear Mixed-Effects Models” on page 9-157

9 Parametric Regression Analysis

9-170

Estimating Parameters in Linear Mixed-Effects Models

In this section...

“Maximum Likelihood (ML)” on page 9-171
“Restricted Maximum Likelihood (REML)” on page 9-172

A linear mixed-effects model is of the form

y X Zb

fixed random error

= + +b e
{ { {

,

where

• y is the n-by-1 response vector, and n is the number of observations.
• X is an n-by-p fixed-effects design matrix.
• β is a p-by-1 fixed-effects vector.
• Z is an n-by-q random-effects design matrix.
• b is a q-by-1 random-effects vector.
• ε is the n-by-1 observation error vector.

The random-effects vector, b, and the error vector, ε, are assumed to have the following
independent prior distributions:

b N D

N I

~ , ,

~ , ,

0

0

2

2

s q

e s

()()

()

where D is a symmetric and positive semidefinite matrix, parameterized by a variance
component vector θ, I is an n-by-n identity matrix, and σ2 is the error variance.

In this model, the parameters to estimate are the fixed-effects coefficients β, and the
variance components θ and ε. The two most commonly used approaches to parameter
estimation in linear mixed-effects models are maximum likelihood and restricted
maximum likelihood methods.

 Estimating Parameters in Linear Mixed-Effects Models

9-171

Maximum Likelihood (ML)

The maximum likelihood estimation includes both regression coefficients and the
variance components, that is, both fixed-effects and random-effects terms in the
likelihood function.

For a linear mixed-effects model defined above, the conditional response of the response
variable y given β, b, θ, and σ2 is

y b N X Zb In| , , , ~ , .b q s b s2 2+()

The likelihood of y given β, θ, and σ2 is

P y P y b P b db| , , | , , , | , ,b q s b q s q s2 2 2() = () ()Ú

where

P b

D

b D b

P y b

q

T| , exp

| , , ,

q s

ps q s

b q

2

2 2
1

2
2

11

2

1 1

2
() =

() ()
-

Ï
Ì
Ó

¸
˝
˛

- and

ss

ps
s

b b2

2 2
2

1

2

1

2
() =

()
- - -() - -()Ï

Ì
Ó

¸
˝
˛n

T
y X Zb y X Zbexp .

Suppose Λ(θ) is the lower triangular Cholesky factor of D(θ) and Δ(θ) is the inverse of
Λ(θ). Then,

D
T

q q q() = D () D()
-1

.

Define

r b b b y X Zb y X ZbT T T2 b q q q b b, , ,() = D () D () + - -() - -()

and suppose b* is the value of b that satisfies

9 Parametric Regression Analysis

9-172

∂ ()
∂

=
r b

b
b

2

0
b q, ,

*

for given β and θ. Then, the likelihood function is

P y D r b
n

T

| , , exp , ,*b q s ps q
s

b b q2 2 2 1
2

2
22

1

2

1() = () () - ()()Ï
Ì
Ó

¸
˝
˛

D

- -

DD + Z ZT
1

2

.

P(y|β,θ,σ2) is first maximized with respect to β and σ2 for a given θ. Thus the optimized
solutions b̂ q() and ŝ q2 () are obtained as functions of θ. Substituting these solutions

into the likelihood function produces P y| � �b q q s q() ()(), , 2 . This expression is called

a profiled likelihood where β and σ2 have been profiled out. P y| � �b q q s q() ()(), , 2 is a

function of θ, and the algorithm then optimizes it with respect to θ. Once it finds the
optimal estimate of θ, the estimates of β and σ2 are given by b̂ q() .

The ML method treats β as fixed but unknown quantities when the variance components
are estimated, but does not take into account the degrees of freedom lost by estimating
the fixed effects. This causes ML estimates to be biased with smaller variances. However,
one advantage of ML over REML is that it is possible to compare two models in terms of
their fixed- and random-effects terms. On the other hand, if you use REML to estimate
the parameters, you can only compare two models, that are nested in their random-
effects terms, with the same fixed-effects design.

Restricted Maximum Likelihood (REML)

Restricted maximum likelihood estimation includes only the variance components, that
is, the parameters that parameterize the random-effects terms in the linear mixed-effects
model. β is estimated in a second step. Assuming a uniform improper prior distribution
for β and integrating the likelihood P(y|β,θ,σ2) with respect to β results in the restricted
likelihood P(y|θ,σ2). That is,

P y P y P d P y d| , | , , | , , .q s b q s b b b q s b2 2 2() = () () = ()Ú Ú

 Estimating Parameters in Linear Mixed-Effects Models

9-173

The algorithm first profiles out ŝ R

2 and maximizes remaining objective function with
respect to θ to find q̂R . The restricted likelihood is then maximized with respect to σ2 to

find ŝ R

2 . Then, it estimates β by finding its expected value with respect to the posterior
distribution

P y R Rb q s| , � , � .2()

REML accounts for the degrees of freedom lost by estimating the fixed effects, and
makes a less biased estimation of random effects variances. The estimates of θ and σ2

are invariant to the value of β and less sensitive to outliers in the data compared to ML
estimates. However, if you use REML to estimate the parameters, you can only compare
two models that have the identical fixed-effects design matrices and are nested in their
random-effects terms.

References

[1] Pinherio, J. C., and D. M. Bates. Mixed-Effects Models in S and S-PLUS. Statistics
and Computing Series, Springer, 2004.

[2] Hariharan, S. and J. H. Rogers. “Estimation Procedures for Hierarchical Linear
Models.” Multilevel Modeling of Educational Data (A. A. Connell and D. B.
McCoach, eds.). Charlotte, NC: Information Age Publishing, Inc., 2008.

[3] Raudenbush, S. W. and A. S. Bryk. Hierarchical Linear Models: Applications and
Data Analysis Methods, 2nd ed. Thousand Oaks, CA: Sage Publications, 2002.

[4] Hox, J. Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum
Associates, Inc, 2002.

[5] Snidjers, T. and R. Bosker. Multilevel Analysis. Thousand Oaks, CA: Sage
Publications, 1999.

[6] McCulloch, C.E., R. S. Shayle, and J. M. Neuhaus. Generalized, Linear, and Mixed
Models. Wiley, 2008.

See Also
fitlme | fitlmematrix | LinearMixedModel

9 Parametric Regression Analysis

9-174

More About
• “Linear Mixed-Effects Models” on page 9-152

 Linear Mixed-Effects Model Workflow

9-175

Linear Mixed-Effects Model Workflow

This example shows how to fit and analyze a linear mixed-effects model (LME).

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated
influenza rates (in 9 different regions, estimated from Google® searches, plus a
nationwide estimate from the CDC).

Reorganize and plot the data.

To fit a linear-mixed effects model, your data must be in a properly formatted dataset
array. To fit a linear mixed-effects model with the influenza rates as the responses,
combine the nine columns corresponding to the regions into a tall array. The new dataset
array, flu2, must have the response variable FluRate, the nominal variable Region
that shows which region each estimate is from, the nationwide estimate WtdILI, and the
grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Define flu2 as a table.

flu2 = dataset2table(flu2);

Plot flu rates versus the nationwide estimate.

plot(flu2.WtdILI,flu2.FluRate,'ro')

xlabel('WtdILI')

ylabel('Flu Rate')

9 Parametric Regression Analysis

9-176

You can see that the flu rates in regions have a direct relationship with the nationwide
estimate.

Fit an LME model and interpret the results.

Fit a linear mixed-effects model with the nationwide estimate as the predictor variable
and a random intercept that varies by Date.

lme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')

lme =

Linear mixed-effects model fit by ML

 Linear Mixed-Effects Model Workflow

9-177

Model information:

 Number of observations 468

 Fixed effects coefficients 2

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 286.24 302.83 -139.12 278.24

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.16385 0.057525 2.8484 466 0.0045885 0.050813 0.27689

 'WtdILI' 0.7236 0.032219 22.459 466 3.0502e-76 0.66028 0.78691

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.17146 0.13227 0.22226

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.30201 0.28217 0.32324

The small p-values of 0.0045885 and 3.0502e-76 indicate that both the intercept and
nationwide estimate are significant. Also, the confidence limits for the standard deviation
of the random-effects term, σb, do not include 0 (0.13227, 0.22226), which indicates that
the random-effects term is significant.

Plot the raw residuals versus the fitted values.

figure();

plotResiduals(lme,'fitted')

9 Parametric Regression Analysis

9-178

The variance of residuals increases with increasing fitted response values, which is
known as heteroscedasticity.

Find the two observations on the top right that appear like outliers.

find(residuals(lme) > 1.5)

ans =

 98

 107

Refit the model by removing these observations.

lme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)','Exclude',[98,107]);

 Linear Mixed-Effects Model Workflow

9-179

Improve the model.

Determine if including an independent random term for the nationwide estimate grouped
by Date improves the model.

altlme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (WtdILI-1|Date)',...

'Exclude',[98,107])

altlme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 466

 Fixed effects coefficients 2

 Random effects coefficients 104

 Covariance parameters 3

Formula:

 FluRate ~ 1 + WtdILI + (1 | Date) + (WtdILI | Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 179.39 200.11 -84.694 169.39

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.17837 0.054585 3.2676 464 0.001165 0.0711 0.28563

 'WtdILI' 0.70836 0.030594 23.153 464 2.123e-79 0.64824 0.76849

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.16631 0.12977 0.21313

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'WtdILI' 'WtdILI' 'std' 4.7264e-08 NaN NaN

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.26691 0.24934 0.28572

9 Parametric Regression Analysis

9-180

The estimated standard deviation of WtdILI term is nearly 0 and its confidence interval
cannot be computed. This is an indication that the model is overparameterized and the
(WtdILI-1|Date) term is not significant. You can formally test this using the compare
method as follows: compare(lme,altlme,'CheckNesting',true).

Add a random effects-term for intercept grouped by Region to the initial model lme.

lme2 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (1|Region)',...

'Exclude',[98,107]);

Compare the models lme and lme2.

compare(lme,lme2,'CheckNesting',true)

ans =

 Theoretical Likelihood Ratio Test

 Model DF AIC BIC LogLik LRStat deltaDF pValue

 lme 4 177.39 193.97 -84.694

 lme2 5 62.265 82.986 -26.133 117.12 1 0

The p-value of 0 indicates that lme2 is a better fit than lme.

Now, check if adding a potentially correlated random-effects term for the intercept and
national average improves the model lme2.

lme3 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (1 + WtdILI|Region)',...

'Exclude',[98,107])

lme3 =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 466

 Fixed effects coefficients 2

 Random effects coefficients 70

 Covariance parameters 5

Formula:

 FluRate ~ 1 + WtdILI + (1 | Date) + (1 + WtdILI | Region)

 Linear Mixed-Effects Model Workflow

9-181

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 13.338 42.348 0.33076 -0.66153

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.1795 0.054953 3.2665 464 0.0011697 0.071514 0.28749

 'WtdILI' 0.70719 0.04252 16.632 464 4.6451e-49 0.62363 0.79074

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.17634 0.14093 0.22064

Group: Region (9 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.0077037 3.2273e-16 1.8389e+11

 'WtdILI' '(Intercept)' 'corr' -0.059604 -0.99996 0.99995

 'WtdILI' 'WtdILI' 'std' 0.088069 0.051693 0.15004

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.20976 0.19568 0.22486

The estimate for the standard deviation of the random-effects term for intercept grouped
by Region is 0.0077037, its confidence interval is very large and includes zero. This
indicates that the random-effects for intercept grouped by Region is insignificant. The
correlation between the random-effects for intercept and WtdILI is –0.059604. Its
confidence interval is also very large and includes zero. This is an indication that the
correlation is not significant.

Refit the model by eliminating the intercept from the (1 + WtdILI | Region)
random-effects term.

lme3 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (WtdILI - 1|Region)',...

'Exclude',[98,107])

lme3 =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 466

9 Parametric Regression Analysis

9-182

 Fixed effects coefficients 2

 Random effects coefficients 61

 Covariance parameters 3

Formula:

 FluRate ~ 1 + WtdILI + (1 | Date) + (WtdILI | Region)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 9.3395 30.06 0.33023 -0.66046

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.1795 0.054892 3.2702 464 0.0011549 0.071637 0.28737

 'WtdILI' 0.70718 0.042486 16.645 464 4.0496e-49 0.62369 0.79067

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.17633 0.14092 0.22062

Group: Region (9 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'WtdILI' 'WtdILI' 'std' 0.087925 0.054474 0.14192

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.20979 0.19585 0.22473

All terms in the new model lme3 are significant.

Compare lme2 and lme3.

compare(lme2,lme3,'CheckNesting',true,'NSim',100)

ans =

 Simulated Likelihood Ratio Test: Nsim = 100, Alpha = 0.05

 Model DF AIC BIC LogLik LRStat pValue Lower Upper

 lme2 5 62.265 82.986 -26.133

 lme3 5 9.3395 30.06 0.33023 52.926 0.009901 0.00025064 0.053932

The p-value of 0.009901 indicates that lme3 is a better fit than lme2.

 Linear Mixed-Effects Model Workflow

9-183

Add a quadratic fixed-effects term to the model lme3.

lme4 = fitlme(flu2,'FluRate ~ 1 + WtdILI^2 + (1|Date) + (WtdILI - 1|Region)',...

'Exclude',[98,107])

lme4 =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 466

 Fixed effects coefficients 3

 Random effects coefficients 61

 Covariance parameters 3

Formula:

 FluRate ~ 1 + WtdILI + WtdILI^2 + (1 | Date) + (WtdILI | Region)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 6.7234 31.588 2.6383 -5.2766

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' -0.063406 0.12236 -0.51821 463 0.60456 -0.30385 0.17704

 'WtdILI' 1.0594 0.16554 6.3996 463 3.8232e-10 0.73406 1.3847

 'WtdILI^2' -0.096919 0.0441 -2.1977 463 0.028463 -0.18358 -0.010259

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.16732 0.13326 0.21009

Group: Region (9 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'WtdILI' 'WtdILI' 'std' 0.087865 0.054443 0.1418

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.20979 0.19585 0.22473

The p-value of 0.028463 indicates that the coefficient of the quadratic term WtdILI^2 is
significant.

9 Parametric Regression Analysis

9-184

Plot the fitted response versus the observed response and residuals.

F = fitted(lme4);

R = response(lme4);

figure();

plot(R,F,'rx')

xlabel('Response')

ylabel('Fitted')

The fitted versus observed response values form almost 45-degree angle indicating a good
fit.

Plot the residuals versus the fitted values.

 Linear Mixed-Effects Model Workflow

9-185

figure();

plotResiduals(lme4,'fitted')

Although it has improved, you can still see some heteroscedasticity in the model. This
might be due to another predictor that does not exist in the data set, hence not in the
model.

Find the fitted flu rate value for region ENCentral, date 11/6/2005.

F(flu2.Region == 'ENCentral' & flu2.Date == '11/6/2005')

ans =

 1.4860

9 Parametric Regression Analysis

9-186

Randomly generate response values.

Randomly generate response values for a national estimate of 1.625, region MidAtl, and
date 4/23/2006. First, define the new table. Because Date and Region are nominal in the
original table, you must define them similarly in the new table.

tblnew.Date = nominal('4/23/2006');

tblnew.WtdILI = 1.625;

tblnew.Region = nominal('MidAtl');

tblnew = struct2table(tblnew);

Now, generate the response value.

random(lme4,tblnew)

ans =

 1.5048

 Fit Mixed-Effects Spline Regression

9-187

Fit Mixed-Effects Spline Regression

This example shows how to fit a mixed-effects linear spline model.

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load mespline

This is simulated data.

Plot y versus sorted x.

[x_sorted,I] = sort(x,'ascend');

plot(x_sorted,y(I),'o')

9 Parametric Regression Analysis

9-188

Fit the following mixed-effects linear spline regression model

y x b x ki i j i j

j

K

i= + + -() +
+

=
Âb b e1 2

1

,

where kj is the j th knot, and K is the total number of knots. Assume that bj~N(0,σ2
b) and

ε~N(0,σ2).

Define the knots.

k = linspace(0.05,0.95,100);

 Fit Mixed-Effects Spline Regression

9-189

Define the design matrices.

X = [ones(1000,1),x];

Z = zeros(length(x),length(k));

for j = 1:length(k)

 Z(:,j) = max(X(:,2) - k(j),0);

end

Fit the model with an isotropic covariance structure for the random effects.

lme = fitlmematrix(X,y,Z,[],'CovariancePattern','Isotropic');

Fit a fixed-effects only model.

X = [X Z];

lme_fixed = fitlmematrix(X,y,[],[]);

Compare lme_fixed and lme via a simulated likelihood ratio test.

compare(lme,lme_fixed,'NSim',500,'CheckNesting',true)

ans =

 Simulated Likelihood Ratio Test: Nsim = 500, Alpha = 0.05

 Model DF AIC BIC LogLik LRStat pValue Lower Upper

 lme 4 170.62 190.25 -81.309

 lme_fixed 103 113.38 618.88 46.309 255.24 0.64471 0.60105 0.68666

The p-value of 0.64471 indicates that the fixed-effects only model is not a better fit than
the mixed-effects spline regression model.

Plot the fitted values from both models on top of the original response data.

R = response(lme);

figure();

plot(x_sorted,R(I),'o', 'MarkerFaceColor',[0.8,0.8,0.8],...

 'MarkerEdgeColor',[0.8,0.8,0.8],'MarkerSize',4);

hold on

F = fitted(lme);

F_fixed = fitted(lme_fixed);

plot(x_sorted,F(I),'b');

plot(x_sorted,F_fixed(I),'r');

legend('data','mixed effects','fixed effects','Location','NorthWest')

9 Parametric Regression Analysis

9-190

xlabel('sorted x values');

ylabel('y');

hold off

You can also see from the figure that the mixed-effects model provides a better fit to data
than the fixed-effects only model.

10

Generalized Linear Models

• “Multinomial Models for Nominal Responses” on page 10-2
• “Multinomial Models for Ordinal Responses” on page 10-5
• “Hierarchical Multinomial Models” on page 10-9
• “Generalized Linear Models” on page 10-12
• “Lasso Regularization of Generalized Linear Models” on page 10-45
• “Generalized Linear Mixed-Effects Models” on page 10-64
• “Estimating Parameters in Generalized Linear Mixed-Effects Models” on page

10-76
• “Fit a Generalized Linear Mixed-Effects Model” on page 10-79

10 Generalized Linear Models

10-2

Multinomial Models for Nominal Responses

The outcome of a response variable might be one of a restricted set of possible values.
If there are only two possible outcomes, such as a yes or no answer to a question, these
responses are called binary responses. If there are multiple outcomes, then they are
called polytomous responses. Some examples include the degree of a disease (mild,
medium, severe), preferred districts to live in a city, and so on. When the response
variable is nominal, there is no natural order among the response variable categories.
Nominal response models explain and predict the probability that an observation is in
each category of a categorical response variable.

A nominal response model is one of several natural extensions of the binary logit model
and is also called a multinomial logit model. The multinomial logit model explains
the relative risk of being in one category versus being in the reference category, k,
using a linear combination of predictor variables. Consequently, the probability
of each outcome is expressed as a nonlinear function of p predictor variables. The
'interactions','on' name-value pair argument in mnrfit corresponds to this
multinomial model with separate intercept and slopes among categories. mnrfit uses
the default logit link function for multinomial models. You cannot specify a different link
function for multinomial responses.

The multinomial logit model is

ln ,

ln

p
p

a b b b

p
p

a b

1
1 11 1 12 2 1

2
2 21 1

k
p p

k

X X X

X

Ê

Ë
Á

ˆ

¯
˜ = + + + +

Ê

Ë
Á

ˆ

¯
˜ = + +

L

bb b

p
p

a b b

22 2 2

1
1 1 1 1 1 2 2

X X

X X

p p

k

k
k k k

+ +

Ê

Ë
Á

ˆ

¯
˜ = + + +-

- - -

L

M

,

ln () () () LL+ -b() ,k p pX1

where πj = P(y = j) is the probability of an outcome being in category j, k is the number
of response categories, and p is the number of predictor variables. Theoretically, any
category can be the reference category, but mnrfit chooses the last one, k, as the
reference category. Thus, mnrfit assumes the coefficients of the kth category are
zero. The total of j – 1 equations are solved simultaneously to estimate the coefficients.
mnrfit uses the iteratively weighted least squares algorithm to find the maximum
likelihood estimates.

 Multinomial Models for Nominal Responses

10-3

The coefficients in the model express the effects of the predictor variables on the relative
risk or the log odds of being in category j versus the reference category, here k. For
example, the coefficient β23 indicates that the probability of the response variable being
in category 2 compared to the probability of being in category k increases exp(β23) times
for each unit increase in X3, given all else is held constant. Or it indicates that the
relative log odds of the response variable being category 2 versus in category k increases
β23 times with a one-unit increase in X3, given all else equal.

Based on the nominal response model, and the assumption that the coefficients for the
last category are zero, the probability of being in each category is

p

a b

a b
j

x

x

j

k
P y j

e

e

j k

j jl l
l

p

j jl l
l

p
= =() =

Â

+
Â

= -

+

+

=

-

=

=Â

1

11

1 1

1

1

, , , .L

The probability of the kth category becomes

p
a b

k
x

j

k
P y k

e
j jl l

l

p
= =() =

+
Â+

=

-
=Â

1

1 1

1

1

,

which is simply equal to 1 – π1 – π2 – ... – πk–1.

After estimating the model coefficients using mnrfit, you can estimate the category
probabilities or the number in each category using mnrval (the default name-value pair
is 'type','category'). This function accepts the coefficient estimates and the model
statistics mnrfit returns and estimates the categorical probabilities or the number
in each category and their confidence bounds. You can also specify the cumulative or
conditional probabilities or numbers to estimate using the 'type' name-value pair
argument in mnrval.

References

[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

10 Generalized Linear Models

10-4

[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage
Publications, 1997.

[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models.
Chapman and Hall/CRC. Taylor & Francis Group, 2008.

See Also
fitglm | glmfit | glmval | mnrfit | mnrval

More About
• “Multinomial Models for Ordinal Responses” on page 10-5
• “Hierarchical Multinomial Models” on page 10-9

 Multinomial Models for Ordinal Responses

10-5

Multinomial Models for Ordinal Responses

The outcome of a response variable might be one of a restricted set of possible values.
If there are only two possible outcomes, such as male and female for gender, these
responses are called binary responses. If there are multiple outcomes, then they are
called polytomous responses. Some examples of polytomous responses include levels
of a disease (mild, medium, severe), preferred districts to live in a city, the species for
a certain flower type, and so on. Sometimes there might be a natural order among the
response categories. These responses are called ordinal responses.

The ordering might be inherent in the category choices, such as an individual being not
satisfied, satisfied, or very satisfied with an online customer service. The ordering might
also be introduced by categorization of a latent (continuous) variable, such as in the case
of an individual being in the low risk, medium risk, or high risk group for developing a
certain disease, based on a quantitative medical measure such as blood pressure.

You can specify a multinomial regression model that uses the natural ordering among
the response categories. This ordinal model describes the relationship between the
cumulative probabilities of the categories and predictor variables.

Different link functions can describe this relationship with logit and probit being the
most used.

• Logit: The default link function mnrfit uses for ordinal categories is the logit link
function. This models the log cumulative odds. The 'link','logit' name-value
pair specifies this in mnrfit. Log cumulative odds is the logarithm of the ratio of the
probability that a response belongs to a category with a value less than or equal to
category j, P(y ≤ cj), and the probability that a response belongs to a category with a
value greater than category j, P(y >cj).

Ordinal models are usually based on the assumption that the effects of predictor
variables are the same for all categories on the logarithmic scale. That is, the model
has different intercepts but common slopes (coefficients) among categories. This
model is called parallel regression or the proportional odds model. It is the default for
ordinal responses, and the 'interactions','off' name-value pair specifies this
model in mnrfit.

The proportional odds model is

10 Generalized Linear Models

10-6

ln
()

()
ln

P y c

P y c
X X

k
p

£
>

Ê

Ë
Á

ˆ

¯
˜ =

+ +
Ê

Ë
Á

ˆ

¯
˜ = + + + +1

1

1

2
1 1 1 2 2

p
p p

a b b b
L

L XX

P y c

P y c
X

p

k

,

ln
()

()
ln

£
>

Ê

Ë
Á

ˆ

¯
˜ =

+
+ +

Ê

Ë
Á

ˆ

¯
˜ = + +2

2

1 2

3
2 1 1 2

p p
p p

a b b
L

XX X

P y c

P y c

p p

k

k

k

k

2

1

1

1 2 1

+ +

£
>

Ê

Ë
Á

ˆ

¯
˜ =

+ + +Ê

Ë
Á-

-

-

L

M

L

b

p p p
p

,

ln
()

()
ln

ˆ̂

¯
˜ = + + + +-a b b bk p pX X X1 1 1 2 2 L ,

where πj, j = 1, 2, ..., k, are the category probabilities.

For example, for a response variable with three categories, there are 3 – 1 = 2
equations as follows:

ln ,

ln

p
p p

a b b b

p p
p

a b

1

2 3
1 1 1 2 2

1 2

3
2 1

+

Ê

Ë
Á

ˆ

¯
˜ = + + + +

+Ê

Ë
Á

ˆ

¯
˜ = +

X X X

X

p pL

11 2 2+ + +b bX Xp pL .

Under the proportional odds assumption, the partial effect of a predictor variable X is
invariant to the choice of the response variable category, j. For example, if there are
three categories, then the coefficients express the impact of a predictor variable on the
relative risk or log odds of the response value being in category 1 versus categories 2
or 3, or in category 1 or 2 versus category 3.

Thus, a unit change in variable X2 would mean a change in the cumulative odds of the
response value being in category 1 versus categories 2 or 3, or category 1 or 2 versus
category 3 by a factor of exp(β2), given all else equal.

You can alternatively fit a model with different intercept and slopes among the
categories by using the 'interactions','on' name-value pair argument. However,
using this option for ordinal models when the equal slopes model is true causes a loss
of efficiency (you lose the advantage of estimating fewer parameters).

• Probit: The 'link','probit' name-value pair argument uses the probit link
function which is based on a normally distributed latent variable assumption. For
ordinal response variables this is also called an ordered probit model. Consider the

 Multinomial Models for Ordinal Responses

10-7

regression model that describes the relationship of a latent variable y* of an ordinal
process and a vector of predictor variables, X,

y X= +b e ,

where the error term ε has a standard normal distribution. Suppose there is the
following relationship between the latent variable y* and the observed variable y:

y c if y

y c if y

y c if yk k k

= < £

= < £

= < £
-

1 0 1

2 1 2

1

a a

a a

a a

*

*

*

,

,

,

M M

where α0 = – ∞ and αk = ∞. Then, the cumulative probability of y being in category j or
one of earlier categories, P(y ≤ cj), is equal to

P y c P y P X P X Xj j j j j£() = <() = + <() = < -() = -()* ,a b e a e a b a bF

where Φ is standard normal cumulative distribution function. Thus,

F- £()() = -1 P y c Xj ja b ,

where αj corresponds to the cut points of the latent variable and the intercept in the
regression model. This only holds under the assumptions of a normal latent variable
and parallel regression. More generally, for a response variable with k categories and
multiple predictors, the ordered probit model is

F

F

-

-

£()() = + + +

£()() = + + +

1
1 1 1 1

1
2 2 1 1

P y c X X

P y c X X

p p

p p

a b b

a b b

L

L

M M

,

,

FF-
- -£()() = + + +1

1 1 1 1P y c X Xk k p pa b bL ,

where P(y ≤ cj) = π1 + π2 + ... + πj.

10 Generalized Linear Models

10-8

The coefficients indicate the impact of a unit change in the predictor variable on the
likelihood of a state. A positive coefficient, β1, for example, indicates an increase in the
underlying latent variable with an increase in the corresponding predictor variable,
X1. Hence, it causes a decrease in P(y ≤ c1) and an increase in P(y ≤ ck).

After estimating the model coefficients using mnrfit, you can estimate the cumulative
probabilities or the cumulative number in each category using mnrval with the
'type','cumulative' name-value pair option. mnrval accepts the coefficient
estimates and the model statistics mnrfit returns, and estimates the categorical
probabilities or the number in each category and their confidence intervals. You can
specify which category or conditional probabilities or numbers to estimate by changing
the value of the 'type' name-value pair argument.

References

[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage
Publications, 1997.

[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models.
Chapman and Hall/CRC. Taylor & Francis Group, 2008.

See Also
fitglm | glmfit | glmval | mnrfit | mnrval

More About
• “Multinomial Models for Nominal Responses” on page 10-2
• “Hierarchical Multinomial Models” on page 10-9

 Hierarchical Multinomial Models

10-9

Hierarchical Multinomial Models

The outcome of a response variable might sometimes be one of a restricted set of possible
values. If there are only two possible outcomes, such as male and female for gender,
these responses are called binary responses. If there are multiple outcomes, then they
are called polytomous responses. These responses are usually qualitative rather than
quantitative, such as preferred districts to live in a city, the severity level of a disease,
the species for a certain flower type, and so on. Polytomous responses might also have
categories which are not independent of each other. Instead the response happens
in a sequential manner, or one category is nested in the previous one. These types of
responses are called hierarchical, or sequential, or nested multinomial responses.

For example, if the response is the number of cigarettes a person smokes in a given day,
the first level is whether the person is a smoker or not. Given that he or she is a smoker,
the number of cigarettes he or she smokes can be from one to five or more than five a
day. Given that it is more than 5, this person might be smoking from 6 to 10 or more
than 10 cigarettes a day, and so on. The risk group at each level changes accordingly.
At level one, the risk group is all of the individuals of interest (smoker or not), say m. If
out of m individuals, y1 of them are not smokers, then at level two, the risk group is the
number of all smoking individuals, m – y1. If y2 of these m – y1 individuals smoke from
one to five cigarettes a day, then at level three, the risk group is m – y1 – y2. So, at each
level, the number of people in that category becomes a conditional binomial observation.

The hierarchical multinomial regression models are extensions of binary regression
models based on conditional binary observations. The default is a model with different
intercept and slopes (coefficients) among categories, in which case mnrfit fits a sequence
of conditional binomial models. The 'interactions','on' name-value pair specifies
this in mnrfit. The default link function is logit and the 'link','logit' name-value
pair specifies this model in mnrfit.

Suppose the probability that an individual is in category j given that he or she is not in
the previous categories is πj, and the cumulative probability that a response belongs to a
category j or a previous category is P(y ≤ cj). Then the hierarchical model with a logit link
function and different slopes assumption is

10 Generalized Linear Models

10-10

ln ln
p p

p
a b b b1

1

1

1
1 11 1 12 2 1

1 1- £()
Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

-
Ê

Ë
Á

ˆ

¯
˜ = + + + +

P y c
X X XpL pp

P y c
X

,

ln ln
p p

p p
a b b2

2

2

1 2
2 21 2 2

1 1- £()
Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

- +()
Ê

Ë
ÁÁ

ˆ

¯
˜̃ = + + 22 2 2

1

1

1

1 11 1

X X

P y c

p p

k

k

k

k

+ +

- £()
Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

- + +(
-

-

-

-

L

M

L

b

p p
p p

,

ln ln
))

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = + + + +- - - -a b b bk k k k p pX X X1 1 1 1 1 2 2 1() () () .L

For example, for a response variable with four sequential categories, there are 4 – 1 = 3
equations as follows:

ln ,

ln

p
p p p

a b b b

p
p p

1

2 3 4
1 11 1 12 2 1

2

3 4

+ +
Ê

Ë
Á

ˆ

¯
˜ = + + + +

+
Ê

Ë
Á

ˆ

¯
˜ =

X X Xp pL

aa b b b

p
p

a b b b

2 21 1 22 2 2

3

4
3 31 1 32 2 3

+ + + +

Ê

Ë
Á

ˆ

¯
˜ = + + + +

X X X

X X X

p p

p

L

L

,

ln pp.

The coefficients βij are interpreted within each level. For example, for the previous
smoking example, β12 shows the impact of X2 on the log odds of a person being a smoker
versus a nonsmoker, provided that everything else is held constant. Alternatively,
β22 shows the impact of X2 on the log odds of a person smoking one to five cigarettes
versus more than five cigarettes a day, given that he or she is a smoker, provided that
everything else is held constant. Similarly, β23, shows the effect of X2 on the log odds of a
person smoking 6 to 10 cigarettes versus more than 10 cigarettes a day, given that he or
she smokes more than 5 cigarettes a day, provided that everything else is held constant.

You can specify other link functions for hierarchical models. The 'link','probit'
name-value pair argument uses the probit link function. With the separate slopes
assumption, the model becomes

 Hierarchical Multinomial Models

10-11

F

F

F

-

-

-

() = + + +

() = + + +

(

1
1 1 11 1 1

1
2 2 21 1 2

1

p a b b

p a b b

p

X X

X X

p p

p p

k

L

L

M M

,

,

)) = + + +a b bk k kp pX X1 1 L ,

where πj is the conditional probability of being in category j, given that it is not in
categories previous to category j. And Φ-1(.) is the inverse of the standard normal
cumulative distribution function.

After estimating the model coefficients using mnrfit, you can estimate the cumulative
probabilities or the cumulative number in each category using mnrval with the
'type','conditional' name-value pair argument. The function mnrval accepts
the coefficient estimates and the model statistics mnrfit returns, and estimates the
categorical probabilities or the number in each category and their confidence bounds.
You can specify which category or cumulative probabilities or numbers to estimate by
changing the value of the 'type' name-value pair argument in mnrval.

References

[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

[2] Liao, T. F. Interpreting Probability Models: Logit, Probit, and Other Generalized
Linear Models Series: Quantitative Applications in the Social Sciences. Sage
Publications, 1994.

See Also
fitglm | glmfit | glmval | mnrfit | mnrval

More About
• “Multinomial Models for Nominal Responses” on page 10-2
• “Multinomial Models for Ordinal Responses” on page 10-5

10 Generalized Linear Models

10-12

Generalized Linear Models

In this section...

“What Are Generalized Linear Models?” on page 10-12
“Prepare Data” on page 10-13
“Choose Generalized Linear Model and Link Function” on page 10-15
“Choose Fitting Method and Model” on page 10-18
“Fit Model to Data” on page 10-23
“Examine Quality and Adjust the Fitted Model” on page 10-23
“Predict or Simulate Responses to New Data” on page 10-34
“Share Fitted Models” on page 10-38
“Generalized Linear Model Workflow” on page 10-39

What Are Generalized Linear Models?

Linear regression models describe a linear relationship between a response and one or
more predictive terms. Many times, however, a nonlinear relationship exists. “Nonlinear
Regression” on page 11-2 describes general nonlinear models. A special class of
nonlinear models, called generalized linear models, uses linear methods.

Recall that linear models have these characteristics:

• At each set of values for the predictors, the response has a normal distribution with
mean μ.

• A coefficient vector b defines a linear combination Xb of the predictors X.
• The model is μ = Xb.

In generalized linear models, these characteristics are generalized as follows:

• At each set of values for the predictors, the response has a distribution that can be
normal, binomial, Poisson, gamma, or inverse Gaussian, with parameters including a
mean μ.

• A coefficient vector b defines a linear combination Xb of the predictors X.
• A link function f defines the model as f(μ) = Xb.

 Generalized Linear Models

10-13

Prepare Data

To begin fitting a regression, put your data into a form that fitting functions expect.
All regression techniques begin with input data in an array X and response data in a
separate vector y, or input data in a table or dataset array tbl and response data as
a column in tbl. Each row of the input data represents one observation. Each column
represents one predictor (variable).

For a table or dataset array tbl, indicate the response variable with the
'ResponseVar' name-value pair:

mdl = fitlm(tbl,'ResponseVar','BloodPressure');

% or

mdl = fitglm(tbl,'ResponseVar','BloodPressure');

The response variable is the last column by default.

You can use numeric categorical predictors. A categorical predictor is one that takes
values from a fixed set of possibilities.

• For a numeric array X, indicate the categorical predictors using the 'Categorical'
name-value pair. For example, to indicate that predictors 2 and 3 out of six are
categorical:

mdl = fitlm(X,y,'Categorical',[2,3]);

% or

mdl = fitglm(X,y,'Categorical',[2,3]);

% or equivalently

mdl = fitlm(X,y,'Categorical',logical([0 1 1 0 0 0]));

• For a table or dataset array tbl, fitting functions assume that these data types are
categorical:

• Logical
• Categorical (nominal or ordinal)
• String or character array

If you want to indicate that a numeric predictor is categorical, use the
'Categorical' name-value pair.

Represent missing numeric data as NaN. To represent missing data for other data types,
see “Missing Group Values” on page 2-54.

10 Generalized Linear Models

10-14

• For a 'binomial' model with data matrix X, the response y can be:

• Binary column vector — Each entry represents success (1) or failure (0).
• Two-column matrix of integers — The first column is the number of successes in

each observation, the second column is the number of trials in that observation.
• For a 'binomial' model with table or dataset tbl:

• Use the ResponseVar name-value pair to specify the column of tbl that gives the
number of successes in each observation.

• Use the BinomialSize name-value pair to specify the column of tbl that gives
the number of trials in each observation.

Dataset Array for Input and Response Data

For example, to create a dataset array from an Excel spreadsheet:

ds = dataset('XLSFile','hospital.xls',...

 'ReadObsNames',true);

To create a dataset array from workspace variables:

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

Table for Input and Response Data

To create a table from workspace variables:

load carsmall

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

Numeric Matrix for Input Data, Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

load carsmall

X = [Weight Horsepower Cylinders Model_Year];

y = MPG;

To create numeric arrays from an Excel spreadsheet:

 Generalized Linear Models

10-15

[X Xnames] = xlsread('hospital.xls');

y = X(:,4); % response y is systolic pressure

X(:,4) = []; % remove y from the X matrix

Notice that the nonnumeric entries, such as sex, do not appear in X.

Choose Generalized Linear Model and Link Function

Often, your data suggests the distribution type of the generalized linear model.

Response Data Type Suggested Model Distribution Type

Any real number 'normal'

Any positive number 'gamma' or 'inverse gaussian'
Any nonnegative integer 'poisson'

Integer from 0 to n, where n is a fixed
positive value

'binomial'

Set the model distribution type with the Distribution name-value pair. After selecting
your model type, choose a link function to map between the mean µ and the linear
predictor Xb.

Value Description

'comploglog' log(–log((1–µ))) = Xb
'identity', default for the
distribution 'normal'

µ = Xb

'log', default for the distribution
'poisson'

log(µ) = Xb

'logit', default for the
distribution 'binomial'

log(µ/(1 – µ)) = Xb

'loglog' log(–log(µ)) = Xb
'probit' Φ–1(µ) = Xb, where Φ is the normal (Gaussian)

CDF function
'reciprocal', default for the
distribution 'gamma'

µ–1 = Xb

10 Generalized Linear Models

10-16

Value Description

p (a number), default for the
distribution 'inverse gaussian'
(with p = –2)

µp = Xb

Cell array of the form {FL FD FI},
containing three function handles,
created using @, that define the
link (FL), the derivative of the link
(FD), and the inverse link (FI).
Equivalently, can be a structure of
function handles with field Link
containing FL, field Derivative
containing FD, and field Inverse
containing FI.

User-specified link function (see “Custom Link
Function” on page 10-16)

The nondefault link functions are mainly useful for binomial models. These nondefault
link functions are 'comploglog', 'loglog', and 'probit'.

Custom Link Function

The link function defines the relationship f(µ) = Xb between the mean response µ and
the linear combination Xb = X*b of the predictors. You can choose one of the built-in link
functions or define your own by specifying the link function FL, its derivative FD, and its
inverse FI:

• The link function FL calculates f(µ).
• The derivative of the link function FD calculates df(µ)/dµ.
• The inverse function FI calculates g(Xb) = µ.

You can specify a custom link function in either of two equivalent ways. Each way
contains function handles that accept a single array of values representing µ or Xb,
and returns an array the same size. The function handles are either in a cell array or a
structure:

• Cell array of the form {FL FD FI}, containing three function handles, created using
@, that define the link (FL), the derivative of the link (FD), and the inverse link (FI).

• Structure s with three fields, each containing a function handle created using @:

• s.Link — Link function

 Generalized Linear Models

10-17

• s.Derivative — Derivative of the link function
• s.Inverse — Inverse of the link function

For example, to fit a model using the 'probit' link function:

x = [2100 2300 2500 2700 2900 ...

 3100 3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

g = fitglm(x,[y n],...

 'linear','distr','binomial','link','probit')

g =

Generalized Linear regression model:

 probit(y) ~ 1 + x1

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) -7.3628 0.66815 -11.02 3.0701e-28

 x1 0.0023039 0.00021352 10.79 3.8274e-27

12 observations, 10 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

You can perform the same fit using a custom link function that performs identically to
the 'probit' link function:

s = {@norminv,@(x)1./normpdf(norminv(x)),@normcdf};

g = fitglm(x,[y n],...

 'linear','distr','binomial','link',s)

g =

Generalized Linear regression model:

 link(y) ~ 1 + x1

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) -7.3628 0.66815 -11.02 3.0701e-28

 x1 0.0023039 0.00021352 10.79 3.8274e-27

10 Generalized Linear Models

10-18

12 observations, 10 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

The two models are the same.

Equivalently, you can write s as a structure instead of a cell array of function handles:

s.Link = @norminv;

s.Derivative = @(x) 1./normpdf(norminv(x));

s.Inverse = @normcdf;

g = fitglm(x,[y n],...

 'linear','distr','binomial','link',s)

g =

Generalized Linear regression model:

 link(y) ~ 1 + x1

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) -7.3628 0.66815 -11.02 3.0701e-28

 x1 0.0023039 0.00021352 10.79 3.8274e-27

12 observations, 10 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

Choose Fitting Method and Model

There are two ways to create a fitted model.

• Use fitglm when you have a good idea of your generalized linear model, or when you
want to adjust your model later to include or exclude certain terms.

• Use stepwiseglm when you want to fit your model using stepwise regression.
stepwiseglm starts from one model, such as a constant, and adds or subtracts terms
one at a time, choosing an optimal term each time in a greedy fashion, until it cannot
improve further. Use stepwise fitting to find a good model, one that has only relevant
terms.

The result depends on the starting model. Usually, starting with a constant model
leads to a small model. Starting with more terms can lead to a more complex model,
but one that has lower mean squared error.

 Generalized Linear Models

10-19

In either case, provide a model to the fitting function (which is the starting model for
stepwiseglm).

Specify a model using one of these methods.

• “Brief String” on page 10-19
• “Terms Matrix” on page 10-19
• “Formula” on page 10-22

Brief String

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared terms).
'purequadratic' Model contains an intercept, linear terms, and squared

terms.
'quadratic' Model contains an intercept, linear terms, interactions,

and squared terms.
'polyijk' Model is a polynomial with all terms up to degree i in

the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and also
contains terms with predictor 1 squared.

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

10 Generalized Linear Models

10-20

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

 Generalized Linear Models

10-21

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

10 Generalized Linear Models

10-22

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for a model specification is a string of the form
'Y ~ terms',

• Y is the response name.
• terms contains

• Variable names
• + to include the next variable
• - to exclude the next variable

 Generalized Linear Models

10-23

• : to define an interaction, a product of terms
• * to define an interaction and all lower-order terms
• ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () to group terms

Tip Formulas include a constant (intercept) term by default. To exclude a constant term
from the model, include -1 in the formula.

Examples:
'Y ~ A + B + C' is a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example, since B^2 includes a B term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example, since A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Fit Model to Data

Create a fitted model using fitglm or stepwiseglm. Choose between them as in
“Choose Fitting Method and Model” on page 10-18. For generalized linear models
other than those with a normal distribution, give a Distribution name-value pair as in
“Choose Generalized Linear Model and Link Function” on page 10-15. For example,

mdl = fitglm(X,y,'linear','Distribution','poisson')

% or

mdl = fitglm(X,y,'quadratic',...

 'Distribution','binomial')

Examine Quality and Adjust the Fitted Model

After fitting a model, examine the result.

10 Generalized Linear Models

10-24

• “Model Display” on page 10-24
• “Diagnostic Plots” on page 10-25
• “Residuals — Model Quality for Training Data” on page 10-27
• “Plots to Understand Predictor Effects and How to Modify a Model” on page 10-30

Model Display

A linear regression model shows several diagnostics when you enter its name or enter
disp(mdl). This display gives some of the basic information to check whether the fitted
model represents the data adequately.

For example, fit a Poisson model to data constructed with two out of five predictors not
affecting the response, and with no intercept term:

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[.4;.2;.3]);

y = poissrnd(mu);

mdl = fitglm(X,y,...

 'linear','Distribution','poisson')

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x2 + x3 + x4 + x5

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 0.039829 0.10793 0.36901 0.71212

 x1 0.38551 0.076116 5.0647 4.0895e-07

 x2 -0.034905 0.086685 -0.40266 0.6872

 x3 -0.17826 0.093552 -1.9054 0.056722

 x4 0.21929 0.09357 2.3436 0.019097

 x5 0.28918 0.1094 2.6432 0.0082126

100 observations, 94 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 44.9, p-value = 1.55e-08

Notice that:

 Generalized Linear Models

10-25

• The display contains the estimated values of each coefficient in the Estimate column.
These values are reasonably near the true values [0;.4;0;0;.2;.3], except
possibly the coefficient of x3 is not terribly near 0.

• There is a standard error column for the coefficient estimates.
• The reported pValue (which are derived from the t statistics under the assumption of

normal errors) for predictors 1, 4, and 5 are small. These are the three predictors that
were used to create the response data y.

• The pValue for (Intercept), x2 and x3 are larger than 0.01. These three predictors
were not used to create the response data y. The pValue for x3 is just over .05, so
might be regarded as possibly significant.

• The display contains the Chi-square statistic.

Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or fit.
To illustrate these plots, consider binomial regression with a logistic link function.

The logistic model is useful for proportion data. It defines the relationship between the
proportion p and the weight w by:
log[p/(1 – p)] = b1 + b2w

This example fits a binomial model to data. The data are derived from carbig.mat,
which contains measurements of large cars of various weights. Each weight in w has a
corresponding number of cars in total and a corresponding number of poor-mileage cars
in poor.

It is reasonable to assume that the values of poor follow binomial distributions, with the
number of trials given by total and the percentage of successes depending on w. This
distribution can be accounted for in the context of a logistic model by using a generalized
linear model with link function log(µ/(1 – µ)) = Xb. This link function is called 'logit'.

w = [2100 2300 2500 2700 2900 3100 ...

 3300 3500 3700 3900 4100 4300]';

total = [48 42 31 34 31 21 23 23 21 16 17 21]';

poor = [1 2 0 3 8 8 14 17 19 15 17 21]';

mdl = fitglm(w,[poor total],...

 'linear','Distribution','binomial','link','logit')

mdl =

Generalized Linear regression model:

10 Generalized Linear Models

10-26

 logit(y) ~ 1 + x1

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) -13.38 1.394 -9.5986 8.1019e-22

 x1 0.0041812 0.00044258 9.4474 3.4739e-21

12 observations, 10 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 242, p-value = 1.3e-54

See how well the model fits the data.

plotSlice(mdl)

The fit looks reasonably good, with fairly wide confidence bounds.

 Generalized Linear Models

10-27

To examine further details, create a leverage plot.

plotDiagnostics(mdl)

This is typical of a regression with points ordered by the predictor variable. The leverage
of each point on the fit is higher for points with relatively extreme predictor values (in
either direction) and low for points with average predictor values. In examples with
multiple predictors and with points not ordered by predictor value, this plot can help you
identify which observations have high leverage because they are outliers as measured by
their predictor values.

Residuals — Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in
the model or data. The simplest residual plots are the default histogram plot, which
shows the range of the residuals and their frequencies, and the probability plot, which
shows how the distribution of the residuals compares to a normal distribution with
matched variance.

10 Generalized Linear Models

10-28

This example shows residual plots for a fitted Poisson model. The data construction has
two out of five predictors not affecting the response, and no intercept term:

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[2;1;.5]);

y = poissrnd(mu);

mdl = fitglm(X,y,...

 'linear','Distribution','poisson');

Examine the residuals:

plotResiduals(mdl)

While most residuals cluster near 0, there are several near ±18. So examine a different
residuals plot.

plotResiduals(mdl,'fitted')

 Generalized Linear Models

10-29

The large residuals don’t seem to have much to do with the sizes of the fitted values.

Perhaps a probability plot is more informative.

plotResiduals(mdl,'probability')

10 Generalized Linear Models

10-30

Now it is clear. The residuals do not follow a normal distribution. Instead, they have
fatter tails, much as an underlying Poisson distribution.

Plots to Understand Predictor Effects and How to Modify a Model

This example shows how to understand the effect each predictor has on a regression
model, and how to modify the model to remove unnecessary terms.

1 Create a model from some predictors in artificial data. The data do not use
the second and third columns in X. So you expect the model not to show much
dependence on those predictors.

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[2;1;.5]);

y = poissrnd(mu);

mdl = fitglm(X,y,...

 'linear','Distribution','poisson');

 Generalized Linear Models

10-31

2 Examine a slice plot of the responses. This displays the effect of each predictor
separately.

plotSlice(mdl)

The scale of the first predictor is overwhelming the plot. Disable it using the
Predictors menu.

10 Generalized Linear Models

10-32

 Generalized Linear Models

10-33

Now it is clear that predictors 2 and 3 have little to no effect.

You can drag the individual predictor values, which are represented by dashed blue
vertical lines. You can also choose between simultaneous and non-simultaneous
confidence bounds, which are represented by dashed red curves. Dragging the
predictor lines confirms that predictors 2 and 3 have little to no effect.

3 Remove the unnecessary predictors using either removeTerms or step. Using step
can be safer, in case there is an unexpected importance to a term that becomes
apparent after removing another term. However, sometimes removeTerms can be
effective when step does not proceed. In this case, the two give identical results.

mdl1 = removeTerms(mdl,'x2 + x3')

mdl1 =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x4 + x5

 Distribution = Poisson

Estimated Coefficients:

10 Generalized Linear Models

10-34

 Estimate SE tStat pValue

 (Intercept) 0.17604 0.062215 2.8295 0.004662

 x1 1.9122 0.024638 77.614 0

 x4 0.98521 0.026393 37.328 5.6696e-305

 x5 0.61321 0.038435 15.955 2.6473e-57

100 observations, 96 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

mdl1 = step(mdl,'NSteps',5,'Upper','linear')

1. Removing x3, Deviance = 93.856, Chi2Stat = 0.00075551, PValue = 0.97807

2. Removing x2, Deviance = 96.333, Chi2Stat = 2.4769, PValue = 0.11553

mdl1 =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x4 + x5

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 0.17604 0.062215 2.8295 0.004662

 x1 1.9122 0.024638 77.614 0

 x4 0.98521 0.026393 37.328 5.6696e-305

 x5 0.61321 0.038435 15.955 2.6473e-57

100 observations, 96 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

Predict or Simulate Responses to New Data

There are three ways to use a linear model to predict the response to new data:

• “predict” on page 10-34
• “feval” on page 10-35
• “random” on page 10-37

predict

The predict method gives a prediction of the mean responses and, if requested,
confidence bounds.

This example shows how to predict and obtain confidence intervals on the predictions
using the predict method.

 Generalized Linear Models

10-35

1 Create a model from some predictors in artificial data. The data do not use
the second and third columns in X. So you expect the model not to show much
dependence on these predictors. Construct the model stepwise to include the relevant
predictors automatically.

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[2;1;.5]);

y = poissrnd(mu);

mdl = stepwiseglm(X,y,...

 'constant','upper','linear','Distribution','poisson');

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0

2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0

3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

2 Generate some new data, and evaluate the predictions from the data.

Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data

[ynew,ynewci] = predict(mdl,Xnew)

ynew =

 1.0e+04 *

 0.1130

 1.7375

 3.7471

ynewci =

 1.0e+04 *

 0.0821 0.1555

 1.2167 2.4811

 2.8419 4.9407

feval

When you construct a model from a table or dataset array, feval is often more
convenient for predicting mean responses than predict. However, feval does not
provide confidence bounds.

This example shows how to predict mean responses using the feval method.

10 Generalized Linear Models

10-36

1 Create a model from some predictors in artificial data. The data do not use
the second and third columns in X. So you expect the model not to show much
dependence on these predictors. Construct the model stepwise to include the relevant
predictors automatically.

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[2;1;.5]);

y = poissrnd(mu);

X = array2table(X); % create data table

y = array2table(y);

tbl = [X y];

mdl = stepwiseglm(tbl,...

 'constant','upper','linear','Distribution','poisson');

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0

2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0

3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

2 Generate some new data, and evaluate the predictions from the data.

Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data

ynew = feval(mdl,Xnew(:,1),Xnew(:,4),Xnew(:,5)) % only need predictors 1,4,5

ynew =

 1.0e+04 *

 0.1130

 1.7375

 3.7471

Equivalently,

ynew = feval(mdl,Xnew(:,[1 4 5])) % only need predictors 1,4,5

ynew =

 1.0e+04 *

 0.1130

 1.7375

 3.7471

 Generalized Linear Models

10-37

random

The random method generates new random response values for specified predictor
values. The distribution of the response values is the distribution used in the model.
random calculates the mean of the distribution from the predictors, estimated
coefficients, and link function. For distributions such as normal, the model also provides
an estimate of the variance of the response. For the binomial and Poisson distributions,
the variance of the response is determined by the mean; random does not use a separate
“dispersion” estimate.

This example shows how to simulate responses using the random method.

1 Create a model from some predictors in artificial data. The data do not use
the second and third columns in X. So you expect the model not to show much
dependence on these predictors. Construct the model stepwise to include the relevant
predictors automatically.

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[2;1;.5]);

y = poissrnd(mu);

mdl = stepwiseglm(X,y,...

 'constant','upper','linear','Distribution','poisson');

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0

2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0

3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

2 Generate some new data, and evaluate the predictions from the data.

Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data

ysim = random(mdl,Xnew)

ysim =

 1111

 17121

 37457

The predictions from random are Poisson samples, so are integers.
3 Evaluate the random method again, the result changes.

ysim = random(mdl,Xnew)

ysim =

10 Generalized Linear Models

10-38

 1175

 17320

 37126

Share Fitted Models

The model display contains enough information to enable someone else to recreate the
model in a theoretical sense. For example,

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[2;1;.5]);

y = poissrnd(mu);

mdl = stepwiseglm(X,y,...

 'constant','upper','linear','Distribution','poisson')

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0

2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0

3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x4 + x5

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 0.17604 0.062215 2.8295 0.004662

 x1 1.9122 0.024638 77.614 0

 x4 0.98521 0.026393 37.328 5.6696e-305

 x5 0.61321 0.038435 15.955 2.6473e-57

100 observations, 96 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

You can access the model description programmatically, too. For example,

mdl.Coefficients.Estimate

ans =

 0.1760

 1.9122

 0.9852

 0.6132

mdl.Formula

 Generalized Linear Models

10-39

ans =

log(y) ~ 1 + x1 + x4 + x5

Generalized Linear Model Workflow

This example shows how to fit a generalized linear model and analyze the results. A
typical workflow involves the following: import data, fit a generalized linear model, test
its quality, modify it to improve the quality, and make predictions based on the model.
It computes the probability that a flower is in one of two classes, based on the Fisher iris
data.

Step 1. Load the data.

Load the Fisher iris data. Extract the rows that have classification versicolor or virginica.
These are rows 51 to 150. Create logical response variables that are true for versicolor
flowers.

load fisheriris

X = meas(51:end,:); % versicolor and virginica

y = strcmp('versicolor',species(51:end));

Step 2. Fit a generalized linear model.

Fit a binomial generalized linear model to the data.

mdl = fitglm(X,y,'linear',...

 'distr','binomial')

mdl =

Generalized Linear regression model:

 logit(y) ~ 1 + x1 + x2 + x3 + x4

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ______ _______ ________

 (Intercept) 42.638 25.708 1.6586 0.097204

 x1 2.4652 2.3943 1.0296 0.30319

 x2 6.6809 4.4796 1.4914 0.13585

10 Generalized Linear Models

10-40

 x3 -9.4294 4.7372 -1.9905 0.046537

 x4 -18.286 9.7426 -1.8769 0.060529

100 observations, 95 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 127, p-value = 1.95e-26

Step 3. Examine the result, consider alternative models.

Some -values in the pValue column are not very small. Perhaps the model can be
simplified.

See if some 95% confidence intervals for the coefficients include 0. If so, perhaps these
model terms could be removed.

confint = coefCI(mdl)

confint =

 -8.3984 93.6740

 -2.2881 7.2185

 -2.2122 15.5739

 -18.8339 -0.0248

 -37.6277 1.0554

Only two of the predictors have coefficients whose confidence intervals do not include 0.

The coefficients of 'x1' and 'x2' have the largest -values. Test whether both
coefficients could be zero.

M = [0 1 0 0 0 % picks out coefficient for column 1

 0 0 1 0 0]; % picks out coefficient for column 2

p = coefTest(mdl,M)

p =

 0.1442

The -value of about 0.14 is not very small. Drop those terms from the model.

mdl1 = removeTerms(mdl,'x1 + x2')

 Generalized Linear Models

10-41

mdl1 =

Generalized Linear regression model:

 logit(y) ~ 1 + x3 + x4

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ______ _______ __________

 (Intercept) 45.272 13.612 3.326 0.00088103

 x3 -5.7545 2.3059 -2.4956 0.012576

 x4 -10.447 3.7557 -2.7816 0.0054092

100 observations, 97 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 118, p-value = 2.3e-26

Perhaps it would have been better to have stepwiseglm identify the model initially.

mdl2 = stepwiseglm(X,y,...

 'constant','Distribution','binomial','upper','linear')

1. Adding x4, Deviance = 33.4208, Chi2Stat = 105.2086, PValue = 1.099298e-24

2. Adding x3, Deviance = 20.5635, Chi2Stat = 12.8573, PValue = 0.000336166

3. Adding x2, Deviance = 13.2658, Chi2Stat = 7.29767, PValue = 0.00690441

mdl2 =

Generalized Linear regression model:

 logit(y) ~ 1 + x2 + x3 + x4

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ______ _______ ________

 (Intercept) 50.527 23.995 2.1057 0.035227

 x2 8.3761 4.7612 1.7592 0.078536

 x3 -7.8745 3.8407 -2.0503 0.040334

 x4 -21.43 10.707 -2.0014 0.04535

10 Generalized Linear Models

10-42

100 observations, 96 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 125, p-value = 5.4e-27

stepwiseglm included 'x2' in the model, because it neither adds nor removes terms
with -values between 0.05 and 0.10.

Step 4. Look for outliers and exclude them.

Examine a leverage plot to look for influential outliers.

plotDiagnostics(mdl2,'leverage')

 Generalized Linear Models

10-43

There is one observation with a leverage close to one. Using the Data Cursor, click the
point, and find it has index 69.

See if the model coefficients change when you fit a model excluding this point.

oldCoeffs = mdl2.Coefficients.Estimate;

mdl3 = fitglm(X,y,'linear',...

 'distr','binomial','pred',2:4,'exclude',69);

newCoeffs = mdl3.Coefficients.Estimate;

disp([oldCoeffs newCoeffs])

 50.5268 50.5268

 8.3761 8.3761

 -7.8745 -7.8745

 -21.4296 -21.4296

The model coefficients do not change, suggesting that the response at the high-leverage
point is consistent with the predicted value from the reduced model.

Step 5. Predict the probability that a new flower is versicolor.

Use mdl2 to predict the probability that a flower with average measurements is
versicolor. Generate confidence intervals for your prediction.

[newf newc] = predict(mdl2,mean(X))

newf =

 0.5086

newc =

 0.1863 0.8239

The model gives almost a 50% probability that the average flower is versicolor, with a
wide confidence interval about this estimate.

References

[1] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

10 Generalized Linear Models

10-44

[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

[4] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear
Statistical Models, Fourth Edition. Irwin, Chicago, 1996.

 Lasso Regularization of Generalized Linear Models

10-45

Lasso Regularization of Generalized Linear Models

In this section...

“What is Generalized Linear Model Lasso Regularization?” on page 10-45
“Regularize Poisson Regression” on page 10-45
“Regularize Logistic Regression” on page 10-48
“Regularize Wide Data in Parallel” on page 10-55
“Generalized Linear Model Lasso and Elastic Net” on page 10-61
“References” on page 10-63

What is Generalized Linear Model Lasso Regularization?

Lasso is a regularization technique. Use lassoglm to:

• Reduce the number of predictors in a generalized linear model.
• Identify important predictors.
• Select among redundant predictors.
• Produce shrinkage estimates with potentially lower predictive errors than ordinary

least squares.

Elastic net is a related technique. Use it when you have several highly correlated
variables. lassoglm provides elastic net regularization when you set the Alpha name-
value pair to a number strictly between 0 and 1.

For details about lasso and elastic net computations and algorithms, see “Generalized
Linear Model Lasso and Elastic Net” on page 10-61. For a discussion of generalized
linear models, see “What Are Generalized Linear Models?” on page 10-12.

Regularize Poisson Regression

This example shows how to identify and remove redundant predictors from a generalized
linear model.

Create data with 20 predictors, and Poisson responses using just three of the predictors,
plus a constant.

rng('default') % for reproducibility

X = randn(100,20);

10 Generalized Linear Models

10-46

mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);

y = poissrnd(mu);

Construct a cross-validated lasso regularization of a Poisson regression model of the data.

[B FitInfo] = lassoglm(X,y,'poisson','CV',10);

Examine the cross-validation plot to see the effect of the Lambda regularization
parameter.

lassoPlot(B,FitInfo,'plottype','CV');

The green circle and dashed line locate the Lambda with minimal cross-validation error.
The blue circle and dashed line locate the point with minimal cross-validation error plus
one standard deviation.

 Lasso Regularization of Generalized Linear Models

10-47

Find the nonzero model coefficients corresponding to the two identified points.

minpts = find(B(:,FitInfo.IndexMinDeviance))

minpts =

 3

 5

 6

 10

 11

 15

 16

min1pts = find(B(:,FitInfo.Index1SE))

min1pts =

 5

 10

 15

The coefficients from the minimal plus one standard error point are exactly those
coefficients used to create the data.

Find the values of the model coefficients at the minimal plus one standard error point.

B(min1pts,FitInfo.Index1SE)

ans =

 0.2903

 0.0789

 0.2081

The values of the coefficients are, as expected, smaller than the original
[0.4,0.2,0.3]. Lasso works by "shrinkage," which biases predictor coefficients toward
zero.

10 Generalized Linear Models

10-48

The constant term is in the FitInfo.Intercept vector.

FitInfo.Intercept(FitInfo.Index1SE)

ans =

 1.0879

The constant term is near 1, which is the value used to generate the data.

Regularize Logistic Regression

This example shows how to regularize binomial regression. The default (canonical) link
function for binomial regression is the logistic function.

Step 1. Prepare the data.

Load the ionosphere data. The response Y is a cell array of 'g' or 'b' strings. Convert
the cells to logical values, with true representing 'g'. Remove the first two columns of
X because they have some awkward statistical properties, which are beyond the scope of
this discussion.

load ionosphere

Ybool = strcmp(Y,'g');

X = X(:,3:end);

Step 2. Create a cross-validated fit.

Construct a regularized binomial regression using 25 Lambda values and 10-fold cross
validation. This process can take a few minutes.

rng('default') % for reproducibility

[B,FitInfo] = lassoglm(X,Ybool,'binomial',...

 'NumLambda',25,'CV',10);

Step 3. Examine plots to find appropriate regularization.

lassoPlot can give both a standard trace plot and a cross-validated deviance plot.
Examine both plots.

lassoPlot(B,FitInfo,'PlotType','CV');

 Lasso Regularization of Generalized Linear Models

10-49

The plot identifies the minimum-deviance point with a green circle and dashed line as a
function of the regularization parameter Lambda. The blue circled point has minimum
deviance plus no more than one standard deviation.

 lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');

10 Generalized Linear Models

10-50

The trace plot shows nonzero model coefficients as a function of the regularization
parameter Lambda. Because there are 32 predictors and a linear model, there are 32
curves. As Lambda increases to the left, lassoglm sets various coefficients to zero,
removing them from the model.

The trace plot is somewhat compressed. Zoom in to see more detail.

xlim([.01 .1])

ylim([-3 3])

 Lasso Regularization of Generalized Linear Models

10-51

As Lambda increases toward the left side of the plot, fewer nonzero coefficients remain.

Find the number of nonzero model coefficients at the Lambda value with minimum
deviance plus one standard deviation point. The regularized model coefficients are in
column FitInfo.Index1SE of the B matrix.

indx = FitInfo.Index1SE;

B0 = B(:,indx);

nonzeros = sum(B0 ~= 0)

nonzeros =

 14

10 Generalized Linear Models

10-52

When you set Lambda to FitInfo.Index1SE, lassoglm removes over half of the 32
original predictors.

Step 4. Create a regularized model.

The constant term is in the FitInfo.Index1SE entry of the FitInfo.Intercept
vector. Call that value cnst.

The model is logit(mu) = log(mu/(1 - mu)) X*B0 + cnst . Therefore, for predictions, mu =
exp(X*B0 + cnst)/(1+exp(x*B0 + cnst)).

The glmval function evaluates model predictions. It assumes that the first model
coefficient relates to the constant term. Therefore, create a coefficient vector with the
constant term first.

cnst = FitInfo.Intercept(indx);

B1 = [cnst;B0];

Step 5. Examine residuals.

Plot the training data against the model predictions for the regularized lassoglm model.

preds = glmval(B1,X,'logit');

histogram(Ybool - preds) % plot residuals

title('Residuals from lassoglm model')

 Lasso Regularization of Generalized Linear Models

10-53

Step 6. Alternative: Use identified predictors in a least-squares generalized linear model.

Instead of using the biased predictions from the model, you can make an unbiased model
using just the identified predictors.

predictors = find(B0); % indices of nonzero predictors

mdl = fitglm(X,Ybool,'linear',...

 'Distribution','binomial','PredictorVars',predictors)

mdl =

10 Generalized Linear Models

10-54

Generalized Linear regression model:

 y ~ [Linear formula with 15 terms in 14 predictors]

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 _________ _______ ________ __________

 (Intercept) -2.9367 0.50926 -5.7666 8.0893e-09

 x1 2.492 0.60795 4.099 4.1502e-05

 x3 2.5501 0.63304 4.0284 5.616e-05

 x4 0.48816 0.50336 0.9698 0.33215

 x5 0.6158 0.62192 0.99015 0.3221

 x6 2.294 0.5421 4.2317 2.3198e-05

 x7 0.77842 0.57765 1.3476 0.1778

 x12 1.7808 0.54316 3.2786 0.0010432

 x16 -0.070993 0.50515 -0.14054 0.88823

 x20 -2.7767 0.55131 -5.0365 4.7402e-07

 x24 2.0212 0.57639 3.5067 0.00045372

 x25 -2.3796 0.58274 -4.0835 4.4363e-05

 x27 0.79564 0.55904 1.4232 0.15467

 x29 1.2689 0.55468 2.2876 0.022162

 x32 -1.5681 0.54336 -2.8859 0.0039035

351 observations, 336 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 262, p-value = 1e-47

Plot the residuals of the model.

plotResiduals(mdl)

 Lasso Regularization of Generalized Linear Models

10-55

As expected, residuals from the least-squares model are slightly smaller than those of the
regularized model. However, this does not mean that mdl is a better predictor for new
data.

Regularize Wide Data in Parallel

This example shows how to regularize a model with many more predictors than
observations. Wide data is data with more predictors than observations. Typically, with
wide data you want to identify important predictors. Use lassoglm as an exploratory
or screening tool to select a smaller set of variables to prioritize your modeling and
research. Use parallel computing to speed up cross validation.

10 Generalized Linear Models

10-56

Load the ovariancancer data. This data has 216 observations and 4000 predictors in
the obs workspace variable. The responses are binary, either 'Cancer' or 'Normal', in
the grp workspace variable. Convert the responses to binary for use in lassoglm.

load ovariancancer

y = strcmp(grp,'Cancer');

Set options to use parallel computing. Prepare to compute in parallel using parpool.

opt = statset('UseParallel',true);

parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

ans =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 IdleTimeout: 30

 Cluster: [1x1 parallel.cluster.Local]

 RequestQueue: [1x1 parallel.RequestQueue]

 SpmdEnabled: 1

Fit a cross-validated set of regularized models. Use the Alpha parameter to favor
retaining groups of highly correlated predictors, as opposed to eliminating all but one
member of the group. Commonly, you use a relatively large value of Alpha.

rng('default') % for reproducibility

tic

[B,S] = lassoglm(obs,y,'binomial','NumLambda',100, ...

 'Alpha',0.9,'LambdaRatio',1e-4,'CV',10,'Options',opt);

toc

Elapsed time is 398.635386 seconds.

Examine cross-validation plot.

lassoPlot(B,S,'PlotType','CV');

 Lasso Regularization of Generalized Linear Models

10-57

Examine trace plot.

lassoPlot(B,S,'PlotType','Lambda','XScale','log')

10 Generalized Linear Models

10-58

The right (green) vertical dashed line represents the Lambda providing the smallest
cross-validated deviance. The left (blue) dashed line has the minimal deviance plus no
more than one standard deviation. This blue line has many fewer predictors:

[S.DF(S.Index1SE) S.DF(S.IndexMinDeviance)]

ans =

 50 86

You asked lassoglm to fit using 100 different Lambda values. How many did it use?

size(B)

ans =

 4000 84

 Lasso Regularization of Generalized Linear Models

10-59

lassoglm stopped after 84 values because the deviance was too small for small Lambda
values. To avoid overfitting, lassoglm halts when the deviance of the fitted model is too
small compared to the deviance in the binary responses, ignoring the predictor variables.

You can force lassoglm to include more terms by explicitly providing a set of Lambda
values.

minLambda = min(S.Lambda);

explicitLambda = [minLambda*[.1 .01 .001] S.Lambda];

[B2,S2] = lassoglm(obs,y,'binomial','Lambda',explicitLambda,...

 'LambdaRatio',1e-4, 'CV',10,'Options',opt);

length(S2.Lambda)

ans =

 87

lassoglm used the three smaller values in fitting.

To save time, you can use:

• Fewer Lambda, meaning fewer fits
• Fewer cross-validation folds
• A larger value for LambdaRatio

Use serial computation and all three of these time-saving methods:

tic

[Bquick,Squick] = lassoglm(obs,y,'binomial','NumLambda',25,...

 'LambdaRatio',1e-2,'CV',5);

toc

Elapsed time is 51.708074 seconds.

Graphically compare the new results to the first results.

lassoPlot(Bquick,Squick,'PlotType','CV');

10 Generalized Linear Models

10-60

lassoPlot(Bquick,Squick,'PlotType','Lambda','XScale','log')

 Lasso Regularization of Generalized Linear Models

10-61

The number of nonzero coefficients in the lowest plus one standard deviation model is
around 50, similar to the first computation.

Generalized Linear Model Lasso and Elastic Net

Overview of Lasso and Elastic Net

Lasso is a regularization technique for estimating generalized linear models. Lasso
includes a penalty term that constrains the size of the estimated coefficients. Therefore,
it resembles ridge regression. Lasso is a shrinkage estimator: it generates coefficient
estimates that are biased to be small. Nevertheless, a lasso estimator can have smaller
error than an ordinary maximum likelihood estimator when you apply it to new data.

Unlike ridge regression, as the penalty term increases, the lasso technique sets more
coefficients to zero. This means that the lasso estimator is a smaller model, with fewer
predictors. As such, lasso is an alternative to stepwise regression and other model
selection and dimensionality reduction techniques.

10 Generalized Linear Models

10-62

Elastic net is a related technique. Elastic net is akin to a hybrid of ridge regression and
lasso regularization. Like lasso, elastic net can generate reduced models by generating
zero-valued coefficients. Empirical studies suggest that the elastic net technique can
outperform lasso on data with highly correlated predictors.

Definition of Lasso for Generalized Linear Models

For a nonnegative value of λ, lasso solves the problem

min , ,
,b b

b b l b
0

1
0

1
N

j

j

p

Deviance () +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Â

where

• Deviance is the deviance of the model fit to the responses using intercept β0 and
predictor coefficients β. The formula for Deviance depends on the distr parameter
you supply to lassoglm. Minimizing the λ-penalized deviance is equivalent to
maximizing the λ-penalized log likelihood.

• N is the number of observations.
• λ is a nonnegative regularization parameter corresponding to one value of Lambda.
• Parameters β0 and β are scalar and p-vector respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Definition of Elastic Net for Generalized Linear Models

For an α strictly between 0 and 1, and a nonnegative λ, elastic net solves the problem

min , ,
,b b

ab b l b
0

1
0

N
PDeviance () + ()Ê

ËÁ
ˆ
¯̃

where

P j j

j

p

a b
a

b a b
a

b a b() =
-

+ =
-

+Ê
ËÁ

ˆ
¯̃=

Â() ()
.

1

2

1

22

2

1
2

1

 Lasso Regularization of Generalized Linear Models

10-63

Elastic net is the same as lasso when α = 1. For other values of α, the penalty term Pα(β)
interpolates between the L1 norm of β and the squared L2 norm of β. As α shrinks toward
0, elastic net approaches ridge regression.

References

[1] Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society, Series B, Vol. 58, No. 1, pp. 267–288, 1996.

[2] Zou, H. and T. Hastie. Regularization and Variable Selection via the Elastic Net.
Journal of the Royal Statistical Society, Series B, Vol. 67, No. 2, pp. 301–320,
2005.

[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33,
No. 1, 2010. http://www.jstatsoft.org/v33/i01

[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd
edition. Springer, New York, 2008.

[5] McCullagh, P., and J. A. Nelder. Generalized Linear Models, 2nd edition. Chapman &
Hall/CRC Press, 1989.

http://www.jstatsoft.org/v33/i01

10 Generalized Linear Models

10-64

Generalized Linear Mixed-Effects Models

In this section...

“What Are Generalized Linear Mixed-Effects Models?” on page 10-64
“GLME Model Equations” on page 10-64
“Prepare Data for Model Fitting” on page 10-66
“Choose a Distribution Type for the Model” on page 10-66
“Choose a Link Function for the Model” on page 10-67
“Specify the Model Formula” on page 10-68
“Display the Model” on page 10-71
“Work with the Model” on page 10-73

What Are Generalized Linear Mixed-Effects Models?

Generalized linear mixed-effects (GLME) models describe the relationship between a
response variable and independent variables using coefficients that can vary with respect
to one or more grouping variables, for data with a response variable distribution other
than normal. You can think of GLME models as extensions of generalized linear models
(GLM) for data that are collected and summarized in groups. Alternatively, you can think
of GLME models as a generalization of linear mixed-effects models (LME) for data where
the response variable is not normally distributed.

A mixed-effects model consists of fixed-effects and random-effects terms. Fixed-effects
terms are usually the conventional linear regression part of the model. Random-effects
terms are associated with individual experimental units drawn at random from a
population, and account for variations between groups that might affect the response.
The random effects have prior distributions, whereas the fixed effects do not.

GLME Model Equations

The standard form of a generalized linear mixed-effects model is

y b Distr
w

i i
i

| ,∼ m
s 2Ê

Ë
ÁÁ

ˆ

¯
˜̃

 Generalized Linear Mixed-Effects Models

10-65

g X Zbm b d() = + + ,

where

• y is an n-by-1 response vector, and yi is its ith element.
• b is the random-effects vector.
• Distr is a specified conditional distribution of y given b.
• μ is the conditional mean of y given b, and μi is its ith element.
• σ2 is the dispersion parameter.
• w is the effective observation weight vector, and wi is the weight for observation i.

• For a binomial distribution, the effective observation weight is equal to the prior
weight specified using the 'Weights' name-value pair argument in fitglme,
multiplied by the binomial size specified using the 'BinomialSize' name-value
pair argument.

• For all other distributions, the effective observation weight is equal to the prior
weight specified using the 'Weights' name-value pair argument in fitglme.

• g(μ) is a link function that defines the relationship between the mean response μ and
the linear combination of the predictors.

• X is an n-by-p fixed-effects design matrix.
• β is a p-by-1 fixed-effects vector.
• Z is an n-by-q random-effects design matrix.
• b is a q-by-1 random-effects vector.
• δ is a model offset vector.

The model for the mean response μ is

m h= ()-
g

1
,

where g-1 is inverse of the link function g(μ), and ĥME is the linear predictor of the fixed
and random effects of the generalized linear mixed-effects model

h b d= + +X Zb .

A GLME model is parameterized by β, θ, and σ2.

10 Generalized Linear Models

10-66

The assumptions for generalized linear mixed-effects models are:

• The random effects vector b has the prior distribution:

b N D| , , ,s q s q2 20∼ ()()

where σ2 is the dispersion parameter, and D is a symmetric and positive semidefinite
matrix parameterized by an unconstrained parameter vector θ.

• The observations yi are conditionally independent given b.

Prepare Data for Model Fitting

To fit a GLME model to your data, use fitglme. Format your input data using the
table data type. Each row of the table represents one observation, and each column
represents one predictor variable. For more information on creating and using table, see
“Create a Table”.

Input data can include continuous and grouping variables. fitglme assumes that
predictors using the following data types are categorical:

• Logical
• Categorical
• String or character array

If the input data table contains any NaN values, then fitglme excludes that entire row
of data from the fit. To exclude additional rows of data, you can use the 'Exclude'
name-value pair argument of fitglme when fitting the model.

Choose a Distribution Type for the Model

GLME models are used when the response data does not follow a normal distribution.
Therefore, when fitting a model using fitglme, you must specify the response
distribution type using the 'Distribution' name-value pair argument. Often, the type
of response data suggests the appropriate distribution type for the model.

Type of Response Data Suggested Response Distribution Type

Any real number 'Normal'

Any positive number 'Gamma' or 'InverseGaussian'

 Generalized Linear Mixed-Effects Models

10-67

Type of Response Data Suggested Response Distribution Type

Any nonnegative integer 'Poisson'

Integer from 0 to n, where n is a fixed
positive value

'Binomial'

Choose a Link Function for the Model

GLME models use a link function, g, to map the relationship between the mean response
and the linear combination of the predictors. By default, fitglme uses a predefined,
commonly accepted link function based on the specified distribution of the response data,
as shown in the following table. However, you can specify a different link function from
the list of predefined functions, or define your own, using the 'Link' name-value pair
argument of fitglme.

Value Description

'comploglog' g(mu) = log(-log(1-mu))

'identity' g(mu) = mu

Canonical link for the normal distribution.
'log' g(mu) = log(mu)

Canonical link for the Poisson distribution.
'logit' g(mu) = log(mu/(1-mu))

Canonical link for the binomial
distribution.

'loglog' g(mu) = log(-log(mu))

'probit' g(mu) = norminv(mu)

'reciprocal' g(mu) = mu.^(-1)

Scalar value P g(mu) = mu.^P

Structure S A structure containing four fields whose
values are function handles:

• S.Link — Link function
• S.Derivative — Derivative

10 Generalized Linear Models

10-68

Value Description

• S.SecondDerivative — Second
derivative

• S.Inverse — Inverse of link

If 'FitMethod' is 'MPL' or 'REMPL',
or if S represents a canonical link for the
specified distribution, you can omit the
specification of S.SecondDerivative.

When fitting a model to data, fitglme uses the canonical link function by default.

Distribution Default Link Function

'Normal' 'identity'

'Binomial' 'logit'

'Poisson' 'log'

'Gamma' -1

'InverseGaussian' -2

The link functions 'comploglog', 'loglog', and 'probit' are mainly useful for
binomial models.

Specify the Model Formula

Model specification for fitglme uses Wilkinson notation, which is a string of the form 'y
~ terms', where y is the response variable name, and terms is written in the following
notation.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (element-wise

multiplication of X1 and X2)

X1:X2 X1.*X2 only

 Generalized Linear Mixed-Effects Models

10-69

Wilkinson Notation Factors in Standard Notation

- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Formulas include a constant (intercept) term by default. To exclude a constant term from
the model, include –1 in the formula.

For generalized linear mixed-effects models, the formula specification is of the form 'y ~
fixed + (random1|grouping1) + ... + (randomR|groupingR)', where fixed
and random contain the fixed-effects and the random-effects terms, respectively.

Suppose the input data table contains the following:

• A response variable, y
• Predictor variables, X1, X2, ..., XJ, where J is the total number of predictor variables

(including continuous and grouping variables).
• Grouping variables, g1, g2, ..., gR, where R is the number of grouping variables.

The grouping variables in XJ and gR can be categorical, logical, character arrays, or cell
arrays of strings.

Then, in a formula of the form 'y ~ fixed + (random1|g1) + ... + (randomR|
gR)', the term fixed corresponds to a specification of the fixed-effects design matrix
X, random1 is a specification of the random-effects design matrix Z1 corresponding to
grouping variable g1, and similarly randomR is a specification of the random-effects
design matrix ZR corresponding to grouping variable gR. You can express the fixed and
random terms using Wilkinson notation as follows.

Formula Description

'y ~ X1 + X2' Fixed effects for the intercept, X1, and X2.
This formula is equivalent to 'y ~ 1 +
X1 + X2'.

'y ~ -1 + X1 + X2' No intercept, with fixed effects for X1
and X2. The implicit intercept term is
suppressed by including -1.

10 Generalized Linear Models

10-70

Formula Description

'y ~ 1 + (1 | g1)' A fixed effect for the intercept, plus a
random effect for the intercept for each
level of the grouping variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with possible

correlation between them. This formula is
equivalent to 'y ~ 1 + X1 + (1 + X1|
g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 |

g1)'

Independent random-effects terms for
intercept and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1

| g1:g2)'

Random intercept model with independent
main effects for g1 and g2, plus an
independent interaction effect.

For example, the sample data mfr contains simulated data from a manufacturing
company that operates 50 factories across the world. Each factory runs a batch process
to create a finished product. The company wants to decrease the number of defects in
each batch, so it developed a new manufacturing process. To test the effectiveness of
the new process, the company selected 20 of its factories at random to participate in an
experiment: Ten factories implemented the new process, while the other ten continued
to run the old process. In each of the 20 factories, the company ran five batches (for a
total of 100 batches), and recorded data on processing time (time_dev), temperature
(temp_dev), number of defects (defects), and a categorical variable indicating the raw
materials supplier (supplier) for each batch.

To determine whether the new process (represented by the predictor variable
newprocess) significantly reduces the number of defects, fit a GLME model using
newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include
a random-effects intercept grouped by factory, to account for quality differences that
might exist due to factory-specific variations. The response variable defects has a
Poisson distribution.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

 Generalized Linear Mixed-Effects Models

10-71

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i (where i =
1, 2, ..., 20) during batch j (where j = 1, 2, ..., 5).

• μij is the mean number of defects corresponding to factory i during batch j.
• supplier_Cij and supplier_Bij are dummy variables that indicate whether company C

or B, respectively, supplied the process chemicals for the batch produced by factory i
during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

Using Wilkinson notation, specify this model as:

'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|

factory)'

To account for the Poisson distribution of the response variable, when fitting the model
using fitglme, specify the 'Distribution' name-value pair argument as 'Poisson'.
By default, fitglme uses a log link function for response variables with a Poisson
distribution.

Display the Model

The output of the fitting function fitglme provides information about generalized linear
mixed-effects model.

Using the mfr manufacturing experiment data, fit a model using newprocess,
time_dev, temp_dev, and supplier as fixed-effects predictors. Specify the response
distribution as Poisson, the link function as log, and the fit method as Laplace.

load mfr

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects')

glme =

Generalized linear mixed-effects model fit by ML

10 Generalized Linear Models

10-72

Model information:

 Number of observations 100

 Fixed effects coefficients 6

 Random effects coefficients 20

 Covariance parameters 1

 Distribution Poisson

 Link Log

 FitMethod Laplace

Formula:

 defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue

 '(Intercept)' 1.4689 0.15988 9.1875 94 9.8194e-15

 'newprocess' -0.36766 0.17755 -2.0708 94 0.041122

 'time_dev' -0.094521 0.82849 -0.11409 94 0.90941

 'temp_dev' -0.28317 0.9617 -0.29444 94 0.76907

 'supplier_C' -0.071868 0.078024 -0.9211 94 0.35936

 'supplier_B' 0.071072 0.07739 0.91836 94 0.36078

 Lower Upper

 1.1515 1.7864

 -0.72019 -0.015134

 -1.7395 1.5505

 -2.1926 1.6263

 -0.22679 0.083051

 -0.082588 0.22473

Random effects covariance parameters:

Group: factory (20 Levels)

 Name1 Name2 Type Estimate

 '(Intercept)' '(Intercept)' 'std' 0.31381

Group: Error

 Name Estimate

 'sqrt(Dispersion)' 1

 Generalized Linear Mixed-Effects Models

10-73

The Model information table displays the total number of observations in the sample
data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively),
and the number of covariance parameters (1). It also indicates that the response variable
has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit
of the model. This includes the Akaike information criterion (AIC), Bayesian information
criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95%
confidence intervals. It contains one row for each fixed-effects predictor, and each column
contains statistics corresponding to that predictor. Column 1 (Name) contains the name
of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and
column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains
the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and
column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-
statistic, respectively. The last two columns (Lower and Upper) display the lower and
upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping
variable (here, only factory), including its total number of levels (20), and the type and
estimate of the covariance parameter. Here, std indicates that fitglme returns the
standard deviation of the random effect associated with the factory predictor, which has
an estimated value of 0.31381. It also displays a table containing the error parameter
type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals
for the random-effects parameters. To compute and display these values, use
covarianceParameters.

Work with the Model

After you create a GLME model using fitglme, you can use additional functions to work
with the model.

Inspect and Test Coefficients and Confidence Intervals

To extract estimates of the fixed- and random-effects coefficients, covariance parameters,
design matrices, and related statistics:

10 Generalized Linear Models

10-74

• fixedEffects extracts estimated fixed-effects coefficients and related statistics from
a fitted model. Related statistics include the standard error; the t-statistic, degrees of
freedom, and p-value for a hypothesis test of whether each parameter is equal to 0;
and the confidence intervals.

• randomEffects extracts estimated random-effects coefficients and related statistics
from a fitted GLME model. Related statistics include the estimated empirical Bayes
predictor (EBP) of each random effect, the square root of the conditional mean
squared error of prediction (CMSEP) given the covariance parameters and the
response; the t-statistic, estimated degrees of freedom, and p-value for a hypothesis
test of whether each random effect is equal to 0; and the confidence intervals.

• covarianceParameters extracts estimated covariance parameters and related
statistics from a fitted GLME model. Related statistics include estimate of the
covariance parameter, and the confidence intervals.

• designMatrix extracts the fixed- and random-effects design matrices, or a specified
subset thereof, from the fitted GLME model.

To conduct customized hypothesis tests for the significance of fixed- and random-effects
coefficients, and to compute custom confidence intervals:

• anova performs a marginal F-test (hypothesis test) on fixed-effects terms, to
determine if all coefficients representing the fixed-effects terms are equal to 0. You
can use anova to test the combined significance of the coefficients of categorical
predictors.

• coefCI computes confidence intervals for fixed- and random-effects parameters from
a fitted GLME model. By default, fitglme computes 95% confidence intervals. Use
coefCI to compute the boundaries at a different confidence level.

• coefTest performs custom hypothesis tests on fixed-effects or random-effects vectors
of a fitted generalized linear mixed-effects model. For example, you can specify
contrast matrices.

Generate New Response Values and Refit Model

To generate new response values, including fitted, predicted, and random responses,
based on the fitted GLME model:

• fitted computes fitted response values using the original predictor values, and the
estimated coefficient and parameter values from the fitted model.

• predict computes the predicted conditional or marginal mean of the response
using either the original predictor values or new predictor values, and the estimated
coefficient and parameter values from the fitted model.

 Generalized Linear Mixed-Effects Models

10-75

• random generates random responses from a fitted model.
• refit creates a new fitted GLME model, based on the original model and a new

response vector.

Inspect and Visualize Residuals

To extract and visualize residuals from the fitted GLME model:

• residuals extracts the raw or Pearson residuals from the fitted model. You can also
specify whether to compute the conditional or marginal residuals.

• plotResiduals creates plots using the raw or Pearson residuals from the fitted
model, including:

• A histogram of the residuals
• A scatterplot of the residuals versus fitted values
• A scatterplot of residuals versus lagged residuals

See Also
fitglme | GeneralizedLinearMixedModel

Related Examples
• “Fit a Generalized Linear Mixed-Effects Model” on page 10-79

10 Generalized Linear Models

10-76

Estimating Parameters in Generalized Linear Mixed-Effects Models

In this section...

“Model Form” on page 10-76
“Model Approximations” on page 10-77
“Integral Approximations” on page 10-78

Model Form

The standard form of a generalized linear mixed-effects model is

where g is the link function and ĥME is the linear predictor of the fixed-and random-
effects of the generalized linear mixed effects model, defined as

ˆ ˆ ˆ .h b dME X Zb= + +

Here,

• X is an n-by-p fixed-effects design matrix
• β is a p-by-1 fixed-effects vector
• Z is an n-by-q random-effects design matrix
• b is a q-by-1 random-effects vector
• offset is an n-by-1 vector containing the offset variable in the fit.

The random-effects vector b is assumed to have the following prior distribution:

where D is a symmetric and positive semidefinite matrix, parameterized by component
vector θ.

The observations yi are assumed to be conditional independent given b, which implies
that

In this model, the parameters to estimate are the fixed-effects coefficients

The likelihood of y given β, θ, and τ2 is

 Estimating Parameters in Generalized Linear Mixed-Effects Models

10-77

However, this integral is analytically intractable for generalized linear mixed-effects
models. To solve this problem, use either the model approximation approach or the
integral approximation approach.

Model Approximations

The maximum pseudolikelihood (MPL) and restricted maximum pseudolikelihood
(REMPL) are model approximation approaches.

First, linearize the relationship between μi and β and b using a first-order Taylor series
expansion of the general GLME equation . Write it in vector form as

Let and be the values of μi and ηi, evaluated at and . Then

Next, linearly approximating the equation around and , obtain

Then we get

Rewriting in a different form, we obtain

In vector form, this can be written as

where F is

This motivates the definition of a “pseudo” response yp in terms of the original response
vector y as

Similarly, we can obtain an approximation for the covariance

Together, the “pseudo” response yp can be approximated using the equations

This final set of “pseudo” response equations looks like a weighted linear mixed-effects
(LME) model, except that the distribution of the error term ε is unspecified. In GLME, we
assume that the distribution of ε is Gaussian, which allows us to fit this “pseudo” model
using standard weighted LME model fitting algorithms. This gives us the fitted values
for , , , and . Then update and using the new fitted values and continue the process until
convergence.

If the intermediate LME fits are done using maximum likelihood (ML), then the
technique is called maximum pseudolikelihood (MPL). If the intermediate LME fits
are done using restricted maximum likelihood (REML), then the technique is called

10 Generalized Linear Models

10-78

restricted maximum pseudolikelihood (REMPL). For more information on ML and
REML, see “Estimating Parameters in Linear Mixed-Effects Models” on page 9-170.

Integral Approximations

Laplace approximation.

 Fit a Generalized Linear Mixed-Effects Model

10-79

Fit a Generalized Linear Mixed-Effects Model

This example shows how to fit a generalized linear mixed-effects model (GLME) to
sample data.

Load the sample data.

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

A manufacturing company operates 50 factories across the world, and each runs a
batch process to create a finished product. The company wants to decrease the number
of defects in each batch, so it developed a new manufacturing process. However, the
company wants to test the new process in select factories to ensure that it is effective
before rolling it out to all 50 locations.

To test whether the new process significantly reduces the number of defects in each
batch, the company selected 20 of its factories at random to participate in an experiment.
Ten factories implemented the new process, while the other ten used the old process.

In each of the 20 factories (i = 1, 2, ..., 20), the company ran five batches (j = 1, 2, ..., 5)
and recorded the following data in the table mfr:

• Flag to indicate use of the new process:

• If the batch used the new process, then newprocess = 1
• If the batch used the old process, then newprocess = 0

• Processing time for the batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Supplier of the chemical used in the batch (supplier)

• supplier is a categorical variable with levels A, B, and C, where each level
represents one of the three suppliers

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours and 20

10 Generalized Linear Models

10-80

degrees Celsius. The response variable defects has a Poisson distribution. This is
simulated data.

The company wants to determine whether the new process significantly reduces the
number of defects in each batch, while accounting for quality differences that might exist
due to factory-specific variations in time, temperature, and supplier. The number of
defects per batch can be modeled using a Poison distribution:

defects Poissonij ij~ m()

Use a generalized linear mixed-effects model to model the number of defects per batch:

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

Fit a GLME model and interpret the results.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept

 Fit a Generalized Linear Mixed-Effects Model

10-81

grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects')

glme =

Generalized linear mixed-effects model fit by ML

Model information:

 Number of observations 100

 Fixed effects coefficients 6

 Random effects coefficients 20

 Covariance parameters 1

 Distribution Poisson

 Link Log

 FitMethod Laplace

Formula:

 defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue

 '(Intercept)' 1.4689 0.15988 9.1875 94 9.8194e-15

 'newprocess' -0.36766 0.17755 -2.0708 94 0.041122

 'time_dev' -0.094521 0.82849 -0.11409 94 0.90941

 'temp_dev' -0.28317 0.9617 -0.29444 94 0.76907

 'supplier_C' -0.071868 0.078024 -0.9211 94 0.35936

 'supplier_B' 0.071072 0.07739 0.91836 94 0.36078

 Lower Upper

 1.1515 1.7864

 -0.72019 -0.015134

 -1.7395 1.5505

 -2.1926 1.6263

10 Generalized Linear Models

10-82

 -0.22679 0.083051

 -0.082588 0.22473

Random effects covariance parameters:

Group: factory (20 Levels)

 Name1 Name2 Type Estimate

 '(Intercept)' '(Intercept)' 'std' 0.31381

Group: Error

 Name Estimate

 'sqrt(Dispersion)' 1

The Model information table displays the total number of observations in the sample
data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively),
and the number of covariance parameters (1). It also indicates that the response variable
has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit
of the model. This includes the Akaike information criterion (AIC), Bayesian information
criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95%
confidence intervals. It contains one row for each fixed-effects predictor, and each column
contains statistics corresponding to that predictor. Column 1 (Name) contains the name
of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and
column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains
the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and
column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-
statistic, respectively. The last two columns (Lower and Upper) display the lower and
upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping
variable (here, only factory), including its total number of levels (20), and the type and
estimate of the covariance parameter. Here, std indicates that fitglme returns the
standard deviation of the random effect associated with the factory predictor, which has
an estimated value of 0.31381. It also displays a table containing the error parameter
type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals
for the random-effects parameters. To compute and display these values, use
covarianceParameters.

 Fit a Generalized Linear Mixed-Effects Model

10-83

Check significance of random effect.

To determine whether the random-effects intercept grouped by factory is statistically
significant, compute the confidence intervals for the estimated covariance parameter.

[psi,dispersion,stats] = covarianceParameters(glme);

covarianceParameters returns the estimated covariance parameter in psi, the
estimated dispersion parameter dispersion, and a cell array of related statistics
stats. The first cell of stats contains statistics for factory, while the second cell
contains statistics for the dispersion parameter.

Display the first cell of stats to see the confidence intervals for the estimated covariance
parameter for factory.

stats{1}

ans =

 Covariance Type: Isotropic

 Group Name1 Name2 Type

 factory '(Intercept)' '(Intercept)' 'std'

 Estimate Lower Upper

 0.31381 0.19253 0.51148

The columns Lower and Upper display the default 95% confidence interval for the
estimated covariance parameter for factory. Because the interval [0.19253,0.51148]
does not contain 0, the random-effects intercept is significant at the 5% significance level.
Therefore, the random effect due to factory-specific variation must be considered before
drawing any conclusions about the effectiveness of the new manufacturing process.

Compare two models.

Compare the mixed-effects model that includes a random-effects intercept grouped by
factory with a model that does not include the random effect, to determine which
model is a better fit for the data. Fit the first model, FEglme, using only the fixed-effects
predictors newprocess, time_dev, temp_dev, and supplier. Fit the second model,
glme, using these same fixed-effects predictors, but also including a random-effects
intercept grouped by factory.

10 Generalized Linear Models

10-84

FEglme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier','Distribution','Poisson','Link','log','FitMethod','Laplace');

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace');

Compare the two models using a likelihood ratio test. Specify 'CheckNesting' as true,
so compare returns a warning if the nesting requirements are not satisfied.

results = compare(FEglme,glme,'CheckNesting',true)

results =

 Theoretical Likelihood Ratio Test

 Model DF AIC BIC LogLik LRStat deltaDF

 FEglme 6 431.02 446.65 -209.51

 glme 7 416.35 434.58 -201.17 16.672 1

 pValue

 4.4435e-05

compare returns the degrees of freedom (DF), the Akaike information criterion (AIC),
Bayesian information criterion (BIC), and log likelihood values for each model. glme has
smaller AIC, BIC, and log likelihood values than FEglme, which indicates that glme
(the model containing the random-effects term for intercept grouped by factory) is the
better-fitting model for this data. Additionally, the small p-value indicates that compare
rejects the null hypothesis that the response vector was generated by the fixed-effects-
only model FEglme, in favor of the alternative that the response vector was generated by
the mixed-effects model glme.

Plot the results.

Generate the fitted conditional mean values for the model.

mufit = fitted(glme);

Plot the observed response values versus the fitted response values.

figure

scatter(mfr.defects,mufit)

title('Observed Values versus Fitted Values')

 Fit a Generalized Linear Mixed-Effects Model

10-85

xlabel('Fitted Values')

ylabel('Observed Values')

Create diagnostic plots using conditional Pearson residuals to test model assumptions.
Since raw residuals for generalized linear mixed-effects models do not have a constant
variance across observations, use the conditional Pearson residuals instead.

Plot a histogram to visually confirm that the mean of the Pearson residuals is equal to 0.
If the model is correct, we expect the Pearson residuals to be centered at 0.

plotResiduals(glme,'histogram','ResidualType','Pearson')

10 Generalized Linear Models

10-86

The histogram shows that the Pearson residuals are centered at 0.

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant
variance among the residuals (heteroscedasticity). We expect the conditional Pearson
residuals to have a constant variance. Therefore, a plot of conditional Pearson residuals
versus conditional fitted values should not reveal any systematic dependence on the
conditional fitted values.

plotResiduals(glme,'fitted','ResidualType','Pearson')

 Fit a Generalized Linear Mixed-Effects Model

10-87

The plot does not show a systematic dependence on the fitted values, so there are no
signs of nonconstant variance among the residuals.

Plot the Pearson residuals versus lagged residuals, to check for correlation among
the residuals. The conditional independence assumption in GLME implies that the
conditional Pearson residuals are approximately uncorrelated.

10 Generalized Linear Models

10-88

There is no pattern to the plot, so there are no signs of correlation among the residuals.

See Also
fitglme | GeneralizedLinearMixedModel

More About
• “Generalized Linear Models” on page 10-12

11

Nonlinear Regression

• “Nonlinear Regression” on page 11-2
• “Mixed-Effects Models” on page 11-20
• “Pitfalls in Fitting Nonlinear Models by Transforming to Linearity” on page 11-56

11 Nonlinear Regression

11-2

Nonlinear Regression

In this section...

“What Are Parametric Nonlinear Regression Models?” on page 11-2
“Prepare Data” on page 11-3
“Represent the Nonlinear Model” on page 11-4
“Choose Initial Vector beta0” on page 11-6
“Fit Nonlinear Model to Data” on page 11-7
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 11-7
“Predict or Simulate Responses Using a Nonlinear Model” on page 11-10
“Nonlinear Regression Workflow” on page 11-14

What Are Parametric Nonlinear Regression Models?

Parametric nonlinear models represent the relationship between a continuous response
variable and one or more continuous predictor variables in the form
y = f(X,β) + ε,

where

• y is an n-by-1 vector of observations of the response variable.
• f is any function of X and β that evaluates each row of X along with the vector β to

compute the prediction for the corresponding row of y.
• X is an n-by-p matrix of predictors, with one row for each observation, and one column

for each predictor.
• β is a p-by-1 vector of unknown parameters to be estimated.
• ε is an n-by-1 vector of independent, identically distributed random disturbances.

In contrast, nonparametric models do not attempt to characterize the relationship
between predictors and response with model parameters. Descriptions are often
graphical, as in the case of “Classification Trees and Regression Trees” on page 16-33.

fitnlm attempts to find values of the parameters β that minimize the mean squared
differences between the observed responses y and the predictions of the model f(X,β). To
do so, it needs a starting value beta0 before iteratively modifying the vector β to a vector
with minimal mean squared error.

 Nonlinear Regression

11-3

Prepare Data

To begin fitting a regression, put your data into a form that fitting functions expect.
All regression techniques begin with input data in an array X and response data in a
separate vector y, or input data in a table or dataset array tbl and response data as
a column in tbl. Each row of the input data represents one observation. Each column
represents one predictor (variable).

For a table or dataset array tbl, indicate the response variable with the
'ResponseVar' name-value pair:

mdl = fitlm(tbl,'ResponseVar','BloodPressure');

The response variable is the last column by default.

You cannot use numeric categorical predictors for nonlinear regression. A categorical
predictor is one that takes values from a fixed set of possibilities.

Represent missing data as NaN for both input data and response data.

Dataset Array for Input and Response Data

For example, to create a dataset array from an Excel spreadsheet:

ds = dataset('XLSFile','hospital.xls',...

 'ReadObsNames',true);

To create a dataset array from workspace variables:

load carsmall

ds = dataset(Weight,Model_Year,MPG);

Table for Input and Response Data

To create a table from an Excel spreadsheet:

tbl = readtable('hospital.xls',...

 'ReadRowNames',true);

To create a table from workspace variables:

load carsmall

tbl = table(Weight,Model_Year,MPG);

11 Nonlinear Regression

11-4

Numeric Matrix for Input Data and Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

load carsmall

X = [Weight Horsepower Cylinders Model_Year];

y = MPG;

To create numeric arrays from an Excel spreadsheet:

[X Xnames] = xlsread('hospital.xls');

y = X(:,4); % response y is systolic pressure

X(:,4) = []; % remove y from the X matrix

Notice that the nonnumeric entries, such as sex, do not appear in X.

Represent the Nonlinear Model

There are several ways to represent a nonlinear model. Use whichever is most
convenient.

The nonlinear model is a required input to fitnlm, in the modelfun input.

fitnlm assumes that the response function f(X,β) is smooth in the parameters β. If your
function is not smooth, fitnlm can fail to provide optimal parameter estimates.

• “Function Handle to Anonymous Function or Function File” on page 11-4
• “String Representation of Formula” on page 11-5

Function Handle to Anonymous Function or Function File

The function handle @modelfun(b,x) accepts a vector b and matrix, table, or dataset
array x. The function handle should return a vector f with the same number of rows as
x. For example, the function file hougen.m computes

hougen(,)
() () () / ()

() () () () () ()
b x

b x x b

b x b x b x
=

-

+ + +

1 2 3 5

1 2 1 3 2 4 3
..

Examine the function by entering type hougen at the MATLAB command line.

function yhat = hougen(beta,x)

%HOUGEN Hougen-Watson model for reaction kinetics.

 Nonlinear Regression

11-5

% YHAT = HOUGEN(BETA,X) gives the predicted values of the

% reaction rate, YHAT, as a function of the vector of

% parameters, BETA, and the matrix of data, X.

% BETA must have 5 elements and X must have three

% columns.

%

% The model form is:

% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)

%

% Reference:

% [1] Bates, Douglas, and Watts, Donald, "Nonlinear

% Regression Analysis and Its Applications", Wiley

% 1988 p. 271-272.

% Copyright 1993-2004 The MathWorks, Inc.

% B.A. Jones 1-06-95.

b1 = beta(1);

b2 = beta(2);

b3 = beta(3);

b4 = beta(4);

b5 = beta(5);

x1 = x(:,1);

x2 = x(:,2);

x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

You can write an anonymous function that performs the same calculation as hougen.m.

modelfun = @(b,x)(b(1)*x(:,2) - x(:,3)/b(5))./...

(1 + b(2)*x(:,1) + b(3)*x(:,2) + b(4)*x(:,3));

String Representation of Formula

For data in a matrix X and response in a vector y:

• Represent the formula using 'x1' as the first predictor (column) in X, 'x2' as the
second predictor, etc.

• Represent the vector of parameters to optimize as 'b1', 'b2', etc.
• Write the formula as 'y ~ (mathematical expressions)'.

For example, to represent the response to the reaction data:

11 Nonlinear Regression

11-6

modelfun = 'y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)';

For data in a table or dataset array, you can use formulas represented as strings with
the variable names from the table or dataset array. Put the response variable name at
the left of the formula, followed by a ~, followed by a string representing the response
formula.

This example shows how to create a string to represent the response to the reaction
data that is in a dataset array.

1 Load the reaction data.

load reaction

2 Put the data into a dataset array, where each variable has a name given in the xn or
yn strings.

ds = dataset({reactants,xn(1,:),xn(2,:),xn(3,:)},...

 {rate,yn});

3 Examine the first row of the dataset array.

ds(1,:)

ans =

 Hydrogen n_Pentane Isopentane ReactionRate

 470 300 10 8.55

4 Write the hougen formula using names in the dataset array.

modelfun = ['ReactionRate ~ (b1*n_Pentane - Isopentane/b5) /'...

' (1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)']

modelfun =

ReactionRate ~ (b1*n_Pentane - Isopentane/b5) / ...

 (1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)

Choose Initial Vector beta0

The initial vector for the fitting iterations, beta0, can greatly influence the quality of the
resulting fitted model. beta0 gives the dimensionality of the problem, meaning it needs
the correct length. A good choice of beta0 leads to a quick, reliable model, while a poor
choice can lead to a long computation, or to an inadequate model.

 Nonlinear Regression

11-7

It is difficult to give advice on choosing a good beta0. If you believe certain components
of the vector should be positive or negative, set your beta0 to have those characteristics.
If you know the approximate value of other components, include them in beta0.
However, if you don’t know good values, try a random vector, such as

beta0 = randn(nVars,1);

% or

beta0 = 10*rand(nVars,1);

Fit Nonlinear Model to Data

The syntax for fitting a nonlinear regression model using a table or dataset array tbl is

mdl = fitnlm(tbl,modelfun,beta0)

The syntax for fitting a nonlinear regression model using a numeric array X and numeric
response vector y is

mdl = fitnlm(X,y,modelfun,beta0)

For information on representing the input parameters, see “Prepare Data” on page
11-3, “Represent the Nonlinear Model” on page 11-4, and “Choose Initial Vector
beta0” on page 11-6.

fitnlm assumes that the response variable in a table or dataset array tbl is the last
column. To change this, use the ResponseVar name-value pair to name the response
column.

Examine Quality and Adjust the Fitted Nonlinear Model

There are diagnostic plots to help you examine the quality of a model.
plotDiagnostics(mdl) gives a variety of plots, including leverage and Cook's distance
plots. plotResiduals(mdl) gives the difference between the fitted model and the data.

There are also properties of mdl that relate to the model quality. mdl.RMSE gives the
root mean square error between the data and the fitted model. mdl.Residuals.Raw
gives the raw residuals. mdl.Diagnostics contains several fields, such as Leverage and
CooksDistance, that can help you identify particularly interesting observations.

This example shows how to examine a fitted nonlinear model using diagnostic, residual,
and slice plots.

11 Nonlinear Regression

11-8

Load the sample data.

load reaction

Create a nonlinear model of rate as a function of reactants using the hougen.m
function.

beta0 = ones(5,1);

mdl = fitnlm(reactants,...

 rate,@hougen,beta0);

Make a leverage plot of the data and model.

plotDiagnostics(mdl)

 Nonlinear Regression

11-9

There is one point that has high leverage. Locate the point.

[~,maxl] = max(mdl.Diagnostics.Leverage)

maxl =

 6

Examine a residuals plot.

plotResiduals(mdl,'fitted')

11 Nonlinear Regression

11-10

Nothing stands out as an outlier.

Use a slice plot to show the effect of each predictor on the model.

plotSlice(mdl)

You can drag the vertical dashed blue lines to see the effect of a change in one predictor
on the response. For example, drag the X2 line to the right, and notice that the slope of
the X3 line changes.

Predict or Simulate Responses Using a Nonlinear Model

This example shows how to use the methods predict , feval , and random to predict
and simulate responses to new data.

Randomly generate a sample from a Cauchy distribution.

rng('default')

X = rand(100,1);

 Nonlinear Regression

11-11

X = tan(pi*X - pi/2);

Generate the response according to the model y = b1*(pi /2 + atan((x - b2) /
b3)) and add noise to the response.

modelfun = @(b,x) b(1) * ...

 (pi/2 + atan((x - b(2))/b(3)));

y = modelfun([12 5 10],X) + randn(100,1);

Fit a model starting from the arbitrary parameters b = [1,1,1].

beta0 = [1 1 1]; % An arbitrary guess

mdl = fitnlm(X,y,modelfun,beta0)

mdl =

Nonlinear regression model:

 y ~ b1*(pi/2 + atan((x - b2)/b3))

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ______ __________

 b1 12.082 0.80028 15.097 3.3151e-27

 b2 5.0603 1.0825 4.6747 9.5063e-06

 b3 9.64 0.46499 20.732 2.0382e-37

Number of observations: 100, Error degrees of freedom: 97

Root Mean Squared Error: 1.02

R-Squared: 0.92, Adjusted R-Squared 0.918

F-statistic vs. zero model: 6.45e+03, p-value = 1.72e-111

The fitted values are within a few percent of the parameters [12,5,10].

Examine the fit.

plotSlice(mdl)

11 Nonlinear Regression

11-12

predict

The predict method predicts the mean responses and, if requested, gives confidence
bounds. Find the predicted response values and predicted confidence intervals about the
response at X values [-15;5;12].

Xnew = [-15;5;12];

[ynew,ynewci] = predict(mdl,Xnew)

ynew =

 5.4122

 18.9022

 26.5161

ynewci =

 4.8233 6.0010

 18.4555 19.3490

 25.0170 28.0151

 Nonlinear Regression

11-13

The confidence intervals are reflected in the slice plot.

feval

The feval method predicts the mean responses. feval is often more convenient to use
than predict when you construct a model from a dataset array.

Create the nonlinear model from a dataset array.

ds = dataset({X,'X'},{y,'y'});

mdl2 = fitnlm(ds,modelfun,beta0);

Find the predicted model responses (CDF) at X values [-15;5;12].

Xnew = [-15;5;12];

ynew = feval(mdl2,Xnew)

ynew =

 5.4122

 18.9022

 26.5161

random

The random method simulates new random response values, equal to the mean
prediction plus a random disturbance with the same variance as the training data.

Xnew = [-15;5;12];

ysim = random(mdl,Xnew)

ysim =

 6.0505

 19.0893

 25.4647

Rerun the random method. The results change.

11 Nonlinear Regression

11-14

ysim = random(mdl,Xnew)

ysim =

 6.3813

 19.2157

 26.6541

Nonlinear Regression Workflow

This example shows how to do a typical nonlinear regression workflow: import data,
fit a nonlinear regression, test its quality, modify it to improve the quality, and make
predictions based on the model.

Step 1. Prepare the data.

Load the reaction data

load reaction

Examine the data in the workspace. reactants is a matrix with 13 rows and 3 columns.
Each row corresponds to one observation, and each column corresponds to one variable.
The variable names are in xn:

xn

xn =

Hydrogen

n-Pentane

Isopentane

Similarly, rate is a vector of 13 responses, with the variable name in yn:

yn

yn =

Reaction Rate

The hougen.m file contains a nonlinear model of reaction rate as a function of the three
predictor variables. For a 5-D vector b and 3-D vector x,

 Nonlinear Regression

11-15

hougen(,)
() () () / ()

() () () () () ()
b x

b x x b

b x b x b x
=

-

+ + +

1 2 3 5

1 2 1 3 2 4 3
..

As a start point for the solution, take b as a vector of ones.

beta0 = ones(5,1);

Step 2. Fit a nonlinear model to the data.

mdl = fitnlm(reactants,...

 rate,@hougen,beta0)

mdl =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.2526 0.86702 1.4447 0.18654

 b2 0.062776 0.043562 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075158 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.193

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. constant model: 1.81e+03, p-value = 7.36e-12

Step 3. Examine the quality of the model.

The root mean squared error is fairly low compared to the range of observed values.

[mdl.RMSE min(rate) max(rate)]

ans =

 0.1933 0.0200 14.3900

Examine a residuals plot.

plotResiduals(mdl)

11 Nonlinear Regression

11-16

The model seems adequate for the data.

Examine a diagnostic plot to look for outliers.

plotDiagnostics(mdl,'cookd')

 Nonlinear Regression

11-17

Observation 6 seems out of line.

Step 4. Remove the outlier.

Remove the outlier from the fit using the Exclude name-value pair.

mdl1 = fitnlm(reactants,...

 rate,@hougen,ones(5,1),'Exclude',6)

mdl1 =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 0.619 0.4552 1.3598 0.21605

 b2 0.030377 0.023061 1.3172 0.22924

 b3 0.018927 0.01574 1.2024 0.26828

11 Nonlinear Regression

11-18

 b4 0.053411 0.041084 1.3 0.23476

 b5 2.4125 1.7903 1.3475 0.2198

Number of observations: 12, Error degrees of freedom: 7

Root Mean Squared Error: 0.198

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. constant model: 1.24e+03, p-value = 4.73e-10

The model coefficients changed quite a bit from those in mdl.

Step 5. Examine slice plots of both models.

To see the effect of each predictor on the response, make a slice plot using
plotSlice(mdl).

plotSlice(mdl)

plotSlice(mdl1)

 Nonlinear Regression

11-19

The plots look very similar, with slightly wider confidence bounds for mdl1. This
difference is understandable, since there is one less data point in the fit, representing
over 7% fewer observations.

Step 6. Predict for new data.

Create some new data and predict the response from both models.

Xnew = [200,200,200;100,200,100;500,50,5];

[ypred yci] = predict(mdl,Xnew)

ypred =

 1.8762

 6.2793

 1.6718

yci =

 1.6283 2.1242

 5.9789 6.5797

 1.5589 1.7846

[ypred1 yci1] = predict(mdl1,Xnew)

ypred1 =

 1.8984

 6.2555

 1.6594

yci1 =

 1.6260 2.1708

 5.9323 6.5787

 1.5345 1.7843

Even though the model coefficients are dissimilar, the predictions are nearly identical.

11 Nonlinear Regression

11-20

Mixed-Effects Models

In this section...

“Introduction to Mixed-Effects Models” on page 11-20
“Mixed-Effects Model Hierarchy” on page 11-21
“Specifying Mixed-Effects Models” on page 11-22
“Specifying Covariate Models” on page 11-25
“Choosing nlmefit or nlmefitsa” on page 11-26
“Using Output Functions with Mixed-Effects Models” on page 11-29
“Mixed-Effects Models Using nlmefit and nlmefitsa” on page 11-34
“Examining Residuals for Model Verification” on page 11-50

Introduction to Mixed-Effects Models

In statistics, an effect is anything that influences the value of a response variable
at a particular setting of the predictor variables. Effects are translated into model
parameters. In linear models, effects become coefficients, representing the proportional
contributions of model terms. In nonlinear models, effects often have specific physical
interpretations, and appear in more general nonlinear combinations.

Fixed effects represent population parameters, assumed to be the same each time data
is collected. Estimating fixed effects is the traditional domain of regression modeling.
Random effects, by comparison, are sample-dependent random variables. In modeling,
random effects act like additional error terms, and their distributions and covariances
must be specified.

For example, consider a model of the elimination of a drug from the bloodstream. The
model uses time t as a predictor and the concentration of the drug C as the response. The
nonlinear model term C0e–rt combines parameters C0 and r, representing, respectively,
an initial concentration and an elimination rate. If data is collected across multiple
individuals, it is reasonable to assume that the elimination rate is a random variable ri

depending on individual i, varying around a population mean r . The term C0e–rt becomes

C e C e
r r r t b t

i i

0 0
− + − − +=[()] ()b ,

 Mixed-Effects Models

11-21

where β = r is a fixed effect and bi = r r
i
− is a random effect.

Random effects are useful when data falls into natural groups. In the drug elimination
model, the groups are simply the individuals under study. More sophisticated models
might group data by an individual's age, weight, diet, etc. Although the groups are
not the focus of the study, adding random effects to a model extends the reliability of
inferences beyond the specific sample of individuals.

Mixed-effects models account for both fixed and random effects. As with all regression
models, their purpose is to describe a response variable as a function of the predictor
variables. Mixed-effects models, however, recognize correlations within sample
subgroups. In this way, they provide a compromise between ignoring data groups entirely
and fitting each group with a separate model.

Mixed-Effects Model Hierarchy

Suppose data for a nonlinear regression model falls into one of m distinct groups i = 1, ...,
m. To account for the groups in a model, write response j in group i as:

y f xij ij ij= +(,)j e

yij is the response, xij is a vector of predictors, φ is a vector of model parameters, and
εij is the measurement or process error. The index j ranges from 1 to ni, where ni is the
number of observations in group i. The function f specifies the form of the model. Often,
xij is simply an observation time tij. The errors are usually assumed to be independent
and identically, normally distributed, with constant variance.

Estimates of the parameters in φ describe the population, assuming those estimates are
the same for all groups. If, however, the estimates vary by group, the model becomes

y f xij i ij ij= +(,)j e

In a mixed-effects model, φi may be a combination of a fixed and a random effect:

j bi ib= +

11 Nonlinear Regression

11-22

The random effects bi are usually described as multivariate normally distributed, with
mean zero and covariance Ψ. Estimating the fixed effects β and the covariance of the
random effects Ψ provides a description of the population that does not assume the
parameters φi are the same across groups. Estimating the random effects bi also gives a
description of specific groups within the data.

Model parameters do not have to be identified with individual effects. In general, design
matrices A and B are used to identify parameters with linear combinations of fixed and
random effects:

j bi iA Bb= +

If the design matrices differ among groups, the model becomes

j bi i i iA B b= +

If the design matrices also differ among observations, the model becomes

j b

j e

ij ij ij i

ij ij ij ij

A B b

y f x

= +

= +(,)

Some of the group-specific predictors in xij may not change with observation j. Calling
those vi, the model becomes

y f x vij ij ij i ij= +(, ,)j e

Specifying Mixed-Effects Models

Suppose data for a nonlinear regression model falls into one of m distinct groups i = 1, ...,
m. (Specifically, suppose that the groups are not nested.) To specify a general nonlinear
mixed-effects model for this data:

1 Define group-specific model parameters φi as linear combinations of fixed effects β
and random effects bi.

 Mixed-Effects Models

11-23

2 Define response values yi as a nonlinear function f of the parameters and group-
specific predictor variables Xi.

The model is:

j b

j e

e s

i i i i

i i i i

i

i

A B b

y f X

b N

N

= +
= +(,)

(,)

(,)

∼

∼

0

0 2

Ψ

This formulation of the nonlinear mixed-effects model uses the following notation:

φi A vector of group-specific model parameters
β A vector of fixed effects, modeling population parameters
bi A vector of multivariate normally distributed group-specific random effects
Ai A group-specific design matrix for combining fixed effects
Bi A group-specific design matrix for combining random effects
Xi A data matrix of group-specific predictor values
yi A data vector of group-specific response values
f A general, real-valued function of φi and Xi

εi A vector of group-specific errors, assumed to be independent, identically,
normally distributed, and independent of bi

Ψ A covariance matrix for the random effects

σ2 The error variance, assumed to be constant across observations

For example, consider a model of the elimination of a drug from the bloodstream. The
model incorporates two overlapping phases:

• An initial phase p during which drug concentrations reach equilibrium with
surrounding tissues

• A second phase q during which the drug is eliminated from the bloodstream

For data on multiple individuals i, the model is

11 Nonlinear Regression

11-24

y C e C eij pi
r t

qi
r t

ij
pi ij qi ij= + +− −

e ,

where yij is the observed concentration in individual i at time tij. The model allows for
different sampling times and different numbers of observations for different individuals.

The elimination rates rpi and rqi must be positive to be physically meaningful. Enforce
this by introducing the log rates Rpi = log(rpi) and Rqi = log(rqi) and reparametrizing the
model:

y C e C eij pi
R t

qi
R t

ij
pi ij qi ij= + +− −exp() exp()

e

Choosing which parameters to model with random effects is an important consideration
when building a mixed-effects model. One technique is to add random effects to all
parameters, and use estimates of their variances to determine their significance in
the model. An alternative is to fit the model separately to each group, without random
effects, and look at the variation of the parameter estimates. If an estimate varies
widely across groups, or if confidence intervals for each group have minimal overlap, the
parameter is a good candidate for a random effect.

To introduce fixed effects β and random effects bi for all model parameters, reexpress the
model as follows:

y C C C e

C C C e

ij p pi p
R R R t

q qi q

p pi p i j= + − +

+ −

− + −

−

[()]

[()]

exp[()]

exp[RR R R t
ij

i
b t

i

q qi q ij

i i jb e

b e

+ −

− +

−

+

= + +

+

()]

exp()

ex

()

()

e

b

b

b
1 1

3 3

2 2

pp()b
e4 4+ +b t

ij
i ij

In the notation of the general model:

b

b

b

=
















=
















=












1

4

1

4

1

M M M, ,b

b

b

y

y

y

i

i

i

i

i

ini




=
















, ,X

t

t

i

i

ini

1

M

 Mixed-Effects Models

11-25

where ni is the number of observations of individual i. In this case, the design matrices Ai
and Bi are, at least initially, 4-by-4 identity matrices. Design matrices may be altered, as
necessary, to introduce weighting of individual effects, or time dependency.

Fitting the model and estimating the covariance matrix Ψ often leads to further
refinements. A relatively small estimate for the variance of a random effect suggests that
it can be removed from the model. Likewise, relatively small estimates for covariances
among certain random effects suggests that a full covariance matrix is unnecessary.
Since random effects are unobserved, Ψ must be estimated indirectly. Specifying a
diagonal or block-diagonal covariance pattern for Ψ can improve convergence and
efficiency of the fitting algorithm.

Statistics and Machine Learning Toolbox functions nlmefit and nlmefitsa fit
the general nonlinear mixed-effects model to data, estimating the fixed and random
effects. The functions also estimate the covariance matrix Ψ for the random effects.
Additional diagnostic outputs allow you to assess tradeoffs between the number of model
parameters and the goodness of fit.

Specifying Covariate Models

If the model in “Specifying Mixed-Effects Models” on page 11-22 assumes a group-
dependent covariate such as weight (w) the model becomes:

j

j

j

b

b

b

b

1

2

3

1

2

3

4

1 0 0

0 1 0

0 0 1

0

0

















=





























wi





+
































1 0 0

0 1 0

0 0 1

1

2

3

b

b

b

Thus, the parameter φi for any individual in the ith group is:

j

j

j

b b

b

b

1

2

3

1 4

2

3

1

2

3

i

i

i

i

i

i

w b

b

b

i


















=
















+








+ *













To specify a covariate model, use the 'FEGroupDesign' option.

11 Nonlinear Regression

11-26

'FEGroupDesign' is a p-by-q-by-m array specifying a different p-by-q fixed-effects
design matrix for each of the m groups. Using the previous example, the array resembles
the following:

1 Create the array.

% Number of parameters in the model (Phi)

num_params = 3;

% Number of covariates

num_cov = 1;

% Assuming number of groups in the data set is 7

num_groups = 7;

% Array of covariate values

covariates = [75; 52; 66; 55; 70; 58; 62];

A = repmat(eye(num_params, num_params+num_cov),...

[1,1,num_groups]);

A(1,num_params+1,1:num_groups) = covariates(:,1)

2 Create a struct with the specified design matrix.

options.FEGroupDesign = A;

3 Specify the arguments for nlmefit (or nlmefitsa) as shown in “Mixed-Effects
Models Using nlmefit and nlmefitsa” on page 11-34.

Choosing nlmefit or nlmefitsa

Statistics and Machine Learning Toolbox provides two functions, nlmefit and
nlmefitsa for fitting nonlinear mixed-effects models. Each function provides different
capabilities, which may help you decide which to use.

 Mixed-Effects Models

11-27

• “Approximation Methods” on page 11-27
• “Parameters Specific to nlmefitsa” on page 11-28
• “Model and Data Requirements” on page 11-28

Approximation Methods

nlmefit provides the following four approximation methods for fitting nonlinear mixed-
effects models:

• 'LME' — Use the likelihood for the linear mixed-effects model at the current
conditional estimates of beta and B. This is the default.

• 'RELME' — Use the restricted likelihood for the linear mixed-effects model at the
current conditional estimates of beta and B.

• 'FO' — First-order Laplacian approximation without random effects.
• 'FOCE' — First-order Laplacian approximation at the conditional estimates of B.

nlmefitsa provides an additional approximation method, Stochastic Approximation
Expectation-Maximization (SAEM) [24] with three steps :

1 Simulation: Generate simulated values of the random effects b from the posterior
density p(b|Σ) given the current parameter estimates.

2 Stochastic approximation: Update the expected value of the log likelihood function
by taking its value from the previous step, and moving part way toward the average
value of the log likelihood calculated from the simulated random effects.

3 Maximization step: Choose new parameter estimates to maximize the log likelihood
function given the simulated values of the random effects.

Both nlmefit and nlmefitsa attempt to find parameter estimates to maximize a
likelihood function, which is difficult to compute. nlmefit deals with the problem by
approximating the likelihood function in various ways, and maximizing the approximate
function. It uses traditional optimization techniques that depend on things like
convergence criteria and iteration limits.

nlmefitsa, on the other hand, simulates random values of the parameters in such a
way that in the long run they converge to the values that maximize the exact likelihood
function. The results are random, and traditional convergence tests don't apply.
Therefore nlmefitsa provides options to plot the results as the simulation progresses,
and to restart the simulation multiple times. You can use these features to judge whether
the results have converged to the accuracy you desire.

11 Nonlinear Regression

11-28

Parameters Specific to nlmefitsa

The following parameters are specific to nlmefitsa. Most control the stochastic
algorithm.

• Cov0 — Initial value for the covariance matrix PSI. Must be an r-by-r positive
definite matrix. If empty, the default value depends on the values of BETA0.

• ComputeStdErrors — true to compute standard errors for the coefficient estimates
and store them in the output STATS structure, or false (default) to omit this
computation.

• LogLikMethod — Specifies the method for approximating the log likelihood.
• NBurnIn — Number of initial burn-in iterations during which the parameter

estimates are not recomputed. Default is 5.
• NIterations — Controls how many iterations are performed for each of three

phases of the algorithm.
• NMCMCIterations — Number of Markov Chain Monte Carlo (MCMC) iterations.

Model and Data Requirements

There are some differences in the capabilities of nlmefit and nlmefitsa. Therefore
some data and models are usable with either function, but some may require you to
choose just one of them.

• Error models — nlmefitsa supports a variety of error models. For example, the
standard deviation of the response can be constant, proportional to the function
value, or a combination of the two. nlmefit fits models under the assumption
that the standard deviation of the response is constant. One of the error models,
'exponential', specifies that the log of the response has a constant standard
deviation. You can fit such models using nlmefit by providing the log response as
input, and by rewriting the model function to produce the log of the nonlinear function
value.

• Random effects — Both functions fit data to a nonlinear function with parameters,
and the parameters may be simple scalar values or linear functions of covariates.
nlmefit allows any coefficients of the linear functions to have both fixed and
random effects. nlmefitsa supports random effects only for the constant (intercept)
coefficient of the linear functions, but not for slope coefficients. So in the example in
“Specifying Covariate Models” on page 11-25, nlmefitsa can treat only the first
three beta values as random effects.

 Mixed-Effects Models

11-29

• Model form — nlmefit supports a very general model specification, with few
restrictions on the design matrices that relate the fixed coefficients and the random
effects to the model parameters. nlmefitsa is more restrictive:

• The fixed effect design must be constant in every group (for every individual), so
an observation-dependent design is not supported.

• The random effect design must be constant for the entire data set, so neither an
observation-dependent design nor a group-dependent design is supported.

• As mentioned under Random Effects, the random effect design must not specify
random effects for slope coefficients. This implies that the design must consist of
zeros and ones.

• The random effect design must not use the same random effect for multiple
coefficients, and cannot use more than one random effect for any single coefficient.

• The fixed effect design must not use the same coefficient for multiple parameters.
This implies that it can have at most one nonzero value in each column.

If you want to use nlmefitsa for data in which the covariate effects are random,
include the covariates directly in the nonlinear model expression. Don't include the
covariates in the fixed or random effect design matrices.

• Convergence — As described in the Model form, nlmefit and nlmefitsa
have different approaches to measuring convergence. nlmefit uses traditional
optimization measures, and nlmefitsa provides diagnostics to help you judge the
convergence of a random simulation.

In practice, nlmefitsa tends to be more robust, and less likely to fail on difficult
problems. However, nlmefit may converge faster on problems where it converges
at all. Some problems may benefit from a combined strategy, for example by running
nlmefitsa for a while to get reasonable parameter estimates, and using those as a
starting point for additional iterations using nlmefit.

Using Output Functions with Mixed-Effects Models

The Outputfcn field of the options structure specifies one or more functions that the
solver calls after each iteration. Typically, you might use an output function to plot points
at each iteration or to display optimization quantities from the algorithm. To set up an
output function:

1 Write the output function as a MATLAB file function or local function.

11 Nonlinear Regression

11-30

2 Use statset to set the value of Outputfcn to be a function handle, that is, the
name of the function preceded by the @ sign. For example, if the output function is
outfun.m, the command

 options = statset('OutputFcn', @outfun);

specifies OutputFcn to be the handle to outfun. To specify multiple output
functions, use the syntax:

 options = statset('OutputFcn',{@outfun, @outfun2});

3 Call the optimization function with options as an input argument.

For an example of an output function, see “Sample Output Function” on page 11-33.

Structure of the Output Function

The function definition line of the output function has the following form:

stop = outfun(beta,status,state)

where

• beta is the current fixed effects.
• status is a structure containing data from the current iteration. “Fields in status” on

page 11-30 describes the structure in detail.
• state is the current state of the algorithm. “States of the Algorithm” on page 11-31

lists the possible values.
• stop is a flag that is true or false depending on whether the optimization routine

should quit or continue. See “Stop Flag” on page 11-32 for more information.

The solver passes the values of the input arguments to outfun at each iteration.

Fields in status

The following table lists the fields of the status structure:

Field Description

procedure • 'ALT' — alternating algorithm for the optimization of the linear
mixed effects or restricted linear mixed effects approximations

• 'LAP' — optimization of the Laplacian approximation for first
order or first order conditional estimation

iteration An integer starting from 0.

 Mixed-Effects Models

11-31

Field Description

inner A structure describing the status of the inner iterations within the ALT
and LAP procedures, with the fields:

• procedure — When procedure is 'ALT':

• 'PNLS' (penalized nonlinear least squares)
• 'LME' (linear mixed-effects estimation)
• 'none'

When procedure is 'LAP',

• 'PNLS' (penalized nonlinear least squares)
• 'PLM' (profiled likelihood maximization)
• 'none'

• state — one of the following:

• 'init'

• 'iter'

• 'done'

• 'none'

• iteration — an integer starting from 0, or NaN. For nlmefitsa
with burn-in iterations, the output function is called after each of
those iterations with a negative value for STATUS.iteration.

fval The current log likelihood
Psi The current random-effects covariance matrix
theta The current parameterization of Psi
mse The current error variance

States of the Algorithm

The following table lists the possible values for state:

state Description

'init' The algorithm is in the initial state before the first iteration.
'iter' The algorithm is at the end of an iteration.

11 Nonlinear Regression

11-32

state Description

'done' The algorithm is in the final state after the last iteration.

The following code illustrates how the output function might use the value of state to
decide which tasks to perform at the current iteration:

switch state

 case 'iter'

 % Make updates to plot or guis as needed

 case 'init'

 % Setup for plots or guis

 case 'done'

 % Cleanup of plots, guis, or final plot

otherwise

end

Stop Flag

The output argument stop is a flag that is true or false. The flag tells the solver
whether it should quit or continue. The following examples show typical ways to use the
stop flag.

Stopping an Optimization Based on Intermediate Results

The output function can stop the estimation at any iteration based on the values of
arguments passed into it. For example, the following code sets stop to true based on the
value of the log likelihood stored in the 'fval'field of the status structure:

stop = outfun(beta,status,state)

stop = false;

% Check if loglikelihood is more than 132.

if status.fval > -132

 stop = true;

end

Stopping an Iteration Based on GUI Input

If you design a GUI to perform nlmefit iterations, you can make the output function
stop when a user clicks a Stop button on the GUI. For example, the following code
implements a dialog to cancel calculations:

function retval = stop_outfcn(beta,str,status)

persistent h stop;

if isequal(str.inner.state,'none')

 Mixed-Effects Models

11-33

 switch(status)

 case 'init'

 % Initialize dialog

 stop = false;

 h = msgbox('Press STOP to cancel calculations.',...

 'NLMEFIT: Iteration 0 ');

 button = findobj(h,'type','uicontrol');

 set(button,'String','STOP','Callback',@stopper)

 pos = get(h,'Position');

 pos(3) = 1.1 * pos(3);

 set(h,'Position',pos)

 drawnow

 case 'iter'

 % Display iteration number in the dialog title

 set(h,'Name',sprintf('NLMEFIT: Iteration %d',...

 str.iteration))

 drawnow;

 case 'done'

 % Delete dialog

 delete(h);

 end

end

if stop

 % Stop if the dialog button has been pressed

 delete(h)

end

retval = stop;

 function stopper(varargin)

 % Set flag to stop when button is pressed

 stop = true;

 disp('Calculation stopped.')

 end

end

Sample Output Function

nmlefitoutputfcn is the sample Statistics and Machine Learning Toolbox output
function for nlmefit and nlmefitsa. It initializes or updates a plot with the fixed-
effects (BETA) and variance of the random effects (diag(STATUS.Psi)). For nlmefit, the
plot also includes the log-likelihood (STATUS.fval).

nlmefitoutputfcn is the default output function for nlmefitsa. To use it with
nlmefit, specify a function handle for it in the options structure:

11 Nonlinear Regression

11-34

opt = statset('OutputFcn', @nlmefitoutputfcn, …)

beta = nlmefit(…, 'Options', opt, …)

To prevent nlmefitsa from using of this function, specify an empty value for the output
function:

opt = statset('OutputFcn', [], …)

beta = nlmefitsa(…, 'Options', opt, …)

nlmefitoutputfcn stops nlmefit or nlmefitsa if you close the figure that it
produces.

Mixed-Effects Models Using nlmefit and nlmefitsa

Load the sample data.

load indomethacin

The data in indomethacin.mat records concentrations of the drug indomethacin in the
bloodstream of six subjects over eight hours.

Plot the scatter plot of indomethacin in the bloodstream grouped by subject.

gscatter(time,concentration,subject)

xlabel('Time (hours)')

ylabel('Concentration (mcg/ml)')

title('{\bf Indomethacin Elimination}')

hold on

 Mixed-Effects Models

11-35

Specifying Mixed-Effects Models page discusses a useful model for this type of
data.

Construct the model via an anonymous function.

model = @(phi,t)(phi(1)*exp(-exp(phi(2))*t) + ...

 phi(3)*exp(-exp(phi(4))*t));

Use the nlinfit function to fit the model to all of the data, ignoring subject-specific
effects.

phi0 = [1 2 1 1];

[phi,res] = nlinfit(time,concentration,model,phi0);

Compute the mean squared error.

11 Nonlinear Regression

11-36

numObs = length(time);

numParams = 4;

df = numObs-numParams;

mse = (res'*res)/df

mse =

 0.0304

Super impose the model on the scatter plot of data.

tplot = 0:0.01:8;

plot(tplot,model(phi,tplot),'k','LineWidth',2)

hold off

 Mixed-Effects Models

11-37

Draw the box-plot of residuals by subject.

colors = 'rygcbm';

h = boxplot(res,subject,'colors',colors,'symbol','o');

set(h(~isnan(h)),'LineWidth',2)

hold on

boxplot(res,subject,'colors','k','symbol','ko')

grid on

xlabel('Subject')

ylabel('Residual')

hold off

11 Nonlinear Regression

11-38

The box plot of residuals by subject shows that the boxes are mostly above or below zero,
indicating that the model has failed to account for subject-specific effects.

To account for subject-specific effects, fit the model separately to the data for each
subject.

phi0 = [1 2 1 1];

PHI = zeros(4,6);

RES = zeros(11,6);

for I = 1:6

 tI = time(subject == I);

 cI = concentration(subject == I);

 [PHI(:,I),RES(:,I)] = nlinfit(tI,cI,model,phi0);

end

 Mixed-Effects Models

11-39

PHI

PHI =

 2.0293 2.8277 5.4683 2.1981 3.5661 3.0023

 0.5794 0.8013 1.7498 0.2423 1.0408 1.0882

 0.1915 0.4989 1.6757 0.2545 0.2915 0.9685

 -1.7878 -1.6354 -0.4122 -1.6026 -1.5069 -0.8731

Compute the mean squared error.

numParams = 24;

df = numObs-numParams;

mse = (RES(:)'*RES(:))/df

mse =

 0.0057

Plot the scatter plot of the data and superimpose the model for each subject.

gscatter(time,concentration,subject)

xlabel('Time (hours)')

ylabel('Concentration (mcg/ml)')

title('{\bf Indomethacin Elimination}')

hold on

for I = 1:6

 plot(tplot,model(PHI(:,I),tplot),'Color',colors(I))

end

axis([0 8 0 3.5])

hold off

11 Nonlinear Regression

11-40

PHI gives estimates of the four model parameters for each of the six subjects. The
estimates vary considerably, but taken as a 24-parameter model of the data, the mean-
squared error of 0.0057 is a significant reduction from 0.0304 in the original four-
parameter model.

Draw the box plot of residuals by subject.

h = boxplot(RES,'colors',colors,'symbol','o');

set(h(~isnan(h)),'LineWidth',2)

hold on

boxplot(RES,'colors','k','symbol','ko')

grid on

xlabel('Subject')

ylabel('Residual')

 Mixed-Effects Models

11-41

hold off

Now the box plot shows that the larger model accounts for most of the subject-specific
effects. The spread of the residuals (the vertical scale of the box plot) is much smaller
than in the previous box plot, and the boxes are now mostly centered on zero.

While the 24-parameter model successfully accounts for variations due to the specific
subjects in the study, it does not consider the subjects as representatives of a larger
population. The sampling distribution from which the subjects are drawn is likely more
interesting than the sample itself. The purpose of mixed-effects models is to account for
subject-specific variations more broadly, as random effects varying around population
means.

11 Nonlinear Regression

11-42

Use the nlmefit function to fit a mixed-effects model to the data. You can also use
nlmefitsa in place of nlmefit .

The following anonymous function, nlme_model , adapts the four-parameter model used
by nlinfit to the calling syntax of nlmefit by allowing separate parameters for each
individual. By default, nlmefit assigns random effects to all the model parameters. Also
by default, nlmefit assumes a diagonal covariance matrix (no covariance among the
random effects) to avoid overparametrization and related convergence issues.

nlme_model = @(PHI,t)(PHI(:,1).*exp(-exp(PHI(:,2)).*t) + ...

 PHI(:,3).*exp(-exp(PHI(:,4)).*t));

phi0 = [1 2 1 1];

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...

 [],nlme_model,phi0)

phi =

 2.8277

 0.7729

 0.4606

 -1.3459

PSI =

 0.3264 0 0 0

 0 0.0250 0 0

 0 0 0.0124 0

 0 0 0 0.0000

stats =

 dfe: 57

 logl: 54.5882

 mse: 0.0066

 rmse: 0.0787

 errorparam: 0.0815

 aic: -91.1765

 bic: -93.0506

 covb: [4x4 double]

 sebeta: [0.2558 0.1066 0.1092 0.2244]

 ires: [66x1 double]

 Mixed-Effects Models

11-43

 pres: [66x1 double]

 iwres: [66x1 double]

 pwres: [66x1 double]

 cwres: [66x1 double]

The mean-squared error of 0.0066 is comparable to the 0.0057 of the 24-parameter model
without random effects, and significantly better than the 0.0304 of the four-parameter
model without random effects.

The estimated covariance matrix PSI shows that the variance of the fourth random effect
is essentially zero, suggesting that you can remove it to simplify the model. To do this,
use the 'REParamsSelect' name-value pair to specify the indices of the parameters to
be modeled with random effects in nlmefit .

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...

 [],nlme_model,phi0, ...

 'REParamsSelect',[1 2 3])

phi =

 2.8277

 0.7728

 0.4605

 -1.3460

PSI =

 0.3270 0 0

 0 0.0250 0

 0 0 0.0124

stats =

 dfe: 58

 logl: 54.5875

 mse: 0.0066

 rmse: 0.0780

 errorparam: 0.0815

 aic: -93.1750

 bic: -94.8410

11 Nonlinear Regression

11-44

 covb: [4x4 double]

 sebeta: [0.2560 0.1066 0.1092 0.2244]

 ires: [66x1 double]

 pres: [66x1 double]

 iwres: [66x1 double]

 pwres: [66x1 double]

 cwres: [66x1 double]

The log-likelihood logl is almost identical to what it was with random effects for
all of the parameters, the Akaike information criterion aic is reduced from -91.1765
to -93.1750, and the Bayesian information criterion bic is reduced from -93.0506 to
-94.8410. These measures support the decision to drop the fourth random effect.

Refitting the simplified model with a full covariance matrix allows for identification of
correlations among the random effects. To do this, use the CovPattern parameter to
specify the pattern of nonzero elements in the covariance matrix.

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...

 [],nlme_model,phi0, ...

 'REParamsSelect',[1 2 3], ...

 'CovPattern',ones(3))

phi =

 2.8163

 0.8251

 0.5553

 -1.1505

PSI =

 0.4733 0.1145 0.0494

 0.1145 0.0324 0.0029

 0.0494 0.0029 0.0225

stats =

 dfe: 55

 logl: 58.4293

 mse: 0.0061

 Mixed-Effects Models

11-45

 rmse: 0.0783

 errorparam: 0.0781

 aic: -94.8585

 bic: -97.1492

 covb: [4x4 double]

 sebeta: [0.3017 0.1104 0.1167 0.1680]

 ires: [66x1 double]

 pres: [66x1 double]

 iwres: [66x1 double]

 pwres: [66x1 double]

 cwres: [66x1 double]

The estimated covariance matrix PSI shows that the random effects on the first two
parameters have a relatively strong correlation, and both have a relatively weak
correlation with the last random effect. This structure in the covariance matrix is more
apparent if you convert PSI to a correlation matrix using corrcov .

RHO = corrcov(PSI)

clf;

imagesc(RHO)

set(gca,'XTick',[1 2 3],'YTick',[1 2 3])

title('{\bf Random Effect Correlation}')

h = colorbar;

set(get(h,'YLabel'),'String','Correlation');

RHO =

 1.0000 0.9241 0.4786

 0.9241 1.0000 0.1068

 0.4786 0.1068 1.0000

11 Nonlinear Regression

11-46

Incorporate this structure into the model by changing the specification of the covariance
pattern to block-diagonal.

P = [1 1 0;1 1 0;0 0 1] % Covariance pattern

[phi,PSI,stats,b] = nlmefit(time,concentration,subject, ...

 [],nlme_model,phi0, ...

 'REParamsSelect',[1 2 3], ...

 'CovPattern',P)

P =

 1 1 0

 1 1 0

 Mixed-Effects Models

11-47

 0 0 1

phi =

 2.7830

 0.8981

 0.6581

 -1.0000

PSI =

 0.5180 0.1069 0

 0.1069 0.0221 0

 0 0 0.0454

stats =

 dfe: 57

 logl: 58.0804

 mse: 0.0061

 rmse: 0.0768

 errorparam: 0.0782

 aic: -98.1608

 bic: -100.0350

 covb: [4x4 double]

 sebeta: [0.3171 0.1073 0.1384 0.1453]

 ires: [66x1 double]

 pres: [66x1 double]

 iwres: [66x1 double]

 pwres: [66x1 double]

 cwres: [66x1 double]

b =

 -0.8507 -0.1563 1.0427 -0.7559 0.5652 0.1550

 -0.1756 -0.0323 0.2152 -0.1560 0.1167 0.0320

 -0.2756 0.0519 0.2620 0.1064 -0.2835 0.1389

11 Nonlinear Regression

11-48

The block-diagonal covariance structure reduces aic from -94.9462 to -98.1608 and
bic from -97.2368 to -100.0350 without significantly affecting the log-likelihood. These
measures support the covariance structure used in the final model. The output b gives
predictions of the three random effects for each of the six subjects. These are combined
with the estimates of the fixed effects in phi to produce the mixed-effects model.

Plot the mixed-effects model for each of the six subjects. For comparison, the model
without random effects is also shown.

PHI = repmat(phi,1,6) + ... % Fixed effects

 [b(1,:);b(2,:);b(3,:);zeros(1,6)]; % Random effects

RES = zeros(11,6); % Residuals

colors = 'rygcbm';

for I = 1:6

 fitted_model = @(t)(PHI(1,I)*exp(-exp(PHI(2,I))*t) + ...

 PHI(3,I)*exp(-exp(PHI(4,I))*t));

 tI = time(subject == I);

 cI = concentration(subject == I);

 RES(:,I) = cI - fitted_model(tI);

 subplot(2,3,I)

 scatter(tI,cI,20,colors(I),'filled')

 hold on

 plot(tplot,fitted_model(tplot),'Color',colors(I))

 plot(tplot,model(phi,tplot),'k')

 axis([0 8 0 3.5])

 xlabel('Time (hours)')

 ylabel('Concentration (mcg/ml)')

 legend(num2str(I),'Subject','Fixed')

end

 Mixed-Effects Models

11-49

If obvious outliers in the data (visible in previous box plots) are ignored, a normal
probability plot of the residuals shows reasonable agreement with model assumptions on
the errors.

clf; normplot(RES(:))

11 Nonlinear Regression

11-50

Examining Residuals for Model Verification

You can examine the stats structure, which is returned by both nlmefit and
nlmefitsa, to determine the quality of your model. The stats structure contains fields
with conditional weighted residuals (cwres field) and individual weighted residuals
(iwres field). Since the model assumes that residuals are normally distributed, you can
examine the residuals to see how well this assumption holds.

This example generates synthetic data using normal distributions. It shows how the fit
statistics look:

• Good when testing against the same type of model as generates the data

 Mixed-Effects Models

11-51

• Poor when tested against incorrect data models

1 Initialize a 2-D model with 100 individuals:

nGroups = 100; % 100 Individuals

nlmefun = @(PHI,t)(PHI(:,1)*5 + PHI(:,2)^2.*t); % Regression fcn

REParamSelect = [1 2]; % Both Parameters have random effect

errorParam = .03;

beta0 = [1.5 5]; % Parameter means

psi = [0.35 0; ... % Covariance Matrix

 0 0.51];

time =[0.25;0.5;0.75;1;1.25;2;3;4;5;6];

nParameters = 2;

rng(0,'twister') % for reproducibility

2 Generate the data for fitting with a proportional error model:

b_i = mvnrnd(zeros(1, numel(REParamSelect)), psi, nGroups);

individualParameters = zeros(nGroups,nParameters);

individualParameters(:, REParamSelect) = ...

 bsxfun(@plus,beta0(REParamSelect), b_i);

groups = repmat(1:nGroups,numel(time),1);

groups = vertcat(groups(:));

y = zeros(numel(time)*nGroups,1);

x = zeros(numel(time)*nGroups,1);

for i = 1:nGroups

 idx = groups == i;

 f = nlmefun(individualParameters(i,:), time);

 % Make a proportional error model for y:

 y(idx) = f + errorParam*f.*randn(numel(f),1);

 x(idx) = time;

end

P = [1 0 ; 0 1];

3 Fit the data using the same regression function and error model as the model
generator:

[~,~,stats] = nlmefit(x,y,groups, ...

 [],nlmefun,[1 1],'REParamsSelect',REParamSelect,...

 'ErrorModel','Proportional','CovPattern',P);

4 Create a plotting routine by copying the following function definition, and creating a
file plotResiduals.m on your MATLAB path:

11 Nonlinear Regression

11-52

function plotResiduals(stats)

pwres = stats.pwres;

iwres = stats.iwres;

cwres = stats.cwres;

figure

subplot(2,3,1);

normplot(pwres); title('PWRES')

subplot(2,3,4);

createhistplot(pwres);

subplot(2,3,2);

normplot(cwres); title('CWRES')

subplot(2,3,5);

createhistplot(cwres);

subplot(2,3,3);

normplot(iwres); title('IWRES')

subplot(2,3,6);

createhistplot(iwres); title('IWRES')

function createhistplot(pwres)

h = histogram(pwres);

% x is the probability/height for each bin

x = h.Values/sum(h.Values*h.BinWidth)

% n is the center of each bin

n = h.BinEdges + (0.5*h.BinWidth)

n(end) = [];

bar(n,x);

ylim([0 max(x)*1.05]);

hold on;

x2 = -4:0.1:4;

f2 = normpdf(x2,0,1);

plot(x2,f2,'r');

end

end

5 Plot the residuals using the plotResiduals function:

plotResiduals(stats);

 Mixed-Effects Models

11-53

The upper probability plots look straight, meaning the residuals are normally
distributed. The bottom histogram plots match the superimposed normal density
plot. So you can conclude that the error model matches the data.

6 For comparison, fit the data using a constant error model, instead of the proportional
model that created the data:

[~,~,stats] = nlmefit(x,y,groups, ...

 [],nlmefun,[0 0],'REParamsSelect',REParamSelect,...

 'ErrorModel','Constant','CovPattern',P);

plotResiduals(stats);

11 Nonlinear Regression

11-54

The upper probability plots are not straight, indicating the residuals are
not normally distributed. The bottom histogram plots are fairly close to the
superimposed normal density plots.

7 For another comparison, fit the data to a different structural model than created the
data:

nlmefun2 = @(PHI,t)(PHI(:,1)*5 + PHI(:,2).*t.^4);

[~,~,stats] = nlmefit(x,y,groups, ...

 [],nlmefun2,[0 0],'REParamsSelect',REParamSelect,...

 'ErrorModel','constant', 'CovPattern',P);

plotResiduals(stats);

 Mixed-Effects Models

11-55

Not only are the upper probability plots not straight, but the histogram plot is quite
skewed compared to the superimposed normal density. These residuals are not
normally distributed, and do not match the model.

11 Nonlinear Regression

11-56

Pitfalls in Fitting Nonlinear Models by Transforming to Linearity

This example shows pitfalls that can occur when fitting a nonlinear model by
transforming to linearity. Imagine that we have collected measurements on two
variables, x and y, and we want to model y as a function of x. Assume that x is measured
exactly, while measurements of y are affected by additive, symmetric, zero-mean errors.

x = [5.72 4.22 5.72 3.59 5.04 2.66 5.02 3.11 0.13 2.26 ...

 5.39 2.57 1.20 1.82 3.23 5.46 3.15 1.84 0.21 4.29 ...

 4.61 0.36 3.76 1.59 1.87 3.14 2.45 5.36 3.44 3.41]';

y = [2.66 2.91 0.94 4.28 1.76 4.08 1.11 4.33 8.94 5.25 ...

 0.02 3.88 6.43 4.08 4.90 1.33 3.63 5.49 7.23 0.88 ...

 3.08 8.12 1.22 4.24 6.21 5.48 4.89 2.30 4.13 2.17]';

Let's also assume that theory tells us that these data should follow a model of
exponential decay, y = p1*exp(p2*x), where p1 is positive and p2 is negative. To fit this
model, we could use nonlinear least squares.

modelFun = @(p,x) p(1)*exp(p(2)*x);

But the nonlinear model can also be transformed to a linear one by taking the log on both
sides, to get log(y) = log(p1) + p2*x. That's tempting, because we can fit that linear model
by ordinary linear least squares. The coefficients we'd get from a linear least squares
would be log(p1) and p2.

paramEstsLin = [ones(size(x)), x] \ log(y);

paramEstsLin(1) = exp(paramEstsLin(1))

paramEstsLin =

 11.9312

 -0.4462

How did we do? We can superimpose the fit on the data to find out.

xx = linspace(min(x), max(x));

yyLin = modelFun(paramEstsLin, xx);

plot(x,y,'o', xx,yyLin,'-');

xlabel('x'); ylabel('y');

legend({'Raw data','Linear fit on the log scale'},'location','NE');

 Pitfalls in Fitting Nonlinear Models by Transforming to Linearity

11-57

Something seems to have gone wrong, because the fit doesn't really follow the trend
that we can see in the raw data. What kind of fit would we get if we used nlinfit to do
nonlinear least squares instead? We'll use the previous fit as a rough starting point, even
though it's not a great fit.

paramEsts = nlinfit(x, y, modelFun, paramEstsLin)

paramEsts =

 8.8145

 -0.2885

11 Nonlinear Regression

11-58

yy = modelFun(paramEsts,xx);

plot(x,y,'o', xx,yyLin,'-', xx,yy,'-');

xlabel('x'); ylabel('y');

legend({'Raw data','Linear fit on the log scale', ...

 'Nonlinear fit on the original scale'},'location','NE');

The fit using nlinfit more or less passes through the center of the data point scatter. A
residual plot shows something approximately like an even scatter about zero.

r = y-modelFun(paramEsts,x);

plot(x,r,'+', [min(x) max(x)],[0 0],'k:');

xlabel('x'); ylabel('residuals');

 Pitfalls in Fitting Nonlinear Models by Transforming to Linearity

11-59

So what went wrong with the linear fit? The problem is in log transform. If we plot the
data and the two fits on the log scale, we can see that there's an extreme outlier.

plot(x,log(y),'o', xx,log(yyLin),'-', xx,log(yy),'-');

xlabel('x'); ylabel('log(y)');

ylim([-5,3]);

legend({'Raw data', 'Linear fit on the log scale', ...

 'Nonlinear fit on the original scale'},'location','SW');

11 Nonlinear Regression

11-60

That observation is not an outlier in the original data, so what happened to make it one
on the log scale? The log transform is exactly the right thing to straighten out the trend
line. But the log is a very nonlinear transform, and so symmetric measurement errors on
the original scale have become asymmetric on the log scale. Notice that the outlier had
the smallest y value on the original scale -- close to zero. The log transform has "stretched
out" that smallest y value more than its neighbors. We made the linear fit on the log
scale, and so it is very much affected by that outlier.

Had the measurement at that one point been slightly different, the two fits might have
been much more similar. For example,

y(11) = 1;

paramEsts = nlinfit(x, y, modelFun, [10;-.3])

 Pitfalls in Fitting Nonlinear Models by Transforming to Linearity

11-61

paramEsts =

 8.7618

 -0.2833

paramEstsLin = [ones(size(x)), x] \ log(y);

paramEstsLin(1) = exp(paramEstsLin(1))

paramEstsLin =

 9.6357

 -0.3394

yy = modelFun(paramEsts,xx);

yyLin = modelFun(paramEstsLin, xx);

plot(x,y,'o', xx,yyLin,'-', xx,yy,'-');

xlabel('x'); ylabel('y');

legend({'Raw data', 'Linear fit on the log scale', ...

 'Nonlinear fit on the original scale'},'location','NE');

11 Nonlinear Regression

11-62

Still, the two fits are different. Which one is "right"? To answer that, suppose
that instead of additive measurement errors, measurements of y were affected by
multiplicative errors. These errors would not be symmetric, and least squares on the
original scale would not be appropriate. On the other hand, the log transform would
make the errors symmetric on the log scale, and the linear least squares fit on that scale
is appropriate.

So, which method is "right" depends on what assumptions you are willing to make
about your data. In practice, when the noise term is small relative to the trend, the log
transform is "locally linear" in the sense that y values near the same x value will not be
stretched out too asymmetrically. In that case, the two methods lead to essentially the
same fit. But when the noise term is not small, you should consider what assumptions
are realistic, and choose an appropriate fitting method.

12

Survival Analysis

• “What Is Survival Analysis?” on page 12-2
• “Kaplan-Meier Method” on page 12-11
• “Hazard and Survivor Functions for Different Groups” on page 12-18
• “Survivor Functions for Two Groups” on page 12-25
• “Cox Proportional Hazards Regression” on page 12-30
• “Cox Proportional Hazards Model for Censored Data” on page 12-33

12 Survival Analysis

12-2

What Is Survival Analysis?

In this section...

“Introduction” on page 12-2
“Censoring” on page 12-2
“Data” on page 12-3
“Survivor Function” on page 12-4
“Hazard Function” on page 12-6

Introduction

Survival analysis is time-to-event analysis, that is, when the outcome of interest is the
time until an event occurs. Examples of time-to-events are the time until infection,
reoccurrence of a disease, or recovery in health sciences, duration of unemployment
in economics, time until the failure of a machine part or lifetime of light bulbs in
engineering, and so on. Survival analysis is a part of reliability studies in engineering. In
this case, it is usually used to study the lifetime of industrial components. In reliability
analyses, survival times are usually called failure times as the variable of interest is how
much time a component functions properly before it fails.

Survival analysis consists of parametric, semiparametric, and nonparametric methods.
You can use these to estimate the most commonly used measures in survival studies,
survivor and hazard functions, compare them for different groups, and assess the
relationship of predictor variables to survival time. Some statistical probability
distributions describe survival times well. Commonly used distributions are exponential,
Weibull, lognormal, Burr, and Birnbaum-Saunders distributions. Statistics and Machine
Learning Toolbox functions ecdf and ksdensity compute the empirical and kernel
density estimates of the cdf, cumulative hazard, and survivor functions. coxphfit fits
the Cox proportional hazards model to the data.

Censoring

One important concept in survival analysis is censoring. The survival times of some
individuals might not be fully observed due to different reasons. In life sciences, this
might happen when the survival study (e.g., the clinical trial) stops before the full
survival times of all individuals can be observed, or a person drops out of a study, or for
long-term studies, when the patient is lost to follow up. In the industrial context, not all

 What Is Survival Analysis?

12-3

components might have failed before the end of the reliability study. In such cases, the
individual survives beyond the time of the study, and the exact survival time is unknown.
This is called right censoring.

During a survival study either the individual is observed to fail at time T, or the
observation on that individual ceases at time c. Then the observation is min(T,c) and
an indicator variable Ic shows if the individual is censored or not. The calculations for
hazard and survivor functions must be adjusted to account for censoring. Statistics and
Machine Learning Toolbox functions such as ecdf, ksdensity, coxphfit, mle account
for censoring.

Data

Survival data usually consists of the time until an event of interest occurs and the
censoring information for each individual or component. The following table shows the
fictitious unemployment time of individuals in a 6-month study. Two individuals are
right censored (indicated by a censoring value of 1). One individual was still unemployed
after the 24th week, when the study ended. Contact with the other censored individual
was lost at the end of the 21st week.

Unemployment Time (Weeks) Censoring

14 0
23 0
7 0

21 1
19 0
16 0
24 1
8 0

Survival data might also include the number of failures at a certain time (the number of
times a particular survival or failure time was observed). The following table shows the
simulated time until a light-emitting diodes drops to 70% of its full light output level, in
hours, in an accelerated life test.

Failure Time (hrs) Frequency

8600 6

12 Survival Analysis

12-4

Failure Time (hrs) Frequency

15300 19
22000 11
28600 20
35300 17
42000 14
48700 8
55400 2
62100 0
68800 2

Data might also have information on the predictor variables, to use in semi-parametric
regression-like methods such as Cox proportional hazards regression.

Time Until
Recovery
(weeks)

Censoring Gender Systolic Blood
Pressure

Diastolic Blood
Pressure

12 1 Male 124 93
20 0 Female 109 77
7 0 Female 125 83

13 0 Male 117 75
9 1 Male 122 80

15 0 Female 121 70
17 1 Male 130 88
8 0 Female 115 82

14 0 Male 118 86

Survivor Function

The survivor function is the probability of survival as a function of time. It is also
called the survival function. It gives the probability that the survival time of an
individual exceeds a certain value. Since the cumulative distribution function, F(t), is

 What Is Survival Analysis?

12-5

the probability that the survival time is less than or equal to a given point in time, the
survival function for a continuous distribution, S(t), is the complement of the cumulative
distribution function:

S(t) = 1 – F(t).

For example, for data coming from a Burr distribution with parameters 50, 3, and 1, you
can calculate and plot the survivor function.

x = 0:0.1:200;

figure()

plot(x,1-cdf('Burr',x,50,3,1))

xlabel('Failure time');

ylabel('Survival probability');

12 Survival Analysis

12-6

The survivor function is also related to the hazard function. If the data has the hazard
function, h(t), then the survivor function is

S t h u du

t

() exp ,= - ()
Ê

Ë
Á
Á

ˆ

¯
˜
˜Ú

0

which corresponds to

S t H t() exp ,= - ()()

where H(t) is the cumulative hazard function.

Hazard Function

The hazard function gives the instantaneous failure rate of an individual conditioned on
the fact that the individual survived until a given time. That is,

h t
P t T t t T t

tt

() lim
|

,=
£ < + D ≥()

DD Æ0

where Δt is a very small time interval. The hazard rate, therefore, is sometimes called
the conditional failure rate. The hazard function always takes a positive value. However,
these values do not correspond to probabilities and might be greater than 1.

The hazard function is related to the probability density function, f(t), cumulative
distribution function, F(t), and survivor function, S(t), as follows:

h t
f t

S t

f t

F t
()

()

()

()

()
,= =

-1

which is also equivalent to

h t
d

dt
S t() ln ().= -

 What Is Survival Analysis?

12-7

So, if you know the shape of the survival function, you can also derive the corresponding
hazard function.

For example, for data coming from a Burr distribution with parameters 50, 3, and 1, you
can calculate and plot the hazard function.

x = 0:1:200;

Burrhazard = pdf('Burr',x,50,3,1)./(1-cdf('Burr',x,50,3,1));

figure()

plot(x,Burrhazard)

xlabel('Failure time');

ylabel('Hazard rate');

There are different types of hazard functions. The previous figure shows a situation
when the hazard rate increases for the early time periods and then gradually decreases.

12 Survival Analysis

12-8

The hazard rate might also be monotonically decreasing, increasing, or constant over
time. The following figure shows examples of different types of hazard functions for data
coming from different Weibull distributions.

ax1 = subplot(3,1,1);

x1 = 0:0.5:30;

hazard1 = pdf('wbl',x1,3,0.6)./(1-cdf('wbl',x1,3,0.6));

plot(x1,hazard1)

ax2 = subplot(3,1,2);

x2 = 0:0.05:2;

hazard2 = pdf('wbl',x2,0.9,4)./(1-cdf('wbl',x2,0.9,4));

plot(x2,hazard2,'color','r')

ax3 = subplot(3,1,3);

x3 = 0:0.05:5;

hazard3 = pdf('wbl',x3,2.5,1)./(1-cdf('wbl',x3,2.5,1));

plot(x3,hazard3)

set(ax1,'Ylim',[0 0.4]);

legend(ax1,'a=3, b=0.6');

legend(ax2,'a=0.9, b=4','location','northwest');

legend(ax3,'a=2.5, b=1');

 What Is Survival Analysis?

12-9

In the third case, the Weibull distribution has a shape parameter value of 1, which
corresponds to the exponential distribution. The exponential distribution always has a
constant hazard rate over time.

References

[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman & Hall, 1984.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-
Interscience, 2002.

[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health.
2nd edition. Springer, 2005.

12 Survival Analysis

12-10

See Also
coxphfit | ecdf | ksdensity

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 12-18
• “Survivor Functions for Two Groups” on page 12-25
• “Cox Proportional Hazards Model for Censored Data” on page 12-33

More About
• “Kaplan-Meier Method” on page 12-11
• “Cox Proportional Hazards Regression” on page 12-30

 Kaplan-Meier Method

12-11

Kaplan-Meier Method
Use the Kaplan-Meier nonparametric method to estimate the empirical hazard, survivor,
and cumulative distribution functions. The Statistics and Machine Learning Toolbox
function ecdf produces the empirical cumulative hazard, survivor, and cumulative
distribution functions. The Kaplan-Meier estimator for the survivor function is also
called the product-limit estimator.

The Kaplan-Meier method uses survival data summarized in life tables. Life tables order
data according to ascending failure times, but you don’t have to enter the failure/survival
times in an ordered manner to use ecdf.

A life table usually consists of:

• Failure times
• Number of items failed at a time/time period
• Number of items censored at a time/time period
• Number of items at risk at the beginning of a time/time period

The number at risk is the total number of survivors at the beginning of each period. The
number at risk at the beginning of the first period is all individuals in the lifetime study.
At the beginning of each remaining period, the number at risk is reduced by the number
of failures plus individuals censored at the end of the previous period.

This life table shows fictitious survival data. At the beginning of the first failure time,
there are seven items at risk. At time 4, three fail. So at the beginning of time 7, there
are four items at risk. Only one fails at time 7, so the number at risk at the beginning of
time 11 is three. Two fail at time 11, so at the beginning of time 12, the number at risk is
one. The remaining item fails at time 12.

Failure Time (t) Number Failed Number at Risk

4 3 7
7 1 4

11 2 3
12 1 1

You can estimate the hazard, cumulative hazard, survival, and cumulative distribution
functions using the life tables as described next.

Cumulative Hazard Rate (Failure Rate)

12 Survival Analysis

12-12

The hazard rate at each period is the number of failures in the given period divided by
the number of surviving individuals at the beginning of the period (number at risk).

Failure Time (t) Hazard Rate (h(t)) Cumulative Hazard Rate

0 0 0
t1 d1/r1 d1/r1

t2 d2/r2 h(t1) + d2/r2

...
tn dn/rn h(tn – 1) + dn/rn

Survival Probability

For each period, the survival probability is the product of the complement of hazard
rates. The initial survival probability at the beginning of the first time period is 1. If the
hazard rate for the each period is h(ti), then the survivor probability is as shown.

Time (t) Survival Probability (S(t))

0 1
t1 1*(1 – h(t1))
t2 S(t1)*(1 – h(t2))
... ...
tn S(tn – 1)*(1 – h(tn))

Cumulative Distribution Function

Because the cumulative distribution function (cdf) and the survivor function are
complements of each other, you can find the cdf from the life tables using F(t) = 1 – S(t).

You can compute the cumulative hazard rate, survival rate, and cumulative distribution
function for the simulated data in the first table on this page as follows.

t Number
Failed (d)

Number
at Risk (r)

Hazard Rate Survival
Probability

Cumulative
Distribution

Function

4 3 7 3/7 1 – 3/7 = 4/7
= 0.5714

0.4286

 Kaplan-Meier Method

12-13

t Number
Failed (d)

Number
at Risk (r)

Hazard Rate Survival
Probability

Cumulative
Distribution

Function

7 1 4 1/4 4/7*(1 – 1/4)
= 3/7 = .4286

0.5714

11 2 3 2/3 3/7*(1 – 2/3)
= 1/7 = 0.1429

0.8571

12 1 1 1/1 1/7*(1 – 1) = 0 1

This rates in this example are based on the discrete failure times, and hence the
calculations do not necessarily follow the derivative-based definition in “What Is Survival
Analysis?” on page 12-2

Here is how you can enter the data and calculate these measures using ecdf. The data
does not necessarily have to be in ascending order. Suppose the failure times are stored
in an array y.

y = [4 7 11 12];

freq = [3 1 2 1];

[f,x] = ecdf(y,'frequency',freq)

f =

 0

 0.4286

 0.5714

 0.8571

 1.0000

x =

 4

 4

 7

 11

 12

When you have censored data, the life table might look like the following:

12 Survival Analysis

12-14

Time (t) Number
failed (d)

Censoring Number
at Risk (r)

Hazard
Rate

Survival
Probability

Cumulative
Distribution

Function

4 2 1 7 2/7 1 – 2/7 =
0.7143

0.2857

7 1 0 4 1/4 0.7143*(1
– 1/4) =
0.5357

0.4643

11 1 1 3 2/3 0.5357*(1
– 1/3) =
0.3571

0.6429

12 1 0 1 1/1 0.3571*(1
– 1) = 0

1.0000

At any given time, the censored items are also considered in the total of number at risk,
and the hazard rate formula is based on the number failed and the total number at risk.
While updating the number at risk at the beginning of each period, the total number
failed and censored in the previous period is reduced from the number at risk at the
beginning of that period.

While using ecdf, you must also enter the censoring information using an array of
binary variables. Enter 1 for censored data, and enter 0 for exact failure time.

y = [4 4 4 7 11 11 12];

cens = [0 1 0 0 1 0 0];

[f,x] = ecdf(y,'censoring',cens)

f =

 0

 0.2857

 0.4643

 0.6429

 1.0000

x =

 4

 4

 7

 11

 Kaplan-Meier Method

12-15

 12

ecdf, by default, produces the cumulative distribution function values. You have to
specify the survivor function or the hazard function using optional name-value pair
arguments. You can also plot the results as follows.

figure()

ecdf(y,'censoring',cens,'function','survivor');

figure()

ecdf(y,'censoring',cens,'function','cumulative hazard');

12 Survival Analysis

12-16

References

[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman & Hall, 1984.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-
Interscience, 2002.

[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health.
2nd edition. Springer, 2005.

See Also
coxphfit | ecdf | ksdensity

 Kaplan-Meier Method

12-17

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 12-18
• “Survivor Functions for Two Groups” on page 12-25
• “Cox Proportional Hazards Model for Censored Data” on page 12-33

More About
• “What Is Survival Analysis?” on page 12-2
• “Cox Proportional Hazards Regression” on page 12-30

12 Survival Analysis

12-18

Hazard and Survivor Functions for Different Groups

This example shows how to estimate and plot the cumulative hazard and survivor
functions for different groups.

Step 1. Load and organize sample data.

Load the sample data.

load(fullfile(matlabroot,'examples','stats','readmissiontimes.mat'))

The data has readmission times of patients with information on their gender, age,
weight, smoking status, and censorship. This is simulated data.

Create a matrix of readmission times and censoring for each gender.

female = [ReadmissionTime(Sex==1),Censored(Sex==1)];

male = [ReadmissionTime(Sex==0),Censored(Sex==0)];

Step 2. Estimate and plot cumulative distribution function for each gender.

Plot the Kaplan-Meier estimate of the cumulative distribution function for female and
male patients.

figure()

ecdf(gca,female(:,1),'Censoring',female(:,2));

hold on

[f,x] = ecdf(male(:,1),'Censoring',male(:,2));

stairs(x,f,'--r')

hold off

legend('female','male','Location','SouthEast')

 Hazard and Survivor Functions for Different Groups

12-19

Step 3. Plot survivor functions.

Compare the survivor functions for female and male patients.

figure()

ax1 = gca;

ecdf(ax1,female(:,1),'Censoring',female(:,2),'function','survivor');

hold on

[f,x] = ecdf(male(:,1),'Censoring',male(:,2),'function','survivor');

stairs(x,f,'--r')

legend('female','male')

12 Survival Analysis

12-20

This figure shows that readmission times are shorter for male patients than female
patients.

Step 4. Fit Weibull survivor functions.

Fit Weibull distributions to readmission times of female and male patients.

pd = fitdist(female(:,1),'wbl','Censoring',female(:,2))

pd =

 WeibullDistribution

 Hazard and Survivor Functions for Different Groups

12-21

 Weibull distribution

 A = 12.5593 [10.749, 14.6745]

 B = 1.99834 [1.56489, 2.55185]

pd2 = fitdist(male(:,1),'wbl','Censoring',male(:,2))

pd2 =

 WeibullDistribution

 Weibull distribution

 A = 4.63991 [3.91039, 5.50551]

 B = 1.94422 [1.48496, 2.54552]

pd2 = fitdist(male(:,1),'wbl','Censoring',male(:,2))

pd2 =

 WeibullDistribution

 Weibull distribution

 A = 4.63991 [3.91039, 5.50551]

 B = 1.94422 [1.48496, 2.54552]

Plot the Weibull survivor functions for female and male patients on estimated survivor
functions.

plot(0:1:25,1-cdf('wbl',0:1:25,12.5593,1.99834),'-.')

plot(0:1:25,1-cdf('wbl',0:1:25,4.63991,1.94422),':r')

hold off

legend('Festimated','Mestimated','FWeibull','MWeibull')

12 Survival Analysis

12-22

Weibull distribution provides a good fit for the data.

Step 5. Estimate cumulative hazard and fit Weibull cumulative hazard functions.

Estimate the cumulative hazard function for the genders and fit Weibull cumulative
hazard functions.

figure()

[f,x] = ecdf(female(:,1),'Censoring',female(:,2),...

'function','cumhazard');

plot(x,f)

hold on

plot(x,cumsum(pdf(pd,x)./(1-cdf(pd,x))),'-.')

[f,x] = ecdf(male(:,1),'Censoring',male(:,2),...

 Hazard and Survivor Functions for Different Groups

12-23

'function','cumhazard');

plot(x,f,'--r')

plot(x,cumsum(pdf(pd2,x)./(1-cdf(pd2,x))),':r')

legend('Festimated','FWeibull','Mestimated','MWeibull',...

'Location','North')

See Also
coxphfit | ecdf | ksdensity

Related Examples
• “Survivor Functions for Two Groups” on page 12-25

12 Survival Analysis

12-24

• “Cox Proportional Hazards Model for Censored Data” on page 12-33

More About
• “What Is Survival Analysis?” on page 12-2
• “Kaplan-Meier Method” on page 12-11
• “Cox Proportional Hazards Regression” on page 12-30

 Survivor Functions for Two Groups

12-25

Survivor Functions for Two Groups

This example shows how to find the empirical survivor functions and the parametric
survivor functions using the Burr type XII distribution fit to data for two groups.

Step 1. Load and prepare sample data.

Load the sample data.

load(fullfile(matlabroot,'examples','stats','lightbulb.mat'))

The first column of the data has the lifetime (in hours) of two types of light bulbs. The
second column has information about the type of light bulb. 1 indicates fluorescent bulbs
whereas 0 indicates the incandescent bulb. The third column has censoring information.
1 indicates censored data, and 0 indicates the exact failure time. This is simulated data.

Create a variable for each light bulb type and also include the censorship information.

fluo = [lightbulb(lightbulb(:,2)==0,1),...

 lightbulb(lightbulb(:,2)==0,3)];

insc = [lightbulb(lightbulb(:,2)==1,1),...

 lightbulb(lightbulb(:,2)==1,3)];

Step 2. Plot estimated survivor functions.

Plot the estimated survivor functions for the two different types of light bulbs.

figure()

[f,x,flow,fup] = ecdf(fluo(:,1),'censoring',fluo(:,2),...

 'function','survivor');

ax1 = stairs(x,f);

hold on

stairs(x,flow,':')

stairs(x,fup,':')

[f,x,flow,fup] = ecdf(insc(:,1),'censoring',insc(:,2),...

 'function','survivor');

ax2 = stairs(x,f,'color','r');

stairs(x,flow,':r')

stairs(x,fup,':r')

legend([ax1,ax2],{'Fluorescent','Incandescent'})

xlabel('Lifetime (hours)')

ylabel('Survival probability')

12 Survival Analysis

12-26

You can see that the survival probability of incandescent light bulbs is much smaller
than that of fluorescent light bulbs.

Step 3. Fit Burr Type XII distribution.

Fit Burr distribution to the lifetime data of fluorescent and incandescent type bulbs.

pd = fitdist(fluo(:,1),'burr','Censoring',fluo(:,2))

pd =

 BurrDistribution

 Survivor Functions for Two Groups

12-27

 Burr distribution

 alpha = 29143.5 [0.903899, 9.39642e+08]

 c = 3.44582 [2.13013, 5.57417]

 k = 33.704 [8.10669e-14, 1.40126e+16]

pd2 = fitdist(insc(:,1),'burr','Censoring',insc(:,2))

pd2 =

 BurrDistribution

 Burr distribution

 alpha = 2650.76 [430.773, 16311.4]

 c = 3.41898 [2.16794, 5.39197]

 k = 4.5891 [0.0307809, 684.185]

Superimpose Burr type XII survivor functions.

ax3 = plot(0:500:15000,1-cdf('burr',0:500:15000,29143.5,...

 3.44582,33.704),'m');

ax4 = plot(0:500:5000,1-cdf('burr',0:500:5000,2650.76,...

 3.41898,4.5891),'g');

legend([ax1;ax2;ax3;ax4],'Festimate','Iestimate','FBurr','IBurr')

12 Survival Analysis

12-28

Burr distribution provides a good fit for the lifetime of light bulbs in this example.

Step 4. Fit a Cox proportional hazards model.

Fit a Cox proportional hazards regression where the type of the bulb is the explanatory
variable.

[b,logl,H,stats] = coxphfit(lightbulb(:,2),lightbulb(:,1),...

'Censoring',lightbulb(:,3));

stats

stats =

 Survivor Functions for Two Groups

12-29

 covb: 1.0757

 beta: 4.7262

 se: 1.0372

 z: 4.5568

 p: 5.1936e-06

The -value, p, indicates that the type of light bulb is statistically significant. The
estimate of the hazard ratio is () = 112.8646. This means that the hazard for the
incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs.

See Also
coxphfit | ecdf | ksdensity

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 12-18
• “Cox Proportional Hazards Model for Censored Data” on page 12-33

More About
• “What Is Survival Analysis?” on page 12-2
• “Kaplan-Meier Method” on page 12-11
• “Cox Proportional Hazards Regression” on page 12-30

12 Survival Analysis

12-30

Cox Proportional Hazards Regression

Cox proportional hazards regression is a semiparametric method for adjusting survival
rate estimates to quantify the effect of predictor variables. The method represents
the effects of explanatory variables as a multiplier of a common baseline hazard
function, h0(t). The hazard function is the nonparametric part of the Cox proportional
hazards regression function, whereas the impact of the predictor variables is a loglinear
regression. For a baseline relative to 0, this model corresponds to

h t h t eX

X b
i i

i() () ,=
Â

0

where hX(t) is the hazard rate at X and h0(t) is the baseline hazard rate function.

The Cox proportional hazards model relates the hazard rate for individuals or items at
the value X, to the hazard rate for individuals or items at the baseline value. It produces
an estimate for the hazard ratio, HR = hX(t)/h0(t). The model is based on the assumption
that the baseline hazard function depends on time, t, but the predictor variables do not.
This is also called the proportional hazards assumption, which states that the hazard
rate does not change over time for any individual. The hazard ratio represents the
relative risk of instant failure for individuals or items having the predictive variable
value X compared to the ones having the baseline values. For example, if the predictive
variable is smoking status, where nonsmoking is the baseline category, the hazard ratio
shows the relative instant failure rate of smokers compared to the baseline category, that
is, nonsmokers.

For a baseline relative to X* and the predictor variable value X, the hazard ratio is

HR
h t

h t
X X b

X

X

i i i

i

=
()
()

= -()
È

Î
Í
Í

˘

˚
˙
˙

Â
*

exp .*

For example, if the baseline is the mean values of the predictor variables (mean(X)),
then the hazard rate model becomes

h t h t X X bX X i

i

i() = () -()
È

Î
Í
Í

˘

˚
˙
˙

Âexp .

 Cox Proportional Hazards Regression

12-31

Hazard rates are related to survival rates, such that the survival rate at time t for an
individual with the explanatory variable value x is

S t S tX

HR tX() = ()
()

0 ,

where S0(t) is the survivor function with the baseline hazard rate function h0(t), and
HRx(t) is the hazard ratio of the predictor variable value x relative to the baseline value.

A point estimate of the effect of each explanatory variable, that is, the estimated hazard
ratio for the effect of each explanatory variable is exp(b), given all other variables are
held constant, where b is the coefficient estimate for that variable. The coefficient
estimates are found by maximizing the likelihood function of the model. The likelihood
function for the proportional hazards regression model is based on the observed order of
events. It is the product of likelihood of a failure estimated for each failure time. If there
are n failures at n distinct failure times, then the likelihood is

L
h t

h t

h t

h tii

n

ii

n
=

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

¥
()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

¥ ◊ ◊ ◊ ¥

= =Â Â
1

1

2

2

hh t

h t

n

n

()
()

È

Î
Í
Í

˘

˚
˙
˙
.

You can use a likelihood ratio test to assess the significance of adding a term or terms
in a model. Consider the two models where the first model has p predictive variables
and the second model has p + r predictive variables. Then, comparing the two models, –
2*(L1/L2) has a chi-square distribution with r degrees of freedom (the number of terms
being tested).

References

[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman & Hall, 1984.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-
Interscience, 2002.

[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health.
2nd edition. Springer, 2005.

See Also
coxphfit | ecdf | ksdensity

12 Survival Analysis

12-32

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 12-18
• “Survivor Functions for Two Groups” on page 12-25
• “Cox Proportional Hazards Model for Censored Data” on page 12-33

More About
• “What Is Survival Analysis?” on page 12-2
• “Kaplan-Meier Method” on page 12-11

 Cox Proportional Hazards Model for Censored Data

12-33

Cox Proportional Hazards Model for Censored Data

This example shows how to construct a Cox proportional hazards model, and assess the
significance of the predictor variables.

Step 1. Load sample data.

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load readmissiontimes

The response variable is Readmission Time, which shows the readmission times for
100 patients. The predictor variables are Age, Sex, Weight, and the smoking status
of each patient, Smoker. 1 indicates the patient is a smoker, and 0 indicates that the
patient does not smoke. The column vector Censored has the censorship information
for each patient, where 1 indicates censored data, and 0 indicates the exact readmission
times are observed. This is simulated data.

Step 2. Fit Cox proportional hazards function.

Fit a Cox proportional hazard function with the variable Sex as the predictor variable,
taking the censoring into account.

X = Sex;

[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...

'censoring',Censored);

Assess the statistical significance of the term Sex.

stats

stats =

 covb: 0.1016

 beta: -1.7642

 se: 0.3188

 z: -5.5335

 p: 3.1392e-08

12 Survival Analysis

12-34

The p-value, p, indicates that the term Sex is statistically significant.

Save the loglikelihood value with a different name. You will use this to assess the
significance of the extended models.

loglSex = logl

loglSex =

 -262.1365

Step 3. Add Age and Weight to the model.

Fit a Cox proportional hazards model with the variables Sex, Age, and Weight.

X = [Sex Age Weight];

[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...

'censoring',Censored);

Assess the significance of the terms.

stats.beta

ans =

 -0.5441

 0.0143

 0.0250

stats.p

ans =

 0.4953

 0.3842

 0.0960

None of the terms, adjusted for others, is statistically significant.

Assess the significance of the terms using the log likelihood ratio. You can assess the
significance of the new model using the likelihood ratio statistic. First find the difference
between the log-likelihood statistic of the model without the terms Age and Weight and
the log-likelihood of the model with Sex, Age, and Weight.

-2*[loglSex - logl]

 Cox Proportional Hazards Model for Censored Data

12-35

ans =

 3.6705

Now, compute the p-value for the likelihood ratio statistic. The likelihood ratio statistic
has a Chi-square distribution with a degrees of freedom equal to the number of predictor
variables being assessed. In this case, the degrees of freedom is 2.

p = 1 - cdf('chi2',3.6705,2)

p =

 0.1596

The p-value of 0.1596 indicates that the terms Age and Weight are not statistically
significant, given the term Sex in the model.

Step 4. Add Smoker to the model.

Fit a Cox proportional hazards model with the variables Sex and Smoker.

X = [Sex Smoker];

[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...

'censoring',Censored);

Assess the significance of the terms in the model.

stats.p

ans =

 0.0000

 0.0148

Compare this model to the first model where Sex is the only term.

 -2*[loglSex - logl]

ans =

 5.5789

Compute the p-value for the likelihood ratio statistic. The likelihood ratio statistic has a
Chi-square distribution with a degree of freedom of 1.

p = 1 - cdf('chi2',5.5789,1)

12 Survival Analysis

12-36

p =

 0.0182

The p-value of 0.0182 indicates that Sex and Smoker are statistically significant given
the other is in the model. The model with Sex and Smoker is a better fit compared to the
model with only Sex.

Request the coefficient estimates.

 stats.beta

ans =

 -1.7165

 0.6338

The default baseline is the mean of X, so the final model for the hazard ratio is

HR
h t

h t
X X X X

X

X

s s s a a a=
()
()

= -() + -()È
Î

˘
˚exp .b b

Fit a Cox ph model with a baseline of 0.

X = [Sex Smoker];

[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...

'censoring',Censored,'baseline',0);

The model for the hazard ratio is

HR
h t

h t
X X

X
s s a a=

()
()

= +[]
0

exp .b b

Request the coefficient estimates.

 stats.beta

ans =

 -1.7165

 0.6338

 Cox Proportional Hazards Model for Censored Data

12-37

The coefficients are not affected, but the hazard rate differs from when the baseline is the
mean of X.

See Also
coxphfit | ecdf | ksdensity

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 12-18
• “Survivor Functions for Two Groups” on page 12-25

More About
• “What Is Survival Analysis?” on page 12-2
• “Kaplan-Meier Method” on page 12-11
• “Cox Proportional Hazards Regression” on page 12-30

13

Multivariate Methods

• “Introduction to Multivariate Methods” on page 13-2
• “Multivariate Linear Regression” on page 13-3
• “Estimation of Multivariate Regression Models” on page 13-6
• “Set Up Multivariate Regression Problems” on page 13-15
• “Multivariate General Linear Model” on page 13-29
• “Fixed Effects Panel Model with Concurrent Correlation” on page 13-34
• “Longitudinal Analysis” on page 13-42
• “Multidimensional Scaling” on page 13-49
• “Procrustes Analysis” on page 13-60
• “Feature Selection” on page 13-68
• “Feature Transformation” on page 13-72
• “Partial Least Squares Regression and Principal Components Regression” on page

13-98

13 Multivariate Methods

13-2

Introduction to Multivariate Methods

Large, high-dimensional data sets are common in the modern era of computer-based
instrumentation and electronic data storage. High-dimensional data present many
challenges for statistical visualization, analysis, and modeling.

Data visualization, of course, is impossible beyond a few dimensions. As a result, pattern
recognition, data preprocessing, and model selection must rely heavily on numerical
methods.

A fundamental challenge in high-dimensional data analysis is the so-called curse of
dimensionality. Observations in a high-dimensional space are necessarily sparser
and less representative than those in a low-dimensional space. In higher dimensions,
data over-represent the edges of a sampling distribution, because regions of higher-
dimensional space contain the majority of their volume near the surface. (A d-
dimensional spherical shell has a volume, relative to the total volume of the sphere, that
approaches 1 as d approaches infinity.) In high dimensions, typical data points at the
interior of a distribution are sampled less frequently.

Often, many of the dimensions in a data set—the measured features—are not useful
in producing a model. Features may be irrelevant or redundant. Regression and
classification algorithms may require large amounts of storage and computation time
to process raw data, and even if the algorithms are successful the resulting models may
contain an incomprehensible number of terms.

Because of these challenges, multivariate statistical methods often begin with some type
of dimension reduction, in which data are approximated by points in a lower-dimensional
space. Dimension reduction is the goal of the methods presented in this chapter.
Dimension reduction often leads to simpler models and fewer measured variables, with
consequent benefits when measurements are expensive and visualization is important.

 Multivariate Linear Regression

13-3

Multivariate Linear Regression

In this section...

“Multivariate Linear Regression Model” on page 13-3
“Solving Multivariate Regression Problems” on page 13-4

Multivariate Linear Regression Model

The multivariate linear regression model expresses a d-dimensional continuous response
vector as a linear combination of predictor terms plus a vector of error terms with a

multivariate normal distribution. Let yi i idy y= ()¢1, ,… denote the response vector for
observation i, i = 1,...,n. In the most general case, given the d-by-K design matrix X

i and
the K-by-1 vector of coefficients b , the multivariate linear regression model is

y X
i i i

= +b e ,

where the d-dimensional vector of error terms follows a multivariate normal distribution,

e
i d

MVN∼ 0, .S()

The model assumes independence between observations, meaning the error variance-
covariance matrix for the n stacked d-dimensional response vectors is

I
n

ƒ =

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

S
S

S

0

0

O .

If y denotes the nd-by-1 vector of stacked d-dimensional responses, and X denotes the
nd-by-K matrix of stacked design matrices, then the distribution of the response vector is

y X I∼ MVN
nd n

(,).b ƒ S

13 Multivariate Methods

13-4

Solving Multivariate Regression Problems

To fit multivariate linear regression models of the form

y X 0
i i i i d

MVN= +b e e, (,)∼ S

in Statistics and Machine Learning Toolbox, use mvregress. This function fits
multivariate regression models with a diagonal (heteroscedastic) or unstructured
(heteroscedastic and correlated) error variance-covariance matrix, S, using least squares
or maximum likelihood estimation.

Many variations of multivariate regression might not initially appear to be of the form
supported by mvregress, such as:

• Multivariate general linear model
• Multivariate analysis of variance (MANOVA)
• Longitudinal analysis
• Panel data analysis
• Seemingly unrelated regression (SUR)
• Vector autoregressive (VAR) model

In many cases, you can frame these problems in the form used by mvregress (but
mvregress does not support parameterized error variance-covariance matrices). For
the special case of one-way MANOVA, you can alternatively use manova1. Econometrics
Toolbox™ has functions for VAR estimation.

Note: The multivariate linear regression model is distinct from the multiple linear
regression model, which models a univariate continuous response as a linear combination
of exogenous terms plus an independent and identically distributed error term. To fit a
multiple linear regression model, use LinearModel.fit.

See Also
LinearModel.fit | manova1 | mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 13-15

 Multivariate Linear Regression

13-5

• “Multivariate General Linear Model” on page 13-29
• “Fixed Effects Panel Model with Concurrent Correlation” on page 13-34
• “Longitudinal Analysis” on page 13-42

More About
• “Estimation of Multivariate Regression Models” on page 13-6

13 Multivariate Methods

13-6

Estimation of Multivariate Regression Models

In this section...

“Least Squares Estimation” on page 13-6
“Maximum Likelihood Estimation” on page 13-10
“Missing Response Data” on page 13-12

Least Squares Estimation

• “Ordinary Least Squares” on page 13-6
• “Covariance-Weighted Least Squares” on page 13-7
• “Error Covariance Estimation” on page 13-8
• “Feasible Generalized Least Squares” on page 13-9
• “Panel Corrected Standard Errors” on page 13-9

Ordinary Least Squares

When you fit multivariate linear regression models using mvregress, you can use the
optional name-value pair 'algorithm','cwls' to choose least squares estimation. In
this case, by default, mvregress returns ordinary least squares (OLS) estimates using
S = I

d . Alternatively, if you specify a covariance matrix for weighting, you can return
covariance-weighted least squares (CWLS) estimates. If you combine OLS and CWLS,
you can get feasible generalized least squares (FGLS) estimates.

The OLS estimate for the coefficient vector is the vector b that minimizes

y X b y X b
i i

i

n

i i
-()¢ -()

=
Â

1

.

Let y denote the nd-by-1 vector of stacked d-dimensional responses, and X denote
the nd-by-K matrix of stacked design matrices. The K-by-1 vector of OLS regression
coefficient estimates is

b X X X yOLS = ¢() ¢-1
.

 Estimation of Multivariate Regression Models

13-7

This is the first mvregress output.

Given S = I
d (the mvregress OLS default), the variance-covariance matrix of the OLS

estimates is

V OLS() () .b X X= ¢
-1

This is the fourth mvregress output. The standard errors of the OLS regression
coefficients are the square root of the diagonal of this variance-covariance matrix.

If your data is not scaled such that S = s
2
I

d , then you can multiply the mvregress
variance-covariance matrix by the mean squared error (MSE), an unbiased estimate
of s 2 . To compute the MSE, return the n-by-d matrix of residuals, E (the third
mvregress output). Then,

MSE =

¢

-

=

Âe ei i

i

n

n K

1 ,

where e y X
i i i

= - ¢()b is the ith row of E .

Covariance-Weighted Least Squares

For most multivariate problems, an identity error covariance matrix is insufficient,
and leads to inefficient or biased standard error estimates. You can specify a matrix for
CWLS estimation using the optional name-value pair argument covar0, for example,
an invertible d-by-d matrix named C0 . Usually, C0 is a diagonal matrix such that the

inverse matrix C0

1-

 contains weights for each dimension to model heteroscedasticity.
However, C0 can also be a nondiagonal matrix that models correlation.

Given C0 , the CWLS solution is the vector b that minimizes

y X b C y X b
i i

i

n

i i
-()¢ -()

=
Â

1

0
.

13 Multivariate Methods

13-8

In this case, the K-by-1 vector of CWLS regression coefficient estimates is

b X I C X X I C yCWLS n n= ¢ ƒ()() ¢ ƒ()
-

-
-

0

1
1

0

1
.

This is the first mvregress output.

If S = C
0 , this is the generalized least squares (GLS) solution. The corresponding

variance-covariance matrix of the CWLS estimates is

V CWLS n() ’ .b X I C X= ƒ()()-
-

0
1

1

This is the fourth mvregress output. The standard errors of the CWLS regression
coefficients are the square root of the diagonal of this variance-covariance matrix.

If you only know the error covariance matrix up to a proportion, that is, S = s
2

0
C , you

can multiply the mvregress variance-covariance matrix by the MSE, as described in
“Ordinary Least Squares” on page 13-6.

Error Covariance Estimation

Regardless of which least squares method you use, the estimate for the error variance-
covariance matrix is

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

S =

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜

s s s

s s s

s s s

1
2

12 1

12 2
2

2

1 2
2

L

L

M M O M

L

d

d

d d d

˜̃
˜

=
¢E E

n
,

where E is the n-by-d matrix of residuals. The ith row of E is e y X b
i i i

= -()¢ .

The error covariance estimate, Ŝ , is the second mvregress output, and the matrix
of residuals, E , is the third output. If you specify the optional name-value pair
'covtype','diagonal', then mvregress returns Ŝ with zeros in the off-diagonal
entries,

 Estimation of Multivariate Regression Models

13-9

ˆ

ˆ

ˆ

.S =

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

s

s

1

2

2

0

0

O

d

Feasible Generalized Least Squares

The generalized least squares estimate is the CWLS estimate with a known covariance
matrix. That is, given S is known, the GLS solution is

b X I X X I yGLS n n= ¢ ƒ() ¢ ƒ-
-

-() () ,S S1
1

1

with variance-covariance matrix

V GLS n() () .b X I X= ¢ ƒ()-
-

S 1
1

In most cases, the error covariance is unknown. The feasible generalized least squares
(FGLS) estimate uses Ŝ in place of S . You can obtain two-step FGLS estimates as
follows:

1 Perform OLS regression, and return an estimate Ŝ .
2 Perform CWLS regression, using C0

= Ŝ .

You can also iterate between these two steps until convergence is reached.

For some data, the OLS estimate Ŝ is positive semidefinite, and has no unique inverse.
In this case, you cannot get the FGLS estimate using mvregress. As an alternative,
you can use lscov, which uses a generalized inverse to return weighted least squares
solutions for positive semidefinite covariance matrices.

Panel Corrected Standard Errors

An alternative to FGLS is to use OLS coefficient estimates (which are consistent)
and make a standard error correction to improve efficiency. One such standard error
adjustment—which does not require inversion of the covariance matrix—is panel
corrected standard errors (PCSE) [1]. The panel corrected variance-covariance matrix for
OLS estimates is

13 Multivariate Methods

13-10

Vpcse OLS n() () () ().b X X X I X X X= ¢ ¢ ƒ ¢-1
S

The PCSE are the square root of the diagonal of this variance-covariance matrix. “Fixed
Effects Panel Model with Concurrent Correlation” on page 13-34 illustrates PCSE
computation.

Maximum Likelihood Estimation

• “Maximum Likelihood Estimates” on page 13-10
• “Standard Errors” on page 13-11

Maximum Likelihood Estimates

The default estimation algorithm used by mvregress is maximum likelihood estimation
(MLE). The loglikelihood function for the multivariate linear regression model is

log (, ,) log() log(det())L nd n

i i

i

n

b p

b

S S

S

y X

y X

= +

+ -()¢
=

-Â

1

2
2

1

2

1

2 1

11 y X
i i
-()b .

The MLEs for b and S are the values that maximize the loglikelihood objective
function.

mvregress finds the MLEs using an iterative two-stage algorithm. At iteration m + 1,
the estimates are

b X I X X I y
MLE

m
n

m
n

m() () ()+ - - -
= ¢ ƒ()Ê

Ë
Á

ˆ

¯
˜ ¢ ƒ()1

1
1

1

S S

and

ˆ .
() () ()S m

i i MLE

m

i

n

i i MLE

m

n

+ +

=

+= -() -()¢Â1 1

1

11
y X b y X b

 Estimation of Multivariate Regression Models

13-11

The algorithm terminates when the changes in the coefficient estimates and loglikelihood
objective function are less than a specified tolerance, or when the specified maximum
number of iterations is reached. The optional name-value pair arguments for changing
these convergence criteria are tolbeta, tolobj, and maxiter, respectively.

Standard Errors

The variance-covariance matrix of the MLEs is an optional mvregress output. By
default, mvregress returns the variance-covariance matrix for only the regression
coefficients, but you can also get the variance-covariance matrix of Ŝ using the optional
name-value pair 'vartype','full'. In this case, mvregress returns the variance-
covariance matrix for all K regression coefficients, and d or d(d + 1)/2 covariance terms
(depending on whether the error covariance is diagonal or full).

By default, the variance-covariance matrix is the inverse of the observed Fisher
information matrix (the 'hessian' option). You can request the expected Fisher
information matrix using the optional name-value pair 'vartype','fisher'. Provided
there is no missing response data, the observed and expected Fisher information
matrices are the same. If response data is missing, the observed Fisher information
accounts for the added uncertainty due to the missing values, whereas the expected
Fisher information matrix does not.

The variance-covariance matrix for the regression coefficient MLEs is

V
MLE n

() (�) ,b X I X= ¢ ƒ()-
-

S 1
1

evaluated at the MLE of the error covariance matrix. This is the fourth mvregress
output. The standard errors of the MLEs are the square root of the diagonal of this
variance-covariance matrix.

For Ŝ , let q denote the vector of parameters in the estimated error variance-covariance
matrix. For example, if d = 2, then:

•
If the estimated covariance matrix is diagonal, then q s s= (� , �)1

2
2
2

.
•

If the estimated covariance matrix is full, then q s s s= (� , � , �)1
2

12 2
2

.

The Fisher information matrix for q , I()q , has elements

13 Multivariate Methods

13-12

I tr u v n
u v

u v

() �
�

�
�

, , , , ,,q
q q q= ∂

∂
∂

∂

Ê

Ë
Á

ˆ

¯
˜ =- -1

2
11 1S S S S
…

where n
q is the length of q (either d or d(d + 1)/2). The resulting variance-covariance

matrix is

V I() () .q q=
-1

When you request the full variance-covariance matrix, mvregress returns (as the fourth
output) the block diagonal matrix

V

V

MLE
()

()
.

b 0

0 q
Ê

Ë
Á

ˆ

¯
˜

Missing Response Data

• “Expectation/Conditional Maximization” on page 13-12
• “Observed Information Matrix” on page 13-13

Expectation/Conditional Maximization

If any response values are missing, indicated by NaN, mvregress uses an expectation/
conditional maximization (ECM) algorithm for estimation (if enough data is available).
In this case, the algorithm is iterative for both least squares and maximum likelihood
estimation. During each iteration, mvregress imputes missing response values using
their conditional expectation.

Consider organizing the data so that the joint distribution of the missing and observed
responses, denoted %y and y respectively, can be written as

%

∼

% % %

%

y

y

X

X

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
MVN

y yy

yy y

b
b

,

S S

S S
..

Using properties of the multivariate normal distribution, the conditional expectation of
the missing responses given the observed responses is

 Estimation of Multivariate Regression Models

13-13

E % %
%y y X y X() = + --b bS Syy y

1
().

Also, the variance-covariance matrix of the conditional distribution is

COV() .%
% % %y y = -

-
S S S Sy yy y yy

1

At each iteration of the ECM algorithm, mvregress uses the parameter values from the
previous iteration to:

• Update the regression coefficients using the combined vector of observed responses
and conditional expectations of missing responses.

• Update the variance-covariance matrix, adjusting for missing responses using the
variance-covariance matrix of the conditional distribution.

Finally, the residuals that mvregress returns for missing responses are the difference
between the conditional expectation and the fitted value, both evaluated at the final
parameter estimates.

If you prefer to ignore any observations that have missing response values, use the name-
value pair 'algorithm','mvn'. Note that mvregress always ignores observations that
have missing predictor values.

Observed Information Matrix

By default, mvregress uses the observed Fisher information matrix (the 'hessian'
option) to compute the variance-covariance matrix of the regression parameters. This
accounts for the additional uncertainty due to missing response values.

The observed information matrix includes contributions from only the observed
responses. That is, the observed Fisher information matrix for the parameters in the
error variance-covariance matrix has elements

I tr u v
u v

i

u

i

vi

n

i i
() �

�
�

�
, , , ,,q

q q
=

∂
∂

∂
∂

Ê

Ë
ÁÁ

ˆ

¯
˜̃ =- -

=
Â1

2
11 1

1

S
S

S
S

… nnq ,

where Ŝ
i is the subset of Ŝ corresponding to the observed responses in yi

.

For example, if d = 3, but yi2 is missing, then

13 Multivariate Methods

13-14

ˆ
ˆ ˆ

ˆ ˆ

.S
i

=
Ê

Ë
Á
Á

ˆ

¯
˜
˜

s s

s s
1

2

13

13 3

2

The observed Fisher information for the regression coefficients has similar contributions
from the design and covariance matrices.

References

[1] Beck, N. and J. N. Katz. What to Do (and Not to Do) with Time-Series-Cross-Section
Data in Comparative Politics. American Political Science Review, Vol. 89, No. 3,
pp. 634–647, 1995.

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 13-15
• “Multivariate General Linear Model” on page 13-29
• “Fixed Effects Panel Model with Concurrent Correlation” on page 13-34
• “Longitudinal Analysis” on page 13-42

More About
• “Multivariate Linear Regression” on page 13-3

 Set Up Multivariate Regression Problems

13-15

Set Up Multivariate Regression Problems

In this section...

“Response Matrix” on page 13-15
“Design Matrices” on page 13-20
“Common Multivariate Regression Problems” on page 13-21

Response Matrix

To fit a multivariate linear regression model using mvregress, you must set up your
response matrix and design matrices in a particular way. Given properly formatted
inputs, mvregress can handle a variety of multivariate regression problems.

mvregress expects the n observations of potentially correlated d-dimensional responses
to be in an n-by-d matrix, named Y, for example. That is, set up your responses so that
the dependency structure is between observations in the same row. If you specify Y as a
vector of length n (either a row or column vector), then mvregress assumes that d = 1,
and treats the elements as n independent observations. It does not model the vector as
one realization of a correlated series (such as a time series).

To illustrate how to set up a response matrix, suppose that your multivariate responses
are repeated measurements made on subjects at multiple time points, as in the following
figure.

13 Multivariate Methods

13-16

Suppose that observations within a subject are correlated.

 Set Up Multivariate Regression Problems

13-17

Within Subject

Correlation

In this case, set up the response matrix Y such that each row corresponds to a subject,
and each column corresponds to a time point.

13 Multivariate Methods

13-18

Y

d = Number of Time Points

n = Number

of Subjects

Then again, suppose that observations made on subjects at the same time are correlated
(concurrent correlation).

 Set Up Multivariate Regression Problems

13-19

Between Subject

Correlation

In this case, set up the response matrix Y such that each row corresponds to a time point,
and each column corresponds to a subject.

13 Multivariate Methods

13-20

Y

d = Number of Subjects

n = Number

of Time Points

Design Matrices

In the multivariate linear regression model, each d-dimensional response has a
corresponding design matrix. Depending on the model, the design matrix might be
comprised of exogenous predictor variables, dummy variables, lagged responses, or a
combination of these and other covariate terms.

• If d > 1 and all d dimensions have the same design matrix, then specify one n-
by-p design matrix, where p is the number of predictor variables. To determine an
intercept for each dimension, add a column of ones to the design matrix. In this case,
mvregress applies the design matrix to all d dimensions.

• If d > 1 and all d dimensions do not have the same design matrix, then specify the
design matrices using a length-n cell array of d-by-K arrays, named X, for example. K
is the total number of regression coefficients in the model. Note that the rows of the
arrays in X correspond to the columns of the response matrix, Y.

 Set Up Multivariate Regression Problems

13-21

X = X1d

K

{ , , }...
X2d

K

, Xnd

K

If all n observations have the same design matrix, you can specify a cell array
containing one d-by-K design matrix. In this case, mvregress applies the design
matrix to all n observations. For example, this situation might arise if the predictors
are functions of time, and all observations were measured at the same time points.

• In the special case that d = 1, you can specify one n-by-K design matrix (not in a
cell array). However, you should consider using fitlm to fit regression models to
univariate, continuous responses.

The following sections illustrate how to set up the some common multivariate regression
problems for estimation using mvregress.

Common Multivariate Regression Problems

• “Multivariate General Linear Model” on page 13-21
• “Longitudinal Analysis” on page 13-24
• “Panel Analysis” on page 13-25
• “Seemingly Unrelated Regression” on page 13-26
• “Vector Autoregressive Model” on page 13-27

Multivariate General Linear Model

The multivariate general linear model is of the form

Y X B En d n p p d n d¥ ¥ + + ¥ ¥
= +() () .1 1

In expanded form,

13 Multivariate Methods

13-22

y y y

y y y

y y y

x x x
d

d

n n nd

11 12 1

21 22 2

1 2

11 12
1L

L

M M O M

L

LÈ

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

11

21 22 2

1 2

01 02 0

111

1

p

p

n n np

d

x x x

x x x

L

M M M O M

L

LÈ

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

b b b

b b112 1

1 2

11 12 1

21 22 2
L

M M O M

L

L

L

M M

b

b b b

e e e

e e ed

p p pd

d

d

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

+
OO M

Le e en n nd1 2

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

That is, each d-dimensional response has an intercept and p predictor variables, and
each dimension has its own set of regression coefficients. In this form, the least squares
solution is B = X\Y. To estimate this model using mvregress, use the n-by-d matrix of
responses, as above.

If all d dimensions have the same design matrix, use the n-by-(p+1) design matrix, as
above. Adding a column of ones to the p predictor variables computes the intercept for
each dimension.

If all d dimensions do not have the same design matrix, reformat the n-by-(p + 1) design
matrix into a length-n cell array of d-by-K matrices. Here, K = (p + 1)d for an intercept
and slopes for each dimension.

For example, suppose n = 4, d = 3, and p = 2 (two predictor terms in addition to an
intercept). This figure shows how to format the ith element in the cell array.

 Set Up Multivariate Regression Problems

13-23

y11 y12

y y

y y

y y

21 22

31 32

41 42

=

x

x

x

x

1

1

1

1

11

21

31

41

x

x

x

x

12

22

32

42

y13

y

y

y

23

33

43

β

β

β

01

11

21

β

β

β

02

12

22

β

β

β

03

13

23

+

ε11 12

ε ε

ε ε

ε ε

21 22

31 32

41 42

ε13

ε

ε

ε

23

33

43

ε

1

1

10

0

0

0

0 0 x i1

0

0

x i1

x i10

0

0

0 x i2

0

0

x i2

x i20

0

0

0 β01

β02

β03

β11

β12

β13

β 21

β22

β23

{
X{i}

If you prefer, you can reshape the K-by-1 vector of coefficients back into a (p + 1)-by-d
matrix after estimation.

To put constraints on the model parameters, adjust the design matrix accordingly. For
example, suppose that the three dimensions in the previous example have a common
slope. That is, b b b b

11 12 13 1
= = = and b b b b

21 22 23 2
= = = . In this case, each design

matrix is 3-by-5, as shown in the following figure.

13 Multivariate Methods

13-24

1

1

10

0

0

0

0 0 x i1

x i1

x i1

x i2

x i2

x i2

β01

β02

β03

β1

β2

{
X{i}

Longitudinal Analysis

In a longitudinal analysis, you might measure responses on n subjects at d time points,
with correlation between observations made on the same subject. For example, suppose
that you measure responses yij at times tij, i = 1,...,n and j = 1,...,d. In addition, suppose
that each subject is in one of two groups (such as male or female), specified by the
indicator variable Gi. You could model yij as a function of Gi and tij, with group-specific
intercepts and slopes, as follows:

y G t G t i n j dij i ij i ij ij= + + + ¥ + = =b b b b e0 1 2 3 1 1, , , ; , , ,… …

where

e e e
i i id

MVN= ¢(, ,) (,).1 … ∼ 0 S

Most longitudinal models include time as an explicit predictor.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, where n
is the number of subjects and d is the number of time points. Specify the design matrices
in an n-length cell array of d-by-K matrices, where here K = 4 for the four regression
coefficients.

For example, suppose d = 5 (five observations per subject). The ith design matrix and
corresponding parameter vector for the specified model are shown in the following figure.

 Set Up Multivariate Regression Problems

13-25

G

G

G

G

1

1

1

1

i

i

i

i

β0

β1

β2

β3{
X{i}

1 Gi

ti1

ti2

ti3

ti4

ti5

G

G

G

G

i

i

i

i

Gi

*

*

*

*

*

ti1

ti2

ti3

ti4

ti5

Panel Analysis

In a panel analysis, you might measure responses and covariates on d subjects (such as
individuals or countries) at n time points. For example, suppose you measure responses
ytj and covariates xtj on subjects j = 1,...,d at times t = 1,...,n. A fixed effects panel model,
with subject-specific fixed effects, and concurrent correlation might look like:

y xtj j tj tj= + +a b e ,

where

e e e
t t td

MVN= ¢(,...,) (,).1 ∼ 0 S

In contrast to longitudinal models, the panel analysis model typically includes covariates
measured at each time point, instead of using time as an explicit predictor.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, such that
each column corresponds to a subject. Specify the design matrices in an n-length cell
array of d-by-K matrices, where here K = d + 1 for the d intercepts and a slope term.

For example, suppose d = 4 (four subjects). The tth design matrix and corresponding
parameter vector are shown in the following figure.

13 Multivariate Methods

13-26

1

1

10

0

0

0

0 0 0

0

0

x t1

x t2

x t3

α1

α2

α3

α4

β
{

X{t}

00 0 1 x t4

Seemingly Unrelated Regression

In a seemingly unrelated regression (SUR), you model d separate regressions, each
with its own intercept and slope, but a common error variance-covariance matrix. For
example, suppose you measure responses yij and covariates xij for regression models j =
1,...,d, with i = 1,...,n observations to fit each regression. The SUR model might look like:

y xij j j ij ij= + +b b e0 ,

where

e e e
i i id

MVN= ¢(, ,) (,).1 … ∼ 0 S

This model is very similar to the multivariate general linear model, except that it has
different covariates for each dimension.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, such that
each column has the data for the jth regression model. Specify the design matrices in an
n-length cell array of d-by-K matrices, where here K = 2d for d intercepts and d slopes.

For example, suppose d = 3 (three regressions). The ith design matrix and corresponding
parameter vector are shown in the following figure.

 Set Up Multivariate Regression Problems

13-27

1

1

10

0

0

0

0 0 x i1

0

0

x i2

0

0

0

0 β01

β02

β03

β1

β2

β3

{
X{i}

x i3

Vector Autoregressive Model

The VAR(p) vector autoregressive model expresses d-dimensional time series responses
as a linear function of p lagged d-dimensional responses from previous times. For
example, suppose you measure responses ytj for time series j = 1,...,d at times t = 1,...,n.
The VAR(p) model might look like:

y

y

y

c

c

c

t

t

td d

1

2

1

2
11
1

12
1

M M

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

+

j j() ()) ()

() () ()

,

,

L

M M O M

L

M

j

j j j

1
1

1
1

2
1 1

11

1 2
d

d d dd

t

t

y

y

y

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-

-

tt d

p p
d
p

d
p

d
p

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

+ +

1

11 12 1

1 2
,

() () ()

() ()

L

L

M M O M

j j j

j j LL

M

j

e

e

dd
p

t p

t p

t p d

t
y

y

y
()

,

,

,

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

+

-

-

-

1

2

1

tt

td

2

M

e

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

,

where

e e e
t t td

MVN= ¢(,...,) (,).1 ∼ 0 S

When estimating vector autoregressive models, you typically need to use the first p
observations to initiate the model, or provide some other presample response values.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, such that
each column corresponds to a time series. Specify the design matrices in an n-length cell
array of d-by-K matrices, where here K = d + pd2.

For example, suppose d = 2 (two time series) and p = 1 (one lag). The tth design matrix
and corresponding parameter vector are shown in the following figure.

13 Multivariate Methods

13-28

1

10 0

0 y c1

c2

φ11

φ21

φ12

{
X{t}

t-1,1

yt-1,1

0 yt-1,2

yt-1,20

0

φ
22

(1)

(1)

(1)

(1)

Alternatively, Econometrics Toolbox has functions for fitting and forecasting VAR(p)
models, including the option to specify exogenous predictor variables.

See Also
mvregress | mvregresslike

Related Examples
• “Multivariate General Linear Model” on page 13-29
• “Fixed Effects Panel Model with Concurrent Correlation” on page 13-34
• “Longitudinal Analysis” on page 13-42

More About
• “Multivariate Linear Regression” on page 13-3
• “Estimation of Multivariate Regression Models” on page 13-6

 Multivariate General Linear Model

13-29

Multivariate General Linear Model

This example shows how to set up a multivariate general linear model for estimation
using mvregress.

Load sample data.

This data contains measurements on a sample of 205 auto imports from 1985.

Here, model the bivariate response of city and highway MPG (columns 14 and 15).

For predictors, use wheel base (column 3), curb weight (column 7), and fuel type (column
18). The first two predictors are continuous, and for this example are centered and
scaled. Fuel type is a categorical variable with two categories (11 and 20), so a dummy
indicator variable is needed for the regression.

load('imports-85')

Y = X(:,14:15);

[n,d] = size(Y);

X1 = zscore(X(:,3));

X2 = zscore(X(:,7));

X3 = X(:,18)==20;

Xmat = [ones(n,1) X1 X2 X3];

The variable X3 is coded to have value 1 for the fuel type 20, and value 0 otherwise.

For convenience, the three predictors (wheel base, curb weight, and fuel type indicator)
are combined into one design matrix, with an added intercept term.

Set up design matrices.

Given these predictors, the multivariate general linear model for the bivariate MPG
response is

y y

y y

y y

x x x

x x x

n n

11 12

21 22

1 2

11 12 13

21 22 23

1

1

M M M M M

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
MM

1 1 2 3

01 02

11 12

21 22

31 32x x xn n n

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í

˘b b

b b

b b

b b ˚̊

˙
˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

e e

e e

e e

11 12

21 22

1 2

M M

n n

,

13 Multivariate Methods

13-30

where e e e
i i i

MVN= ()¢1 2, (,).∼ 0 S There are K = 8 regression coefficients in total.

Create a length n = 205 cell array of 2-by-8 (d-by-K) matrices for use with mvregress.
The ith matrix in the cell array is

X i
x x x

x x x

i i i

i i i

{ } .=
È

Î
Í

˘

˚
˙

1 0 0 0 0

0 1 0 0 0

1 2 3

1 2 3

Xcell = cell(1,n);

for i = 1:n

 Xcell{i} = [kron([Xmat(i,:)],eye(d))];

end

Given this specification of the design matrices, the corresponding parameter vector is

b

b

b

b

b

b

b

b

b

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

01

02

11

12

21

22

31

32

.

Estimate regression coefficients.

Fit the model using maximum likelihood estimation.

[beta,sigma,E,V] = mvregress(Xcell,Y);

beta

beta =

 33.5476

 38.5720

 0.9723

 0.3950

 -6.3064

 -6.3584

 -9.2284

 -8.6663

 Multivariate General Linear Model

13-31

These coefficient estimates show:

• The expected city and highway MPG for cars of average wheel base, curb weight, and
fuel type 11 are 33.5 and 38.6, respectively. For fuel type 20, the expected city and
highway MPG are 33.5476 - 9.2284 = 24.3192 and 38.5720 - 8.6663 =
29.9057.

• An increase of one standard deviation in curb weight has almost the same effect on
expected city and highway MPG. Given all else is equal, the expected MPG decreases
by about 6.3 with each one standard deviation increase in curb weight, for both city
and highway MPG.

• For each one standard deviation increase in wheel base, the expected city MPG
increases 0.972, while the expected highway MPG increases by only 0.395, given all
else is equal.

Compute standard errors.

The standard errors for the regression coefficients are the square root of the diagonal of
the variance-covariance matrix, V.

se = sqrt(diag(V))

se =

 0.7365

 0.7599

 0.3589

 0.3702

 0.3497

 0.3608

 0.7790

 0.8037

Reshape coefficient matrix.

You can easily reshape the regression coefficients into the original 4-by-2 matrix.

B = reshape(beta,2,4)'

B =

 33.5476 38.5720

 0.9723 0.3950

 -6.3064 -6.3584

 -9.2284 -8.6663

13 Multivariate Methods

13-32

Check model assumptions.

Under the model assumptions, z E=
-

S
1 2/ should be independent, with a bivariate

standard normal distribution. In this 2-D case, you can assess the validity of this
assumption using a scatter plot.

z = E/chol(sigma);

figure()

plot(z(:,1),z(:,2),'.')

title('Standardized Residuals')

hold on

% Overlay standard normal contours

z1 = linspace(-5,5);

z2 = linspace(-5,5);

[zx,zy] = meshgrid(z1,z2);

zgrid = [reshape(zx,100^2,1),reshape(zy,100^2,1)];

zn = reshape(mvnpdf(zgrid),100,100);

[c,h] = contour(zx,zy,zn);

clabel(c,h)

 Multivariate General Linear Model

13-33

Several residuals are larger than expected, but overall, there is little evidence against
the multivariate normality assumption.

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 13-15
• “Fixed Effects Panel Model with Concurrent Correlation” on page 13-34
• “Longitudinal Analysis” on page 13-42

More About
• “Multivariate Linear Regression” on page 13-3
• “Estimation of Multivariate Regression Models” on page 13-6

13 Multivariate Methods

13-34

Fixed Effects Panel Model with Concurrent Correlation

This example shows how to perform panel data analysis using mvregress. First, a fixed
effects model with concurrent correlation is fit by ordinary least squares (OLS) to some
panel data. Then, the estimated error covariance matrix is used to get panel corrected
standard errors for the regression coefficients.

Load sample data.

Navigate to the folder containing sample data. Load the sample panel data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load('panelData')

The dataset array, panelData, contains yearly observations on eight cities for 6 years.
This is simulated data.

Define variables.

The first variable, Growth, measures economic growth (the response variable). The
second and third variables are city and year indicators, respectively. The last variable,
Employ, measures employment (the predictor variable).

y = panelData.Growth;

city = panelData.City;

year = panelData.Year;

x = panelData.Employ;

Plot data grouped by category.

To look for potential city-specific fixed effects, create a box plot of the response grouped
by city.

figure()

boxplot(y,city)

xlabel('City')

 Fixed Effects Panel Model with Concurrent Correlation

13-35

There does not appear to be any systematic differences in the mean response among
cities.

Plot data grouped by a different category.

To look for potential year-specific fixed effects, create a box plot of the response grouped
by year.

figure()

boxplot(y,year)

xlabel('Year')

13 Multivariate Methods

13-36

Some evidence of systematic differences in the mean response between years seems to
exist.

Format response data.

Let yij denote the response for city j = 1,...,d, in year i = 1,...,n. Similarly, xij is the
corresponding value of the predictor variable. In this example, n = 6 and d = 8.

Consider fitting a year-specific fixed effects model with a constant slope and concurrent
correlation among cities in the same year,

y x i n j dij i ij ij= + + = =a b e1 1 1, , , , , , ,… …

where e e e
i i id

MVN= ¢(, ,) (,)1 … ∼ 0 S . The concurrent correlation accounts for any
unmeasured, time-static factors that might impact growth similarly for some cities.
For example, cities with close spatial proximity might be more likely to have similar
economic growth.

 Fixed Effects Panel Model with Concurrent Correlation

13-37

To fit this model using mvregress, reshape the response data into an n-by-d matrix.

n = 6; d = 8;

Y = reshape(y,n,d);

Format design matrices.

Create a length-n cell array of d-by-K design matrices. For this model, there are K = 7
parameters (d = 6 intercept terms and a slope).

Suppose the vector of parameters is arranged as

b

a
a

a
b

=

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

1

2

6

1

M .

In this case, the first design matrix for year 1 looks like

X

x

x

x

{ } ,1

1 0 0

1 0 0

0

1 0 0

11

12

18

=

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

L

L

M M L M

L

and the second design matrix for year 2 looks like

X

x

x

x

{ } .2

0 1 0 0

0 1 0 0

0 0

0 1 0 0

21

22

28

=

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

L

L

M M L M

L

The design matrices for the remaining 4 years are similar.

13 Multivariate Methods

13-38

K = 7; N = n*d;

X = cell(n,1);

for i = 1:n

 x0 = zeros(d,K-1);

 x0(:,i) = 1;

 X{i} = [x0,x(i:n:N)];

end

Fit the model.

Fit the model using ordinary least squares (OLS).

[b,sig,E,V] = mvregress(X,Y,'algorithm','cwls');

b

b =

 41.6878

 26.1864

 -64.5107

 11.0924

 -59.1872

 71.3313

 4.9525

Plot fitted model.

xx = linspace(min(x),max(x));

axx = repmat(b(1:K-1),1,length(xx));

bxx = repmat(b(K)*xx,n,1);

yhat = axx + bxx;

figure()

hPoints = gscatter(x,y,year);

hold on

hLines = plot(xx,yhat);

for i=1:n

 set(hLines(i),'color',get(hPoints(i),'color'));

end

hold off

 Fixed Effects Panel Model with Concurrent Correlation

13-39

The model with year-specific intercepts and common slope appears to fit the data quite
well.

Residual correlation.

Plot the residuals, grouped by year.

figure()

gscatter(year,E(:),city)

ylabel('Residuals')

13 Multivariate Methods

13-40

The residual plot suggests concurrent correlation is present. For examples, cities 1, 2, 3,
and 4 are consistently above or below average as a group in any given year. The same is
true for the collection of cities 5, 6, 7, and 8. As seen in the exploratory plots, there are no
systematic city-specific effects.

Panel corrected standard errors.

Use the estimated error variance-covariance matrix to compute panel corrected standard
errors for the regression coefficients.

XX = cell2mat(X);

S = kron(eye(n),sig);

Vpcse = inv(XX'*XX)*XX'*S*XX*inv(XX'*XX);

se = sqrt(diag(Vpcse))

se =

 9.3750

 8.6698

 9.3406

 Fixed Effects Panel Model with Concurrent Correlation

13-41

 9.4286

 9.5729

 8.8207

 0.1527

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 13-15
• “Multivariate General Linear Model” on page 13-29
• “Longitudinal Analysis” on page 13-42

More About
• “Multivariate Linear Regression” on page 13-3
• “Estimation of Multivariate Regression Models” on page 13-6

13 Multivariate Methods

13-42

Longitudinal Analysis

This example shows how to perform longitudinal analysis using mvregress.

Load sample data.

Navigate to the folder containing sample data. Load the sample longitudinal data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load('longitudinalData')

The matrix Y contains response data for 16 individuals. The response is the blood level
of a drug measured at five time points (t = 0, 2, 4, 6, and 8). Each row of Y corresponds to
an individual, and each column corresponds to a time point. The first eight subjects are
female, and the second eight subjects are male. This is simulated data.

Plot data.

Plot the data for all 16 subjects.

figure()

t = [0,2,4,6,8];

plot(t,Y)

hold on

hf = plot(t,Y(1:8,:),'^');

hm = plot(t,Y(9:16,:),'o');

legend([hf(1),hm(1)],'Female','Male','Location','NorthEast')

title('Longitudinal Response')

ylabel('Blood Drug Level')

xlabel('Time')

hold off

 Longitudinal Analysis

13-43

Define design matrices.

Let yij denote the response for individual i = 1,...,n measured at times tij, j = 1,...,d. In
this example, n = 16 and d = 5. Let Gi denote the gender of individual i, where Gi = 1 for
males and 0 for females.

Consider fitting a quadratic longitudinal model, with a separate slope and intercept for
each gender,

y G t t G t G tij i ij ij i ij i ij ij= + + + + ¥ + ¥ +b b b b b b e0 1 2 3
2

4 5
2

,

where e e e
i i id

MVN= ¢(, ,) (,)1 … ∼ 0 S . The error correlation accounts for clustering within
an individual.

To fit this model using mvregress, the response data should be in an n-by-d matrix. Y is
already in the proper format.

13 Multivariate Methods

13-44

Next, create a length-n cell array of d-by-K design matrices. For this model, there are K =
6 parameters.

For individual i, the 5-by-6 design matrix is

X i

G t t G t G t

G t t G t G t

i i i i i i i

i i i i i i i{ } =

¥ ¥

¥ ¥

1

1

1

1 1
2

1 1
2

2 2
2

2 2
2

M M M M M M

GG t t G t G ti i i i i i i5 5
2

5 5
2¥ ¥

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

,

corresponding to the parameter vector

b

b
b

b

=

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

0

1

5

M
.

The matrix X1 has the design matrix for a female, and X2 has the design matrix for a
male.

Create a cell array of design matrices. The first eight individuals are females, and the
second eight are males.

X = cell(8,1);

X(1:8) = {X1};

X(9:16) = {X2};

Fit the model.

Fit the model using maximum likelihood estimation. Display the estimated coefficients
and standard errors.

[b,sig,E,V,loglikF] = mvregress(X,Y);

[b sqrt(diag(V))]

ans =

 Longitudinal Analysis

13-45

 18.8619 0.7432

 13.0942 1.0511

 2.5968 0.2845

 -0.3771 0.0398

 -0.5929 0.4023

 0.0290 0.0563

The coefficients on the interaction terms (in the last two rows of b) do not appear
significant. You can use the value of the loglikelihood objective function for this fit,
loglikF, to compare this model to one without the interaction terms using a likelihood
ratio test.

Plot fitted model.

Plot the fitted lines for females and males.

Yhatf = X1*b;

Yhatm = X2*b;

figure()

plot(t,Y)

hold on

plot(t,Y(1:8,:),'^',t,Y(9:16,:),'o')

hf = plot(t,Yhatf,'k--','LineWidth',3);

hm = plot(t,Yhatm,'k','LineWidth',3);

legend([hf,hm],'Females','Males','Location','NorthEast')

title('Longitudinal Response')

ylabel('Blood Drug Level')

xlabel('Time')

hold off

13 Multivariate Methods

13-46

Define a reduced model.

Fit the model without interaction terms,

y G t tij i ij ij ij= + + + +b b b b e0 1 2 3
2

,

where e e e
i i id

MVN= ¢(, ,) (,)1 … ∼ 0 S .

This model has four coefficients, which correspond to the first four columns of the design
matrices X1 and X2 (for females and males, respectively).

X1R = X1(:,1:4);

X2R = X2(:,1:4);

XR = cell(8,1);

XR(1:8) = {X1R};

XR(9:16) = {X2R};

 Longitudinal Analysis

13-47

Fit the reduced model.

Fit this model using maximum likelihood estimation. Display the estimated coefficients
and their standard errors.

[bR,sigR,ER,VR,loglikR] = mvregress(XR,Y);

[bR,sqrt(diag(VR))]

ans =

 19.3765 0.6898

 12.0936 0.8591

 2.2919 0.2139

 -0.3623 0.0283

Conduct a likelihood ratio test.

Compare the two models using a likelihood ratio test. The null hypothesis is that the
reduced model is sufficient. The alternative is that the reduced model is inadequate
(compared to the full model with the interaction terms).

The likelihood ratio test statistic is compared to a chi-squared distribution with two
degrees of freedom (for the two coefficients being dropped).

LR = 2*(loglikF-loglikR);

pval = 1 - chi2cdf(LR,2)

pval =

 0.0803

The p-value 0.0803 indicates that the null hypothesis is not rejected at the 5%
significance level. Therefore, there is insufficient evidence that the extra terms improve
the fit.

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 13-15
• “Multivariate General Linear Model” on page 13-29
• “Fixed Effects Panel Model with Concurrent Correlation” on page 13-34

13 Multivariate Methods

13-48

More About
• “Multivariate Linear Regression” on page 13-3
• “Estimation of Multivariate Regression Models” on page 13-6

 Multidimensional Scaling

13-49

Multidimensional Scaling

In this section...

“Introduction to Multidimensional Scaling” on page 13-49
“Classical Multidimensional Scaling” on page 13-49
“Nonclassical Multidimensional Scaling” on page 13-54
“Nonmetric Multidimensional Scaling” on page 13-56

Introduction to Multidimensional Scaling

One of the most important goals in visualizing data is to get a sense of how near or far
points are from each other. Often, you can do this with a scatter plot. However, for some
analyses, the data that you have might not be in the form of points at all, but rather
in the form of pairwise similarities or dissimilarities between cases, observations, or
subjects. There are no points to plot.

Even if your data are in the form of points rather than pairwise distances, a scatter plot
of those data might not be useful. For some kinds of data, the relevant way to measure
how near two points are might not be their Euclidean distance. While scatter plots of the
raw data make it easy to compare Euclidean distances, they are not always useful when
comparing other kinds of inter-point distances, city block distance for example, or even
more general dissimilarities. Also, with a large number of variables, it is very difficult to
visualize distances unless the data can be represented in a small number of dimensions.
Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these problems.
MDS allows you to visualize how near points are to each other for many kinds of distance
or dissimilarity metrics and can produce a representation of your data in a small number
of dimensions. MDS does not require raw data, but only a matrix of pairwise distances or
dissimilarities.

Classical Multidimensional Scaling

• “Introduction to Classical Multidimensional Scaling” on page 13-50
• “Example: Multidimensional Scaling” on page 13-52

13 Multivariate Methods

13-50

Introduction to Classical Multidimensional Scaling

This example shows how to use cmdscale to perform classical (metric) multidimensional
scaling, also known as principal coordinates analysis.

cmdscale takes as an input a matrix of inter-point distances and creates a configuration
of points. Ideally, those points are in two or three dimensions, and the Euclidean
distances between them reproduce the original distance matrix. Thus, a scatter plot
of the points created by cmdscale provides a visual representation of the original
distances.

As a very simple example, you can reconstruct a set of points from only their inter-point
distances. First, create some four dimensional points with a small component in their
fourth coordinate, and reduce them to distances.

rng default; % For reproducibility

X = [normrnd(0,1,10,3),normrnd(0,.1,10,1)];

D = pdist(X,'euclidean');

Next, use cmdscale to find a configuration with those inter-point distances. cmdscale
accepts distances as either a square matrix, or, as in this example, in the vector upper-
triangular form produced by pdist.

[Y,eigvals] = cmdscale(D);

cmdscale produces two outputs. The first output, Y, is a matrix containing the
reconstructed points. The second output, eigvals, is a vector containing the sorted
eigenvalues of what is often referred to as the "scalar product matrix," which, in the
simplest case, is equal to Y*Y'. The relative magnitudes of those eigenvalues indicate
the relative contribution of the corresponding columns of Y in reproducing the original
distance matrix D with the reconstructed points.

format short g

[eigvals eigvals/max(abs(eigvals))]

ans =

 35.41 1

 11.158 0.31511

 1.6894 0.04771

 0.1436 0.0040553

 Multidimensional Scaling

13-51

 7.9529e-15 2.246e-16

 4.564e-15 1.2889e-16

 2.6538e-15 7.4944e-17

 -2.2475e-17 -6.3471e-19

 -3.6359e-16 -1.0268e-17

 -3.3335e-15 -9.4139e-17

If eigvals contains only positive and zero (within round-off error) eigenvalues, the
columns of Y corresponding to the positive eigenvalues provide an exact reconstruction
of D, in the sense that their inter-point Euclidean distances, computed using pdist, for
example, are identical (within round-off) to the values in D.

maxerr4 = max(abs(D - pdist(Y))) % Exact reconstruction

maxerr4 =

 3.5527e-15

If two or three of the eigenvalues in eigvals are much larger than the rest, then the
distance matrix based on the corresponding columns of Y nearly reproduces the original
distance matrix D. In this sense, those columns form a lower-dimensional representation
that adequately describes the data. However it is not always possible to find a good low-
dimensional reconstruction.

maxerr3 = max(abs(D - pdist(Y(:,1:3)))) % Good reconstruction in 3D

maxerr2 = max(abs(D - pdist(Y(:,1:2)))) % Poor reconstruction in 2D

maxerr3 =

 0.043142

maxerr2 =

 0.98315

The reconstruction in three dimensions reproduces D very well, but the reconstruction in
two dimensions has errors that are of the same order of magnitude as the largest values
in D.

13 Multivariate Methods

13-52

max(max(D))

ans =

 5.8974

Often, eigvals contains some negative eigenvalues, indicating that the distances in
D cannot be reproduced exactly. That is, there might not be any configuration of points
whose inter-point Euclidean distances are given by D. If the largest negative eigenvalue
is small in magnitude relative to the largest positive eigenvalues, then the configuration
returned by cmdscale might still reproduce D well.

Example: Multidimensional Scaling

This example shows how to construct a map of 10 US cities based on the distances
between those cities, using cmdscale.

First, create the distance matrix and pass it to cmdscale. In this example, D is a full
distance matrix: it is square and symmetric, has positive entries off the diagonal, and has
zeros on the diagonal.

cities = ...

{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};

D = [0 587 1212 701 1936 604 748 2139 2182 543;

 587 0 920 940 1745 1188 713 1858 1737 597;

 1212 920 0 879 831 1726 1631 949 1021 1494;

 701 940 879 0 1374 968 1420 1645 1891 1220;

 1936 1745 831 1374 0 2339 2451 347 959 2300;

 604 1188 1726 968 2339 0 1092 2594 2734 923;

 748 713 1631 1420 2451 1092 0 2571 2408 205;

 2139 1858 949 1645 347 2594 2571 0 678 2442;

 2182 1737 1021 1891 959 2734 2408 678 0 2329;

 543 597 1494 1220 2300 923 205 2442 2329 0];

[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are negative,
indicating that the original distances are not Euclidean. This is because of the curvature
of the earth.

format short g

[eigvals eigvals/max(abs(eigvals))]

 Multidimensional Scaling

13-53

ans =

 9.5821e+06 1

 1.6868e+06 0.17604

 8157.3 0.0008513

 1432.9 0.00014954

 508.67 5.3085e-05

 25.143 2.624e-06

 3.3906e-10 3.5385e-17

 -897.7 -9.3685e-05

 -5467.6 -0.0005706

 -35479 -0.0037026

However, in this case, the two largest positive eigenvalues are much larger in magnitude
than the remaining eigenvalues. So, despite the negative eigenvalues, the first two
coordinates of Y are sufficient for a reasonable reproduction of D.

Dtriu = D(find(tril(ones(10),-1)))';

maxrelerr = max(abs(Dtriu-pdist(Y(:,1:2))))./max(Dtriu)

maxrelerr =

 0.0075371

Here is a plot of the reconstructed city locations as a map. The orientation of the
reconstruction is arbitrary.

plot(Y(:,1),Y(:,2),'.')

text(Y(:,1)+25,Y(:,2),cities)

xlabel('Miles')

ylabel('Miles')

13 Multivariate Methods

13-54

Nonclassical Multidimensional Scaling

The function mdscale performs nonclassical multidimensional scaling. As with
cmdcale, you use mdscale either to visualize dissimilarity data for which no “locations”
exist, or to visualize high-dimensional data by reducing its dimensionality. Both
functions take a matrix of dissimilarities as an input and produce a configuration
of points. However, mdscale offers a choice of different criteria to construct the
configuration, and allows missing data and weights.

For example, the cereal data include measurements on 10 variables describing breakfast
cereals. You can use mdscale to visualize these data in two dimensions. First, load the
data. For clarity, this example code selects a subset of 22 of the observations.

 Multidimensional Scaling

13-55

load cereal.mat

X = [Calories Protein Fat Sodium Fiber ...

 Carbo Sugars Shelf Potass Vitamins];

% Take a subset from a single manufacturer

mfg1 = strcmp('G',cellstr(Mfg));

X = X(mfg1,:);

size(X)

ans =

 22 10

Then use pdist to transform the 10-dimensional data into dissimilarities. The output
from pdist is a symmetric dissimilarity matrix, stored as a vector containing only the
(23*22/2) elements in its upper triangle.

dissimilarities = pdist(zscore(X),'cityblock');

size(dissimilarities)

ans =

 1 231

This example code first standardizes the cereal data, and then uses city block distance as
a dissimilarity. The choice of transformation to dissimilarities is application-dependent,
and the choice here is only for simplicity. In some applications, the original data are
already in the form of dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must specify
the desired number of dimensions, and the method to use to construct the output
configuration. For this example, use two dimensions. The metric STRESS criterion is a
common method for computing the output; for other choices, see the mdscale reference
page in the online documentation. The second output from mdscale is the value of that
criterion evaluated for the output configuration. It measures the how well the inter-point
distances of the output configuration approximate the original input dissimilarities:

[Y,stress] =...

mdscale(dissimilarities,2,'criterion','metricstress');

stress

stress =

 0.1856

A scatterplot of the output from mdscale represents the original 10-dimensional data in
two dimensions, and you can use the gname function to label selected points:

plot(Y(:,1),Y(:,2),'o','LineWidth',2);

gname(Name(mfg1))

13 Multivariate Methods

13-56

Nonmetric Multidimensional Scaling

Metric multidimensional scaling creates a configuration of points whose inter-
point distances approximate the given dissimilarities. This is sometimes too strict
a requirement, and non-metric scaling is designed to relax it a bit. Instead of trying
to approximate the dissimilarities themselves, non-metric scaling approximates
a nonlinear, but monotonic, transformation of them. Because of the monotonicity,
larger or smaller distances on a plot of the output will correspond to larger or smaller
dissimilarities, respectively. However, the nonlinearity implies that mdscale only
attempts to preserve the ordering of dissimilarities. Thus, there may be contractions or
expansions of distances at different scales.

 Multidimensional Scaling

13-57

You use mdscale to perform nonmetric MDS in much the same way as for metric
scaling. The nonmetric STRESS criterion is a common method for computing the output;
for more choices, see the mdscale reference page in the online documentation. As with
metric scaling, the second output from mdscale is the value of that criterion evaluated
for the output configuration. For nonmetric scaling, however, it measures the how well
the inter-point distances of the output configuration approximate the disparities. The
disparities are returned in the third output. They are the transformed values of the
original dissimilarities:

[Y,stress,disparities] = ...

mdscale(dissimilarities,2,'criterion','stress');

stress

stress =

 0.1562

To check the fit of the output configuration to the dissimilarities, and to understand the
disparities, it helps to make a Shepard plot:

distances = pdist(Y);

[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);

plot(dissimilarities,distances,'bo', ...

 dissimilarities(ord),disparities(ord),'r.-', ...

 [0 25],[0 25],'k-')

xlabel('Dissimilarities')

ylabel('Distances/Disparities')

legend({'Distances' 'Disparities' '1:1 Line'},...

 'Location','NorthWest');

13 Multivariate Methods

13-58

This plot shows that mdscale has found a configuration of points in two dimensions
whose inter-point distances approximates the disparities, which in turn are a nonlinear
transformation of the original dissimilarities. The concave shape of the disparities as a
function of the dissimilarities indicates that fit tends to contract small distances relative
to the corresponding dissimilarities. This may be perfectly acceptable in practice.

mdscale uses an iterative algorithm to find the output configuration, and the results can
often depend on the starting point. By default, mdscale uses cmdscale to construct an
initial configuration, and this choice often leads to a globally best solution. However, it is
possible for mdscale to stop at a configuration that is a local minimum of the criterion.
Such cases can be diagnosed and often overcome by running mdscale multiple times
with different starting points. You can do this using the 'start' and 'replicates'
parameters. The following code runs five replicates of MDS, each starting at a different

 Multidimensional Scaling

13-59

randomly-chosen initial configuration. The criterion value is printed out for each
replication; mdscale returns the configuration with the best fit.

opts = statset('Display','final');

[Y,stress] =...

mdscale(dissimilarities,2,'criterion','stress',...

'start','random','replicates',5,'Options',opts);

35 iterations, Final stress criterion = 0.156209

31 iterations, Final stress criterion = 0.156209

48 iterations, Final stress criterion = 0.171209

33 iterations, Final stress criterion = 0.175341

32 iterations, Final stress criterion = 0.185881

Notice that mdscale finds several different local solutions, some of which do not have as
low a stress value as the solution found with the cmdscale starting point.

13 Multivariate Methods

13-60

Procrustes Analysis

In this section...

“Compare Landmark Data” on page 13-60
“Data Input” on page 13-60
“Preprocess Data for Accurate Results” on page 13-61
“Compare Handwritten Shapes” on page 13-61

Compare Landmark Data

The procrustes function analyzes the distribution of a set of shapes using Procrustes
analysis. This analysis method matches landmark data (geometric locations representing
significant features in a given shape) to calculate the best shape-preserving Euclidian
transformations. These transformations minimize the differences in location between
compared landmark data.

Procrustes analysis is also useful in conjunction with multidimensional scaling. In
“Example: Multidimensional Scaling” on page 13-52 there is an observation that
the orientation of the reconstructed points is arbitrary. Two different applications of
multidimensional scaling could produce reconstructed points that are very similar
in principle, but that look different because they have different orientations. The
procrustes function transforms one set of points to make them more comparable to the
other.

Data Input

The procrustes function takes two matrices as input:

• The target shape matrix X has dimension n × p, where n is the number of landmarks
in the shape and p is the number of measurements per landmark.

• The comparison shape matrix Y has dimension n × q with q ≤ p. If there are fewer
measurements per landmark for the comparison shape than the target shape (q < p),
the function adds columns of zeros to Y, yielding an n × p matrix.

The equation to obtain the transformed shape, Z, is

Z bYT c= +

 Procrustes Analysis

13-61

where:

• b is a scaling factor that stretches (b > 1) or shrinks (b < 1) the points.
• T is the orthogonal rotation and reflection matrix.
• c is a matrix with constant values in each column, used to shift the points.

The procrustes function chooses b, T, and c to minimize the distance between the
target shape X and the transformed shape Z as measured by the least squares criterion:

()X Zij ij

j

p

i

n

−
==

∑∑ 2

11

Preprocess Data for Accurate Results

Procrustes analysis is appropriate when all p measurement dimensions have similar
scales. The analysis would be inaccurate, for example, if the columns of Z had different
scales:

• The first column is measured in milliliters ranging from 2,000 to 6,000.
• The second column is measured in degrees Celsius ranging from 10 to 25.
• The third column is measured in kilograms ranging from 50 to 230.

In such cases, standardize your variables by:

1 Subtracting the sample mean from each variable.
2 Dividing each resultant variable by its sample standard deviation.

Use the zscore function to perform this standardization.

Compare Handwritten Shapes

In this example, use Procrustes analysis to compare two handwritten number threes.
Visually and analytically explore the effects of forcing size and reflection changes as
follows:

• “Step 1: Load and Display the Original Data” on page 13-62

13 Multivariate Methods

13-62

• “Step 2: Calculate the Best Transformation” on page 13-63
• “Step 3: Examine the Similarity of the Two Shapes” on page 13-64
• “Step 4: Restrict the Form of the Transformations” on page 13-66

Step 1: Load and Display the Original Data

Input landmark data for two handwritten number threes:

A = [11 39;17 42;25 42;25 40;23 36;19 35;30 34;35 29;...

30 20;18 19];

B = [15 31;20 37;30 40;29 35;25 29;29 31;31 31;35 20;...

29 10;25 18];

Create X and Y from A and B, moving B to the side to make each shape more visible:

X = A;

Y = B + repmat([25 0], 10,1);

Plot the shapes, using letters to designate the landmark points. Lines in the figure join
the points to indicate the drawing path of each shape.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-');

text(X(:,1), X(:,2),('abcdefghij')')

text(Y(:,1), Y(:,2),('abcdefghij')')

legend('X = Target','Y = Comparison','location','SE')

set(gca,'YLim',[0 55],'XLim',[0 65]);

 Procrustes Analysis

13-63

Step 2: Calculate the Best Transformation

Use Procrustes analysis to find the transformation that minimizes distances between
landmark data points.

Call procrustes as follows:

[d, Z, tr] = procrustes(X,Y);

The outputs of the function are:

• d – A standardized dissimilarity measure.)
• Z – A matrix of the transformed landmarks.
• tr – A structure array of the computed transformation with fields T, b, and c which

correspond to the transformation equation, Equation 13-1.

Visualize the transformed shape, Z, using a dashed blue line:

13 Multivariate Methods

13-64

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...

Z(:,1),Z(:,2),'b:');

text(X(:,1), X(:,2),('abcdefghij')')

text(Y(:,1), Y(:,2),('abcdefghij')')

text(Z(:,1), Z(:,2),('abcdefghij')')

legend('X = Target','Y = Comparison',...

'Z = Transformed','location','SW')

set(gca,'YLim',[0 55],'XLim',[0 65]);

Step 3: Examine the Similarity of the Two Shapes

Use two different numerical values to assess the similarity of the target shape and the
transformed shape.

 Procrustes Analysis

13-65

Dissimilarity Measure d

The dissimilarity measure d gives a number between 0 and 1 describing the difference
between the target shape and the transformed shape. Values near 0 imply more similar
shapes, while values near 1 imply dissimilarity. For this example:

d =

 0.1502

The small value of d in this case shows that the two shapes are similar.

procrustes calculates d by comparing the sum of squared deviations between the set
of points with the sum of squared deviations of the original points from their column
means:

numerator = sum(sum((X-Z).^2))

numerator =

 166.5321

denominator = sum(sum(bsxfun(@minus,X,mean(X)).^2))

denominator =

 1.1085e+003

ratio = numerator/denominator

ratio =

 0.1502

Note: The resulting measure d is independent of the scale of the size of the shapes and
takes into account only the similarity of landmark data. “Examine the Scaling Measure
b” on page 13-65 shows how to examine the size similarity of the shapes.

Examine the Scaling Measure b

The target and comparison threes in the previous figure visually show that the two
numbers are of a similar size. The closeness of calculated value of the scaling factor b to 1
supports this observation as well:

tr.b

ans =

 0.9291

13 Multivariate Methods

13-66

The sizes of the target and comparison shapes appear similar. This visual impression is
reinforced by the value of b = 0.93, which implies that the best transformation results in
shrinking the comparison shape by a factor .93 (only 7%).

Step 4: Restrict the Form of the Transformations

Explore the effects of manually adjusting the scaling and reflection coefficients.

Fix the Scaling Factor b = 1

Force b to equal 1 (set 'Scaling' to false) to examine the amount of dissimilarity in
size of the target and transformed figures:

ds = procrustes(X,Y,'Scaling',false)

ds =

 0.1552

In this case, setting 'Scaling' to false increases the calculated value of d only 0.0049,
which further supports the similarity in the size of the two number threes. A larger
increase in d would have indicated a greater size discrepancy.

Force a Reflection in the Transformation

This example requires only a rotation, not a reflection, to align the shapes. You can show
this by observing that the determinant of the matrix T is 1 in this analysis:

det(tr.T)

ans =

 1.0000

If you need a reflection in the transformation, the determinant of T is -1. You can force a
reflection into the transformation as follows:

[dr,Zr,trr] = procrustes(X,Y,'Reflection',true);

dr

dr =

 0.8130

The d value increases dramatically, indicating that a forced reflection leads to a poor
transformation of the landmark points. A plot of the transformed shape shows a similar
result:

• The landmark data points are now further away from their target counterparts.

 Procrustes Analysis

13-67

• The transformed three is now an undesirable mirror image of the target three.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...

Zr(:,1),Zr(:,2),'b:');

text(X(:,1), X(:,2),('abcdefghij')')

text(Y(:,1), Y(:,2),('abcdefghij')')

text(Zr(:,1), Zr(:,2),('abcdefghij')')

legend('X = Target','Y = Comparison',...

'Z = Transformed','location','SW')

set(gca,'YLim',[0 55],'XLim',[0 65]);

It appears that the shapes might be better matched if you flipped the transformed
shape upside down. Flipping the shapes would make the transformation even worse,
however, because the landmark data points would be further away from their target
counterparts. From this example, it is clear that manually adjusting the scaling and
reflection parameters is generally not optimal.

13 Multivariate Methods

13-68

Feature Selection

In this section...

“Introduction to Feature Selection” on page 13-68
“Sequential Feature Selection” on page 13-68

Introduction to Feature Selection

Feature selection reduces the dimensionality of data by selecting only a subset of
measured features (predictor variables) to create a model. Selection criteria usually
involve the minimization of a specific measure of predictive error for models fit to
different subsets. Algorithms search for a subset of predictors that optimally model
measured responses, subject to constraints such as required or excluded features and the
size of the subset.

Feature selection is preferable to feature transformation when the original units and
meaning of features are important and the modeling goal is to identify an influential
subset. When categorical features are present, and numerical transformations are
inappropriate, feature selection becomes the primary means of dimension reduction.

Sequential Feature Selection

• “Introduction to Sequential Feature Selection” on page 13-68
• “Example: Sequential Feature Selection” on page 13-69

Introduction to Sequential Feature Selection

A common method of feature selection is sequential feature selection. This method has
two components:

• An objective function, called the criterion, which the method seeks to minimize over
all feasible feature subsets. Common criteria are mean squared error (for regression
models) and misclassification rate (for classification models).

• A sequential search algorithm, which adds or removes features from a candidate
subset while evaluating the criterion. Since an exhaustive comparison of the criterion
value at all 2n subsets of an n-feature data set is typically infeasible (depending on
the size of n and the cost of objective calls), sequential searches move in only one
direction, always growing or always shrinking the candidate set.

 Feature Selection

13-69

The method has two variants:

• Sequential forward selection (SFS), in which features are sequentially added to an
empty candidate set until the addition of further features does not decrease the
criterion.

• Sequential backward selection (SBS), in which features are sequentially removed from
a full candidate set until the removal of further features increase the criterion.

Stepwise regression is a sequential feature selection technique designed specifically
for least-squares fitting. The functions stepwise and stepwisefit make use of
optimizations that are only possible with least-squares criteria. Unlike generalized
sequential feature selection, stepwise regression may remove features that have been
added or add features that have been removed.

The Statistics and Machine Learning Toolbox function sequentialfs carries out
sequential feature selection. Input arguments include predictor and response data and a
function handle to a file implementing the criterion function. Optional inputs allow you
to specify SFS or SBS, required or excluded features, and the size of the feature subset.
The function calls cvpartition and crossval to evaluate the criterion at different
candidate sets.

Example: Sequential Feature Selection

For example, consider a data set with 100 observations of 10 predictors. The following
generates random data from a logistic model, with a binomial distribution of responses at
each set of values for the predictors. Some coefficients are set to zero so that not all of the
predictors affect the response:

n = 100;

m = 10;

X = rand(n,m);

b = [1 0 0 2 .5 0 0 0.1 0 1];

Xb = X*b';

p = 1./(1+exp(-Xb));

N = 50;

y = binornd(N,p);

The glmfit function fits a logistic model to the data:

Y = [y N*ones(size(y))];

[b0,dev0,stats0] = glmfit(X,Y,'binomial');

% Display coefficient estimates and their standard errors:

13 Multivariate Methods

13-70

model0 = [b0 stats0.se]

model0 =

 0.3115 0.2596

 0.9614 0.1656

 -0.1100 0.1651

 -0.2165 0.1683

 1.9519 0.1809

 0.5683 0.2018

 -0.0062 0.1740

 0.0651 0.1641

 -0.1034 0.1685

 0.0017 0.1815

 0.7979 0.1806

% Display the deviance of the fit:

dev0

dev0 =

 101.2594

This is the full model, using all of the features (and an initial constant term). Sequential
feature selection searches for a subset of the features in the full model with comparative
predictive power.

First, you must specify a criterion for selecting the features. The following function,
which calls glmfit and returns the deviance of the fit (a generalization of the residual
sum of squares) is a useful criterion in this case:

function dev = critfun(X,Y)

[b,dev] = glmfit(X,Y,'binomial');

You should create this function as a file on the MATLAB path.

The function sequentialfs performs feature selection, calling the criterion function via
a function handle:

maxdev = chi2inv(.95,1);

opt = statset('display','iter',...

 'TolFun',maxdev,...

 'TolTypeFun','abs');

inmodel = sequentialfs(@critfun,X,Y,...

 'cv','none',...

 'nullmodel',true,...

 Feature Selection

13-71

 'options',opt,...

 'direction','forward');

Start forward sequential feature selection:

Initial columns included: none

Columns that can not be included: none

Step 1, used initial columns, criterion value 309.118

Step 2, added column 4, criterion value 180.732

Step 3, added column 1, criterion value 138.862

Step 4, added column 10, criterion value 114.238

Step 5, added column 5, criterion value 103.503

Final columns included: 1 4 5 10

The iterative display shows a decrease in the criterion value as each new feature is
added to the model. The final result is a reduced model with only four of the original ten
features: columns 1, 4, 5, and 10 of X. These features are indicated in the logical vector
inmodel returned by sequentialfs.

The deviance of the reduced model is higher than for the full model, but the addition
of any other single feature would not decrease the criterion by more than the absolute
tolerance, maxdev, set in the options structure. Adding a feature with no effect reduces
the deviance by an amount that has a chi-square distribution with one degree of
freedom. Adding a significant feature results in a larger change. By setting maxdev to
chi2inv(.95,1), you instruct sequentialfs to continue adding features so long as
the change in deviance is more than would be expected by random chance.

The reduced model (also with an initial constant term) is:

[b,dev,stats] = glmfit(X(:,inmodel),Y,'binomial');

% Display coefficient estimates and their standard errors:

model = [b stats.se]

model =

 0.0784 0.1642

 1.0040 0.1592

 1.9459 0.1789

 0.6134 0.1872

 0.8245 0.1730

13 Multivariate Methods

13-72

Feature Transformation

In this section...

“Introduction to Feature Transformation” on page 13-72
“Nonnegative Matrix Factorization” on page 13-72
“Principal Component Analysis (PCA)” on page 13-75
“Quality of Life in U.S. Cities” on page 13-76
“Factor Analysis” on page 13-88

Introduction to Feature Transformation

Feature transformation is a group of methods that create new features (predictor
variables). The methods are useful for dimension reduction when the transformed
features have a descriptive power that is more easily ordered than the original features.
In this case, less descriptive features can be dropped from consideration when building
models.

Feature transformation methods are contrasted with the methods presented in “Feature
Selection” on page 13-68, where dimension reduction is achieved by computing an
optimal subset of predictive features measured in the original data.

The methods presented in this section share some common methodology. Their goals,
however, are essentially different:

• Nonnegative matrix factorization is used when model terms must represent
nonnegative quantities, such as physical quantities.

• Principal component analysis is used to summarize data in fewer dimensions, for
example, to visualize it.

• Factor analysis is used to build explanatory models of data correlations.

Nonnegative Matrix Factorization

• “Introduction to Nonnegative Matrix Factorization” on page 13-73
• “Example: Nonnegative Matrix Factorization” on page 13-73

 Feature Transformation

13-73

Introduction to Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a dimension-reduction technique based on
a low-rank approximation of the feature space. Besides providing a reduction in the
number of features, NMF guarantees that the features are nonnegative, producing
additive models that respect, for example, the nonnegativity of physical quantities.

Given a nonnegative m-by-n matrix X and a positive integer k < min(m,n), NMF finds
nonnegative m-by-k and k-by-n matrices W and H, respectively, that minimize the norm
of the difference X – WH. W and H are thus approximate nonnegative factors of X.

The k columns of W represent transformations of the variables in X; the k rows of H
represent the coefficients of the linear combinations of the original n variables in X that
produce the transformed variables in W. Since k is generally smaller than the rank of
X, the product WH provides a compressed approximation of the data in X. A range of
possible values for k is often suggested by the modeling context.

The Statistics and Machine Learning Toolbox function nnmf carries out nonnegative
matrix factorization. nnmf uses one of two iterative algorithms that begin with random
initial values for W and H. Because the norm of the residual X – WH may have local
minima, repeated calls to nnmf may yield different factorizations. Sometimes the
algorithm converges to a solution of lower rank than k, which may indicate that the
result is not optimal.

Example: Nonnegative Matrix Factorization

For example, consider the five predictors of biochemical oxygen demand in the data set
moore.mat.

load moore

X = moore(:,1:5);

rng('default'); % For reproducibility

The following uses nnmf to compute a rank-two approximation of X with a multiplicative
update algorithm that begins from five random initial values for W and H.

opt = statset('MaxIter',10,'Display','final');

[W0,H0] = nnmf(X,2,'replicates',5,'options',opt,'algorithm','mult');

 rep iteration rms resid |delta x|

 1 10 358.296 0.00190554

 2 10 78.3556 0.000351747

13 Multivariate Methods

13-74

 3 10 230.962 0.0172839

 4 10 326.347 0.00739552

 5 10 361.547 0.00705539

Final root mean square residual = 78.3556

The 'mult' algorithm is sensitive to initial values, which makes it a good choice when
using 'replicates' to find W and H from multiple random starting values.

Now perform the factorization using an alternating least-squares algorithm, which
converges faster and more consistently. Run 100 times more iterations, beginning from
the initial W0 and H0 identified above.

opt = statset('Maxiter',1000,'Display','final');

[W,H] = nnmf(X,2,'w0',W0,'h0',H0,'options',opt,'algorithm','als');

 rep iteration rms resid |delta x|

 1 2 77.5315 0.000830334

Final root mean square residual = 77.5315

The two columns of W are the transformed predictors. The two rows of H give the relative
contributions of each of the five predictors in X to the predictors in W.

H

H =

 0.0835 0.0190 0.1782 0.0072 0.9802

 0.0559 0.0250 0.9969 0.0085 0.0497

The fifth predictor in X (weight 0.9802) strongly influences the first predictor in W. The
third predictor in X (weight 0.9969) strongly influences the second predictor in W.

Visualize the relative contributions of the predictors in X with a biplot, showing the
data and original variables in the column space of W.

biplot(H','scores',W,'varlabels',{'','','v3','','v5'});

axis([0 1.1 0 1.1])

xlabel('Column 1')

ylabel('Column 2')

 Feature Transformation

13-75

Principal Component Analysis (PCA)

One of the difficulties inherent in multivariate statistics is the problem of visualizing
data that has many variables. The MATLAB function plot displays a graph of the
relationship between two variables. The plot3 and surf commands display different
three-dimensional views. But when there are more than three variables, it is more
difficult to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move together.
One reason for this is that more than one variable might be measuring the same driving
principle governing the behavior of the system. In many systems there are only a few
such driving forces. But an abundance of instrumentation enables you to measure dozens

13 Multivariate Methods

13-76

of system variables. When this happens, you can take advantage of this redundancy of
information. You can simplify the problem by replacing a group of variables with a single
new variable.

Principal component analysis is a quantitatively rigorous method for achieving this
simplification. The method generates a new set of variables, called principal components.
Each principal component is a linear combination of the original variables. All the
principal components are orthogonal to each other, so there is no redundant information.
The principal components as a whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for several
columns of data. What is so special about the principal component basis?

The first principal component is a single axis in space. When you project each observation
on that axis, the resulting values form a new variable. And the variance of this variable
is the maximum among all possible choices of the first axis.

The second principal component is another axis in space, perpendicular to the first.
Projecting the observations on this axis generates another new variable. The variance of
this variable is the maximum among all possible choices of this second axis.

The full set of principal components is as large as the original set of variables. But it
is commonplace for the sum of the variances of the first few principal components to
exceed 80% of the total variance of the original data. By examining plots of these few new
variables, researchers often develop a deeper understanding of the driving forces that
generated the original data.

You can use the function pca to find the principal components. To use pca, you need to
have the actual measured data you want to analyze. However, if you lack the actual data,
but have the sample covariance or correlation matrix for the data, you can still use the
function pcacov to perform a principal components analysis. See the reference page for
pcacov for a description of its inputs and outputs.

Quality of Life in U.S. Cities

This example shows how to perform a weighted principal components analysis and
interpret the results.

Load sample data.

Load the sample data. The data includes ratings for 9 different indicators of the quality
of life in 329 U.S. cities. These are climate, housing, health, crime, transportation,

 Feature Transformation

13-77

education, arts, recreation, and economics. For each category, a higher rating is better.
For example, a higher rating for crime means a lower crime rate.

Display the categories variable.

load cities

categories

categories =

 climate

 housing

 health

 crime

 transportation

 education

 arts

 recreation

 economics

In total, the cities data set contains three variables:

• categories, a string matrix containing the names of the indices

• names, a string matrix containing the 329 city names
• ratings, the data matrix with 329 rows and 9 columns

Plot data.

Make a boxplot to look at the distribution of the ratings data.

figure()

boxplot(ratings,'orientation','horizontal','labels',categories)

13 Multivariate Methods

13-78

There is more variability in the ratings of the arts and housing than in the ratings of
crime and climate.

Check pairwise correlation.

Check the pairwise correlation between the variables.

C = corr(ratings,ratings);

The correlation among some variables is as high as 0.85. Principal components analysis
constructs independent new variables which are linear combinations of the original
variables.

Compute principal components.

When all variables are in the same unit, it is appropriate to compute principal
components for raw data. When the variables are in different units or the difference in

 Feature Transformation

13-79

the variance of different columns is substantial (as in this case), scaling of the data or use
of weights is often preferable.

Perform the principal component analysis by using the inverse variances of the ratings
as weights.

w = 1./var(ratings);

[wcoeff,score,latent,tsquared,explained] = pca(ratings,...

'VariableWeights',w);

Or equivalently:

[wcoeff,score,latent,tsquared,explained] = pca(ratings,...

'VariableWeights','variance');

The following sections explain the five outputs of pca.

Component coefficients.

The first output, wcoeff, contains the coefficients of the principal components.

The first three principal component coefficient vectors are:

c3 = wcoeff(:,1:3)

c3 = wcoeff(:,1:3)

c3 =

 1.0e+03 *

 0.0249 -0.0263 -0.0834

 0.8504 -0.5978 -0.4965

 0.4616 0.3004 -0.0073

 0.1005 -0.1269 0.0661

 0.5096 0.2606 0.2124

 0.0883 0.1551 0.0737

 2.1496 0.9043 -0.1229

 0.2649 -0.3106 -0.0411

 0.1469 -0.5111 0.6586

These coefficients are weighted, hence the coefficient matrix is not orthonormal.

Transform coefficients.

Transform the coefficients so that they are orthonormal.

13 Multivariate Methods

13-80

 coefforth = inv(diag(std(ratings)))*wcoeff;

Note that if you use a weights vector, w, while conducting the pca, then

 coefforth = diag(sqrt(w))*wcoeff;

Check coefficients are orthonormal.

The transformed coefficients are now orthonormal.

I = c3'*c3

I =

 1.0000 -0.0000 -0.0000

 -0.0000 1.0000 -0.0000

 -0.0000 -0.0000 1.0000

Component scores.

The second output, score, contains the coordinates of the original data in the new
coordinate system defined by the principal components. The score matrix is the same
size as the input data matrix. You can also obtain the component scores using the
orthonormal coefficients and the standardized ratings as follows.

cscores = zscore(ratings)*coefforth;

cscores and score are identical matrices.

Plot component scores.

Create a plot of the first two columns of score.

figure()

plot(score(:,1),score(:,2),'+')

xlabel('1st Principal Component')

ylabel('2nd Principal Component')

 Feature Transformation

13-81

This plot shows the centered and scaled ratings data projected onto the first two
principal components. pca computes the scores to have mean zero.

Explore plot interactively.

Note the outlying points in the right half of the plot. You can graphically identify these
points as follows.

gname

Move your cursor over the plot and click once near the rightmost seven points. This
labels the points by their row numbers as in the following figure.

13 Multivariate Methods

13-82

After labeling points, press Return.

Extract observation names.

Create an index variable containing the row numbers of all the cities you chose and get
the names of the cities.

metro = [43 65 179 213 234 270 314];

names(metro,:)

ans =

 Boston, MA

 Chicago, IL

 Los Angeles, Long Beach, CA

 Feature Transformation

13-83

 New York, NY

 Philadelphia, PA-NJ

 San Francisco, CA

 Washington, DC-MD-VA

These labeled cities are some of the biggest population centers in the United States and
they appear more extreme than the remainder of the data.

Component variances.

The third output, latent, is a vector containing the variance explained by the
corresponding principal component. Each column of score has a sample variance equal
to the corresponding row of latent.

latent

latent =

 3.4083

 1.2140

 1.1415

 0.9209

 0.7533

 0.6306

 0.4930

 0.3180

 0.1204

Percent variance explained.

The fifth output, explained, is a vector containing the percent variance explained by
the corresponding principal component.

explained

explained =

 37.8699

 13.4886

 12.6831

 10.2324

 8.3698

 7.0062

 5.4783

13 Multivariate Methods

13-84

 3.5338

 1.3378

Create scree plot.

Make a scree plot of the percent variability explained by each principal component.

figure()

pareto(explained)

xlabel('Principal Component')

ylabel('Variance Explained (%)')

This scree plot only shows the first seven (instead of the total nine) components that
explain 95% of the total variance. The only clear break in the amount of variance

 Feature Transformation

13-85

accounted for by each component is between the first and second components. However,
the first component by itself explains less than 40% of the variance, so more components
might be needed. You can see that the first three principal components explain roughly
two-thirds of the total variability in the standardized ratings, so that might be a
reasonable way to reduce the dimensions.

Hotelling's T-squared statistic.

The last output from pca is tsquared, which is Hotelling's T2, a statistical measure of
the multivariate distance of each observation from the center of the data set. This is an
analytical way to find the most extreme points in the data.

[st2,index] = sort(tsquared,'descend'); % sort in descending order

extreme = index(1);

names(extreme,:)

ans =

New York, NY

The ratings for New York are the furthest from the average U.S. city.

Visualize the results.

Visualize both the orthonormal principal component coefficients for each variable and the
principal component scores for each observation in a single plot.

biplot(coefforth(:,1:2),'scores',score(:,1:2),'varlabels',categories);

axis([-.26 0.6 -.51 .51]);

13 Multivariate Methods

13-86

All nine variables are represented in this bi-plot by a vector, and the direction and length
of the vector indicate how each variable contributes to the two principal components in
the plot. For example, the first principal component, on the horizontal axis, has positive
coefficients for all nine variables. That is why the nine vectors are directed into the right
half of the plot. The largest coefficients in the first principal component are the third and
seventh elements, corresponding to the variables health and arts.

The second principal component, on the vertical axis, has positive coefficients for the
variables education, health, arts, and transportation, and negative coefficients
for the remaining five variables. This indicates that the second component distinguishes
among cities that have high values for the first set of variables and low for the second,
and cities that have the opposite.

 Feature Transformation

13-87

The variable labels in this figure are somewhat crowded. You can either exclude the
VarLabels parameter when making the plot, or select and drag some of the labels to
better positions using the Edit Plot tool from the figure window toolbar.

This 2-D bi-plot also includes a point for each of the 329 observations, with coordinates
indicating the score of each observation for the two principal components in the plot.
For example, points near the left edge of this plot have the lowest scores for the first
principal component. The points are scaled with respect to the maximum score value and
maximum coefficient length, so only their relative locations can be determined from the
plot.

You can identify items in the plot by selecting Tools>Data Cursor from the figure
window. By clicking a variable (vector), you can read that variable's coefficients for each
principal component. By clicking an observation (point), you can read that observation's
scores for each principal component.

Create a three-dimensional bi-plot.

You can also make a bi-plot in three dimensions.

figure()

biplot(coefforth(:,1:3),'scores',score(:,1:3),'obslabels',names);

axis([-.26 0.8 -.51 .51 -.61 .81]);

view([30 40]);

13 Multivariate Methods

13-88

This graph is useful if the first two principal coordinates do not explain enough of the
variance in your data. You can also rotate the figure to see it from different angles by
selecting theTools> Rotate 3D.

Factor Analysis

• “Introduction to Factor Analysis” on page 13-88
• “Example: Factor Analysis” on page 13-89

Introduction to Factor Analysis

Multivariate data often includes a large number of measured variables, and sometimes
those variables overlap, in the sense that groups of them might be dependent. For

 Feature Transformation

13-89

example, in a decathlon, each athlete competes in 10 events, but several of them can be
thought of as speed events, while others can be thought of as strength events, etc. Thus,
you can think of a competitor's 10 event scores as largely dependent on a smaller set of
three or four types of athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this sort
of interdependence. In a factor analysis model, the measured variables depend on a
smaller number of unobserved (latent) factors. Because each factor might affect several
variables in common, they are known as common factors. Each variable is assumed to be
dependent on a linear combination of the common factors, and the coefficients are known
as loadings. Each measured variable also includes a component due to independent
random variability, known as specific variance because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data is of the
form

= +∑ ΛΛ ΨΤ
x

where Λ is the matrix of loadings, and the elements of the diagonal matrix Ψ are
the specific variances. The function factoran fits the Factor Analysis model using
maximum likelihood.

Example: Factor Analysis

• “Factor Loadings” on page 13-89
• “Factor Rotation” on page 13-91
• “Factor Scores” on page 13-93
• “Visualize the Results” on page 13-96

Factor Loadings

Over the course of 100 weeks, the percent change in stock prices for ten companies
has been recorded. Of the ten companies, the first four can be classified as primarily
technology, the next three as financial, and the last three as retail. It seems reasonable
that the stock prices for companies that are in the same sector might vary together as
economic conditions change. Factor Analysis can provide quantitative evidence that
companies within each sector do experience similar week-to-week changes in stock price.

In this example, you first load the data, and then call factoran, specifying a model fit
with three common factors. By default, factoran computes rotated estimates of the

13 Multivariate Methods

13-90

loadings to try and make their interpretation simpler. But in this example, you specify an
unrotated solution.

load stockreturns

[Loadings,specificVar,T,stats] = factoran(stocks,3,'rotate','none');

The first two factoran return arguments are the estimated loadings and the estimated
specific variances. Each row of the loadings matrix represents one of the ten stocks, and
each column corresponds to a common factor. With unrotated estimates, interpretation of
the factors in this fit is difficult because most of the stocks contain fairly large coefficients
for two or more factors.

Loadings

Loadings =

 0.8885 0.2367 -0.2354

 0.7126 0.3862 0.0034

 0.3351 0.2784 -0.0211

 0.3088 0.1113 -0.1905

 0.6277 -0.6643 0.1478

 0.4726 -0.6383 0.0133

 0.1133 -0.5416 0.0322

 0.6403 0.1669 0.4960

 0.2363 0.5293 0.5770

 0.1105 0.1680 0.5524

Note “Factor Rotation” on page 13-91 helps to simplify the structure in the Loadings
matrix, to make it easier to assign meaningful interpretations to the factors.

From the estimated specific variances, you can see that the model indicates that a
particular stock price varies quite a lot beyond the variation due to the common factors.

specificVar

specificVar =

 0.0991

 0.3431

 Feature Transformation

13-91

 0.8097

 0.8559

 0.1429

 0.3691

 0.6928

 0.3162

 0.3311

 0.6544

A specific variance of 1 would indicate that there is no common factor component in
that variable, while a specific variance of 0 would indicate that the variable is entirely
determined by common factors. These data seem to fall somewhere in between.

The p value returned in the stats structure fails to reject the null hypothesis of three
common factors, suggesting that this model provides a satisfactory explanation of the
covariation in these data.

stats.p

ans =

 0.8144

To determine whether fewer than three factors can provide an acceptable fit, you can try
a model with two common factors. The p value for this second fit is highly significant, and
rejects the hypothesis of two factors, indicating that the simpler model is not sufficient to
explain the pattern in these data.

[Loadings2,specificVar2,T2,stats2] = factoran(stocks, 2,'rotate','none');

stats2.p

ans =

 3.5610e-06

Factor Rotation

As the results illustrate, the estimated loadings from an unrotated factor analysis fit can
have a complicated structure. The goal of factor rotation is to find a parameterization in

13 Multivariate Methods

13-92

which each variable has only a small number of large loadings. That is, each variable is
affected by a small number of factors, preferably only one. This can often make it easier
to interpret what the factors represent.

If you think of each row of the loadings matrix as coordinates of a point in M-dimensional
space, then each factor corresponds to a coordinate axis. Factor rotation is equivalent to
rotating those axes and computing new loadings in the rotated coordinate system. There
are various ways to do this. Some methods leave the axes orthogonal, while others are
oblique methods that change the angles between them. For this example, you can rotate
the estimated loadings by using the promax criterion, a common oblique method.

[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');

LoadingsPM

LoadingsPM =

 0.9452 0.1214 -0.0617

 0.7064 -0.0178 0.2058

 0.3885 -0.0994 0.0975

 0.4162 -0.0148 -0.1298

 0.1021 0.9019 0.0768

 0.0873 0.7709 -0.0821

 -0.1616 0.5320 -0.0888

 0.2169 0.2844 0.6635

 0.0016 -0.1881 0.7849

 -0.2289 0.0636 0.6475

Promax rotation creates a simpler structure in the loadings, one in which most of the
stocks have a large loading on only one factor. To see this structure more clearly, you can
use the biplot function to plot each stock using its factor loadings as coordinates.

biplot(LoadingsPM,'varlabels',num2str((1:10)'));

axis square

view(155,27);

 Feature Transformation

13-93

This plot shows that promax has rotated the factor loadings to a simpler structure. Each
stock depends primarily on only one factor, and it is possible to describe each factor
in terms of the stocks that it affects. Based on which companies are near which axes,
you could reasonably conclude that the first factor axis represents the financial sector,
the second retail, and the third technology. The original conjecture, that stocks vary
primarily within sector, is apparently supported by the data.

Factor Scores

Sometimes, it is useful to be able to classify an observation based on its factor scores.
For example, if you accepted the three-factor model and the interpretation of the rotated
factors, you might want to categorize each week in terms of how favorable it was for each
of the three stock sectors, based on the data from the 10 observed stocks.

13 Multivariate Methods

13-94

Because the data in this example are the raw stock price changes, and not just their
correlation matrix, you can have factoran return estimates of the value of each of the
three rotated common factors for each week. You can then plot the estimated scores to
see how the different stock sectors were affected during each week.

[LoadingsPM,specVarPM,TPM,stats,F] = factoran(stocks, 3,'rotate','promax');

plot3(F(:,1),F(:,2),F(:,3),'b.')

line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],[0 0 NaN 0 0 NaN -4 4], 'Color','black')

xlabel('Financial Sector')

ylabel('Retail Sector')

zlabel('Technology Sector')

grid on

axis square

view(-22.5, 8)

 Feature Transformation

13-95

Oblique rotation often creates factors that are correlated. This plot shows some evidence
of correlation between the first and third factors, and you can investigate further by
computing the estimated factor correlation matrix.

inv(TPM'*TPM)

ans =

 1.0000 0.1559 0.4082

 0.1559 1.0000 -0.0559

 0.4082 -0.0559 1.0000

13 Multivariate Methods

13-96

Visualize the Results

You can use the biplot function to help visualize both the factor loadings for each
variable and the factor scores for each observation in a single plot. For example, the
following command plots the results from the factor analysis on the stock data and labels
each of the 10 stocks.

biplot(LoadingsPM,'scores',F,'varlabels',num2str((1:10)'))

xlabel('Financial Sector')

ylabel('Retail Sector')

zlabel('Technology Sector')

axis square

view(155,27)

 Feature Transformation

13-97

In this case, the factor analysis includes three factors, and so the biplot is three-
dimensional. Each of the 10 stocks is represented in this plot by a vector, and the
direction and length of the vector indicates how each stock depends on the underlying
factors. For example, you have seen that after promax rotation, the first four stocks have
positive loadings on the first factor, and unimportant loadings on the other two factors.
That first factor, interpreted as a financial sector effect, is represented in this biplot as
one of the horizontal axes. The dependence of those four stocks on that factor corresponds
to the four vectors directed approximately along that axis. Similarly, the dependence of
stocks 5, 6, and 7 primarily on the second factor, interpreted as a retail sector effect, is
represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their locations
indicate the score of each observation for the three factors. For example, points near the
top of this plot have the highest scores for the technology sector factor. The points are
scaled to fit within the unit square, so only their relative locations can be determined
from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window to identify
the items in this plot. By clicking a stock (vector), you can read off that stock's loadings
for each factor. By clicking an observation (point), you can read off that observation's
scores for each factor.

13 Multivariate Methods

13-98

Partial Least Squares Regression and Principal Components
Regression

This example shows how to apply Partial Least Squares Regression (PLSR) and Principal
Components Regression (PCR), and discusses the effectiveness of the two methods. PLSR
and PCR are both methods to model a response variable when there are a large number
of predictor variables, and those predictors are highly correlated or even collinear. Both
methods construct new predictor variables, known as components, as linear combinations
of the original predictor variables, but they construct those components in different ways.
PCR creates components to explain the observed variability in the predictor variables,
without considering the response variable at all. On the other hand, PLSR does take the
response variable into account, and therefore often leads to models that are able to fit the
response variable with fewer components. Whether or not that ultimately translates into
a more parsimonious model, in terms of its practical use, depends on the context.

Loading the Data

Load a data set comprising spectral intensities of 60 samples of gasoline at 401
wavelengths, and their octane ratings. These data are described in Kalivas, John H.,
"Two Data Sets of Near Infrared Spectra," Chemometrics and Intelligent Laboratory
Systems, v.37 (1997) pp.255-259.

load spectra

whos NIR octane

 Name Size Bytes Class Attributes

 NIR 60x401 192480 double

 octane 60x1 480 double

[dummy,h] = sort(octane);

oldorder = get(gcf,'DefaultAxesColorOrder');

set(gcf,'DefaultAxesColorOrder',jet(60));

plot3(repmat(1:401,60,1)',repmat(octane(h),1,401)',NIR(h,:)');

set(gcf,'DefaultAxesColorOrder',oldorder);

xlabel('Wavelength Index'); ylabel('Octane'); axis('tight');

grid on

 Partial Least Squares Regression and Principal Components Regression

13-99

Fitting the Data with Two Components

Use the plsregress function to fit a PLSR model with ten PLS components and one
response.

X = NIR;

y = octane;

[n,p] = size(X);

[Xloadings,Yloadings,Xscores,Yscores,betaPLS10,PLSPctVar] = plsregress(...

 X,y,10);

Ten components may be more than will be needed to adequately fit the data, but
diagnostics from this fit can be used to make a choice of a simpler model with fewer

13 Multivariate Methods

13-100

components. For example, one quick way to choose the number of components is to plot
the percent of variance explained in the response variable as a function of the number of
components.

plot(1:10,cumsum(100*PLSPctVar(2,:)),'-bo');

xlabel('Number of PLS components');

ylabel('Percent Variance Explained in Y');

In practice, more care would probably be advisable in choosing the number of
components. Cross-validation, for instance, is a widely-used method that will be
illustrated later in this example. For now, the above plot suggests that PLSR with two
components explains most of the variance in the observed y. Compute the fitted response
values for the two-component model.

 Partial Least Squares Regression and Principal Components Regression

13-101

[Xloadings,Yloadings,Xscores,Yscores,betaPLS] = plsregress(X,y,2);

yfitPLS = [ones(n,1) X]*betaPLS;

Next, fit a PCR model with two principal components. The first step is to perform
Principal Components Analysis on X, using the pca function, and retaining two principal
components. PCR is then just a linear regression of the response variable on those
two components. It often makes sense to normalize each variable first by its standard
deviation when the variables have very different amounts of variability, however, that is
not done here.

[PCALoadings,PCAScores,PCAVar] = pca(X,'Economy',false);

betaPCR = regress(y-mean(y), PCAScores(:,1:2));

To make the PCR results easier to interpret in terms of the original spectral data,
transform to regression coefficients for the original, uncentered variables.

betaPCR = PCALoadings(:,1:2)*betaPCR;

betaPCR = [mean(y) - mean(X)*betaPCR; betaPCR];

yfitPCR = [ones(n,1) X]*betaPCR;

Plot fitted vs. observed response for the PLSR and PCR fits.

plot(y,yfitPLS,'bo',y,yfitPCR,'r^');

xlabel('Observed Response');

ylabel('Fitted Response');

legend({'PLSR with 2 Components' 'PCR with 2 Components'}, ...

 'location','NW');

13 Multivariate Methods

13-102

In a sense, the comparison in the plot above is not a fair one -- the number of components
(two) was chosen by looking at how well a two-component PLSR model predicted the
response, and there's no reason why the PCR model should be restricted to that same
number of components. With the same number of components, however, PLSR does a
much better job at fitting y. In fact, looking at the horizontal scatter of fitted values in
the plot above, PCR with two components is hardly better than using a constant model.
The r-squared values from the two regressions confirm that.

TSS = sum((y-mean(y)).^2);

RSS_PLS = sum((y-yfitPLS).^2);

rsquaredPLS = 1 - RSS_PLS/TSS

rsquaredPLS =

 Partial Least Squares Regression and Principal Components Regression

13-103

 0.9466

RSS_PCR = sum((y-yfitPCR).^2);

rsquaredPCR = 1 - RSS_PCR/TSS

rsquaredPCR =

 0.1962

Another way to compare the predictive power of the two models is to plot the response
variable against the two predictors in both cases.

plot3(Xscores(:,1),Xscores(:,2),y-mean(y),'bo');

legend('PLSR');

grid on; view(-30,30);

13 Multivariate Methods

13-104

It's a little hard to see without being able to interactively rotate the figure, but the PLSR
plot above shows points closely scattered about a plane. On the other hand, the PCR plot
below shows a cloud of points with little indication of a linear relationship.

plot3(PCAScores(:,1),PCAScores(:,2),y-mean(y),'r^');

legend('PCR');

grid on; view(-30,30);

 Partial Least Squares Regression and Principal Components Regression

13-105

Notice that while the two PLS components are much better predictors of the observed y,
the following figure shows that they explain somewhat less variance in the observed X
than the first two principal components used in the PCR.

plot(1:10,100*cumsum(PLSPctVar(1,:)),'b-o',1:10, ...

 100*cumsum(PCAVar(1:10))/sum(PCAVar(1:10)),'r-^');

xlabel('Number of Principal Components');

ylabel('Percent Variance Explained in X');

legend({'PLSR' 'PCR'},'location','SE');

13 Multivariate Methods

13-106

The fact that the PCR curve is uniformly higher suggests why PCR with two components
does such a poor job, relative to PLSR, in fitting y. PCR constructs components to best
explain X, and as a result, those first two components ignore the information in the data
that is important in fitting the observed y.

Fitting with More Components

As more components are added in PCR, it will necessarily do a better job of fitting
the original data y, simply because at some point most of the important predictive
information in X will be present in the principal components. For example, the following
figure shows that the difference in residuals for the two methods is much less dramatic
when using ten components than it was for two components.

yfitPLS10 = [ones(n,1) X]*betaPLS10;

 Partial Least Squares Regression and Principal Components Regression

13-107

betaPCR10 = regress(y-mean(y), PCAScores(:,1:10));

betaPCR10 = PCALoadings(:,1:10)*betaPCR10;

betaPCR10 = [mean(y) - mean(X)*betaPCR10; betaPCR10];

yfitPCR10 = [ones(n,1) X]*betaPCR10;

plot(y,yfitPLS10,'bo',y,yfitPCR10,'r^');

xlabel('Observed Response');

ylabel('Fitted Response');

legend({'PLSR with 10 components' 'PCR with 10 Components'}, ...

 'location','NW');

Both models fit y fairly accurately, although PLSR still makes a slightly more accurate
fit. However, ten components is still an arbitrarily-chosen number for either model.

13 Multivariate Methods

13-108

Choosing the Number of Components with Cross-Validation

It's often useful to choose the number of components to minimize the expected error when
predicting the response from future observations on the predictor variables. Simply using
a large number of components will do a good job in fitting the current observed data, but
is a strategy that leads to overfitting. Fitting the current data too well results in a model
that does not generalize well to other data, and gives an overly-optimistic estimate of the
expected error.

Cross-validation is a more statistically sound method for choosing the number of
components in either PLSR or PCR. It avoids overfitting data by not reusing the same
data to both fit a model and to estimate prediction error. Thus, the estimate of prediction
error is not optimistically biased downwards.

plsregress has an option to estimate the mean squared prediction error (MSEP) by
cross-validation, in this case using 10-fold C-V.

[Xl,Yl,Xs,Ys,beta,pctVar,PLSmsep] = plsregress(X,y,10,'CV',10);

For PCR, crossval combined with a simple function to compute the sum of squared
errors for PCR, can estimate the MSEP, again using 10-fold cross-validation.

PCRmsep = sum(crossval(@pcrsse,X,y,'KFold',10),1) / n;

The MSEP curve for PLSR indicates that two or three components does about as good
a job as possible. On the other hand, PCR needs four components to get the same
prediction accuracy.

plot(0:10,PLSmsep(2,:),'b-o',0:10,PCRmsep,'r-^');

xlabel('Number of components');

ylabel('Estimated Mean Squared Prediction Error');

legend({'PLSR' 'PCR'},'location','NE');

 Partial Least Squares Regression and Principal Components Regression

13-109

In fact, the second component in PCR increases the prediction error of the model,
suggesting that the combination of predictor variables contained in that component is not
strongly correlated with y. Again, that's because PCR constructs components to explain
variation in X, not y.

Model Parsimony

So if PCR requires four components to get the same prediction accuracy as PLSR with
three components, is the PLSR model more parsimonious? That depends on what aspect
of the model you consider.

13 Multivariate Methods

13-110

The PLS weights are the linear combinations of the original variables that define the
PLS components, i.e., they describe how strongly each component in the PLSR depends
on the original variables, and in what direction.

[Xl,Yl,Xs,Ys,beta,pctVar,mse,stats] = plsregress(X,y,3);

plot(1:401,stats.W,'-');

xlabel('Variable');

ylabel('PLS Weight');

legend({'1st Component' '2nd Component' '3rd Component'}, ...

 'location','NW');

Similarly, the PCA loadings describe how strongly each component in the PCR depends
on the original variables.

 Partial Least Squares Regression and Principal Components Regression

13-111

plot(1:401,PCALoadings(:,1:4),'-');

xlabel('Variable');

ylabel('PCA Loading');

legend({'1st Component' '2nd Component' '3rd Component' ...

 '4th Component'},'location','NW');

For either PLSR or PCR, it may be that each component can be given a physically
meaningful interpretation by inspecting which variables it weights most heavily. For
instance, with these spectral data it may be possible to interpret intensity peaks in terms
of compounds present in the gasoline, and then to observe that weights for a particular
component pick out a small number of those compounds. From that perspective, fewer
components are simpler to interpret, and because PLSR often requires fewer components
to predict the response adequately, it leads to more parsimonious models.

13 Multivariate Methods

13-112

On the other hand, both PLSR and PCR result in one regression coefficient for each
of the original predictor variables, plus an intercept. In that sense, neither is more
parsimonious, because regardless of how many components are used, both models depend
on all predictors. More concretely, for these data, both models need 401 spectral intensity
values in order to make a prediction.

However, the ultimate goal may to reduce the original set of variables to a smaller subset
still able to predict the response accurately. For example, it may be possible to use the
PLS weights or the PCA loadings to select only those variables that contribute most to
each component. As shown earlier, some components from a PCR model fit may serve
primarily to describe the variation in the predictor variables, and may include large
weights for variables that are not strongly correlated with the response. Thus, PCR can
lead to retaining variables that are unnecessary for prediction.

For the data used in this example, the difference in the number of components needed
by PLSR and PCR for accurate prediction is not great, and the PLS weights and PCA
loadings seem to pick out the same variables. That may not be true for other data.

14

Cluster Analysis

• “Introduction to Cluster Analysis” on page 14-2
• “Hierarchical Clustering” on page 14-3
• “k-Means Clustering” on page 14-21
• “Clustering Using Gaussian Mixture Models” on page 14-29

14 Cluster Analysis

14-2

Introduction to Cluster Analysis

Cluster analysis, also called segmentation analysis or taxonomy analysis, creates groups,
or clusters, of data. Clusters are formed in such a way that objects in the same cluster
are very similar and objects in different clusters are very distinct. Measures of similarity
depend on the application.

“Hierarchical Clustering” on page 14-3 groups data over a variety of scales by
creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather
a multilevel hierarchy, where clusters at one level are joined as clusters at the next level.
This allows you to decide the level or scale of clustering that is most appropriate for
your application. The Statistics and Machine Learning Toolbox function clusterdata
performs all of the necessary steps for you. It incorporates the pdist, linkage, and
cluster functions, which may be used separately for more detailed analysis. The
dendrogram function plots the cluster tree.

“k-Means Clustering” on page 14-21 is a partitioning method. The function kmeans
partitions data into k mutually exclusive clusters, and returns the index of the cluster
to which it has assigned each observation. Unlike hierarchical clustering, k-means
clustering operates on actual observations (rather than the larger set of dissimilarity
measures), and creates a single level of clusters. The distinctions mean that k-means
clustering is often more suitable than hierarchical clustering for large amounts of data.

“Clustering Using Gaussian Mixture Models” on page 14-29 form clusters by
representing the probability density function of observed variables as a mixture of
multivariate normal densities. Mixture models of the gmdistribution class use
an expectation maximization (EM) algorithm to fit data, which assigns posterior
probabilities to each component density with respect to each observation. Clusters are
assigned by selecting the component that maximizes the posterior probability. Clustering
using Gaussian mixture models is sometimes considered a soft clustering method. The
posterior probabilities for each point indicate that each data point has some probability
of belonging to each cluster. Like k-means clustering, Gaussian mixture modeling uses
an iterative algorithm that converges to a local optimum. Gaussian mixture modeling
may be more appropriate than k-means clustering when clusters have different sizes and
correlation within them.

 Hierarchical Clustering

14-3

Hierarchical Clustering

In this section...

“Introduction to Hierarchical Clustering” on page 14-3
“Algorithm Description” on page 14-3
“Similarity Measures” on page 14-4
“Linkages” on page 14-6
“Dendrograms” on page 14-8
“Verify the Cluster Tree” on page 14-9
“Create Clusters” on page 14-16

Introduction to Hierarchical Clustering

Hierarchical clustering groups data over a variety of scales by creating a cluster tree or
dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy,
where clusters at one level are joined as clusters at the next level. This allows you to
decide the level or scale of clustering that is most appropriate for your application. The
Statistics and Machine Learning Toolbox function clusterdata supports agglomerative
clustering and performs all of the necessary steps for you. It incorporates the pdist,
linkage, and cluster functions, which you can use separately for more detailed
analysis. The dendrogram function plots the cluster tree.

Algorithm Description

To perform agglomerative hierarchical cluster analysis on a data set using Statistics and
Machine Learning Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the
data set. In this step, you calculate the distance between objects using the pdist
function. The pdist function supports many different ways to compute this
measurement. See “Similarity Measures” on page 14-4 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step, you
link pairs of objects that are in close proximity using the linkage function. The
linkage function uses the distance information generated in step 1 to determine
the proximity of objects to each other. As objects are paired into binary clusters, the

14 Cluster Analysis

14-4

newly formed clusters are grouped into larger clusters until a hierarchical tree is
formed. See “Linkages” on page 14-6 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this step,
you use the cluster function to prune branches off the bottom of the hierarchical
tree, and assign all the objects below each cut to a single cluster. This creates a
partition of the data. The cluster function can create these clusters by detecting
natural groupings in the hierarchical tree or by cutting off the hierarchical tree at an
arbitrary point.

The following sections provide more information about each of these steps.

Note The Statistics and Machine Learning Toolbox function clusterdata performs
all of the necessary steps for you. You do not need to execute the pdist, linkage, or
cluster functions separately.

Similarity Measures

You use the pdist function to calculate the distance between every pair of objects in a
data set. For a data set made up of m objects, there are m*(m – 1)/2 pairs in the data set.
The result of this computation is commonly known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the pdist
function calculates the Euclidean distance between objects; however, you can specify one
of several other options. See pdist for more information.

Note You can optionally normalize the values in the data set before calculating the
distance information. In a real world data set, variables can be measured against
different scales. For example, one variable can measure Intelligence Quotient (IQ) test
scores and another variable can measure head circumference. These discrepancies
can distort the proximity calculations. Using the zscore function, you can convert
all the values in the data set to use the same proportional scale. See zscore for more
information.

For example, consider a data set, X, made up of five objects where each object is a set of
x,y coordinates.

• Object 1: 1, 2

 Hierarchical Clustering

14-5

• Object 2: 2.5, 4.5
• Object 3: 2, 2
• Object 4: 4, 1.5
• Object 5: 4, 2.5

You can define this data set as a matrix

rng default; % For reproducibility

X = [1 2;2.5 4.5;2 2;4 1.5;...

 4 2.5];

and pass it to pdist. The pdist function calculates the distance between object 1 and
object 2, object 1 and object 3, and so on until the distances between all the pairs have
been calculated. The following figure plots these objects in a graph. The Euclidean
distance between object 2 and object 3 is shown to illustrate one interpretation of
distance.

Distance Information

The pdist function returns this distance information in a vector, Y, where each element
contains the distance between a pair of objects.

Y = pdist(X)

Y =

14 Cluster Analysis

14-6

 Columns 1 through 7

 2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000

 Columns 8 through 10

 2.0616 2.0616 1.0000

To make it easier to see the relationship between the distance information generated by
pdist and the objects in the original data set, you can reformat the distance vector into
a matrix using the squareform function. In this matrix, element i,j corresponds to the
distance between object i and object j in the original data set. In the following example,
element 1,1 represents the distance between object 1 and itself (which is zero). Element
1,2 represents the distance between object 1 and object 2, and so on.

squareform(Y)

ans =

 0 2.9155 1.0000 3.0414 3.0414

 2.9155 0 2.5495 3.3541 2.5000

 1.0000 2.5495 0 2.0616 2.0616

 3.0414 3.3541 2.0616 0 1.0000

 3.0414 2.5000 2.0616 1.0000 0

Linkages

Once the proximity between objects in the data set has been computed, you can
determine how objects in the data set should be grouped into clusters, using the linkage
function. The linkage function takes the distance information generated by pdist and
links pairs of objects that are close together into binary clusters (clusters made up of two
objects). The linkage function then links these newly formed clusters to each other and
to other objects to create bigger clusters until all the objects in the original data set are
linked together in a hierarchical tree.

For example, given the distance vector Y generated by pdist from the sample data
set of x- and y-coordinates, the linkage function generates a hierarchical cluster tree,
returning the linkage information in a matrix, Z.

 Hierarchical Clustering

14-7

Z = linkage(Y)

Z =

 4.0000 5.0000 1.0000

 1.0000 3.0000 1.0000

 6.0000 7.0000 2.0616

 2.0000 8.0000 2.5000

In this output, each row identifies a link between objects or clusters. The first two
columns identify the objects that have been linked. The third column contains the
distance between these objects. For the sample data set of x- and y-coordinates, the
linkage function begins by grouping objects 4 and 5, which have the closest proximity
(distance value = 1.0000). The linkage function continues by grouping objects 1 and 3,
which also have a distance value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If the
original sample data set contained only five objects, what are objects 6 and 7? Object 6
is the newly formed binary cluster created by the grouping of objects 4 and 5. When the
linkage function groups two objects into a new cluster, it must assign the cluster a
unique index value, starting with the value m + 1, where m is the number of objects in
the original data set. (Values 1 through m are already used by the original data set.)
Similarly, object 7 is the cluster formed by grouping objects 1 and 3.

linkage uses distances to determine the order in which it clusters objects. The distance
vector Y contains the distances between the original objects 1 through 5. But linkage
must also be able to determine distances involving clusters that it creates, such as objects
6 and 7. By default, linkage uses a method known as single linkage. However, there
are a number of different methods available. See the linkage reference page for more
information.

As the final cluster, the linkage function grouped object 8, the newly formed cluster
made up of objects 6 and 7, with object 2 from the original data set. The following figure
graphically illustrates the way linkage groups the objects into a hierarchy of clusters.

14 Cluster Analysis

14-8

Dendrograms

The hierarchical, binary cluster tree created by the linkage function is most easily
understood when viewed graphically. The Statistics and Machine Learning Toolbox
function dendrogram plots the tree as follows.

dendrogram(Z)

 Hierarchical Clustering

14-9

In the figure, the numbers along the horizontal axis represent the indices of the objects
in the original data set. The links between objects are represented as upside-down
U-shaped lines. The height of the U indicates the distance between the objects. For
example, the link representing the cluster containing objects 1 and 3 has a height of 1.
The link representing the cluster that groups object 2 together with objects 1, 3, 4, and
5, (which are already clustered as object 8) has a height of 2.5. The height represents
the distance linkage computes between objects 2 and 8. For more information about
creating a dendrogram diagram, see the dendrogram reference page.

Verify the Cluster Tree

After linking the objects in a data set into a hierarchical cluster tree, you might want
to verify that the distances (that is, heights) in the tree reflect the original distances
accurately. In addition, you might want to investigate natural divisions that exist among

14 Cluster Analysis

14-10

links between objects. Statistics and Machine Learning Toolbox functions are available
for both of these tasks, as described in the following sections.

• “Verify Dissimilarity” on page 14-10
• “Verify Consistency” on page 14-11

Verify Dissimilarity

In a hierarchical cluster tree, any two objects in the original data set are eventually
linked together at some level. The height of the link represents the distance between
the two clusters that contain those two objects. This height is known as the cophenetic
distance between the two objects. One way to measure how well the cluster tree
generated by the linkage function reflects your data is to compare the cophenetic
distances with the original distance data generated by the pdist function. If the
clustering is valid, the linking of objects in the cluster tree should have a strong
correlation with the distances between objects in the distance vector. The cophenet
function compares these two sets of values and computes their correlation, returning a
value called the cophenetic correlation coefficient. The closer the value of the cophenetic
correlation coefficient is to 1, the more accurately the clustering solution reflects your
data.

You can use the cophenetic correlation coefficient to compare the results of clustering
the same data set using different distance calculation methods or clustering algorithms.
For example, you can use the cophenet function to evaluate the clusters created for the
sample data set.

c = cophenet(Z,Y)

c =

 0.8615

Z is the matrix output by the linkage function and Y is the distance vector output by the
pdist function.

Execute pdist again on the same data set, this time specifying the city block metric.
After running the linkage function on this new pdist output using the average linkage
method, call cophenet to evaluate the clustering solution.

Y = pdist(X,'cityblock');

 Hierarchical Clustering

14-11

Z = linkage(Y,'average');

c = cophenet(Z,Y)

c =

 0.9047

The cophenetic correlation coefficient shows that using a different distance and linkage
method creates a tree that represents the original distances slightly better.

Verify Consistency

One way to determine the natural cluster divisions in a data set is to compare the height
of each link in a cluster tree with the heights of neighboring links below it in the tree.

A link that is approximately the same height as the links below it indicates that there
are no distinct divisions between the objects joined at this level of the hierarchy. These
links are said to exhibit a high level of consistency, because the distance between the
objects being joined is approximately the same as the distances between the objects they
contain.

On the other hand, a link whose height differs noticeably from the height of the links
below it indicates that the objects joined at this level in the cluster tree are much farther
apart from each other than their components were when they were joined. This link is
said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural division
in a data set. The cluster function uses a quantitative measure of inconsistency to
determine where to partition your data set into clusters.

The following dendrogram illustrates inconsistent links. Note how the objects in the
dendrogram fall into two groups that are connected by links at a much higher level in
the tree. These links are inconsistent when compared with the links below them in the
hierarchy.

14 Cluster Analysis

14-12

These links show consistency.

These links show inconsistency when compared
to the links below them.

The relative consistency of each link in a hierarchical cluster tree can be quantified and
expressed as the inconsistency coefficient. This value compares the height of a link in
a cluster hierarchy with the average height of links below it. Links that join distinct
clusters have a high inconsistency coefficient; links that join indistinct clusters have a
low inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster tree, use
the inconsistent function. By default, the inconsistent function compares each

 Hierarchical Clustering

14-13

link in the cluster hierarchy with adjacent links that are less than two levels below it
in the cluster hierarchy. This is called the depth of the comparison. You can also specify
other depths. The objects at the bottom of the cluster tree, called leaf nodes, that have no
further objects below them, have an inconsistency coefficient of zero. Clusters that join
two leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the inconsistency
values for the links created by the linkage function in “Linkages” on page 14-6.

First, recompute the distance and linkage values using the default settings.

Y = pdist(X);

Z = linkage(Y);

Next, use inconsistent to calculate the inconsistency values.

I = inconsistent(Z)

I =

 1.0000 0 1.0000 0

 1.0000 0 1.0000 0

 1.3539 0.6129 3.0000 1.1547

 2.2808 0.3100 2.0000 0.7071

The inconsistent function returns data about the links in an (m-1)-by-4 matrix, whose
columns are described in the following table.

Column Description

1 Mean of the heights of all the links included in the calculation
2 Standard deviation of all the links included in the calculation
3 Number of links included in the calculation
4 Inconsistency coefficient

In the sample output, the first row represents the link between objects 4 and 5. This
cluster is assigned the index 6 by the linkage function. Because both 4 and 5 are leaf
nodes, the inconsistency coefficient for the cluster is zero. The second row represents the
link between objects 1 and 3, both of which are also leaf nodes. This cluster is assigned
the index 7 by the linkage function.

14 Cluster Analysis

14-14

The third row evaluates the link that connects these two clusters, objects 6 and 7. (This
new cluster is assigned index 8 in the linkage output). Column 3 indicates that three
links are considered in the calculation: the link itself and the two links directly below
it in the hierarchy. Column 1 represents the mean of the heights of these links. The
inconsistent function uses the height information output by the linkage function to
calculate the mean. Column 2 represents the standard deviation between the links. The
last column contains the inconsistency value for these links, 1.1547. It is the difference
between the current link height and the mean, normalized by the standard deviation.

(2.0616 - 1.3539) / .6129

ans =

 1.1547

The following figure illustrates the links and heights included in this calculation.

 Hierarchical Clustering

14-15

Heights

Links

Note In the preceding figure, the lower limit on the y-axis is set to 0 to show the heights
of the links. To set the lower limit to 0, select Axes Properties from the Edit menu,
click the Y Axis tab, and enter 0 in the field immediately to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2. Column
3 indicates that two links are included in this calculation: the link itself and the link
directly below it in the hierarchy. The inconsistency coefficient for this link is 0.7071.

The following figure illustrates the links and heights included in this calculation.

14 Cluster Analysis

14-16

Links

Heights

Create Clusters

After you create the hierarchical tree of binary clusters, you can prune the tree to
partition your data into clusters using the cluster function. The cluster function lets
you create clusters in two ways, as discussed in the following sections:

• “Find Natural Divisions in Data” on page 14-17
• “Specify Arbitrary Clusters” on page 14-18

 Hierarchical Clustering

14-17

Find Natural Divisions in Data

The hierarchical cluster tree may naturally divide the data into distinct, well-separated
clusters. This can be particularly evident in a dendrogram diagram created from data
where groups of objects are densely packed in certain areas and not in others. The
inconsistency coefficient of the links in the cluster tree can identify these divisions where
the similarities between objects change abruptly. (See “Verify the Cluster Tree” on page
14-9 for more information about the inconsistency coefficient.) You can use this
value to determine where the cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into clusters,
specifying an inconsistency coefficient threshold of 1.2 as the value of the cutoff
argument, the cluster function groups all the objects in the sample data set into one
cluster. In this case, none of the links in the cluster hierarchy had an inconsistency
coefficient greater than 1.2.

T = cluster(Z,'cutoff',1.2)

T =

 1

 1

 1

 1

 1

The cluster function outputs a vector, T, that is the same size as the original data
set. Each element in this vector contains the number of the cluster into which the
corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster function divides
the sample data set into three separate clusters.

T = cluster(Z,'cutoff',0.8)

T =

 3

 2

 3

14 Cluster Analysis

14-18

 1

 1

This output indicates that objects 1 and 3 are in one cluster, objects 4 and 5 are in
another cluster, and object 2 is in its own cluster.

When clusters are formed in this way, the cutoff value is applied to the inconsistency
coefficient. These clusters may, but do not necessarily, correspond to a horizontal slice
across the dendrogram at a certain height. If you want clusters corresponding to a
horizontal slice of the dendrogram, you can either use the criterion option to specify
that the cutoff should be based on distance rather than inconsistency, or you can specify
the number of clusters directly as described in the following section.

Specify Arbitrary Clusters

Instead of letting the cluster function create clusters determined by the natural
divisions in the data set, you can specify the number of clusters you want created.

For example, you can specify that you want the cluster function to partition the
sample data set into two clusters. In this case, the cluster function creates one cluster
containing objects 1, 3, 4, and 5 and another cluster containing object 2.

T = cluster(Z,'maxclust',2)

T =

 2

 1

 2

 2

 2

To help you visualize how the cluster function determines these clusters, the following
figure shows the dendrogram of the hierarchical cluster tree. The horizontal dashed line
intersects two lines of the dendrogram, corresponding to setting 'maxclust' to 2. These
two lines partition the objects into two clusters: the objects below the left-hand line,
namely 1, 3, 4, and 5, belong to one cluster, while the object below the right-hand line,
namely 2, belongs to the other cluster.

 Hierarchical Clustering

14-19

maxclust=2

On the other hand, if you set 'maxclust' to 3, the cluster function groups objects 4
and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2 in a third cluster.
The following command illustrates this.

T = cluster(Z,'maxclust',3)

T =

 2

 3

 2

 1

14 Cluster Analysis

14-20

 1

This time, the cluster function cuts off the hierarchy at a lower point, corresponding to
the horizontal line that intersects three lines of the dendrogram in the following figure.

maxclust=3

 k-Means Clustering

14-21

k-Means Clustering

In this section...

“Introduction to k-Means Clustering” on page 14-21
“Create Clusters and Determine Separation” on page 14-22
“Determine the Correct Number of Clusters” on page 14-24
“Avoid Local Minima” on page 14-27

Introduction to k-Means Clustering

k-means clustering is a partitioning method. The function kmeans partitions data into k
mutually exclusive clusters, and returns the index of the cluster to which it has assigned
each observation. Unlike hierarchical clustering, k-means clustering operates on actual
observations (rather than the larger set of dissimilarity measures), and creates a single
level of clusters. The distinctions mean that k-means clustering is often more suitable
than hierarchical clustering for large amounts of data.

kmeans treats each observation in your data as an object having a location in space.
It finds a partition in which objects within each cluster are as close to each other as
possible, and as far from objects in other clusters as possible. You can choose from five
different distance measures, depending on the kind of data you are clustering.

Each cluster in the partition is defined by its member objects and by its centroid, or
center. The centroid for each cluster is the point to which the sum of distances from
all objects in that cluster is minimized. kmeans computes cluster centroids differently
for each distance measure, to minimize the sum with respect to the measure that you
specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from each object
to its cluster centroid, over all clusters. This algorithm moves objects between clusters
until the sum cannot be decreased further. The result is a set of clusters that are as
compact and well-separated as possible. You can control the details of the minimization
using several optional input parameters to kmeans, including ones for the initial values
of the cluster centroids, and for the maximum number of iterations. By default, kmeans
uses the k-means++ algorithm for cluster center initialization and the squared Euclidean
metric to determine distances.

14 Cluster Analysis

14-22

Create Clusters and Determine Separation

The following example explores possible clustering in four-dimensional data by analyzing
the results of partitioning the points into three, four, and five clusters.

Note Because each part of this example generates random numbers sequentially, i.e.,
without setting a new state, you must perform all steps in sequence to duplicate the
results shown. If you perform the steps out of sequence, the answers will be essentially
the same, but the intermediate results, number of iterations, or ordering of the silhouette
plots may differ.

First, load some data.

rng default; % For reproducibility

load kmeansdata;

size(X)

ans =

 560 4

Even though these data are four-dimensional, and cannot be easily visualized, kmeans
enables you to investigate whether a group structure exists in them. Call kmeans
with k, the desired number of clusters, equal to 3. For this example, specify the city
block distance measure, and use the default k-means++ algorithm for cluster center
initialization.

idx3 = kmeans(X,3,'Distance','cityblock');

To get an idea of how well-separated the resulting clusters are, you can make a silhouette
plot using the cluster indices output from kmeans. The silhouette plot displays a measure
of how close each point in one cluster is to points in the neighboring clusters. This
measure ranges from +1, indicating points that are very distant from neighboring
clusters, through 0, indicating points that are not distinctly in one cluster or another,
to -1, indicating points that are probably assigned to the wrong cluster. silhouette
returns these values in its first output.

figure;

 k-Means Clustering

14-23

[silh3,h] = silhouette(X,idx3,'cityblock');

h = gca;

h.Children.EdgeColor = [.8 .8 1];

xlabel 'Silhouette Value';

ylabel 'Cluster';

From the silhouette plot, you can see that most points in the second cluster have a large
silhouette value, greater than 0.6, indicating that the cluster is somewhat separated
from neighboring clusters. However, the third cluster contains many points with low
silhouette values, and the first contains a few points with negative values, indicating
that those two clusters are not well separated.

14 Cluster Analysis

14-24

Determine the Correct Number of Clusters

Increase the number of clusters to see if kmeans can find a better grouping of the data.
This time, use the 'Display' name-value pair argument to print information about
each iteration.

idx4 = kmeans(X,4, 'Distance','cityblock','Display','iter');

 iter phase num sum

 1 1 560 1792.72

 2 1 6 1771.1

 3 2 0 1771.1

Best total sum of distances = 1771.1

Notice that the total sum of distances decreases at each iteration as kmeans reassigns
points between clusters and recomputes cluster centroids. In this case, the second phase
of the algorithm did not make any reassignments, indicating that the first phase reached
a minimum after five iterations. In some problems, the first phase might not reach a
minimum, but the second phase always will.

A silhouette plot for this solution indicates that these four clusters are better separated
than the three in the previous solution.

figure;

[silh4,h] = silhouette(X,idx4,'cityblock');

h = gca;

h.Children.EdgeColor = [.8 .8 1];

xlabel 'Silhouette Value';

ylabel 'Cluster';

 k-Means Clustering

14-25

A more quantitative way to compare the two solutions is to look at the average silhouette
values for the two cases.

cluster3 = mean(silh3)

cluster4 = mean(silh4)

cluster3 =

 0.5352

cluster4 =

14 Cluster Analysis

14-26

 0.6400

Finally, try clustering the data using five clusters.

idx5 = kmeans(X,5,'Distance','cityblock','Replicates',5);

figure;

[silh5,h] = silhouette(X,idx5,'city');

h = gca;

h.Children.EdgeColor = [.8 .8 1];

xlabel 'Silhouette Value';

ylabel 'Cluster';

mean(silh5)

ans =

 0.5266

 k-Means Clustering

14-27

This silhouette plot indicates that this is probably not the right number of clusters,
since two of the clusters contain points with mostly low silhouette values. Without some
knowledge of how many clusters are really in the data, it is a good idea to experiment
with a range of values for k.

Avoid Local Minima

Like many other types of numerical minimizations, the solution that kmeans reaches
often depends on the starting points. It is possible for kmeans to reach a local minimum,
where reassigning any one point to a new cluster would increase the total sum of point-
to-centroid distances, but where a better solution does exist. However, you can use the
'Replicates' name-value pair argument to overcome that problem.

14 Cluster Analysis

14-28

For four clusters, specify five replicates, and use the 'Display' name-value pair
argument to print out the final sum of distances for each of the solutions.

[idx4,cent4,sumdist] = kmeans(X,4,'Distance','cityblock',...

 'Display','final','Replicates',5);

Replicate 1, 5 iterations, total sum of distances = 1771.1.

Replicate 2, 3 iterations, total sum of distances = 1771.1.

Replicate 3, 7 iterations, total sum of distances = 2303.36.

Replicate 4, 6 iterations, total sum of distances = 2303.36.

Replicate 5, 7 iterations, total sum of distances = 1771.1.

Best total sum of distances = 1771.1

In this example, kmeans found the same minimum in all five replications. However, even
for relatively simple problems, nonglobal minima do exist. Each of these five replicates
began from a different randomly selected set of initial centroids, so sometimes kmeans
finds more than one local minimum. However, the final solution that kmeans returns is
the one with the lowest total sum of distances, over all replicates.

sum(sumdist)

ans =

 1.7711e+03

 Clustering Using Gaussian Mixture Models

14-29

Clustering Using Gaussian Mixture Models

In this section...

“Clustering Using Gaussian Mixture Distributions” on page 14-29
“Soft Clustering Using Gaussian Mixture Distributions” on page 14-33
“Assign New Data to Clusters” on page 14-36

Gaussian mixture models are often used for data clustering. Clusters are assigned
by selecting the component that maximizes the posterior probability. Like k-means
clustering, Gaussian mixture modeling uses an iterative algorithm that converges to
a local optimum. Gaussian mixture modeling may be more appropriate than k-means
clustering when clusters have different sizes and correlation within them. Clustering
using Gaussian mixture models is sometimes considered a soft clustering method. The
posterior probabilities for each point indicate that each data point has some probability of
belonging to each cluster.

Clustering Using Gaussian Mixture Distributions

Gaussian mixture distributions can be used for clustering data, by realizing that the
multivariate normal components of the fitted model can represent clusters.

1 To demonstrate the process, first generate some simulated data from a mixture of
two bivariate Gaussian distributions using the mvnrnd function.

rng default; % For reproducibility

mu1 = [1 2];

sigma1 = [3 .2; .2 2];

mu2 = [-1 -2];

sigma2 = [2 0; 0 1];

X = [mvnrnd(mu1,sigma1,200);mvnrnd(mu2,sigma2,100)];

scatter(X(:,1),X(:,2),10,'ko')

14 Cluster Analysis

14-30

2 Fit a two-component Gaussian mixture distribution. Here, you know the correct
number of components to use. In practice, with real data, this decision would require
comparing models with different numbers of components.

options = statset('Display','final');

gm = fitgmdist(X,2,'Options',options);

33 iterations, log-likelihood = -1210.59

3 Plot the estimated probability density contours for the two-component mixture
distribution. The two bivariate normal components overlap, but their peaks are
distinct. This suggests that the data could reasonably be divided into two clusters.

hold on

 Clustering Using Gaussian Mixture Models

14-31

ezcontour(@(x,y)pdf(gm,[x y]),[-8 6],[-8 6]);

hold off

4 Partition the data into clusters using the cluster method for the fitted mixture
distribution. The cluster method assigns each point to one of the two components
in the mixture distribution.

idx = cluster(gm,X);

cluster1 = (idx == 1);

cluster2 = (idx == 2);

scatter(X(cluster1,1),X(cluster1,2),10,'r+');

hold on

scatter(X(cluster2,1),X(cluster2,2),10,'bo');

14 Cluster Analysis

14-32

hold off

legend('Cluster 1','Cluster 2','Location','NW')

Each cluster corresponds to one of the bivariate normal components in the mixture
distribution. cluster assigns points to clusters based on the estimated posterior
probability that a point came from a component; each point is assigned to the cluster
corresponding to the highest posterior probability. The posterior method returns
those posterior probabilities. For example, plot the posterior probability of the
first component for each point.

P = posterior(gm,X);

scatter(X(cluster1,1),X(cluster1,2),10,P(cluster1,1),'+')

 Clustering Using Gaussian Mixture Models

14-33

hold on

scatter(X(cluster2,1),X(cluster2,2),10,P(cluster2,1),'o')

hold off

legend('Cluster 1','Cluster 2','Location','NW')

clrmap = jet(80); colormap(clrmap(9:72,:))

ylabel(colorbar,'Component 1 Posterior Probability')

Soft Clustering Using Gaussian Mixture Distributions

An alternative to the previous example is to use the posterior probabilities for "soft
clustering". Each point is assigned a membership score to each cluster. Membership
scores are simply the posterior probabilities, and describe how similar each point is to

14 Cluster Analysis

14-34

each cluster's archetype, i.e., the mean of the corresponding component. The points can
be ranked by their membership score in a given cluster.

[~,order] = sort(P(:,1));

plot(1:size(X,1),P(order,1),'r-',1:size(X,1),P(order,2),'b-');

legend({'Cluster 1 Score' 'Cluster 2 Score'},'location','NW');

ylabel('Cluster Membership Score');

xlabel('Point Ranking');

Although a clear separation of the data is hard to see in a scatter plot of the data,
plotting the membership scores indicates that the fitted distribution does a good job of
separating the data into groups. Very few points have scores close to 0.5.

 Clustering Using Gaussian Mixture Models

14-35

Soft clustering using a Gaussian mixture distribution is similar to fuzzy k-means
clustering, which also assigns each point to each cluster with a membership score. The
fuzzy k-means algorithm assumes that clusters are roughly spherical in shape, and
all of roughly equal size. This is comparable to a Gaussian mixture distribution with a
single covariance matrix that is shared across all components, and is a multiple of the
identity matrix. In contrast, gmdistribution allows you to specify different covariance
options. The default is to estimate a separate, unconstrained covariance matrix for each
component. A more restricted option, closer to k-means, would be to estimate a shared,
diagonal covariance matrix.

gm2 = fitgmdist(X,2,'CovType','Diagonal',...

 'SharedCov',true);

This covariance option is similar to fuzzy k-means clustering, but provides more
flexibility by allowing unequal variances for different variables.

You can compute the soft cluster membership scores without computing hard cluster
assignments, using posterior, or as part of hard clustering, as the third output from
cluster.

P2 = posterior(gm2,X); % equivalently [idx,~,P2] = cluster(gm2,X)

[~,order] = sort(P2(:,1));

plot(1:size(X,1),P2(order,1),'r-',1:size(X,1),P2(order,2),'b-');

legend({'Cluster 1 Score' 'Cluster 2 Score'},'location','NW');

ylabel('Cluster Membership Score');

xlabel('Point Ranking');

14 Cluster Analysis

14-36

Assign New Data to Clusters

In the previous example, fitting the mixture distribution to data using fitgmdist, and
clustering those data using cluster, are separate steps. However, the same data are
used in both steps. You can also use the cluster method to assign new data points to
the clusters (mixture components) found in the original data.

1 Given a data set X, first fit a Gaussian mixture distribution. The previous code has
already done that.

gm

 Clustering Using Gaussian Mixture Models

14-37

gm =

Gaussian mixture distribution with 2 components in 2 dimensions

Component 1:

Mixing proportion: 0.629379

Mean: 1.0758 2.0426

Component 2:

Mixing proportion: 0.370621

Mean: -0.8292 -1.8482

2 You can then use cluster to assign each point in a new data set, Y, to one of the
clusters defined for the original data.

Y = [mvnrnd(mu1,sigma1,50);mvnrnd(mu2,sigma2,25)];

idx = cluster(gm,Y);

cluster1 = (idx == 1);

cluster2 = (idx == 2);

scatter(Y(cluster1,1),Y(cluster1,2),10,'r+');

hold on

scatter(Y(cluster2,1),Y(cluster2,2),10,'bo');

hold off

legend('Class 1','Class 2','Location','NW')

14 Cluster Analysis

14-38

As with the previous example, the posterior probabilities for each point can be
treated as membership scores rather than determining "hard" cluster assignments.

For cluster to provide meaningful results with new data, Y should come from the same
population as X, the original data used to create the mixture distribution. In particular,
the estimated mixing probabilities for the Gaussian mixture distribution fitted to X are
used when computing the posterior probabilities for Y.

15

Parametric Classification

• “Parametric Classification” on page 15-2
• “Discriminant Analysis” on page 15-3
• “Naive Bayes Classification” on page 15-31
• “Performance Curves” on page 15-35

15 Parametric Classification

15-2

Parametric Classification

Models of data with a categorical response are called classifiers. A classifier is built from
training data, for which classifications are known. The classifier assigns new test data to
one of the categorical levels of the response.

Parametric methods, like “Discriminant Analysis” on page 15-3, fit a parametric
model to the training data and interpolate to classify test data.

Nonparametric methods, like classification and regression trees, use other means to
determine classifications.

 Discriminant Analysis

15-3

Discriminant Analysis

In this section...

“What Is Discriminant Analysis?” on page 15-3
“Create Discriminant Analysis Classifiers” on page 15-3
“Creating a Classifier Using fitcdiscr” on page 15-4
“How the predict Method Classifies” on page 15-6
“Create and Visualize Discriminant Analysis Classifier” on page 15-9
“Improve a Discriminant Analysis Classifier” on page 15-14
“Regularize a Discriminant Analysis Classifier” on page 15-21
“Examine the Gaussian Mixture Assumption” on page 15-24
“Bibliography” on page 15-30

What Is Discriminant Analysis?

Discriminant analysis is a classification method. It assumes that different classes
generate data based on different Gaussian distributions.

• To train (create) a classifier, the fitting function estimates the parameters of a
Gaussian distribution for each class (see “Creating a Classifier Using fitcdiscr” on
page 15-4).

• To predict the classes of new data, the trained classifier finds the class with the
smallest misclassification cost (see “How the predict Method Classifies” on page
15-6).

Linear discriminant analysis is also known as the Fisher discriminant, named for its
inventor, Sir R. A. Fisher [2].

Create Discriminant Analysis Classifiers

To create the basic types of discriminant analysis classifiers for the Fisher iris data:

1 Load the data:

load fisheriris;

15 Parametric Classification

15-4

2 Create a default (linear) discriminant analysis classifier:

linclass = fitcdiscr(meas,species);

To visualize the classification boundaries of a 2-D linear classification of the data,
see “Create and Visualize Discriminant Analysis Classifier” on page 15-9.

3 Classify an iris with average measurements:

meanmeas = mean(meas);

meanclass = predict(linclass,meanmeas)

meanclass =

 'versicolor'

4 Create a quadratic classifier:

quadclass = fitcdiscr(meas,species,...

 'discrimType','quadratic');

To visualize the classification boundaries of a 2-D quadratic classification of the
data, see “Create and Visualize Discriminant Analysis Classifier” on page 15-9.

5 Classify an iris with average measurements using the quadratic classifier:

meanclass2 = predict(quadclass,meanmeas)

meanclass2 =

 'versicolor'

Creating a Classifier Using fitcdiscr

The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. In other
words, the model assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for
each class; only the means vary.

• For quadratic discriminant analysis, both means and covariances of each class
vary.

Under this modeling assumption, fitcdiscr infers the mean and covariance
parameters of each class.

 Discriminant Analysis

15-5

• For linear discriminant analysis, it computes the sample mean of each class. Then it
computes the sample covariance by first subtracting the sample mean of each class
from the observations of that class, and taking the empirical covariance matrix of the
result.

• For quadratic discriminant analysis, it computes the sample mean of each class. Then
it computes the sample covariances by first subtracting the sample mean of each class
from the observations of that class, and taking the empirical covariance matrix of
each class.

The fit method does not use prior probabilities or costs for fitting.

Weighted Observations

The fit method constructs weighted classifiers using the following scheme. Suppose M
is an N-by-K class membership matrix:
Mnk = 1 if observation n is from class k
Mnk = 0 otherwise.

The estimate of the class mean for unweighted data is

ˆ .mk
n

N

nk n

n

N

nk

M x

M

= =

=

Â

Â
1

1

For weighted data with positive weights wn, the natural generalization is

ˆ .mk
n

N

nk n n

n

N

nk n

M w x

M w

= =

=

Â

Â
1

1

The unbiased estimate of the pooled-in covariance matrix for unweighted data is

ˆ
ˆ ˆ

.S =
-() -()

-
= =Â Ân

N

k

K

nk n k n k

T
M x x

N K

1 1
m m

15 Parametric Classification

15-6

For quadratic discriminant analysis, the fit method uses K = 1.

For weighted data, assuming the weights sum to 1, the unbiased estimate of the pooled-
in covariance matrix is

ˆ
ˆ ˆ

,S =
-() -()

-

= =

=

()

Â Â

Â

n

N

k

K

nk n n k n k

T

k

K k

k

M w x x

W

W

1 1

1

2

1

m m

where

•
W M wk nk nn

N
=

=Â 1
 is the sum of the weights for class k.

•
W M w

k nk nn

N2 2

1

()
=

= Â is the sum of squared weights per class.

How the predict Method Classifies

There are three elements in the predict classification algorithm:

• “Posterior Probability” on page 15-7
• “Prior Probability” on page 15-7
• “Cost” on page 15-8

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

• ŷ is the predicted classification.

• K is the number of classes.

 Discriminant Analysis

15-7

• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

The space of X values divides into regions where a classification Y is a particular value.
The regions are separated by straight lines for linear discriminant analysis, and by
conic sections (ellipses, hyperbolas, or parabolas) for quadratic discriminant analysis.
For a visualization of these regions, see “Create and Visualize Discriminant Analysis
Classifier” on page 15-9.

Posterior Probability

The posterior probability that a point x belongs to class k is the product of the prior
probability and the multivariate normal density. The density function of the multivariate
normal with mean μk and covariance Σk at a point x is

P x k x x

k

kk

T

k| exp ,
/

() = - -() -()Ê
Ë
Á

ˆ
¯
˜

()
-1

2

1

21 2
1

p
m m

S
S

where Sk is the determinant of Σk, and Sk
-1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an
observation x is of class k is

ˆ |
|

,P k x
P x k P k

P x
() =

() ()

()

where P(x) is a normalization constant, namely, the sum over k of P(x|k)P(k).

Prior Probability

The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is 1 over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of

class k divided by the total number of training samples.

15 Parametric Classification

15-8

• A numeric vector — The prior probability of class k is the jth element of the Prior
vector. See fitcdiscr.

After creating a classifier obj, you can set the prior using dot notation:

obj.Prior = v;

where v is a vector of positive elements representing the frequency with which each
element occurs. You do not need to retrain the classifier when you set a new prior.

Cost

There are two costs associated with discriminant analysis classification: the true
misclassification cost per class, and the expected misclassification cost per observation.

True Misclassification Cost per Class

Cost(i,j) is the cost of classifying an observation into class j if its true class is i. By
default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for
correct classification, and 1 for incorrect classification.

You can set any cost matrix you like when creating a classifier. Pass the cost matrix in
the Cost name-value pair in fitcdiscr.

After you create a classifier obj, you can set a custom cost using dot notation:

obj.Cost = B;

B is a square matrix of size K-by-K when there are K classes. You do not need to retrain
the classifier when you set a new cost.

Expected Misclassification Cost per Observation

Suppose you have Nobs observations that you want to classify with a trained
discriminant analysis classifier obj. Suppose you have K classes. You place the
observations into a matrix Xnew with one observation per row. The command

[label,score,cost] = predict(obj,Xnew)

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost
matrix contains the expected (average) cost of classifying the observation into each of the
K classes. cost(n,k) is

 Discriminant Analysis

15-9

ˆ | () | ,P i Xnew n C k i

i

K

() ()
=
Â

1

where

• K is the number of classes.
• ˆ | ()P i Xnew n() is the posterior probability of class i for observation Xnew(n).

• C k i|() is the cost of classifying an observation as k when its true class is i.

Create and Visualize Discriminant Analysis Classifier

This example shows how to perform linear and quadratic classification of Fisher iris
data.

Load the sample data.

load fisheriris

The column vector, species , consists of iris flowers of three different species, setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers, the length and width of sepals and petals in centimeters, respectively.

Use petal length (third column in meas) and petal width (fourth column in meas)
measurements. Save these as variables PL and PW, respectively.

PL = meas(:,3);

PW = meas(:,4);

Plot the data, showing the classification, that is, create a scatter plot of the
measurements, grouped by species.

h1 = gscatter(PL,PW,species,'krb','ov^',[],'off');

h1(1).LineWidth = 2;

h1(2).LineWidth = 2;

h1(3).LineWidth = 2;

legend('Setosa','Versicolor','Virginica','Location','best')

hold on

15 Parametric Classification

15-10

Create a linear classifier.

X = [PL,PW];

cls = fitcdiscr(X,species);

Plot the classification boundaries.

K = cls.Coeffs(2,3).Const; % First retrieve the coefficients for the linear

L = cls.Coeffs(2,3).Linear;% boundary between the second and third classes

 % (versicolor and virginica).

% Plot the curve K + [x,y]*L = 0.

f = @(x1,x2) K + L(1)*x1 + L(2)*x2;

h2 = ezplot(f,[.9 7.1 0 2.5]);

h2.Color = 'r';

 Discriminant Analysis

15-11

h2.LineWidth = 2;

% Now, retrieve the coefficients for the linear boundary between the first

% and second classes (setosa and versicolor).

K = cls.Coeffs(1,2).Const;

L = cls.Coeffs(1,2).Linear;

% Plot the curve K + [x1,x2]*L = 0:

f = @(x1,x2) K + L(1)*x1 + L(2)*x2;

h3 = ezplot(f,[.9 7.1 0 2.5]);

h3.Color = 'k';

h3.LineWidth = 2;

axis([.9 7.1 0 2.5])

xlabel('Petal Length')

ylabel('Petal Width')

title('{\bf Linear Classification with Fisher Training Data}')

15 Parametric Classification

15-12

Create a quadratic discriminant classifier.

cqs = fitcdiscr(X,species,...

 'DiscrimType','quadratic');

Plot the classification boundaries similarly.

delete(h2); delete(h3) % First, remove the linear boundaries from the plot.

% Now, retrieve the coefficients for the quadratic boundary between the

% second and third classes (versicolor and virginica).

K = cqs.Coeffs(2,3).Const;

L = cqs.Coeffs(2,3).Linear;

Q = cqs.Coeffs(2,3).Quadratic;

 Discriminant Analysis

15-13

% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1,x2]' = 0.

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...

 (Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;

h2 = ezplot(f,[.9 7.1 0 2.5]);

h2.Color = 'r';

h2.LineWidth = 2;

% Now, retrieve the coefficients for the quadratic boundary between the

% first and second classes (setosa and versicolor).

K = cqs.Coeffs(1,2).Const;

L = cqs.Coeffs(1,2).Linear;

Q = cqs.Coeffs(1,2).Quadratic;

% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1,x2]'=0:

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...

 (Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;

h3 = ezplot(f,[.9 7.1 0 1.02]); % Plot the relevant portion of the curve.

h3.Color = 'k';

h3.LineWidth = 2;

axis([.9 7.1 0 2.5])

xlabel('Petal Length')

ylabel('Petal Width')

title('{\bf Quadratic Classification with Fisher Training Data}')

hold off

15 Parametric Classification

15-14

Improve a Discriminant Analysis Classifier

• “Deal with Singular Data” on page 15-15
• “Choose a Discriminant Type” on page 15-15
• “Examine the Resubstitution Error and Confusion Matrix” on page 15-16
• “Cross Validation” on page 15-18
• “Change Costs and Priors” on page 15-19

 Discriminant Analysis

15-15

Deal with Singular Data

Discriminant analysis needs data sufficient to fit Gaussian models with invertible
covariance matrices. If your data is not sufficient to fit such a model uniquely,
fitcdiscr fails. This section shows methods for handling failures.

Tip To obtain a discriminant analysis classifier without failure, set the DiscrimType
name-value pair to 'pseudoLinear' or 'pseudoQuadratic' in fitcdiscr.

“Pseudo” discriminants never fail, because they use the pseudoinverse of the covariance
matrix Σk (see pinv).

Example: Singular Covariance Matrix

When the covariance matrix of the fitted classifier is singular, fitcdiscr can fail:
load popcorn

X = popcorn(:,[1 2]);

X(:,3) = 0; % a zero-variance column

Y = popcorn(:,3);

ppcrn = fitcdicr(X,Y);

Error using ClassificationDiscriminant (line 635)

Predictor x3 has zero variance. Either exclude this predictor or set 'discrimType' to

'pseudoLinear' or 'diagLinear'.

Error in classreg.learning.FitTemplate/fit (line 243)

 obj = this.MakeFitObject(X,Y,W,this.ModelParameters,fitArgs{:});

Error in fitcdiscr (line 296)

 this = fit(temp,X,Y);

To proceed with linear discriminant analysis, use a pseudoLinear or diagLinear
discriminant type:

ppcrn = fitcdiscr(X,Y,...

 'discrimType','pseudoLinear');

meanpredict = predict(ppcrn,mean(X))

meanpredict =

 3.5000

Choose a Discriminant Type

There are six types of discriminant analysis classifiers: linear and quadratic, with
diagonal and pseudo variants of each type.

15 Parametric Classification

15-16

Tip To see if your covariance matrix is singular, set discrimType to 'linear' or
'quadratic'. If the matrix is singular, the fitcdiscr method fails for 'quadratic',
and the Gamma property is nonzero for 'linear'.

To obtain a quadratic classifier even when your covariance matrix is singular, set
discrimType to 'pseudoQuadratic' or 'diagQuadratic'.

obj = fitcdiscr(X,Y,...

 'discrimType','pseudoQuadratic') % or 'diagQuadratic'

Choose a classifier type by setting the discrimType name-value pair to one of:

• 'linear' (default) — Estimate one covariance matrix for all classes.
• 'quadratic' — Estimate one covariance matrix for each class.
• 'diagLinear' — Use the diagonal of the 'linear' covariance matrix, and use its

pseudoinverse if necessary.
• 'diagQuadratic' — Use the diagonals of the 'quadratic' covariance matrices,

and use their pseudoinverses if necessary.
• 'pseudoLinear' — Use the pseudoinverse of the 'linear' covariance matrix if

necessary.
• 'pseudoQuadratic' — Use the pseudoinverses of the 'quadratic' covariance

matrices if necessary.

fitcdiscr can fail for the 'linear' and 'quadratic' classifiers. When it fails, it
returns an explanation, as shown in “Deal with Singular Data” on page 15-15.

fitcdiscr always succeeds with the diagonal and pseudo variants. For information
about pseudoinverses, see pinv.

You can set the discriminant type using dot notation after constructing a classifier:

obj.DiscrimType = 'discrimType'

You can change between linear types or between quadratic types, but cannot change
between a linear and a quadratic type.

Examine the Resubstitution Error and Confusion Matrix

The resubstitution error is the difference between the response training data and the
predictions the classifier makes of the response based on the input training data. If the

 Discriminant Analysis

15-17

resubstitution error is high, you cannot expect the predictions of the classifier to be good.
However, having low resubstitution error does not guarantee good predictions for new
data. Resubstitution error is often an overly optimistic estimate of the predictive error on
new data.

The confusion matrix shows how many errors, and which types, arise in resubstitution.
When there are K classes, the confusion matrix R is a K-by-K matrix with
R(i,j) = the number of observations of class i that the classifier predicts to be of class
j.

Example: Resubstitution Error of a Discriminant Analysis Classifier

Examine the resubstitution error of the default discriminant analysis classifier for the
Fisher iris data:

load fisheriris

obj = fitcdiscr(meas,species);

resuberror = resubLoss(obj)

resuberror =

 0.0200

The resubstitution error is very low, meaning obj classifies nearly all the Fisher iris
data correctly. The total number of misclassifications is:

resuberror * obj.NumObservations

ans =

 3.0000

To see the details of the three misclassifications, examine the confusion matrix:

R = confusionmat(obj.Y,resubPredict(obj))

R =

 50 0 0

 0 48 2

 0 1 49

obj.ClassNames

ans =

 'setosa'

 'versicolor'

15 Parametric Classification

15-18

 'virginica'

• R(1,:) = [50 0 0] means obj classifies all 50 setosa irises correctly.
• R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and

misclassifies two versicolor irises as virginica.
• R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and

misclassifies one virginica iris as versicolor.

Cross Validation

Typically, discriminant analysis classifiers are robust and do not exhibit overtraining
when the number of predictors is much less than the number of observations.
Nevertheless, it is good practice to cross validate your classifier to ensure its stability.

Cross Validating a Discriminant Analysis Classifier

This example shows how to perform five-fold cross validation of a quadratic discriminant
analysis classifier.

Load the sample data.

load fisheriris

Create a quadratic discriminant analysis classifier for the data.

quadisc = fitcdiscr(meas,species,'DiscrimType','quadratic');

Find the resubstitution error of the classifier.

qerror = resubLoss(quadisc)

qerror =

 0.0200

The classifier does an excellent job. Nevertheless, resubstitution error can be an
optimistic estimate of the error when classifying new data. So proceed to cross validation.

Create a cross-validation model.

cvmodel = crossval(quadisc,'kfold',5);

 Discriminant Analysis

15-19

Find the cross-validation loss for the model, meaning the error of the out-of-fold
observations.

cverror = kfoldLoss(cvmodel)

cverror =

 0.0200

The cross-validated loss is as low as the original resubstitution loss. Therefore, you can
have confidence that the classifier is reasonably accurate.

Change Costs and Priors

Sometimes you want to avoid certain misclassification errors more than others.
For example, it might be better to have oversensitive cancer detection instead of
undersensitive cancer detection. Oversensitive detection gives more false positives
(unnecessary testing or treatment). Undersensitive detection gives more false negatives
(preventable illnesses or deaths). The consequences of underdetection can be high.
Therefore, you might want to set costs to reflect the consequences.

Similarly, the training data Y can have a distribution of classes that does not represent
their true frequency. If you have a better estimate of the true frequency, you can include
this knowledge in the classification Prior property.
Example: Setting Custom Misclassification Costs

Consider the Fisher iris data. Suppose that the cost of classifying a versicolor iris as
virginica is 10 times as large as making any other classification error. Create a classifier
from the data, then incorporate this cost and then view the resulting classifier.

1 Load the Fisher iris data and create a default (linear) classifier as in “Example:
Resubstitution Error of a Discriminant Analysis Classifier” on page 15-17:

load fisheriris

obj = fitcdiscr(meas,species);

resuberror = resubLoss(obj)

resuberror =

 0.0200

R = confusionmat(obj.Y,resubPredict(obj))

15 Parametric Classification

15-20

R =

 50 0 0

 0 48 2

 0 1 49

obj.ClassNames

ans =

 'setosa'

 'versicolor'

 'virginica'

R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and
misclassifies two versicolor irises as virginica.

2 Change the cost matrix to make fewer mistakes in classifying versicolor irises as
virginica:

obj.Cost(2,3) = 10;

R2 = confusionmat(obj.Y,resubPredict(obj))

R2 =

 50 0 0

 0 50 0

 0 7 43

obj now classifies all versicolor irises correctly, at the expense of increasing the
number of misclassifications of virginica irises from 1 to 7.

Example: Setting Alternative Priors

Consider the Fisher iris data. There are 50 irises of each kind in the data. Suppose that,
in a particular region, you have historical data that shows virginica are five times as
prevalent as the other kinds. Create a classifier that incorporates this information.

1 Load the Fisher iris data and make a default (linear) classifier as in “Example:
Resubstitution Error of a Discriminant Analysis Classifier” on page 15-17:

load fisheriris

obj = fitcdiscr(meas,species);

resuberror = resubLoss(obj)

resuberror =

 0.0200

 Discriminant Analysis

15-21

R = confusionmat(obj.Y,resubPredict(obj))

R =

 50 0 0

 0 48 2

 0 1 49

obj.ClassNames

ans =

 'setosa'

 'versicolor'

 'virginica'

R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and
misclassifies one virginica iris as versicolor.

2 Change the prior to match your historical data, and examine the confusion matrix of
the new classifier:

obj.Prior = [1 1 5];

R2 = confusionmat(obj.Y,resubPredict(obj))

R2 =

 50 0 0

 0 46 4

 0 0 50

The new classifier classifies all virginica irises correctly, at the expense of increasing
the number of misclassifications of versicolor irises from 2 to 4.

Regularize a Discriminant Analysis Classifier

This example shows how to make a more robust and simpler model by trying to
remove predictors without hurting the predictive power of the model. This is especially
important when you have many predictors in your data. Linear discriminant analysis
uses the two regularization parameters, Gamma and Delta, to identify and remove
redundant predictors. The cvshrink method helps identify appropriate settings for
these parameters.

Load data and create a classifier.

Create a linear discriminant analysis classifier for the ovariancancer data. Set the
SaveMemory and FillCoeffs name-value pair arguments to keep the resulting model

15 Parametric Classification

15-22

reasonably small. For computational ease, this example uses a random subset of half of
the predictors to train the classifier.

load ovariancancer

rng(1); % For reproducibility

numPred = size(obs,2);

obs = obs(:,randsample(numPred,numPred/2));

Mdl = fitcdiscr(obs,grp,...

 'SaveMemory','on','FillCoeffs','off');

Cross validate the classifier.

Use 30 levels of Gamma and 30 levels of Delta to search for good parameters. This search
is time consuming. Set Verbose to 1 to view the progress.

[err,gamma,delta,numpred] = cvshrink(Mdl,...

 'NumGamma',29,'NumDelta',29,'Verbose',1);

Examine the quality of the regularized classifiers.

Plot the number of predictors against the error.

figure;

plot(err,numpred,'k.')

xlabel('Error rate');

ylabel('Number of predictors');

Examine the lower-left part of the plot more closely.

axis([0 .1 0 1000])

There is a clear tradeoff between lower number of predictors and lower error.

Choose an optimal tradeoff between model size and accuracy.

Multiple pairs of Gamma and Delta values produce about the same minimal error.
Display the indices of these pairs and their values.

minerr = min(min(err))

[p q] = find(err < minerr + 1e-4); % Subscripts of err producing minimal error

numel(p)

idx = sub2ind(size(delta),p,q); % Convert from subscripts to linear indices

[gamma(p) delta(idx)]

These points have as few as a quarter of the total predictors that have nonzero
coefficients in the model.

 Discriminant Analysis

15-23

numpred(idx)

To further lower the number of predictors, you must accept larger error rates. For
example, to choose the Gamma and Delta that give the lowest error rate with 250 or
fewer predictors.

low250 = min(min(err(numpred <= 250)));

lownum = min(min(numpred(err == low250)));

[low250 lownum]

You need 216 predictors to achieve an error rate of 0.0185, and this is the lowest error
rate among those that have 250 predictors or fewer.

Display the Gamma and Delta that achieve this error/number of predictors.

[r,s] = find((err == low250) & (numpred == lownum));

[gamma(r); delta(r,s)]

Set the regularization parameters.

To set the classifier with these values of Gamma and Delta, use dot notation.

Mdl.Gamma = gamma(r);

Mdl.Delta = delta(r,s);

Heat map plot

To compare the cvshrink calculation to that in Guo, Hastie, and Tibshirani [3], plot
heat maps of error and number of predictors against Gamma and the index of the Delta
parameter. (The Delta parameter range depends on the value of the Gamma parameter.
So to get a rectangular plot, use the Delta index, not the parameter itself.)

% Create the Delta index matrix

indx = repmat(1:size(delta,2),size(delta,1),1);

figure

subplot(1,2,1)

imagesc(err);

colorbar;

colormap('jet')

title 'Classification error';

xlabel 'Delta index';

ylabel 'Gamma index';

subplot(1,2,2)

15 Parametric Classification

15-24

imagesc(numpred);

colorbar;

title 'Number of predictors in the model';

xlabel 'Delta index' ;

ylabel 'Gamma index' ;

You see the best classification error when Delta is small, but fewest predictors when
Delta is large.

Examine the Gaussian Mixture Assumption

Discriminant analysis assumes that the data comes from a Gaussian mixture model
(see “Creating a Classifier Using fitcdiscr” on page 15-4). If the data appears to
come from a Gaussian mixture model, you can expect discriminant analysis to be a good
classifier. Furthermore, the default linear discriminant analysis assumes that all class
covariance matrices are equal. This section shows methods to check these assumptions:

• “Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis” on
page 15-24

• “Q-Q Plot” on page 15-26
• “Mardia Kurtosis Test of Multivariate Normality” on page 15-29

Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis

The Bartlett test (see Box [1]) checks equality of the covariance matrices of the various
classes. If the covariance matrices are equal, the test indicates that linear discriminant
analysis is appropriate. If not, consider using quadratic discriminant analysis, setting the
DiscrimType name-value pair to 'quadratic' in fitcdiscr.

The Bartlett test assumes normal (Gaussian) samples, where neither the means nor
covariance matrices are known. To determine whether the covariances are equal,
compute the following quantities:

• Sample covariance matrices per class σi, 1 ≤ i ≤ k, where k is the number of classes.
• Pooled-in covariance matrix σ.
• Test statistic V:

V n k ni i

i

k

= -() () - -() ()
=
Âlog logS S1

1

 Discriminant Analysis

15-25

where n is the total number of observations, and ni is the number of observations in
class i, and |Σ| means the determinant of the matrix Σ.

• Asymptotically, as the number of observations in each class ni become large, V is
distributed approximately χ2 with kd(d + 1)/2 degrees of freedom, where d is the
number of predictors (number of dimensions in the data).

The Bartlett test is to check whether V exceeds a given percentile of the χ2 distribution
with kd(d + 1)/2 degrees of freedom. If it does, then reject the hypothesis that the
covariances are equal.

Example: Bartlett Test for Equal Covariance Matrices

Check whether the Fisher iris data is well modeled by a single Gaussian covariance, or
whether it would be better to model it as a Gaussian mixture.

load fisheriris;

prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};

L = fitcdiscr(meas,species,'PredictorNames',prednames);

Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');

D = 4; % Number of dimensions of X

Nclass = [50 50 50];

N = L.NumObservations;

K = numel(L.ClassNames);

SigmaQ = Q.Sigma;

SigmaL = L.Sigma;

logV = (N-K)*log(det(SigmaL));

for k=1:K

 logV = logV - (Nclass(k)-1)*log(det(SigmaQ(:,:,k)));

end

nu = (K-1)*D*(D+1)/2;

pval = 1 - chi2cdf(logV,nu)

pval =

 0

The Bartlett test emphatically rejects the hypothesis of equal covariance matrices. If
pval had been greater than 0.05, the test would not have rejected the hypothesis. The
result indicates to use quadratic discriminant analysis, as opposed to linear discriminant
analysis.

15 Parametric Classification

15-26

Q-Q Plot

A Q-Q plot graphically shows whether an empirical distribution is close to a theoretical
distribution. If the two are equal, the Q-Q plot lies on a 45° line. If not, the Q-Q plot
strays from the 45° line.

Check Q-Q Plots for Linear and Quadratic Discriminants

For linear discriminant analysis, use a single covariance matrix for all classes.

load fisheriris;

prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};

L = fitcdiscr(meas,species,'PredictorNames',prednames);

N = L.NumObservations;

K = numel(L.ClassNames);

mahL = mahal(L,L.X,'ClassLabels',L.Y);

D = 4;

expQ = chi2inv(((1:N)-0.5)/N,D); % expected quantiles

[mahL,sorted] = sort(mahL); % sorted obbserved quantiles

figure;

gscatter(expQ,mahL,L.Y(sorted),'bgr',[],[],'off');

legend('virginica','versicolor','setosa','Location','NW');

xlabel('Expected quantile');

ylabel('Observed quantile');

line([0 20],[0 20],'color','k');

 Discriminant Analysis

15-27

Overall, the agreement between the expected and observed quantiles is good. Look at the
right half of the plot. The deviation of the plot from the 45° line upward indicates that
the data has tails heavier than a normal distribution. There are three possible outliers
on the right: two observations from class 'setosa' and one observation from class
'virginica'.

As shown in “Bartlett Test of Equal Covariance Matrices for Linear Discriminant
Analysis” on page 15-24, the data does not match a single covariance matrix. Redo
the calculations for a quadratic discriminant.

load fisheriris;

prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};

Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');

Nclass = [50 50 50];

15 Parametric Classification

15-28

N = L.NumObservations;

K = numel(L.ClassNames);

mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);

expQ = chi2inv(((1:N)-0.5)/N,D);

[mahQ,sorted] = sort(mahQ);

figure;

gscatter(expQ,mahQ,Q.Y(sorted),'bgr',[],[],'off');

legend('virginica','versicolor','setosa','Location','NW');

xlabel('Expected quantile');

ylabel('Observed quantile for QDA');

line([0 20],[0 20],'color','k');

The Q-Q plot shows a better agreement between the observed and expected quantiles.
There is only one outlier candidate, from class 'setosa'.

 Discriminant Analysis

15-29

Mardia Kurtosis Test of Multivariate Normality

The Mardia kurtosis test (see Mardia [4]) is an alternative to examining a Q-Q plot. It
gives a numeric approach to deciding if data matches a Gaussian mixture model.

In the Mardia kurtosis test you compute M, the mean of the fourth power of the
Mahalanobis distance of the data from the class means. If the data is normally
distributed with constant covariance matrix (and is thus suitable for linear discriminant
analysis), M is asymptotically distributed as normal with mean d(d + 2) and variance
8d(d + 2)/n, where

• d is the number of predictors (number of dimensions in the data).
• n is the total number of observations.

The Mardia test is two sided: check whether M is close enough to d(d + 2) with respect to
a normal distribution of variance 8d(d + 2)/n.

Example: Mardia Kurtosis Test for Linear and Quadratic Discriminants

Check whether the Fisher iris data is approximately normally distributed for both linear
and quadratic discriminant analysis. According to “Bartlett Test of Equal Covariance
Matrices for Linear Discriminant Analysis” on page 15-24, the data is not normal for
linear discriminant analysis (the covariance matrices are different). “Check Q-Q Plots for
Linear and Quadratic Discriminants” on page 15-26 indicates that the data is well
modeled by a Gaussian mixture model with different covariances per class. Check these
conclusions with the Mardia kurtosis test:

load fisheriris;

prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};

L = fitcdiscr(meas,species,'PredictorNames',prednames);

mahL = mahal(L,L.X,'ClassLabels',L.Y);

D = 4;

N = L.NumObservations;

obsKurt = mean(mahL.^2);

expKurt = D*(D+2);

varKurt = 8*D*(D+2)/N;

[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt))

pval =

 0.0208

15 Parametric Classification

15-30

The Mardia test indicates to reject the hypothesis that the data is normally distributed.

Continuing the example with quadratic discriminant analysis:

Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');

mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);

obsKurt = mean(mahQ.^2);

[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt))

pval =

 0.7230

Because pval is high, you conclude the data are consistent with the multivariate normal
distribution.

Bibliography

[1] Box, G. E. P. A General Distribution Theory for a Class of Likelihood Criteria.
Biometrika 36(3), pp. 317–346, 1949.

[2] Fisher, R. A. The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics, Vol. 7, pp. 179–188, 1936. Available at http://
digital.library.adelaide.edu.au/dspace/handle/2440/15227.

[3] Guo, Y., T. Hastie, and R. Tibshirani. Regularized Discriminant Analysis and Its
Application in Microarray. Biostatistics, Vol. 8, No. 1, pp. 86–100, 2007.

[4] Mardia, K. V. Measures of multivariate skewness and kurtosis with applications.
Biometrika 57 (3), pp. 519–530, 1970.

http://digital.library.adelaide.edu.au/dspace/handle/2440/15227
http://digital.library.adelaide.edu.au/dspace/handle/2440/15227

 Naive Bayes Classification

15-31

Naive Bayes Classification

The naive Bayes classifier is designed for use when predictors are independent of
one another within each class, but it appears to work well in practice even when that
independence assumption is not valid. It classifies data in two steps:

1 Training step: Using the training data, the method estimates the parameters of a
probability distribution, assuming predictors are conditionally independent given the
class.

2 Prediction step: For any unseen test data, the method computes the posterior
probability of that sample belonging to each class. The method then classifies the
test data according the largest posterior probability.

The class-conditional independence assumption greatly simplifies the training step
since you can estimate the one-dimensional class-conditional density for each predictor
individually. While the class-conditional independence between predictors is not true
in general, research shows that this optimistic assumption works well in practice. This
assumption of class-conditional independence of the predictors allows the naive Bayes
classifier to estimate the parameters required for accurate classification while using less
training data than many other classifiers. This makes it particularly effective for data
sets containing many predictors.

Supported Distributions

The training step in naive Bayes classification is based on estimating P(X|Y), the
probability or probability density of predictors X given class Y. The naive Bayes
classification model ClassificationNaiveBayes and training function fitcnb
provide support for normal (Gaussian), kernel, multinomial, and multivariate,
multinomial predictor conditional distributions. To specify distributions for the
predictors, use the DistributionNames name-value pair argument of fitcnb. You can
specify one type of distribution for all predictors by supplying the string corresponding to
the distribution name, or specify different distributions for the predictors by supplying a
length D cell array of strings, where D is the number of predictors (that is, the number of
columns of X).

Normal (Gaussian) Distribution

The 'normal' distribution (specify using 'normal') is appropriate for predictors that
have normal distributions in each class. For each predictor you model with a normal

15 Parametric Classification

15-32

distribution, the naive Bayes classifier estimates a separate normal distribution for each
class by computing the mean and standard deviation of the training data in that class.

Kernel Distribution

The 'kernel' distribution (specify using 'kernel') is appropriate for predictors
that have a continuous distribution. It does not require a strong assumption such as
a normal distribution and you can use it in cases where the distribution of a predictor
may be skewed or have multiple peaks or modes. It requires more computing time and
more memory than the normal distribution. For each predictor you model with a kernel
distribution, the naive Bayes classifier computes a separate kernel density estimate for
each class based on the training data for that class. By default the kernel is the normal
kernel, and the classifier selects a width automatically for each class and predictor. The
software supports specifying different kernels for each predictor, and different widths for
each predictor or class.

Multivariate Multinomial Distribution

The multivariate, multinomial distribution (specify using 'mvmn') is appropriate for a
predictor whose observations are categorical. Naive Bayes classifier construction using
a multivariate multinomial predictor is described below. To illustrate the steps, consider
an example where observations are labeled 0, 1, or 2, and a predictor the weather when
the sample was conducted.

1 Record the distinct categories represented in the observations of the entire predictor.
For example, the distinct categories (or predictor levels) might include sunny, rain,
snow, and cloudy.

2 Separate the observations by response class. For example, segregate observations
labeled 0 from observations labeled 1 and 2, and observations labeled 1 from
observations labeled 2.

3 For each response class, fit a multinomial model using the category relative
frequencies and total number of observations. For example, for observations
labeled 0, the estimated probability it was sunny is psunny|0 = (number of sunny
observations with label 0)/(number of observations with label 0), and similar for the
other categories and response labels.

The class-conditional, multinomial random variables comprise a multivariate
multinomial random variable.

Here are some other properties of naive Bayes classifiers that use multivariate
multinomial.

 Naive Bayes Classification

15-33

• For each predictor you model with a multivariate multinomial distribution, the naive
Bayes classifier:

• Records a separate set of distinct predictor levels for each predictor
• Computes a separate set of probabilities for the set of predictor levels for each

class.
• The software supports modeling continuous predictors as mutlivariate multinomial.

In this case, the predictor levels are the distinct occurrences of a measurement. This
can lead a predictor having many predictor levels. It is good practice to discretize such
predictors.

If an observation is a set of successes for various categories (represented by all of the
predictors) out of a fixed number of independent trials, then specify that the predictors
comprise a multinomial distribution. For details, see “Multinomial Distribution” on page
15-33.

Multinomial Distribution

The multinomial distribution (specify using 'DistributionNames','mn') is
appropriate when, given the class, each observation is a multinomial random variable.
That is, observation, or row, j of the predictor data X represents D categories, where xjd is

the number of successes for category (i.e., predictor) d in n xj jd
d

D

=

=

Â
1

 independent trials.

The steps to train a naive Bayes classifier are outlined next.

1 For each class, fit a multinomial distribution for the predictors given the class by:

a Aggregating the weighted, category counts over all observations. Additionally,
the software implements additive smoothing [1].

b Estimating the D category probabilities within each class using the aggregated
category counts. These category probabilities compose the probability
parameters of the multinomial distribution.

2 Let a new observation have a total count of m. Then, the naive Bayes classifier:

a Sets the total count parameter of each multinomial distribution to m
b For each class, estimates the class posterior probability using the estimated

multinomial distributions
c Predicts the observation into the class corresponding to the highest posterior

probability

15 Parametric Classification

15-34

Consider the so-called the bag-of-tokens model, where there is a bag containing a number
of tokens of various types and proportions. Each predictor represents a distinct type of
token in the bag, an observation is n independent draws (i.e., with replacement) of tokens
from the bag, and the data is a vector of counts, where element d is the number of times
token d appears.

A machine-learning application is the construction of an email spam classifier, where
each predictor represents a word, character, or phrase (i.e., token), an observation
is an email, and the data are counts of the tokens in the email. One predictor might
count the number of exclamation points, another might count the number of times the
word "money" appears, and another might count the number of times the recipient's
name appears. This is a naive Bayes model under the further assumption that the total
number of tokens (or the total document length) is independent of response class.

Other properties of naive Bayes classifiers that use multinomial observations include:

• Classification is based on the relative frequencies of the categories. If nj = 0 for
observation j, then classification is not possible for that observation.

• The predictors are not conditionally independent since they must sum to nj.
• Naive Bayes is not appropriate when nj provides information about the class. That is,

this classifier requires that nj is independent of the class.
• If you specify that the predictors are conditionally multinomial, then the software

applies this specification to all predictors. In other words, you cannot include 'mn' in
a cell array when specifying 'DistributionNames'.

If a predictor is categorical, i.e., is multinomial within a response class, then specify that
it is multivariate multinomial. For details, see “Multivariate Multinomial Distribution”
on page 15-32.

References

[1] Manning, C. D., P. Raghavan, and M. Schütze. Introduction to Information Retrieval,
NY: Cambridge University Press, 2008.

See Also
ClassificationNaiveBayes | fitcnb | predict

Related Examples
• “Classification”

 Performance Curves

15-35

Performance Curves

In this section...

“Introduction to Performance Curves” on page 15-35
“What are ROC Curves?” on page 15-35
“Evaluate Classifier Performance Using perfcurve” on page 15-35

Introduction to Performance Curves

After a classification algorithm such as NaiveBayes or TreeBagger has trained
on data, you may want to examine the performance of the algorithm on a specific
test dataset. One common way of doing this would be to compute a gross measure of
performance such as quadratic loss or accuracy, averaged over the entire test dataset.

What are ROC Curves?

You may want to inspect the classifier performance more closely, for example, by plotting
a Receiver Operating Characteristic (ROC) curve. By definition, a ROC curve [1,2] shows
true positive rate versus false positive rate (equivalently, sensitivity versus 1–specificity)
for different thresholds of the classifier output. You can use it, for example, to find the
threshold that maximizes the classification accuracy or to assess, in more broad terms,
how the classifier performs in the regions of high sensitivity and high specificity.

Evaluate Classifier Performance Using perfcurve

perfcurve computes measures for a plot of classifier performance. You can use this
utility to evaluate classifier performance on test data after you train the classifier.
Various measures such as mean squared error, classification error, or exponential
loss can summarize the predictive power of a classifier in a single number. However,
a performance curve offers more information as it lets you explore the classifier
performance across a range of thresholds on its output.

You can use perfcurve with any classifier or, more broadly, with any method that
returns a numeric score for an instance of input data. By convention adopted here,

• A high score returned by a classifier for any given instance signifies that the instance
is likely from the positive class.

15 Parametric Classification

15-36

• A low score signifies that the instance is likely from the negative classes.

For some classifiers, you can interpret the score as the posterior probability of observing
an instance of the positive class at point X. An example of such a score is the fraction of
positive observations in a leaf of a decision tree. In this case, scores fall into the range
from 0 to 1 and scores from positive and negative classes add up to unity. Other methods
can return scores ranging between minus and plus infinity, without any obvious mapping
from the score to the posterior class probability.

perfcurve does not impose any requirements on the input score range. Because of
this lack of normalization, you can use perfcurve to process scores returned by any
classification, regression, or fit method. perfcurve does not make any assumptions
about the nature of input scores or relationships between the scores for different classes.
As an example, consider a problem with three classes, A, B, and C, and assume that the
scores returned by some classifier for two instances are as follows:

 A B C

instance 1 0.4 0.5 0.1
instance 2 0.4 0.1 0.5

If you want to compute a performance curve for separation of classes A and B, with C
ignored, you need to address the ambiguity in selecting A over B. You could opt to use the
score ratio, s(A)/s(B), or score difference, s(A)-s(B); this choice could depend on the
nature of these scores and their normalization. perfcurve always takes one score per
instance. If you only supply scores for class A, perfcurve does not distinguish between
observations 1 and 2. The performance curve in this case may not be optimal.

perfcurve is intended for use with classifiers that return scores, not those that return
only predicted classes. As a counter-example, consider a decision tree that returns only
hard classification labels, 0 or 1, for data with two classes. In this case, the performance
curve reduces to a single point because classified instances can be split into positive and
negative categories in one way only.

For input, perfcurve takes true class labels for some data and scores assigned
by a classifier to these data. By default, this utility computes a Receiver Operating
Characteristic (ROC) curve and returns values of 1–specificity, or false positive rate,
for X and sensitivity, or true positive rate, for Y. You can choose other criteria for X and
Y by selecting one out of several provided criteria or specifying an arbitrary criterion
through an anonymous function. You can display the computed performance curve using
plot(X,Y).

 Performance Curves

15-37

perfcurve can compute values for various criteria to plot either on the x- or the y-axis.
All such criteria are described by a 2-by-2 confusion matrix, a 2-by-2 cost matrix, and a 2-
by-1 vector of scales applied to class counts.

The confusion matrix, C, is defined as

TP FN

FP TN











where

• P stands for "positive".
• N stands for "negative".
• T stands for "true".
• F stands for "false".

For example, the first row of the confusion matrix defines how the classifier identifies
instances of the positive class: C(1,1) is the count of correctly identified positive
instances and C(1,2) is the count of positive instances misidentified as negative.

The cost matrix defines the cost of misclassification for each category:

Cost P P Cost N P

Cost P N Cost N N

(|) (|)

(|) (|)











where Cost(I|J) is the cost of assigning an instance of class J to class I. Usually
Cost(I|J)=0 for I=J. For flexibility, perfcurve allows you to specify nonzero costs for
correct classification as well.

The two scales include prior information about class probabilities. perfcurve computes
these scales by taking scale(P)=prior(P)*N and scale(N)=prior(N)*P and
normalizing the sum scale(P)+scale(N) to 1. P=TP+FN and N=TN+FP are the total
instance counts in the positive and negative class, respectively. The function then
applies the scales as multiplicative factors to the counts from the corresponding class:
perfcurve multiplies counts from the positive class by scale(P) and counts from the
negative class by scale(N). Consider, for example, computation of positive predictive
value, PPV = TP/(TP+FP). TP counts come from the positive class and FP counts
come from the negative class. Therefore, you need to scale TP by scale(P) and FP by

15 Parametric Classification

15-38

scale(N), and the modified formula for PPV with prior probabilities taken into account
is now:

PPV
scale P TP

scale P TP scale N FP
=

+
() *

() * () *

If all scores in the data are above a certain threshold, perfcurve classifies all instances
as 'positive'. This means that TP is the total number of instances in the positive class
and FP is the total number of instances in the negative class. In this case, PPV is simply
given by the prior:

PPV
prior P

prior P prior N
=

+
()

() ()

The perfcurve function returns two vectors, X and Y, of performance measures. Each
measure is some function of confusion, cost, and scale values. You can request
specific measures by name or provide a function handle to compute a custom measure.
The function you provide should take confusion, cost, and scale as its three inputs
and return a vector of output values.

The criterion for X must be a monotone function of the positive classification count, or
equivalently, threshold for the supplied scores. If perfcurve cannot perform a one-to-
one mapping between values of the X criterion and score thresholds, it exits with an error
message.

By default, perfcurve computes values of the X and Y criteria for all possible score
thresholds. Alternatively, it can compute a reduced number of specific X values supplied
as an input argument. In either case, for M requested values, perfcurve computes M
+1 values for X and Y. The first value out of these M+1 values is special. perfcurve
computes it by setting the TP instance count to zero and setting TN to the total count
in the negative class. This value corresponds to the 'reject all' threshold. On a
standard ROC curve, this translates into an extra point placed at (0,0).

If there are NaN values among input scores, perfcurve can process them in either of two
ways:

• It can discard rows with NaN scores.
• It can add them to false classification counts in the respective class.

 Performance Curves

15-39

That is, for any threshold, instances with NaN scores from the positive class are counted
as false negative (FN), and instances with NaN scores from the negative class are counted
as false positive (FP). In this case, the first value of X or Y is computed by setting TP to
zero and setting TN to the total count minus the NaN count in the negative class. For
illustration, consider an example with two rows in the positive and two rows in the
negative class, each pair having a NaN score:

Class Score

Negative 0.2
Negative NaN

Positive 0.7
Positive NaN

If you discard rows with NaN scores, then as the score cutoff varies, perfcurve computes
performance measures as in the following table. For example, a cutoff of 0.5 corresponds
to the middle row where rows 1 and 3 are classified correctly, and rows 2 and 4 are
omitted.

TP FN FP TN

0 1 0 1
1 0 0 1
1 0 1 0

If you add rows with NaN scores to the false category in their respective classes,
perfcurve computes performance measures as in the following table. For example,
a cutoff of 0.5 corresponds to the middle row where now rows 2 and 4 are counted as
incorrectly classified. Notice that only the FN and FP columns differ between these two
tables.

TP FN FP TN

0 2 1 1
1 1 1 1
1 1 2 0

For data with three or more classes, perfcurve takes one positive class and a list of
negative classes for input. The function computes the X and Y values using counts in
the positive class to estimate TP and FN, and using counts in all negative classes to

15 Parametric Classification

15-40

estimate TN and FP. perfcurve can optionally compute Y values for each negative class
separately and, in addition to Y, return a matrix of size M-by-C, where M is the number of
elements in X or Y and C is the number of negative classes. You can use this functionality
to monitor components of the negative class contribution. For example, you can plot TP
counts on the X-axis and FP counts on the Y-axis. In this case, the returned matrix shows
how the FP component is split across negative classes.

You can also use perfcurve to estimate confidence intervals. perfcurve computes
confidence bounds using either cross-validation or bootstrap. If you supply cell arrays for
labels and scores, perfcurve uses cross-validation and treats elements in the cell
arrays as cross-validation folds. If you set input parameter NBoot to a positive integer,
perfcurve generates nboot bootstrap replicas to compute pointwise confidence bounds.

perfcurve estimates the confidence bounds using one of two methods:

• Vertical averaging (VA) — estimate confidence bounds on Y and T at fixed values of X.
Use the XVals input parameter to use this method for computing confidence bounds.

• Threshold averaging (TA) — estimate confidence bounds for X and Y at fixed
thresholds for the positive class score. Use the TVals input parameter to use this
method for computing confidence bounds.

To use observation weights instead of observation counts, you can use the 'Weights'
parameter in your call to perfcurve. When you use this parameter, to compute X, Y and
T or to compute confidence bounds by cross-validation, perfcurve uses your supplied
observation weights instead of observation counts. To compute confidence bounds by
bootstrap, perfcurve samples N out of N with replacement using your weights as
multinomial sampling probabilities.

16

Nonparametric Supervised Learning

• “Supervised Learning Workflow and Algorithms” on page 16-2
• “Classification Using Nearest Neighbors” on page 16-8
• “Classification Trees and Regression Trees” on page 16-33
• “Splitting Categorical Predictors” on page 16-65
• “Ensemble Methods” on page 16-68
• “Support Vector Machines (SVM)” on page 16-170
• “Bibliography” on page 16-209

16 Nonparametric Supervised Learning

16-2

Supervised Learning Workflow and Algorithms

In this section...

“Steps in Supervised Learning” on page 16-2
“Characteristics of Classification Algorithms” on page 16-6

Steps in Supervised Learning

Supervised learning (machine learning) takes a known set of input data and known
responses to the data, and seeks to build a predictor model that generates reasonable
predictions for the response to new data.

Known Data

Known Responses

Model

Model

New Data

Predicted Responses

1

2

Suppose you want to predict if someone will have a heart attack within a year. You have
a set of data on previous , including age, weight, height, blood pressure, etc. You know if
the previous had heart attacks within a year of their data measurements. So the problem
is combining all the existing data into a model that can predict whether a new person
will have a heart attack within a year.

Supervised learning splits into two broad categories:

• Classification for responses that can have just a few known values, such as 'true' or
'false'. Classification algorithms apply to nominal, not ordinal response values.

• Regression for responses that are a real number, such as miles per gallon for a
particular car.

You can have trouble deciding whether you have a classification problem or a regression
problem. In that case, create a regression model first, because they are often more
computationally efficient.

 Supervised Learning Workflow and Algorithms

16-3

While there are many Statistics and Machine Learning Toolbox algorithms for
supervised learning, most use the same basic workflow for obtaining a predictor model.
(Detailed instruction on the steps for ensemble learning is in “Framework for Ensemble
Learning” on page 16-68.) The steps for supervised learning are:

1. “Prepare Data” on page 16-3
2. “Choose an Algorithm” on page 16-3
3. “Fit a Model” on page 16-4
4. “Choose a Validation Method” on page 16-4
5. “Examine Fit and Update Until Satisfied” on page 16-5
6. “Use Fitted Model for Predictions” on page 16-6

Prepare Data

All supervised learning methods start with an input data matrix, usually called X here.
Each row of X represents one observation. Each column of X represents one variable,
or predictor. Represent missing entries with NaN values in X. Statistics and Machine
Learning Toolbox supervised learning algorithms can handle NaN values, either by
ignoring them or by ignoring any row with a NaN value.

You can use various data types for response data Y. Each element in Y represents the
response to the corresponding row of X. Observations with missing Y data are ignored.

• For regression, Y must be a numeric vector with the same number of elements as the
number of rows of X.

• For classification, Y can be any of these data types. This table also contains the
method of including missing entries.

Data Type Missing Entry

Numeric vector NaN

Categorical vector <undefined>

Character array Row of spaces
Cell array of strings ''

Logical vector (Cannot represent)

Choose an Algorithm

There are tradeoffs between several characteristics of algorithms, such as:

16 Nonparametric Supervised Learning

16-4

• Speed of training
• Memory usage
• Predictive accuracy on new data
• Transparency or interpretability, meaning how easily you can understand the reasons

an algorithm makes its predictions

Details of the algorithms appear in “Characteristics of Classification Algorithms” on page
16-6. More detail about ensemble algorithms is in “Choose an Applicable Ensemble
Method” on page 16-70.

Fit a Model

The fitting function you use depends on the algorithm you choose.

Algorithm Fitting Function

Classification Trees fitctree

Regression Trees fitrtree

Discriminant Analysis (classification) fitcdiscr

k-Nearest Neighbors (classification) fitcknn

Naive Bayes (classification) fitcnb

Support Vector Machines (SVM) fitcsvm

Mutliclass models for SVM or other
classifiers

fitcecoc

Classification or Regression Ensembles fitensemble

Classification or Regression Ensembles in
Parallel

TreeBagger

Choose a Validation Method

The three main methods to examine the accuracy of the resulting fitted model are:

• Examine the resubstitution error. For examples, see:

• “Example: Resubstitution Error of a Classification Tree” on page 16-44
• “Cross Validate a Regression Tree” on page 16-45

 Supervised Learning Workflow and Algorithms

16-5

• “Test Ensemble Quality” on page 16-79
• “Example: Resubstitution Error of a Discriminant Analysis Classifier” on page

15-17
• Examine the cross-validation error. For examples, see:

• “Cross Validate a Regression Tree” on page 16-45
• “Test Ensemble Quality” on page 16-79
• “Classification with Many Categorical Levels” on page 16-96
• “Cross Validating a Discriminant Analysis Classifier” on page 15-18

• Examine the out-of-bag error for bagged decision trees. For examples, see:

• “Test Ensemble Quality” on page 16-79
• “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page

16-129
• “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page

16-141

Examine Fit and Update Until Satisfied

After validating the model, you might want to change it for better accuracy, better speed,
or to use less memory.

• Change fitting parameters to try to get a more accurate model. For examples, see:

• “Tune RobustBoost” on page 16-121
• “Example: Unequal Classification Costs” on page 16-91
• “Improve a Discriminant Analysis Classifier” on page 15-14

• Change fitting parameters to try to get a smaller model. This sometimes gives a
model with more accuracy. For examples, see:

• “Select Appropriate Tree Depth” on page 16-46
• “Prune a Classification Tree” on page 16-51
• “Surrogate Splits” on page 16-100
• “Regularize a Regression Ensemble” on page 16-110
• “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page

16-129

16 Nonparametric Supervised Learning

16-6

• “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page
16-141

• Try a different algorithm. For applicable choices, see:

• “Characteristics of Classification Algorithms” on page 16-6
• “Choose an Applicable Ensemble Method” on page 16-70

When satisfied with a model of some types, you can trim it using the appropriate
compact method (compact for classification trees, compact for classification ensembles,
compact for regression trees, compact for regression ensembles, compact for
discriminant analysis). compact removes training data and pruning information, so the
model uses less memory.

Use Fitted Model for Predictions

To predict classification or regression response for most fitted models, use the predict
method:

Ypredicted = predict(obj,Xnew)

• obj is the fitted model object.
• Xnew is the new input data.
• Ypredicted is the predicted response, either classification or regression.

Characteristics of Classification Algorithms

This table shows typical characteristics of the various supervised learning algorithms.
The characteristics in any particular case can vary from the listed ones. Use the table as
a guide for your initial choice of algorithms, but be aware that the table can be inaccurate
for some problems.

Algorithm Predictive
Accuracy

Fitting
Speed

Prediction
Speed

Memory
Usage

Easy to
Interpret

Handles
Categorical
Predictors

Trees Medium Fast Fast Low Yes Yes
SVM High Medium * * * No
Naive Bayes Medium ** ** ** Yes Yes
Nearest Neighbor *** Fast*** Medium High No Yes***

 Supervised Learning Workflow and Algorithms

16-7

Algorithm Predictive
Accuracy

Fitting
Speed

Prediction
Speed

Memory
Usage

Easy to
Interpret

Handles
Categorical
Predictors

Discriminant
Analysis

**** Fast Fast Low Yes No

Ensembles See “Suggestions for Choosing an Appropriate Ensemble Algorithm” on page
16-72 and “General Characteristics of Ensemble Algorithms” on page
16-73

* — SVM prediction speed and memory usage are good if there are few support vectors,
but can be poor if there are many support vectors. When you use a kernel function, it can
be difficult to interpret how SVM classifies data, though the default linear scheme is easy
to interpret.

** — Naive Bayes speed and memory usage are good for simple distributions, but can be
poor for kernel distributions and large data sets.

*** — Nearest Neighbor usually has good predictions in low dimensions, but can have
poor predictions in high dimensions. For linear search, Nearest Neighbor does not
perform any fitting. For kd-trees, Nearest Neighbor does perform fitting. Nearest
Neighbor can have either continuous or categorical predictors, but not both.

**** — Discriminant Analysis is accurate when the modeling assumptions are satisfied
(multivariate normal by class). Otherwise, the predictive accuracy varies.

16 Nonparametric Supervised Learning

16-8

Classification Using Nearest Neighbors

In this section...

“Pairwise Distance Metrics” on page 16-8
“k-Nearest Neighbor Search and Radius Search” on page 16-11
“Classify Query Data” on page 16-16
“Find Nearest Neighbors Using a Custom Distance Metric” on page 16-24
“K-Nearest Neighbor Classification for Supervised Learning” on page 16-28
“Construct a KNN Classifier” on page 16-28
“Examine the Quality of a KNN Classifier” on page 16-29
“Predict Classification Based on a KNN Classifier” on page 16-30
“Modify a KNN Classifier” on page 16-30

Pairwise Distance Metrics

Categorizing query points based on their distance to points in a training dataset can
be a simple yet effective way of classifying new points. You can use various metrics to
determine the distance, described next. Use pdist2 to find the distance between a set of
data and query points.

Distance Metrics

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ...,
xmx, and my-by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy,
the various distances between the vector xs and yt are defined as follows:

• Euclidean distance

d x y x yst s t s t
2 = − − ′()()

The Euclidean distance is a special case of the Minkowski metric, where p = 2.
• Standardized Euclidean distance

d x y V x yst s t s t
2 1= − − ′−

() ()

 Classification Using Nearest Neighbors

16-9

where V is the n-by-n diagonal matrix whose jth diagonal element is S(j)2, where S is
the vector containing the inverse weights.

• Mahalanobis distance

d x y C x yst s t s t
2 1= − − ′−

() ()

where C is the covariance matrix.
• City block metric

d x yst sj tj

j

n

= −
=
∑

1

The city block distance is a special case of the Minkowski metric, where p = 1.
• Minkowski metric

d x yst sj tj

p

j

n

p= −
=
∑

1

For the special case of p = 1, the Minkowski metric gives the city block metric, for the
special case of p = 2, the Minkowski metric gives the Euclidean distance, and for the
special case of p = ∞, the Minkowski metric gives the Chebychev distance.

• Chebychev distance

d x yst j sj tj= −{ }max

The Chebychev distance is a special case of the Minkowski metric, where p = ∞.
• Cosine distance

d
x y

x x y y
st

s t

s s t t

= −
′

′() ′()












1

• Correlation distance

16 Nonparametric Supervised Learning

16-10

d
x x y y

x x x x y y y y
st

s s t t

s s s s t t t t

= −
−() −()′

−() −()′ −() −()′
1

where

x
n

xs sj

j

= ∑1

and

y
n

yt tj

j

= ∑1

• Hamming distance

d x y nst sj tj= ≠(#() /)

• Jaccard distance

d
x y x y

x y
st

sj tj sj tj

sj tj

=
≠() ∩ ≠() ∪ ≠()()





≠() ∪ ≠()





#

#

0 0

0 0

• Spearman distance

d
r r r r

r r r r r r r r

st

s s t t

s s s s t t t t

= −
−() −()′

−() −()′ −() −()′
1

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, i.e., rs = (rs1, rs2, ... rsn)

and rt = (rt1, rt2, ... rtn).

 Classification Using Nearest Neighbors

16-11

•
r

n
r

n
s sj

j

= =
+()∑1 1

2
.

•
r

n
r

n
t tj

j

= =
+()∑1 1

2
.

k-Nearest Neighbor Search and Radius Search

Given a set X of n points and a distance function, k-nearest neighbor (kNN) search lets
you find the k closest points in X to a query point or set of points Y. The kNN search
technique and kNN-based algorithms are widely used as benchmark learning rules. The
relative simplicity of the kNN search technique makes it easy to compare the results
from other classification techniques to kNN results. The technique has been used in
various areas such as:

• bioinformatics
• image processing and data compression
• document retrieval
• computer vision
• multimedia database
• marketing data analysis

You can use kNN search for other machine learning algorithms, such as:

• kNN classification
• local weighted regression
• missing data imputation and interpolation
• density estimation

You can also use kNN search with many distance-based learning functions, such as K-
means clustering.

In contrast, for a positive real value r, rangesearch finds all points in X that are within
a distance r of each point in Y. This fixed-radius search is closely related to kNN search,
as it supports the same distance metrics and search classes, and uses the same search
algorithms.

16 Nonparametric Supervised Learning

16-12

k-Nearest Neighbor Search Using Exhaustive Search

When your input data meets any of the following criteria, knnsearch uses the
exhaustive search method by default to find the k-nearest neighbors:

• The number of columns of X is more than 10.
• X is sparse.
• The distance measure is either:

• 'seuclidean'

• 'mahalanobis'

• 'cosine'

• 'correlation'

• 'spearman'

• 'hamming'

• 'jaccard'

• A custom distance function

knnsearch also uses the exhaustive search method if your search object is an
ExhaustiveSearcher model object. The exhaustive search method finds the distance
from each query point to every point in X, ranks them in ascending order, and returns the
k points with the smallest distances. For example, this diagram shows the k = 3 nearest
neighbors.

 Classification Using Nearest Neighbors

16-13

k-Nearest Neighbor Search Using a Kd-Tree

When your input data meets all of the following criteria, knnsearch creates a Kd-tree by
default to find the k-nearest neighbors:

• The number of columns of X is less than 10.
• X is not sparse.
• The distance measure is either:

• 'euclidean' (default)
• 'cityblock'

• 'minkowski'

• 'chebychev'

knnsearch also uses a Kd-tree if your search object is a KDTreeSearcher model object.

16 Nonparametric Supervised Learning

16-14

Kd-trees divide your data into nodes with at most BucketSize (default is 50) points per
node, based on coordinates (as opposed to categories). The following diagrams illustrate
this concept using patch objects to color code the different “buckets.”

When you want to find the k-nearest neighbors to a given query point, knnsearch does
the following:

1 Determines the node to which the query point belongs. In the following example, the
query point (32,90) belongs to Node 4.

2 Finds the closest k points within that node and its distance to the query point. In the
following example, the points in red circles are equidistant from the query point, and
are the closest points to the query point within Node 4.

 Classification Using Nearest Neighbors

16-15

3 Chooses all other nodes having any area that is within the same distance, in any
direction, from the query point to the kth closest point. In this example, only Node
3 overlaps the solid black circle centered at the query point with radius equal to the
distance to the closest points within Node 4.

4 Searches nodes within that range for any points closer to the query point. In the
following example, the point in a red square is slightly closer to the query point than
those within Node 4.

Using a Kd-tree for large data sets with fewer than 10 dimensions (columns) can be
much more efficient than using the exhaustive search method, as knnsearch needs to
calculate only a subset of the distances. To maximize the efficiency of Kd-trees, use a
KDTreeSearcher model.

16 Nonparametric Supervised Learning

16-16

What Are Search Model Objects?

Basically, model objects are a convenient way of storing information. Related models
have the same properties with values and types relevant to a specified search method. In
addition to storing information within models, you can perform certain actions on models.

You can efficiently perform a k-nearest neighbors search on your search model using
knnsearch. Or, you can search for all neighbors within a specified radius using your
search model and rangesearch. In addition, there are a generic knnsearch and
rangesearch functions that search without creating or using a model.

To determine which type of model and search method is best for your data, consider the
following:

• Does your data have many columns, say more than 10? The ExhaustiveSearcher
model may perform better.

• Is your data sparse? Use the ExhaustiveSearcher model.
• Do you want to use one of these distance measures to find the nearest neighbors? Use

the ExhaustiveSearcher model.

• 'seuclidean'

• 'mahalanobis'

• 'cosine'

• 'correlation'

• 'spearman'

• 'hamming'

• 'jaccard'

• A custom distance function
• Is your data set huge (but with fewer than 10 columns)? Use the KDTreeSearcher

model.
• Are you searching for the nearest neighbors for a large number of query points? Use

the KDTreeSearcher model.

Classify Query Data

This example shows how to classify query data by:

 Classification Using Nearest Neighbors

16-17

1 Growing a K d-tree
2 Conducting a k nearest neighbors search using the grown tree.
3 Assigning each query point the class with the highest representation among their

respective nearest neighbors.

Classify a new point based on the last two columns of the Fisher iris data. Using only the
last two columns makes it easier to plot.

load fisheriris

x = meas(:,3:4);

gscatter(x(:,1),x(:,2),species)

legend('Location','best')

16 Nonparametric Supervised Learning

16-18

Plot the new point.

newpoint = [5 1.45];

line(newpoint(1),newpoint(2),'marker','x','color','k',...

 'markersize',10,'linewidth',2)

Prepare a K d-tree neighbor searcher model.

Mdl = KDTreeSearcher(x)

Mdl =

 KDTreeSearcher with properties:

 Classification Using Nearest Neighbors

16-19

 BucketSize: 50

 Distance: 'euclidean'

 DistParameter: []

 X: [150x2 double]

Mdl is a KDTreeSearcher model. By default, the distance metric it uses to search for
neighbors is Euclidean distance.

Find the 10 sample points closest to the new point.

[n,d] = knnsearch(Mdl,newpoint,'k',10);

line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...

 'linestyle','none','markersize',10)

16 Nonparametric Supervised Learning

16-20

It appears that knnsearch has found only the nearest eight neighbors. In fact, this
particular dataset contains duplicate values.

x(n,:)

ans =

 5.0000 1.5000

 4.9000 1.5000

 4.9000 1.5000

 5.1000 1.5000

 5.1000 1.6000

 4.8000 1.4000

 5.0000 1.7000

 4.7000 1.4000

 4.7000 1.4000

 4.7000 1.5000

Make the axes equal so the calculated distances correspond to the apparent distances on
the plot axis equal and zoom in to see the neighbors better.

xlim([4.5 5.5]);

ylim([1 2]);

axis square

 Classification Using Nearest Neighbors

16-21

Find the species of the 10 neighbors.

tabulate(species(n))

 Value Count Percent

 virginica 2 20.00%

 versicolor 8 80.00%

Using a rule based on the majority vote of the 10 nearest neighbors, you can classify this
new point as a versicolor.

Visually identify the neighbors by drawing a circle around the group of them. Define the
center and diameter of a circle, based on the location of the new point.

ctr = newpoint - d(end);

16 Nonparametric Supervised Learning

16-22

diameter = 2*d(end);

% Draw a circle around the 10 nearest neighbors.

h = rectangle('position',[ctr,diameter,diameter],...

 'curvature',[1 1]);

h.LineStyle = ':';

Using the same dataset, find the 10 nearest neighbors to three new points.

figure

newpoint2 = [5 1.45;6 2;2.75 .75];

gscatter(x(:,1),x(:,2),species)

legend('location','best')

[n2,d2] = knnsearch(Mdl,newpoint2,'k',10);

line(x(n2,1),x(n2,2),'color',[.5 .5 .5],'marker','o',...

 Classification Using Nearest Neighbors

16-23

 'linestyle','none','markersize',10)

line(newpoint2(:,1),newpoint2(:,2),'marker','x','color','k',...

 'markersize',10,'linewidth',2,'linestyle','none')

Find the species of the 10 nearest neighbors for each new point.

tabulate(species(n2(1,:)))

 Value Count Percent

 virginica 2 20.00%

 versicolor 8 80.00%

tabulate(species(n2(2,:)))

 Value Count Percent

16 Nonparametric Supervised Learning

16-24

 virginica 10 100.00%

tabulate(species(n2(3,:)))

 Value Count Percent

 versicolor 7 70.00%

 setosa 3 30.00%

For more examples using knnsearch methods and function, see the individual reference
pages.

Find Nearest Neighbors Using a Custom Distance Metric

This example shows how to find the indices of the three nearest observations in X to each
observation in Y with respect to the chi-square distance. This distance metric is used in
correspondence analysis, particularly in ecological applications.

Randomly generate normally distributed data into two matrices. The number of rows can
vary, but the number of columns must be equal. This example uses 2-D data for plotting.

rng(1); % For reproducibility

X = randn(50,2);

Y = randn(4,2);

h = zeros(3,1);

figure;

h(1) = plot(X(:,1),X(:,2),'bx');

hold on;

h(2) = plot(Y(:,1),Y(:,2),'rs','MarkerSize',10);

title('Heterogenous Data')

 Classification Using Nearest Neighbors

16-25

The rows of X and Y correspond to observations, and the columns are, in general,
dimensions (for example, predictors).

The chi-square distance between j-dimensional points x and z is

where is the weight associated with dimension j.

Choose weights for each dimension, and specify the chi-square distance function. The
distance function must:

16 Nonparametric Supervised Learning

16-26

• Take as input arguments one row of X, e.g., x, and the matrix Z.
• Compare x to each row of Z.
• Return a vector D of length , where is the number of rows of Z. Each element of

D is the distance between the observation corresponding to x and the observations
corresponding to each row of Z.

w = [0.4; 0.6];

chiSqrDist = @(x,Z)sqrt((bsxfun(@minus,x,Z).^2)*w);

This example uses arbitrary weights for illustration.

Find the indices of the three nearest observations in X to each observation in Y.

k = 3;

[Idx,D] = knnsearch(X,Y,'Distance',chiSqrDist,'k',k);

idx and D are 4-by-3 matrices.

• idx(j,1) is the row index of the closest observation in X to observation j of Y, and
D(j,1) is their distance.

• idx(j,2) is the row index of the next closest observation in X to observation j of Y,
and D(j,2) is their distance.

• And so on.

Identify the nearest observations in the plot.

for j = 1:k;

 h(3) = plot(X(Idx(:,j),1),X(Idx(:,j),2),'ko','MarkerSize',10);

end

legend(h,{'\texttt{X}','\texttt{Y}','Nearest Neighbor'},'Interpreter','latex');

title('Heterogenous Data and Nearest Neighbors')

hold off;

 Classification Using Nearest Neighbors

16-27

Several observations of Y share nearest neighbors.

Verify that the chi-square distance metric is equivalent to the Euclidean distance metric,
but with an optional scaling parameter.

[IdxE,DE] = knnsearch(X,Y,'Distance','seuclidean','k',k,...

 'Scale',1./(sqrt(w)));

AreDiffIdx = sum(sum(Idx ~= IdxE))

AreDiffDist = sum(sum(abs(D - DE) > eps))

AreDiffIdx =

 0

16 Nonparametric Supervised Learning

16-28

AreDiffDist =

 0

The indices and distances between the two implementations of three nearest neighbors
are practically equivalent.

K-Nearest Neighbor Classification for Supervised Learning

The ClassificationKNN class lets you:

• “Construct a KNN Classifier” on page 16-28
• “Examine the Quality of a KNN Classifier” on page 16-29
• “Predict Classification Based on a KNN Classifier” on page 16-30
• “Modify a KNN Classifier” on page 16-30

Work with the classifier as you would with ClassificationTree or
ClassificationDiscriminant. In particular, prepare your data for classification
according to the procedure in “Steps in Supervised Learning” on page 16-2. Then
construct the classifier using fitcknn.

Construct a KNN Classifier

This example shows how to construct a k-nearest neighbor classifier for the Fisher iris
data.

Load the Fisher iris data.

load fisheriris

X = meas; % use all data for fitting

Y = species; % response data

Construct the classifier using fitcknn.

mdl = fitcknn(X,Y)

mdl =

 Classification Using Nearest Neighbors

16-29

 ClassificationKNN

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 Distance: 'euclidean'

 NumNeighbors: 1

 Properties, Methods

A default k-nearest neighbor classifier uses just the single nearest neighbor. Often, a
classifier is more robust with more neighbors than that. Change the neighborhood size of
mdl to 4, meaning mdl classifies using the four nearest neighbors:

mdl.NumNeighbors = 4;

Examine the Quality of a KNN Classifier

This example shows how to examine the quality of a k-nearest neighbor classifier using
resubstitution and cross validation.

Construct a KNN classifier for the Fisher iris data as in “Construct a KNN Classifier” on
page 16-28.

load fisheriris

X = meas; % use all data for fitting

Y = species; % response data

mdl = fitcknn(X,Y,'NumNeighbors',4);

Examine the resubstitution loss, which, by default, is the fraction of misclassifications
from the predictions of mdl. (For nondefault cost, weights, or priors, see
ClassificationKNN.loss.)

rloss = resubLoss(mdl)

rloss =

 0.0400

The classifier predicts incorrectly for 4% of the training data.

Construct a cross-validated classifier from the model.

16 Nonparametric Supervised Learning

16-30

cvmdl = crossval(mdl);

Examine the cross-validation loss, which is the average loss of each cross-validation
model when predicting on data that is not used for training.

kloss = kfoldLoss(cvmdl)

kloss =

 0.0600

The cross-validated classification accuracy resembles the resubstitution accuracy.
Therefore, you can expect mdl to misclassify approximately 5% of new data, assuming
that the new data has about the same distribution as the training data.

Predict Classification Based on a KNN Classifier

This example shows how to predict classification for a k-nearest neighbor classifier.

Construct a default KNN classifier for the Fisher iris data as in “Construct a KNN
Classifier” on page 16-28.

load fisheriris

X = meas; % use all data for fitting

Y = species; % response data

mdl = fitcknn(X,Y);

Predict the classification of an average flower.

flwr = mean(X); % an average flower

flwrClass = predict(mdl,flwr)

flwrClass =

 'versicolor'

Modify a KNN Classifier

This example shows how to modify a k-nearest neighbor classifier.

Construct a default KNN classifier for the Fisher iris data as in “Construct a KNN
Classifier” on page 16-28.

 Classification Using Nearest Neighbors

16-31

load fisheriris

X = meas; % use all data for fitting

Y = species; % response data

mdl = fitcknn(X,Y);

Modify the model to use the three nearest neighbors, rather than the default one nearest
neighbor.

mdl.NumNeighbors = 3;

Compare the resubstitution predictions and cross-validation loss with the new number of
neighbors.

rloss = resubLoss(mdl)

rloss =

 0.0400

rng('default')

cvmdl = crossval(mdl,'kfold',5);

kloss = kfoldLoss(cvmdl)

kloss =

 0.0333

The model with three neighbors has lower cross-validated loss than a model with four
neighbors (see “Examine the Quality of a KNN Classifier” on page 16-29).

Modify the model to use cosine distance instead of the default, and examine the loss. To
use cosine distance, you must recreate the model using the exhaustive search method.

cmdl = fitcknn(X,Y,'NSMethod','exhaustive',...

 'Distance','cosine');

cmdl.NumNeighbors = 3;

closs = resubLoss(cmdl)

closs =

 0.0200

The classifier now has lower resubstitution error than before.

Check the quality of a cross-validated version of the new model.

16 Nonparametric Supervised Learning

16-32

cvcmdl = crossval(cmdl);

kcloss = kfoldLoss(cvcmdl)

kcloss =

 0.0333

The cross-validated loss is the same as before. The lesson is that improving the
resubstitution error does not necessarily produce a model with better predictions.

 Classification Trees and Regression Trees

16-33

Classification Trees and Regression Trees
In this section...

“What Are Classification Trees and Regression Trees?” on page 16-33
“Creating a Classification Tree” on page 16-34
“Creating a Regression Tree” on page 16-34
“Viewing a Classification or Regression Tree” on page 16-35
“How the Fit Methods Create Trees” on page 16-38
“Predicting Responses With Classification and Regression Trees” on page 16-40
“Predict Out-of-Sample Responses of Subtrees” on page 16-41
“Improving Classification Trees and Regression Trees” on page 16-44
“Alternative: classregtree” on page 16-55

What Are Classification Trees and Regression Trees?

Classification trees and regression trees predict responses to data. To predict a response,
follow the decisions in the tree from the root (beginning) node down to a leaf node. The
leaf node contains the response. Classification trees give responses that are nominal,
such as 'true' or 'false'. Regression trees give numeric responses.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction
involves checking the value of one predictor (variable). For example, here is a simple
classification tree:

This tree predicts classifications based on two predictors, x1 and x2. To predict, start at
the top node, represented by a triangle (Δ). The first decision is whether x1 is smaller
than 0.5. If so, follow the left branch, and see that the tree classifies the data as type 0.

If, however, x1 exceeds 0.5, then follow the right branch to the lower-right triangle node.
Here the tree asks if x2 is smaller than 0.5. If so, then follow the left branch to see that
the tree classifies the data as type 0. If not, then follow the right branch to see that the
that the tree classifies the data as type 1.

16 Nonparametric Supervised Learning

16-34

To learn how to prepare your data for classification or regression using decision trees, see
“Steps in Supervised Learning” on page 16-2.

Creating a Classification Tree

To create a classification tree for the ionosphere data:

load ionosphere % contains X and Y variables

ctree = fitctree(X,Y)

ctree =

 ClassificationTree

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 CategoricalPredictors: []

 NumObservations: 351

 Properties, Methods

Creating a Regression Tree

To create a regression tree for the carsmall data based on the Horsepower and Weight
vectors for data, and MPG vector for response:

load carsmall % contains Horsepower, Weight, MPG

X = [Horsepower Weight];

rtree = fitrtree(X,MPG)

rtree =

 RegressionTree

 PredictorNames: {'x1' 'x2'}

 ResponseName: 'Y'

 ResponseTransform: 'none'

 CategoricalPredictors: []

 NumObservations: 94

 Properties, Methods

 Classification Trees and Regression Trees

16-35

Viewing a Classification or Regression Tree

This example shows how to view a classification or a regression tree. There
are two ways to view a tree: view(tree) returns a text description and
view(tree,'mode','graph') returns a graphic description of the tree.

Create and view a classification tree.

load fisheriris % load the sample data

ctree = fitctree(meas,species); % create classification tree

view(ctree) % text description

Decision tree for classification

1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa

2 class = setosa

3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor

4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor

5 class = virginica

6 if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(ctree,'mode','graph') % graphic description

16 Nonparametric Supervised Learning

16-36

Now, create and view a regression tree.

load carsmall % load the sample data, contains Horsepower, Weight, MPG

X = [Horsepower Weight];

rtree = fitrtree(X,MPG,'MinParent',30); % create classification tree

view(rtree) % text description

Decision tree for regression

1 if x2<3085.5 then node 2 elseif x2>=3085.5 then node 3 else 23.7181

2 if x1<89 then node 4 elseif x1>=89 then node 5 else 28.7931

3 if x1<115 then node 6 elseif x1>=115 then node 7 else 15.5417

 Classification Trees and Regression Trees

16-37

4 if x2<2162 then node 8 elseif x2>=2162 then node 9 else 30.9375

5 fit = 24.0882

6 fit = 19.625

7 fit = 14.375

8 fit = 33.3056

9 fit = 29

view(rtree,'mode','graph') % graphic description

16 Nonparametric Supervised Learning

16-38

How the Fit Methods Create Trees

The fitctree and fitrtree methods perform the following steps to create decision
trees:

1 Start with all input data, and examine all possible binary splits on every predictor.
2 Select a split with best optimization criterion.

 Classification Trees and Regression Trees

16-39

• If the split leads to a child node having too few observations (less than the
MinLeafSize parameter), select a split with the best optimization criterion
subject to the MinLeafSize constraint.

3 Impose the split.
4 Repeat recursively for the two child nodes.

The explanation requires two more items: description of the optimization criterion, and
stopping rule.

Stopping rule: Stop splitting when any of the following hold:

• The node is pure.

• For classification, a node is pure if it contains only observations of one class.
• For regression, a node is pure if the mean squared error (MSE) for the

observed response in this node drops below the MSE for the observed response
in the entire data multiplied by the tolerance on quadratic error per node
(QuadraticErrorTolerance parameter).

• There are fewer than MinParentSize observations in this node.
• Any split imposed on this node produces children with fewer than MinLeafSize

observations.
• The algorithm splits MaxNumSplits nodes.

Optimization criterion:

• Regression: mean-squared error (MSE). Choose a split to minimize the MSE of
predictions compared to the training data.

• Classification: One of three measures, depending on the setting of the
SplitCriterion name-value pair:

• 'gdi' (Gini's diversity index, the default)
• 'twoing'

• 'deviance'

For details, see ClassificationTree “Definitions” on page 22-443.

For a continuous predictor, a tree can split halfway between any two adjacent unique
values found for this predictor. For a categorical predictor with L levels, a classification

16 Nonparametric Supervised Learning

16-40

tree needs to consider 2L–1–1 splits to find the optimal split. Alternatively, you can
choose a heuristic algorithm to find a good split, as described in “Splitting Categorical
Predictors” on page 16-65.

For dual-core systems and above, fitctree and fitrtree parallelize training decision
trees using Intel® Threading Building Blocks (TBB). For details on Intel TBB, see https://
software.intel.com/en-us/intel-tbb.

Predicting Responses With Classification and Regression Trees

After creating a tree, you can easily predict responses for new data. Suppose Xnew is
new data that has the same number of columns as the original data X. To predict the
classification or regression based on the tree and the new data, enter

Ynew = predict(tree,Xnew);

For each row of data in Xnew, predict runs through the decisions in tree and gives
the resulting prediction in the corresponding element of Ynew. For more information
for classification, see the classification predict reference page; for regression, see the
regression predict reference page.

For example, to find the predicted classification of a point at the mean of the
ionosphere data:

load ionosphere % contains X and Y variables

ctree = fitctree(X,Y);

Ynew = predict(ctree,mean(X))

Ynew =

 'g'

To find the predicted MPG of a point at the mean of the carsmall data:

load carsmall % contains Horsepower, Weight, MPG

X = [Horsepower Weight];

rtree = fitrtree(X,MPG);

Ynew = predict(rtree,mean(X))

Ynew =

 28.7931

https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb

 Classification Trees and Regression Trees

16-41

Predict Out-of-Sample Responses of Subtrees

This example hows how to predict out-of-sample responses of regression trees, and then
plot the results.

Load the carsmall data set. Consider Weight as a predictor of the response MPG.

load carsmall

idxNaN = isnan(MPG + Weight);

X = Weight(~idxNaN);

Y = MPG(~idxNaN);

n = numel(X);

Partition the data into training (50%) and validation (50%) sets.

rng(1) % For reproducibility

idxTrn = false(n,1);

idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices

idxVal = idxTrn == false; % Validation set logical indices

Grow a regression tree using the training observations.

Mdl = fitrtree(X(idxTrn),Y(idxTrn));

view(Mdl,'Mode','graph')

16 Nonparametric Supervised Learning

16-42

Compute fitted values of the validation observations for each of several subtrees.

m = max(Mdl.PruneList);

pruneLevels = 0:2:m; % Pruning levels to consider

z = numel(pruneLevels);

Yfit = predict(Mdl,X(idxVal),'SubTrees',pruneLevels);

Yfit is an n-by- z matrix of fitted values in which the rows correspond to observations
and the columns correspond to a subtree.

Plot Yfit and Y against X.

 Classification Trees and Regression Trees

16-43

figure;

sortDat = sortrows([X(idxVal) Y(idxVal) Yfit],1); % Sort all data with respect to X

plot(sortDat(:,1),sortDat(:,2),'*');

hold on;

plot(repmat(sortDat(:,1),1,size(Yfit,2)),sortDat(:,3:end));

lev = cellstr(num2str((pruneLevels)','Level %d MPG'));

legend(['Observed MPG'; lev])

title 'Out-of-Sample Predictions'

xlabel 'Weight (lbs)';

ylabel 'MPG';

h = findobj(gcf);

axis tight;

set(h(4:end),'LineWidth',3) % Widen all lines

16 Nonparametric Supervised Learning

16-44

The values of Yfit for lower pruning levels tend to follow the data more closely than
higher levels. Higher pruning levels tend to be flat for large X intervals.

Improving Classification Trees and Regression Trees

You can tune trees by setting name-value pairs in fitctree and fitrtree. The
remainder of this section describes how to determine the quality of a tree, how to decide
which name-value pairs to set, and how to control the size of a tree:

• “Examining Resubstitution Error” on page 16-44
• “Cross Validation” on page 16-44
• “Control Depth or “Leafiness”” on page 16-46
• “Pruning” on page 16-51

Examining Resubstitution Error

Resubstitution error is the difference between the response training data and the
predictions the tree makes of the response based on the input training data. If the
resubstitution error is high, you cannot expect the predictions of the tree to be good.
However, having low resubstitution error does not guarantee good predictions for new
data. Resubstitution error is often an overly optimistic estimate of the predictive error on
new data.

Example: Resubstitution Error of a Classification Tree

Examine the resubstitution error of a default classification tree for the Fisher iris data:

load fisheriris

ctree = fitctree(meas,species);

resuberror = resubLoss(ctree)

resuberror =

 0.0200

The tree classifies nearly all the Fisher iris data correctly.

Cross Validation

To get a better sense of the predictive accuracy of your tree for new data, cross validate
the tree. By default, cross validation splits the training data into 10 parts at random. It

 Classification Trees and Regression Trees

16-45

trains 10 new trees, each one on nine parts of the data. It then examines the predictive
accuracy of each new tree on the data not included in training that tree. This method
gives a good estimate of the predictive accuracy of the resulting tree, since it tests the
new trees on new data.

Cross Validate a Regression Tree

This example shows how to examine the resubstitution and cross-validation accuracy of a
regression tree for predicting mileage based on the carsmall data.

Load the carsmall data set. Consider acceleration, displacement, horsepower, and
weight as predictors of MPG.

load carsmall

X = [Acceleration Displacement Horsepower Weight];

Grow a regression tree using all of the observations.

rtree = fitrtree(X,MPG);

Compute the in-sample error.

resuberror = resubLoss(rtree)

resuberror =

 4.7188

The resubstitution loss for a regression tree is the mean-squared error. The resulting
value indicates that a typical predictive error for the tree is about the square root of 4.7,
or a bit over 2.

Estimate the cross-validation MSE.

rng 'default';

cvrtree = crossval(rtree);

cvloss = kfoldLoss(cvrtree)

cvloss =

 23.8065

16 Nonparametric Supervised Learning

16-46

The cross-validated loss is almost 25, meaning a typical predictive error for the tree on
new data is about 5. This demonstrates that cross-validated loss is usually higher than
simple resubstitution loss.

Control Depth or “Leafiness”

When you grow a decision tree, consider its simplicity and predictive power. A deep tree
with many leaves is usually highly accurate on the training data. However, the tree is
not guaranteed to show a comparable accuracy on an independent test set. A leafy tree
tends to overtrain (or overfit), and its test accuracy is often far less than its training
(resubstitution) accuracy. In contrast, a shallow tree does not attain high training
accuracy. But a shallow tree can be more robust — its training accuracy could be close
to that of a representative test set. Also, a shallow tree is easy to interpret. If you do not
have enough data for training and test, estimate tree accuracy by cross validation.

fitctree and fitrtree have three name-value pair arguments that control the depth
of resulting decision trees:

• MaxNumSplits — The maximal number of branch node splits is MaxNumSplits
per tree. Set a large value for MaxNumSplits to get a deep tree. The default is
size(X,1) – 1.

• MinLeafSize — Each leaf has at least MinLeafSize observations. Set small values
of MinLeafSize to get deep trees. The default is 1.

• MinParentSize — Each branch node in the tree has at least MinParentSize
observations. Set small values of MinParentSize to get deep trees. The default is 10.

If you specify MinParentSize and MinLeafSize, the learner uses the setting that
yields trees with larger leaves (i.e., shallower trees):
MinParent = max(MinParentSize,2*MinLeafSize)

If you supply MaxNumSplits, the software splits a tree until one of the three splitting
criteria is satisfied.

For an alternative method of controlling the tree depth, see “Pruning” on page 16-51.

Select Appropriate Tree Depth

This example shows how to control the depth of a decision tree, and how to choose an
appropriate depth.

 Classification Trees and Regression Trees

16-47

Load the ionosphere data:

load ionosphere

Generate minimum leaf occupancies for classification trees from 10 to 100, spaced
exponentially apart:

leafs = logspace(1,2,10);

Create cross validated classification trees for the ionosphere data with minimum leaf
occupancies from leafs:

rng('default')

N = numel(leafs);

err = zeros(N,1);

for n=1:N

 t = fitctree(X,Y,'CrossVal','On',...

 'MinLeaf',leafs(n));

 err(n) = kfoldLoss(t);

end

plot(leafs,err);

xlabel('Min Leaf Size');

ylabel('cross-validated error');

16 Nonparametric Supervised Learning

16-48

The best leaf size is between about 20 and 50 observations per leaf.

Compare the near-optimal tree with at least 40 observations per leaf with the default
tree, which uses 10 observations per parent node and 1 observation per leaf.

DefaultTree = fitctree(X,Y);

view(DefaultTree,'Mode','Graph')

OptimalTree = fitctree(X,Y,'minleaf',40);

view(OptimalTree,'mode','graph')

 Classification Trees and Regression Trees

16-49

16 Nonparametric Supervised Learning

16-50

resubOpt = resubLoss(OptimalTree);

lossOpt = kfoldLoss(crossval(OptimalTree));

resubDefault = resubLoss(DefaultTree);

lossDefault = kfoldLoss(crossval(DefaultTree));

resubOpt,resubDefault,lossOpt,lossDefault

resubOpt =

 0.0883

 Classification Trees and Regression Trees

16-51

resubDefault =

 0.0114

lossOpt =

 0.1054

lossDefault =

 0.1111

The near-optimal tree is much smaller and gives a much higher resubstitution error. Yet
it gives similar accuracy for cross-validated data.

Pruning

Pruning optimizes tree depth (leafiness) is by merging leaves on the same tree branch.
“Control Depth or “Leafiness”” on page 16-46 describes one method for selecting the
optimal depth for a tree. Unlike in that section, you do not need to grow a new tree for
every node size. Instead, grow a deep tree, and prune it to the level you choose.

Prune a tree at the command line using the prune method (classification) or prune
method (regression). Alternatively, prune a tree interactively with the tree viewer:

view(tree,'mode','graph')

To prune a tree, the tree must contain a pruning sequence. By default, both fitctree
and fitrtree calculate a pruning sequence for a tree during construction. If you
construct a tree with the 'Prune' name-value pair set to 'off', or if you prune a tree
to a smaller level, the tree does not contain the full pruning sequence. Generate the full
pruning sequence with the prune method (classification) or prune method (regression).

Prune a Classification Tree

This example creates a classification tree for the ionosphere data, and prunes it to a
good level.

Load the ionosphere data:

load ionosphere

16 Nonparametric Supervised Learning

16-52

Construct a default classification tree for the data:

tree = fitctree(X,Y);

View the tree in the interactive viewer:

view(tree,'Mode','Graph')

Find the optimal pruning level by minimizing cross-validated loss:

[~,~,~,bestlevel] = cvLoss(tree,...

 Classification Trees and Regression Trees

16-53

 'SubTrees','All','TreeSize','min')

bestlevel =

 6

Prune the tree to level 6:

view(tree,'Mode','Graph','Prune',6)

16 Nonparametric Supervised Learning

16-54

Alternatively, use the interactive window to prune the tree.

The pruned tree is the same as the near-optimal tree in the "Select Appropriate Tree
Depth" example.

Set 'TreeSize' to 'SE' (default) to find the maximal pruning level for which the tree
error does not exceed the error from the best level plus one standard deviation:

[~,~,~,bestlevel] = cvLoss(tree,'SubTrees','All')

bestlevel =

 6

In this case the level is the same for either setting of 'TreeSize'.

Prune the tree to use it for other purposes:

tree = prune(tree,'Level',6);

view(tree,'Mode','Graph')

 Classification Trees and Regression Trees

16-55

Alternative: classregtree

The ClassificationTree and RegressionTree classes were released in MATLAB
R2011a. Previously, you represented both classification trees and regression trees
with a classregtree object. The new classes provide all the functionality of the
classregtree class, and are more convenient when used with “Ensemble Methods” on
page 16-68.

16 Nonparametric Supervised Learning

16-56

Statistics and Machine Learning Toolbox software maintains classregtree and its
predecessors treefit, treedisp, treeval, treeprune, and treetest for backward
compatibility. These functions will be removed in a future release.

Train Classification Trees Using classregtree

This example uses Fisher's iris data in fisheriris.mat to create a classification tree
for predicting species using measurements of sepal length, sepal width, petal length,
and petal width as predictors. Here, the predictors are continuous and the response is
categorical.

Load the data and use the classregtree constructor of the classregtree class to
create the classification tree.

load fisheriris

t = classregtree(meas,species,...

 'Names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

t is a classregtree object and can be operated on with any class method.

Use the type method of the classregtree class to show the type of the tree.

treetype = type(t)

treetype =

classification

 Classification Trees and Regression Trees

16-57

classregtree creates a classification tree because species is a cell array of strings,
and the response is assumed to be categorical.

To view the tree, use the view method of the classregtree class.

view(t)

The tree predicts the response values at the circular leaf nodes based on a series of
questions about the iris at the triangular branching nodes. A true answer to any
question follows the branch to the left. A false follows the branch to the right.

16 Nonparametric Supervised Learning

16-58

The tree does not use sepal measurements for predicting species. These can go
unmeasured in new data, and you can enter them as NaN values for predictions. For
example, use the tree to predict the species of an iris with petal length 4.8 and petal
width 1.6.

predicted = t([NaN NaN 4.8 1.6])

predicted =

 'versicolor'

The object allows for functional evaluation, of the form t(X). This is a shorthand way of
calling the eval method of the classregtree class. The predicted species is the left leaf
node at the bottom of the tree in the previous view.

You can use a variety of methods of the classregtree class, such as cutvar and
cuttype to get more information about the split at node 6 that makes the final
distinction between versicolor and virginica.

var6 = cutvar(t,6) % What variable determines the split?

type6 = cuttype(t,6) % What type of split is it?

var6 =

 'PW'

type6 =

 'continuous'

Classification trees fit the original (training) data well, but can do a poor job of
classifying new values. Lower branches, especially, can be strongly affected by
outliers. A simpler tree often avoids overfitting. You can use the prune method of the
classregtree class to find the next largest tree from an optimal pruning sequence.

pruned = prune(t,'Level',1)

view(pruned)

 Classification Trees and Regression Trees

16-59

pruned =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 class = versicolor

7 class = virginica

16 Nonparametric Supervised Learning

16-60

To find the best classification tree, employing the techniques of resubstitution and cross
validation, use the test method of the classregtree class.

Train Regression Trees Using classregtree

This example uses the data on cars in carsmall.mat to create a regression tree
for predicting mileage using measurements of weight and the number of cylinders
as predictors. Here, one predictor (weight) is continuous and the other (cylinders) is
categorical. The response (mileage) is continuous.

Load the data and use the classregtree constructor of the classregtree class to
create the regression tree:

load carsmall

t = classregtree([Weight, Cylinders],MPG,...

 'Categorical',2,'MinParent',20,...

 'Names',{'W','C'})

t =

Decision tree for regression

 1 if W<3085.5 then node 2 elseif W>=3085.5 then node 3 else 23.7181

 2 if W<2371 then node 4 elseif W>=2371 then node 5 else 28.7931

 3 if C=8 then node 6 elseif C in {4 6} then node 7 else 15.5417

 4 if W<2162 then node 8 elseif W>=2162 then node 9 else 32.0741

 5 if C=6 then node 10 elseif C=4 then node 11 else 25.9355

 6 if W<4381 then node 12 elseif W>=4381 then node 13 else 14.2963

 7 fit = 19.2778

 8 fit = 33.3056

 9 fit = 29.6111

10 fit = 23.25

11 if W<2827.5 then node 14 elseif W>=2827.5 then node 15 else 27.2143

12 if W<3533.5 then node 16 elseif W>=3533.5 then node 17 else 14.8696

13 fit = 11

14 fit = 27.6389

15 fit = 24.6667

16 fit = 16.6

17 fit = 14.3889

t is a classregtree object and can be operated on with any of the methods of the class.

Use the type method of the classregtree class to show the type of the tree:

 Classification Trees and Regression Trees

16-61

treetype = type(t)

treetype =

regression

classregtree creates a regression tree because MPG is a numerical vector, and the
response is assumed to be continuous.

To view the tree, use the view method of the classregtree class:

view(t)

16 Nonparametric Supervised Learning

16-62

The tree predicts the response values at the circular leaf nodes based on a series of
questions about the car at the triangular branching nodes. A true answer to any
question follows the branch to the left; a false follows the branch to the right.

Use the tree to predict the mileage for a 2000-pound car with either 4, 6, or 8 cylinders:

mileage2K = t([2000 4; 2000 6; 2000 8])

mileage2K =

 Classification Trees and Regression Trees

16-63

 33.3056

 33.3056

 33.3056

The object allows for functional evaluation, of the form t(X). This is a shorthand way of
calling the eval method of the classregtree class.

5.The predicted responses computed above are all the same. This is because they follow
a series of splits in the tree that depend only on weight, terminating at the leftmost leaf
node in the view above. A 4000-pound car, following the right branch from the top of the
tree, leads to different predicted responses:

mileage4K = t([4000 4; 4000 6; 4000 8])

mileage4K =

 19.2778

 19.2778

 14.3889

You can use a variety of other methods of the classregtree class, such as cutvar,
cuttype, and cutcategories, to get more information about the split at node 3 that
distinguishes the 8-cylinder car:

var3 = cutvar(t,3) % What variable determines the split?

type3 = cuttype(t,3) % What type of split is it?

c = cutcategories(t,3); % Which classes are sent to the left

 % child node, and which to the right?

leftChildNode = c{1}

rightChildNode = c{2}

var3 =

 'C'

type3 =

 'categorical'

16 Nonparametric Supervised Learning

16-64

leftChildNode =

 8

rightChildNode =

 4 6

Regression trees fit the original (training) data well, but may do a poor job of predicting
new values. Lower branches, especially, may be strongly affected by outliers. A simpler
tree often avoids overfitting. To find the best regression tree, employing the techniques of
resubstitution and cross validation, use the test method of the classregtree class.

 Splitting Categorical Predictors

16-65

Splitting Categorical Predictors

In this section...

“Challenges in Splitting Multilevel Predictors” on page 16-65
“Pull Left By Purity” on page 16-66
“Principal Component-Based Partitioning” on page 16-66
“One Versus All By Class” on page 16-66

Challenges in Splitting Multilevel Predictors

When growing a classification tree, finding an optimal binary split for a categorical
predictor with many levels is significantly more computationally challenging than finding
a split for a continuous predictor. For a continuous predictor, a tree can split halfway
between any two adjacent unique values of this predictor.

In contrast, to find an exact optimal binary split for a categorical predictor with L levels,
a classification tree needs to consider 2L–1–1 splits. To obtain this formula, observe that
you can assign L distinct values to the left and right nodes in 2L ways. Two out of these
2L configurations leave either the left or right node empty, and therefore should be
discarded. Now, divide by 2 because left and right can be swapped.

For regression and binary classification problems, with K = 2 response classes, there is
a computational shortcut [1]. The tree can order the categories by mean response (for
regression) or class probability for one of the classes (for classification). Then, the optimal
split is one of the L – 1 splits for the ordered list. When K = 2, fitctree always uses an
exact search.

Therefore, computational challenges really only arise when growing classification
trees for data with K ≥ 3 classes. To reduce computation, there are several heuristic
algorithms for finding a good split. When using fitctree to grow a classification
tree, you can choose an algorithm for splitting categorical predictors using the
AlgorithmForCategorical name-value pair argument. You can also set this algorithm
when creating a classification template.

If you do not specify an algorithm, fitctree splits categorical predictors using the exact
search algorithm, provided the predictor has at most MaxNumCategories levels (the
default is 10 levels, and, depending on your platform, you cannot perform an exact search

16 Nonparametric Supervised Learning

16-66

on categorical predictors with more than 32 or 64 levels). Otherwise, fitctree chooses a
good inexact search algorithm based on the number of classes and levels.

The available heuristic algorithms are: pull left by purity, a principal component-based
partitioning, and one versus all by class.

Pull Left By Purity

This algorithm starts with all L categorical levels on the right branch. Inspect the K
categories that have the largest class probabilities for each class. Move the category with
the maximum value of the split criterion to the left branch. Continue moving categories
from right to left, recording the split criterion at each move, until the right child has only
one category remaining. Out of this sequence, the chosen split is the one that maximizes
the split criterion.

Select this pull left by purity algorithm by using the
'AlgorithmForCategorial','PullLeft' name-value pair in fitctree.

Principal Component-Based Partitioning

This algorithm was developed by Coppersmith, Hong, and Hosking [2]. It finds a close-
to-optimal binary partition of the L predictor levels by searching for a separating
hyperplane that is perpendicular to the first principal component of the weighted
covariance matrix of the centered class probability matrix.

The algorithm assigns a score to each of the L categories, computed as the inner product
between the found principal component and the vector of class probabilities for that
category. Then, the chosen split is the one of the L – 1 splits of the scores that maximizes
the split criterion.

Select this principal component-based partitioning by using the
'AlgorithmForCategorical','PCA' name-value pair in fitctree.

One Versus All By Class

This algorithm starts with all L categorical levels on the right branch. For each of the K
classes, order the categories based on their probability for that class.

For the first class, move each category to the left branch in order, recording the split
criterion at each move. Repeat for the remaining classes. Out of this sequence, the chosen
split is the one that maximizes the split criterion.

 Splitting Categorical Predictors

16-67

Select this one versus all by class algorithm by using the
'AlgorithmForCategorial','OVAbyClass' name-value pair in fitctree.

References

[1] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Chapman & Hall, Boca Raton, 1993.

[2] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. “Partitioning Nominal Attributes
in Decision Trees.” Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197–
217.

See Also
fitctree | fitrtree | template

Related Examples
• “How the Fit Methods Create Trees” on page 16-38

More About
• “What Are Classification Trees and Regression Trees?” on page 16-33

16 Nonparametric Supervised Learning

16-68

Ensemble Methods

In this section...

“Framework for Ensemble Learning” on page 16-68
“Basic Ensemble Examples” on page 16-76
“Test Ensemble Quality” on page 16-79
“Classification with Imbalanced Data” on page 16-84
“Classification: Imbalanced Data or Unequal Misclassification Costs” on page 16-89
“Classification with Many Categorical Levels” on page 16-96
“Surrogate Splits” on page 16-100
“LPBoost and TotalBoost for Small Ensembles” on page 16-103
“Ensemble Regularization” on page 16-108
“Tune RobustBoost” on page 16-121
“Random Subspace Classification” on page 16-124
“TreeBagger Examples” on page 16-129
“Ensemble Algorithms” on page 16-155

Framework for Ensemble Learning

You have several methods for melding results from many weak learners into one high-
quality ensemble predictor. These methods closely follow the same syntax, so you can try
different methods with minor changes in your commands.

Create an ensemble with the fitensemble function. Its syntax is

ens = fitensemble(X,Y,model,numberens,learners)

• X is the matrix of data. Each row contains one observation, and each column contains
one predictor variable.

• Y is the vector of responses, with the same number of observations as the rows in X.
• model is a string naming the type of ensemble.
• numberens is the number of weak learners in ens from each element of learners.

So the number of elements in ens is numberens times the number of elements in
learners.

 Ensemble Methods

16-69

• learners is either a string naming a weak learner, a weak learner template, or a cell
array of such templates.

Pictorially, here is the information you need to create an ensemble:
Data matrix X

Responses Y

Ensemble Method

Number of Weak Learners in Ensemble

Weak Learner(s)

ensemble

For all classification or nonlinear regression problems, follow these steps to create an
ensemble:

1. “Put Predictor Data in a Matrix” on page 16-69
2. “Prepare the Response Data” on page 16-69
3. “Choose an Applicable Ensemble Method” on page 16-70
4. “Set the Number of Ensemble Members” on page 16-73
5. “Prepare the Weak Learners” on page 16-74
6. “Call fitensemble” on page 16-75

Put Predictor Data in a Matrix

All supervised learning methods start with a data matrix, usually called X in this
documentation. Each row of X represents one observation. Each column of X represents
one variable, or predictor.

Prepare the Response Data

You can use a wide variety of data types for response data.

• For regression ensembles, Y must be a numeric vector with the same number of
elements as the number of rows of X.

• For classification ensembles, Y can be any of the following data types. This table also
contains the method of including missing entries.

16 Nonparametric Supervised Learning

16-70

Data Type Missing Entry

Numeric vector NaN

Categorical vector <undefined>

Character array Row of spaces
Cell array of strings ''

Logical vector (not possible to represent)

fitensemble ignores missing values in Y when creating an ensemble.

For example, suppose your response data consists of three observations in the following
order: true, false, true. You could express Y as:

• [1;0;1] (numeric vector)
• nominal({'true','false','true'}) (categorical vector)
• [true;false;true] (logical vector)
• ['true ';'false';'true '] (character array, padded with spaces so each row

has the same length)
• {'true','false','true'} (cell array of strings)

Use whichever data type is most convenient. Because you cannot represent missing
values with logical entries, do not use logical entries when you have missing values in Y.

Choose an Applicable Ensemble Method

fitensemble uses one of these algorithms to create an ensemble.

• For classification with two classes:

• 'AdaBoostM1'

• 'LogitBoost'

• 'GentleBoost'

• 'RobustBoost' (requires an Optimization Toolbox license)
• 'LPBoost' (requires an Optimization Toolbox license)
• 'TotalBoost' (requires an Optimization Toolbox license)
• 'RUSBoost'

 Ensemble Methods

16-71

• 'Subspace'

• 'Bag'

• For classification with three or more classes:

• 'AdaBoostM2'

• 'LPBoost' (requires an Optimization Toolbox license)
• 'TotalBoost' (requires an Optimization Toolbox license)
• 'RUSBoost'

• 'Subspace'

• 'Bag'

• For regression:

• 'LSBoost'

• 'Bag'

'Bag' applies to all methods. When using 'Bag', indicate whether you want a
classifier or regressor with the type name-value pair set to 'classification' or
'regression'.

For descriptions of the various algorithms, see “Ensemble Algorithms” on page 16-155.

See “Suggestions for Choosing an Appropriate Ensemble Algorithm” on page 16-72.

This table lists characteristics of the various algorithms. In the table titles:

• Regress. — Regression
• Classif. — Classification
• Preds. — Predictors
• Imbalance — Good for imbalanced data (one class has many more observations than

the other)
• Stop — Algorithm self-terminates
• Sparse — Requires fewer weak learners than other ensemble algorithms

16 Nonparametric Supervised Learning

16-72

Algorithm Regress. Binary
Classif.

Binary
Classif.
Multi- Level
Preds.

Classif. 3+
Classes

Class
Imbalance

Stop Sparse

Bag × × ×
AdaBoostM1 ×
AdaBoostM2 ×
LogitBoost × ×
GentleBoost × ×
RobustBoost ×
LPBoost × × × ×
TotalBoost × × × ×
RUSBoost × × ×
LSBoost ×
Subspace × ×

RobustBoost, LPBoost, and TotalBoost require an Optimization Toolbox license. Try
TotalBoost before LPBoost, as TotalBoost can be more robust.

Suggestions for Choosing an Appropriate Ensemble Algorithm

• Regression — Your choices are LSBoost or Bag. See “General Characteristics of
Ensemble Algorithms” on page 16-73 for the main differences between boosting
and bagging.

• Binary Classification — Try AdaBoostM1 first, with these modifications:

Data Characteristic Recommended Algorithm

Many predictors Subspace

Skewed data (many more observations of
one class)

RUSBoost

Categorical predictors with over 31 levels LogitBoost or GentleBoost
Label noise (some training data has the
wrong class)

RobustBoost

Many observations Avoid LPBoost, TotalBoost, and Bag

 Ensemble Methods

16-73

• Multiclass Classification — Try AdaBoostM2 first, with these modifications:

Data Characteristic Recommended Algorithm

Many predictors Subspace

Skewed data (many more observations of
one class)

RUSBoost

Many observations Avoid LPBoost, TotalBoost, and Bag

For details of the algorithms, see “Ensemble Algorithms” on page 16-155.

General Characteristics of Ensemble Algorithms

• Bag generally constructs deep trees. This construction is both time consuming and
memory-intensive. This also leads to relatively slow predictions.

• Boost algorithms generally use very shallow trees. This construction uses relatively
little time or memory. However, for effective predictions, boosted trees might need
more ensemble members than bagged trees. Therefore it is not always clear which
class of algorithms is superior.

• Bag can estimate the generalization error without additional cross validation. See
oobLoss.

• Except for Subspace, all boosting and bagging algorithms are based on tree learners.
Subspace can use either discriminant analysis or k-nearest neighbor learners.

For details of the characteristics of individual ensemble members, see “Characteristics of
Classification Algorithms” on page 16-6.

Set the Number of Ensemble Members

Choosing the size of an ensemble involves balancing speed and accuracy.

• Larger ensembles take longer to train and to generate predictions.
• Some ensemble algorithms can become overtrained (inaccurate) when too large.

To set an appropriate size, consider starting with several dozen to several hundred
members in an ensemble, training the ensemble, and then checking the ensemble
quality, as in “Test Ensemble Quality” on page 16-79. If it appears that you need
more members, add them using the resume method (classification) or the resume
method (regression). Repeat until adding more members does not improve ensemble
quality.

16 Nonparametric Supervised Learning

16-74

Tip For classification, the LPBoost and TotalBoost algorithms are self-terminating,
meaning you do not have to investigate the appropriate ensemble size. Try setting
numberens to 500. The algorithms usually terminate with fewer members.

Prepare the Weak Learners

Currently the weak learner types are:

• 'Discriminant' (recommended for Subspace ensemble)
• 'KNN' (only for Subspace ensemble)
• 'Tree' (for any ensemble except Subspace)

There are two ways to set the weak learner type in the ensemble.

• To create an ensemble with default weak learner options, pass in the string as the
weak learner. For example:

ens = fitensemble(X,Y,'AdaBoostM2',50,'Tree');

% or

ens = fitensemble(X,Y,'Subspace',50,'KNN');

• To create an ensemble with nondefault weak learner options, create a nondefault
weak learner using the appropriate template method. For example, if you have
missing data, and want to use trees with surrogate splits for better accuracy:

templ = templateTree('Surrogate','all');

ens = fitensemble(X,Y,'AdaBoostM2',50,templ);

To grow trees with leaves containing a number of observations that is at least 10% of
the sample size:

templ = templateTree('MinLeafSize',size(X,1)/10);

ens = fitensemble(X,Y,'AdaBoostM2',50,templ);

Alternatively, choose the maximal number of splits per tree:

templ = templateTree('MaxNumSplits',4);

ens = fitensemble(X,Y,'AdaBoostM2',50,templ);

While you can give fitensemble a cell array of learner templates, the most common
usage is to give just one weak learner template.

 Ensemble Methods

16-75

For examples using a template, see “Example: Unequal Classification Costs” on page
16-91 and “Surrogate Splits” on page 16-100.

Decision trees can handle NaN values in X. Such values are called “missing”. If you have
some missing values in a row of X, a decision tree finds optimal splits using nonmissing
values only. If an entire row consists of NaN, fitensemble ignores that row. If you
have data with a large fraction of missing values in X, use surrogate decision splits.
For examples of surrogate splits, see “Example: Unequal Classification Costs” on page
16-91 and “Surrogate Splits” on page 16-100.
Common Settings for Tree Weak Learners

• The depth of a weak learner tree makes a difference for training time, memory usage,
and predictive accuracy. You control the depth these parameters:

• MaxNumSplits — The maximal number of branch node splits is MaxNumSplits
per tree. Set large values of MaxNumSplits to get deep trees. The default for
bagging is size(X,1) - 1. The default for boosting is 1.

• MinLeafSize — Each leaf has at least MinLeafSize observations. Set small
values of MinLeafSize to get deep trees. The default for classification is 1 and 5
for regression.

• MinParentSize — Each branch node in the tree has at least MinParentSize
observations. Set small values of MinParentSize to get deep trees. The default
for classification is 2 and 10 for regression.

If you supply both MinParentSize and MinLeafSize, the learner uses the setting
that gives larger leaves (shallower trees):
MinParent = max(MinParent,2*MinLeaf)

If you additionally supply MaxNumSplits, then the software splits a tree until one of
the three splitting criteria is satisfied.

• Surrogate — Grow decision trees with surrogate splits when Surrogate is 'on'.
Use surrogate splits when your data has missing values.

Note: Surrogate splits cause slower training and use more memory.

Call fitensemble

The syntax of fitensemble is:

ens = fitensemble(X,Y,model,numberens,learners)

16 Nonparametric Supervised Learning

16-76

• X is the matrix of data. Each row contains one observation, and each column contains
one predictor variable.

• Y is the responses, with the same number of observations as rows in X.
• model is a string naming the type of ensemble.
• numberens is the number of weak learners in ens from each element of learners.

The number of elements in ens is numberens times the number of elements in
learners.

• learners is a string naming a weak learner, a weak learner template, or a cell array
of such strings and templates.

The result of fitensemble is an ensemble object, suitable for making predictions
on new data. For a basic example of creating a classification ensemble, see “Train a
Classification Ensemble” on page 16-76. For a basic example of creating a regression
ensemble, see “Train a Regression Ensemble” on page 16-78.
Where to Set Name-Value Pairs

There are several name-value pairs you can pass to fitensemble, and several
that apply to the weak learners (templateDiscriminant, templateKNN, and
templateTree). To determine which name-value pair argument is appropriate, the
ensemble or the weak learner:

• Use template name-value pairs to control the characteristics of the weak learners.
• Use fitensemble name-value pair arguments to control the ensemble as a whole,

either for algorithms or for structure.

For example, for an ensemble of boosted classification trees with each tree deeper than
the default, set the templateTree name-value pair arguments MinLeafSize and
MinParentSize to smaller values than the defaults. Or, MaxNumSplits to a larger
value than the defaults. The trees are then leafier (deeper).

To name the predictors in the ensemble (part of the structure of the ensemble), use the
PredictorNames name-value pair in fitensemble.

Basic Ensemble Examples

Train a Classification Ensemble

This example shows how to create a classification tree ensemble for the Fisher iris data,
and use it to predict the classification of a flower with average measurements.

 Ensemble Methods

16-77

Load Fisher's iris data set.

load fisheriris

The predictor data is the meas matrix and the response data is in the species cell array
of strings.

For classification trees with three or more classes, “Suggestions for Choosing an
Appropriate Ensemble Algorithm” suggests using the AdaBoostM2 algorithm.

For this example, arbitrarily choose an ensemble of 100 trees, and use the default tree
options.

Train an ensemble of classification trees.

Mdl = fitensemble(meas,species,'AdaBoostM2',100,'Tree')

Mdl =

 classreg.learning.classif.ClassificationEnsemble

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 NumTrained: 100

 Method: 'AdaBoostM2'

 LearnerNames: {'Tree'}

 ReasonForTermination: 'Terminated normally after completing the reques...'

 FitInfo: [100x1 double]

 FitInfoDescription: {2x1 cell}

Mdl is a ClassificationEnsemble model.

Predict the classification of a flower with average measurements.

flower = predict(Mdl,mean(meas))

flower =

16 Nonparametric Supervised Learning

16-78

 'versicolor'

Train a Regression Ensemble

This example shows how to create a regression ensemble to predict mileage of cars based
on their horsepower and weight, trained on the carsmall data.

Load the carsmall data set.

load carsmall

Prepare the predictor data.

X = [Horsepower Weight];

The response data is MPG. The only available boosted regression ensemble type is
LSBoost. For this example, arbitrarily choose an ensemble of 100 trees, and use the
default tree options.

Train an ensemble of regression trees.

Mdl = fitensemble(X,MPG,'LSBoost',100,'Tree')

Mdl =

 classreg.learning.regr.RegressionEnsemble

 PredictorNames: {'x1' 'x2'}

 ResponseName: 'Y'

 ResponseTransform: 'none'

 NumObservations: 94

 NumTrained: 100

 Method: 'LSBoost'

 LearnerNames: {'Tree'}

 ReasonForTermination: 'Terminated normally after completing the reques...'

 FitInfo: [100x1 double]

 FitInfoDescription: {2x1 cell}

 Regularization: []

Predict the mileage of a car with 150 horsepower weighing 2750 lbs.

 Ensemble Methods

16-79

mileage = predict(Mdl,[150 2750])

mileage =

 22.4236

Test Ensemble Quality

Usually you cannot evaluate the predictive quality of an ensemble based on its
performance on training data. Ensembles tend to “overtrain,” meaning they produce
overly optimistic estimates of their predictive power. This means the result of
resubLoss for classification (resubLoss for regression) usually indicates lower error
than you get on new data.

To obtain a better idea of the quality of an ensemble, use one of these methods:

• Evaluate the ensemble on an independent test set (useful when you have a lot of
training data).

• Evaluate the ensemble by cross validation (useful when you don't have a lot of
training data).

• Evaluate the ensemble on out-of-bag data (useful when you create a bagged ensemble
with fitensemble).

Test Ensemble Quality

This example uses a bagged ensemble so it can use all three methods of evaluating
ensemble quality.

Generate an artificial dataset with 20 predictors. Each entry is a random number from
0 to 1. The initial classification is if and
otherwise.

rng(1,'twister') % for reproducibility

X = rand(2000,20);

Y = sum(X(:,1:5),2) > 2.5;

In addition, to add noise to the results, randomly switch 10% of the classifications:

idx = randsample(2000,200);

16 Nonparametric Supervised Learning

16-80

Y(idx) = ~Y(idx);

Independent Test Set

Create independent training and test sets of data. Use 70% of the data for a training set
by calling cvpartition using the holdout option:

cvpart = cvpartition(Y,'holdout',0.3);

Xtrain = X(training(cvpart),:);

Ytrain = Y(training(cvpart),:);

Xtest = X(test(cvpart),:);

Ytest = Y(test(cvpart),:);

Create a bagged classification ensemble of 200 trees from the training data:

bag = fitensemble(Xtrain,Ytrain,'Bag',200,'Tree',...

 'Type','Classification')

bag =

 classreg.learning.classif.ClassificationBaggedEnsemble

 PredictorNames: {1x20 cell}

 ResponseName: 'Y'

 ClassNames: [0 1]

 ScoreTransform: 'none'

 NumObservations: 1400

 NumTrained: 200

 Method: 'Bag'

 LearnerNames: {'Tree'}

 ReasonForTermination: 'Terminated normally after completing the reques...'

 FitInfo: []

 FitInfoDescription: 'None'

 FResample: 1

 Replace: 1

 UseObsForLearner: [1400x200 logical]

Plot the loss (misclassification) of the test data as a function of the number of trained
trees in the ensemble:

figure;

plot(loss(bag,Xtest,Ytest,'mode','cumulative'));

 Ensemble Methods

16-81

xlabel('Number of trees');

ylabel('Test classification error');

Cross Validation

Generate a five-fold cross-validated bagged ensemble:

cv = fitensemble(X,Y,'Bag',200,'Tree',...

 'type','classification','kfold',5)

cv =

16 Nonparametric Supervised Learning

16-82

 classreg.learning.partition.ClassificationPartitionedEnsemble

 CrossValidatedModel: 'Bag'

 PredictorNames: {1x20 cell}

 ResponseName: 'Y'

 NumObservations: 2000

 KFold: 5

 Partition: [1x1 cvpartition]

 NumTrainedPerFold: [200 200 200 200 200]

 ClassNames: [0 1]

 ScoreTransform: 'none'

Examine the cross-validation loss as a function of the number of trees in the ensemble:

figure;

plot(loss(bag,Xtest,Ytest,'mode','cumulative'));

hold on;

plot(kfoldLoss(cv,'mode','cumulative'),'r.');

hold off;

xlabel('Number of trees');

ylabel('Classification error');

legend('Test','Cross-validation','Location','NE');

 Ensemble Methods

16-83

Cross validating gives comparable estimates to those of the independent set.

Out-of-Bag Estimates

Generate the loss curve for out-of-bag estimates, and plot it along with the other curves:

figure;

plot(loss(bag,Xtest,Ytest,'mode','cumulative'));

hold on;

plot(kfoldLoss(cv,'mode','cumulative'),'r.');

plot(oobLoss(bag,'mode','cumulative'),'k--');

hold off;

xlabel('Number of trees');

ylabel('Classification error');

16 Nonparametric Supervised Learning

16-84

legend('Test','Cross-validation','Out of bag','Location','NE');

The out-of-bag estimates are again comparable to those of the other methods.

Classification with Imbalanced Data

This example shows how to classify when one class has many more observations than
another. Try the RUSBoost algorithm first, because it is designed to handle this case.

This example uses the “Cover type” data from the UCI machine learning archive,
described in http://archive.ics.uci.edu/ml/datasets/Covertype. The data classifies types
of forest (ground cover), based on predictors such as elevation, soil type, and distance to

http://archive.ics.uci.edu/ml/datasets/Covertype

 Ensemble Methods

16-85

water. The data has over 500,000 observations and over 50 predictors, so training and
using a classifier is time consuming.

Blackard and Dean [3] describe a neural net classification of this data. They quote a
70.6% classification accuracy. RUSBoost obtains over 76% classification accuracy; see
steps 6 and 7.

Step 1. Obtain the data.

urlwrite('http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz','forestcover.gz');

Then, extract the data from the forestcover.gz file. The data is in the covtype.data
file.

Step 2. Import the data and prepare it for classification.

Import the data into your workspace. Extract the last data column into a variable named
Y.

load covtype.data

Y = covtype(:,end);

covtype(:,end) = [];

Step 3. Examine the response data.

tabulate(Y)

 Value Count Percent

 1 211840 36.46%

 2 283301 48.76%

 3 35754 6.15%

 4 2747 0.47%

 5 9493 1.63%

 6 17367 2.99%

 7 20510 3.53%

There are hundreds of thousands of data points. Those of class 4 are less than 0.5% of the
total. This imbalance indicates that RUSBoost is an appropriate algorithm.

Step 4. Partition the data for quality assessment.

Use half the data to fit a classifier, and half to examine the quality of the resulting
classifier.

part = cvpartition(Y,'holdout',0.5);

istrain = training(part); % data for fitting

16 Nonparametric Supervised Learning

16-86

istest = test(part); % data for quality assessment

tabulate(Y(istrain))

 Value Count Percent

 1 105920 36.46%

 2 141651 48.76%

 3 17877 6.15%

 4 1374 0.47%

 5 4746 1.63%

 6 8683 2.99%

 7 10255 3.53%

Step 5. Create the ensemble.

Use deep trees for higher ensemble accuracy. To do so, set the trees to have minimal leaf
size of 5. Set LearnRate to 0.1 in order to achieve higher accuracy as well. The data is
large, and, with deep trees, creating the ensemble is time consuming.

t = templateTree('MinLeafSize',5);

tic

rusTree = fitensemble(covtype(istrain,:),Y(istrain),'RUSBoost',1000,t,...

 'LearnRate',0.1,'nprint',100);

toc

Training RUSBoost...

Grown weak learners: 100

Grown weak learners: 200

Grown weak learners: 300

Grown weak learners: 400

Grown weak learners: 500

Grown weak learners: 600

Grown weak learners: 700

Grown weak learners: 800

Grown weak learners: 900

Grown weak learners: 1000

Elapsed time is 918.258401 seconds.

Step 6. Inspect the classification error.

Plot the classification error against the number of members in the ensemble.

figure;

tic

plot(loss(rusTree,covtype(istest,:),Y(istest),'mode','cumulative'));

toc

grid on;

 Ensemble Methods

16-87

xlabel('Number of trees');

ylabel('Test classification error');

Elapsed time is 775.646935 seconds.

The ensemble achieves a classification error of under 24% using 150 or more trees. It
achieves the lowest error for 400 or more trees.

Examine the confusion matrix for each class as a percentage of the true class.

tic

Yfit = predict(rusTree,covtype(istest,:));

toc

tab = tabulate(Y(istest));

bsxfun(@rdivide,confusionmat(Y(istest),Yfit),tab(:,2))*100

16 Nonparametric Supervised Learning

16-88

Elapsed time is 427.293168 seconds.

ans =

 Columns 1 through 6

 83.3771 7.4056 0.0736 0 1.7051 0.2681

 18.3156 66.4652 2.1193 0.0162 9.3435 2.8239

 0 0.0839 90.8038 2.3885 0.6545 6.0693

 0 0 2.4763 95.8485 0 1.6752

 0 0.2739 0.6530 0 98.6518 0.4213

 0 0.1036 3.8346 1.1400 0.4030 94.5187

 0.2340 0 0 0 0.0195 0

 Column 7

 7.1705

 0.9163

 0

 0

 0

 0

 99.7465

All classes except class 2 have over 80% classification accuracy, and classes 3 through
7 have over 90% accuracy. But class 2 makes up close to half the data, so the overall
accuracy is not that high.

Step 7. Compact the ensemble.

The ensemble is large. Remove the data using the compact method.

cmpctRus = compact(rusTree);

sz(1) = whos('rusTree');

sz(2) = whos('cmpctRus');

[sz(1).bytes sz(2).bytes]

ans =

 1.0e+09 *

 1.6947 0.9790

The compacted ensemble is about half the size of the original.

 Ensemble Methods

16-89

Remove half the trees from cmpctRus. This action is likely to have minimal effect on the
predictive performance, based on the observation that 400 out of 1000 trees give nearly
optimal accuracy.

cmpctRus = removeLearners(cmpctRus,[500:1000]);

sz(3) = whos('cmpctRus');

sz(3).bytes

ans =

 475495669

The reduced compact ensemble takes about a quarter the memory of the full ensemble.
Its overall loss rate is under 24%:

L = loss(cmpctRus,covtype(istest,:),Y(istest))

L =

 0.2326

The predictive accuracy on new data might differ, because the ensemble accuracy might
be biased. The bias arises because the same data used for assessing the ensemble
was used for reducing the ensemble size. To obtain an unbiased estimate of requisite
ensemble size, you should use cross validation. However, that procedure is time
consuming.

Classification: Imbalanced Data or Unequal Misclassification Costs

In many real-world applications, you might prefer to treat classes in your data
asymmetrically. For example, you might have data with many more observations of
one class than of any other. Or you might work on a problem in which misclassifying
observations of one class has more severe consequences than misclassifying observations
of another class. In such situations, you can use two optional parameters for
fitensemble: prior and cost.

By using prior, you set prior class probabilities (that is, class probabilities used for
training). Use this option if some classes are under- or overrepresented in your training
set. For example, you might obtain your training data by simulation. Because simulating
class A is more expensive than class B, you opt to generate fewer observations of class
A and more observations of class B. You expect, however, that class A and class B are
mixed in a different proportion in the real world. In this case, set prior probabilities

16 Nonparametric Supervised Learning

16-90

for class A and B approximately to the values you expect to observe in the real world.
fitensemble normalizes prior probabilities to make them add up to 1; multiplying all
prior probabilities by the same positive factor does not affect the result of classification.

If classes are adequately represented in the training data but you want to treat them
asymmetrically, use the cost parameter. Suppose you want to classify benign and
malignant tumors in cancer patients. Failure to identify a malignant tumor (false
negative) has far more severe consequences than misidentifying benign as malignant
(false positive). You should assign high cost to misidentifying malignant as benign and
low cost to misidentifying benign as malignant.

You must pass misclassification costs as a square matrix with nonnegative elements.
Element C(i,j) of this matrix is the cost of classifying an observation into class j if
the true class is i. The diagonal elements C(i,i) of the cost matrix must be 0. For the
previous example, you can choose malignant tumor to be class 1 and benign tumor to be
class 2. Then you can set the cost matrix to

0

1 0

cÈ

Î
Í

˘

˚
˙

where c > 1 is the cost of misidentifying a malignant tumor as benign. Costs are
relative—multiplying all costs by the same positive factor does not affect the result of
classification.

If you have only two classes, fitensemble adjusts their prior probabilities using
%P C Pi ij i= for class i = 1,2 and j ≠ i. Pi are prior probabilities either passed into

fitensemble or computed from class frequencies in the training data, and %Pi are
adjusted prior probabilities. Then fitensemble uses the default cost matrix

0 1

1 0

È

Î
Í

˘

˚
˙

and these adjusted probabilities for training its weak learners. Manipulating the cost
matrix is thus equivalent to manipulating the prior probabilities.

If you have three or more classes, fitensemble also converts input costs into adjusted
prior probabilities. This conversion is more complex. First, fitensemble attempts
to solve a matrix equation described in Zhou and Liu [31]. If it fails to find a solution,

 Ensemble Methods

16-91

fitensemble applies the “average cost” adjustment described in Breiman et al. [10]. For
more information, see Zadrozny, Langford, and Abe [30].

Example: Unequal Classification Costs

This example uses data on patients with hepatitis to see if they live or die as a result of
the disease. The data set is described at http://archive.ics.uci.edu/ml/datasets/Hepatitis.

1 Read the hepatitis data set from the UCI repository as a character array. Then
convert the result to a cell array of strings using textscan. Specify a cell array of
strings containing the variable names.

hepatitis = textscan(urlread(['http://archive.ics.uci.edu/ml/' ...

 'machine-learning-databases/hepatitis/hepatitis.data']),...

 '%f','TreatAsEmpty','?',...

 'Delimiter',',');

size(hepatitis)

VarNames = {'dieOrLive' 'age' 'sex' 'steroid' 'antivirals' 'fatigue' ...

 'malaise' 'anorexia' 'liverBig' 'liverFirm' 'spleen' ...

 'spiders' 'ascites' 'varices' 'bilirubin' 'alkPhosphate' 'sgot' ...

 'albumin' 'protime' 'histology'};

ans =

 1 20

hepatitis is a 1-by-20 cell array of strings. The cells correspond to the response
(liveOrDie) and 19 heterogeneous predictors.

2 Specify a numeric matrix containing the predictors and a cell vector containing the
strings 'Die' and 'Live', which are response categories. The response contains
two values: 1 indicates that a patient died, and 2 indicates that a patient lived.
Specify a cell vector of strings for the response using the response categories. The
first variable in hepatitis contains the response.

X = cell2mat(hepatitis(2:end));

ClassNames = {'Die' 'Live'};

Y = ClassNames(hepatitis{:,1});

X is a numeric matrix containing the 19 predictors. Y is a cell array of strings
containing the response.

3 Inspect the data for missing values.

figure;

barh(sum(isnan(X),1)/size(X,1));

http://archive.ics.uci.edu/ml/datasets/Hepatitis

16 Nonparametric Supervised Learning

16-92

h = gca;

h.YTick = 1:numel(VarNames) - 1;

h.YTickLabel = VarNames(2:end);

ylabel 'Predictor';

xlabel 'Fraction of missing values';

Most predictors have missing values, and one has nearly 45% of the missing values.
Therefore, use decision trees with surrogate splits for better accuracy. Because the
data set is small, training time with surrogate splits should be tolerable.

4 Create a classification tree template that uses surrogate splits.

rng(0,'twister') % for reproducibility

t = templateTree('surrogate','all');

 Ensemble Methods

16-93

5 Examine the data or the description of the data to see which predictors are
categorical.

X(1:5,:)

ans =

 Columns 1 through 6

 30.0000 2.0000 1.0000 2.0000 2.0000 2.0000

 50.0000 1.0000 1.0000 2.0000 1.0000 2.0000

 78.0000 1.0000 2.0000 2.0000 1.0000 2.0000

 31.0000 1.0000 NaN 1.0000 2.0000 2.0000

 34.0000 1.0000 2.0000 2.0000 2.0000 2.0000

 Columns 7 through 12

 2.0000 1.0000 2.0000 2.0000 2.0000 2.0000

 2.0000 1.0000 2.0000 2.0000 2.0000 2.0000

 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

 Columns 13 through 18

 2.0000 1.0000 85.0000 18.0000 4.0000 NaN

 2.0000 0.9000 135.0000 42.0000 3.5000 NaN

 2.0000 0.7000 96.0000 32.0000 4.0000 NaN

 2.0000 0.7000 46.0000 52.0000 4.0000 80.0000

 2.0000 1.0000 NaN 200.0000 4.0000 NaN

 Column 19

 1.0000

 1.0000

 1.0000

 1.0000

 1.0000

It appears that predictors 2 through 13 are categorical, as well as predictor 19. You
can confirm this inference using the data set description at http://archive.ics.uci.edu/
ml/datasets/Hepatitis.

6 List the categorical variables.

http://archive.ics.uci.edu/ml/datasets/Hepatitis
http://archive.ics.uci.edu/ml/datasets/Hepatitis

16 Nonparametric Supervised Learning

16-94

catIdx = [2:13,19];

7 Create a cross-validated ensemble using 150 learners and the GentleBoost
algorithm.

Ensemble = fitensemble(X,Y,'GentleBoost',150,t,...

 'PredictorNames',VarNames(2:end),'LearnRate',0.1,...

 'CategoricalPredictors',catIdx,'KFold',5);

figure;

plot(kfoldLoss(Ensemble,'Mode','cumulative','LossFun','exponential'));

xlabel('Number of trees');

ylabel('Cross-validated exponential loss');

8 Inspect the confusion matrix to see which patients the ensemble predicts correctly.

 Ensemble Methods

16-95

[yFit,sFit] = kfoldPredict(Ensemble);

confusionmat(Y,yFit,'Order',ClassNames)

ans =

 18 14

 11 112

Of the 123 patient who live, the ensemble predicts correctly that 112 will live. But
for the 32 patients who die of hepatitis, the ensemble only predicts correctly that
about half will die of hepatitis.

9 There are two types of error in the predictions of the ensemble:

• Predicting that the patient lives, but the patient dies
• Predicting that the patient dies, but the patient lives

Suppose you believe that the first error is five times worse than the second. Create a
new classification cost matrix that reflects this belief.

cost.ClassNames = ClassNames;

cost.ClassificationCosts = [0 5; 1 0];

10 Create a new cross-validated ensemble using cost as the misclassification cost, and
inspect the resulting confusion matrix.

EnsembleCost = fitensemble(X,Y,'GentleBoost',150,t,...

 'PredictorNames',VarNames(2:end),'LearnRate',0.1,...

 'CategoricalPredictors',catIdx,'KFold',5,...

 'Cost',cost);

[yFitCost,sFitCost] = kfoldPredict(EnsembleCost);

confusionmat(Y,yFitCost,'Order',ClassNames)

ans =

 19 13

 8 115

As expected, the new ensemble does a better job classifying the who die. Somewhat
surprisingly, the new ensemble also does a better job classifying the who live, though
the result is not statistically significantly better. The results of the cross validation
are random, so this result is simply a statistical fluctuation. The result seems to
indicate that the classification of who live is not very sensitive to the cost.

16 Nonparametric Supervised Learning

16-96

Classification with Many Categorical Levels

Generally, you cannot use classification with more than 31 levels in any categorical
predictor. However, two boosting algorithms can classify data with many categorical
predictor levels and binary responses: LogitBoost and GentleBoost. For details, see
“LogitBoost” on page 16-162 and “GentleBoost” on page 16-161.

This example uses demographic data from the U.S. Census Bureau, available at
http://archive.ics.uci.edu/ml/machine-learning-databases/adult/. The objective of the
researchers who posted the data is predicting whether an individual makes over $50,000
a year, based on a set of characteristics. You can see details of the data, including
predictor names, in the adult.names file at the site.

1 Load the 'adult.data' file from the UCI Machine Learning Repository. Specify a
cell array of strings containing the variable names.

adult = urlread(['http://archive.ics.uci.edu/ml/'...

 'machine-learning-databases/adult/adult.data']);

VarNames = {'age' 'workclass' 'fnlwgt' 'education' 'educationNum'...

 'maritalStatus' 'occupation' 'relationship' 'race'...

 'sex' 'capitalGain' 'capitalLoss'...

 'hoursPerWeek' 'nativeCountry' 'income'};

2 adult.data represents missing data as '?'. Replace instances of missing data with
an empty string. Use textscan to put the data into a cell array of strings.

adult = strrep(adult,'?','');

adult = textscan(adult,'%f%s%f%s%f%s%s%s%s%s%f%f%f%s%s',...

 'Delimiter',',','TreatAsEmpty','');

The name-value pair argument TreatAsEmpty converts all observations
corresponding to numeric variables to NaN if the observation is an empty string.

3 Since the variables are heterogeneous, put the set into a MATLAB table.

adult = table(adult{:},'VariableNames',VarNames);

4 Some categorical variables have many levels. Plot the number of levels of each
categorical predictor.

cat = varfun(@iscellstr,adult(:,1:end - 1),...

 'OutputFormat','uniform'); % Logical flag for categorical variables

catVars = find(cat); % Indices of categorical variables

countCats = @(var)numel(categories(nominal(var)));

numCat = varfun(@(var)countCats(var),adult(:,catVars),...

http://archive.ics.uci.edu/ml/machine-learning-databases/adult/

 Ensemble Methods

16-97

 'OutputFormat','uniform');

figure;

barh(numCat);

h = gca;

h.YTickLabel = VarNames(catVars);

ylabel 'Predictor';

xlabel 'Number of categories';

The anonymous function countCats converts a predictor to a nominal array,
then counts the unique, nonempty categories of the predictor. Predictor 14
('nativeCountry') has more than 40 categorical levels. For binary classification,
fitctree uses a computational shortcut to find an optimal split for categorical

16 Nonparametric Supervised Learning

16-98

predictors with many categories. For classification with more than two classes,
you can choose a heuristic algorithm to find a good split. For details, see “Splitting
Categorical Predictors” on page 16-65.

5 Specify the predictor matrix using
classreg.regr.modelutils.predictormatrix and the response vector.

X = classreg.regr.modelutils.predictormatrix(adult,'ResponseVar',...

 size(adult,2));

Y = nominal(adult.income);

X is a numeric matrix; predictormatrix converts all categorical variables into
group indices. The name-value pair argument ResponseVar indicates that the last
column is the response variable, and excludes it from the predictor matrix. Y is a
nominal, categorical array.

6 Train classification ensembles using both LogitBoost and GentleBoost.

rng(1); % For reproducibility

LBEnsemble = fitensemble(X,Y,'LogitBoost',300,'Tree',...

 'CategoricalPredictors',cat,'PredictorNames',VarNames(1:end-1),...

 'ResponseName','income');

GBEnsemble = fitensemble(X,Y,'GentleBoost',300,'Tree',...

 'CategoricalPredictors',cat,'PredictorNames',VarNames(1:end-1),...

 'ResponseName','income');

7 Examine the resubstitution error for both ensembles.

figure;

plot(resubLoss(LBEnsemble,'Mode','cumulative'));

hold on

plot(resubLoss(GBEnsemble,'Mode','cumulative'),'r--');

hold off

xlabel('Number of trees');

ylabel('Resubstitution error');

legend('LogitBoost','GentleBoost','Location','NE');

 Ensemble Methods

16-99

The GentleBoost algorithm has a slightly smaller resubstitution error.
8 Estimate the generalization error for both algorithms by cross validation.

CVLBEnsemble = crossval(LBEnsemble,'KFold',5);

CVGBEnsemble = crossval(GBEnsemble,'KFold',5);

figure;

plot(kfoldLoss(CVLBEnsemble,'Mode','cumulative'));

hold on

plot(kfoldLoss(CVGBEnsemble,'Mode','cumulative'),'r--');

hold off

xlabel('Number of trees');

ylabel('Cross-validated error');

legend('LogitBoost','GentleBoost','Location','NE');

16 Nonparametric Supervised Learning

16-100

The cross-validated loss is nearly the same as the resubstitution error.

Surrogate Splits

When you have missing data, trees and ensembles of trees give better predictions when
they include surrogate splits. Furthermore, estimates of predictor importance are often
different with surrogate splits. Eliminating unimportant predictors can save time and
memory for predictions, and can make predictions easier to understand.

This example shows the effects of surrogate splits for predictions for data containing
missing entries in the test set.

 Ensemble Methods

16-101

Load sample data. Partition it into a training and test set.

load ionosphere;

rng(10) % for reproducibility

cv = cvpartition(Y,'Holdout',0.3);

Xtrain = X(training(cv),:);

Ytrain = Y(training(cv));

Xtest = X(test(cv),:);

Ytest = Y(test(cv));

Bag decision trees with and without surrogate splits.

b = fitensemble(Xtrain,Ytrain,'Bag',50,'Tree',...

 'Type','Class');

templS = templateTree('Surrogate','On');

bs = fitensemble(Xtrain,Ytrain,'Bag',50,templS,...

 'Type','Class');

Suppose half of the values in the test set are missing.

Xtest(rand(size(Xtest))>0.5) = NaN;

Test accuracy with and without surrogate splits.

figure;

plot(loss(b,Xtest,Ytest,'Mode','Cumulative'));

hold on;

plot(loss(bs,Xtest,Ytest,'Mode','Cumulative'),'r--');

legend('Regular trees','Trees with surrogate splits');

xlabel('Number of trees');

ylabel('Test classification error');

16 Nonparametric Supervised Learning

16-102

Check the statistical significance of the difference in results with the McNemar test.
Convert the labels to a nominal data type to make it easier to check for equality.

Yfit = nominal(predict(b,Xtest));

YfitS = nominal(predict(bs,Xtest));

N10 = sum(Yfit==nominal(Ytest) & YfitS~=nominal(Ytest));

N01 = sum(Yfit~=nominal(Ytest) & YfitS==nominal(Ytest));

mcnemar = (abs(N10-N01) - 1)^2/(N10+N01);

pval = 1 - chi2cdf(mcnemar,1)

pval =

 1.7683e-04

 Ensemble Methods

16-103

The extremely low p-value indicates that the ensemble with surrogate splits is better in a
statistically significant manner.

LPBoost and TotalBoost for Small Ensembles

This example shows how to obtain the benefits of the LPBoost and TotalBoost
algorithms. These algorithms share two beneficial characteristics:

They are self-terminating, so you don't have to guess how many members to include.

They produce ensembles with some very small weights, so you can safely remove
ensemble members.

Note that the algorithms in this example require an Optimization Toolbox™ license.

Load the data

Load the ionosphere data set.

load ionosphere

Create the classification ensembles

Create ensembles for classifying the ionosphere data using the LPBoost, TotalBoost,
and, for comparison, AdaBoostM1 algorithms. It is hard to know how many members to
include in an ensemble. For LPBoost and TotalBoost, try using 500. For comparison,
also use 500 for AdaBoostM1.

rng default % For reproducibility

T = 500;

adaStump = fitensemble(X,Y,'AdaBoostM1',T,'Tree');

totalStump = fitensemble(X,Y,'TotalBoost',T,'Tree');

lpStump = fitensemble(X,Y,'LPBoost',T,'Tree');

figure;

plot(resubLoss(adaStump,'Mode','Cumulative'));

hold on

plot(resubLoss(totalStump,'Mode','Cumulative'),'r');

plot(resubLoss(lpStump,'Mode','Cumulative'),'g');

hold off

xlabel('Number of stumps');

ylabel('Training error');

legend('AdaBoost','TotalBoost','LPBoost','Location','NE');

16 Nonparametric Supervised Learning

16-104

All three algorithms achieve perfect prediction on the training data after a while.

Examine the number of members in all three ensembles.

[adaStump.NTrained totalStump.NTrained lpStump.NTrained]

ans =

 500 52 74

AdaBoostM1 trained all 500 members. The other two algorithms stopped training early.

 Ensemble Methods

16-105

Cross validate the ensembles

Cross validate the ensembles to better determine ensemble accuracy.

cvlp = crossval(lpStump,'KFold',5);

cvtotal = crossval(totalStump,'KFold',5);

cvada = crossval(adaStump,'KFold',5);

figure;

plot(kfoldLoss(cvada,'Mode','Cumulative'));

hold on

plot(kfoldLoss(cvtotal,'Mode','Cumulative'),'r');

plot(kfoldLoss(cvlp,'Mode','Cumulative'),'g');

hold off

xlabel('Ensemble size');

ylabel('Cross-validated error');

legend('AdaBoost','TotalBoost','LPBoost','Location','NE');

16 Nonparametric Supervised Learning

16-106

It appears that each boosting algorithms achieves 10% or lower loss with 50 ensemble
members, and AdaBoostM1 achieves near 6% error with 150 or more ensemble members.

Compact and remove ensemble members

To reduce the ensemble sizes, compact them, and then use removeLearners. The
question is, how many learners should you remove? The cross-validated loss curves
give you one measure. For another, examine the learner weights for LPBoost and
TotalBoost after compacting.

cada = compact(adaStump);

clp = compact(lpStump);

ctotal = compact(totalStump);

 Ensemble Methods

16-107

figure

subplot(2,1,1)

plot(clp.TrainedWeights)

title('LPBoost weights')

subplot(2,1,2)

plot(ctotal.TrainedWeights)

title('TotalBoost weights')

Both LPBoost and TotalBoost show clear points where the ensemble member weights
become negligible.

Remove the unimportant ensemble members.

cada = removeLearners(cada,150:cada.NTrained);

16 Nonparametric Supervised Learning

16-108

clp = removeLearners(clp,60:clp.NTrained);

ctotal = removeLearners(ctotal,40:ctotal.NTrained);

Check that removing these learners does not affect ensemble accuracy on the training
data.

[loss(cada,X,Y) loss(clp,X,Y) loss(ctotal,X,Y)]

ans =

 0 0 0

Check the resulting compact ensemble sizes.

s(1) = whos('cada');

s(2) = whos('clp');

s(3) = whos('ctotal');

s.bytes

ans =

 543067

ans =

 216603

ans =

 144063

The sizes of the compact ensembles are approximately proportional to the number of
members in each.

Ensemble Regularization

Regularization is a process of choosing fewer weak learners for an ensemble in a way
that does not diminish predictive performance. Currently you can regularize regression

 Ensemble Methods

16-109

ensembles. (You can also regularize a discriminant analysis classifier in a non-ensemble
context; see “Regularize a Discriminant Analysis Classifier” on page 15-21.)

The regularize method finds an optimal set of learner weights αt that minimize

n

N

n

t

T

t t n n

t

T

tw g h x y

= = =
Â Â Â()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
1 1 1

a l a, .

Here

• λ ≥ 0 is a parameter you provide, called the lasso parameter.
• ht is a weak learner in the ensemble trained on N observations with predictors xn,

responses yn, and weights wn.
• g(f,y) = (f – y)2 is the squared error.

The ensemble is regularized on the same (xn,yn,wn) data used for training, so

n

N

n

t

T

t t n nw g h x y

= =
Â Â ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

1 1

a ,

is the ensemble resubstitution error. The error is measured by mean squared error
(MSE).

If you use λ = 0, regularize finds the weak learner weights by minimizing the
resubstitution MSE. Ensembles tend to overtrain. In other words, the resubstitution
error is typically smaller than the true generalization error. By making the
resubstitution error even smaller, you are likely to make the ensemble accuracy worse
instead of improving it. On the other hand, positive values of λ push the magnitude of the
αt coefficients to 0. This often improves the generalization error. Of course, if you choose λ
too large, all the optimal coefficients are 0, and the ensemble does not have any accuracy.
Usually you can find an optimal range for λ in which the accuracy of the regularized
ensemble is better or comparable to that of the full ensemble without regularization.

A nice feature of lasso regularization is its ability to drive the optimized coefficients
precisely to 0. If a learner's weight αt is 0, this learner can be excluded from the

16 Nonparametric Supervised Learning

16-110

regularized ensemble. In the end, you get an ensemble with improved accuracy and fewer
learners.

Regularize a Regression Ensemble

This example uses data for predicting the insurance risk of a car based on its many
attributes.

Load the imports-85 data into the MATLAB workspace:

load imports-85;

Look at a description of the data to find the categorical variables and predictor names:

Description

Description =

1985 Auto Imports Database from the UCI repository

http://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names

Variables have been reordered to place variables with numeric values (referred

to as "continuous" on the UCI site) to the left and categorical values to the

right. Specifically, variables 1:16 are: symboling, normalized-losses,

wheel-base, length, width, height, curb-weight, engine-size, bore, stroke,

compression-ratio, horsepower, peak-rpm, city-mpg, highway-mpg, and price.

Variables 17:26 are: make, fuel-type, aspiration, num-of-doors, body-style,

drive-wheels, engine-location, engine-type, num-of-cylinders, and fuel-system.

The objective of this process is to predict the "symboling," the first variable in the data,
from the other predictors. "symboling" is an integer from -3 (good insurance risk) to 3
(poor insurance risk). You could use a classification ensemble to predict this risk instead
of a regression ensemble. When you have a choice between regression and classification,
you should try regression first.

Prepare the data for ensemble fitting:

Y = X(:,1);

X(:,1) = [];

VarNames = {'normalized-losses' 'wheel-base' 'length' 'width' 'height' ...

 'curb-weight' 'engine-size' 'bore' 'stroke' 'compression-ratio' ...

 'horsepower' 'peak-rpm' 'city-mpg' 'highway-mpg' 'price' 'make' ...

 Ensemble Methods

16-111

 'fuel-type' 'aspiration' 'num-of-doors' 'body-style' 'drive-wheels' ...

 'engine-location' 'engine-type' 'num-of-cylinders' 'fuel-system'};

catidx = 16:25; % indices of categorical predictors

Create a regression ensemble from the data using 300 default trees:

ls = fitensemble(X,Y,'LSBoost',300,'Tree','LearnRate',0.1,...

 'PredictorNames',VarNames,'ResponseName','Symboling',...

 'CategoricalPredictors',catidx)

ls =

 classreg.learning.regr.RegressionEnsemble

 PredictorNames: {1x25 cell}

 ResponseName: 'Symboling'

 ResponseTransform: 'none'

 NumObservations: 205

 NumTrained: 300

 Method: 'LSBoost'

 LearnerNames: {'Tree'}

 ReasonForTermination: 'Terminated normally after completing the reques...'

 FitInfo: [300x1 double]

 FitInfoDescription: {2x1 cell}

 Regularization: []

The final line, Regularization, is empty ([]). To regularize the ensemble, you have to
use the regularize method.

cv = crossval(ls,'KFold',5);

figure;

plot(kfoldLoss(cv,'Mode','Cumulative'));

xlabel('Number of trees');

ylabel('Cross-validated MSE');

ylim([0.2,2])

16 Nonparametric Supervised Learning

16-112

It appears you might obtain satisfactory performance from a smaller ensemble, perhaps
one containing from 50 to 100 trees.

6.Call the regularize method to try to find trees that you can remove from the
ensemble. By default, regularize examines 10 values of the lasso (Lambda) parameter
spaced exponentially.

ls = regularize(ls)

ls =

 classreg.learning.regr.RegressionEnsemble

 PredictorNames: {1x25 cell}

 Ensemble Methods

16-113

 ResponseName: 'Symboling'

 ResponseTransform: 'none'

 NumObservations: 205

 NumTrained: 300

 Method: 'LSBoost'

 LearnerNames: {'Tree'}

 ReasonForTermination: 'Terminated normally after completing the reques...'

 FitInfo: [300x1 double]

 FitInfoDescription: {2x1 cell}

 Regularization: [1x1 struct]

The Regularization property is no longer empty.

Plot the resubstitution mean-squared error (MSE) and number of learners with nonzero
weights against the lasso parameter. Separately plot the value at Lambda = 0. Use a
logarithmic scale because the values of Lambda are exponentially spaced.

figure;

semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);

line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...

 ls.Regularization.ResubstitutionMSE(1)],...

 'Marker','x','Markersize',12,'Color','b');

r0 = resubLoss(ls);

line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...

 [r0 r0],'Color','r','LineStyle','--');

xlabel('Lambda');

ylabel('Resubstitution MSE');

annotation('textbox',[0.5 0.22 0.5 0.05],'String','unregularized ensemble',...

 'Color','r','FontSize',14,'LineStyle','none');

figure;

loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));

line([1e-3 1e-3],...

 [sum(ls.Regularization.TrainedWeights(:,1)>0) ...

 sum(ls.Regularization.TrainedWeights(:,1)>0)],...

 'marker','x','markersize',12,'color','b');

line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...

 [ls.NTrained ls.NTrained],...

 'color','r','LineStyle','--');

xlabel('Lambda');

ylabel('Number of learners');

annotation('textbox',[0.3 0.8 0.5 0.05],'String','unregularized ensemble',...

16 Nonparametric Supervised Learning

16-114

 'color','r','FontSize',14,'LineStyle','none');

 Ensemble Methods

16-115

The resubstitution MSE values are likely to be overly optimistic. To obtain more reliable
estimates of the error associated with various values of Lambda, cross validate the
ensemble using cvshrink. Plot the resulting cross-validation loss (MSE) and number of
learners against Lambda.

rng(0,'Twister') % for reproducibility

[mse,nlearn] = cvshrink(ls,'Lambda',ls.Regularization.Lambda,'KFold',5);

figure;

semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);

hold;

semilogx(ls.Regularization.Lambda,mse,'r--');

hold off;

xlabel('Lambda');

16 Nonparametric Supervised Learning

16-116

ylabel('Mean squared error');

legend('resubstitution','cross-validation','Location','NW');

line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...

 ls.Regularization.ResubstitutionMSE(1)],...

 'Marker','x','Markersize',12,'Color','b');

line([1e-3 1e-3],[mse(1) mse(1)],'Marker','o',...

 'Markersize',12,'Color','r','LineStyle','--');

figure;

loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));

hold;

loglog(ls.Regularization.Lambda,nlearn,'r--');

hold off;

xlabel('Lambda');

ylabel('Number of learners');

legend('resubstitution','cross-validation','Location','NE');

line([1e-3 1e-3],...

 [sum(ls.Regularization.TrainedWeights(:,1)>0) ...

 sum(ls.Regularization.TrainedWeights(:,1)>0)],...

 'Marker','x','Markersize',12,'Color','b');

line([1e-3 1e-3],[nlearn(1) nlearn(1)],'marker','o',...

 'Markersize',12,'Color','r','LineStyle','--');

Warning: Some folds do not have any trained weak learners.

Warning: Some folds do not have any trained weak learners.

Warning: Some folds do not have any trained weak learners.

Current plot held

Current plot held

 Ensemble Methods

16-117

16 Nonparametric Supervised Learning

16-118

Examining the cross-validated error shows that the cross-validation MSE is almost flat
for Lambda up to a bit over 1e-2.

Examine ls.Regularization.Lambda to find the highest value that gives MSE in the
flat region (up to a bit over 1e-2):

jj = 1:length(ls.Regularization.Lambda);

[jj;ls.Regularization.Lambda]

ans =

 Columns 1 through 7

 Ensemble Methods

16-119

 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

 0 0.0014 0.0033 0.0077 0.0183 0.0435 0.1031

 Columns 8 through 10

 8.0000 9.0000 10.0000

 0.2446 0.5800 1.3754

Element 5 of ls.Regularization.Lambda has value 0.0183, the largest in the flat
range.

Reduce the ensemble size using the shrink method. shrink returns a compact ensemble
with no training data. The generalization error for the new compact ensemble was
already estimated by cross validation in mse(5).

cmp = shrink(ls,'weightcolumn',5)

cmp =

 classreg.learning.regr.CompactRegressionEnsemble

 PredictorNames: {1x25 cell}

 ResponseName: 'Symboling'

 ResponseTransform: 'none'

 NumTrained: 15

There are only 15 trees in the new ensemble, notably reduced from the 300 in ls.

Compare the sizes of the ensembles:

sz(1) = whos('cmp'); sz(2) = whos('ls');

[sz(1).bytes sz(2).bytes]

ans =

 84544 1775699

The reduced ensemble is about 5% the size of the original.

Compare the MSE of the reduced ensemble to that of the original ensemble:

16 Nonparametric Supervised Learning

16-120

figure;

plot(kfoldLoss(cv,'mode','cumulative'));

hold on

plot(cmp.NTrained,mse(5),'ro','MarkerSize',12);

xlabel('Number of trees');

ylabel('Cross-validated MSE');

legend('unregularized ensemble','regularized ensemble',...

 'Location','NE');

hold off

 Ensemble Methods

16-121

The reduced ensemble gives low loss while using many fewer trees.

Tune RobustBoost

The RobustBoost algorithm can make good classification predictions even when the
training data has noise. However, the default RobustBoost parameters can produce
an ensemble that does not predict well. This example shows one way of tuning the
parameters for better predictive accuracy.

Note that RobustBoost requires an Optimization Toolbox™ license.

Generate data with label noise. This example has twenty uniform random numbers
per observation, and classifies the observation as 1 if the sum of the first five numbers
exceeds 2.5 (so is larger than average), and 0 otherwise:

rng(0,'twister') % for reproducibility

Xtrain = rand(2000,20);

Ytrain = sum(Xtrain(:,1:5),2) > 2.5;

To add noise, randomly switch 10% of the classifications:

idx = randsample(2000,200);

Ytrain(idx) = ~Ytrain(idx);

Create an ensemble with AdaBoostM1 for comparison purposes:

ada = fitensemble(Xtrain,Ytrain,'AdaBoostM1',...

 300,'Tree','LearnRate',0.1);

Create an ensemble with RobustBoost. Because the data has 10% incorrect
classification, perhaps an error goal of 15% is reasonable.

rb1 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...

 'Tree','RobustErrorGoal',0.15,'RobustMaxMargin',1);

Note that if you set the error goal to a high enough value, then the software returns an
error.

Create an ensemble with very optimistic error goal, 0.01:

rb2 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...

 'Tree','RobustErrorGoal',0.01);

Compare the resubstitution error of the four ensembles:

16 Nonparametric Supervised Learning

16-122

figure

plot(resubLoss(rb1,'Mode','Cumulative'));

hold on

plot(resubLoss(rb2,'Mode','Cumulative'),'r--');

plot(resubLoss(ada,'Mode','Cumulative'),'g.');

hold off;

xlabel('Number of trees');

ylabel('Resubstitution error');

legend('ErrorGoal=0.15','ErrorGoal=0.01',...

 'AdaBoostM1','Location','NE');

All the RobustBoost curves show lower resubstitution error than the AdaBoostM1
curve. The error goal of 0.15 curve shows the lowest resubstitution error over most of
the range.

 Ensemble Methods

16-123

Xtest = rand(2000,20);

Ytest = sum(Xtest(:,1:5),2) > 2.5;

idx = randsample(2000,200);

Ytest(idx) = ~Ytest(idx);

figure;

plot(loss(rb1,Xtest,Ytest,'Mode','Cumulative'));

hold on

plot(loss(rb2,Xtest,Ytest,'Mode','Cumulative'),'r--');

plot(loss(ada,Xtest,Ytest,'Mode','Cumulative'),'g.');

hold off;

xlabel('Number of trees');

ylabel('Test error');

legend('ErrorGoal=0.15','ErrorGoal=0.01',...

 'AdaBoostM1','Location','NE');

16 Nonparametric Supervised Learning

16-124

The error curve for error goal 0.15 is lowest (best) in the plotted range. AdaBoostM1 has
higher error than the curve for error goal 0.15. The curve for the too-optimistic error
goal 0.01 remains substantially higher (worse) than the other algorithms for most of the
plotted range.

Random Subspace Classification

This example shows how to use a random subspace ensemble to increase the accuracy of
classification. It also shows how to use cross validation to determine good parameters for
both the weak learner template and the ensemble.

Load the data

Load the ionosphere data. This data has 351 binary responses to 34 predictors.

load ionosphere;

[N,D] = size(X)

resp = unique(Y)

N =

 351

D =

 34

resp =

 'b'

 'g'

Choose the number of nearest neighbors

Find a good choice for k, the number of nearest neighbors in the classifier, by cross
validation. Choose the number of neighbors approximately evenly spaced on a
logarithmic scale.

rng(8000,'twister') % for reproducibility

 Ensemble Methods

16-125

K = round(logspace(0,log10(N),10)); % number of neighbors

cvloss = zeros(numel(K),1);

for k=1:numel(K)

 knn = fitcknn(X,Y,...

 'NumNeighbors',K(k),'CrossVal','On');

 cvloss(k) = kfoldLoss(knn);

end

figure; % Plot the accuracy versus k

semilogx(K,cvloss);

xlabel('Number of nearest neighbors');

ylabel('10 fold classification error');

title('k-NN classification');

The lowest cross-validation error occurs for k = 2.

16 Nonparametric Supervised Learning

16-126

Create the ensembles

Create ensembles for 2-nearest neighbor classification with various numbers of
dimensions, and examine the cross-validated loss of the resulting ensembles.

This step takes a long time. To keep track of the progress, print a message as each
dimension finishes.

NPredToSample = round(linspace(1,D,10)); % linear spacing of dimensions

cvloss = zeros(numel(NPredToSample),1);

learner = templateKNN('NumNeighbors',2);

for npred=1:numel(NPredToSample)

 subspace = fitensemble(X,Y,'Subspace',100,learner,...

 'NPredToSample',NPredToSample(npred),'CrossVal','On');

 cvloss(npred) = kfoldLoss(subspace);

 fprintf('Random Subspace %i done.\n',npred);

end

figure; % plot the accuracy versus dimension

plot(NPredToSample,cvloss);

xlabel('Number of predictors selected at random');

ylabel('10 fold classification error');

title('k-NN classification with Random Subspace');

Random Subspace 1 done.

Random Subspace 2 done.

Random Subspace 3 done.

Random Subspace 4 done.

Random Subspace 5 done.

Random Subspace 6 done.

Random Subspace 7 done.

Random Subspace 8 done.

Random Subspace 9 done.

Random Subspace 10 done.

 Ensemble Methods

16-127

The ensembles that use five and eight predictors per learner have the lowest cross-
validated error. The error rate for these ensembles is about 0.06, while the other
ensembles have cross-validated error rates that are approximately 0.1 or more.

Find a good ensemble size

Find the smallest number of learners in the ensemble that still give good classification.

ens = fitensemble(X,Y,'Subspace',100,learner,...

 'NPredToSample',5,'CrossVal','on');

figure; % Plot the accuracy versus number in ensemble

plot(kfoldLoss(ens,'Mode','Cumulative'))

xlabel('Number of learners in ensemble');

ylabel('10 fold classification error');

16 Nonparametric Supervised Learning

16-128

title('k-NN classification with Random Subspace');

There seems to be no advantage in an ensemble with more than 50 or so learners. It is
possible that 25 learners gives good predictions.

Create a final ensemble

Construct a final ensemble with 50 learners. Compact the ensemble and see if the
compacted version saves an appreciable amount of memory.

ens = fitensemble(X,Y,'Subspace',50,learner,...

 'NPredToSample',5);

cens = compact(ens);

s1 = whos('ens');

 Ensemble Methods

16-129

s2 = whos('cens');

[s1.bytes s2.bytes] % si.bytes = size in bytes

ans =

 1756230 1525678

The compact ensemble is about 10% smaller than the full ensemble. Both give the same
predictions.

TreeBagger Examples

• “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page
16-129

• “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page 16-141

TreeBagger ensembles have more functionality than those constructed with
fitensemble; see TreeBagger Features Not in fitensemble. Also, some property and
method names differ from their fitensemble counterparts. This section contains
examples of workflow for regression and classification that use this extra TreeBagger
functionality.

Regression of Insurance Risk Rating for Car Imports Using TreeBagger

In this example, use a database of 1985 car imports with 205 observations, 25 predictors,
and 1 response, which is insurance risk rating, or "symboling." The first 15 variables are
numeric and the last 10 are categorical. The symboling index takes integer values from -3
to 3.

Load the data set and split it into predictor and response arrays.

load imports-85;

Y = X(:,1);

X = X(:,2:end);

isCategorical = [zeros(15,1);ones(size(X,2)-15,1)]; % Categorical variable flag

Because bagging uses randomized data drawings, its exact outcome depends on the
initial random seed. To reproduce the results in this example, use the random stream
settings.

16 Nonparametric Supervised Learning

16-130

rng(1945,'twister')

Finding the Optimal Leaf Size

For regression, the general rule is to the set leaf size to 5 and select one third of the
input features for decision splits at random. In the following step, verify the optimal leaf
size by comparing mean squared errors obtained by regression for various leaf sizes.
oobError computes MSE versus the number of grown trees. You must set OOBPred to
'On' to obtain out-of-bag predictions later.

leaf = [5 10 20 50 100];

col = 'rbcmy';

figure

for i=1:length(leaf)

 b = TreeBagger(50,X,Y,'Method','R','OOBPred','On',...

 'CategoricalPredictors',find(isCategorical == 1),'MinLeaf',leaf(i));

 plot(oobError(b),col(i));

 hold on;

end

xlabel 'Number of Grown Trees';

ylabel 'Mean Squared Error' ;

legend({'5' '10' '20' '50' '100'},'Location','NorthEast');

hold off;

 Ensemble Methods

16-131

The red curve (leaf size 5) yields the lowest MSE values.

Estimating Feature Importance

In practical applications, you typically grow ensembles with hundreds of trees. For
example, the previous code block uses 50 trees for faster processing. Now that you have
estimated the optimal leaf size, grow a larger ensemble with 100 trees and use it to
estimate feature importance.

b = TreeBagger(100,X,Y,'Method','R','OOBVarImp','On',...

 'CategoricalPredictors',find(isCategorical == 1),...

 'MinLeaf',5);

Inspect the error curve again to make sure nothing went wrong during training.

16 Nonparametric Supervised Learning

16-132

figure

plot(oobError(b));

xlabel 'Number of Grown Trees';

ylabel 'Out-of-Bag Mean Squared Error';

Prediction ability should depend more on important features than unimportant features.
You can use this idea to measure feature importance.

For each feature, permute the values of this feature across every observation in the data
set and measure how much worse the MSE becomes after the permutation. You can
repeat this for each feature.

Using the following code, plot the increase in MSE due to permuting out-of-bag
observations across each input variable. The OOBPermutedVarDeltaError array

 Ensemble Methods

16-133

stores the increase in MSE averaged over all trees in the ensemble and divided by the
standard deviation taken over the trees, for each variable. The larger this value, the
more important the variable. Imposing an arbitrary cutoff at 0.7, you can select the five
most important features.

figure

bar(b.OOBPermutedVarDeltaError);

xlabel 'Feature Number' ;

ylabel 'Out-of-Bag Feature Importance';

idxvar = find(b.OOBPermutedVarDeltaError>0.7)

idxCategorical = find(isCategorical(idxvar)==1);

idxvar =

 1 2 16 19

16 Nonparametric Supervised Learning

16-134

The OOBIndices property of TreeBagger tracks which observations are out of bag
for what trees. Using this property, you can monitor the fraction of observations in the
training data that are in bag for all trees. The curve starts at approximately 2/3, which is
the fraction of unique observations selected by one bootstrap replica, and goes down to 0
at approximately 10 trees.

finbag = zeros(1,b.NTrees);

for t=1:b.NTrees

 finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));

end

finbag = finbag / size(X,1);

figure

plot(finbag);

xlabel 'Number of Grown Trees';

 Ensemble Methods

16-135

ylabel 'Fraction of In-Bag Observations';

Growing Trees on a Reduced Set of Features

Using just the five most powerful features, determine if it is possible to obtain a similar
predictive power. To begin, grow 100 trees on these features only. The first three of the
five selected features are numeric and the last two are categorical.

b5v = TreeBagger(100,X(:,idxvar),Y,'Method','R',...

 'OOBVarImp','On','CategoricalPredictors',idxCategorical,...

 'MinLeaf',5);

figure

16 Nonparametric Supervised Learning

16-136

plot(oobError(b5v));

xlabel 'Number of Grown Trees';

ylabel 'Out-of-Bag Mean Squared Error';

figure

bar(b5v.OOBPermutedVarDeltaError);

xlabel 'Feature Index';

ylabel 'Out-of-Bag Feature Importance';

 Ensemble Methods

16-137

These five most powerful features give the same MSE as the full set, and the ensemble
trained on the reduced set ranks these features similarly to each other. If you remove
features 1 and 2 from the reduced set, then the predictive power of the algorithm might
not decrease significantly.

Finding Outliers

To find outliers in the training data, compute the proximity matrix using
fillProximities.

b5v = fillProximities(b5v);

16 Nonparametric Supervised Learning

16-138

The method normalizes this measure by subtracting the mean outlier measure for the
entire sample. Then it takes the magnitude of this difference and divides the result by
the median absolute deviation for the entire sample.

figure

histogram(b5v.OutlierMeasure);

xlabel 'Outlier Measure';

ylabel 'Number of Observations';

Discovering Clusters in the Data

By applying multidimensional scaling to the computed matrix of proximities, you can
inspect the structure of the input data and look for possible clusters of observations. The

 Ensemble Methods

16-139

mdsProx method returns scaled coordinates and eigenvalues for the computed proximity
matrix. If you run it with the Colors name-value-pair argument, then this method
creates a scatter plot of two scaled coordinates.

figure(8);

[~,e] = mdsProx(b5v,'Colors','K');

xlabel 'First Scaled Coordinate';

ylabel 'Second Scaled Coordinate';

Assess the relative importance of the scaled axes by plotting the first 20 eigenvalues.

figure

bar(e(1:20));

16 Nonparametric Supervised Learning

16-140

xlabel 'Scaled Coordinate Index';

ylabel 'Eigenvalue';

Saving the Ensemble Configuration for Future Use

To use the trained ensemble for predicting the response on unseen data, store the
ensemble to disk and retrieve it later. If you do not want to compute predictions for
out-of-bag data or reuse training data in any other way, there is no need to store the
ensemble object itself. Saving the compact version of the ensemble is enough in this case.
Extract the compact object from the ensemble.

c = compact(b5v)

 Ensemble Methods

16-141

c =

 CompactTreeBagger

Ensemble with 100 bagged decision trees:

 Method: regression

 Nvars: 4

You can save the resulting CompactTreeBagger model in a *.mat file.

Classifying Radar Returns for Ionosphere Data Using TreeBagger

You can also use ensembles of decision trees for classification. For this example, use
ionosphere data with 351 observations and 34 real-valued predictors. The response
variable is categorical with two levels:

• 'g' represents good radar returns.
• 'b' represents bad radar returns.

The goal is to predict good or bad returns using a set of 34 measurements.

Fix the initial random seed, grow 50 trees, inspect how the ensemble error changes with
accumulation of trees, and estimate feature importance. For classification, it is best to
set the minimal leaf size to 1 and select the square root of the total number of features
for each decision split at random. These settings are defaults for TreeBagger used for
classification.

load ionosphere;

rng(1945,'twister')

b = TreeBagger(50,X,Y,'OOBVarImp','On');

figure

plot(oobError(b));

xlabel('Number of Grown Trees');

ylabel('Out-of-Bag Classification Error');

16 Nonparametric Supervised Learning

16-142

The method trains ensembles with few trees on observations that are in bag for all trees.
For such observations, it is impossible to compute the true out-of-bag prediction, and
TreeBagger returns the most probable class for classification and the sample mean for
regression. You can change the default value returned for in-bag observations using the
DefaultYfit property. If you set the default value to an empty string for classification,
the method excludes in-bag observations from computation of the out-of-bag error. In
this case, the curve is more variable when the number of trees is small, either because
some observations are never out of bag (and are therefore excluded) or because their
predictions are based on few trees.

b.DefaultYfit = '';

figure

plot(oobError(b));

 Ensemble Methods

16-143

xlabel('Number of Grown Trees');

ylabel('Out-of-Bag Error Excluding In-Bag Observations');

The OOBIndices property of TreeBagger tracks which observations are out of bag
for what trees. Using this property, you can monitor the fraction of observations in the
training data that are in bag for all trees. The curve starts at approximately 2/3, which is
the fraction of unique observations selected by one bootstrap replica, and goes down to 0
at approximately 10 trees.

finbag = zeros(1,b.NTrees);

for t=1:b.NTrees

 finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));

end

finbag = finbag / size(X,1);

16 Nonparametric Supervised Learning

16-144

figure

plot(finbag);

xlabel('Number of Grown Trees');

ylabel('Fraction of In-Bag Observations');

Estimate feature importance.

figure

bar(b.OOBPermutedVarDeltaError);

xlabel('Feature Index');

ylabel('Out-of-Bag Feature Importance');

idxvar = find(b.OOBPermutedVarDeltaError>0.75)

 Ensemble Methods

16-145

idxvar =

 3 5 8 27

Having selected the five most important features, grow a larger ensemble on the reduced
feature set. Save time by not permuting out-of-bag observations to obtain new estimates
of feature importance for the reduced feature set (set OOBVarImp to 'off'). You would
still be interested in obtaining out-of-bag estimates of classification error (set OOBPred to
'on').

b5v = TreeBagger(100,X(:,idxvar),Y,'OOBVarImp','off','OOBPred','on');

figure

16 Nonparametric Supervised Learning

16-146

plot(oobError(b5v));

xlabel('Number of Grown Trees');

ylabel('Out-of-Bag Classification Error');

For classification ensembles, in addition to classification error (fraction of misclassified
observations), you can also monitor the average classification margin. For each
observation, the margin is defined as the difference between the score for the true
class and the maximal score for other classes predicted by this tree. The cumulative
classification margin uses the scores averaged over all trees and the mean cumulative
classification margin is the cumulative margin averaged over all observations. The
oobMeanMargin method with the 'mode' argument set to 'cumulative' (default)
shows how the mean cumulative margin changes as the ensemble grows: every new
element in the returned array represents the cumulative margin obtained by including

 Ensemble Methods

16-147

a new tree in the ensemble. If training is successful, you would expect to see a gradual
increase in the mean classification margin.

The method trains ensembles with few trees on observations that are in bag for all trees.
For such observations, it is impossible to compute the true out-of-bag prediction, and
TreeBagger returns the most probable class for classification and the sample mean for
regression.

For decision trees, a classification score is the probability of observing an instance of this
class in this tree leaf. For example, if the leaf of a grown decision tree has five 'good'
and three 'bad' training observations in it, the scores returned by this decision tree for
any observation fallen on this leaf are 5/8 for the 'good' class and 3/8 for the 'bad'
class. These probabilities are called 'scores' for consistency with other classifiers that
might not have an obvious interpretation for numeric values of returned predictions.

figure

plot(oobMeanMargin(b5v));

xlabel('Number of Grown Trees');

ylabel('Out-of-Bag Mean Classification Margin');

16 Nonparametric Supervised Learning

16-148

Compute the matrix of proximities and examine the distribution of outlier measures.
Unlike regression, outlier measures for classification ensembles are computed within
each class separately.

b5v = fillProximities(b5v);

figure

histogram(b5v.OutlierMeasure);

xlabel('Outlier Measure');

ylabel('Number of Observations');

 Ensemble Methods

16-149

Slightly more than half of the extreme outliers are labeled 'bad'.

extremeOutliers = b5v.Y(b5v.OutlierMeasure>40)

percentBad = 100*sum(strcmp(extremeOutliers,'b'))/numel(extremeOutliers)

extremeOutliers =

 'g'

 'g'

 'g'

 'g'

 'g'

 'g'

16 Nonparametric Supervised Learning

16-150

percentBad =

 0

As for regression, you can plot scaled coordinates, displaying the two classes in different
colors using the 'Colors' name-value pair argument of mdsProx. This argument takes
a string in which every character represents a color. The software does not rank class
names. Therefore, it is best practice to determine the position of the classes in the
ClassNames property of the ensemble.

gPosition = find(strcmp('g',b5v.ClassNames))

gPosition =

 2

The 'bad' class is first and the 'good' class is second. Display scaled coordinates using
red for the 'bad' class and blue for the 'good' class observations.

figure

[s,e] = mdsProx(b5v,'Colors','rb');

xlabel('First Scaled Coordinate');

ylabel('Second Scaled Coordinate');

 Ensemble Methods

16-151

Plot the first 20 eigenvalues obtained by scaling. The first eigenvalue clearly dominates
and the first scaled coordinate is most important.

figure

bar(e(1:20));

xlabel('Scaled Coordinate Index');

ylabel('Eigenvalue');

16 Nonparametric Supervised Learning

16-152

Another way of exploring the performance of a classification ensemble is to plot its
Receiver Operating Characteristic (ROC) curve or another performance curve suitable for
the current problem. Obtain predictions for out-of-bag observations. For a classification
ensemble, the oobPredict method returns a cell array of classification labels as the
first output argument and a numeric array of scores as the second output argument.
The returned array of scores has two columns, one for each class. In this case, the first
column is for the 'bad' class and the second column is for the 'good' class. One column
in the score matrix is redundant because the scores represent class probabilities in tree
leaves and by definition add up to 1.

[Yfit,Sfit] = oobPredict(b5v);

 Ensemble Methods

16-153

Use perfcurve to compute a performance curve. By default, perfcurve returns the
standard ROC curve, which is the true positive rate versus the false positive rate.
perfcurve requires true class labels, scores, and the positive class label for input. In
this case, choose the 'good' class as positive.

[fpr,tpr] = perfcurve(b5v.Y,Sfit(:,gPosition),'g');

figure

plot(fpr,tpr);

xlabel('False Positive Rate');

ylabel('True Positive Rate');

Instead of the standard ROC curve, you might want to plot, for example, ensemble
accuracy versus threshold on the score for the 'good' class. The ycrit input argument

16 Nonparametric Supervised Learning

16-154

of perfcurve lets you specify the criterion for the y-axis, and the third output argument
of perfcurve returns an array of thresholds for the positive class score. Accuracy is the
fraction of correctly classified observations, or equivalently, 1 minus the classification
error.

[fpr,accu,thre] = perfcurve(b5v.Y,Sfit(:,gPosition),'g','YCrit','Accu');

figure(20);

plot(thre,accu);

xlabel('Threshold for ''good'' Returns');

ylabel('Classification Accuracy');

The curve shows a flat region indicating that any threshold from 0.2 to 0.6 is a
reasonable choice. By default, the perfcurve assigns classification labels using 0.5

 Ensemble Methods

16-155

as the boundary between the two classes. You can find exactly what accuracy this
corresponds to.

accu(abs(thre-0.5)<eps)

ans =

 Empty matrix: 0-by-1

The maximal accuracy is a little higher than the default one.

[maxaccu,iaccu] = max(accu)

maxaccu =

 0.9316

iaccu =

 104

The optimal threshold is therefore.

thre(iaccu)

ans =

 0.4570

Ensemble Algorithms

• “AdaBoostM1” on page 16-156
• “AdaBoostM2” on page 16-158
• “Bag” on page 16-158
• “GentleBoost” on page 16-161

16 Nonparametric Supervised Learning

16-156

• “LogitBoost” on page 16-162
• “LPBoost” on page 16-164
• “LSBoost” on page 16-165
• “RobustBoost” on page 16-165
• “RUSBoost” on page 16-166
• “Subspace” on page 16-167
• “TotalBoost” on page 16-168

AdaBoostM1

AdaBoostM1 is a very popular boosting algorithm for binary classification. The algorithm
trains learners sequentially. For every learner with index t, AdaBoostM1 computes the
weighted classification error

e t

n

N

n
t

n t nd y h x= π ()()
=

()Â
1

I ,

where

• xn is a vector of predictor values for observation n.
• yn is the true class label.
• ht is the prediction of learner (hypothesis) with index t.
• I is the indicator function.
•

d
n

t() is the weight of observation n at step t.

AdaBoostM1 then increases weights for observations misclassified by learner t and
reduces weights for observations correctly classified by learner t. The next learner t + 1 is

then trained on the data with updated weights d
n

t+()1 .

After training finishes, AdaBoostM1 computes prediction for new data using

f x h x

t

T

t t() = ()
=

Â
1

a ,

 Ensemble Methods

16-157

where

a
e

e
t

t

t

=
-1

2

1
log

are weights of the weak hypotheses in the ensemble.

Training by AdaBoostM1 can be viewed as stagewise minimization of the exponential
loss

n

N

n n nw y f x

=

Â - ()()
1

exp ,

where

• yn ∊ {–1,+1} is the true class label.
• wn are observation weights normalized to add up to 1.
• f(xn) ∊ (–∞,+∞) is the predicted classification score.

The observation weights wn are the original observation weights you passed to
fitensemble.

The second output from the predict method of an AdaBoostM1 classification ensemble
is an N-by-2 matrix of classification scores for the two classes and N observations. The
second column in this matrix is always equal to minus the first column. predict returns
two scores to be consistent with multiclass models, though this is redundant because the
second column is always the negative of the first.

Most often AdaBoostM1 is used with decision stumps (default) or shallow trees. If
boosted stumps give poor performance, try setting the minimal parent node size to one
quarter of the training data.

By default, the learning rate for boosting algorithms is 1. If you set the learning rate to a
lower number, the ensemble learns at a slower rate, but can converge to a better solution.
0.1 is a popular choice for the learning rate. Learning at a rate less than 1 is often called
“shrinkage”.

For examples using AdaBoostM1, see “Tune RobustBoost” on page 16-121.

16 Nonparametric Supervised Learning

16-158

For references related to AdaBoostM1, see Freund and Schapire [16], Schapire et al. [26],
Friedman, Hastie, and Tibshirani [18], and Friedman [17].

AdaBoostM2

AdaBoostM2 is an extension of AdaBoostM1 for multiple classes. Instead of weighted
classification error, AdaBoostM2 uses weighted pseudo-loss for N observations and K
classes

e t

n

N

k y
n k

t
t n n t n

n

d h x y h x k= - () + ()()
= π

()
Â Â

1

2
1

1
,

, , ,

where

• ht(xn,k) is the confidence of prediction by learner at step t into class k ranging from 0
(not at all confident) to 1 (highly confident).

•
d

n k

t

,

() are observation weights at step t for class k.

• yn is the true class label taking one of the K values.
• The second sum is over all classes other than the true class yn.

Interpreting the pseudo-loss is harder than classification error, but the idea is the
same. Pseudo-loss can be used as a measure of the classification accuracy from any
learner in an ensemble. Pseudo-loss typically exhibits the same behavior as a weighted
classification error for AdaBoostM1: the first few learners in a boosted ensemble give low
pseudo-loss values. After the first few training steps, the ensemble begins to learn at a
slower pace, and the pseudo-loss value approaches 0.5 from below.

For examples using AdaBoostM2, see “Train a Classification Ensemble” on page
16-76.

For references related to AdaBoostM2, see Freund and Schapire [16].

Bag

Bagging, which stands for “bootstrap aggregation,” is a type of ensemble learning. To bag
a weak learner such as a decision tree on a dataset, generate many bootstrap replicas of
this dataset and grow decision trees on these replicas. Obtain each bootstrap replica by

 Ensemble Methods

16-159

randomly selecting N observations out of N with replacement, where N is the dataset size.
To find the predicted response of a trained ensemble, take an average over predictions
from individual trees.

Bagged decision trees were introduced in MATLAB R2009a as TreeBagger.
The fitensemble function lets you bag in a manner consistent with boosting.
An ensemble of bagged trees, either ClassificationBaggedEnsemble or
RegressionBaggedEnsemble, returned by fitensemble offers almost the same
functionally as TreeBagger. Discrepancies between TreeBagger and the new
framework are described in detail in TreeBagger Features Not in fitensemble.

Bagging works by training learners on resampled versions of the data. This resampling
is usually done by bootstrapping observations, that is, selecting N out of N observations
with replacement for every new learner. In addition, every tree in the ensemble can
randomly select predictors for decision splits—a technique known to improve the
accuracy of bagged trees.

By default, the minimal leaf sizes for bagged trees are set to 1 for classification and
5 for regression. Trees grown with the default leaf size are usually very deep. These
settings are close to optimal for the predictive power of an ensemble. Often you can grow
trees with larger leaves without losing predictive power. Doing so reduces training and
prediction time, as well as memory usage for the trained ensemble.

Another important parameter is the number of predictors selected at random for every
decision split. This random selection is made for every split, and every deep tree involves
many splits. By default, this parameter is set to a square root of the number of predictors
for classification, and one third of predictors for regression.

Several features of bagged decision trees make them a unique algorithm. Drawing N
out of N observations with replacement omits on average 37% of observations for each
decision tree. These are “out-of-bag” observations. You can use them to estimate the
predictive power and feature importance. For each observation, you can estimate the out-
of-bag prediction by averaging over predictions from all trees in the ensemble for which
this observation is out of bag. You can then compare the computed prediction against the
observed response for this observation. By comparing the out-of-bag predicted responses
against the observed responses for all observations used for training, you can estimate
the average out-of-bag error. This out-of-bag average is an unbiased estimator of the
true ensemble error. You can also obtain out-of-bag estimates of feature importance
by randomly permuting out-of-bag data across one variable or column at a time and
estimating the increase in the out-of-bag error due to this permutation. The larger the
increase, the more important the feature. Thus, you need not supply test data for bagged

16 Nonparametric Supervised Learning

16-160

ensembles because you obtain reliable estimates of the predictive power and feature
importance in the process of training, which is an attractive feature of bagging.

Another attractive feature of bagged decision trees is the proximity matrix. Every time
two observations land on the same leaf of a tree, their proximity increases by 1. For
normalization, sum these proximities over all trees in the ensemble and divide by the
number of trees. The resulting matrix is symmetric with diagonal elements equal to 1
and off-diagonal elements ranging from 0 to 1. You can use this matrix for finding outlier
observations and discovering clusters in the data through multidimensional scaling.

For examples using bagging, see:

• “Test Ensemble Quality” on page 16-79
• “Surrogate Splits” on page 16-100
• “Regression of Insurance Risk Rating for Car Imports Using TreeBagger” on page

16-129
• “Classifying Radar Returns for Ionosphere Data Using TreeBagger” on page 16-141

For references related to bagging, see Breiman [7], [8], and [9].

Comparison of TreeBagger and Bagged Ensembles

fitensemble produces bagged ensembles that have most, but not all, of the
functionality of TreeBagger objects. Additionally, some functionality has different
names in the new bagged ensembles.

TreeBagger Features Not in fitensemble

Feature TreeBagger Property TreeBagger Method

Computation of proximity
matrix

Proximity fillProximities, mdsProx

Computation of outliers OutlierMeasure N/A
Out-of-bag estimates of
predictor importance

OOBPermutedVarDeltaError,
OOBPermutedVarDeltaMeanMargin,
OOBPermutedVarCountRaiseMargin

N/A

Merging two ensembles
trained separately

N/A append

Parallel computation for
creating ensemble

Set the UseParallel name-value
pair to true

N/A

 Ensemble Methods

16-161

Differing Names Between TreeBagger and Bagged Ensembles

Feature TreeBagger Bagged Ensembles

Split criterion contributions for
each predictor

DeltaCritDecisionSplit

property
First output of
predictorImportance

(classification) or
predictorImportance

(regression)
Predictor associations VarAssoc property Second output of

predictorImportance

(classification) or
predictorImportance

(regression)
Error (misclassification
probability or mean-squared
error)

error and oobError methods loss and oobLoss methods
(classification); loss and
oobLoss methods (regression)

Train additional trees and add
to ensemble

growTrees method resume method (classification);
resume method (regression)

Mean classification margin per
tree

meanMargin and
oobMeanMargin methods

edge and oobEdge methods
(classification)

In addition, two important changes were made to training and prediction for bagged
classification ensembles:

• If you pass a misclassification cost matrix to TreeBagger, it passes this matrix along
to the trees. If you pass a misclassification cost matrix to fitensemble, it uses this
matrix to adjust the class prior probabilities. fitensemble then passes the adjusted
prior probabilities and the default cost matrix to the trees. The default cost matrix is
ones(K)-eye(K) for K classes.

• Unlike the loss and edge methods in the new framework, the TreeBagger error
and meanMargin methods do not normalize input observation weights of the prior
probabilities in the respective class.

GentleBoost

GentleBoost (also known as Gentle AdaBoost) combines features of AdaBoostM1 and
LogitBoost. Like AdaBoostM1, GentleBoost minimizes the exponential loss. But its
numeric optimization is set up differently. Like LogitBoost, every weak learner fits a

16 Nonparametric Supervised Learning

16-162

regression model to response values yn ∊ {–1,+1}. This makes GentleBoost another good
candidate for binary classification of data with multilevel categorical predictors.

fitensemble computes and stores the mean-squared error in the FitInfo property of
the ensemble object. The mean-squared error is

n

N

n
t

n t nd y h x

=

()
Â - ()()

1

2
% ,

where

•
d

n

t() are observation weights at step t (the weights add up to 1).

• ht(xn) are predictions of the regression model ht fitted to response values yn.

As the strength of individual learners weakens, the weighted mean-squared error
approaches 1.

For examples using GentleBoost, see “Example: Unequal Classification Costs” on page
16-91 and “Classification with Many Categorical Levels” on page 16-96.

For references related to GentleBoost, see Friedman, Hastie, and Tibshirani [18].

LogitBoost

LogitBoost is another popular algorithm for binary classification. LogitBoost works
similarly to AdaBoostM1, except it minimizes binomial deviance

n

N

n n nw y f x

=

Â + - ()()()
1

1 2log exp ,

where

• yn ∊ {–1,+1} is the true class label.
• wn are observation weights normalized to add up to 1.
• f(xn) ∊ (–∞,+∞) is the predicted classification score.

 Ensemble Methods

16-163

Binomial deviance assigns less weight to badly misclassified observations (observations
with large negative values of ynf(xn)). LogitBoost can give better average accuracy than
AdaBoostM1 for data with poorly separable classes.

Learner t in a LogitBoost ensemble fits a regression model to response values

%y
y p x

p x p x
n

n t n

t n t n

=
- ()

() - ()()

*

,
1

where

• y*n ∊ {0,+1} are relabeled classes (0 instead of –1).
• pt(xn) is the current ensemble estimate of the probability for observation xn to be of

class 1.

Fitting a regression model at each boosting step turns into a great computational
advantage for data with multilevel categorical predictors. Take a categorical predictor
with L levels. To find the optimal decision split on such a predictor, classification tree
needs to consider 2L–1 – 1 splits. A regression tree needs to consider only L – 1 splits, so
the processing time can be much shorter. LogitBoost is recommended for categorical
predictors with many levels.

fitensemble computes and stores the mean-squared error in the FitInfo property of
the ensemble object. The mean-squared error is

n

N

n
t

n t nd y h x

=

()
Â - ()()

1

2
% ,

where

•
d

n

t() are observation weights at step t (the weights add up to 1).

• ht(xn) are predictions of the regression model ht fitted to response values %y
n

.

Values yn can range from –∞ to +∞, so the mean-squared error does not have well-defined
bounds.

16 Nonparametric Supervised Learning

16-164

For examples using LogitBoost, see “Classification with Many Categorical Levels” on
page 16-96.

For references related to LogitBoost, see Friedman, Hastie, and Tibshirani [18].

LPBoost

LPBoost (linear programming boost), like TotalBoost, performs multiclass
classification by attempting to maximize the minimal margin in the training set. This
attempt uses optimization algorithms, namely linear programming for LPBoost. So you
need an Optimization Toolbox license to use LPBoost or TotalBoost.

The margin of a classification is the difference between the predicted soft classification
score for the true class, and the largest score for the false classes. For trees, the score
of a classification of a leaf node is the posterior probability of the classification at that
node. The posterior probability of the classification at a node is the number of training
sequences that lead to that node with the classification, divided by the number of
training sequences that lead to that node. For more information, see “Definitions” on
page 22-2839 in margin.

Why maximize the minimal margin? For one thing, the generalization error (the error
on new data) is the probability of obtaining a negative margin. Schapire and Singer [27]
establish this inequality on the probability of obtaining a negative margin:

P m P m O
N

V N V
test train£() £ () + +

Ê

Ë
ÁÁ

ˆ

¯
˜̃£0

1
1

2

2
q

q
dlog (/)

log(/) .

Here m is the margin, θ is any positive number, V is the Vapnik-Chervonenkis dimension
of the classifier space, N is the size of the training set, and δ is a small positive number.
The inequality holds with probability 1–δ over many i.i.d. training and test sets.
This inequality says: To obtain a low generalization error, minimize the number of
observations below margin θ in the training set.

LPBoost iteratively maximizes the minimal margin through a sequence of linear
programming problems. Equivalently, by duality, LPBoost minimizes the maximal
edge, where edge is the weighted mean margin (see “Definitions” on page 22-1230). At
each iteration, there are more constraints in the problem. So, for large problems, the
optimization problem becomes increasingly constrained, and slow to solve.

LPBoost typically creates ensembles with many learners having weights that are
orders of magnitude smaller than those of other learners. Therefore, to better enable

 Ensemble Methods

16-165

you to remove the unimportant ensemble members, the compact method reorders the
members of an LPBoost ensemble from largest weight to smallest. Therefore, you can
easily remove the least important members of the ensemble using the removeLearners
method.

For examples using LPBoost, see “LPBoost and TotalBoost for Small Ensembles” on
page 16-103.

For references related to LPBoost, see Warmuth, Liao, and Ratsch [29].

LSBoost

LSBoost (least squares boosting) fits regression ensembles. At every step, the ensemble
fits a new learner to the difference between the observed response and the aggregated
prediction of all learners grown previously. The ensemble fits to minimize mean-squared
error.

You can use LSBoost with shrinkage by passing in the LearnRate parameter. By
default this parameter is set to 1, and the ensemble learns at the maximal speed. If you
set LearnRate to a value from 0 to 1, the ensemble fits every new learner to yn – ηf(xn),
where

• yn is the observed response.
• f(xn) is the aggregated prediction from all weak learners grown so far for observation

xn.
• η is the learning rate.

For examples using LSBoost, see “Train a Regression Ensemble” on page 16-78 and
“Regularize a Regression Ensemble” on page 16-110.

For references related to LSBoost, see Hastie, Tibshirani, and Friedman [19], Chapters 7
(Model Assessment and Selection) and 15 (Random Forests).

RobustBoost

Boosting algorithms such as AdaBoostM1 and LogitBoost increase weights for
misclassified observations at every boosting step. These weights can become very large.
If this happens, the boosting algorithm sometimes concentrates on a few misclassified
observations and neglects the majority of training data. Consequently the average
classification accuracy suffers.

16 Nonparametric Supervised Learning

16-166

In this situation, you can try using RobustBoost. This algorithm does not assign almost
the entire data weight to badly misclassified observations. It can produce better average
classification accuracy.

Unlike AdaBoostM1 and LogitBoost, RobustBoost does not minimize a specific loss
function. Instead, it maximizes the number of observations with the classification margin
above a certain threshold.

RobustBoost trains based on time evolution. The algorithm starts at t = 0. At every
step, RobustBoost solves an optimization problem to find a positive step in time
Δt and a corresponding positive change in the average margin for training data Δm.
RobustBoost stops training and exits if at least one of these three conditions is true:

• Time t reaches 1.
• RobustBoost cannot find a solution to the optimization problem with positive

updates Δt and Δm.
• RobustBoost grows as many learners as you requested.

Results from RobustBoost can be usable for any termination condition. Estimate the
classification accuracy by cross validation or by using an independent test set.

To get better classification accuracy from RobustBoost, you can adjust three
parameters in fitensemble: RobustErrorGoal, RobustMaxMargin, and
RobustMarginSigma. Start by varying values for RobustErrorGoal from 0 to 1. The
maximal allowed value for RobustErrorGoal depends on the two other parameters. If
you pass a value that is too high, fitensemble produces an error message showing the
allowed range for RobustErrorGoal.

For examples using RobustBoost, see “Tune RobustBoost” on page 16-121.

For references related to RobustBoost, see Freund [15].

RUSBoost

RUSBoost is especially effective at classifying imbalanced data, meaning some class in
the training data has many fewer members than another. RUS stands for Random Under
Sampling. The algorithm takes N, the number of members in the class with the fewest
members in the training data, as the basic unit for sampling. Classes with more members
are under sampled by taking only N observations of every class. In other words, if there
are K classes, then, for each weak learner in the ensemble, RUSBoost takes a subset of
the data with N observations from each of the K classes. The boosting procedure follows

 Ensemble Methods

16-167

the procedure in “AdaBoostM2” on page 16-158 for reweighting and constructing the
ensemble.

When you construct a RUSBoost ensemble, there is an optional name-value pair called
RatioToSmallest. Give a vector of K values, each value representing the multiple
of N to sample for the associated class. For example, if the smallest class has N = 100
members, then RatioToSmallest = [2,3,4] means each weak learner has 200
members in class 1, 300 in class 2, and 400 in class 3. If RatioToSmallest leads to a
value that is larger than the number of members in a particular class, then RUSBoost
samples the members with replacement. Otherwise, RUSBoost samples the members
without replacement.

For examples using RUSBoost, see “Classification with Imbalanced Data” on page
16-84.

For references related to RUSBoost, see Seiffert et al. [28].

Subspace

Use random subspace ensembles (Subspace) to improve the accuracy of
discriminant analysis (ClassificationDiscriminant) or k-nearest neighbor
(ClassificationKNN) classifiers. Subspace ensembles also have the advantage of
using less memory than ensembles with all predictors, and can handle missing values
(NaNs).

The basic random subspace algorithm uses these parameters.

• m is the number of dimensions (variables) to sample in each learner. Set m using the
NPredToSample name-value pair.

• d is the number of dimensions in the data, which is the number of columns
(predictors) in the data matrix X.

• n is the number of learners in the ensemble. Set n using the NLearn input.

The basic random subspace algorithm performs the following steps:

1 Choose without replacement a random set of m predictors from the d possible values.
2 Train a weak learner using just the m chosen predictors.
3 Repeat steps 1 and 2 until there are n weak learners.
4 Predict by taking an average of the score prediction of the weak learners, and

classify the category with the highest average score.

16 Nonparametric Supervised Learning

16-168

You can choose to create a weak learner for every possible set of m predictors from the d
dimensions. To do so, set n, the number of learners, to 'AllPredictorCombinations'.
In this case, there are nchoosek(size(X,2),NPredToSample) weak learners in the
ensemble.

fitensemble downweights predictors after choosing them for a learner, so subsequent
learners have a lower chance of using a predictor that was previously used. This
weighting tends to make predictors more evenly distributed among learners than in
uniform weighting.

For examples using Subspace, see “Random Subspace Classification” on page 16-124.

For references related to random subspace ensembles, see Ho [20].

TotalBoost

TotalBoost, like linear programming boost (LPBoost), performs multiclass
classification by attempting to maximize the minimal margin in the training set. This
attempt uses optimization algorithms, namely quadratic programming for TotalBoost.
So you need an Optimization Toolbox license to use LPBoost or TotalBoost.

The margin of a classification is the difference between the predicted soft classification
score for the true class, and the largest score for the false classes. For trees, the score
of a classification of a leaf node is the posterior probability of the classification at that
node. The posterior probability of the classification at a node is the number of training
sequences that lead to that node with the classification, divided by the number of
training sequences that lead to that node. For more information, see “Definitions” on
page 22-2839 in margin.

Why maximize the minimal margin? For one thing, the generalization error (the error
on new data) is the probability of obtaining a negative margin. Schapire and Singer [27]
establish this inequality on the probability of obtaining a negative margin:

P m P m O
N

V N V
test train£() £ () + +

Ê

Ë
ÁÁ

ˆ

¯
˜̃£0

1
1

2

2
q

q
dlog (/)

log(/) .

Here m is the margin, θ is any positive number, V is the Vapnik-Chervonenkis dimension
of the classifier space, N is the size of the training set, and δ is a small positive number.
The inequality holds with probability 1–δ over many i.i.d. training and test sets.
This inequality says: To obtain a low generalization error, minimize the number of
observations below margin θ in the training set.

 Ensemble Methods

16-169

TotalBoost minimizes a proxy of the Kullback-Leibler divergence between the current
weight distribution and the initial weight distribution, subject to the constraint that the
edge (the weighted margin) is below a certain value. The proxy is a quadratic expansion
of the divergence:

D W W
W n

W n

W n

W n W n
n

N

n

N

(,) log
()

()

()

() ()
0

01 0

2

1

1
1

2
= ª +Ê

Ë
Á

ˆ

¯
˜ +

= =
Â Â D D ,,

where Δ is the difference between W(n), the weights at the current and next iteration,
and W0, the initial weight distribution, which is uniform. This optimization formulation
keeps weights from becoming zero. At each iteration, there are more constraints in
the problem. So, for large problems, the optimization problem becomes increasingly
constrained, and slow to solve.

TotalBoost typically creates ensembles with many learners having weights that are
orders of magnitude smaller than those of other learners. Therefore, to better enable
you to remove the unimportant ensemble members, the compact method reorders the
members of a TotalBoost ensemble from largest weight to smallest. Therefore you can
easily remove the least important members of the ensemble using the removeLearners
method.

For examples using TotalBoost, see “LPBoost and TotalBoost for Small Ensembles” on
page 16-103.

For references related to TotalBoost, see Warmuth, Liao, and Ratsch [29].

16 Nonparametric Supervised Learning

16-170

Support Vector Machines (SVM)

In this section...

“Understanding Support Vector Machines” on page 16-170
“Using Support Vector Machines” on page 16-176
“Train SVM Classifiers Using a Gaussian Kernel” on page 16-178
“Train SVM Classifiers Using a Custom Kernel” on page 16-183
“Train and Cross Validate SVM Classifiers” on page 16-189
“Plot Posterior Probability Regions for SVM Classification Models” on page 16-201
“Analyze Images Using Linear Support Vector Machines” on page 16-204

Understanding Support Vector Machines

• “Separable Data” on page 16-170
• “Nonseparable Data” on page 16-172
• “Nonlinear Transformation with Kernels” on page 16-175

Separable Data

You can use a support vector machine (SVM) when your data has exactly two classes. An
SVM classifies data by finding the best hyperplane that separates all data points of one
class from those of the other class. The best hyperplane for an SVM means the one with
the largest margin between the two classes. Margin means the maximal width of the slab
parallel to the hyperplane that has no interior data points.

The support vectors are the data points that are closest to the separating hyperplane;
these points are on the boundary of the slab. The following figure illustrates these
definitions, with + indicating data points of type 1, and – indicating data points of type –
1.

 Support Vector Machines (SVM)

16-171

+

+

+

+

-

-
-

-

-
Separatin

g hyperplane

M
arg

in

Support

vector

Support

vector

Support

vector

Mathematical Formulation: Primal

This discussion follows Hastie, Tibshirani, and Friedman [19] and Christianini and
Shawe-Taylor [11].

The data for training is a set of points (vectors) xi along with their categories yi. For some
dimension d, the xi ∊ Rd, and the yi = ±1. The equation of a hyperplane is
<w,x> + b = 0,

where w ∊ Rd, <w,x> is the inner (dot) product of w and x, and b is real.

The following problem defines the best separating hyperplane. Find w and b that
minimize ||w|| such that for all data points (xi,yi),
yi(<w,xi> + b) ≥ 1.

The support vectors are the xi on the boundary, those for which yi(<w,xi> + b) = 1.

For mathematical convenience, the problem is usually given as the equivalent problem
of minimizing <w,w>/2. This is a quadratic programming problem. The optimal solution

ˆ , ˆw b() enables classification of a vector z as follows:

class sign() .� , �z w z b= +()

16 Nonparametric Supervised Learning

16-172

Mathematical Formulation: Dual

It is computationally simpler to solve the dual quadratic programming problem. To
obtain the dual, take positive Lagrange multipliers αi multiplied by each constraint, and
subtract from the objective function:

L w w y w x bP i i i
i

= − +() −()∑1

2
1, , ,a

where you look for a stationary point of LP over w and b. Setting the gradient of LP to 0,
you get

w y x

y

i i i
i

i i
i

=

=

∑
∑

a

a0 .

Substituting into LP, you get the dual LD:

L y y x xD i

i

i j i j i j

ji

= −∑ ∑∑a a a
1

2
, ,

which you maximize over αi ≥ 0. In general, many αi are 0 at the maximum. The nonzero
αi in the solution to the dual problem define the hyperplane, as seen in Equation 16-1,
which gives w as the sum of αiyixi. The data points xi corresponding to nonzero αi are the
support vectors.

The derivative of LD with respect to a nonzero αi is 0 at an optimum. This gives
yi(<w,xi> + b) – 1 = 0.

In particular, this gives the value of b at the solution, by taking any i with nonzero αi.

The dual is a standard quadratic programming problem. For example, the Optimization
Toolbox quadprog solver solves this type of problem.

Nonseparable Data

Your data might not allow for a separating hyperplane. In that case, SVM can use a soft
margin, meaning a hyperplane that separates many, but not all data points.

 Support Vector Machines (SVM)

16-173

There are two standard formulations of soft margins. Both involve adding slack variables
si and a penalty parameter C.

• The L1-norm problem is:

min ,
, ,w b s

i

i

w w C s
1

2
+







∑

such that

y w x b s

s

i i i

i

,

.

+() ≥ −

≥

1

0

The L1-norm refers to using si as slack variables instead of their squares. The three
solver options SMO, ISDA, and L1Qp of fitcsvm minimize the L1-norm problem.

• The L2-norm problem is:

min ,
, ,w b s

i

i

w w C s
1

2

2+







∑

subject to the same constraints.

In these formulations, you can see that increasing C places more weight on the slack
variables si, meaning the optimization attempts to make a stricter separation between
classes. Equivalently, reducing C towards 0 makes misclassification less important.

Mathematical Formulation: Dual

For easier calculations, consider the L1 dual problem to this soft-margin formulation.
Using Lagrange multipliers μi, the function to minimize for the L1-norm problem is:

L w w C s y w x b s sP i
i

i i i i
i

i i
i

= + − +() − −()() −∑ ∑ ∑1

2
1, , ,a m

where you look for a stationary point of LP over w, b, and positive si. Setting the gradient
of LP to 0, you get

16 Nonparametric Supervised Learning

16-174

b y x

y

C

s

i i i

i

i i

i

i i

i i i

=

=

= −
≥

∑

∑

a

a

a m

a m

0

0, , .

These equations lead directly to the dual formulation:

max ,
a

a a ai

i

i j i j i j

ji

y y x x∑ ∑∑−
1

2

subject to the constraints

y

C

i i

i

i

a

a

∑ =

≤ ≤

0

0 .

The final set of inequalities, 0 ≤ αi ≤ C, shows why C is sometimes called a box constraint.
C keeps the allowable values of the Lagrange multipliers αi in a “box”, a bounded region.

The gradient equation for b gives the solution b in terms of the set of nonzero αi, which
correspond to the support vectors.

You can write and solve the dual of the L2-norm problem in an analogous manner. For
details, see Christianini and Shawe-Taylor [11], Chapter 6.

fitcsvm Implementation

Both dual soft-margin problems are quadratic programming problems. Internally,
fitcsvm has several different algorithms for solving the problems.

• For one-class or binary classification, if you do not set a fraction of expected outliers
in the data (see OutlierFraction), then the default solver is Sequential Minimal
Optimization (SMO). SMO minimizes the one-norm problem by a series of two-point
minimizations. During optimization, SMO respects the linear constraint ai

i
iyÂ = 0,

 Support Vector Machines (SVM)

16-175

and explicitly includes the bias term in the model. SMO is relatively fast. For more
details on SMO, see [13].

• For binary classification, if you set a fraction of expected outliers in the data, then the
default solver is the Iterative Single Data Algorithm. Like SMO, ISDA solves the one-
norm problem. Unlike SMO, ISDA minimizes by a series on one-point minimizations,
does not respect the linear constraint, and does not explicitly include the bias term in
the model. For more details on ISDA, see [22].

• For one-class or binary classification, and if you have an Optimization Toolbox license,
you can choose to use quadprog to solve the one-norm problem. quadprog uses a
good deal of memory, but solves quadratic programs to a high degree of precision. For
more details, see “Quadratic Programming Definition”.

Nonlinear Transformation with Kernels

Some binary classification problems do not have a simple hyperplane as a useful
separating criterion. For those problems, there is a variant of the mathematical approach
that retains nearly all the simplicity of an SVM separating hyperplane.

This approach uses these results from the theory of reproducing kernels:

• There is a class of functions K(x,y) with the following property. There is a linear space
S and a function φ mapping x to S such that
K(x,y) = <φ(x),φ(y)>.

The dot product takes place in the space S.
• This class of functions includes:

• Polynomials: For some positive integer d,
K(x,y) = (1 + <x,y>)d.

• Radial basis function (Gaussian): For some positive number σ,
K(x,y) = exp(–<(x–y),(x – y)>/(2σ2)).

• Multilayer perceptron (neural network): For a positive number p1 and a negative
number p2,
K(x,y) = tanh(p1<x,y> + p2).

Note:

• Not every set of p1 and p2 gives a valid reproducing kernel.

16 Nonparametric Supervised Learning

16-176

• fitcsvm does not support the sigmoid kernel.

The mathematical approach using kernels relies on the computational method of
hyperplanes. All the calculations for hyperplane classification use nothing more
than dot products. Therefore, nonlinear kernels can use identical calculations and
solution algorithms, and obtain classifiers that are nonlinear. The resulting classifiers
are hypersurfaces in some space S, but the space S does not have to be identified or
examined.

Using Support Vector Machines

As with any supervised learning model, you first train a support vector machine, and
then cross validate the classifier. Use the trained machine to classify (predict) new data.
In addition, to obtain satisfactory predictive accuracy, you can use various SVM kernel
functions, and you must tune the parameters of the kernel functions.

• “Training an SVM Classifier” on page 16-176
• “Classifying New Data with an SVM Classifier” on page 16-177
• “Tuning an SVM Classifier” on page 16-178

Training an SVM Classifier

Train, and optionally cross validate, an SVM classifier using fitcsvm. The most common
syntax is:

SVMModel = fitcsvm(X,Y,'KernelFunction','rbf','Standardize',true,'ClassNames',{'negClass','posClass'});

The inputs are:

• X — Matrix of predictor data, where each row is one observation, and each column is
one predictor.

• Y — Array of class labels with each row corresponding to the value of the
corresponding row in X. Y can be a character array, categorical, logical or numeric
vector, or vector cell array of strings. Column vector with each row corresponding to
the value of the corresponding row in X. Y can be a categorical or character array,
logical or numeric vector, or cell array of strings.

• KernelFunction — The default value is 'linear' for two-class learning, which
separates the data by a hyperplane. The value 'rbf' is the default for one-class

 Support Vector Machines (SVM)

16-177

learning, and uses a Gaussian radial basis function. An important step to successfully
train an SVM classifier is to choose an appropriate kernel function.

• Standardize — Flag indicating whether the software should standardize the
predictors before training the classifier.

• ClassNames — Distinguishes between the negative and positive classes, or specifies
which classes to include in the data. The negative class is the first element (or row of
a character array), e.g., 'negClass', and the positive class is the second element (or
row of a character array), e.g., 'posClass'. ClassNames must be the same data type
as Y. It is good practice to specify the class names, especially if you are comparing the
performance of different classifiers.

The resulting, trained model (SVMModel) contains the optimized parameters from the
SVM algorithm, enabling you to classify new data.

For more name-value pairs you can use to control the training, see the fitcsvm
reference page.

Classifying New Data with an SVM Classifier

Classify new data using predict. The syntax for classifying new data using a trained
SVM classifier (SVMModel) is:

[label,score] = predict(SVMModel,newX);

The resulting vector, label, represents the classification of each row in X. score is
an n-by-2 matrix of soft scores. Each row corresponds to a row in X, which is a new
observation. The first column contains the scores for the observations being classified
in the negative class, and the second column contains the scores observations being
classified in the positive class.

To estimate posterior probabilities rather than scores, first pass the trained SVM
classifier (SVMModel) to fitPosterior, which fits a score-to-posterior-probability
transformation function to the scores. The syntax is:

ScoreSVMModel = fitPosterior(SVMModel,X,Y);

The property ScoreTransform of the classifier ScoreSVMModel contains the optimal
transformation function. Pass ScoreSVMModel to predict. Rather than returning the
scores, the output argument score contains the posterior probabilities of an observation
being classified in the negative (column 1 of score) or positive (column 2 of score) class.

16 Nonparametric Supervised Learning

16-178

Tuning an SVM Classifier

Try tuning parameters of your classifier according to this scheme:

1 Pass the data to fitcsvm, and set the name-value pair arguments
'KernelScale','auto'. Suppose that the trained SVM model is called SVMModel.
The software uses a heuristic procedure to select the kernel scale. The heuristic
procedure uses subsampling. Therefore, to reproduce results, set a random number
seed using rng before training the classifier.

2 Cross validate the classifier by passing it to crossval. By default, the software
conducts 10-fold cross validation.

3 Pass the cross-validated SVM model to kFoldLoss to estimate and retain the
classification error.

4 Retrain the SVM classifier, but adjust the 'KernelScale' and 'BoxConstraint'
name-value pair arguments.

• BoxConstraint — One strategy is to try a geometric sequence of the box
constraint parameter. For example, take 11 values, from 1e-5 to 1e5 by a factor
of 10. Increasing BoxConstraint might decrease the number of support vectors,
but also might increase training time.

• KernelScale — One strategy is to try a geometric sequence of the RBF sigma
parameter scaled at the original kernel scale. Do this by:

a Retrieving the original kernel scale, e.g., ks, using dot notation: ks =
SVMModel.KernelParameters.Scale.

b Use as new kernel scales factors of the original. For example, multiply ks by
the 11 values 1e-5 to 1e5, increasing by a factor of 10.

Choose the model that yields the lowest classification error.

You might want to further refine your parameters to obtain better accuracy. Start with
your initial parameters and perform another cross-validation step, this time using a
factor of 1.2. Alternatively, optimize your parameters with fminsearch, as shown in
“Train and Cross Validate SVM Classifiers” on page 16-189.

Train SVM Classifiers Using a Gaussian Kernel

This example shows how to generate a nonlinear classifier with Gaussian kernel
function. First, generate one class of points inside the unit disk in two dimensions,

 Support Vector Machines (SVM)

16-179

and another class of points in the annulus from radius 1 to radius 2. Then, generates a
classifier based on the data with the Gaussian radial basis function kernel. The default
linear classifier is obviously unsuitable for this problem, since the model is circularly
symmetric. Set the box constraint parameter to Inf to make a strict classification,
meaning no misclassified training points. Other kernel functions might not work with
this strict box constraint, since they might be unable to provide a strict classification.
Even though the rbf classifier can separate the classes, the result can be overtrained.

Generate 100 points uniformly distributed in the unit disk. To do so, generate a radius r
as the square root of a uniform random variable, generate an angle t uniformly in (0,),
and put the point at (r cos(t), r sin(t)).

rng(1); % For reproducibility

r = sqrt(rand(100,1)); % Radius

t = 2*pi*rand(100,1); % Angle

data1 = [r.*cos(t), r.*sin(t)]; % Points

Generate 100 points uniformly distributed in the annulus. The radius is again
proportional to a square root, this time a square root of the uniform distribution from 1
through 4.

r2 = sqrt(3*rand(100,1)+1); % Radius

t2 = 2*pi*rand(100,1); % Angle

data2 = [r2.*cos(t2), r2.*sin(t2)]; % points

Plot the points, and plot circles of radii 1 and 2 for comparison.

figure;

plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)

hold on

plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)

ezpolar(@(x)1);ezpolar(@(x)2);

axis equal

hold off

16 Nonparametric Supervised Learning

16-180

Put the data in one matrix, and make a vector of classifications.

data3 = [data1;data2];

theclass = ones(200,1);

theclass(1:100) = -1;

Train an SVM classifier with KernelFunction set to 'rbf' and BoxConstraint set to
Inf. Plot the decision boundary and flag the support vectors.

%Train the SVM Classifier

cl = fitcsvm(data3,theclass,'KernelFunction','rbf',...

 'BoxConstraint',Inf,'ClassNames',[-1,1]);

% Predict scores over the grid

 Support Vector Machines (SVM)

16-181

d = 0.02;

[x1Grid,x2Grid] = meshgrid(min(data3(:,1)):d:max(data3(:,1)),...

 min(data3(:,2)):d:max(data3(:,2)));

xGrid = [x1Grid(:),x2Grid(:)];

[~,scores] = predict(cl,xGrid);

% Plot the data and the decision boundary

figure;

h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.');

hold on

ezpolar(@(x)1);

h(3) = plot(data3(cl.IsSupportVector,1),data3(cl.IsSupportVector,2),'ko');

contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');

legend(h,{'-1','+1','Support Vectors'});

axis equal

hold off

16 Nonparametric Supervised Learning

16-182

fitcsvm generates a classifier that is close to a circle of radius 1. The difference is due to
the random training data.

Training with the default parameters makes a more nearly circular classification
boundary, but one that misclassifies some training data. Also, the default value of
BoxConstraint is 1, and, therefore, there are more support vectors.

cl2 = fitcsvm(data3,theclass,'KernelFunction','rbf');

[~,scores2] = predict(cl2,xGrid);

figure;

h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.');

hold on

ezpolar(@(x)1);

 Support Vector Machines (SVM)

16-183

h(3) = plot(data3(cl2.IsSupportVector,1),data3(cl2.IsSupportVector,2),'ko');

contour(x1Grid,x2Grid,reshape(scores2(:,2),size(x1Grid)),[0 0],'k');

legend(h,{'-1','+1','Support Vectors'});

axis equal

hold off

Train SVM Classifiers Using a Custom Kernel

This example shows how to use a custom kernel function, such as the sigmoid kernel, to
train SVM classifiers, and adjust custom kernel function parameters.

16 Nonparametric Supervised Learning

16-184

Generate a random set of points within the unit circle. Label points in the first and
third quadrants as belonging to the positive class, and those in the second and fourth
quadrants in the negative class.

rng(1); % For reproducibility

n = 100; % Number of points per quadrant

r1 = sqrt(rand(2*n,1)); % Random radii

t1 = [pi/2*rand(n,1); (pi/2*rand(n,1)+pi)]; % Random angles for Q1 and Q3

X1 = [r1.*cos(t1) r1.*sin(t1)]; % Polar-to-Cartesian conversion

r2 = sqrt(rand(2*n,1));

t2 = [pi/2*rand(n,1)+pi/2; (pi/2*rand(n,1)-pi/2)]; % Random angles for Q2 and Q4

X2 = [r2.*cos(t2) r2.*sin(t2)];

X = [X1; X2]; % Predictors

Y = ones(4*n,1);

Y(2*n + 1:end) = -1; % Labels

Plot the data.

figure;

gscatter(X(:,1),X(:,2),Y);

title('Scatter Diagram of Simulated Data')

 Support Vector Machines (SVM)

16-185

Create the function mysigmoid.m, which accepts two matrices in the feature space as
inputs, and transforms them into a Gram matrix using the sigmoid kernel.

function G = mysigmoid(U,V)

% Sigmoid kernel function with slope gamma and intercept c

gamma = 1;

c = -1;

G = tanh(gamma*U*V' + c);

end

Train an SVM classifier using the sigmoid kernel function. It is good practice to
standardize the data.

SVMModel1 = fitcsvm(X,Y,'KernelFunction','mysigmoid','Standardize',true);

16 Nonparametric Supervised Learning

16-186

SVMModel is a ClassificationSVM classifier containing the estimated parameters.

Plot the data, and identify the support vectors and the decision boundary.

% Compute the scores over a grid

d = 0.02; % Step size of the grid

[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...

 min(X(:,2)):d:max(X(:,2)));

xGrid = [x1Grid(:),x2Grid(:)]; % The grid

[~,scores1] = predict(SVMModel1,xGrid); % The scores

figure;

h(1:2) = gscatter(X(:,1),X(:,2),Y);

hold on

h(3) = plot(X(SVMModel1.IsSupportVector,1),...

 X(SVMModel1.IsSupportVector,2),'ko','MarkerSize',10);

 % Support vectors

contour(x1Grid,x2Grid,reshape(scores1(:,2),size(x1Grid)),[0 0],'k');

 % Decision boundary

title('Scatter Diagram with the Decision Boundary')

legend({'-1','1','Support Vectors'},'Location','Best');

hold off

 Support Vector Machines (SVM)

16-187

You can adjust the kernel parameters in an attempt to improve the shape of the decision
boundary. This might also decrease the within-sample misclassification rate, but, you
should first determine the out-of-sample misclassification rate.

Determine the out-of-sample misclassification rate by using 10-fold cross validation.

CVSVMModel1 = crossval(SVMModel1);

misclass1 = kfoldLoss(CVSVMModel1);

misclass1

misclass1 =

 0.1350

16 Nonparametric Supervised Learning

16-188

The out-of-sample misclassification rate is 13.5%.

Set gamma = 0.5; within mysigmoid.m. Then, train an SVM classifier using the
adjusted sigmoid kernel. Plot the data and the decision region, and determine the out-of-
sample misclassification rate.

SVMModel2 = fitcsvm(X,Y,'KernelFunction','mysigmoid','Standardize',true);

[~,scores2] = predict(SVMModel2,xGrid);

figure;

h(1:2) = gscatter(X(:,1),X(:,2),Y);

hold on

h(3) = plot(X(SVMModel2.IsSupportVector,1),...

 X(SVMModel2.IsSupportVector,2),'ko','MarkerSize',10);

title('Scatter Diagram with the Decision Boundary')

contour(x1Grid,x2Grid,reshape(scores2(:,2),size(x1Grid)),[0 0],'k');

legend({'-1','1','Support Vectors'},'Location','Best');

hold off

CVSVMModel2 = crossval(SVMModel2);

misclass2 = kfoldLoss(CVSVMModel2);

misclass2

misclass2 =

 0.0450

 Support Vector Machines (SVM)

16-189

After the sigmoid slope adjustment, the new decision boundary seems to provide a better
within-sample fit, and the cross-validation rate contracts by more than 66%.

Train and Cross Validate SVM Classifiers

This example classifies points from a Gaussian mixture model. In The Elements of
Statistical Learning, Hastie, Tibshirani, and Friedman (2009), page 17 describe the
model. It begins with generating 10 base points for a "green" class, distributed as 2-
D independent normals with mean (1,0) and unit variance. It also generates 10 base
points for a "red" class, distributed as 2-D independent normals with mean (0,1) and unit
variance. For each class (green and red), generate 100 random points as follows:

1 Choose a base point m of the appropriate color uniformly at random.

16 Nonparametric Supervised Learning

16-190

2 Generate an independent random point with 2-D normal distribution with mean m
and variance I/5, where I is the 2-by-2 identity matrix.

After generating 100 green and 100 red points, classify them using fitcsvm, and tune
the classification using cross validation.

To generate the points and classifier:

Generate the 10 base points for each class.

rng('default')

grnpop = mvnrnd([1,0],eye(2),10);

redpop = mvnrnd([0,1],eye(2),10);

View the base points:

plot(grnpop(:,1),grnpop(:,2),'go')

hold on

plot(redpop(:,1),redpop(:,2),'ro')

hold off

 Support Vector Machines (SVM)

16-191

Since many red base points are close to green base points, it is difficult to classify the
data points.

Generate the 100 data points of each class:

redpts = zeros(100,2);grnpts = redpts;

for i = 1:100

 grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.2);

 redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.2);

end

View the data points:

figure

plot(grnpts(:,1),grnpts(:,2),'go')

16 Nonparametric Supervised Learning

16-192

hold on

plot(redpts(:,1),redpts(:,2),'ro')

hold off

Put the data into one matrix, and make a vector grp that labels the class of each point:

cdata = [grnpts;redpts];

grp = ones(200,1);

% Green label 1, red label -1

grp(101:200) = -1;

Check the basic classification of all the data using the default parameters:

% Train the classifier

SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf','ClassNames',[-1 1]);

 Support Vector Machines (SVM)

16-193

% Predict scores over the grid

d = 0.02;

[x1Grid,x2Grid] = meshgrid(min(cdata(:,1)):d:max(cdata(:,1)),...

 min(cdata(:,2)):d:max(cdata(:,2)));

xGrid = [x1Grid(:),x2Grid(:)];

[~,scores] = predict(SVMModel,xGrid);

% Plot the data and the decision boundary

figure;

h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');

hold on

h(3) = plot(cdata(SVMModel.IsSupportVector,1),...

 cdata(SVMModel.IsSupportVector,2),'ko');

contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');

legend(h,{'-1','+1','Support Vectors'},'Location','Southeast');

axis equal

hold off

16 Nonparametric Supervised Learning

16-194

Set up a partition for cross validation. This step causes the cross validation to be fixed.
Without this step, the cross validation is random, so a minimization procedure can find a
spurious local minimum.

c = cvpartition(200,'KFold',10);

Set up a function that takes an input z=[rbf_sigma,boxconstraint], and returns
the cross-validation value of exp(z). The reason to take exp(z) is twofold:

• rbf_sigma and boxconstraint must be positive.
• You should look at points spaced approximately exponentially apart.

This function handle computes the cross validation at parameters
exp([rbf_sigma,boxconstraint]):

 Support Vector Machines (SVM)

16-195

minfn = @(z)kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...

 'KernelFunction','rbf','BoxConstraint',exp(z(2)),...

 'KernelScale',exp(z(1))));

Search for the best parameters [rbf_sigma,boxconstraint] with fminsearch, setting looser
tolerances than the defaults.

Note that if you have a Global Optimization Toolbox™ license, use patternsearch
for faster, more reliable minimization. Give bounds on the components of z to keep the
optimization in a sensible region, such as [-5,5], and give a relatively loose TolMesh
tolerance.

opts = optimset('TolX',5e-4,'TolFun',5e-4);

[searchmin fval] = fminsearch(minfn,randn(2,1),opts)

searchmin =

 1.0246

 -0.1569

fval =

 0.3100

The best parameters [rbf_sigma;boxconstraint] in this run are:

z = exp(searchmin)

z =

 2.7861

 0.8548

Since the result of fminsearch can be a local minimum, not a global minimum, try
again with a different starting point to check that your result is meaningful:

[searchmin fval] = fminsearch(minfn,randn(2,1),opts)

16 Nonparametric Supervised Learning

16-196

searchmin =

 0.2778

 0.6395

fval =

 0.3000

The best parameters [rbf_sigma;boxconstraint] in this run are:

z = exp(searchmin)

z =

 1.3202

 1.8956

Try another search:

[searchmin fval] = fminsearch(minfn,randn(2,1),opts)

searchmin =

 -0.0810

 0.5409

fval =

 0.3200

The best parameters [rbf_sigma;boxconstraint] in this run are:

z = exp(searchmin)

z =

 Support Vector Machines (SVM)

16-197

 0.9222

 1.7175

The surface seems to have many local minima. Try a set of 20 random, initial values, and
choose the set corresponding to the lowest fval.

m = 20;

fval = zeros(m,1);

z = zeros(m,2);

for j = 1:m;

 [searchmin fval(j)] = fminsearch(minfn,randn(2,1),opts);

 z(j,:) = exp(searchmin);

end

z = z(fval == min(fval),:)

z =

 1.9301 0.7507

Use the z parameters to train a new SVM classifier:

SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...

 'KernelScale',z(1),'BoxConstraint',z(2));

[~,scores] = predict(SVMModel,xGrid);

h = nan(3,1); % Preallocation

figure;

h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');

hold on

h(3) = plot(cdata(SVMModel.IsSupportVector,1),...

 cdata(SVMModel.IsSupportVector,2),'ko');

contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');

legend(h,{'-1','+1','Support Vectors'},'Location','Southeast');

axis equal

hold off

16 Nonparametric Supervised Learning

16-198

Generate and classify some new data points:

grnobj = gmdistribution(grnpop,.2*eye(2));

redobj = gmdistribution(redpop,.2*eye(2));

newData = random(grnobj,10);

newData = [newData;random(redobj,10)];

grpData = ones(20,1);

grpData(11:20) = -1; % red = -1

v = predict(SVMModel,newData);

g = nan(7,1);

figure;

 Support Vector Machines (SVM)

16-199

h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');

hold on

h(3:4) = gscatter(newData(:,1),newData(:,2),v,'mc','**');

h(5) = plot(cdata(SVMModel.IsSupportVector,1),...

 cdata(SVMModel.IsSupportVector,2),'ko');

contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');

legend(h(1:5),{'-1 (training)','+1 (training)','-1 (classified)',...

 '+1 (classified)','Support Vectors'},'Location','Southeast');

axis equal

hold off

See which new data points are correctly classified. Circle the correctly classified points in
red, and the incorrectly classified points in black.

16 Nonparametric Supervised Learning

16-200

mydiff = (v == grpData); % Classified correctly

hold on

for ii = mydiff % Plot red circles around correct pts

 h(6) = plot(newData(ii,1),newData(ii,2),'ro','MarkerSize',12);

end

for ii = not(mydiff) % Plot black circles around incorrect pts

 h(7) = plot(newData(ii,1),newData(ii,2),'ko','MarkerSize',12);

end

legend(h,{'-1 (training)','+1 (training)','-1 (classified)',...

 '+1 (classified)','Support Vectors','Correctly Classified',...

 'Misclassified'},'Location','Southeast');

hold off

 Support Vector Machines (SVM)

16-201

Plot Posterior Probability Regions for SVM Classification Models

This example shows how to predict posterior probabilities of SVM models over a grid of
observations, and then plot the posterior probabilities over the grid. Plotting posterior
probabilities exposes decision boundaries.

Load Fisher's iris data set. Train the classifier using the petal lengths and widths, and
remove the virginica species from the data.

load fisheriris

classKeep = ~strcmp(species,'virginica');

X = meas(classKeep,3:4);

y = species(classKeep);

16 Nonparametric Supervised Learning

16-202

Train an SVM classifier using the data. It is good practice to specify the order of the
classes.

SVMModel = fitcsvm(X,y,'ClassNames',{'setosa','versicolor'});

Estimate the optimal score transformation function.

rng(1); % For reproducibility

[SVMModel,ScoreParameters] = fitPosterior(SVMModel);

ScoreParameters

Warning: Classes are perfectly separated. The optimal score-to-posterior

transformation is a step function.

ScoreParameters =

 Type: 'step'

 LowerBound: -0.8431

 UpperBound: 0.6897

 PositiveClassProbability: 0.5000

The optimal score transformation function is the step function because the classes are
separable. The fields LowerBound and UpperBound of ScoreParameters indicate
the lower and upper end points of the interval of scores corresponding to observations
within the class-separating hyperplanes (the margin). No training observation falls
within the margin. If a new score is in the interval, then the software assigns the
corresonding observation a positive class posterior probability, i.e., the value in the
PositiveClassProbability field of ScoreParameters.

Define a grid of values in the observed predictor space. Predict the posterior probabilities
for each instance in the grid.

xMax = max(X);

xMin = min(X);

d = 0.01;

[x1Grid,x2Grid] = meshgrid(xMin(1):d:xMax(1),xMin(2):d:xMax(2));

[~,PosteriorRegion] = predict(SVMModel,[x1Grid(:),x2Grid(:)]);

Plot the positive class posterior probability region and the training data.

figure;

 Support Vector Machines (SVM)

16-203

contourf(x1Grid,x2Grid,...

 reshape(PosteriorRegion(:,2),size(x1Grid,1),size(x1Grid,2)));

h = colorbar;

h.Label.String = 'P({\it{versicolor}})';

h.YLabel.FontSize = 16;

caxis([0 1]);

colormap jet;

hold on

gscatter(X(:,1),X(:,2),y,'mc','.x',[15,10]);

sv = X(SVMModel.IsSupportVector,:);

plot(sv(:,1),sv(:,2),'yo','MarkerSize',15,'LineWidth',2);

axis tight

hold off

16 Nonparametric Supervised Learning

16-204

In two-class learning, if the classes are separable, then there are three regions: one
where observations have positive class posterior probability 0, one where it is 1, and the
other where it is the postiive class prior probability.

Analyze Images Using Linear Support Vector Machines

This example shows how to determine which quadrant of an image a shape occupies by
training an error-correcting output codes (ECOC) model comprised of linear SVM binary
learners. This example also illustrates the disk-space consumption of ECOC models that
store support vectors, their labels, and the estimated coefficients.

Create the Data Set

Randomly place a circle with radius five in a 50-by-50 image. Make 10000 images. Create
a label for each image indicating the quadrant that the circle occupies. Quadrant 1 is
in the upper right, quadrant 2 is in the upper left, quadrant 3 is in the lower left, and
quadrant 4 is in the lower right. The predictors are the intensities of each pixel.

d = 50; % Height and width of the images in pixels

n = 1e5; % Sample size

X = zeros(n,d^2); % Predictor matrix preallocation

Y = zeros(n,1); % Label preallocation

theta = 0:(1/d):(2*pi);

r = 5; % Circle radius

rng(1); % For reproducibility

for j = 1:n;

 figmat = zeros(d); % Empty image

 c = datasample((r + 1):(d - r - 1),2); % Random circle center

 x = r*cos(theta) + c(1); % Make the circle

 y = r*sin(theta) + c(2);

 idx = sub2ind([d d],round(y),round(x)); % Convert to linear indexing

 figmat(idx) = 1; % Draw the circle

 X(j,:) = figmat(:); % Store the data

 Y(j) = (c(2) >= floor(d/2)) + 2*(c(2) < floor(d/2)) + ...

 (c(1) < floor(d/2)) + ...

 2*((c(1) >= floor(d/2)) & (c(2) < floor(d/2))); % Determine the quadrant

end

Plot an observation.

figure;

 Support Vector Machines (SVM)

16-205

imagesc(figmat);

h = gca;

h.YDir = 'normal';

title(sprintf('Quadrant %d',Y(end)));

Train the ECOC Model

Use a 25% holdout sample and specify the training and holdout sample indices.

p = 0.25;

CVP = cvpartition(Y,'Holdout',p); % Cross-validation data partition

isIdx = training(CVP); % Training sample indices

oosIdx = test(CVP); % Test sample indices

16 Nonparametric Supervised Learning

16-206

Create an SVM template that specifies storing the support vectors of the binary learners.
Pass it and the training data to fitcecoc to train the model. Determine the training
sample classification error.

t = templateSVM('SaveSupportVectors',true);

MdlSV = fitcecoc(X(isIdx,:),Y(isIdx),'Learners',t);

isLoss = resubLoss(MdlSV)

isLoss =

 0

MdlSV is a trained ClassificationECOC multiclass model. It stores the training data
and the support vectors of each binary learner. For large data sets, such as those in
image analysis, the model can consume a lot of memory.

Determine the amount of disk space that the ECOC model consumes.

infoMdlSV = whos('MdlSV');

mbMdlSV = infoMdlSV.bytes/1.049e6

mbMdlSV =

 1.4791e+03

The model consumes 1477.5 MB.

Improve Model Efficiency

You can assess out-of-sample performance. You can also assess whether the model has
been overfit with a compacted model that does not contain the support vectors, their
related parameters, and the training data.

Discard the support vectors and related parameters from the trained ECOC model. Then,
discard the training data from the resulting model by using compact.

Mdl = discardSupportVectors(MdlSV);

CMdl = compact(Mdl);

info = whos('Mdl','CMdl');

[bytesCMdl,bytesMdl] = info.bytes;

 Support Vector Machines (SVM)

16-207

memReduction = 1 - [bytesMdl bytesCMdl]/infoMdlSV.bytes

memReduction =

 0.0324 0.9999

In this case, discarding the support vectors reduces the memory consumption by about
3%. Compacting and discarding support vectors reduces the size by about 99.99%.

An alternative way to manage support vectors is to reduce their numbers during training
by specifying a larger box constraint, such as 100. Though SVM models that use fewer
support vectors are more desirable and consume less memory, increasing the value of the
box constraint tends to increase the training time.

Remove MdlSV and Mdl from the workspace.

clear Mdl MdlSV;

Assess Holdout Sample Performance

Calculate the classification error of the holdout sample. Plot a sample of the holdout
sample predictions.

oosLoss = loss(CMdl,X(oosIdx,:),Y(oosIdx))

yHat = predict(CMdl,X(oosIdx,:));

nVec = 1:size(X,1);

oosIdx = nVec(oosIdx);

figure;

for j = 1:9;

 subplot(3,3,j)

 imagesc(reshape(X(oosIdx(j),:),[d d]));

 h = gca;

 h.YDir = 'normal';

 title(sprintf('Quadrant: %d',yHat(j)))

end

text(-1.33*d,4.5*d + 1,'Predictions','FontSize',17)

oosLoss =

 0

16 Nonparametric Supervised Learning

16-208

The model does not misclassify any holdout sample observations.

 Bibliography

16-209

Bibliography

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

[2] Alpaydin, E. “Combined 5 x 2 CV F Test for Comparing Supervised Classification
Learning Algorithms.” Neural Computation, Vol. 11, No. 8, pp. 1885–1992, 1999.

[3] Blackard, J. A. and D. J. Dean. Comparative accuracies of artificial neural networks
and discriminant analysis in predicting forest cover types from cartographic
variables. Computers and Electronics in Agriculture 24, pp. 131–151, 1999.

[4] Bottou, L., and Chih-Jen Lin. Support Vector Machine Solvers. Available at http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209&rep=rep1&type=pdf.

[5] Bouckaert. R. “Choosing Between Two Learning Algorithms Based on Calibrated
Tests.” International Conference on Machine Learning, pp. 51–58, 2003.

[6] Bouckaert, R. and E. Frank. “Evaluating the Replicability of Significance Tests for
Comparing Learning Algorithms.” In Advances in Knowledge Discovery and Data
Mining, 8th Pacific-Asia Conference, pp. 3–12, 2004.

[7] Breiman, L. Bagging Predictors. Machine Learning 26, pp. 123–140, 1996.

[8] Breiman, L. Random Forests. Machine Learning 45, pp. 5–32, 2001.

[9] Breiman, L. http://www.stat.berkeley.edu/~breiman/RandomForests/

[10] Breiman, L., et al. Classification and Regression Trees. Chapman & Hall, Boca
Raton, 1993.

[11] Christianini, N., and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press,
Cambridge, UK, 2000.

[12] Dietterich, T. “Approximate statistical tests for comparing supervised classification
learning algorithms.” Neural Computation, Vol. 10, No. 7: pp. 1895–1923, 1998.

[13] Fan, R.-E., P.-H. Chen, and C.-J. Lin. “Working set selection using second order
information for training support vector machines.” Journal of Machine Learning
Research, Vol 6, 2005, pp. 1889–1918.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209&rep=rep1&type=pdf
http://www.stat.berkeley.edu/~breiman/RandomForests/

16 Nonparametric Supervised Learning

16-210

[14] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-
Pairs Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC
Medical Research Methodology. Vol. 13, 2013, pp. 1–8.

[15] Freund, Y. A more robust boosting algorithm. arXiv:0905.2138v1, 2009.

[16] Freund, Y. and R. E. Schapire. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. J. of Computer and System Sciences,
Vol. 55, pp. 119–139, 1997.

[17] Friedman, J. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, Vol. 29, No. 5, pp. 1189–1232, 2001.

[18] Friedman, J., T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical
view of boosting. Annals of Statistics, Vol. 28, No. 2, pp. 337–407, 2000.

[19] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
second edition. Springer, New York, 2008.

[20] Ho, T. K. The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, pp.
832–844, 1998.

[21] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. A Practical Guide to Support
Vector Classification. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf.

[22] Kecman V., T. -M. Huang, and M. Vogt. “Iterative Single Data Algorithm for
Training Kernel Machines from Huge Data Sets: Theory and Performance.” In
Support Vector Machines: Theory and Applications. Edited by Lipo Wang, 255–
274. Berlin: Springer-Verlag, 2005.

[23] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56,
Number 294, 1961, pp. 223–234.

[24] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[25] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

 Bibliography

16-211

[26] Schapire, R. E. et al. Boosting the margin: A new explanation for the effectiveness of
voting methods. Annals of Statistics, Vol. 26, No. 5, pp. 1651–1686, 1998.

[27] Schapire, R., and Y. Singer. Improved boosting algorithms using confidence-rated
predictions. Machine Learning, Vol. 37, No. 3, pp. 297–336, 1999.

[28] Seiffert, C., T. Khoshgoftaar, J. Hulse, and A. Napolitano. RUSBoost: Improving
clasification performance when training data is skewed. 19th International
Conference on Pattern Recognition, pp. 1–4, 2008.

[29] Warmuth, M., J. Liao, and G. Ratsch. Totally corrective boosting algorithms that
maximize the margin. Proc. 23rd Int’l. Conf. on Machine Learning, ACM, New
York, pp. 1001–1008, 2006.

[30] Zadrozny, B., J. Langford, and N. Abe. Cost-Sensitive Learning by Cost-Proportionate
Example Weighting. CiteSeerX. [Online] 2003. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.5.9780

[31] Zhou, Z.-H. and X.-Y. Liu. On Multi-Class Cost-Sensitive Learning. CiteSeerX.
[Online] 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.9999

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.9780
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.9780
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.9999

17

Classification Learner

• “Explore Classification Models Interactively” on page 17-2
• “Select Data and Validation for Classification Problem” on page 17-5
• “Choose a Classifier” on page 17-8
• “Select Features” on page 17-23
• “Assess Classifier Performance” on page 17-25
• “Export Classification Model to Predict New Data” on page 17-29
• “Explore Decision Trees Interactively” on page 17-32
• “Explore Support Vector Machines Interactively” on page 17-43
• “Explore Nearest Neighbor Classification Interactively” on page 17-45
• “Explore Ensemble Classification Interactively” on page 17-47

17 Classification Learner

17-2

Explore Classification Models Interactively

You can use the Classification Learner app to train models to classify data. Using this
app, you can explore supervised machine learning using various classifiers. You can
explore your data, select features, specify cross-validation schemes, train models, and
assess results. You can choose from several classification types including decision trees,
support vector machines, nearest neighbors, and ensemble classification.

Perform supervised machine learning by supplying a known set of input data
(observations or examples) and known responses to the data (i.e., labels or classes). Use
the data to train a model that generates predictions for the response to new data. To use
the model with new data, or to learn about programmatic classification, you can export
the model to the workspace or generate MATLAB code to recreate the trained model.

Known Data

Known Responses

Model

Model

New Data

Predicted Responses

1

2

Use this workflow:

1 Open the app by entering classificationLearner at the MATLAB command
prompt.

2 Import data and select variables to use as predictors (or features) and a response
variable. See “Select Data and Validation for Classification Problem” on page
17-5.

3 Choose a classifier. On the Classification Learner tab, in the Classifier section,
click a classifier type. To see all available classifier options, click the arrow on the
far right of the Classifier section to expand the list of classifiers. The options in the
Classifier gallery are starting points with different settings, suitable for a range of
different classification problems.

The table shows typical characteristics of different supervised learning algorithms.
To choose a classifier type, decide on tradeoffs between predictive accuracy, speed

 Explore Classification Models Interactively

17-3

of training and prediction, memory usage, and interpretability. For example, for the
fastest fitting, try a decision tree first.

4 After selecting a classifier, click Train.

Repeat to try different classifiers. Every time you click Train, you create a new
model in the history list.

5 Compare model performance by inspecting results in the scatter plot, confusion
matrix, and ROC curve. Examine the percentage accuracy reported in the history list
for each model. See “Assess Classifier Performance” on page 17-25.

6 Select the best model in the history list and then try including and excluding
different features in the model. See if you can improve the model by removing
features with low predictive power. Specify predictors to include in the model, and
train new models using the new options. Compare results among the models in the
history list. See “Select Features” on page 17-23.

7 To improve the model further, you can try changing classifier parameter settings in
the Advanced dialog box, and then train using the new options.

8 Generate code to train the model with different data, or export trained models to the
workspace to make predictions using new data. See “Export Classification Model to
Predict New Data” on page 17-29.

Tip For a step-by-step example, see “Explore Decision Trees Interactively” on page
17-32.

The figure shows the app with a history list containing various classifier types.

17 Classification Learner

17-4

Related Examples
• “Select Data and Validation for Classification Problem” on page 17-5
• “Choose a Classifier” on page 17-8
• “Select Features” on page 17-23
• “Assess Classifier Performance” on page 17-25
• “Export Classification Model to Predict New Data” on page 17-29
• “Explore Decision Trees Interactively” on page 17-32

 Select Data and Validation for Classification Problem

17-5

Select Data and Validation for Classification Problem

In this section...

“Select Data from the Workspace” on page 17-5
“Choose Validation Scheme” on page 17-6

Select Data from the Workspace

1 Load your data into the MATLAB workspace.

Tip Tables are the easiest way to use your data in the Classification Learner app,
because they can contain numeric and label data. Use the Import Tool to bring your
data into the MATLAB workspace as a table, or use the table functions to create a
table from workspace variables. See “Tables”.

• Predictor variables must be numeric.
• Response variables can be a categorical array, cell array of strings, character

array, logical vector, or a numeric vector the same height (first dimension) as the
input predictor data.

2 Open the Classification Learner app by entering:

classificationLearner

3 In the Classification Learner app, on the Classification Learner tab, in the File
section, click Import Data.

4 In the Setup dialog box, select a table or matrix from the workspace variables.

If you select a matrix, choose whether to use rows or columns for observations by
clicking the option buttons.

5 Observe the roles the app selects for the variables based on their data type. The app
tries to select a suitable response variable, and all other variables are predictors.
Change the selections if needed in the column Import as. For each variable, you can
choose either Predictor, Response, or Do not import.

6 To accept the default validation scheme and continue, click Import Data. The
default validation option is 5-fold cross-validation, which protects against overfitting.

17 Classification Learner

17-6

Tip If you have a large data set you might want to switch to holdout validation. To
learn more, see “Choose Validation Scheme” on page 17-6.

Choose Validation Scheme

Choose a validation method to examine the predictive accuracy of the fitted models.
Validation estimates model performance on new data compared to the training data,
and helps you choose the best model. Validation protects against overfitting. Choose a
validation scheme before training any models, so that you can compare all the models in
your session using the same validation scheme.

• Cross Validation: Select a number of folds (or divisions) to partition the data set
using the slider control.

If you choose k folds, then the app:

1 Partitions the data into k disjoint sets or folds
2 For each fold:

a Trains a model using the out-of-fold observations
b Assesses model performance using in-fold data

3 Calculates the average test error over all folds

This method gives a good estimate of the predictive accuracy of the final model
trained with all the data. It requires multiple fits but makes efficient use of all the
data, so it is recommended for small data sets.

Tip Try the default number of folds. Click Import Data to continue.
• Holdout: Select a percentage of the data to use as a test set using the slider control.

The app trains the model on the training set and assesses the performance with
the test set. The resulting model is based on only a portion of the data, so it is
recommended only for large data sets.

• None: No validation. The app uses all of the data for training and computes the error
rate on the same data. Without any test data, you get an unrealistic estimate of the
model’s performance on new data. That is, the training sample accuracy is likely to be
unrealistically low, and the predictive accuracy is likely to be higher.

 Select Data and Validation for Classification Problem

17-7

To help you avoid overfitting to the training data, choose a validation scheme instead.

All the classification models you train after selecting data use the same validation
scheme that you select in this dialog box. You can compare all the models in your session
using the same validation scheme.

To change the validation selection and train new models, you can select data again,
but you lose any trained models. The app warns you that importing data starts a new
session. Save any trained models you want to keep to the workspace, and then import the
data.

Tip After you train models, you can view the validation accuracy of your models in the
History list. See “Assess Classifier Performance” on page 17-25.

For next steps training models, see “Explore Classification Models Interactively” on page
17-2.

17 Classification Learner

17-8

Choose a Classifier

In this section...

“Choose a Classifier Type” on page 17-8
“Decision Trees” on page 17-10
“Support Vector Machines” on page 17-14
“Nearest Neighbor Classifiers” on page 17-16
“Ensemble Classifiers” on page 17-20

Choose a Classifier Type

In the Classification Learner app, you can explore several types of classifiers. To see
all available classifier options, on the Classification Learner tab, click the arrow on
the far right of the Classifier section to expand the list of classifiers. The options in
the Classifier gallery are starting points with different settings, suitable for a range of
different classification problems.

For help choosing a classifier type, see the table showing typical characteristics of
different supervised learning algorithms. Use the table as a guide for your initial choice
of algorithms, but be aware that the table can be inaccurate for some problems.

Tip Decide on the tradeoff you want in speed of training, memory usage, accuracy, and
interpretability. For example, for the fastest fitting, try a decision tree first.

Choose a Classifier Type

Algorithm Predictive
Accuracy

Fitting Speed Prediction Speed Memory
Usage

Easy to
Interpret

“Decision Trees” on
page 17-10

Medium Fast Fast Low Yes

“Support Vector
Machines” on page
17-14

High Medium Fast for few
support vectors.
Slow for many
support vectors.

Fast for
few support
vectors.
Slow for
many

Yes only for
Linear SVM.
No for all
other kernel
types.

 Choose a Classifier

17-9

Algorithm Predictive
Accuracy

Fitting Speed Prediction Speed Memory
Usage

Easy to
Interpret

support
vectors.

“Nearest Neighbor
Classifiers” on page
17-16

High only in
low dimensions.
Low for high
dimensions.

Fast Fast for low
dimensions
(<10), slow
for high
dimensions
(>20)

High No

“Ensemble
Classifiers” on page
17-20

High Slow Qualities depend on choice of
algorithm.

No

To read a description of each classifier, switch to the details view.

17 Classification Learner

17-10

Tip After you choose a classifier type (e.g., decision trees), try training using each of
the classifiers. The options in the Classifier gallery are starting points with different
settings. Try them all to see which option produces the best model with your data.

For workflow instructions, see “Explore Classification Models Interactively” on page 17-2.

Decision Trees

Decision trees are easy to interpret, fast for fitting and prediction, and low on memory
usage, but they can have low predictive accuracy. Try to grow simpler trees to prevent
overfitting. Control the depth with the Maximum number of splits setting.

 Choose a Classifier

17-11

Classifier Name Description

Complex Tree A decision tree with many leaves that
makes many fine distinctions between
classes (maximum number of splits is 100).

Medium Tree A medium-complexity decision tree with
fewer leaves (maximum number of splits is
20.

Simple Tree A simple decision tree with few leaves that
makes coarse distinctions between classes
(maximum number of splits is 4).

Tip Try training each of the decision tree options in the Classifier gallery. Train them
all to see which settings produce the best model with your data. Select the best model
in the History list. To try to improve your model, try feature selection, and then try
changing some advanced options.

You train classification trees to predict responses to data. To predict a response, follow
the decisions in the tree from the root (beginning) node down to a leaf node. The leaf node
contains the response. Statistics and Machine Learning Toolbox trees are binary. Each
step in a prediction involves checking the value of one predictor (variable). For example,
here is a simple classification tree:

This tree predicts classifications based on two predictors, x1 and x2. To predict, start at
the top node. At each decision, check the values of the predictors to decide which branch
to follow. When the branches reach a leaf node, the data is classified either as type 0 or 1.

You can visualize your decision tree model by exporting the model from the app, and then
entering:

view(trainedClassifier, 'Mode', 'graph')

The figure shows an example complex tree trained with the fisheriris data.

17 Classification Learner

17-12

For an example, see “Explore Decision Trees Interactively” on page 17-32.

Advanced Tree Options

• Maximum number of splits

Specify the maximum number of splits or branch points to control the depth of your
tree. When you grow a decision tree, consider its simplicity and predictive power. To
change the number of splits, click the buttons or enter a positive integer value in the
Maximum number of splits box.

 Choose a Classifier

17-13

• A complex tree with many leaves is usually highly accurate on the training data.
However, the tree might not show comparable accuracy on an independent test set.
A leafy tree tends to overtrain, and its validation accuracy is often far lower than
its training (or resubstitution) accuracy.

• In contrast, a simple tree does not attain high training accuracy. But a simple
tree can be more robust in that its training accuracy can approach that of a
representative test set. Also, a simple tree is easy to interpret.

• Split Criterion

Specify the split criterion measure for deciding when to split nodes. Try each of the
three settings to see if they improve the model with your data.

Split criterion options are Gini's diversity index, Twoing rule, or Maximum
deviance reduction (also known as cross entropy).

The classification tree tries to optimize to pure nodes containing only one class. Gini's
diversity index (the default) and the deviance criterion measure node impurity. The
twoing rule is a different measure for deciding how to split a node, where maximizing
the twoing rule expression increases node purity.

For details of these split criteria, see ClassificationTree “Definitions” on page
22-443.

• Surrogate Decision Splits — Only for missing data.

Specify surrogate use for decision splits. If you have data with missing values, use
surrogate splits to improve the accuracy of predictions.

When you set Surrogate Decision Splits to On, the classification tree finds at most
10 surrogate splits at each branch node. To change the number, click the buttons or
enter a positive integer value in the Maximum Surrogates Per Node box.

When you set Surrogate Decision Splits to Find All, the classification tree finds
all surrogate splits at each branch node. The Find All setting can use considerable
time and memory.

17 Classification Learner

17-14

Support Vector Machines

Support vector machines have high predictive accuracy, medium fitting speed, and can
have good prediction speed and memory usage with few support vectors. Linear SVM is
easy to interpret, but other kernel functions are less easy to interpret.

Classifier Name Description

Linear SVM Makes a simple linear separation between
classes, using the linear kernel—The
easiest SVM to interpret

Fine Gaussian SVM Makes finely detailed distinctions between
classes, using the Gaussian kernel with
kernel scale set to sqrt(P)/4, where P is
the number of predictors

Medium Gaussian SVM Makes fewer distinctions than a fine
Gaussian SVM, using the Gaussian kernel
with kernel scale set to sqrt(P)/4, where
P is the number of predictors

Coarse Gaussian SVM Makes coarse distinctions between classes,
using the Gaussian kernel with kernel
scale set to sqrt(P)/4, where P is the
number of predictors

Quadratic SVM Uses the quadratic kernel
Cubic SVM Uses the cubic kernel

Tip Try training each of the support vector machine options in the Classifier gallery.
Train them all to see which settings produce the best model with your data. Select the
best model in the History list. To try to improve your model, try feature selection, and
then try changing some advanced options.

An SVM classifies data by finding the best hyperplane that separates data points of one
class from those of the other class. The best hyperplane for an SVM means the one with
the largest margin between the two classes. Margin means the maximal width of the slab
parallel to the hyperplane that has no interior data points.

 Choose a Classifier

17-15

The support vectors are the data points that are closest to the separating hyperplane;
these points are on the boundary of the slab. The following figure illustrates these
definitions, with + indicating data points of type 1, and – indicating data points of type –
1.

+

+

+

+

-

-
-

-

-
Separatin

g hyperplane

M
arg

in

Support

vector

Support

vector

Support

vector

SVMs can also use a soft margin, meaning a hyperplane that separates many, but not all
data points.

In the Classification Learner app, you can train SVMs when your data has two or more
classes. If you have exactly two classes, the app uses the fitcsvm function to train the
classifier. If you have more than two classes, the app uses the fitcecoc function to
reduce the multiclass classification problem to a set of binary classification subproblems,
with one SVM learner for each subproblem. To examine the code for the binary and
multiclass classifier types, you can generate code from your trained classifiers in the app.

For an example, see “Explore Support Vector Machines Interactively” on page 17-43.

Advanced SVM Options

• Kernel Function

Specify the Kernel function to compute the Gram matrix.

• Linear kernel, easiest to interpret
• Gaussian or Radial Basis Function (RBF) kernel
• Quadratic

17 Classification Learner

17-16

• Cubic
• Box Constraint Level

Specify the box constraint to keep the allowable values of the Lagrange multipliers in
a box, a bounded region.

To tune your SVM classifier, try increasing the box constraint level. Click the buttons
or enter a positive scalar value in the Box Constraint Level box. Increasing the box
constraint level can decrease the number of support vectors, but also can increase
training time.

• Kernel Scale Mode

Specify manual kernel scaling if desired.

When you set Kernel Scale Mode to Auto, then the software uses a heuristic
procedure to select the scale value. The heuristic procedure uses subsampling.
Therefore, to reproduce results, set a random number seed using rng before training
the classifier.

When you set Kernel Scale Mode to Manual, you can specify a value. Click the
buttons or enter a positive scalar value in the Manual Kernel Scale box. The
software divides all elements of the predictor matrix by the value of the kernel scale.
Then, the software applies the appropriate kernel norm to compute the Gram matrix.

• Multiclass Method

Only for data with 3 or more classes. This method reduces the multiclass classification
problem to a set of binary classification subproblems, with one SVM learner for each
subproblem. One-vs-One trains one learner for each pair of classes. It learns to
distinguish one class from the other. One-vs-All trains one learner for each class. It
learns to distinguish one class from all others.

• Standardize Data

Specify whether to scale each coordinate distance. If predictors have widely different
scales, standardizing can improve the fit.

Nearest Neighbor Classifiers

Nearest neighbor classifiers typically have good predictive accuracy in low dimensions,
but might not in high dimensions. They have fast fitting speed, and prediction speed

 Choose a Classifier

17-17

is fast for low dimensions (<10), but slow for high dimensions (>20). They have high
memory usage, and are not easy to interpret.

Classifier Name Description

Fine KNN Makes finely detailed distinctions between
classes. The number of neighbors is set to
1.

Medium KNN Makes fewer distinctions than a Fine KNN.
The number of neighbors is set to 10.

Coarse KNN Makes coarse distinctions between classes.
The number of neighbors is set to 100.

Cosine KNN Uses the cosine distance metric.
Cubic KNN Uses the cubic distance metric.
Weighted KNN Uses distance weighting.

Tip Try training each of the nearest neighbor options in the Classifier gallery. Train
them all to see which settings produce the best model with your data. Select the best
model in the History list. To try to improve your model, try feature selection, and then
(optionally) try changing some advanced options.

What is k-Nearest Neighbor classification? Categorizing query points based on their
distance to points (or neighbours) in a training dataset can be a simple yet effective way
of classifying new points. You can use various metrics to determine the distance. Given
a set X of n points and a distance function, k-nearest neighbor (kNN) search lets you
find the k closest points in X to a query point or set of points. kNN-based algorithms are
widely used as benchmark machine learning rules.

17 Classification Learner

17-18

For an example, see “Explore Nearest Neighbor Classification Interactively” on page
17-45.

Advanced KNN Options

• Number of Neighbors

Specify the number of nearest neighbors to find for classifying each point when
predicting. Specify a fine (low number) or coarse classifier (high number) by changing
the number of neighbors. For example, a fine KNN uses one neighbor, and a coarse
KNN uses 100. Many neighbors can be time consuming to fit.

• Distance Metric

You can use various metrics to determine the distance to points. For definitions, see
the class ClassificationKNN.

• Distance Weight

 Choose a Classifier

17-19

Specify the distance weighting function. You can choose Equal (no weights), Inverse
(weight is 1/distance), or Squared Inverse (weight is 1/distance2).

• Standardize Data

Specify whether to scale each coordinate distance. If predictors have widely different
scales, standardizing can improve the fit.

17 Classification Learner

17-20

Ensemble Classifiers

Ensemble classifiers meld results from many weak learners into one high-quality
ensemble predictor. Qualities depend on the choice of algorithm.

Note: All ensemble classifiers tend to be slow to fit because they often need many
learners. Also, ensemble classifiers are difficult to interpret.

This table shows typical characteristics of the various ensemble classifiers. Use the table
as a guide for your initial choice of algorithms.

 Choose a Classifier

17-21

Characteristics of Ensemble Classifiers

Classifier Name Predictive
Accuracy

Ensemble Method Fitting
Speed

Prediction
Speed

Memory
Usage

Boosted Trees High, but
might require
parameter
tuning

AdaBoost, with
Decision Tree

learners

Fast
with few
learners,
but might
need more
learners
than
bagged
trees

Fast with few
learners

Low

Bagged Trees Medium to high

Tip Try this
classifier first.

Bag, with
Decision Tree

learners

Slow for
large data
sets

Slow for large
data sets

High for
large data
sets

Subspace KNN Good for many
predictors

Subspace,
with Nearest
Neighbor learners

Medium Medium High

Subspace
Discriminant

Good for many
predictors,
accuracy
dependent on
data set

Subspace, with
Discriminant

learners

Fast Fast Low

RUSBoost Trees Good for
skewed data
(with
many more
observations of
1 class)

RUSBoost, with
Decision Tree

learners

Fast
with few
learners

Fast with few
learners

Low

GentleBoost —
not available in
Classifier gallery.
Select manually if
you have 2 class
data.

For binary
classification
only

GentleBoost,
with Decision
Tree learners
Choose Boosted
Trees and change

Fast
with few
learners

Fast with few
learners

Low

17 Classification Learner

17-22

Classifier Name Predictive
Accuracy

Ensemble Method Fitting
Speed

Prediction
Speed

Memory
Usage

to GentleBoost
method.

Tips

• Try bagged trees first. Boosted trees can usually do better but might require
searching many parameter values, which is time-consuming.

• Try training each of the ensemble classifier options in the Classifier gallery. Train
them all to see which settings produce the best model with your data. Select the best
model in the History list. To try to improve your model, try feature selection, and then
(optionally) try changing some advanced options.

For an example, see “Explore Ensemble Classification Interactively” on page 17-47.

Advanced Ensemble Options

• For help choosing Ensemble Method and Learner Type, see the Ensemble table.
• Number of Learners

Try changing the number of learners to see if you can improve the model. Many
learners can produce high accuracy, but can be time consuming to fit. Start with a few
dozen learners, and then inspect the performance. An ensemble with good predictive
power can need a few hundred leaners.

• Learning Rate

Specify the learning rate for shrinkage. If you set the learning rate to less than 1, the
ensemble requires more learning iterations but often achieves better accuracy. 0.1 is a
popular choice.

• Subspace Dimension

For subspace ensembles, specify number of predictors to sample in each learner. The
app chooses a random subset of the predictors for each learner. The subsets chosen by
different learners are independent.

 Select Features

17-23

Select Features

In Classification Learner app, you can specify different features (or predictors) to include
in the model. See if you can improve models by removing features with low predictive
power. If data collection is expensive or difficult, you might prefer a model that performs
satisfactorily without some predictors.

1 On the Classification Learner tab, in the Features section, click Feature
Selection.

2 In the Feature Selection dialog box, clear the check boxes for the predictors you want
to exclude.

3 Click Train to train a new model using the new predictor options.
4 Observe the new model in the History list. The Current model pane displays how

many predictors are excluded, for example 2 of 4.

17 Classification Learner

17-24

5 To check which predictors are included in a trained model, click the model in the
History list and observe the check boxes in the Feature Selection dialog box.

6 You can try to improve the model by including different features in the model.

For an example using feature selection, see “Explore Decision Trees Interactively” on
page 17-32.

 Assess Classifier Performance

17-25

Assess Classifier Performance

In this section...

“Check Performance in the History List” on page 17-25
“Understand the Confusion Matrix” on page 17-25
“Understand the ROC Curve” on page 17-27

Check Performance in the History List

After training a model in the Classification Learner app, check the History list to see
which model has the best overall accuracy in percent. The best score is highlighted in
a green box. This score is the validation accuracy (unless you opted for no validation
scheme). The validation accuracy score estimates a model's performance on new data
compared to the training data. Use the score to help you choose the best model.

• For cross-validation, the score is the accuracy on all observations, counting each
observation when it was in a held-out fold.

Note: When you imported data into the app, if you accepted the defaults, you are
using cross-validation. To learn more, see “Choose Validation Scheme” on page 17-6.

• For holdout validation, the score is the accuracy on the held-out observations.
• For no validation, the score is the resubstitution accuracy against all the training

data observations.

The best overall score might not be the best model for your goal. A model with a slightly
lower overall accuracy might be the best classifier for your goal. For example, false
positives in a particular class might be important to you. You might want to exclude
some predictors where data collection is expensive or difficult.

To find out how the classifier performed in each class, examine the confusion matrix.

Understand the Confusion Matrix

To view the confusion matrix after training a model, on the Classification Learner
tab, in the Plots section, click Confusion Matrix. Use this plot to understand how the
currently selected classifier performed in each class.

17 Classification Learner

17-26

On the plot, the rows show the true class, and the columns show the predicted class.
The diagonal cells show where the true class and predicted class match. If these cells
are green and display high percentages, the classifier has performed well and classified
observations of this true class correctly.

Tip Look for areas where the classifier performed poorly by examining cells off the
diagonal that display high percentages and are red. In these red cells, the true class and
the predicted class do not match. The data points are misclassified.

The default view shows a summary per true class in the last column on the right.

 Assess Classifier Performance

17-27

In this example, using the carsmall data set, the top row shows all cars with true class
France. The columns show the predicted classes. In the top row, one out of four cars from
France is correctly classified, so the summary cell on the right shows 25% in green. 25%
is the true positive rate for correctly classified points in this class.

The other three cars in this row are misclassified: one car is incorrectly classified as from
Germany, one from Japan, and one from the USA. The summary cell on the right shows
75% in red, under the green 25%. 75% is the false negative rate for incorrectly classified
points in this class.

If you want to see a summary per predicted class instead, under Summarize, select
Per predicted class. The plot shows a summary row underneath the table. Positive
predictive values are shown in green for the correctly predicted points in each class, and
false discovery rates are shown below it in red for the incorrectly predicted points in
each class. If false positives are important in your classification problem, use this view to
investigate false discovery rates.

If you want to see percentages across the whole data set instead of by class, under
Summarize, select Overall. The views per class are more useful for identifying the
areas where the classifier has performed poorly. The higher the percentage, the brighter
the hue of the cell color.

The Overall Accuracy is the validation accuracy you can also view in the History list.

The confusion matrix shows no numbers in the cells if you have more than five classes or
the pane is too small.

If you decide there are too many misclassified points in the classes of interest, try
changing classifier settings or feature selection to search for a better model.

Understand the ROC Curve

To view the ROC curve after training a model, on the Classification Learner tab, in
the Plots section, click ROC Curve. View the receiver operating characteristic (ROC)
curve showing true and false positive rates. The ROC curve shows true positive rate
versus false positive rate for the currently selected trained classifier. You can select
different classes to plot.

A perfect result with no misclassified points is a right angle to the top left of the plot.
A poor result that is no better than random is a line at 45 degrees. The Area Under

17 Classification Learner

17-28

Curve number is a measure of the overall quality of the classifier. Compare classes and
trained models to see if they perform differently in the ROC curve.

For more information, see perfcurve.

Related Examples
• “Explore Classification Models Interactively” on page 17-2
• “Export Classification Model to Predict New Data” on page 17-29

 Export Classification Model to Predict New Data

17-29

Export Classification Model to Predict New Data

In this section...

“Export the Model to the Workspace to Make Predictions for New Data” on page
17-29
“Generate MATLAB Code to Train the Model with New Data” on page 17-30

Export the Model to the Workspace to Make Predictions for New Data

After you create classification models interactively in the Classification Learner app,
you can export your best model to the workspace. You can then use the trained model to
make predictions using new data.

1 In the Classification Learner app, select the model you want to export in the History
list.

2 On the Classification Learner tab, in the Export section, click one of the export
options:

• If you want to include the data used for training the model, then select Export
Model.

You export the trained model to the workspace as a classification object, such as a
ClassificationTree, ClassificationSVM, CompactClassificationTree,
ClassificationKNN, ClassificationBaggedEnsemble, etc.

• If you do not want to include the training data, select Export compacted. This
option exports the model as a compact classification object that does not include
the training data (e.g., CompactClassificationTree). You can use a compact
classification object for making predictions of new data, but you can use fewer
other methods with it.

The app displays information about the exported model in the command window.
3 To use the exported classifier to make predictions for new data, T, use the form:

yfit = predict(trainedClassifier,T{:,trainedClassifier.PredictorNames})

Replace the table T with your training data or new data. The output yfit contains a
class prediction for each data point.

17 Classification Learner

17-30

Generate MATLAB Code to Train the Model with New Data

After you create classification models interactively in the Classification Learner app, you
can generate MATLAB code for your best model. You can then use the code to train the
model with new data.

1 In the Classification Learner app, in the History list, select the model you want to
generate code for.

2 On the Classification Learner tab, in the Export section, click Export Model >
Generate Code.

The app generates code from your session and displays the file in the MATLAB
Editor. The file includes the predictors and response, the classifier training methods,
and validation methods. Save the file.

3 To retrain your classifier model, call the function from the command line with your
original data or new data as the input argument. New data must be the same shape.

Copy the first line of the generated code excluding the word function, and edit the
datasetTable input argument to the variable name of your training data or new data.
For example, to retrain a classifier trained with the fisheriris data set, enter:

[trainedClassifier, validationAccuracy] = trainClassifier(fisheriris)

4 If you want to automate training the same classifier with new data, or learn how to
programmatically train classifiers, examine the generated code. The code shows you
how to:

• Process the data into the right shape
• Train a classifier and specify all the classifier options
• Perform cross-validation
• Compute validation accuracy
• Compute validation predictions and scores

See Also

Functions
fitcecoc | fitcknn | fitcsvm | fitctree | fitensemble

 Export Classification Model to Predict New Data

17-31

Classes
ClassificationBaggedEnsemble | ClassificationKNN | ClassificationSVM
| ClassificationTree | CompactClassificationEnsemble |
CompactClassificationSVM | CompactClassificationTree

Related Examples
• “Explore Classification Models Interactively” on page 17-2

17 Classification Learner

17-32

Explore Decision Trees Interactively

This example shows how to create and compare various classification trees using
Classification Learner app, and export trained models to the workspace to make
predictions for new data.

You can train classification trees to predict responses to data. To predict a response,
follow the decisions in the tree from the root (beginning) node down to a leaf node. The
leaf node contains the response.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction
involves checking the value of one predictor (variable). For example, here is a simple
classification tree:

This tree predicts classifications based on two predictors, x1 and x2. To predict, start at
the top node. At each decision, check the values of the predictors to decide which branch
to follow. When the branches reach a leaf node, the data is classified either as type 0 or 1.

This example use Fisher's 1936 iris data. The iris data contains measurements of flowers:
the petal length, petal width, sepal length, and sepal width for specimens from three
species. Train a classifier to predict the species based on the predictor measurements.

1 In MATLAB, load the fisheriris data set.

load fisheriris;

2 Create a table of measurement predictors (or features) using variables from the data
set to use for a classification.

IrisTable = array2table(meas,'VariableNames',{'SepalLength','SepalWidth',...

'PetalLength','PetalWidth'});

3 Add the species response variable to the table. Species is the response you want to
train a model to predict.

IrisTable.Species = categorical(species);

4 Open the Classification Learner app by entering:

 Explore Decision Trees Interactively

17-33

classificationLearner

5 On the Classification Learner tab, in the File section, click Import Data.
6 In the Set Up Classification dialog box, select the table IrisTable from the

workspace list.

Observe the roles the app has selected for the variables based on their data type.
Petal and sepal length and width are predictors, and species is the response that you
want to classify. For this example, do not change the role selections.

7 To accept the default validation scheme and continue, click Import Data. The
default validation option is cross validation, to protect against overfitting.

Classification Learner app creates a scatter plot of the data.

17 Classification Learner

17-34

8 Use the scatter plot to investigate which variables are useful for predicting the
response. Select different options on the Variable on X axis and Variable on Y
axis menus to visualize the distribution of species and measurements. Observe
which variables separate the species colors most clearly.

 Explore Decision Trees Interactively

17-35

Observe that the setosa species (red points) is easy to separate from the other two
species with all four predictors. The versicolor and virginica species are much
closer together in all predictor measurements, and overlap especially when you plot
sepal length and width. setosa is easier to predict than the other two species.

9 To create a classification tree model, on the Classification Learner tab, in the
Classifier section, click Simple Tree, and then click Train.

The app creates a simple classification tree, and plots the results.

Observe the Simple Tree model in the History list. Check the model validation
score. The model has performed well.

17 Classification Learner

17-36

Note: With cross validation, there is some randomness in the results, so your model
validation score results can vary from those shown.

10 Examine the scatter plot. An X indicates misclassified points. The red points
(setosa species) are all correctly classified, but some of the other two species are
misclassified. Under Classifier Results, change the color of misclassified points
from True class to Predicted class. Observe the color of the X points.

11 Train a different model to compare. Click Medium Tree, and then click Train.

When you click Train,the app displays a new model in the History list.

 Explore Decision Trees Interactively

17-37

12 Observe the Medium Tree model in the History list. The model validation score is
no better than the simple tree score. The app outlines the best model in a green box.
Click each model in the History list to view and compare the results.

13 Examine the scatter plot for the Medium Tree model. The medium tree classifies as
many points correctly as the previous simple tree. You want to avoid overfitting, and
the simple tree performs well, so base all further models on the simple tree.

14 Select Simple Tree in the History list. To try to improve the model, try including
different features in the model. See if you can improve the model by removing
features with low predictive power.

On the Classification Learner tab, in the Features section, click Feature
Selection. In the Feature Selection dialog box, clear the check boxes for
PetalLength and PetalWidth to exclude them from the predictors. Click Train to
train a new medium tree model using the new predictor options.

15 Observe the third model in the History list. It is also a Simple Tree model, trained
using only 2 of 4 predictors. The Current model pane displays how many predictors
are excluded. To check which predictors are included, click a model in the History list
and observe the check boxes in the Feature Selection dialog box.

17 Classification Learner

17-38

The model with only sepal measurements has a much lower score than the petals-
only model.

16 Train another model including only the petal measurements. Change the selections
in the Feature Selection dialog box and click Train.

The model trained using only petal measurements performs comparably to the
models containing all predictors. The models predict no better using all the
measurements compared to only the petal measurements. If data collection is
expensive or difficult, you might prefer a model that performs satisfactorily without
some predictors.

17 Repeat to train two more models including only the width measurements and then
the length measurements. There is not much difference in scores between all the
models with 2 of 4 predictors.

18 Choose a best model among those of similar scores by examining the performance
in each class. Select the simple tree that includes all the predictors. To inspect the
accuracy of the predictions in each class, on the Classification Learner tab, in

 Explore Decision Trees Interactively

17-39

the Plots section, click Confusion Matrix. Use this plot to understand how the
currently selected classifier performed in each class. View the matrix of true class
and predicted class results.

Look for areas where the classifier performed poorly by examining cells off the
diagonal that display high percentages and are red. In these red cells, the true class
and the predicted class do not match. The data points are misclassified.

Note: With cross validation, there is some randomness in the results, so your
confusion matrix results can vary from those shown.

In this figure, examine the third cell in the middle row. In this cell, true class is
versicolor, but the model misclassified the points as virginica. For this model,
the cell shows 12% misclassified.

17 Classification Learner

17-40

You can use this information to help you choose the best model for your goal. If false
positives in this class are very important to your classification problem, then choose
the best model at predicting this class. If false positives in this class are not very
important, and models with fewer predictors do better in other classes, then choose a
model to tradeoff some overall accuracy to exclude some predictors and make future
data collection easier.

19 Compare the confusion matrix for each model in the History list. Check the Feature
Selection dialog box to see which predictors are included in each model.

20 To learn about model settings, choose a model in the History list and view the
advanced settings. The options in the Classifier gallery are preset starting points,
and you can change further settings. On the Classification Learner tab, in the
Training section, click Advanced. Compare the simple and medium tree models
in the history, and observe the differences in the Advanced Tree Options dialog box.
The Maximum Number of Splits setting controls tree depth.

To try to improve the simple tree model further, try changing the Maximum
Number of Splits setting, then train a new model by clicking Train.

21 To export the best trained model to the workspace, on the Classification Learner
tab, in the Export section, click Export Model. In the Export Model dialog box,
click OK to accept the default variable name trainedClassifier. Look in the
command window to see information about the results.

22 To visualize your decision tree model, enter:

view(trainedClassifier, 'Mode', 'graph')

 Explore Decision Trees Interactively

17-41

23 You can use the exported classifier to make predictions on new data. For example, to
make predictions for the IrisTable data in your workspace, enter:

yfit = predict(trainedClassifier,IrisTable{:,trainedClassifier.PredictorNames});

The output yfit contains a class prediction for each data point.
24 If you want to automate training the same classifier with new data, or learn how to

programmatically train classifiers, you can generate code from the app. To generate
code for the best trained model, on the Classification Learner tab, in the Export
section, click Export Model > Generate Code.

17 Classification Learner

17-42

The app generates code from your model and displays the file in the MATLAB
Editor. To learn more, see “Generate MATLAB Code to Train the Model with New
Data” on page 17-30.

Use the same workflow to evaluate and compare the other classifier types you can train
in Classification Learner app: support vector machines, nearest neighbour classifiers,
and ensemble classifiers. To learn about other classifier types, see “Explore Classification
Models Interactively” on page 17-2.

Related Examples
• “Explore Classification Models Interactively” on page 17-2
• “Select Data and Validation for Classification Problem” on page 17-5
• “Choose a Classifier” on page 17-8
• “Select Features” on page 17-23
• “Assess Classifier Performance” on page 17-25
• “Export Classification Model to Predict New Data” on page 17-29

 Explore Support Vector Machines Interactively

17-43

Explore Support Vector Machines Interactively

This example shows how to construct a support vector machine (SVM) classifier using the
ionosphere data set that contains two classes. You can use a support vector machine
(SVM) with two or more classes in the Classification Learner app. An SVM classifies data
by finding the best hyperplane that separates all data points of one class from those of
another class. In the ionosphere data, the response variable is categorical with two
levels: g represents good radar returns, and b represents bad radar returns.

1 In MATLAB, load the ionosphere data set and define some variables from the data
set to use for a classification.

load ionosphere

ionosphere = table(X,categorical(Y));

2 Open the Classification Learner app.

classificationLearner

3 On the Classification Learner tab, in the File section, click Import Data.

In the Setup dialog, observe the roles the app has selected for the variables based on
their data type. The response variable Var2 is categorical with two levels.

4 Click Import Data.

Classification Learner app creates a scatter plot of the data.
5 Use the scatter plot to visualize which variables are useful for predicting the

response. Select different variables in the X- and Y-axis controls. Observe which
variables separate the class colors most clearly.

6 To create an SVM model, on the Classification Learner tab, in the Classifier
section, click the down arrow to expand the list of classifiers, and click one of the
SVM options (e.g., Linear SVM). Then click Train.

Classification Learner app creates an SVM classification using the default settings.
7 Examine the scatter plot for the trained model. Misclassified points are shown as an

X.
8 To inspect the accuracy of the classifier predictions, click the Confusion Matrix tab.

View the matrix of true class and predicted class results.
9 To inspect the classifier performance, click the ROC curve tab. View the Receiver

Operating Characteristic (ROC) curve showing true and false positive rates.

17 Classification Learner

17-44

10 To create more models to compare, try the other SVM options in the Classifier
gallery. Click one of the other SVM options and then click Train. Repeat to try all
the SVM options. Every time you click Train, you create a new model in the History
list.

For information on the strengths of different model types, see “Support Vector
Machines” on page 17-14.

11 Choose the best model in the History list (the best score is highlighted in a green
box). To improve the model, try including different features in the model. See if you
can improve the model by removing features with low predictive power.

On the Classification Learner tab, in the Data Transformation section, click
Features. In the Feature Selection dialog box, specify predictors to include in the
model, and click Train to train a new model using the new options. Compare results
among the classifiers in the History list.

12 Choose the best model in the History list. To try to improve the model further, try
changing SVM settings. On the Classification Learner tab, in the Training
section, click Advanced. Try changing a setting, then retrain the model by clicking
Train. Every time you click Train, you create a new model. For information on
settings, see “Support Vector Machines” on page 17-14.

13 To export the trained model to the workspace, select the Classification Learner App
tab and click Export model. See “Export Classification Model to Predict New Data”
on page 17-29.

Use the same workflow to evaluate and compare the other classifier types you can
train in Classification Learner app. To learn about other classifier types, see “Explore
Classification Models Interactively” on page 17-2.

 Explore Nearest Neighbor Classification Interactively

17-45

Explore Nearest Neighbor Classification Interactively

This example shows how to construct a nearest neighbors classifier.

1 In MATLAB, load the fisheriris data set and define some variables from the data
set to use for a classification.

load fisheriris

fisheririsCategorical = table(meas(:,1),meas(:,2),meas(:,3),...

 meas(:,4),categorical(species));

fisheririsCategorical.Properties.VariableNames = {'SepalLength',...

 'SepalWidth','PetalLength','PetalWidth','Species'};

2 Open the Classification Learner app.

classificationLearner

3 On the Classification Learner tab, in the File section, click Import Data.

In the Set Up Classification dialog, observe the roles the app selected for the
variables based on their data type. Petal and sepal length and width are predictors,
and species is the response that you want to classify. For this example, do not change
the role selections.

4 Click Import Data.

The app creates a scatter plot of the data.
5 Use the scatter plot to investigate which variables are useful for predicting the

response. To visualize the distribution of species and measurements, select different
options on the Variable on X axis and Variable on Y axis menus. Observe which
variables separate the species colors most clearly.

6 To create a nearest neighbors model, on the Classification Learner tab, on the far
right of the Classifier section, click the arrow to expand the list of classifiers, and
then click k-Nearest Neighbor.

7 In the Training section, click Train.

The app creates a classification tree using the default settings.
8 Examine the scatter plot for the trained model. An X indicates a misclassified point.
9 To inspect the accuracy of the classifier predictions, in the Plot section, click

Confusion Matrix. View the matrix of true class and predicted class results.

17 Classification Learner

17-46

10 To inspect the classifier performance, in the Plot section, click ROC Curve. View
the receiver operating characteristic (ROC) curve showing true- and false- positive
rates.

11 To create more models to compare, try the other nearest neighbor options in the
Classifier gallery. Click one of the other nearest neighbor options and then click
Train. Repeat to try all the nearest neighbor options. Every time you click Train,
you create a new model in the History list.

12 Choose the best model in the History list (the best score is highlighted in a green
box). To improve the model, try including different features in the model. See if you
can improve the model by removing features with low predictive power.

On the Classification Learner tab, in the Data Transformation section, click
Features. In the Feature Selection dialog box, select predictors to include in the
model, and click Train to train a new model using the new options. Compare results
among the classifiers in the History list.

13 Choose the best model in the History list. To try to improve the model further, try
changing settings. On the Classification Learner tab, in the Training section,
click Advanced. Try changing a setting, and then retrain the model by clicking
Train. Every time you click Train, you create a new model. For information on
settings, see “Nearest Neighbor Classifiers” on page 17-16.

14 To export the trained model to the workspace, in the Export section of the toolstrip,
click Export model. See “Export Classification Model to Predict New Data” on page
17-29.

For information on the strengths of different nearest neighbour model types, see
“Nearest Neighbor Classifiers” on page 17-16.

Use the same workflow to evaluate and compare the other classifier types you can
train in Classification Learner app. To learn about other classifier types, see “Explore
Classification Models Interactively” on page 17-2.

 Explore Ensemble Classification Interactively

17-47

Explore Ensemble Classification Interactively
This example shows how to construct an ensemble of classifiers. Ensemble classifiers
meld results from many weak learners into one high-quality ensemble predictor.
Qualities depend on the choice of algorithm, but ensemble classifiers tend to be slow to fit
because they often need many learners.

1 In MATLAB, load the fisheriris data set and define some variables from the data
set to use for a classification.

load fisheriris

fisheririsCategorical = table(meas(:,1), meas(:,2), meas(:,3),...

 meas(:,4), categorical(species));

fisheririsCategorical.Properties.VariableNames = {'SepalLength',...

 'SepalWidth', 'PetalLength', 'PetalWidth', 'Species'};

2 Open Classification Learner app.

classificationLearner

3 On the Classification Learner tab, in the File section, click Import Data.

In the Setup dialog, observe the roles the app has selected for the variables based
on their data type. Petal and sepal length and width are predictors, and species
is the response that you want to classify. For this example, do not change the role
selections.

4 Click Import Data.

Classification Learner app creates a scatter plot of the data.
5 Use the scatter plot to investigate which variables are useful for predicting the

response. Select different variables in the X- and Y-axis controls to visualize the
distribution of species and measurements. Observe which variables separate the
species colors most clearly.

6 To create an ensemble model, on the Classification Learner tab, in the Classifier
section, click the down arrow to expand the list of classifiers, then under Ensemble
Classifiers, click Boosted Trees. Then click Train.

Classification Learner app creates a classification tree using the default settings.
7 Examine the scatter plot for the trained model. Misclassified points are shown as an

X.
8 To inspect the accuracy of the classifier predictions, click the Confusion Matrix tab.

View the matrix of true class and predicted class results.

17 Classification Learner

17-48

9 To inspect the classifier performance, click the ROC curve tab. View the Receiver
Operating Characteristic (ROC) curve showing true and false positive rates.

10 To create more models to compare, try training models using the other classifier
types under Ensemble Classifiers.

11 Choose the best model in the History list (the best score is highlighted in a green
box). To improve the model, try including different features in the model. See if you
can improve the model by removing features with low predictive power.

On the Classification Learner tab, in the Data Transformation section, click
Features. In the Feature Selection dialog box, specify predictors to include in the
model, and click Train to train a new model using the new options. Compare results
among the classifiers in the History list.

12 Choose the best model in the History list. To try to improve the model further, try
changing settings. On the Classification Learner tab, in the Training section, click
Advanced. Try changing a setting, then retrain the model by clicking Train. Every
time you click Train, you create a new model.

13 To export the trained model to the workspace, select the Classification Learner App
tab and click Export model. See “Export Classification Model to Predict New Data”
on page 17-29.

For information on the strengths of different ensemble model types, see “Ensemble
Classifiers” on page 17-20.

Use the same workflow to evaluate and compare the other classifier types you can
train in Classification Learner app. To learn about other classifier types, see “Explore
Classification Models Interactively” on page 17-2.

18

Markov Models

• “Introduction to Markov Models” on page 18-2
• “Markov Chains” on page 18-3
• “Hidden Markov Models (HMM)” on page 18-5

18 Markov Models

18-2

Introduction to Markov Models

Markov processes are examples of stochastic processes—processes that generate random
sequences of outcomes or states according to certain probabilities. Markov processes are
distinguished by being memoryless—their next state depends only on their current state,
not on the history that led them there. Models of Markov processes are used in a wide
variety of applications, from daily stock prices to the positions of genes in a chromosome.

 Markov Chains

18-3

Markov Chains
A Markov model is given visual representation with a state diagram, such as the one
below.

State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you are trying
to model, and the arrows represent transitions between states. The label on each arrow
represents the probability of that transition. At each step of the process, the model may
generate an output, or emission, depending on which state it is in, and then make a
transition to another state. An important characteristic of Markov models is that the
next state depends only on the current state, and not on the history of transitions that
lead to the current state.

For example, for a sequence of coin tosses the two states are heads and tails. The most
recent coin toss determines the current state of the model and each subsequent toss
determines the transition to the next state. If the coin is fair, the transition probabilities
are all 1/2. The emission might simply be the current state. In more complicated models,
random processes at each state will generate emissions. You could, for example, roll a die
to determine the emission at any step.

Markov chains are mathematical descriptions of Markov models with a discrete set of
states. Markov chains are characterized by:

18 Markov Models

18-4

• A set of states {1, 2, ..., M}
• An M-by-M transition matrix T whose i,j entry is the probability of a transition from

state i to state j. The sum of the entries in each row of T must be 1, because this is the
sum of the probabilities of making a transition from a given state to each of the other
states.

• A set of possible outputs, or emissions, {s1, s2, ... , sN}. By default, the set of emissions
is {1, 2, ... , N}, where N is the number of possible emissions, but you can choose a
different set of numbers or symbols.

• An M-by-N emission matrix E whose i,k entry gives the probability of emitting symbol
sk given that the model is in state i.

Markov chains begin in an initial state i0 at step 0. The chain then transitions to state
i1 with probability T i1

1

, and emits an output sk
1

 with probability Ei k
1 1

. Consequently,

the probability of observing the sequence of states i i i
r1 2

... and the sequence of emissions
s s sk k k

r1 2

... in the first r steps, is

T E T E T Ei i k i i i k i i i k
r r r

1
1 1 1 1 2 2 2 1

...
−

 Hidden Markov Models (HMM)

18-5

Hidden Markov Models (HMM)

In this section...

“Introduction to Hidden Markov Models (HMM)” on page 18-5
“Analyzing Hidden Markov Models” on page 18-7

Introduction to Hidden Markov Models (HMM)

A hidden Markov model (HMM) is one in which you observe a sequence of emissions, but
do not know the sequence of states the model went through to generate the emissions.
Analyses of hidden Markov models seek to recover the sequence of states from the
observed data.

As an example, consider a Markov model with two states and six possible emissions. The
model uses:

• A red die, having six sides, labeled 1 through 6.
• A green die, having twelve sides, five of which are labeled 2 through 6, while the

remaining seven sides are labeled 1.
• A weighted red coin, for which the probability of heads is .9 and the probability of

tails is .1.
• A weighted green coin, for which the probability of heads is .95 and the probability of

tails is .05.

The model creates a sequence of numbers from the set {1, 2, 3, 4, 5, 6} with the following
rules:

• Begin by rolling the red die and writing down the number that comes up, which is the
emission.

• Toss the red coin and do one of the following:

• If the result is heads, roll the red die and write down the result.
• If the result is tails, roll the green die and write down the result.

• At each subsequent step, you flip the coin that has the same color as the die you rolled
in the previous step. If the coin comes up heads, roll the same die as in the previous
step. If the coin comes up tails, switch to the other die.

18 Markov Models

18-6

The state diagram for this model has two states, red and green, as shown in the following
figure.

You determine the emission from a state by rolling the die with the same color as the
state. You determine the transition to the next state by flipping the coin with the same
color as the state.

The transition matrix is:

T =










0 9

0 05

0 1

0 95

.

.

.

.

The emissions matrix is:

E =



















1

6

1

6

1

6

1

6

1

6

1

6

7

12

1

12

1

12

1

12

1

12

1

12

The model is not hidden because you know the sequence of states from the colors of the
coins and dice. Suppose, however, that someone else is generating the emissions without
showing you the dice or the coins. All you see is the sequence of emissions. If you start

 Hidden Markov Models (HMM)

18-7

seeing more 1s than other numbers, you might suspect that the model is in the green
state, but you cannot be sure because you cannot see the color of the die being rolled.

Hidden Markov models raise the following questions:

• Given a sequence of emissions, what is the most likely state path?
• Given a sequence of emissions, how can you estimate transition and emission

probabilities of the model?
• What is the forward probability that the model generates a given sequence?
• What is the posterior probability that the model is in a particular state at any point in

the sequence?

Analyzing Hidden Markov Models

• “Generating a Test Sequence” on page 18-7
• “Estimating the State Sequence” on page 18-8
• “Estimating Transition and Emission Matrices” on page 18-8
• “Estimating Posterior State Probabilities” on page 18-10
• “Changing the Initial State Distribution” on page 18-11

Statistics and Machine Learning Toolbox functions related to hidden Markov models are:

• hmmgenerate — Generates a sequence of states and emissions from a Markov model
• hmmestimate — Calculates maximum likelihood estimates of transition and emission

probabilities from a sequence of emissions and a known sequence of states
• hmmtrain — Calculates maximum likelihood estimates of transition and emission

probabilities from a sequence of emissions
• hmmviterbi — Calculates the most probable state path for a hidden Markov model
• hmmdecode — Calculates the posterior state probabilities of a sequence of emissions

This section shows how to use these functions to analyze hidden Markov models.

Generating a Test Sequence

The following commands create the transition and emission matrices for the model
described in the “Introduction to Hidden Markov Models (HMM)” on page 18-5:

TRANS = [.9 .1; .05 .95;];

18 Markov Models

18-8

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...

7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

To generate a random sequence of states and emissions from the model, use
hmmgenerate:

[seq,states] = hmmgenerate(1000,TRANS,EMIS);

The output seq is the sequence of emissions and the output states is the sequence of
states.

hmmgenerate begins in state 1 at step 0, makes the transition to state i1 at step 1, and
returns i1 as the first entry in states. To change the initial state, see “Changing the
Initial State Distribution” on page 18-11.

Estimating the State Sequence

Given the transition and emission matrices TRANS and EMIS, the function hmmviterbi
uses the Viterbi algorithm to compute the most likely sequence of states the model would
go through to generate a given sequence seq of emissions:

likelystates = hmmviterbi(seq, TRANS, EMIS);

likelystates is a sequence the same length as seq.

To test the accuracy of hmmviterbi, compute the percentage of the actual sequence
states that agrees with the sequence likelystates.

sum(states==likelystates)/1000

ans =

 0.8200

In this case, the most likely sequence of states agrees with the random sequence 82% of
the time.

Estimating Transition and Emission Matrices

• “Using hmmestimate” on page 18-9
• “Using hmmtrain” on page 18-9

The functions hmmestimate and hmmtrain estimate the transition and emission
matrices TRANS and EMIS given a sequence seq of emissions.

 Hidden Markov Models (HMM)

18-9

Using hmmestimate

The function hmmestimate requires that you know the sequence of states states that
the model went through to generate seq.

The following takes the emission and state sequences and returns estimates of the
transition and emission matrices:

[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)

TRANS_EST =

0.8989 0.1011

0.0585 0.9415

EMIS_EST =

0.1721 0.1721 0.1749 0.1612 0.1803 0.1393

0.5836 0.0741 0.0804 0.0789 0.0726 0.1104

You can compare the outputs with the original transition and emission matrices, TRANS
and EMIS:

TRANS

TRANS =

0.9000 0.1000

0.0500 0.9500

EMIS

EMIS =

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

0.5833 0.0833 0.0833 0.0833 0.0833 0.0833

Using hmmtrain

If you do not know the sequence of states states, but you have initial guesses for TRANS
and EMIS, you can still estimate TRANS and EMIS using hmmtrain.

Suppose you have the following initial guesses for TRANS and EMIS.

TRANS_GUESS = [.85 .15; .1 .9];

EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 .08 .08 .08 .08 08];

You estimate TRANS and EMIS as follows:

[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)

TRANS_EST2 =

18 Markov Models

18-10

0.2286 0.7714

0.0032 0.9968

EMIS_EST2 =

0.1436 0.2348 0.1837 0.1963 0.2350 0.0066

0.4355 0.1089 0.1144 0.1082 0.1109 0.1220

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS and
EMIS_GUESS so that at each step the adjusted matrices are more likely to generate
the observed sequence, seq. The algorithm halts when the matrices in two successive
iterations are within a small tolerance of each other.

If the algorithm fails to reach this tolerance within a maximum number of iterations,
whose default value is 100, the algorithm halts. In this case, hmmtrain returns the last
values of TRANS_EST and EMIS_EST and issues a warning that the tolerance was not
reached.

If the algorithm fails to reach the desired tolerance, increase the default value of the
maximum number of iterations with the command:

hmmtrain(seq,TRANS_GUESS,EMIS_GUESS,'maxiterations',maxiter)

where maxiter is the maximum number of steps the algorithm executes.

Change the default value of the tolerance with the command:

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)

where tol is the desired value of the tolerance. Increasing the value of tol makes the
algorithm halt sooner, but the results are less accurate.

Two factors reduce the reliability of the output matrices of hmmtrain:

• The algorithm converges to a local maximum that does not represent the true
transition and emission matrices. If you suspect this, use different initial guesses for
the matrices TRANS_EST and EMIS_EST.

• The sequence seq may be too short to properly train the matrices. If you suspect this,
use a longer sequence for seq.

Estimating Posterior State Probabilities

The posterior state probabilities of an emission sequence seq are the conditional
probabilities that the model is in a particular state when it generates a symbol in seq,
given that seq is emitted. You compute the posterior state probabilities with hmmdecode:

 Hidden Markov Models (HMM)

18-11

PSTATES = hmmdecode(seq,TRANS,EMIS)

The output PSTATES is an M-by-L matrix, where M is the number of states and L is the
length of seq. PSTATES(i,j) is the conditional probability that the model is in state i
when it generates the jth symbol of seq, given that seq is emitted.

hmmdecode begins with the model in state 1 at step 0, prior to the first emission.
PSTATES(i,1) is the probability that the model is in state i at the following step 1. To
change the initial state, see “Changing the Initial State Distribution” on page 18-11.

To return the logarithm of the probability of the sequence seq, use the second output
argument of hmmdecode:

[PSTATES,logpseq] = hmmdecode(seq,TRANS,EMIS)

The probability of a sequence tends to 0 as the length of the sequence increases,
and the probability of a sufficiently long sequence becomes less than the smallest
positive number your computer can represent. hmmdecode returns the logarithm of the
probability to avoid this problem.

Changing the Initial State Distribution

By default, Statistics and Machine Learning Toolbox hidden Markov model functions
begin in state 1. In other words, the distribution of initial states has all of its probability
mass concentrated at state 1. To assign a different distribution of probabilities, p = [p1,
p2, ..., pM], to the M initial states, do the following:

1 Create an M+1-by-M+1 augmented transition matrix, T̂ of the following form:

ˆT
p

T
=











0

0

where T is the true transition matrix. The first column of T̂ contains M+1 zeros. p
must sum to 1.

2 Create an M+1-by-N augmented emission matrix, Ê , that has the following form:

ˆ
E

E
=











0

18 Markov Models

18-12

If the transition and emission matrices are TRANS and EMIS, respectively, you create the
augmented matrices with the following commands:

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS];

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];

19

Design of Experiments

• “Design of Experiments” on page 19-2
• “Full Factorial Designs” on page 19-3
• “Fractional Factorial Designs” on page 19-5
• “Response Surface Designs” on page 19-9
• “D-Optimal Designs” on page 19-15
• “Improve an Engine Cooling Fan Using Design for Six Sigma Techniques” on page

19-24

19 Design of Experiments

19-2

Design of Experiments

Passive data collection leads to a number of problems in statistical modeling. Observed
changes in a response variable may be correlated with, but not caused by, observed
changes in individual factors (process variables). Simultaneous changes in multiple
factors may produce interactions that are difficult to separate into individual effects.
Observations may be dependent, while a model of the data considers them to be
independent.

Designed experiments address these problems. In a designed experiment, the data-
producing process is actively manipulated to improve the quality of information and to
eliminate redundant data. A common goal of all experimental designs is to collect data as
parsimoniously as possible while providing sufficient information to accurately estimate
model parameters.

For example, a simple model of a response y in an experiment with two controlled factors
x1 and x2 might look like this:

y x x x x= + + + +b b b b e
0 1 1 2 2 3 1 2

Here ε includes both experimental error and the effects of any uncontrolled factors in
the experiment. The terms β1x1 and β2x2 are main effects and the term β3x1x2 is a two-
way interaction effect. A designed experiment would systematically manipulate x1 and x2
while measuring y, with the objective of accurately estimating β0, β1, β2, and β3.

 Full Factorial Designs

19-3

Full Factorial Designs
In this section...

“Multilevel Designs” on page 19-3
“Two-Level Designs” on page 19-3

Multilevel Designs

To systematically vary experimental factors, assign each factor a discrete set of levels.
Full factorial designs measure response variables using every treatment (combination of
the factor levels). A full factorial design for n factors with N1, ..., Nn levels requires N1
× ... × Nn experimental runs—one for each treatment. While advantageous for separating
individual effects, full factorial designs can make large demands on data collection.

As an example, suppose a machine shop has three machines and four operators. If the
same operator always uses the same machine, it is impossible to determine if a machine
or an operator is the cause of variation in production. By allowing every operator to use
every machine, effects are separated. A full factorial list of treatments is generated by
the Statistics and Machine Learning Toolbox function fullfact:

dFF = fullfact([3,4])

dFF =

 1 1

 2 1

 3 1

 1 2

 2 2

 3 2

 1 3

 2 3

 3 3

 1 4

 2 4

 3 4

Each of the 3×4 = 12 rows of dFF represent one machine/operator combination.

Two-Level Designs

Many experiments can be conducted with two-level factors, using two-level designs. For
example, suppose the machine shop in the previous example always keeps the same

19 Design of Experiments

19-4

operator on the same machine, but wants to measure production effects that depend on
the composition of the day and night shifts. The Statistics and Machine Learning Toolbox
function ff2n generates a full factorial list of treatments:

dFF2 = ff2n(4)

dFF2 =

 0 0 0 0

 0 0 0 1

 0 0 1 0

 0 0 1 1

 0 1 0 0

 0 1 0 1

 0 1 1 0

 0 1 1 1

 1 0 0 0

 1 0 0 1

 1 0 1 0

 1 0 1 1

 1 1 0 0

 1 1 0 1

 1 1 1 0

 1 1 1 1

Each of the 24 = 16 rows of dFF2 represent one schedule of operators for the day (0) and
night (1) shifts.

 Fractional Factorial Designs

19-5

Fractional Factorial Designs

In this section...

“Introduction to Fractional Factorial Designs” on page 19-5
“Plackett-Burman Designs” on page 19-5
“General Fractional Designs” on page 19-6

Introduction to Fractional Factorial Designs

Two-level designs are sufficient for evaluating many production processes. Factor levels
of ±1 can indicate categorical factors, normalized factor extremes, or simply “up” and
“down” from current factor settings. Experimenters evaluating process changes are
interested primarily in the factor directions that lead to process improvement.

For experiments with many factors, two-level full factorial designs can lead to large
amounts of data. For example, a two-level full factorial design with 10 factors requires
210 = 1024 runs. Often, however, individual factors or their interactions have no
distinguishable effects on a response. This is especially true of higher order interactions.
As a result, a well-designed experiment can use fewer runs for estimating model
parameters.

Fractional factorial designs use a fraction of the runs required by full factorial designs.
A subset of experimental treatments is selected based on an evaluation (or assumption)
of which factors and interactions have the most significant effects. Once this selection
is made, the experimental design must separate these effects. In particular, significant
effects should not be confounded, that is, the measurement of one should not depend on
the measurement of another.

Plackett-Burman Designs

Plackett-Burman designs are used when only main effects are considered significant.
Two-level Plackett-Burman designs require a number of experimental runs that are a
multiple of 4 rather than a power of 2. The MATLAB function hadamard generates these
designs:

dPB = hadamard(8)

dPB =

 1 1 1 1 1 1 1 1

19 Design of Experiments

19-6

 1 -1 1 -1 1 -1 1 -1

 1 1 -1 -1 1 1 -1 -1

 1 -1 -1 1 1 -1 -1 1

 1 1 1 1 -1 -1 -1 -1

 1 -1 1 -1 -1 1 -1 1

 1 1 -1 -1 -1 -1 1 1

 1 -1 -1 1 -1 1 1 -1

Binary factor levels are indicated by ±1. The design is for eight runs (the rows of dPB)
manipulating seven two-level factors (the last seven columns of dPB). The number of
runs is a fraction 8/27 = 0.0625 of the runs required by a full factorial design. Economy is
achieved at the expense of confounding main effects with any two-way interactions.

General Fractional Designs

At the cost of a larger fractional design, you can specify which interactions you wish to
consider significant. A design of resolution R is one in which no n-factor interaction is
confounded with any other effect containing less than R – n factors. Thus, a resolution
III design does not confound main effects with one another but may confound them
with two-way interactions (as in “Plackett-Burman Designs” on page 19-5), while a
resolution IV design does not confound either main effects or two-way interactions but
may confound two-way interactions with each other.

Specify general fractional factorial designs using a full factorial design for a selected
subset of basic factors and generators for the remaining factors. Generators are products
of the basic factors, giving the levels for the remaining factors. Use the Statistics and
Machine Learning Toolbox function fracfact to generate these designs:

dfF = fracfact('a b c d bcd acd')

dfF =

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 1 1 1

 -1 -1 1 -1 1 1

 -1 -1 1 1 -1 -1

 -1 1 -1 -1 1 -1

 -1 1 -1 1 -1 1

 -1 1 1 -1 -1 1

 -1 1 1 1 1 -1

 1 -1 -1 -1 -1 1

 1 -1 -1 1 1 -1

 1 -1 1 -1 1 -1

 1 -1 1 1 -1 1

 Fractional Factorial Designs

19-7

 1 1 -1 -1 1 1

 1 1 -1 1 -1 -1

 1 1 1 -1 -1 -1

 1 1 1 1 1 1

This is a six-factor design in which four two-level basic factors (a, b, c, and d in the
first four columns of dfF) are measured in every combination of levels, while the two
remaining factors (in the last three columns of dfF) are measured only at levels defined
by the generators bcd and acd, respectively. Levels in the generated columns are
products of corresponding levels in the columns that make up the generator.

The challenge of creating a fractional factorial design is to choose basic factors and
generators so that the design achieves a specified resolution in a specified number of
runs. Use the Statistics and Machine Learning Toolbox function fracfactgen to find
appropriate generators:

generators = fracfactgen('a b c d e f',4,4)

generators =

 'a'

 'b'

 'c'

 'd'

 'bcd'

 'acd'

These are generators for a six-factor design with factors a through f, using 24 = 16 runs
to achieve resolution IV. The fracfactgen function uses an efficient search algorithm to
find generators that meet the requirements.

An optional output from fracfact displays the confounding pattern of the design:

[dfF,confounding] = fracfact(generators);

confounding

confounding =

 'Term' 'Generator' 'Confounding'

 'X1' 'a' 'X1'

 'X2' 'b' 'X2'

 'X3' 'c' 'X3'

 'X4' 'd' 'X4'

 'X5' 'bcd' 'X5'

 'X6' 'acd' 'X6'

 'X1*X2' 'ab' 'X1*X2 + X5*X6'

 'X1*X3' 'ac' 'X1*X3 + X4*X6'

 'X1*X4' 'ad' 'X1*X4 + X3*X6'

19 Design of Experiments

19-8

 'X1*X5' 'abcd' 'X1*X5 + X2*X6'

 'X1*X6' 'cd' 'X1*X6 + X2*X5 + X3*X4'

 'X2*X3' 'bc' 'X2*X3 + X4*X5'

 'X2*X4' 'bd' 'X2*X4 + X3*X5'

 'X2*X5' 'cd' 'X1*X6 + X2*X5 + X3*X4'

 'X2*X6' 'abcd' 'X1*X5 + X2*X6'

 'X3*X4' 'cd' 'X1*X6 + X2*X5 + X3*X4'

 'X3*X5' 'bd' 'X2*X4 + X3*X5'

 'X3*X6' 'ad' 'X1*X4 + X3*X6'

 'X4*X5' 'bc' 'X2*X3 + X4*X5'

 'X4*X6' 'ac' 'X1*X3 + X4*X6'

 'X5*X6' 'ab' 'X1*X2 + X5*X6'

The confounding pattern shows that main effects are effectively separated by the design,
but two-way interactions are confounded with various other two-way interactions.

 Response Surface Designs

19-9

Response Surface Designs

In this section...

“Introduction to Response Surface Designs” on page 19-9
“Central Composite Designs” on page 19-9
“Box-Behnken Designs” on page 19-13

Introduction to Response Surface Designs

Quadratic response surfaces are simple models that provide a maximum or minimum
without making additional assumptions about the form of the response. Quadratic
models can be calibrated using full factorial designs with three or more levels for each
factor, but these designs generally require more runs than necessary to accurately
estimate model parameters. This section discusses designs for calibrating quadratic
models that are much more efficient, using three or five levels for each factor, but not
using all combinations of levels.

Central Composite Designs

Central composite designs (CCDs), also known as Box-Wilson designs, are appropriate
for calibrating full quadratic models. There are three types of CCDs—circumscribed,
inscribed, and faced—pictured below:

19 Design of Experiments

19-10

 Response Surface Designs

19-11

19 Design of Experiments

19-12

Each design consists of a factorial design (the corners of a cube) together with center and
star points that allow for estimation of second-order effects. For a full quadratic model
with n factors, CCDs have enough design points to estimate the (n+2)(n+1)/2 coefficients
in a full quadratic model with n factors.

The type of CCD used (the position of the factorial and star points) is determined by
the number of factors and by the desired properties of the design. The following table
summarizes some important properties. A design is rotatable if the prediction variance
depends only on the distance of the design point from the center of the design.

Design Rotatable Factor
Levels

Uses Points
Outside ±1

Accuracy of Estimates

Circumscribed
(CCC)

Yes 5 Yes Good over entire design
space

Inscribed (CCI) Yes 5 No Good over central subset
of design space

Faced (CCF) No 3 No Fair over entire design
space; poor for pure
quadratic coefficients

Generate CCDs with the Statistics and Machine Learning Toolbox function ccdesign:

dCC = ccdesign(3,'type','circumscribed')

dCC =

 -1.0000 -1.0000 -1.0000

 -1.0000 -1.0000 1.0000

 -1.0000 1.0000 -1.0000

 -1.0000 1.0000 1.0000

 1.0000 -1.0000 -1.0000

 1.0000 -1.0000 1.0000

 1.0000 1.0000 -1.0000

 1.0000 1.0000 1.0000

 -1.6818 0 0

 1.6818 0 0

 0 -1.6818 0

 0 1.6818 0

 0 0 -1.6818

 0 0 1.6818

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 Response Surface Designs

19-13

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

The repeated center point runs allow for a more uniform estimate of the prediction
variance over the entire design space.

Box-Behnken Designs

Like the designs described in “Central Composite Designs” on page 19-9, Box-
Behnken designs are used to calibrate full quadratic models. Box-Behnken designs are
rotatable and, for a small number of factors (four or less), require fewer runs than CCDs.
By avoiding the corners of the design space, they allow experimenters to work around
extreme factor combinations. Like an inscribed CCD, however, extremes are then poorly
estimated.

The geometry of a Box-Behnken design is pictured in the following figure.

19 Design of Experiments

19-14

Design points are at the midpoints of edges of the design space and at the center, and do
not contain an embedded factorial design.

Generate Box-Behnken designs with the Statistics and Machine Learning Toolbox
function bbdesign:

dBB = bbdesign(3)

dBB =

 -1 -1 0

 -1 1 0

 1 -1 0

 1 1 0

 -1 0 -1

 -1 0 1

 1 0 -1

 1 0 1

 0 -1 -1

 0 -1 1

 0 1 -1

 0 1 1

 0 0 0

 0 0 0

 0 0 0

Again, the repeated center point runs allow for a more uniform estimate of the prediction
variance over the entire design space.

 D-Optimal Designs

19-15

D-Optimal Designs

In this section...

“Introduction to D-Optimal Designs” on page 19-15
“Generate D-Optimal Designs” on page 19-16
“Augment D-Optimal Designs” on page 19-18
“Specify Fixed Covariate Factors” on page 19-19
“Specify Categorical Factors” on page 19-20
“Specify Candidate Sets” on page 19-21

Introduction to D-Optimal Designs

Traditional experimental designs (“Full Factorial Designs” on page 19-3, “Fractional
Factorial Designs” on page 19-5, and “Response Surface Designs” on page 19-9) are
appropriate for calibrating linear models in experimental settings where factors are
relatively unconstrained in the region of interest. In some cases, however, models are
necessarily nonlinear. In other cases, certain treatments (combinations of factor levels)
may be expensive or infeasible to measure. D-optimal designs are model-specific designs
that address these limitations of traditional designs.

A D-optimal design is generated by an iterative search algorithm and seeks to minimize
the covariance of the parameter estimates for a specified model. This is equivalent to
maximizing the determinant D = |XTX|, where X is the design matrix of model terms
(the columns) evaluated at specific treatments in the design space (the rows). Unlike
traditional designs, D-optimal designs do not require orthogonal design matrices, and
as a result, parameter estimates may be correlated. Parameter estimates may also be
locally, but not globally, D-optimal.

There are several Statistics and Machine Learning Toolbox functions for generating D-
optimal designs:

Function Description

candexch Uses a row-exchange algorithm to generate a D-optimal design with a
specified number of runs for a specified model and a specified candidate
set. This is the second component of the algorithm used by rowexch.

candgen Generates a candidate set for a specified model. This is the first
component of the algorithm used by rowexch.

19 Design of Experiments

19-16

Function Description

cordexch Uses a coordinate-exchange algorithm to generate a D-optimal design
with a specified number of runs for a specified model.

daugment Uses a coordinate-exchange algorithm to augment an existing D-optimal
design with additional runs to estimate additional model terms.

dcovary Uses a coordinate-exchange algorithm to generate a D-optimal design
with fixed covariate factors.

rowexch Uses a row-exchange algorithm to generate a D-optimal design with
a specified number of runs for a specified model. The algorithm calls
candgen and then candexch. (Call candexch separately to specify a
candidate set.)

The following sections explain how to use these functions to generate D-optimal designs.

Note: The Statistics and Machine Learning Toolbox function rsmdemo generates
simulated data for experimental settings specified by either the user or by a D-optimal
design generated by cordexch. It uses the rstool interface to visualize response
surface models fit to the data, and it uses the nlintool interface to visualize a nonlinear
model fit to the data.

Generate D-Optimal Designs

Two Statistics and Machine Learning Toolbox algorithms generate D-optimal designs:

• The cordexch function uses a coordinate-exchange algorithm
• The rowexch function uses a row-exchange algorithm

Both cordexch and rowexch use iterative search algorithms. They operate by
incrementally changing an initial design matrix X to increase D = |XTX| at each step.
In both algorithms, there is randomness built into the selection of the initial design
and into the choice of the incremental changes. As a result, both algorithms may return
locally, but not globally, D-optimal designs. Run each algorithm multiple times and select
the best result for your final design. Both functions have a 'tries' parameter that
automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of X with a row from
a design matrix C evaluated at a candidate set of feasible treatments. The rowexch

 D-Optimal Designs

19-17

function automatically generates a C appropriate for a specified model, operating in two
steps by calling the candgen and candexch functions in sequence. Provide your own C
by calling candexch directly. In either case, if C is large, its static presence in memory
can affect computation.

The coordinate-exchange algorithm, by contrast, does not use a candidate set. (Or
rather, the candidate set is the entire design space.) At each step, the coordinate-
exchange algorithm exchanges a single element of X with a new element evaluated at
a neighboring point in design space. The absence of a candidate set reduces demands
on memory, but the smaller scale of the search means that the coordinate-exchange
algorithm is more likely to become trapped in a local minimum than the row-exchange
algorithm.

For example, suppose you want a design to estimate the parameters in the following
three-factor, seven-term interaction model:

y x x x x x x x x x= + + + + + + +b b b b b b b e
0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

Use cordexch to generate a D-optimal design with seven runs:

nfactors = 3;

nruns = 7;

[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)

dCE =

 -1 1 1

 -1 -1 -1

 1 1 1

 -1 1 -1

 1 -1 1

 1 -1 -1

 -1 -1 1

X =

 1 -1 1 1 -1 -1 1

 1 -1 -1 -1 1 1 1

 1 1 1 1 1 1 1

 1 -1 1 -1 -1 1 -1

 1 1 -1 1 -1 1 -1

 1 1 -1 -1 -1 -1 1

 1 -1 -1 1 1 -1 -1

Columns of the design matrix X are the model terms evaluated at each row of the design
dCE. The terms appear in order from left to right:

19 Design of Experiments

19-18

1 Constant term
2 Linear terms (1, 2, 3)
3 Interaction terms (12, 13, 23)

Use X in a linear regression model fit to response data measured at the design points in
dCE.

Use rowexch in a similar fashion to generate an equivalent design:

[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)

dRE =

 -1 -1 1

 1 -1 1

 1 -1 -1

 1 1 1

 -1 -1 -1

 -1 1 -1

 -1 1 1

X =

 1 -1 -1 1 1 -1 -1

 1 1 -1 1 -1 1 -1

 1 1 -1 -1 -1 -1 1

 1 1 1 1 1 1 1

 1 -1 -1 -1 1 1 1

 1 -1 1 -1 -1 1 -1

 1 -1 1 1 -1 -1 1

Augment D-Optimal Designs

In practice, you may want to add runs to a completed experiment to learn more about
a process and estimate additional model coefficients. The daugment function uses a
coordinate-exchange algorithm to augment an existing D-optimal design.

For example, the following eight-run design is adequate for estimating main effects in a
four-factor model:

dCEmain = cordexch(4,8)

dCEmain =

 1 -1 -1 1

 -1 -1 1 1

 -1 1 -1 1

 1 1 1 -1

 1 1 1 1

 D-Optimal Designs

19-19

 -1 1 -1 -1

 1 -1 -1 -1

 -1 -1 1 -1

To estimate the six interaction terms in the model, augment the design with eight
additional runs:

dCEinteraction = daugment(dCEmain,8,'interaction')

dCEinteraction =

 1 -1 -1 1

 -1 -1 1 1

 -1 1 -1 1

 1 1 1 -1

 1 1 1 1

 -1 1 -1 -1

 1 -1 -1 -1

 -1 -1 1 -1

 -1 1 1 1

 -1 -1 -1 -1

 1 -1 1 -1

 1 1 -1 1

 -1 1 1 -1

 1 1 -1 -1

 1 -1 1 1

 1 1 1 -1

The augmented design is full factorial, with the original eight runs in the first eight rows.

The 'start' parameter of the candexch function provides the same functionality
as daugment, but uses a row exchange algorithm rather than a coordinate-exchange
algorithm.

Specify Fixed Covariate Factors

In many experimental settings, certain factors and their covariates are constrained to a
fixed set of levels or combinations of levels. These cannot be varied when searching for an
optimal design. The dcovary function allows you to specify fixed covariate factors in the
coordinate exchange algorithm.

For example, suppose you want a design to estimate the parameters in a three-factor
linear additive model, with eight runs that necessarily occur at different times. If the
process experiences temporal linear drift, you may want to include the run time as a
variable in the model. Produce the design as follows:

19 Design of Experiments

19-20

time = linspace(-1,1,8)';

[dCV,X] = dcovary(3,time,'linear')

dCV =

 -1.0000 1.0000 1.0000 -1.0000

 1.0000 -1.0000 -1.0000 -0.7143

 -1.0000 -1.0000 -1.0000 -0.4286

 1.0000 -1.0000 1.0000 -0.1429

 1.0000 1.0000 -1.0000 0.1429

 -1.0000 1.0000 -1.0000 0.4286

 1.0000 1.0000 1.0000 0.7143

 -1.0000 -1.0000 1.0000 1.0000

X =

 1.0000 -1.0000 1.0000 1.0000 -1.0000

 1.0000 1.0000 -1.0000 -1.0000 -0.7143

 1.0000 -1.0000 -1.0000 -1.0000 -0.4286

 1.0000 1.0000 -1.0000 1.0000 -0.1429

 1.0000 1.0000 1.0000 -1.0000 0.1429

 1.0000 -1.0000 1.0000 -1.0000 0.4286

 1.0000 1.0000 1.0000 1.0000 0.7143

 1.0000 -1.0000 -1.0000 1.0000 1.0000

The column vector time is a fixed factor, normalized to values between ±1. The number
of rows in the fixed factor specifies the number of runs in the design. The resulting
design dCV gives factor settings for the three controlled model factors at each time.

Specify Categorical Factors

Categorical factors take values in a discrete set of levels. Both cordexch and rowexch
have a 'categorical' parameter that allows you to specify the indices of categorical
factors and a 'levels' parameter that allows you to specify a number of levels for each
factor.

For example, the following eight-run design is for a linear additive model with five
factors in which the final factor is categorical with three levels:

dCEcat = cordexch(5,8,'linear','categorical',5,'levels',3)

dCEcat =

 -1 -1 1 1 2

 -1 -1 -1 -1 3

 1 1 1 1 3

 1 1 -1 -1 2

 1 -1 -1 1 3

 -1 1 -1 1 1

 D-Optimal Designs

19-21

 -1 1 1 -1 3

 1 -1 1 -1 1

Specify Candidate Sets

The row-exchange algorithm exchanges rows of an initial design matrix X with rows
from a design matrix C evaluated at a candidate set of feasible treatments. The rowexch
function automatically generates a C appropriate for a specified model, operating in two
steps by calling the candgen and candexch functions in sequence. Provide your own C
by calling candexch directly.

For example, the following uses rowexch to generate a five-run design for a two-factor
pure quadratic model using a candidate set that is produced internally:

dRE1 = rowexch(2,5,'purequadratic','tries',10)

dRE1 =

 -1 1

 0 0

 1 -1

 1 0

 1 1

The same thing can be done using candgen and candexch in sequence:

[dC,C] = candgen(2,'purequadratic') % Candidate set, C

dC =

 -1 -1

 0 -1

 1 -1

 -1 0

 0 0

 1 0

 -1 1

 0 1

 1 1

C =

 1 -1 -1 1 1

 1 0 -1 0 1

 1 1 -1 1 1

 1 -1 0 1 0

 1 0 0 0 0

 1 1 0 1 0

 1 -1 1 1 1

19 Design of Experiments

19-22

 1 0 1 0 1

 1 1 1 1 1

treatments = candexch(C,5,'tries',10) % D-opt subset

treatments =

 2

 1

 7

 3

 4

dRE2 = dC(treatments,:) % Display design

dRE2 =

 0 -1

 -1 -1

 -1 1

 1 -1

 -1 0

You can replace C in this example with a design matrix evaluated at your own candidate
set. For example, suppose your experiment is constrained so that the two factors cannot
have extreme settings simultaneously. The following produces a restricted candidate set:

constraint = sum(abs(dC),2) < 2; % Feasible treatments

my_dC = dC(constraint,:)

my_dC =

 0 -1

 -1 0

 0 0

 1 0

 0 1

Use the x2fx function to convert the candidate set to a design matrix:

my_C = x2fx(my_dC,'purequadratic')

my_C =

 1 0 -1 0 1

 1 -1 0 1 0

 1 0 0 0 0

 1 1 0 1 0

 1 0 1 0 1

Find the required design in the same manner:

my_treatments = candexch(my_C,5,'tries',10) % D-opt subset

my_treatments =

 2

 D-Optimal Designs

19-23

 4

 5

 1

 3

my_dRE = my_dC(my_treatments,:) % Display design

my_dRE =

 -1 0

 1 0

 0 1

 0 -1

 0 0

19 Design of Experiments

19-24

Improve an Engine Cooling Fan Using Design for Six Sigma
Techniques

This example shows how to improve the performance of an engine cooling fan through a
Design for Six Sigma approach using Define, Measure, Analyze, Improve, and Control
(DMAIC). The initial fan does not circulate enough air through the radiator to keep
the engine cool during difficult conditions. First the example shows how to design an
experiment to investigate the effect of three performance factors: fan distance from
the radiator, blade-tip clearance, and blade pitch angle. It then shows how to estimate
optimum values for each factor, resulting in a design that produces airflows beyond the
goal of 875 ft3 per minute using test data. Finally it shows how to use simulations to
verify that the new design produces airflow according to the specifications in more than
99.999% of the fans manufactured. This example uses MATLAB, Statistics and Machine
Learning Toolbox, and Optimization Toolbox.

Define the Problem

This example addresses an engine cooling fan design that is unable to pull enough air
through the radiator to keep the engine cool during difficult conditions, such as stop-and-
go traffic or hot weather). Suppose you estimate that you need airflow of at least 875 ft3/
min to keep the engine cool during difficult conditions. You need to evaluate the current
design and develop an alternative design that can achieve the target airflow.

Assess Cooling Fan Performance

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load OriginalFan

The data consists of 10,000 measurements (historical production data) of the existing
cooling fan performance.

Plot the data to analyze the current fan's performance.

plot(originalfan)

xlabel('Observation')

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-25

ylabel('Max Airflow (ft^3/min)')

title('Historical Production Data')

The data is centered around 842 ft3/min and most values fall within the range of about 8
ft3/min. The plot does not tell much about the underlying distribution of data, however.
Plot the histogram and fit a normal distribution to the data.

figure()

histfit(originalfan) % Plot histogram with normal distribution fit

format shortg

xlabel('Airflow (ft^3/min)')

ylabel('Frequency (counts)')

19 Design of Experiments

19-26

title('Airflow Histogram')

pd = fitdist(originalfan,'normal') % Fit normal distribution to data

pd =

 NormalDistribution

 Normal distribution

 mu = 841.652 [841.616, 841.689]

 sigma = 1.8768 [1.85114, 1.90318]

fitdist fits a normal distribution to data and estimates the parameters from data. The
estimate for the mean airflow speed is 841.652 ft3/min, and the 95% confidence interval

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-27

for the mean airflow speed is (841.616, 841.689). This estimate makes it clear that the
current fan is not close to the required 875 ft3/min. There is need to improve the fan
design to achieve the target airflow.

Determine Factors That Affect Fan Performance

Evaluate the factors that affect cooling fan performance using design of experiments
(DOE). The response is the cooling fan airflow rate (ft3/min). Suppose that the factors
that you can modify and control are:

• Distance from radiator
• Pitch angle
• Blade tip clearance

In general, fluid systems have nonlinear behavior. Therefore, use a response surface
design to estimate any nonlinear interactions among the factors. Generate the
experimental runs for a Box-Behnken design in coded (normalized) variables [-1, 0, +1].

CodedValue = bbdesign(3)

CodedValue =

 -1 -1 0

 -1 1 0

 1 -1 0

 1 1 0

 -1 0 -1

 -1 0 1

 1 0 -1

 1 0 1

 0 -1 -1

 0 -1 1

 0 1 -1

 0 1 1

 0 0 0

 0 0 0

 0 0 0

The first column is for the distance from radiator, the second column is for the pitch
angle, and the third column is for the blade tip clearance. Suppose you want to test the
effects of the variables at the following minimum and maximum values.

Distance from radiator: 1 to 1.5 inches

19 Design of Experiments

19-28

Pitch angle: 15 to 35 degrees
Blade tip clearance: 1 to 2 inches

Randomize the order of the runs, convert the coded design values to real-world units, and
perform the experiment in the order specified.

runorder = randperm(15); % Random permutation of the runs

bounds = [1 1.5;15 35;1 2]; % Min and max values for each factor

RealValue = zeros(size(CodedValue));

for i = 1:size(CodedValue,2) % Convert coded values to real-world units

 zmax = max(CodedValue(:,i));

 zmin = min(CodedValue(:,i));

 RealValue(:,i) = interp1([zmin zmax],bounds(i,:),CodedValue(:,i));

end

Suppose the at the end of the experiments, you collect the following response values in
the variable TestResult.

TestResult = [837 864 829 856 880 879 872 874 834 833 860 859 874 876 875]';

Display the design values and the response.

disp({'Run Number','Distance','Pitch','Clearance','Airflow'})

disp(sortrows([runorder' RealValue TestResult]))

'Run Number' 'Distance' 'Pitch' 'Clearance' 'Airflow'

 1 1.5 35 1.5 856

 2 1.25 25 1.5 876

 3 1.5 25 1 872

 4 1.25 25 1.5 875

 5 1 35 1.5 864

 6 1.25 25 1.5 874

 7 1.25 15 2 833

 8 1.5 15 1.5 829

 9 1.25 15 1 834

 10 1 15 1.5 837

 11 1.5 25 2 874

 12 1 25 1 880

 13 1.25 35 1 860

 14 1 25 2 879

 15 1.25 35 2 859

Save the design values and the response in a table.

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-29

Exp = table(runorder', CodedValue(:,1), CodedValue(:,2), CodedValue(:,3), ...

 TestResult,'VariableNames',{'RunNumber','D','P','C','Airflow'});

D stands for Distance, P stands for Pitch, and C stands for Clearance. Based on the
experimental test results, the airflow rate is sensitive to the changing factors values.
Also, four experimental runs meet or exceed the target airflow rate of 875 ft3/min (runs
2, 4,12, and 14). However, it is not clear which, if any, of these runs is the optimal one.
In addition, it is not obvious how robust the design is to variation in the factors. Create a
model based on the current experimental data and use the model to estimate the optimal
factor settings.

Improve the Cooling Fan Performance

The Box-Behnken design enables you to test for nonlinear (quadratic) effects. The form of
the quadratic model is:

AF Distance Pitch Clearance Distance Pitc = + * + * + * + * *b b b b b0 1 2 3 4 hh

Distance Clearance Pitch Clearance Distance+b b b

b

5 6 7
2* * * * *+ +

+ 88 9
2 2* * ,Pitch Clearance+ b

where AF is the airflow rate and Bi is the coefficient for the term i. Estimate the
coefficients of this model using the fitlm function from Statistics and Machine Learning
Toolbox.

mdl = fitlm(Exp,'Airflow~D*P*C-D:P:C+D^2+P^2+C^2');

Display the magnitudes of the coefficients (for normalized values) in a bar chart.

figure()

h = bar(mdl.Coefficients.Estimate(2:10));

set(h,'facecolor',[.8 .8 .9]);

legend('Coefficient');

set(gcf,'units','normalized','position',[.05 .4 .35 .4]);

set(gca,'xticklabel',mdl.CoefficientNames(2:10));

ylabel('Airflow (ft^3/min)')

xlabel('Normalized Coefficient')

title('Quadratic Model Coefficients')

19 Design of Experiments

19-30

The bar chart shows that Pitch and Pitch2 are dominant factors. You can look at the
relationship between multiple input variables and one output variable by generating a
response surface plot. UseplotSlice to generate response surface plots for the model
mdl interactively.

plotSlice(mdl)

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-31

The plot shows the nonlinear relationship of airflow with pitch. Move the blue dashed
lines around and see the effect the different factors have on airflow. Although you can
use plotSlice to determine the optimum factor settings, you can also use Optimization
Toolbox to automate the task.

Find the optimal factor settings using the constrained optimization function fmincon.

Write the objective function.

f = @(x) -x2fx(x,'quadratic')*mdl.Coefficients.Estimate;

The objective function is a quadratic response surface fit to the data. Minimizing the
negative airflow using fmincon is the same as maximizing the original objective
function. The constraints are the upper and lower limits tested (in coded values). Set the
initial starting point to be the center of the design of the experimental test matrix.

lb = [-1 -1 -1]; ub = [1 1 1]; % Lower/upper bounds

x0 = [0 0 0]; % Starting point

19 Design of Experiments

19-32

options = optimset('LargeScale','off'); % Medium scale problem

[optfactors,fval] = fmincon(f,x0,[],[],[],[],lb,ub,[],options); % Invoke the solver

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Convert the results to a maximization problem and real-world units.

maxval = -fval;

maxloc = (optfactors + 1)';

bounds = [1 1.5;15 35;1 2];

maxloc=bounds(:,1)+maxloc .* ((bounds(:,2) - bounds(:,1))/2);

disp('Optimal Values:')

disp({'Distance','Pitch','Clearance','Airflow'})

disp([maxloc' maxval])

Optimal Values:

 'Distance' 'Pitch' 'Clearance' 'Airflow'

 1 27.275 1 882.26

The optimization result suggests placing the new fan one inch from the radiator, with a
one-inch clearance between the tips of the fan blades and the shroud.

Because pitch angle has such a significant effect on airflow, perform additional analysis
to verify that a 27.3 degree pitch angle is optimal.

load AirflowData

tbl = table(pitch,airflow,'VariableNames',{'pitch','airflow'});

mdl2 = fitlm(tbl,'airflow~pitch^2');

mdl2.Rsquared.Ordinary

ans =

 0.99632

The results show that a quadratic model explains the effect of pitch on the airflow well.

Plot the pitch angle against airflow and impose the fitted model.

figure()

plot(pitch,airflow,'.r'); hold on

ylim([840 885]);

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-33

line(pitch,mdl2.Fitted,'color','b');

title('Fitted Model and Data')

xlabel('Pitch angle (degrees)');

ylabel('Airflow (ft^3/min)')

legend('Test data','Quadratic model','Location','se')

hold off

Find the pitch value that corresponds to the maximum airflow.

pitch(find(airflow==max(airflow)))

ans =

 27

19 Design of Experiments

19-34

The additional analysis confirms that a 27.3 degree pitch angle is optimal.

The improved cooling fan design meets the airflow requirements. You also have a model
that approximates the fan performance well based on the factors you can modify in the
design. Ensure that the fan performance is robust to variability in manufacturing and
installation by performing a sensitivity analysis.

Sensitivity Analysis

Suppose that, based on historical experience, the manufacturing uncertainty is as
follows.

Factor Real Values Coded Values

Distance from radiator 1.00 +/- 0.05 inch 1.00 +/- 0.20 inch
Blade pitch angle 27.3 +/- 0.25 degrees 0.227 +/- 0.028 degrees
Blade tip clearance 1.00 +/- 0.125 inch -1.00 +/- 0.25 inch

Verify that these variations in factors will enable to maintain a robust design around the
target airflow. The philosophy of Six Sigma targets a defect rate of no more than 3.4 per
1,000,000 fans. That is, the fans must hit the 875 ft3/min target 99.999% of the time.

You can verify the design using Monte Carlo simulation. Generate 10,000 random
numbers for three factors with the specified tolerance. First, set the state of the random
number generators so results are consistent across different runs.

rng('default')

Perform he Monte Carlo simulation. Include a noise variable that is proportional to the
noise in the fitted model, mdl (that is, the RMS error of the model). Because the model
coefficients are in coded variables, you must generate dist, pitch, and clearance
using the coded definition.

dist = random('normal',optfactors(1),0.20,[10000 1]);

pitch = random('normal',optfactors(2),0.028,[10000 1]);

clearance = random('normal',optfactors(3),0.25,[10000 1]);

noise = random('normal',0,mdl2.RMSE,[10000 1]);

Calculate airflow for 10,000 random factor combinations using the model.

simfactor = [dist pitch clearance];

X = x2fx(simfactor,'quadratic');

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-35

Add noise to the model (the variation in the data that the model did not account for).

simflow = X*mdl.Coefficients.Estimate+noise;

Evaluate the variation in the model's predicted airflow using a histogram. To estimate
the mean and standard deviation, fit a normal distribution to data.

pd = fitdist(simflow,'normal');

histfit(simflow); hold on

text(pd.mu+2,300,['Mean: ' num2str(round(pd.mu))])

text(pd.mu+2,280,['Standard deviation: ' num2str(round(pd.sigma))])

hold off

xlabel('Airflow (ft^3/min)')

ylabel('Frequency')

title('Monte Carlo Simulation Results')

19 Design of Experiments

19-36

The results look promising. The average airflow is 882 ft3/min and appears to be better
than 875 ft3/min for most of the data.

Determine the probability that the airflow is at 875 ft3/min or below.

format long

pfail = cdf(pd,875)

pass = (1-pfail)*100

pfail =

 1.509289008603141e-07

pass =

 99.999984907109919

The design appears to achieve at least 875 ft3/min of airflow 99.999% of the time.

Use the simulation results to estimate the process capability.

S = capability(simflow,[875.0 890])

pass = (1-S.Pl)*100

S =

 mu: 8.822982645666709e+02

 sigma: 1.424806876923940

 P: 0.999999816749816

 Pl: 1.509289008603141e-07

 Pu: 3.232128339675335e-08

 Cp: 1.754623760237126

 Cpl: 1.707427788957002

 Cpu: 1.801819731517250

 Cpk: 1.707427788957002

pass =

 99.9999849071099

The Cp value is 1.75. A process is considered high quality when Cp is greater than or
equal to 1.6. The Cpk is similar to the Cp value, which indicates that the process is

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-37

centered. Now implement this design. Monitor it to verify the design process and to
ensure that the cooling fan delivers high-quality performance.

Control Manufacturing of the Improved Cooling Fan

You can monitor and evaluate the manufacturing and installation process of the new
fan using control charts. Evaluate the first 30 days of production of the new cooling fan.
Initially, five cooling fans per day were produced. First, load the sample data from the
new process.

load spcdata

Plot the X-bar and S charts.

figure()

controlchart(spcflow,'chart',{'xbar','s'}) % Reshape the data into daily sets

xlabel('Day')

19 Design of Experiments

19-38

According to the results, the manufacturing process is in statistical control, as indicated
by the absence of violations of control limits or nonrandom patterns in the data over
time. You can also run a capability analysis on the data to evaluate the process.

[row,col] = size(spcflow);

S2 = capability(reshape(spcflow,row*col,1),[875.0 890])

pass = (1-S.Pl)*100

S2 =

 mu: 8.821061141685465e+02

 sigma: 1.423887508874697

 P: 0.999999684316149

 Pl: 3.008932155898586e-07

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

19-39

 Pu: 1.479063578225176e-08

 Cp: 1.755756676295137

 Cpl: 1.663547652525458

 Cpu: 1.847965700064817

 Cpk: 1.663547652525458

pass =

 99.9999699106784

The Cp value of 1.755 is very similar to the estimated value of 1.73. The Cpk value of 1.66
is smaller than the Cp value. However, only a Cpk value less than 1.33, which indicates
that the process shifted significantly toward one of the process limits, is a concern. The
process is well within the limits and it achieves the target airflow (875 ft3/min) more than
99.999% of the time.

20

Statistical Process Control

• “Introduction to Statistical Process Control” on page 20-2
• “Control Charts” on page 20-3
• “Capability Studies” on page 20-7

20 Statistical Process Control

20-2

Introduction to Statistical Process Control

Statistical process control (SPC) refers to a number of different methods for monitoring
and assessing the quality of manufactured goods. Combined with methods from
the design of experiments, SPC is used in programs that define, measure, analyze,
improve, and control development and production processes. These programs are often
implemented using “Design for Six Sigma” methodologies.

 Control Charts

20-3

Control Charts

A control chart displays measurements of process samples over time. The measurements
are plotted together with user-defined specification limits and process-defined control
limits. The process can then be compared with its specifications—to see if it is in control
or out of control.

The chart is just a monitoring tool. Control activity might occur if the chart indicates an
undesirable, systematic change in the process. The control chart is used to discover the
variation, so that the process can be adjusted to reduce it.

Control charts are created with the controlchart function. Any of the following chart
types may be specified:

• Xbar or mean
• Standard deviation
• Range
• Exponentially weighted moving average
• Individual observation
• Moving range of individual observations
• Moving average of individual observations
• Proportion defective
• Number of defectives
• Defects per unit
• Count of defects

Control rules are specified with the controlrules function. The following example
illustrates how to use Western Electric rules to mark out of control measurements on an
Xbar chart.

First load the sample data.

load parts;

Construct the Xbar control chart using the Western Electric 2 rule (2 of 3 points at least
2 standard errors above the center line) to mark the out of control measurements.

st = controlchart(runout,'rules','we2');

20 Statistical Process Control

20-4

For a better understanding of the Western Electric 2 rule, calculate and plot the 2
standard errors line on the chart.

x = st.mean;

cl = st.mu;

se = st.sigma./sqrt(st.n);

hold on

plot(cl+2*se,'m')

 Control Charts

20-5

Identify the measurements that violate the control rule.

R = controlrules('we2',x,cl,se);

I = find(R)

I =

 21

 23

 24

 25

 26

 27

20 Statistical Process Control

20-6

 Capability Studies

20-7

Capability Studies

Before going into production, many manufacturers run a capability study to determine
if their process will run within specifications enough of the time. Capability indices
produced by such a study are used to estimate expected percentages of defective parts.

Capability studies are conducted with the capability function. The following capability
indices are produced:

• mu — Sample mean
• sigma — Sample standard deviation
• P — Estimated probability of being within the lower (L) and upper (U) specification

limits
• Pl — Estimated probability of being below L
• Pu — Estimated probability of being above U
• Cp — (U-L)/(6*sigma)
• Cpl — (mu-L)./(3.*sigma)
• Cpu — (U-mu)./(3.*sigma)
• Cpk — min(Cpl,Cpu)

As an example, simulate a sample from a process with a mean of 3 and a standard
deviation of 0.005:

rng default; % For reproducibility

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of 3.01 and a
lower specification limit of 2.99:

S = capability(data,[2.99 3.01])

S =

 mu: 3.0006

 sigma: 0.0058

 P: 0.9129

 Pl: 0.0339

 Pu: 0.0532

 Cp: 0.5735

20 Statistical Process Control

20-8

 Cpl: 0.6088

 Cpu: 0.5382

 Cpk: 0.5382

Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);

grid on

21

Parallel Statistics

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page
21-7

• “When to Run Statistical Functions in Parallel” on page 21-8
• “Working with parfor” on page 21-10
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Examples of Parallel Statistical Functions” on page 21-18

21 Parallel Statistics

21-2

Quick Start Parallel Computing for Statistics and Machine Learning
Toolbox

Note: To use parallel computing as described in this chapter, you must have a Parallel
Computing Toolbox license.

In this section...

“What Is Parallel Statistics Functionality?” on page 21-2
“How To Compute in Parallel” on page 21-4
“Parallel Treebagger” on page 21-5

What Is Parallel Statistics Functionality?

You can use any of the Statistics and Machine Learning Toolbox functions with Parallel
Computing Toolbox constructs such as parfor and spmd. However, some functions,
such as those with interactive displays, can lose functionality in parallel. In particular,
displays and interactive usage are not effective on workers (see “Vocabulary for Parallel
Computation” on page 21-7).

Additionally, the following functions are enhanced to use parallel computing internally.
These functions use parfor internally to parallelize calculations.

• bootci

• bootstrp

• candexch

• cordexch

• crossval

• daugment

• dcovary

• jackknife

• kmeans

• lasso

• lassoglm

 Quick Start Parallel Computing for Statistics and Machine Learning Toolbox

21-3

• nnmf

• plsregress

• rowexch

• sequentialfs

• TreeBagger

• TreeBagger.growTrees

The following functions for fitting multiclass models for support vector machines and
other classifiers are also enhanced to use parallel computing internally.

• fitcecoc

• Methods of the class ClassificationECOC:

• resubEdge

• resubLoss

• resubMargin

• resubPredict

• crossval

• Methods of the class CompactClassificationECOC

• edge

• loss

• margin

• predict

• Methods of the class ClassificationPartitionedECOC

• kfoldEdge

• kfoldLoss

• kfoldMargin

• kfoldPredict

This chapter gives the simplest way to use these enhanced functions in parallel. For more
advanced topics, including the issues of reproducibility and nested parfor loops, see the
other sections in this chapter.

For information on parallel statistical computing at the command line, enter

21 Parallel Statistics

21-4

help parallelstats

How To Compute in Parallel

To have a function compute in parallel:

1. “Set Up a Parallel Environment” on page 21-4
2. “Set the UseParallel Option to true” on page 21-4
3. “Call the Function Using the Options Structure” on page 21-4

Set Up a Parallel Environment

To run a statistical computation in parallel, first set up a parallel environment.

Note: Setting up a parallel environment can take several seconds.

For a multicore machine, enter the following at the MATLAB command line:

parpool(n)

n is the number of workers you want to use.

Set the UseParallel Option to true

Create an options structure with the statset function. To run in parallel, set the
UseParallel option to true:

paroptions = statset('UseParallel',true);

Call the Function Using the Options Structure

Call your function with syntax that uses the options structure. For example:

% Run crossval in parallel

cvMse = crossval('mse',x,y,'predfun',regf,'Options',paroptions);

% Run bootstrp in parallel

sts = bootstrp(100,@(x)[mean(x) std(x)],y,'Options',paroptions);

% Run TreeBagger in parallel

b = TreeBagger(50,meas,spec,'OOBPred','on','Options',paroptions);

 Quick Start Parallel Computing for Statistics and Machine Learning Toolbox

21-5

For more complete examples of parallel statistical functions, see “Parallel Treebagger” on
page 21-5 and “Examples of Parallel Statistical Functions” on page 21-18.

After you have finished computing in parallel, close the parallel environment:

delete mypool

Tip To save time, keep the pool open if you expect to compute in parallel again soon.

Parallel Treebagger

To run the example “Regression of Insurance Risk Rating for Car Imports Using
TreeBagger” on page 16-129 in parallel:

1 Set up the parallel environment to use two cores:

mypool = parpool(2)

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 Cluster: [1x1 parallel.cluster.Local]

 SpmdEnabled: 1

2 Set the options to use parallel processing:

paroptions = statset('UseParallel',true);

3 Load the problem data and separate it into input and response:

load imports-85;

Y = X(:,1);

X = X(:,2:end);

4 Estimate feature importance using leaf size 1 and 1000 trees in parallel. Time the
function for comparison purposes:

tic

b = TreeBagger(1000,X,Y,'Method','r','OOBVarImp','on',...

 'cat',16:25,'MinLeaf',1,'Options',paroptions);

toc

21 Parallel Statistics

21-6

Elapsed time is 16.696336 seconds.

5 Perform the same computation in serial for timing comparison:

tic

b = TreeBagger(1000,X,Y,'Method','r','OOBVarImp','on',...

 'cat',16:25,'MinLeaf',1); % No options gives serial

toc

Elapsed time is 21.747950 seconds.

Computing in parallel took about 75% of the time of computing serially.

 Concepts of Parallel Computing in Statistics and Machine Learning Toolbox

21-7

Concepts of Parallel Computing in Statistics and Machine Learning
Toolbox

In this section...

“Subtleties in Parallel Computing” on page 21-7
“Vocabulary for Parallel Computation” on page 21-7

Subtleties in Parallel Computing

There are two main subtleties in parallel computations:

• Nested parallel evaluations (see “No Nested parfor Loops” on page 21-11). Only
the outermost parfor loop runs in parallel, the others run serially.

• Reproducible results when using random numbers (see “Reproducibility in Parallel
Statistical Computations” on page 21-13). How can you get exactly the same
results when repeatedly running a parallel computation that uses random numbers?

Vocabulary for Parallel Computation

• worker — An independent MATLAB session that runs code distributed by the client.
• client — The MATLAB session with which you interact, and that distributes jobs to

workers.
• parfor — A Parallel Computing Toolbox function that distributes independent code

segments to workers (see “Working with parfor” on page 21-10).
• random stream — A pseudorandom number generator, and the sequence of values it

generates. MATLAB implements random streams with the RandStream class.
• reproducible computation — A computation that can be exactly replicated, even

in the presence of random numbers (see “Reproducibility in Parallel Statistical
Computations” on page 21-13).

21 Parallel Statistics

21-8

When to Run Statistical Functions in Parallel

In this section...

“Why Run in Parallel?” on page 21-8
“Factors Affecting Speed” on page 21-8
“Factors Affecting Results” on page 21-9

Why Run in Parallel?

The main reason to run statistical computations in parallel is to gain speed, meaning
to reduce the execution time of your program or functions. “Factors Affecting Speed” on
page 21-8 discusses the main items affecting the speed of programs or functions.
“Factors Affecting Results” on page 21-9 discusses details that can cause a parallel
run to give different results than a serial run.

Factors Affecting Speed

Some factors that can affect the speed of execution of parallel processing are:

• Parallel environment setup. It takes time to run parpool to begin computing in
parallel. If your computation is fast, the setup time can exceed any time saved by
computing in parallel.

• Parallel overhead. There is overhead in communication and coordination when
running in parallel. If function evaluations are fast, this overhead could be an
appreciable part of the total computation time. Thus, solving a problem in parallel
can be slower than solving the problem serially. For an example, see Improving
Optimization Performance with Parallel Computing in MATLAB Digest, March 2009.

• No nested parfor loops. This is described in “Working with parfor” on page 21-10.
parfor does not work in parallel when called from within another parfor loop. If
you have programmed your custom functions to take advantage of parallel processing,
the limitation of no nested parfor loops can cause a parallel function to run slower
than expected.

• When executing serially, parfor loops run slightly slower than for loops.
• Passing parameters. Parameters are automatically passed to worker sessions during

the execution of parallel computations. If there are many parameters, or they take
a large amount of memory, passing parameters can slow the execution of your
computation.

http://www.mathworks.com/company/newsletters/digest/2009/mar/parallel-optimization.html
http://www.mathworks.com/company/newsletters/digest/2009/mar/parallel-optimization.html

 When to Run Statistical Functions in Parallel

21-9

• Contention for resources: network and computing. If the pool of workers has low
bandwidth or high latency, parallel computation can be slow.

Factors Affecting Results

Some factors can affect results when using parallel processing. There are several caveats
related to parfor listed in “parfor Limitations” in the Parallel Computing Toolbox
documentation. Some important factors are:

• Persistent or global variables. If any functions use persistent or global variables,
these variables can take different values on different worker processors. Furthermore,
they might not be cleared properly on the worker processors.

• Accessing external files. External files can be accessed unpredictably during a
parallel computation. The order of computations is not guaranteed during parallel
processing, so external files can be accessed in unpredictable order, leading to
unpredictable results. Furthermore, if multiple processors try to read an external
file simultaneously, the file can become locked, leading to a read error, and halting
function execution.

• Noncomputational functions, such as input, plot, and keyboard, can behave badly
when used in your custom functions. When called in a parfor loop, these functions
are executed on worker machines. This can cause a worker to become nonresponsive,
since it is waiting for input.

• parfor does not allow break or return statements.
• The random numbers you use can affect the results of your computations. See

“Reproducibility in Parallel Statistical Computations” on page 21-13.

21 Parallel Statistics

21-10

Working with parfor

In this section...

“How Statistical Functions Use parfor” on page 21-10
“Characteristics of parfor” on page 21-11

How Statistical Functions Use parfor

parfor is a Parallel Computing Toolbox function similar to a for loop. Parallel
statistical functions call parfor internally. parfor distributes computations to worker
processors.

 Working with parfor

21-11

Client

Lines of code
execute top
to bottom

parfor i = 1:n

end

Lines of code
distributed to
workers

Worker 1 Worker n

...

Results
returned
to client

Characteristics of parfor

More caveats related to parfor appear in “parfor Limitations” in the Parallel Computing
Toolbox documentation.

No Nested parfor Loops

parfor does not work in parallel when called from within another parfor loop, or from
an spmd block. Parallelization occurs only at the outermost level.

21 Parallel Statistics

21-12

Suppose, for example, you want to apply jackknife to your function userfcn, which
calls parfor, and you want to call jackknife in a loop. The following figure shows three
cases:

1 The outermost loop is parfor. Only that loop runs in parallel.
2 The outermost parfor loop is in jackknife. Only jackknife runs in parallel.
3 The outermost parfor loop is in userfcn. userfcn uses parfor in parallel.

When parfor Runs in Parallel

 Reproducibility in Parallel Statistical Computations

21-13

Reproducibility in Parallel Statistical Computations

In this section...

“Issues and Considerations in Reproducing Parallel Computations” on page 21-13
“Running Reproducible Parallel Computations” on page 21-13
“Parallel Statistical Computation Using Random Numbers” on page 21-14

Issues and Considerations in Reproducing Parallel Computations

A reproducible computation is one that gives the same results every time it runs.
Reproducibility is important for:

• Debugging — To correct an anomalous result, you need to reproduce the result.
• Confidence — When you can reproduce results, you can investigate and understand

them.
• Modifying existing code — When you change existing code, you want to ensure that

you do not break anything.

Generally, you do not need to ensure reproducibility for your computation. Often, when
you want reproducibility, the simplest technique is to run in serial instead of in parallel.
In serial computation you can simply call the rng function as follows:

s = rng % Obtain the current state of the random stream

% run the statistical function

rng(s) % Reset the stream to the previous state

% run the statistical function again, obtain identical results

This section addresses the case when your function uses random numbers, and you want
reproducible results in parallel. This section also addresses the case when you want the
same results in parallel as in serial.

Running Reproducible Parallel Computations

To run a Statistics and Machine Learning Toolbox function reproducibly:

1 Set the UseSubstreams option to true.
2 Set the Streams option to a type that supports substreams: 'mlfg6331_64' or

'mrg32k3a'. For information on these streams, see “ Choosing a Random Number
Generator” in the MATLAB Mathematics documentation.

21 Parallel Statistics

21-14

3 To compute in parallel, set the UseParallel option to true.
4 Call the function with the options structure.
5 To reproduce the computation, reset the stream, then call the function again.

To understand why this technique gives reproducibility, see “How Substreams Enable
Reproducible Parallel Computations” on page 21-15.

For example, to use the 'mlfg6331_64' stream for reproducible computation:

1 Create an appropriate options structure:

s = RandStream('mlfg6331_64');

options = statset('UseParallel',true, ...

 'Streams',s,'UseSubstreams',true);

2 Run your parallel computation. For instructions, see “Quick Start Parallel
Computing for Statistics and Machine Learning Toolbox” on page 21-2.

3 Reset the random stream:

reset(s);

4 Rerun your parallel computation. You obtain identical results.

For an example of a parallel computation run this reproducible way, see “Reproducible
Parallel Bootstrap” on page 21-23.

Parallel Statistical Computation Using Random Numbers

What Are Substreams?

A substream is a portion of a random stream that RandStream can access quickly.
There is a number M such that for any positive integer k, RandStream can go the kMth
pseudorandom number in the stream. From that point, RandStream can generate the
subsequent entries in the stream. Currently, RandStream has M = 272, about 5e21, or
more.

Beginning

of stream

Substream 1 Substream 2 Substream 3

M 2M 3M

The entries in different substreams have good statistical properties, similar to the
properties of entries in a single stream: independence, and lack of k-way correlation at

 Reproducibility in Parallel Statistical Computations

21-15

various lags. The substreams are so long that you can view the substreams as being
independent streams, as in the following picture.

Substream 1

Random Number 1

Random Number 2

Random Number 3

...

Substream 2

Random Number 1

Random Number 2

Random Number 3

...

Substream 3

Random Number 1

Random Number 2

Random Number 3

...

Two RandStream stream types support substreams: 'mlfg6331_64' and 'mrg32k3a'.

How Substreams Enable Reproducible Parallel Computations

When MATLAB performs computations in parallel with parfor, each worker receives
loop iterations in an unpredictable order. Therefore, you cannot predict which worker
gets which iteration, so cannot determine the random numbers associated with each
iteration.

Substreams allow MATLAB to tie each iteration to a particular sequence of random
numbers. parfor gives each iteration an index. The iteration uses the index as the
substream number. Since the random numbers are associated with the iterations, not
with the workers, the entire computation is reproducible.

To obtain reproducible results, simply reset the stream, and all the substreams generate
identical random numbers when called again. This method succeeds when all the
workers use the same stream, and the stream supports substreams. This concludes the
discussion of how the procedure in “Running Reproducible Parallel Computations” on
page 21-13 gives reproducible parallel results.

Random Numbers on the Client or Workers

A few functions generate random numbers on the client before distributing them
to parallel workers. The workers do not use random numbers, so operate purely
deterministically. For these functions, you can run a parallel computation reproducibly
using any random stream type.

The functions that operate this way include:

21 Parallel Statistics

21-16

• crossval

• plsregress

• sequentialfs

To obtain identical results, reset the random stream on the client, or the random stream
you pass to the client. For example:

s = rng % Obtain the current state of the random stream

% run the statistical function

rng(s) % Reset the stream to the previous state

% run the statistical function again, obtain identical results

While this method enables you to run reproducibly in parallel, the results can differ
from a serial computation. The reason for the difference is parfor loops run in reverse
order from for loops. Therefore, a serial computation can generate random numbers in
a different order than a parallel computation. For unequivocal reproducibility, use the
technique in “Running Reproducible Parallel Computations” on page 21-13.

Distributing Streams Explicitly

For testing or comparison using particular random number algorithms, you must set the
random number generators. How do you set these generators in parallel, or initialize
streams on each worker in a particular way? Or you might want to run a computation
using a different sequence of random numbers than any other you have run. How can you
ensure the sequence you use is statistically independent?

Parallel Statistics and Machine Learning Toolbox functions allow you to set random
streams on each worker explicitly. For information on creating multiple streams, enter
help RandStream/create at the command line. To create four independent streams
using the 'mrg32k3a' generator:

s = RandStream.create('mrg32k3a','NumStreams',4,...

 'CellOutput',true);

Pass these streams to a statistical function using the Streams option. For example:

parpool(4) % if you have at least 4 cores

s = RandStream.create('mrg32k3a','NumStreams',4,...

 'CellOutput',true); % create 4 independent streams

paroptions = statset('UseParallel',true,...

 'Streams',s); % set the 4 different streams

x = [randn(700,1); 4 + 2*randn(300,1)];

 Reproducibility in Parallel Statistical Computations

21-17

latt = -4:0.01:12;

myfun = @(X) ksdensity(X,latt);

pdfestimate = myfun(x);

B = bootstrp(200,myfun,x,'Options',paroptions);

This method of distributing streams gives each worker a different stream for the
computation. However, it does not allow for a reproducible computation, because the
workers perform the 200 bootstraps in an unpredictable order. If you want to perform
a reproducible computation, use substreams as described in “Running Reproducible
Parallel Computations” on page 21-13.

If you set the UseSubstreams option to true, then set the Streams option to a single
random stream of the type that supports substreams ('mlfg6331_64' or 'mrg32k3a').
This setting gives reproducible computations.

21 Parallel Statistics

21-18

Examples of Parallel Statistical Functions

In this section...

“Parallel Jackknife” on page 21-18
“Parallel Cross Validation” on page 21-19
“Parallel Bootstrap” on page 21-21

Parallel Jackknife

This example is from the jackknife function reference page, but runs in parallel.

mypool=parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 IdleTimeout: 30

 Cluster: [1x1 parallel.cluster.Local]

 RequestQueue: [1x1 parallel.RequestQueue]

 SpmdEnabled: 1

opts = statset('UseParallel',true);

sigma = 5;

rng('default')

y = normrnd(0,sigma,100,1);

m = jackknife(@var, y,1,'Options',opts);

n = length(y);

bias = -sigma^2 / n % known bias formula

jbias = (n - 1)*(mean(m)-var(y,1)) % jackknife bias estimate

bias =

 -0.2500

jbias =

 Examples of Parallel Statistical Functions

21-19

 -0.3378

This simple example is not a good candidate for parallel computation:

% How long to compute in serial?

tic;m = jackknife(@var,y,1);toc

Elapsed time is 0.022771 seconds.

% How long to compute in parallel?

tic;m = jackknife(@var,y,1,'Options',opts);toc

Elapsed time is 0.299066 seconds.

jackknife does not use random numbers, so gives the same results every time, whether
run in parallel or serial.

Parallel Cross Validation

• “Simple Parallel Cross Validation” on page 21-19
• “Reproducible Parallel Cross Validation” on page 21-20

Simple Parallel Cross Validation

This example is the same as the first in the crossval function reference page, but runs
in parallel.

mypool = parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 IdleTimeout: 30

 Cluster: [1x1 parallel.cluster.Local]

 RequestQueue: [1x1 parallel.RequestQueue]

 SpmdEnabled: 1opts = statset('UseParallel',true);

load('fisheriris');

21 Parallel Statistics

21-20

y = meas(:,1);

X = [ones(size(y,1),1),meas(:,2:4)];

regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)

cvMse =

 0.1028

This simple example is not a good candidate for parallel computation:

% How long to compute in serial?

tic;cvMse = crossval('mse',X,y,'Predfun',regf);toc

Elapsed time is 0.073438 seconds.

% How long to compute in parallel?

tic;cvMse = crossval('mse',X,y,'Predfun',regf,...

 'Options',opts);toc

Elapsed time is 0.289585 seconds.

Reproducible Parallel Cross Validation

To run crossval in parallel in a reproducible fashion, set the options and reset the
random stream appropriately (see “Running Reproducible Parallel Computations” on
page 21-13).

mypool = parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 IdleTimeout: 30

 Cluster: [1x1 parallel.cluster.Local]

 RequestQueue: [1x1 parallel.RequestQueue]

 SpmdEnabled: 1

s = RandStream('mlfg6331_64');

opts = statset('UseParallel',true,...

 Examples of Parallel Statistical Functions

21-21

 'Streams',s,'UseSubstreams',true);

load('fisheriris');

y = meas(:,1);

X = [ones(size(y,1),1),meas(:,2:4)];

regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)

cvMse =

 0.1020

Reset the stream:

reset(s)

cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)

cvMse =

 0.1020

Parallel Bootstrap

• “Bootstrap in Serial and Parallel” on page 21-21
• “Reproducible Parallel Bootstrap” on page 21-23

Bootstrap in Serial and Parallel

Here is an example timing a bootstrap in parallel versus in serial. The example generates
data from a mixture of two Gaussians, constructs a nonparametric estimate of the
resulting data, and uses a bootstrap to get a sense of the sampling variability.

1 Generate the data:

% Generate a random sample of size 1000,

% from a mixture of two Gaussian distributions

x = [randn(700,1); 4 + 2*randn(300,1)];

2 Construct a nonparametric estimate of the density from the data:

latt = -4:0.01:12;

myfun = @(X) ksdensity(X,latt);

pdfestimate = myfun(x);

21 Parallel Statistics

21-22

3 Bootstrap the estimate to get a sense of its sampling variability. Run the bootstrap
in serial for timing comparison.

tic;B = bootstrp(200,myfun,x);toc

Elapsed time is 10.878654 seconds.

4 Run the bootstrap in parallel for timing comparison:

mypool = parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 IdleTimeout: 30

 Cluster: [1x1 parallel.cluster.Local]

 RequestQueue: [1x1 parallel.RequestQueue]

 SpmdEnabled: 1

opt = statset('UseParallel',true);

tic;B = bootstrp(200,myfun,x,'Options',opt);toc

Elapsed time is 6.304077 seconds.

Computing in parallel is nearly twice as fast as computing in serial for this example.

Overlay the ksdensity density estimate with the 200 bootstrapped estimates obtained
in the parallel bootstrap. You can get a sense of how to assess the accuracy of the density
estimate from this plot.

hold on

for i=1:size(B,1),

 plot(latt,B(i,:),'c:')

end

plot(latt,pdfestimate);

xlabel('x');ylabel('Density estimate')

 Examples of Parallel Statistical Functions

21-23

Reproducible Parallel Bootstrap

To run the example in parallel in a reproducible fashion, set the options appropriately
(see “Running Reproducible Parallel Computations” on page 21-13). First set up the
problem and parallel environment as in “Bootstrap in Serial and Parallel” on page
21-21. Then set the options to use substreams along with a stream that supports
substreams.

s = RandStream('mlfg6331_64'); % has substreams

opts = statset('UseParallel',true,...

 'Streams',s,'UseSubstreams',true);

B2 = bootstrp(200,myfun,x,'Options',opts);

To rerun the bootstrap and get the same result:

21 Parallel Statistics

21-24

reset(s) % set the stream to initial state

B3 = bootstrp(200,myfun,x,'Options',opts);

isequal(B2,B3) % check if same results

ans =

 1

22

Functions — Alphabetical List

22 Functions — Alphabetical List

22-2

addedvarplot
Added variable plot

Syntax

addedvarplot(X,y,num,inmodel)

addedvarplot(X,y,num,inmodel,stats)

Description

addedvarplot(X,y,num,inmodel) displays an added variable plot using the
predictive terms in X, the response values in y, the added term in column num of X,
and the model with current terms specified by inmodel. X is an n-by-p matrix of n
observations of p predictive terms. y is vector of n response values. num is a scalar index
specifying the column of X with the term to be added. inmodel is a logical vector of p
elements specifying the columns of X in the current model. By default, all elements of
inmodel are false.

Note: addedvarplot automatically includes a constant term in all models. Do not enter
a column of 1s directly into X.

addedvarplot(X,y,num,inmodel,stats) uses the stats output from the
stepwisefit function to improve the efficiency of repeated calls to addedvarplot.
Otherwise, this syntax is equivalent to the previous syntax.

Added variable plots are used to determine the unique effect of adding a new term to
a multilinear model. The plot shows the relationship between the part of the response
unexplained by terms already in the model and the part of the new term unexplained by
terms already in the model. The “unexplained” parts are measured by the residuals of
the respective regressions. A scatter of the residuals from the two regressions forms the
added variable plot.

In addition to the scatter of residuals, the plot produced by addedvarplot shows 95%
confidence intervals on predictions from the fitted line. The fitted line has intercept zero

 addedvarplot

22-3

because, under typical linear model assumptions, both of the plotted variables have mean
zero. The slope of the fitted line is the coefficient that the new term would have if it were
added to the model with terms inmodel.

Added variable plots are sometimes known as partial regression leverage plots.

Examples

Load the data in hald.mat, which contains observations of the heat of reaction of
various cement mixtures:

load hald

whos

 Name Size Bytes Class Attributes

 Description 22x58 2552 char

 hald 13x5 520 double

 heat 13x1 104 double

 ingredients 13x4 416 double

Create an added variable plot to investigate the addition of the third column of
ingredients to a model consisting of the first two columns:

inmodel = [true true false false];

addedvarplot(ingredients,heat,3,inmodel)

22 Functions — Alphabetical List

22-4

The wide scatter and the low slope of the fitted line are evidence against the statistical
significance of adding the third column to the model.

See Also
stepwisefit | stepwise

 addK

22-5

addK
Class: clustering.evaluation.ClusterCriterion
Package: clustering.evaluation

Evaluate additional numbers of clusters

Syntax

eva_out = addK(eva,klist)

Description

eva_out = addK(eva,klist) returns a clustering evaluation object eva_out that
contains the evaluation data stored in the input object eva, plus additional evaluation
data for the proposed number of clusters specified in klist.

Input Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, specified as a clustering evaluation object. Create a
clustering evaluation object using evalclusters.

klist — Additional numbers of clusters to evaluate
vector of positive integer values

Additional numbers of clusters to evaluate, specified as a vector of positive integer
values. If any values in klist overlap with clustering solutions already evaluated in the
input object eva, then addK ignores the overlapping values.

Output Arguments

eva_out — Updated clustering evaluation data
clustering evaluation object

22 Functions — Alphabetical List

22-6

Updated clustering evaluation data, returned as a clustering evaluation object. eva_out
contains data on the proposed clustering solutions included in the input clustering
evaluation object eva, plus data on the additional proposed numbers of clusters specified
in klist.

For all clustering evaluation object classes, addK updates the InspectedK and
CriterionValues properties to include the proposed clustering solutions specified in
klist and their corresponding criterion values. addK might also update the OptimalK
and OptimalY properties to reflect the new optimal number of clusters and optimal
clustering solution.

For certain cluster evaluation objects classes, addK might also update the following
additional property values:

• For gap evaluation objects — LogW, ExpectedLogW, StdLogW, and SE
• For silhouette evaluation objects — ClusterSilhouettes

Examples

Evaluate Additional Numbers of Clusters

Create a clustering evaluation object using evalclusters, then use addK to evaluate
additional numbers of clusters.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Cluster the flower measurement data using kmeans, and use the Calinski-Harabasz
criterion to evaluate proposed solutions of one through five clusters.

eva = evalclusters(meas,'kmeans','calinski','klist',1:5)

eva =

 CalinskiHarabaszEvaluation with properties:

 NumObservations: 150

 addK

22-7

 InspectedK: [1 2 3 4 5]

 CriterionValues: [NaN 513.9245 561.6278 530.7658 459.5058]

 OptimalK: 3

The clustering evaluation object eva contains data on each proposed clustering solution.
The returned value of OptimalK indicates that the optimal solution is three clusters.

Evaluate proposed solutions of 6 through 10 clusters using the same criteria. Add these
evaluations to the original clustering evaluation object eva.

eva = addK(eva,6:10)

eva =

 CalinskiHarabaszEvaluation with properties:

 NumObservations: 150

 InspectedK: [1 2 3 4 5 6 7 8 9 10]

 CriterionValues: [1x10 double]

 OptimalK: 3

The updated values for InspectedK and CriterionValues show that eva now
evaluates proposed solutions of 1 through 10 clusters. The OptimalK value still equals 3,
indicating that three clusters remain the optimal solution.

See Also
clustering.evaluation.CalinskiHarabaszEvaluation

| clustering.evaluation.DaviesBouldinEvaluation
| clustering.evaluation.GapEvaluation |
clustering.evaluation.SilhouetteEvaluation | evalclusters

22 Functions — Alphabetical List

22-8

addlevels
Add levels to nominal or ordinal arrays

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

B = addlevels(A,newlevels)

Description

B = addlevels(A,newlevels) adds new levels specified by newlevels to the nominal
or ordinal array A. addlevels adds the new levels at the end of the list of possible
levels in A, but does not modify the value of any element. B does not contain elements at
the new levels.

Examples

Add Levels To A Nominal Array

Add levels for additional species to Fisher's iris data.

Create a nominal array of the existing species in Fisher's iris data.

load fisheriris

species = nominal(species);

getlevels(species)

ans =

 addlevels

22-9

 setosa versicolor virginica

Add two additional species.

species = addlevels(species,{'spuria','ruthenica'});

getlevels(species)

ans =

 setosa versicolor virginica spuria ruthenica

Even though there are new levels, there are no elements in species that are in these
new levels.

sum(species=='spuria')

sum(species=='ruthenica')

ans =

 0

ans =

 0

• “Add and Drop Category Levels” on page 2-21

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

newlevels — Levels to add
cell array of strings | 2-D character matrix

22 Functions — Alphabetical List

22-10

Levels to add to the input nominal or ordinal array, specified as a cell array of strings
or 2-D character matrix.
Data Types: char | cell

Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

More About
• Using nominal Objects
• Using ordinal Objects

See Also
droplevels | mergelevels | nominal | ordinal | reorderlevels

 addlistener

22-11

addlistener
Class: qrandstream

Add listener for event

Syntax

el = addlistener(hsource,'eventname',callback)

el = addlistener(hsource,property,'eventname',callback)

Description

el = addlistener(hsource,'eventname',callback) creates a listener for the
event named eventname, the source of which is handle object hsource. If hsource is an
array of source handles, the listener responds to the named event on any handle in the
array. callback is a function handle that is invoked when the event is triggered.

el = addlistener(hsource,property,'eventname',callback) adds a listener
for a property event. eventname must be one of the strings 'PreGet', 'PostGet',
'PreSet', and 'PostSet'. property must be either a property name or cell array of
property names, or a meta.property or array of meta.property. The properties must
belong to the class of hsource. If hsource is scalar, property can include dynamic
properties.

For all forms, addlistener returns an event.listener. To remove a listener, delete
the object returned by addlistener. For example, delete(el) calls the handle class
delete method to remove the listener and delete it from the workspace.

See Also
notify | qrandstream | delete | dynamicprops | event.listener | events |
meta.property | reset

22 Functions — Alphabetical List

22-12

anova
Class: GeneralizedLinearMixedModel

Analysis of variance for generalized linear mixed-effects model

Syntax

stats = anova(glme)

stats = anova(glme,Name,Value)

Description

stats = anova(glme) returns a table, stats, that contains the results of F-tests to
determine if all coefficients representing each fixed-effects term in the generalized linear
mixed-effects model glme are equal to 0.

stats = anova(glme,Name,Value) returns a table, stats, using additional options
specified by one or more Name,Value pair arguments. For example, you can specify the
method used to compute the approximate denominator degrees of freedom for the F-tests.

Tips

• For each fixed-effects term, anova performs an F-test (marginal test) to determine if
all coefficients representing the fixed-effects term are equal to 0.

When fitting a generalized linear mixed-effects (GLME) model using
fitglme and one of the maximum likelihood fit methods ('Laplace' or
'ApproximateLaplace'):

• If you specify the 'CovarianceMethod' name-value pair argument as
'conditional', then the F-tests are conditional on the estimated covariance
parameters.

• If you specify the 'CovarianceMethod' name-value pair as 'JointHessian',
then the F-tests account for the uncertainty in estimation of covariance
parameters.

 anova

22-13

When fitting a GLME model using fitglme and one of the pseudo likelihood fit
methods ('MPL' or 'REMPL'), anova uses the fitted linear mixed effects model from
the final pseudo likelihood iteration for inference on fixed effects.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'DFMethod' — Method for computing approximate denominator degrees of freedom
'residual' (default) | 'none'

Method for computing approximate denominator degrees of freedom to use in the F-
test, specified as the comma-separated pair consisting of 'DFMethod' and one of the
following.

'residual' The degrees of freedom are assumed to
be constant and equal to n – p, where n is
the number of observations and p is the
number of fixed effects.

'none' All degrees of freedom are set to infinity.

The denominator degrees of freedom for the F-statistic correspond to the column DF2 in
the output structure stats.

Example: 'DFMethod','none'

22 Functions — Alphabetical List

22-14

Output Arguments

stats — Results of F-tests for fixed-effects terms
table

Results of F-tests for fixed-effects terms, returned as a table with one row for each fixed-
effects term in glme and the following columns.

Term Name of the fixed-effects term
FStat F-statistic for the term
DF1 Numerator degrees of freedom for the F-

statistic
DF2 Denominator degrees of freedom for the F-

statistic
pValue p-value for the term

Each fixed-effects term is a continuous variable, a grouping variable, or an interaction
between two or more continuous or grouping variables. For each fixed-effects term,
anova performs an F-test (marginal test) to determine if all coefficients representing the
fixed-effects term are equal to 0.

To perform tests for the type III hypothesis, when fitting the generalized linear
mixed-effects model fitglme, you must use the 'effects' contrasts for the
'DummyVarCoding' name-value pair argument.

Examples

F-Tests for Fixed Effects

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The

 anova

22-15

company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

22 Functions — Alphabetical List

22-16

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...

'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects')

glme =

Generalized linear mixed-effects model fit by ML

Model information:

 Number of observations 100

 Fixed effects coefficients 6

 Random effects coefficients 20

 Covariance parameters 1

 Distribution Poisson

 Link Log

 FitMethod Laplace

Formula:

 Linear Mixed Formula with 5 predictors.

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF

 '(Intercept)' 1.4689 0.15988 9.1875 94

 'newprocess' -0.36766 0.17755 -2.0708 94

 'time_dev' -0.094521 0.82849 -0.11409 94

 'temp_dev' -0.28317 0.9617 -0.29444 94

 'supplier_C' -0.071868 0.078024 -0.9211 94

 anova

22-17

 'supplier_B' 0.071072 0.07739 0.91836 94

 pValue Lower Upper

 9.8194e-15 1.1515 1.7864

 0.041122 -0.72019 -0.015134

 0.90941 -1.7395 1.5505

 0.76907 -2.1926 1.6263

 0.35936 -0.22679 0.083051

 0.36078 -0.082588 0.22473

Random effects covariance parameters:

Group: factory (20 Levels)

 Name1 Name2 Type Estimate

 '(Intercept)' '(Intercept)' 'std' 0.31381

Group: Error

 Name Estimate

 'sqrt(Dispersion)' 1

Perform an F-test to determine if all fixed-effects coefficients are equal to 0.

stats = anova(glme)

stats =

 ANOVA marginal tests: DFMethod = 'residual'

 Term FStat DF1 DF2 pValue

 '(Intercept)' 84.41 1 94 9.8194e-15

 'newprocess' 4.2881 1 94 0.041122

 'time_dev' 0.013016 1 94 0.90941

 'temp_dev' 0.086696 1 94 0.76907

 'supplier' 0.59212 2 94 0.5552

The p-values for the intercept, newprocess, time_dev, and temp_dev are the same
as in the coefficient table of the glme display. The small p-values for the intercept and
newprocess indicate that these are significant predictors at the 5% significance level.
The large p-values for time_dev and temp_dev indicate that these are not significant
predictors at this level.

The p-value of 0.5552 for supplier measures the combined significance for both
coefficients representing the categorical variable supplier. This includes the dummy

22 Functions — Alphabetical List

22-18

variables supplier_C and supplier_B as shown in the coefficient table of the glme
display. The large p-value indicates that supplier is not a significant predictor at the
5% significance level.

See Also
GeneralizedLinearMixedModel | coefCI | coefTest | disp | fitglme |
fixedEffects

 addTerms

22-19

addTerms

Class: GeneralizedLinearModel

Add terms to generalized linear model

Syntax

mdl1 = addTerms(mdl,terms)

Description

mdl1 = addTerms(mdl,terms) returns a generalized linear model the same as mdl
but with additional terms.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

terms

Terms to add to the mdl regression model. Specify as either a:

• Text string representing one or more terms to add. For details, see “Wilkinson
Notation” on page 22-20.

• Row or rows in the terms matrix (see modelspec in fitglm). For example, if there
are three variables A, B, and C:

[0 0 0] represents a constant term or intercept

[0 1 0] represents B; equivalently, A^0 * B^1 * C^0

[1 0 1] represents A*C

[2 0 0] represents A^2

[0 1 2] represents B*(C^2)

22 Functions — Alphabetical List

22-20

Output Arguments

mdl1

Generalized linear model, the same as mdl but with additional terms given in terms.
You can set mdl1 equal to mdl to overwrite mdl.

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

For details, see Wilkinson and Rogers [1].

 addTerms

22-21

Examples

Add a term to a generalized linear regression model

Create a model using just one predictor, then add a second.

Generate artificial data for the model, Poisson random numbers with two underlying
predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data. Use just the first predictor
in the model.

mdl = fitglm(X,y,...

 'y ~ x1','distr','poisson')

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x1

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 2.7784 0.014043 197.85 0

 x1 1.1732 0.0033653 348.6 0

100 observations, 98 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0

Add the second predictor to the model.

mdl1 = addTerms(mdl,'x2')

mdl1 =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x2

22 Functions — Alphabetical List

22-22

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.0405 0.022122 47.034 0

 x1 0.9968 0.003362 296.49 0

 x2 1.987 0.0063433 313.24 0

100 observations, 97 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

References

[1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for
analysis of variance. J. Royal Statistics Society 22, pp. 392–399, 1973.

Alternatives

step adds or removes terms from a model using a greedy one-step algorithm.

See Also
GeneralizedLinearModel | removeTerms | step | stepwiseglm

More About
• “Generalized Linear Models” on page 10-12

 addTerms

22-23

addTerms

Class: LinearModel

Add terms to linear regression model

Syntax

mdl1 = addTerms(mdl,terms)

Description

mdl1 = addTerms(mdl,terms) returns a linear model the same as mdl but with
additional terms.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

terms

Terms to add to the mdl regression model. Specify as either a:

• Text string representing one or more terms to add. For details, see “Wilkinson
Notation” on page 22-24.

• Row or rows in the terms matrix (see modelspec in fitlm). For example, if there are
three variables A, B, and C:

[0 0 0] represents a constant term or intercept

[0 1 0] represents B; equivalently, A^0 * B^1 * C^0

[1 0 1] represents A*C

[2 0 0] represents A^2

[0 1 2] represents B*(C^2)

22 Functions — Alphabetical List

22-24

Output Arguments

mdl1

Linear model, the same as mdl but with additional terms given in terms. You can set
mdl1 equal to mdl to overwrite mdl.

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

For details, see Wilkinson and Rogers [1].

 addTerms

22-25

Examples

Add a Term to a Model

Create a model of the carsmall data without any interactions, then add an interaction
term.

Load the carsmall data and make a model of the MPG as a function of weight and
model year.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

mdl = fitlm(ds,'MPG ~ Year + Weight^2');

Add an interaction term to mdl.

terms = 'Year*Weight';

mdl1 = addTerms(mdl,terms)

mdl1 =

Linear regression model:

 MPG ~ 1 + Weight*Year + Weight^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.045 6.779 7.0874 3.3967e-10

 Weight -0.012624 0.0041455 -3.0454 0.0030751

 Year_76 2.7768 3.0538 0.90931 0.3657

 Year_82 16.416 4.9802 3.2962 0.0014196

 Weight:Year_76 -0.00020693 0.00092403 -0.22394 0.82333

 Weight:Year_82 -0.0032574 0.0018919 -1.7217 0.088673

 Weight^2 1.0121e-06 6.12e-07 1.6538 0.10177

Number of observations: 94, Error degrees of freedom: 87

Root Mean Squared Error: 2.76

R-squared: 0.89, Adjusted R-Squared 0.882

F-statistic vs. constant model: 117, p-value = 1.88e-39

References

[1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for
analysis of variance. J. Royal Statistics Society 22, pp. 392–399, 1973.

22 Functions — Alphabetical List

22-26

Alternatives

Use stepwiselm to select a model from a starting model, continuing until no single step
is beneficial.

Use removeTerms to remove particular terms.

Use step to optimally improve the model by adding or removing terms.

See Also
removeTerms | LinearModel | step | stepwiselm

How To
• “Linear Regression” on page 9-11

 adtest

22-27

adtest
Anderson-Darling test

Syntax

h = adtest(x)

h = adtest(x,Name,Value)

[h,p] = adtest(___)

[h,p,adstat,cv] = adtest(___)

Description

h = adtest(x) returns a test decision for the null hypothesis that the data in vector
x is from a population with a normal distribution, using the Anderson-Darling test. The
alternative hypothesis is that x is not from a population with a normal distribution.
The result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0
otherwise.

h = adtest(x,Name,Value) returns a test decision for the Anderson-Darling test with
additional options specified by one or more name-value pair arguments. For example,
you can specify a null distribution other than normal, or select an alternative method for
calculating the p-value.

[h,p] = adtest(___) also returns the p-value, p, of the Anderson-Darling test, using
any of the input arguments from the previous syntaxes.

[h,p,adstat,cv] = adtest(___) also returns the test statistic, adstat, and the
critical value, cv, for the Anderson-Darling test.

Examples

Test for a Normal Distribution

Load the data set. Create a vector containing the first column of the students’ exam
grades data.

22 Functions — Alphabetical List

22-28

load examgrades;

x = grades(:,1);

Test the null hypothesis that the exam grades come from a normal distribution. You do
not need to specify values for the population parameters.

[h,p,adstat,cv] = adtest(x);

h =

 0

p =

 0.1854

adstat =

 0.5194

cv =

 0.7470

The returned value of h = 0 indicates that adtest fails to reject the null hypothesis at
the default 5% significance level.

Test for an Extreme Value Distribution

Load the data set. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Test the null hypothesis that the exam grades come from an extreme value distribution.
You do not need to specify values for the population parameters.

[h,p] = adtest(x,'Distribution','ev')

h =

 0

p =

 0.0714

 adtest

22-29

The returned value of h = 0 indicates that adtest fails to reject the null hypothesis at
the default 5% significance level.

Specify the Hypothesized Distribution Using a Probability Distribution Object

Load the data set. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Create a normal probability distribution object with mean mu = 75 and standard
deviation sigma = 10.

dist = makedist('normal','mu',75,'sigma',10)

dist =

 prob.NormalDistribution

 Package: prob

 Normal distribution

 mu = 75

 sigma = 10

 Properties, Methods

Test the null hypothesis that x comes from the hypothesized normal distribution.

[h,p] = adtest(x,'Distribution',dist)

h =

 0

p =

 0.4687

The returned value of h = 0 indicates that adtest fails to reject the null hypothesis at
the default 5% significance level.

Input Arguments

x — Sample data
vector

22 Functions — Alphabetical List

22-30

Sample data, specified as a vector. Missing observations in x, indicated by NaN, are
ignored.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'MCTol',0.01 conducts the hypothesis test at the 1%
significance level, and determines the p-value, p, using a Monte Carlo simulation with a
maximum Monte Carlo standard error for p of 0.01.

'Distribution' — Hypothesized distribution
'norm' (default) | 'exp' | 'ev' | 'logn' | 'weibull' | probability distribution
object

Hypothesized distribution of data vector x, specified as the comma-separated pair
consisting of 'Distribution' and one of the following.

'norm' Normal distribution
'exp' Exponential distribution
'ev' Extreme value distribution
'logn' Lognormal distribution
'weibull' Weibull distribution

In this case, you do not need to specify population parameters. Instead, adtest
estimates the distribution parameters from the sample data and tests x against a
composite hypothesis that it comes from the selected distribution family with parameters
unspecified.

Alternatively, you can specify any continuous probability distribution object for the null
distribution. In this case, you must specify all the distribution parameters, and adtest
tests x against a simple hypothesis that it comes from the given distribution with its
specified parameters.
Example: 'Distribution','exp'

 adtest

22-31

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'MCTol' — Maximum Monte Carlo standard error
positive scalar value

Maximum Monte Carlo standard error for the p-value, p, specified as the comma-
separated pair consisting of 'MCTol' and a positive scalar value. If you use MCTol,
adtest determines p using a Monte Carlo simulation, and the name-value pair
argument Asymptotic must have the value false.

Example: 'MCTol',0.01

Data Types: single | double

'Asymptotic' — Method for calculating p-value
false (default) | true

Method for calculating the p-value of the Anderson-Darling test, specified as the comma-
separated pair consisting of 'Asymptotic' and either true or false. If you specify
'true', adtest estimates the p-value using the limiting distribution of the Anderson-
Darling test statistic. If you specify false, adtest calculates the p-value based on an
analytical formula. For sample sizes greater than 120, the limiting distribution estimate
is likely to be more accurate than the small sample size approximation method.

• If you specify a distribution family with unknown parameters for the Distribution
name-value pair, Asymptotic must be false.

• If you use MCTol to calculate the p-value using a Monte Carlo simulation,
Asymptotic must be false.

Example: 'Asymptotic',true

Data Types: logical

22 Functions — Alphabetical List

22-32

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

p-value of the Anderson-Darling test, returned as a scalar value in the range [0,1]. p
is the probability of observing a test statistic as extreme as, or more extreme than, the
observed value under the null hypothesis. p is calculated using one of these methods:

• If the hypothesized distribution is a fully specified probability distribution object,
adtest calculates p analytically. If 'Asymptotic' is true, adtest uses the
asymptotic distribution of the test statistic. If you specify a value for 'MCTol',
adtest uses a Monte Carlo simulation.

• If the hypothesized distribution is specified as a distribution family with unknown
parameters, adtest retrieves the critical value from a table and uses inverse
interpolation to determine the p-value. If you specify a value for 'MCTol', adtest
uses a Monte Carlo simulation.

adstat — Test statistic
scalar value

Test statistic for the Anderson-Darling test, returned as a scalar value.

• If the hypothesized distribution is a fully specified probability distribution object,
adtest computes adstat using specified parameters.

• If the hypothesized distribution is specified as a distribution family with unknown
parameters, adtest computes adstat using parameters estimated from the sample
data.

cv — Critical value
scalar value

 adtest

22-33

Critical value for the Anderson-Darling test at the significance level Alpha, returned as
a scalar value. adtest determines cv by interpolating into a table based on the specified
Alpha significance level.

More About

Anderson-Darling Test

The Anderson-Darling test is commonly used to test whether a data sample comes
from a normal distribution. However, it can be used to test for another hypothesized
distribution, even if you do not fully specify the distribution parameters. Instead, the test
estimates any unknown parameters from the data sample.

The test statistic belongs to the family of quadratic empirical distribution function
statistics, which measure the distance between the hypothesized distribution, F(x) and
the empirical cdf, Fn(x) as

n F x F x w x dF x
n () - ()() () ()

-•

•

Ú 2
,

over the ordered sample values x x x
n1 2

< < <... , where w(x) is a weight function and n is
the number of data points in the sample.

The weight function for the Anderson-Darling test is

w x F x F x() = () - ()()ÈÎ ˘̊
-

1
1

,

which places greater weight on the observations in the tails of the distribution, thus
making the test more sensitive to outliers and better at detecting departure from
normality in the tails of the distribution.

The Anderson-Darling test statistic is

A n
i

n
F X F Xn

i

n

i n i
2

1
1

2 1
1= - -

- ()() + - ()()ÈÎ ˘̊
=

+ -Â ln ln ,

22 Functions — Alphabetical List

22-34

where X X
n1

< <{ }... are the ordered sample data points and n is the number of data
points in the sample.

In adtest, the decision to reject or not reject the null hypothesis is based on comparing
the p-value for the hypothesis test with the specified significance level, not on comparing
the test statistic with the critical value.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the p-value.

The Monte Carlo standard error is calculated as

SE
p p

=
() -()ˆ ˆ

,
1

mcreps

where p̂ is the estimated p-value of the hypothesis test, and mcreps is the number of
Monte Carlo replications performed.

adtest chooses the number of Monte Carlo replications, mcreps, large enough to make
the Monte Carlo standard error for p̂ less than the value specified for MCTol.

See Also
jbtest | kstest

 AIC property

22-35

AIC property
Class: gmdistribution

Akaike Information Criterion

Description

The Akaike Information Criterion: 2*NlogL + 2*m, where NlogL is the negative
loglikelihood and m is the number of estimated parameters.

Note: This property applies only to gmdistribution objects constructed with fitgmdist.

22 Functions — Alphabetical List

22-36

andrewsplot

Andrews plot

Syntax

andrewsplot(X)

andrewsplot(X,...,'Standardize',standopt)

andrewsplot(X,...,'Quantile',alpha)

andrewsplot(X,...,'Group',group)

andrewsplot(X,...,'PropName',PropVal,...)

h = andrewsplot(X,...)

Description

andrewsplot(X) creates an Andrews plot of the multivariate data in the matrix X. The
rows of X correspond to observations, the columns to variables. Andrews plots represent
each observation by a function f(t) of a continuous dummy variable t over the interval
[0,1]. f(t) is defined for the i th observation in X as

f t X i X i t X i t() (,) / (,) sin() (,)cos()= + + +1 2 2 2 3 2p p …

andrewsplot treats NaN values in X as missing values and ignores the corresponding
rows.

andrewsplot(X,...,'Standardize',standopt) creates an Andrews plot where
standopt is one of the following:

• 'on' — scales each column of X to have mean 0 and standard deviation 1 before
making the plot.

• 'PCA' — creates an Andrews plot from the principal component scores of X, in order
of decreasing eigenvalue. (See pca.)

• 'PCAStd' — creates an Andrews plot using the standardized principal component
scores. (See pca.)

 andrewsplot

22-37

andrewsplot(X,...,'Quantile',alpha) plots only the median and the alpha
and (1 – alpha) quantiles of f(t) at each value of t. This is useful if X contains many
observations.

andrewsplot(X,...,'Group',group) plots the data in different groups with
different colors. Groups are defined by group, a numeric array containing a group index
for each observation. group can also be a categorical array, character matrix, or cell
array of strings containing a group name for each observation.

andrewsplot(X,...,'PropName',PropVal,...) sets optional lineseries object
properties to the specified values for all lineseries objects created by andrewsplot. (See
Chart Line Properties.)

h = andrewsplot(X,...) returns a column vector of handles to the lineseries objects
created by andrewsplot, one handle per row of X. If you use the 'Quantile' input
parameter, h contains one handle for each of the three lineseries objects created. If you
use both the 'Quantile' and the 'Group' input parameters, h contains three handles
for each group.

Examples

Create Andrews Plot to Visualize Grouped Data

This example shows how to create an Andrews plot to visualize grouped sample data.

Load the sample data.

load fisheriris

Create an Andrews plot, grouping the sample data by species.

andrewsplot(meas,'group',species)

22 Functions — Alphabetical List

22-38

Create a second, simplified Andrews plot that only displays the median and quartiles of
each group.

andrewsplot(meas,'group',species,'quantile',.25)

 andrewsplot

22-39

More About
• “Grouping Variables” on page 2-52

See Also
parallelcoords | glyphplot

22 Functions — Alphabetical List

22-40

anova
Class: LinearModel

Analysis of variance for linear model

Syntax

tbl = anova(mdl)

tbl = anova(mdl,anovatype)

tbl = anova(mdl,anovatype,sstype)

Description

tbl = anova(mdl) returns a table with summary ANOVA statistics.

tbl = anova(mdl,anovatype) returns ANOVA statistics of the chosen type.

tbl = anova(mdl,anovatype,sstype) computes ANOVA statistics using the chosen
type of sum of squares.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

anovatype

ANOVA type:

• 'component' — tbl displays a ‘components’ ANOVA table, with sums of squares
and F tests attributable to each term in the model except the constant term.

• 'summary' — tbl displays a summary ANOVA table with an F test for the model as
a whole.

• If there are both linear and higher-order terms, there is also an F test for the
higher-order terms as a group.

 anova

22-41

• If there are replications (multiple observations sharing the same predictor values),
there is also an F test for lack-of-fit computed by decomposing the residual sum of
squares into a sum of squares for the replicated observations and the remaining
sum of squares.

Default: 'component'

sstype

When anovatype is 'component', choose the sum of squares type:

• 1

• 2

• 3

• 'h'

For details, see sstype.

Default: 'h'

Output Arguments

tbl

Table containing summary ANOVA statistics. tbl depends on anovatype:

• 'component':

• Sum of squares
• Degrees of freedom
• Mean squares
• F statistic
• p-value
• Formula used for model

• 'summary':

• Total Sum of Squares

22 Functions — Alphabetical List

22-42

• Model Sum of Squares

• Linear Sum of Squares (present if model has powers or interactions)
• Nonlinear Sum of Squares (present if model has powers or interactions)

• Residual Sum of Squares

• Lack-of-fit Sum of Squares (present if model has replicates)
• Pure error Sum of Squares (present if model has replicates)

Examples

Component ANOVA Table

Create a component ANOVA table from a model of the carsmall data.

Load the carsmall data and make a model of the MPG as a function of weight and
model year.

load carsmall

cars = table(MPG,Weight);

cars.Year = ordinal(Model_Year);

mdl = fitlm(cars,'MPG ~ Year + Weight^2');

Create an ANOVA table.

tbl = anova(mdl)

tbl =

 SumSq DF MeanSq F pValue

 ______ __ ______ ______ __________

 Weight 2050.2 1 2050.2 265.11 1.9885e-28

 Year 849.55 2 424.77 54.927 2.9042e-16

 Weight^2 76.688 1 76.688 9.9164 0.0022303

 Error 688.27 89 7.7334

Summary ANOVA Table

Create a summary ANOVA table from a model of the carsmall data.

 anova

22-43

Load the carsmall data and make a model of the MPG as a function of weight and
model year.

load carsmall

cars = table(MPG,Weight);

cars.Year = ordinal(Model_Year);

mdl = fitlm(cars,'MPG ~ Year + Weight^2');

Create a summary ANOVA table.

tbl = anova(mdl,'summary')

tbl =

 SumSq DF MeanSq F

 ______ __ ______ ______

 Total 6005.3 93 64.573

 Model 5317 4 1329.3 171.88

 . Linear 5240.3 3 1746.8 225.87

 . Nonlinear 76.688 1 76.688 9.9164

 Residual 688.27 89 7.7334

 . Lack of fit 663.77 86 7.7183 0.9451

 . Pure error 24.5 3 8.1667

 pValue

 Total

 Model 5.5208e-41

 . Linear 1.7302e-41

 . Nonlinear 0.0022303

 Residual

 . Lack of fit 0.62874

 . Pure error

The summary ANOVA table shows tests for groups of terms. The nonlinear group
consists of just the Weight^2 term, so it has the same p-value as that term in
“Component ANOVA Table” on page 22-42. The F statistic comparing the residual
sum of squares to a “pure error” estimate from replicated observations shows no evidence
of lack of fit.

• “ANOVA” on page 9-21

22 Functions — Alphabetical List

22-44

Alternatives

More complete ANOVA statistics are available in the anova1, anova2, and anovan
functions.

See Also
LinearModel | table

How To
• “Linear Regression” on page 9-11

 anova

22-45

anova
Class: LinearMixedModel

Analysis of variance for linear mixed-effects model

Syntax

stats = anova(lme)

stats = anova(lme,Name,Value)

Description

stats = anova(lme) returns the dataset array stats that includes the results of the
F-tests for each fixed-effects term in the linear mixed-effects model lme.

stats = anova(lme,Name,Value) also returns the dataset array stats with
additional options specified by one or more Name,Value pair arguments.

Tips

• For each fixed-effects term, anova performs an F-test (marginal test), that all
coefficients representing the fixed-effects term are 0. To perform tests for type III
hypotheses, you must set the 'DummyVarCoding' name-value pair argument to
'effects' contrasts while fitting your linear mixed-effects model.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

22 Functions — Alphabetical List

22-46

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'DFMethod' — Method for computing approximate degrees of freedom
'Residual' (default) | 'Satterthwaite' | 'None'

Method for computing approximate degrees of freedom to use in the F-test, specified as
the comma-separated pair consisting of 'DFMethod' and one of the following.

'Residual' Default. The degrees of freedom are
assumed to be constant and equal to n – p,
where n is the number of observations and
p is the number of fixed effects.

'Satterthwaite' Satterthwaite approximation.
'None' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','Satterthwaite'

Output Arguments

stats — Results of F-tests for fixed-effects terms
dataset array

Results of F-tests for fixed-effects terms, returned as a dataset array with the following
columns.

Term Name of the fixed effects term
Fstat F-statistic for the term
DF1 Numerator degrees of freedom for the F-

statistic
DF2 Denominator degrees of freedom for the F-

statistic

 anova

22-47

pValue p-value of the test for the term

There is one row for each fixed-effects term. Each term is a continuous variable, a
grouping variable, or an interaction between two or more continuous or grouping
variables. For each fixed-effects term, anova performs an F-test (marginal test) to
determine if all coefficients representing the fixed-effects term are 0. To perform tests for
the type III hypothesis, you must use the 'effects' contrasts while fitting the linear
mixed-effects model.

Examples

F-Tests for Fixed Effects

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

The data shows the deviations from the target quality characteristic measured from
the products that five operators manufacture during three shifts: morning, evening,
and night. This is a randomized block design, where the operators are the blocks. The
experiment is designed to study the impact of the time of shift on the performance. The
performance measure is the deviation of the quality characteristics from the target value.
This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);

shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess
if performance significantly differs according to the time of the shift. Use the restricted
maximum likelihood method and 'effects' contrasts.

'effects' contrasts indicate that the coefficients sum to 0, and fitlme creates two
contrast-coded variables in the fixed-effects design matrix, X1 and X2, where

22 Functions — Alphabetical List

22-48

Shift Evening

if Morning

if Evening

if Night

and Shif_ =

-

Ï

Ì
Ô

Ó
Ô

0

1

1

,

,

,

tt Morning

if Morning

if Evening

if Night

_ =

-

Ï

Ì
Ô

Ó
Ô

1

0

1

,

,

,

.

The model corresponds to

Morning Shift: _QCDev Shift Morning b mim i m im= + + + =b b e0 2 0 1 2, , ,...., ,

,

5

0 1 0Evening Shift:

N

_QCDev Shift Evening bim i m im= + + +b b e

iight Shift: _ _QCDev Shift Evening Shift Morniim i= - -b b b0 1 2 nng bi m im+ +0 e ,

where b ~ N(0,σ2
b) and ε ~ N(0,σ2).

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)',...

'FitMethod','REML','DummyVarCoding','effects')

lme =

Linear mixed-effects model fit by REML

Model information:

 Number of observations 15

 Fixed effects coefficients 3

 Random effects coefficients 5

 Covariance parameters 2

Formula:

 QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 58.913 61.337 -24.456 48.913

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 3.6525 0.94109 3.8812 12 0.0021832 1.6021 5.703

 'Shift_Evening' -0.53293 0.31206 -1.7078 12 0.11339 -1.2129 0.14699

 'Shift_Morning' -0.91973 0.31206 -2.9473 12 0.012206 -1.5997 -0.23981

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

 Name1 Name2 Type Estimate Lower Upper

 anova

22-49

 '(Intercept)' '(Intercept)' 'std' 2.0457 0.98207 4.2612

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.85462 0.52357 1.395

Perform an F-test to determine if all fixed-effects coefficients are 0.

anova(lme)

ans =

 ANOVA marginal tests: DFMethod = 'Residual'

 Term FStat DF1 DF2 pValue

 '(Intercept)' 15.063 1 12 0.0021832

 'Shift' 11.091 2 12 0.0018721

The p-value for the constant term, 0.0021832, is the same as in the coefficient table in
the lme display. The p-value of 0.0018721 for Shift measures the combined significance
for both coefficients representing Shift.

Split-Plot Experiment

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five types of tomato plants (cherry, heirloom, grape, vine, and plum) are
randomly assigned to these plots. The tomato plants in the plots are then divided into
subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

22 Functions — Alphabetical List

22-50

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type) and the plots within blocks
(tomato types within soil types) independently. Use the 'effects' contrasts when
fitting the data for the type III sum of squares.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)',...

'DummyVarCoding','effects')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 60

 Fixed effects coefficients 20

 Random effects coefficients 18

 Covariance parameters 3

Formula:

 Yield ~ 1 + Tomato*Fertilizer + (1 | Soil) + (1 | Soil:Tomato)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 522.57 570.74 -238.29 476.57

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 104.6 3.3008 31.69 40 5.9086e-30 97.929 111.27

 'Tomato_Cherry' 1.4 5.9353 0.23588 40 0.81473 -10.596 13.396

 'Tomato_Grape' -7.7667 5.9353 -1.3085 40 0.19816 -19.762 4.2291

 'Tomato_Heirloom' -11.183 5.9353 -1.8842 40 0.066821 -23.179 0.81242

 'Tomato_Plum' 30.233 5.9353 5.0938 40 8.777e-06 18.238 42.229

 'Fertilizer_1' -28.267 2.3475 -12.041 40 7.0265e-15 -33.011 -23.522

 'Fertilizer_2' -1.9333 2.3475 -0.82356 40 0.41507 -6.6779 2.8112

 'Fertilizer_3' 10.733 2.3475 4.5722 40 4.577e-05 5.9888 15.478

 'Tomato_Cherry:Fertilizer_1' -0.73333 4.6951 -0.15619 40 0.87667 -10.222 8.7558

 'Tomato_Grape:Fertilizer_1' -7.5667 4.6951 -1.6116 40 0.11491 -17.056 1.9224

 'Tomato_Heirloom:Fertilizer_1' 5.1833 4.6951 1.104 40 0.27619 -4.3058 14.672

 'Tomato_Plum:Fertilizer_1' 2.7667 4.6951 0.58927 40 0.55899 -6.7224 12.256

 'Tomato_Cherry:Fertilizer_2' 7.6 4.6951 1.6187 40 0.11337 -1.8891 17.089

 'Tomato_Grape:Fertilizer_2' -1.9 4.6951 -0.40468 40 0.68787 -11.389 7.5891

 anova

22-51

 'Tomato_Heirloom:Fertilizer_2' 5.5167 4.6951 1.175 40 0.24695 -3.9724 15.006

 'Tomato_Plum:Fertilizer_2' -3.9 4.6951 -0.83066 40 0.4111 -13.389 5.5891

 'Tomato_Cherry:Fertilizer_3' -6.0667 4.6951 -1.2921 40 0.20373 -15.556 3.4224

 'Tomato_Grape:Fertilizer_3' 3.7667 4.6951 0.80226 40 0.42714 -5.7224 13.256

 'Tomato_Heirloom:Fertilizer_3' 3.1833 4.6951 0.67802 40 0.50167 -6.3058 12.672

 'Tomato_Plum:Fertilizer_3' 1.1 4.6951 0.23429 40 0.81596 -8.3891 10.589

Random effects covariance parameters (95% CIs):

Group: Soil (3 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 2.5028 0.027711 226.05

Group: Soil:Tomato (15 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 10.225 6.1497 17.001

Group: Error

 Name Estimate Lower Upper

 'Res Std' 10.499 8.5389 12.908

Perform an analysis of variance to test for the fixed-effects.

anova(lme)

ans =

 ANOVA marginal tests: DFMethod = 'Residual'

 Term FStat DF1 DF2 pValue

 '(Intercept)' 1004.2 1 40 5.9086e-30

 'Tomato' 7.1663 4 40 0.00018935

 'Fertilizer' 58.833 3 40 1.0024e-14

 'Tomato:Fertilizer' 1.4182 12 40 0.19804

The p-value for the constant term, 5.9086e-30, is the same as in the coefficient table
in the lme display. The p-values of 0.00018935, 1.0024e-14, and 0.19804 for Tomato,
Fertilizer, and Tomato:Fertilizer represent the combined significance for all
tomato coefficients, fertilizer coefficients, and coefficients representing the interaction
between the tomato and fertilizer, respectively. The p-value of 0.19804 indicates that the
interaction between tomato and fertilizer is not significant.

Satterthwaite Approximation for Degrees of Freedom

Navigate to a folder containing sample data.

22 Functions — Alphabetical List

22-52

 cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit the model using the 'effects' contrasts.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)',...

 'DummyVarCoding','effects')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 9

 Random effects coefficients 40

 Covariance parameters 4

Formula:

 Linear Mixed Formula with 4 predictors.

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -22.981 13.257 24.49 -48.981

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat

 '(Intercept)' 0.77122 0.24309 3.1725

 'InitialWeight' 0.0031879 0.0013814 2.3078

 anova

22-53

 'Program_A' -0.11017 0.080377 -1.3707

 'Program_B' 0.25061 0.08045 3.1151

 'Program_C' -0.14344 0.080475 -1.7824

 'Week' 0.19881 0.033727 5.8946

 'Program_A:Week' -0.025607 0.058417 -0.43835

 'Program_B:Week' 0.013164 0.058417 0.22535

 'Program_C:Week' 0.0049357 0.058417 0.084492

 DF pValue Lower Upper

 111 0.0019549 0.28951 1.2529

 111 0.022863 0.00045067 0.0059252

 111 0.17323 -0.26945 0.0491

 111 0.0023402 0.091195 0.41003

 111 0.077424 -0.3029 0.016031

 111 4.1099e-08 0.13198 0.26564

 111 0.66198 -0.14136 0.090149

 111 0.82212 -0.10259 0.12892

 111 0.93282 -0.11082 0.12069

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type

 '(Intercept)' '(Intercept)' 'std'

 'Week' '(Intercept)' 'corr'

 'Week' 'Week' 'std'

 Estimate Lower Upper

 0.18407 0.12281 0.27587

 0.66841 0.21076 0.88573

 0.15033 0.11004 0.20537

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10261 0.087882 0.11981

The p-values 0.022863 and 4.1099e-08 indicate significant effects of the initial weights of
the subjects and the time factor in the amount of weight lost. The weight loss of subjects
who are in program B is significantly different relative to the weight loss of subjects
that are in program A. The lower and upper limits of the covariance parameters for the
random effects do not include zero, thus they are significant.

Perform an F-test that all fixed-effects coefficients are zero.

22 Functions — Alphabetical List

22-54

anova(lme)

ans =

 ANOVA marginal tests: DFMethod = 'Residual'

 Term FStat DF1 DF2

 '(Intercept)' 10.065 1 111

 'InitialWeight' 5.326 1 111

 'Program' 3.6798 3 111

 'Week' 34.747 1 111

 'Program:Week' 0.066648 3 111

 pValue

 0.0019549

 0.022863

 0.014286

 4.1099e-08

 0.97748

The p-values for the constant term, initial weight, and week are the same as in the
coefficient table in the previous lme output display. The p-value of 0.014286 for Program
represents the combined significance for all program coefficients. Similarly, the p-value
for the interaction between program and week (Program:Week) measures the combined
significance for all coefficients representing this interaction.

Now, use the Satterthwaite method to compute the degrees of freedom.

anova(lme,'DFMethod','Satterthwaite')

ans =

 ANOVA marginal tests: DFMethod = 'Satterthwaite'

 Term FStat DF1 DF2

 '(Intercept)' 10.065 1 20.445

 'InitialWeight' 5.326 1 20

 'Program' 3.6798 3 19.14

 'Week' 34.747 1 20

 'Program:Week' 0.066648 3 20

 anova

22-55

 pValue

 0.004695

 0.031827

 0.030233

 9.1346e-06

 0.97697

The Satterthwaite method produces smaller denominator degrees of freedom and slightly
larger p-values.

See Also
fitlme | fitlmematrix | LinearMixedModel

22 Functions — Alphabetical List

22-56

anova1

One-way analysis of variance

Syntax

p = anova1(y)

p = anova1(y,group)

p = anova1(y,group,displayopt)

[p,tbl] = anova1(___)

[p,tbl,stats] = anova1(___)

Description

p = anova1(y) returns the p-value for a balanced one-way ANOVA. It also displays
the standard ANOVA table (tbl) and a box plot of the columns of y. anova1 tests the
hypothesis that the samples in y are drawn from populations with the same mean
against the alternative hypothesis that the population means are not all the same.

p = anova1(y,group) returns the p-value for a balanced one-way ANOVA by group. It
also displays the standard ANOVA table and a box-plot of the observations of y by group.

p = anova1(y,group,displayopt) enables the ANOVA table and box plot displays
when displayopt is 'on' (default) and suppresses the displays when displayopt is 'off'.

[p,tbl] = anova1(___) returns the ANOVA table (including column and row labels)
in the cell array tbl. To copy a text version of the ANOVA table to the clipboard, select
Edit > Copy Text.

[p,tbl,stats] = anova1(___) returns a structure, stats, which you can use
to perform a multiple comparison test. A multiple comparison test enables you to
determine which pairs of group means are significantly different. To perform this test,
use multcompare, providing the stats structure as an input argument.

 anova1

22-57

Examples

One-Way ANOVA

Create sample data matrix y with columns that are constants, plus random normal
disturbances with mean 0 and standard deviation 1.

y = meshgrid(1:5);

rng default; % For reproducibility

y = y + normrnd(0,1,5,5)

y =

 1.5377 0.6923 1.6501 3.7950 5.6715

 2.8339 1.5664 6.0349 3.8759 3.7925

 -1.2588 2.3426 3.7254 5.4897 5.7172

 1.8622 5.5784 2.9369 5.4090 6.6302

 1.3188 4.7694 3.7147 5.4172 5.4889

Perform one-way ANOVA.

p = anova1(y)

p =

 0.0023

22 Functions — Alphabetical List

22-58

 anova1

22-59

The ANOVA table shows the between-groups variation (Columns) and within-groups
variation (Error). SS is the sum of squares, and df is the degrees of freedom. The total
degrees of freedom is total number of observations minus one, which is 25 - 1 = 24. The
between-groups degrees of freedom is number of groups minus one, which is 5 - 1 = 4. The
within-groups degrees of freedom is total degrees of freedom minus the between groups
degrees of freedom, which is 24 - 4 = 20.

MS is the mean squared error, which is SS/df for each source of variation. The F-statistic
is the ratio of the mean squared errors (13.4309/2.2204). The p-value is the probability
that the test statistic can take a value greater than or equal to the value of the test

22 Functions — Alphabetical List

22-60

statistic, i.e., P(F > 6.05). The small p-value of 0.0023 indicates that differences between
column means are significant.

Compare Beam Strength Using One-Way ANOVA

Input the sample data.

strength = [82 86 79 83 84 85 86 87 74 82 ...

 78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...

 'al1','al1','al1','al1','al1','al1',...

 'al2','al2','al2','al2','al2','al2'};

The data are from a study of the strength of structural beams in Hogg (1987). The vector
strength measures deflections of beams in thousandths of an inch under 3000 pounds
of force. The vector alloy identifies each beam as steel ('st'), alloy 1 ('al1'), or alloy 2
('al2'). Although alloy is sorted in this example, grouping variables do not need to be
sorted.

Test the null hypothesis that the steel beams are equal in strength to the beams made of
the two more expensive alloys. Turn the figure display off and return the ANOVA results
in a cell array.

[p,tbl] = anova1(strength,alloy,'off')

p =

 1.5264e-04

tbl =

 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'

 'Groups' [184.8000] [2] [92.4000] [15.4000] [1.5264e-04]

 'Error' [102.0000] [17] [6.0000] [] []

 'Total' [286.8000] [19] [] [] []

The total degrees of freedom is total number of observations minus one, which is
. The between-groups degrees of freedom is number of groups minus one,

which is . The within-groups degrees of freedom is total degrees of freedom
minus the between groups degrees of freedom, which is .

 anova1

22-61

MS is the mean squared error, which is SS/df for each source of variation. The F-statistic
is the ratio of the mean squared errors. The p-value is the probability that the test
statistic can take a value greater than or equal to the value of the test statistic. The p-
value of 1.5264e-04 suggests rejection of the null hypothesis.

You can retrieve the values in the ANOVA table by indexing into the cell array. Save the
F-statistic value and the p-value in the new variables Fstat and pvalue.

Fstat = tbl{2,5}

pvalue = tbl{2,6}

Fstat =

 15.4000

pvalue =

 1.5264e-04

Multiple Comparisons for One-Way ANOVA

Input the sample data.

strength = [82 86 79 83 84 85 86 87 74 82 ...

 78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...

 'al1','al1','al1','al1','al1','al1',...

 'al2','al2','al2','al2','al2','al2'};

The data are from a study of the strength of structural beams in Hogg (1987). The vector
strength measures deflections of beams in thousandths of an inch under 3000 pounds of
force. The vector alloy identifies each beam as steel (st), alloy 1 (al1), or alloy 2 (al2).
Although alloy is sorted in this example, grouping variables do not need to be sorted.

Perform one-way ANOVA using anova1. Return the structure stats, which contains the
statistics multcompare needs for performing “Multiple Comparisons”.

[~,~,stats] = anova1(strength,alloy);

22 Functions — Alphabetical List

22-62

 anova1

22-63

The small p-value of 0.0002 suggests that the strength of the beams is not the same.

Perform a multiple comparison of the mean strength of the beams.

[c,~,~,gnames] = multcompare(stats);

22 Functions — Alphabetical List

22-64

Display the comparison results with the corresponding group names.

[gnames(c(:,1)), gnames(c(:,2)), num2cell(c(:,3:6))]

ans =

 'st' 'al1' [3.6064] [7] [10.3936] [1.6831e-04]

 'st' 'al2' [1.6064] [5] [8.3936] [0.0040]

 'al1' 'al2' [-5.6280] [-2] [1.6280] [0.3560]

The first two columns show the pair of groups that are compared. The fourth column
shows the difference between the estimated group means. The third and fifth columns

 anova1

22-65

show the lower and upper limits for the 95% confidence intervals of the true difference of
means. The sixth column shows the p-value for a hypothesis that the true difference of
means for the corresponding groups is equal to zero.

The first two rows show that both comparisons involving the first group (steel) have
confidence intervals that do not include zero. Because the corresponding p-values
(1.6831e-04 and 0.0040, respectively) are small, those differences are significant.

The third row shows that the differences in strength between the two alloys is not
significant. A 95% confidence interval for the difference is [-5.6,1.6], so you cannot reject
the hypothesis that the true difference is zero. The corresponding p-value of 0.3560 in the
sixth column confirms this result.

In the figure, the blue bar represents the comparison interval for mean material strength
for steel. The red bars represent the comparison intervals for the mean material strength
for alloy 1 and alloy 2. Neither of the red bars overlap with the blue bar, which indicates
that the mean material strength for steel is significantly different from that of alloy 1
and alloy 2. To confirm the significant difference by clicking the bars that represent alloy
1 and 2.

• “Perform One-Way ANOVA” on page 8-6

Input Arguments

y — sample data
vector | matrix

Sample data, specified as a vector or a matrix.

• If y is a vector, you must specify the group input argument. group must be a
categorical variable, numeric vector, logical vector, string array, or cell array of
strings, with one name for each element of y. The anova1 function treats the y values
corresponding to the same value of group as part of the same group. Use this design
when groups have different numbers of elements (unbalanced ANOVA).

22 Functions — Alphabetical List

22-66

• If y is a matrix and you do not specify group, anova1 treats each column of y as a
separate group. In this design, the function evaluates whether the population means
of the columns are equal. Use this design when each group has the same number of
elements (balanced ANOVA).

• If y is a matrix and you specify group, then group must be a character array or cell
array of strings, with one name for each column of y. The anova1 function treats the
columns that have the same group name as part of the same group.

If group contains empty or NaN valued cells or strings, anova1 disregards the
corresponding observations in y.

 anova1

22-67

Data Types: single | double

group — Grouping variable
numeric vector | logical vector | character array | cell array of strings

Grouping variable, specified as a numeric or logical vector, character array, or a cell
array of strings, containing group names.

• If y is a vector, group must be a categorical variable, numeric vector, logical vector,
string array, or cell array of strings, with one name for each element of y. The anova1
function treats the y values corresponding to the same value of group as part of the
same group.

N is the total number of observations.
• If y is a matrix, then group must be a character array or cell array of strings, with one

group name for each column of y. The anova1 function treats the columns of y that
have the same group name as part of the same group.

If you do not want to specify group names, enter an empty array ([]) or omit this
argument.

22 Functions — Alphabetical List

22-68

If group contains empty or NaN valued cells or strings, the corresponding observations in
y are disregarded.

For more information on grouping variables, see “Grouping Variables” on page 2-52.

For example, if y is a vector, with observations categorized into groups 1, 2, and 3, then
you can specify the grouping variables as follows.
Example: 'group',[1,2,1,3,1,...,3,1]

For example, if y is a matrix, with six columns categorized into groups red, white, and
black, then you can specify the grouping variables as follows.
Example: 'group',{'white','red','white','black','red'}

Data Types: single | double | logical | char | cell

displayopt — Indicator to display ANOVA table and box plot
'on' (default) | 'off'

Indicator to display ANOVA table and box plot, specified as 'on' or 'off'. When
displayopt is 'off', anova1 returns the output arguments, only. It does not display
the standard ANOVA table and box-plot of the columns of y.
Example: p = anova(x,group,'off')

Output Arguments

p — p-value for the F-test
scalar value

p-value for the F-test, returned as a scalar value. p-value is the probability that the F-
statistic can take a value larger than the computed test-statistic value. anova1 tests
the null hypothesis that all group means are equal to each other against the alternative
hypothesis that at least one group mean is different from the others. The function derives
the p-value from the cdf of the F-distribution.

Ap-value that is smaller than the significance level indicates that at least one of the
sample means is significantly different from the others. Common significance levels are
0.05 or 0.01.

tbl — ANOVA table
cell array

 anova1

22-69

ANOVA table, returned as a cell array. tbl has six columns.

Column Definition

source The source of the variability.
SS The sum of squares due to each source.
df The degrees of freedom associated with

each source. Suppose N is the total number
of observations and k is the number of
groups. Then, N – k is the within-groups
degrees of freedom (Error), k – 1 is
the between-groups degrees of freedom
(Columns), and N – 1 is the total degrees of
freedom. N – 1 = (N – k) + (k – 1)

MS The mean squares for each source, which is
the ratio SS/df.

F F-statistic, which is the ratio of the mean
squares.

Prob>F The p-value, which is the probability that
the F-statistic can take a value larger than
the computed test-statistic value. anova1
derives this probability from the cdf of F-
distribution.

The rows of the ANOVA table show the variability in the data that is divided by the
source.

Row Definition

Groups Variability due to the differences among
the group means (variability between
groups)

Error Variability due to the differences between
the data in each group and the group mean
(variability within groups)

Total Total variability

stats — Statistics for multiple comparison tests
structure

22 Functions — Alphabetical List

22-70

Statistics for multiple comparison tests, returned as a structure. stats has six fields.

Field name Definition

gnames Names of the groups
n Number of observations in each group
source Source of the stats output
means Estimated values of the means
df Error (within-groups) degrees of freedom

(N – k, where N is the total number of
observations and k is the number of groups)

s Square root of the mean squared error

More About

Box-Plot

anova1 returns box plots of the observations in y, by group. Box plots provide a visual
comparison of the group location parameters.

If y is a vector, then the plot shows one box for each value of group. If y is a matrix and
you do not specify group, then the plot shows one box for each column of y. On each
box, the central mark is the median and the edges of the box are the 25th and 75th
percentiles (1st and 3rd quantiles). The whiskers extend to the most extreme data points
that are not considered outliers. The outliers are plotted individually. The interval
endpoints are the extremes of the notches. The extremes correspond to q2 – 1.57(q3 – q1)/
sqrt(n) and q2 + 1.57(q3 – q1)/sqrt(n), where q2 is the median (50th percentile), q1 and
q3 are the 25th and 75th percentiles, respectively, and n is the number of observations
without any NaN values.

Two medians are significantly different at the 5% significance level if their intervals
do not overlap. This test is different from the F-test that ANOVA performs, but large
differences in the center lines of the boxes correspond to large F-statistic values and
correspondingly small p-values. For more information about box plots, see boxplot.
• “One-Way ANOVA” on page 8-3

 anova1

22-71

• “Multiple Comparisons” on page 8-26

References

[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.

See Also
anova2 | anovan | boxplot | multcompare

22 Functions — Alphabetical List

22-72

anova2

Two-way analysis of variance

anova2 performs two-way analysis of variance (ANOVA) with balanced designs. To
perform two-way ANOVA with unbalanced designs, see anovan.

Syntax

p = anova2(y,reps)

p = anova2(y,reps,displayopt)

[p,tbl] = anova2(___)

[p,tbl,stats] = anova2(___)

Description

p = anova2(y,reps) returns the p-values for a balanced two-way ANOVA for
comparing the means of two or more columns and two or more rows of the observations in
y.

reps is the number of replicates for each combination of factor groups, which must
be constant, indicating a balanced design. For unbalanced designs, use anovan. The
anova2 function tests the main effects for column and row factors and their interaction
effect. To test the interaction effect, reps must be greater than 1.

anova2 also displays the standard ANOVA table.

p = anova2(y,reps,displayopt) enables the ANOVA table display when displayopt
is 'on' (default) and suppresses the display when displayopt is 'off'.

[p,tbl] = anova2(___) returns the ANOVA table (including column and row labels)
in cell array tbl. To copy a text version of the ANOVA table to the clipboard, select Edit
> Copy Text menu.

[p,tbl,stats] = anova2(___) returns a stats structure, which you can use
to perform a multiple comparison test. A multiple comparison test enables you to

 anova2

22-73

determine which pairs of group means are significantly different. To perform this test,
use multcompare, providing the stats structure as input.

Examples

Two-Way ANOVA

Load the sample data.

load popcorn

popcorn

popcorn =

 5.5000 4.5000 3.5000

 5.5000 4.5000 4.0000

 6.0000 4.0000 3.0000

 6.5000 5.0000 4.0000

 7.0000 5.5000 5.0000

 7.0000 5.0000 4.5000

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns
of the matrix popcorn are brands, Gourmet, National, and Generic, respectively. The
rows are popper types, oil and air. In the study, researchers popped a batch of each brand
three times with each popper, that is, the number of replications is 3. The first three rows
correspond to the oil popper, and the last three rows correspond to the air popper. The
response values are the yield in cups of popped popcorn.

Perform a two-way ANOVA. Save the ANOVA table in the cell array tbl for easy access
to results.

[p,tbl] = anova2(popcorn,3);

22 Functions — Alphabetical List

22-74

The column Prob>F shows the p-values for the three brands of popcorn (0.0000), the
two popper types (0.0001), and the interaction between brand and popper type (0.7462).
These values indicate that popcorn brand and popper type affect the yield of popcorn, but
there is no evidence of an interaction effect of the two.

Display the cell array containing the ANOVA table.

tbl

tbl =

 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'

 'Columns' [15.7500] [2] [7.8750] [56.7000] [7.6790e-07]

 anova2

22-75

 'Rows' [4.5000] [1] [4.5000] [32.4000] [1.0037e-04]

 'Interaction' [0.0833] [2] [0.0417] [0.3000] [0.7462]

 'Error' [1.6667] [12] [0.1389] [] []

 'Total' [22] [17] [] [] []

Store the F-statistic for the factors and factor interaction in separate variables.

Fbrands = tbl{2,5}

Fpoppertype = tbl{3,5}

Finteraction = tbl{4,5}

Fbrands =

 56.7000

Fpoppertype =

 32.4000

Finteraction =

 0.3000

Multiple Comparisons for Two-Way ANOVA

Load the sample data.

load popcorn

popcorn

popcorn =

 5.5000 4.5000 3.5000

 5.5000 4.5000 4.0000

 6.0000 4.0000 3.0000

 6.5000 5.0000 4.0000

 7.0000 5.5000 5.0000

 7.0000 5.0000 4.5000

22 Functions — Alphabetical List

22-76

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns
of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are
popper types oil and air. In the study, researchers popped a batch of each brand three
times with each popper. The values are the yield in cups of popped popcorn.

Perform a two-way ANOVA. Also compute the statistics that you need to perform a
multiple comparison test on the main effects.

[~,~,stats] = anova2(popcorn,3,'off')

stats =

 source: 'anova2'

 sigmasq: 0.1389

 colmeans: [6.2500 4.7500 4]

 coln: 6

 rowmeans: [4.5000 5.5000]

 rown: 9

 inter: 1

 pval: 0.7462

 df: 12

The stats structure includes

• The mean squared error (sigmasq)
• The estimates of the mean yield for each popcorn brand (colmeans)
• The number of observations for each popcorn brand (coln)
• The estimate of the mean yield for each popper type (rowmeans)
• The number of observations for each popper type (rown)
• The number of interactions (inter)
• The p-value that shows the significance level of the interaction term (pval)
• The error degrees of freedom (df).

Perform a multiple comparison test to see if the popcorn yield differs between pairs of
popcorn brands (columns).

c = multcompare(stats)

 anova2

22-77

Note: Your model includes an interaction term. A test of main effects can be

difficult to interpret when the model includes interactions.

c =

 1.0000 2.0000 0.9260 1.5000 2.0740 0.0000

 1.0000 3.0000 1.6760 2.2500 2.8240 0.0000

 2.0000 3.0000 0.1760 0.7500 1.3240 0.0116

The first two columns of c show the groups that are compared. The fourth column shows
the difference between the estimated group means. The third and fifth columns show
the lower and upper limits for 95% confidence intervals for the true mean difference.

22 Functions — Alphabetical List

22-78

The sixth column contains the p-value for a hypothesis test that the corresponding mean
difference is equal to zero. All p-values (0, 0, and 0.0116) are very small, which indicates
that the popcorn yield differs across all three brands.

The figure shows the multiple comparison of the means. By default, the group 1 mean is
highlighted and the comparison interval is in blue. Because the comparison intervals for
the other two groups do not intersect with the intervals for the group 1 mean, they are
highlighted in red. This lack of intersection indicates that both means are different than
group 1 mean. Select other group means to confirm that all group means are significantly
different from each other.

Perform a multiple comparison test to see the popcorn yield differs between the two
popper types (rows).

c = multcompare(stats,'Estimate','row')

Note: Your model includes an interaction term. A test of main effects can be

difficult to interpret when the model includes interactions.

c =

 1.0000 2.0000 -1.3828 -1.0000 -0.6172 0.0001

 anova2

22-79

The small p-value of 0.0001 indicates that the popcorn yield differs between the two
popper types (air and oil). The figure shows the same results. The disjoint comparison
intervals indicate that the group means are significantly different from each other.

• “Perform Two-Way ANOVA” on page 8-18

Input Arguments

y — Sample data
matrix

22 Functions — Alphabetical List

22-80

Sample data, specified as a matrix. The columns correspond to groups of one factor, and
the rows correspond to the groups of the other factor and the replications. Replications
are the measurements or observations for each combination of groups (levels) of the
row and column factor. For example, in the following data the row factor A has three
levels, column factor B has two levels, and there are two replications (reps = 2). The
subscripts indicate row, column, and replication, respectively.

B B

y y

y y

y y

y y

y y

y y

= =

È

Î

Í
Í

1 2

111 121

112 122

211 221

212 222

311 321

312 322

ÍÍ
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

¸
˝
˛

=

¸
˝
˛

=

¸
˝
˛

=

A

A

A

1

2

3

Data Types: single | double

reps — Number of replications
1 (default) | an integer number

Number of replications for each combination of groups, specified as an integer number.
For example, the following data has two replications (reps = 2) for each group
combination of row factor A and column factor B.

B B

y y

y y

y y

y y

y y

y y

= =

È

Î

Í
Í

1 2

111 121

112 122

211 221

212 222

311 321

312 322

ÍÍ
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

¸
˝
˛

=

¸
˝
˛

=

¸
˝
˛

=

A

A

A

1

2

3

• When reps is 1 (default), anova2 returns two p-values in vector p:

• The p-value for the null hypothesis that all samples from factor B (i.e., all column
samples in y) are drawn from the same population.

 anova2

22-81

• The p-value for the null hypothesis, that all samples from factor A (i.e., all row
samples in y) are drawn from the same population.

• When reps is greater than 1, anova2 also returns the p-value for the null hypothesis
that factors A and B have no interaction (i.e., the effects due to factors A and B are
additive).

Example: p = anova(y,3) specifies that each combination of groups (levels) has three
replications.
Data Types: single | double

displayopt — Indicator to display the ANOVA table
'on' (default) | 'off'

Indicator to display the ANOVA table as a figure, specified as 'on' or 'off'.

Data Types: logical

Output Arguments

p — p-value
scalar value

p-value for the F-test, returned as a scalar value. A small p-value indicates that the
results are statistically significant. Common significance levels are 0.05 or 0.01. For
example:

• A sufficiently small p-value for the null hypothesis for group means of row factor A
suggests that at least one row-sample mean is significantly different from the other
row-sample means; i.e., there is a main effect due to factor A

• A sufficiently small p-value for the null hypothesis for group (level) means of column
factor B suggests that at least one column-sample mean is significantly different from
the other column-sample means; i.e., there is a main effect due to factor B.

• A sufficiently small p-value for combinations of groups (levels) of factors A and B
suggests that there is an interaction between factors A and B.

tbl — ANOVA table
cell array

ANOVA table, returned as a cell array. tbl has six columns.

22 Functions — Alphabetical List

22-82

Column name Definition

source Source of the variability.
SS Sum of squares due to each source.
df Degrees of freedom associated with each

source.
MS Mean squares for each source, which is the

ratio SS/df.
F F-statistic, which is the ratio of the mean

squares.
Prob>F p-value, which is the probability that the

F-statistic can take a value larger than
the computed test-statistic value. anova1
derives this probability from the cdf of the
F-distribution.

The rows of the ANOVA table show the variability in the data, divided by the source into
three or four parts, depending on the value of reps.

Row Definition

Columns Variability due to the differences among
the column means

Rows Variability due to the differences among
the row means

Interaction Variability due to the interaction between
rows and columns (if reps is greater than
its default value of 1)

Error Remaining variability not explained by any
systematic source

Data Types: cell

stats — Statistics for multiple comparison test
structure

Statistics for multiple comparisons tests, returned as a structure. Use multcompare to
perform multiple comparison tests, supplying stats as an input argument. stats has nine
fields.

 anova2

22-83

Field Definition

source Source of the stats output
sigmasq Mean squared error
colmeans Estimated values of the column means
coln Number of observations for each group in

columns
rowmeans Estimated values of the row means
rown Number of observations for each group in

rows
inter Number of interactions
pval p-value for the interaction term
df Error degrees of freedom (reps — 1)*r*c

where reps is the number of replications
and c and r are the number of groups in
factors, respectively.

Data Types: struct

More About
• “Two-Way ANOVA” on page 8-15
• “Multiple Comparisons” on page 8-26

References

[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.

See Also
anova1 | anovan | multcompare

22 Functions — Alphabetical List

22-84

anovan
N-way analysis of variance

Syntax

p = anovan(y,group)

p = anovan(y,group,Name,Value)

[p,tbl] = anovan(___)

[p,tbl,stats] = anovan(___)

[p,tbl,stats,terms] = anovan(___)

Description

p = anovan(y,group) returns a vector of p-values, one per term, for multiway (n-way)
analysis of variance (ANOVA) for testing the effects of multiple factors on the mean of
the vector y.

anovan also displays a figure showing the standard ANOVA table.

p = anovan(y,group,Name,Value) returns a vector of p-values for multiway (n-way)
ANOVA using additional options specified by one or more Name,Value pair arguments.

For example, you can specify which predictor variable is continuous, if any, or the type of
sum of squares to use.

[p,tbl] = anovan(___) returns the ANOVA table (including factor labels) in cell
array tbl for any of the input arguments specified in the previous syntaxes. Copy a text
version of the ANOVA table to the clipboard by using the Copy Text item on the Edit
menu.

[p,tbl,stats] = anovan(___) returns a stats structure that you can use to perform
a multiple comparison test, which enables you to determine which pairs of group means
are significantly different. You can perform such a test using the multcompare function
by providing the stats structure as input.

[p,tbl,stats,terms] = anovan(___) returns the main and interaction terms used
in the ANOVA computations in terms.

 anovan

22-85

Examples

Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';

g1 = [1 2 1 2 1 2 1 2];

g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};

g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each
factor has two levels ,and every observation in y is identified by a combination of factor
levels. For example, observation y(1) is associated with level 1 of factor g1, level 'hi'
of factor g2, and level 'may' of factor g3. Similarly, observation y(6) is associated with
level 2 of factor g1, level 'hi' of factor g2, and level 'june' of factor g3.

Test if the response is the same for all factor levels.

p = anovan(y,{g1,g2,g3})

p =

 0.4174

 0.0028

 0.9140

22 Functions — Alphabetical List

22-86

In the ANOVA table, X1, X2, and X3 correspond to the factors g1, g2, and g3,
respectively. The p-value 0.4174 indicates that the mean responses for levels 1 and 2
of the factor g1 are not significantly different. Similarly, the p-value 0.914 indicates
that the mean responses for levels 'hi' and 'lo' of the factor g3 are not significantly
different. However, the p-value 0.0028 is small enough to conclude that the mean
responses are significantly different for the two levels, 'may' and 'june', of the factor
g3. By default, anovan computes p-values just for the three main effects.

Test the two-factor interactions. This time specify the variable names.

 anovan

22-87

p = anovan(y,{g1 g2 g3},'model','interaction','varnames',{'g1','g2','g3'})

p =

 0.0347

 0.0048

 0.2578

 0.0158

 0.1444

 0.5000

22 Functions — Alphabetical List

22-88

The interaction terms are represented by g1*g2, g1*g3, and g2*g3 in the ANOVA table.
The first three entries of p are the p-values for the main effects. The last three entries
are the p-values for the two-way interactions. The p-value of 0.0158 indicates that the
interaction between g1 and g2 is significant. The p-values of 0.1444 and 0.5 indicate that
the corresponding interactions are not significant.

Two-Way ANOVA for Unbalanced Design

Load the sample data.

 anovan

22-89

load carbig

The data has measurements on 406 cars. The variable org shows where the cars were
made and when shows when in the year the cars were manufactured.

Study how the mileage depends on when and where the cars were made. Also include the
two-way interactions in the model.

p = anovan(MPG,{org when},'model',2,'varnames',{'origin','mfg date'})

p =

 0.0000

 0.0000

 0.3059

22 Functions — Alphabetical List

22-90

The 'model',2 name-value pair argument represents the two-way interactions. The
p-value for the interaction term, 0.3059, is not small, indicating little evidence that
the effect of the time of manufacture (mfg date) depends on where the car was made
(origin). The main effects of origin and manufacturing date, however, are significant,
both p-values are 0.

Multiple Comparisons for Three-Way ANOVA

Load the sample data.

 anovan

22-91

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';

g1 = [1 2 1 2 1 2 1 2];

g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};

g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each
factor has two levels, and every observation in y is identified by a combination of factor
levels. For example, observation y(1) is associated with level 1 of factor g1, level 'hi'
of factor g2, and level 'may' of factor g3. Similarly, observation y(6) is associated with
level 2 of factor g1, level 'hi' of factor g2, and level 'june' of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required
for multiple comparison tests.

[~,~,stats] = anovan(y,{g1 g2 g3},'model','interaction',...

 'varnames',{'g1','g2','g3'});

22 Functions — Alphabetical List

22-92

The p-value of 0.2578 indicates that the mean responses for levels 'may' and 'june' of
factor g3 are not significantly different. The p-value of 0.0347 indicates that the mean
responses for levels 1 and 2 of factor g1 are significantly different. Similarly, the p-value
of 0.0048 indicates that the mean responses for levels 'hi' and 'lo' of factor g2 are
significantly different.

Perform multiple comparison tests to find out which groups of the factors g1 and g2 are
significantly different.

 anovan

22-93

results = multcompare(stats,'Dimension',[1 2])

results =

 1.0000 2.0000 -6.8604 -4.4000 -1.9396 0.0280

 1.0000 3.0000 4.4896 6.9500 9.4104 0.0177

 1.0000 4.0000 6.1396 8.6000 11.0604 0.0143

 2.0000 3.0000 8.8896 11.3500 13.8104 0.0108

 2.0000 4.0000 10.5396 13.0000 15.4604 0.0095

 3.0000 4.0000 -0.8104 1.6500 4.1104 0.0745

22 Functions — Alphabetical List

22-94

multcompare compares the combinations of groups (levels) of the two grouping variables,
g1 and g2. In the results matrix, the number 1 corresponds to the combination of level
1 of g1 and level hi of g2, the number 2 corresponds to the combination of level 2 of g1
and level hi of g2. Similarly, the number 3 corresponds to the combination of level 1 of
g1 and level lo of g2, and the number 4 corresponds to the combination of level 2 of g1
and level lo of g2. The last column of the matrix contains the p-values.

For example, the first row of the matrix shows that the combination of level 1 of g1 and
level hi of g2 has the same mean response values as the combination of level 2 of g1
and level hi of g2. The p-value corresponding to this test is 0.0280, which indicates that
the mean responses are significantly different. You can also see this result in the figure.
The blue bar shows the comparison interval for the mean response for the combination of
level 1 of g1 and level hi of g2. The red bars are the comparison intervals for the mean
response for other group combinations. None of the red bars overlap with the blue bar,
which means the mean response for the combination of level 1 of g1 and level hi of g2 is
significantly different from the mean response for other group combinations.

You can test the other groups by clicking on the corresponding comparison interval
for the group. The bar you click on turns to blue. The bars for the groups that are
significantly different are red. The bars for the groups that are not significantly different
are gray. For example, if you click on the comparison interval for the combination of
level 1 of g1 and level lo of g2, the comparison interval for the combination of level 2 of
g1 and level lo of g2 overlaps, and is therefore gray. Conversely, the other comparison
intervals are red, indicating significant difference.

• “Perform N-Way ANOVA” on page 8-39
• “ANOVA with Random Effects” on page 8-48
• “Multiple Comparisons” on page 8-26

Input Arguments

y — Sample data
numeric vector

Sample data, specified as a numeric vector.
Data Types: single | double

group — Grouping variables
cell array

 anovan

22-95

Grouping variables, i.e. the factors and factor levels of the observations in y, specified
as a cell array. Each of the cells in group contains a list of factor levels identifying the
observations in y with respect to one of the factors. The list within each cell can be a
categorical array, numeric vector, character matrix, or single-column cell array of strings,
and must have the same number of elements as y.

y y y y y y y

g A A C B B D

N= ¢

≠ ≠ ≠ ≠ ≠ ≠

=

[, , , , , ,]

{ ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, , ’

1 2 3 4 5

1

L

L ’’ }

[,]

{ ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, , ’ ’ }

g

g

2 1 2 1 3 1 2

3

=

=

L

Lhi mid low mid hi low

By default, anovan treats all grouping variables as fixed effects.

For example, in a study you want to investigate the effects of gender, school, and the
education method on the academic success of elementary school students, then you can
specify the grouping variables as follows.
Example: {'Gender','School','Method'}

Data Types: cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'alpha',0.01,'model','interaction','sstype',2 specifies anovan
to compute the 99% confidence bounds and p-values for the main effects and two-way
interactions using type II sum of squares.

'alpha' — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level for confidence bounds, specified as the comma-separated pair consisting
of'alpha' and a scalar value in the range 0 to 1. For a value α, the confidence level is
100*(1–α)%.
Example: 'alpha',0.01 corresponds to 99% confidence intervals

22 Functions — Alphabetical List

22-96

Data Types: single | double

'continuous' — Indicator for continuous predictors
vector of indices

Indicator for continuous predictors, representing which grouping variables should be
treated as continuous predictors rather than as categorical predictors, specified as the
comma-separated pair consisting of'continuous' and a vector of indices.

For example, if there are three grouping variables and second one is continuous, then you
can specify as follows.
Example: continuous',[2]

Data Types: single | double

'display' — Indicator to display ANOVA table
'on' (default) | 'off'

Indicator to display ANOVA table, specified as the comma-separated pair consisting of
'display' and 'on' or 'off'. When displayopt is 'off', anova1 only returns the
output arguments, and does not display the standard ANOVA table as a figure.
Example: 'display','off'

'model' — Type of the model
'linear' (default) | 'interaction' | 'full' | integer value | terms matrix

Type of the model, specified as the comma-separated pair consisting of 'model' and one
of the following:

• 'linear' — The default 'linear' model computes only the p-values for the null
hypotheses on the N main effects.

• 'interaction' — The 'interaction' model computes the p-values for null

hypotheses on the N main effects and the
N

2









 two-factor interactions.

• 'full' — The 'full' model computes the p-values for null hypotheses on the N
main effects and interactions at all levels.

• An integer — For an integer value of k, (k ≤ N) for model type, anovan computes all
interaction levels through the kth level. For example, the value 3 means main effects

 anovan

22-97

plus two- and three-factor interactions. The values k = 1 and k = 2 are equivalent to
the 'linear' and 'interaction' specifications, respectively. The value k = N is
equivalent to the 'full' specification.

• Terms matrix — A matrix of term definitions having the same form as the input to
the x2fx function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that anovan computes,
you can specify a matrix containing one row for each main or interaction term to
include in the ANOVA model. Each row defines one term using a vector of N zeros and
ones. The table below illustrates the coding for a 3-factor ANOVA for factors A, B, and
C.

Matrix Row ANOVA Term

[1 0 0] Main term A
[0 1 0] Main term B
[0 0 1] Main term C
[1 1 0] Interaction term AB
[1 0 1] Interaction term AC
[0 1 1] Interaction term BC
[1 1 1] Interaction term ABC

For example, if there are three factors A, B, and C, and 'model',[0 1 0;0 0 1;0
1 1], then anovan tests for the main effects B and C, and the interaction effect BC,
respectively.

A simple way to generate the terms matrix is to modify the terms output, which codes
the terms in the current model using the format described above. If anovan returns
[0 1 0;0 0 1;0 1 1] for terms, for example, and there is no significant interaction
BC, then you can recompute ANOVA on just the main effects B and C by specifying
[0 1 0;0 0 1] for model.

Example: 'model',[0 1 0;0 0 1;0 1 1]

Example: 'model','interaction'

'nested' — Nesting relationships
matrix of 0’s and 1’s

22 Functions — Alphabetical List

22-98

Nesting relationships among the grouping variables, specified as the comma-separated
pair consisting of 'nested' and a matrix M of 0’s and 1’s, i.e.M(i,j) = 1 if variable i is
nested in variable j.

For example, if there are two grouping variables District and School, where School is
nested in District, then you can express this relationship as follows.
Example: 'nested',[0,0;1 0]

Data Types: single | double

'random' — Indicator for random variables
vector of indices

Indicator for random variables, representing which grouping variables are random,
specified as the comma-separated pair consisting of 'random' and a vector of indices. By
default, anovan treats all grouping variables as fixed.

anovan treats an interaction term as random if any of the variables in the interaction
term is random.
Example: 'random',[3]

Data Types: single | double

'sstype' — Type of sum of squares
3 (default) | 1 | 2 | h

Type of sum squares, specified as the comma-separated pair consisting of 'sstype' and
the following:

• 1 — Type I sum of squares. The reduction in residual sum of squares obtained by
adding that term to a fit that already includes the terms listed before it.

• 2 — Type II sum of squares. The reduction in residual sum of squares obtained by
adding that term to a model consisting of all other terms that do not contain the term
in question.

• 3 — Type III sum of squares. The reduction in residual sum of squares obtained
by adding that term to a model containing all other terms, but with their effects
constrained to obey the usual “sigma restrictions” that make models estimable.

• h — Hierarchical model. Similar to type 2, but with continuous as well as categorical
factors used to determine the hierarchy of terms.

 anovan

22-99

The sum of squares for any term is determined by comparing two models. For a
model containing main effects but no interactions, the value of sstype only influences
computations on unbalanced data.

Suppose you are fitting a model with two factors and their interaction, and that the
terms appear in the order A, B, AB. Let R(·) represent the residual sum of squares for
a model, so for example R(A, B, AB) is the residual sum of squares fitting the whole
model, R(A) is the residual sum of squares fitting just the main effect of A, and R(1) is the
residual sum of squares fitting just the mean. The three types of sums of squares are as
follows:

Term Type 1 Sum of Squares Type 2 Sum of Squares Type 3 Sum of Squares

A R(1)–R(A) R(B)– R(A, B) R(B, AB) – R(A, B, AB)
B R(A)– R(A, B) R(A)– R(A, B) R(A, AB) – R(A, B, AB)
AB R(A, B) – R(A, B, AB) R(A, B) – R(A, B, AB) R(A, B) – R(A, B, AB)

The models for Type 3 sum of squares have sigma restrictions imposed. This means, for
example, that in fitting R(B, AB), the array of AB effects is constrained to sum to 0 over
A for each value of B, and over B for each value of A.
Example: 'sstype','h'

Data Types: single | double

'varnames' — Names of grouping variables
X1,X2,...,XN (default) | character matrix | cell array of strings

Names of grouping variables, specified as the comma-separating pair consisting of
'varnames' and a character matrix or a cell array of strings.

Example: 'varnames',{'Gender','City'}

Data Types: char | cell

Output Arguments

p — p-values
vector

p-values, returned as a vector.

22 Functions — Alphabetical List

22-100

Output vector p contains p-values for the null hypotheses on the N main effectsand any
interaction terms specified. Element p(1) contains the p-value for the null hypotheses
that samples at all levels of factor A are drawn from the same population; element p(2)
contains the p-value for the null hypotheses that samples at all levels of factor B are
drawn from the same population; and so on.

For example, if there are three factors A, B, and C, and 'model',[0 1 0;0 0 1;0 1
1], then the output vector p contains the p-values for the null hypotheses on the main
effects B and C and the interaction effect BC, respectively.

A sufficiently small p-value corresponding to a factor suggests that at least one group
mean is significantly different from the other group means; that is, there is a main effect
due to that factor. It is common to declare a result significant if the p-value is less than
0.05 or 0.01.

tbl — ANOVA table
cell array

ANOVA table, returned as a cell array. The ANOVA table has seven columns:

Column name Definition

source The source of the variability.
SS The sum of squares due to each source.
df The degrees of freedom associated with

each source.
MS The mean squares for each source, which is

the ratio SS/df.
F F-statistic, which is the ratio of the mean

squares.
Prob>F The p-values , which is the probability that

the F-statistic can take a value larger than
a computed test-statistic value. anovan
derives these probabilities from the cdf of
F-distribution.

stats — Statistics
structure

 anovan

22-101

Statistics to use in a multiple comparison test using the multcompare function, returned
as a structure.

anovan evaluates the hypothesis that the different groups (levels) of a factor (or more
generally, a term) have the same effect, against the alternative that they do not all have
the same effect. Sometimes it is preferable to perform a test to determine which pairs of
levels are significantly different, and which are not. Use the multcompare function to
perform such tests by supplying the stats structure as input.

The stats structure contains the fields listed below, in addition to a number of other
fields required for doing multiple comparisons using the multcompare function:

Field Description

coeffs Estimated coefficients
coeffnames Name of term for each coefficient
vars Matrix of grouping variable values for each term
resid Residuals from the fitted model

The stats structure also contains the following fields if there are random effects:

Field Description

ems Expected mean squares
denom Denominator definition
rtnames Names of random terms
varest Variance component estimates (one per random term)
varci Confidence intervals for variance components

terms — Main and interaction terms
matrix

Main and interaction terms, returned as a matrix. The terms are encoded in the output
matrix terms using the same format described above for input model. When you specify
model itself in this format, the matrix returned in terms is identical.

More About
• “N-Way ANOVA” on page 8-36

22 Functions — Alphabetical List

22-102

See Also
anova1 | anova2 | multcompare

 anova

22-103

anova
Class: RepeatedMeasuresModel

Analysis of variance for between-subject effects

Syntax

anovatbl = anova(rm)

anovatbl = anova(rm,'WithinModel',WM)

Description

anovatbl = anova(rm) returns the analysis of variance results for the repeated
measures model rm.

anovatbl = anova(rm,'WithinModel',WM) returns the analysis of variance results
it performs using the response or responses specified by the within-subject model WM.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

WM — Within-subject model
'separatemeans' (default) | 'orthogonalcontrasts' | string defining a model
specification | r-by-nc matrix specifying nc contrasts

Within-subject model, specified as one of the following:

• 'separatemeans' — The response is the average of the repeated measures (average
across the within-subject model).

22 Functions — Alphabetical List

22-104

• 'orthogonalcontrasts' — This is valid when the within-subject model has a
single numeric factor T. Responses are the average, the slope of centered T, and,
in general, all orthogonal contrasts for a polynomial up to T^(p – 1), where p is the
number of rows in the within-subject model. anova multiplies Y, the response you use
in the repeated measures model rm by the orthogonal contrasts, and uses the columns
of the resulting product matrix as the responses.

anova computes the orthogonal contrasts for T using the Q factor of a QR
factorization of the Vandermonde matrix.

• A string that defines a model specification in the within-subject factors. Responses are
defined by the terms in that model. anova multiplies Y, the response matrix you use
in the repeated measures model rm by the terms of the model, and uses the columns of
the result as the responses.

For example, if there is a Time factor and 'Time' is the model specification, then
anova uses two terms, the constant and the uncentered Time term. The default is
'1' to perform on the average response.

• An r-by-nc matrix, C, specifying nc contrasts among the r repeated measures. If Y
represents the matrix of repeated measures you use in the repeated measures model
rm, then the output tbl contains a separate analysis of variance for each column of
Y*C.

The anova table contains a separate univariate analysis of variance results for each
response.
Example: 'WithinModel','Time'

Example: 'WithinModel','orthogonalcontrasts'

Output Arguments

anovatbl — Results of analysis of variance
table

Results of analysis of variance for between-subject effects, returned as a table. This
includes all terms on the between-subjects model and the following columns.

Column Name Definition

Within Within-subject factors

 anova

22-105

Column Name Definition

Between Between-subject factors
SumSq Sum of squares
DF Degrees of freedom
MeanSq Mean squared error
F F-statistic
pValue p-value corresponding to the F-statistic

Definitions

Vandermonde Matrix

Vandermonde matrix is the matrix where columns are the powers of the vector a, that is,
V(i,j) = a(i)(n — j), where n is the length of a.

QR Factorization

QR factorization of an m-by-n matrix A is the factorization that matrix into the product
A = Q*R, where R is an m-by-n upper triangular matrix and Q is an m-by-m unitary
matrix.

Examples

Analysis of Variance for Average Response

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

22 Functions — Alphabetical List

22-106

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform analysis of variance.

anova(rm)

ans =

 Within Between SumSq DF MeanSq F pValue

 ________ ________ ______ ___ _______ ______ ___________

 Constant constant 7201.7 1 7201.7 19650 2.0735e-158

 Constant species 309.61 2 154.8 422.39 1.1517e-61

 Constant Error 53.875 147 0.36649

There are 150 observations and 3 species. The degrees of freedom for species is 3 – 1 =
2, and for error it is 150 – 3 = 147. The small p-value of 1.1517e-61 indicates that the
measurements differ significantly according to species.

Panel Data

Navigate to the folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample panel data.

load('panelData')

The dataset array, panelData, contains yearly observations on eight cities for 6 years.
The first variable, Growth, measures economic growth (the response variable). The
second and third variables are city and year indicators, respectively. The last variable,
Employ, measures employment (the predictor variable). This is simulated data.

Store the data in a table array and define city as a nominal variable.

t = table(panelData.Growth,panelData.City,panelData.Year,...

 'VariableNames',{'Growth','City','Year'});

 anova

22-107

Convert the data in a proper format to do repeated measures analysis.

t = unstack(t,'Growth','Year','NewDataVariableNames',...

 {'year1','year2','year3','year4','year5','year6'});

Add the mean employment level over the years as a predictor variable to the table t.

t(:,8) = table(grpstats(panelData.Employ,panelData.City));

t.Properties.VariableNames{'Var8'} = 'meanEmploy';

Define the within-subjects variable.

Year = [1 2 3 4 5 6]';

Fit a repeated measures model, where the growth figures over the 6 years are the
responses and the mean employment is the predictor variable.

rm = fitrm(t,'year1-year6 ~ meanEmploy','WithinDesign',Year);

Perform analysis of variance.

anovatbl = anova(rm,'WithinModel',Year)

anovatbl =

 Within Between SumSq DF MeanSq F pValue

 _________ __________ __________ __ __________ ________ _________

 Contrast1 constant 588.17 1 588.17 0.038495 0.85093

 Contrast1 meanEmploy 3.7064e+05 1 3.7064e+05 24.258 0.0026428

 Contrast1 Error 91675 6 15279

Longitudinal Data

Navigate to the folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load('longitudinalData')

The matrix Y contains response data for 16 individuals. The response is the blood level of
a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds

22 Functions — Alphabetical List

22-108

to an individual, and each column corresponds to a time point. The first eight subjects
are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to do repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...

'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where blood levels are the responses and gender is the
predictor variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Perform analysis of variance.

anovatbl = anova(rm)

anovatbl =

 Within Between SumSq DF MeanSq F pValue

 ________ ________ ______ __ ______ ______ __________

 Constant constant 54702 1 54702 1079.2 1.1897e-14

 Constant Gender 2251.7 1 2251.7 44.425 1.0693e-05

 Constant Error 709.6 14 50.685

There are 2 genders and 16 observations, so the degrees of freedom for gender is (2 –1) =
1 and for error it is (16 – 2)*(2 – 1) = 14. The small p-value of 1.0693e-05 indicates that
there is a significant effect of gender on blood pressure.

Repeat analysis of variance using orthogonal contrasts.

anovatbl = anova(rm,'WithinModel','orthogonalcontrasts')

anovatbl =

 Within Between SumSq DF MeanSq F pValue

 anova

22-109

 ________ ________ __________ __ __________ __________ __________

 Constant constant 54702 1 54702 1079.2 1.1897e-14

 Constant Gender 2251.7 1 2251.7 44.425 1.0693e-05

 Constant Error 709.6 14 50.685

 Time constant 310.83 1 310.83 31.023 6.9065e-05

 Time Gender 13.341 1 13.341 1.3315 0.26785

 Time Error 140.27 14 10.019

 Time^2 constant 565.42 1 565.42 98.901 1.0003e-07

 Time^2 Gender 1.4076 1 1.4076 0.24621 0.62746

 Time^2 Error 80.039 14 5.7171

 Time^3 constant 2.6127 1 2.6127 1.4318 0.25134

 Time^3 Gender 7.8853e-06 1 7.8853e-06 4.3214e-06 0.99837

 Time^3 Error 25.546 14 1.8247

 Time^4 constant 2.8404 1 2.8404 0.47924 0.50009

 Time^4 Gender 2.9016 1 2.9016 0.48956 0.49559

 Time^4 Error 82.977 14 5.9269

See Also
fitrm | manova | qr | ranova | vander

More About
• “Model Specification for Repeated Measures Models” on page 8-77

22 Functions — Alphabetical List

22-110

ansaribradley
Ansari-Bradley test

Syntax

h = ansaribradley(x,y)

h = ansaribradley(x,y,Name,Value)

[h,p] = ansaribradley(___)

[h,p,stats] = ansaribradley(___)

Description

h = ansaribradley(x,y) returns a test decision for the null hypothesis that the data
in vectors x and y comes from the same distribution, using the Ansari-Bradley test. The
alternative hypothesis is that the data in x and y comes from distributions with the same
median and shape but different dispersions (e.g., variances). The result h is 1 if the test
rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = ansaribradley(x,y,Name,Value) returns a test decision for the Ansari-Bradley
test with additional options specified by one or more name-value pair arguments. For
example, you can change the significance level, conduct a one-sided test, or use a normal
approximation to calculate the value of the test statistic.

[h,p] = ansaribradley(___) also returns the p-value, p, of the test, using any of
the input arguments in the previous syntaxes.

[h,p,stats] = ansaribradley(___) also returns the structure stats containing
information about the test statistic.

Examples

Test for Equal Variances

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for
the model years 1982 and 1976.

 ansaribradley

22-111

load carsmall;

x = MPG(Model_Year==82);

y = MPG(Model_Year==76);

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976
have equal variances.

[h,p,stats] = ansaribradley(x,y)

h =

 0

p =

 0.8426

stats =

 W: 526.9000

 Wstar: 0.1986

The returned value of h = 0 indicates that ansaribradley does not reject the null
hypothesis at the default 5% significance level.

One-Sided Hypothesis Test

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for
the model years 1982 and 1976.

load carsmall;

x = MPG(Model_Year==82);

y = MPG(Model_Year==76);

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976
have equal variances, against the alternative hypothesis that the variance of cars from
1982 is greater than that of cars from 1976.

[h,p,stats] = ansaribradley(x,y,'Tail','right')

h =

 0

p =

 0.5787

stats =

22 Functions — Alphabetical List

22-112

 W: 526.9000

 Wstar: 0.1986

The returned value of h = 0 indicates that ansaribradley does not reject the null
hypothesis that the variance in miles per gallon is the same for the two model years,
when the alternative is that the variance of cars from 1982 is greater than that of cars
from 1976.

Input Arguments

x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns.

ansaribradley performs separate tests along each column and returns a vector of
results.

• If x and y are specified as multidimensional arrays, ansaribradley works along the
first nonsingleton dimension. x and y must have the same size along all remaining
dimensions.

Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns.

ansaribradley performs separate tests along each column and returns a vector of
results.

• If x and y are specified as multidimensional arrays, ansaribradley works along the
first nonsingleton dimension. x and y must have the same size along all remaining
dimensions.

Data Types: single | double

 ansaribradley

22-113

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at
the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Dim' — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-
separated pair consisting of 'Dim' and a positive integer value. For example, specifying
'Dim',1 tests the column means, while 'Dim',2 tests the row means.

Example: 'Dim',2

Data Types: single | double

'Tail' — Type of alternative hypothesis
'both' (default) | 'left' | 'right'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the dispersion parameters of x
and y are not equal.

'right' Test the alternative hypothesis that the dispersion parameter of x is
greater than that of y.

'left' Test the alternative hypothesis that the dispersion parameter of x is
less than that of y.

22 Functions — Alphabetical List

22-114

Example: 'Tail','right'

'Method' — Computation method
'exact' | 'approximate'

Computation method for the test statistic, specified as the comma-separated pair
consisting of 'Method' and one of the following.

'exact' Compute p using an exact calculation of the distribution of the test
statistic W. This is the default if n, the total number of rows in x
and y, is 25 or less. Note that n is computed before any NaN values
(representing missing data) are removed.

'approximate' Compute p using a normal approximation for the statistic W*. This is
the default if n, the total number of rows in x and y, is greater than
25.

Example: 'Method','exact'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics
structure

 ansaribradley

22-115

Test statistics for the Ansari-Bradley test, returned as a structure containing:

• W — Value of the test statistic, which is the sum of the Ansari-Bradley ranks for the x
sample.

• Wstar — Approximate normal statistic W*.

More About

Ansari-Bradley Test

The Ansari-Bradley test is a nonparametric alternative to the two-sample F-test of
equal variances. It does not require the assumption that x and y come from normal
distributions. The dispersion of a distribution is generally measured by its variance
or standard deviation, but the Ansari-Bradley test can be used with samples from
distributions that do not have finite variances.

This test requires that the samples have equal medians. Under that assumption, and
if the distributions of the samples are continuous and identical, the test is independent
of the distributions. If the samples do not have the same medians, the results can be
misleading. In that case, Ansari and Bradley recommend subtracting the median,
but then the distribution of the resulting test under the null hypothesis is no longer
independent of the common distribution of x and y. If you want to perform the tests
with medians subtracted, you should subtract the medians from x and y before calling
ansaribradley.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-
by-4 array, then x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not
equal to 1. For example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the
first nonsingleton dimension of x.

See Also
ttest2 | vartest2 | vartestn

22 Functions — Alphabetical List

22-116

aoctool
Interactive analysis of covariance

Syntax

aoctool(x,y,group)

aoctool(x,y,group,alpha)

aoctool(x,y,group,alpha,xname,yname,gname)

aoctool(x,y,group,alpha,xname,yname,gname,displayopt)

aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model)

h = aoctool(...)

[h,atab,ctab] = aoctool(...)

[h,atab,ctab,stats] = aoctool(...)

Description

aoctool(x,y,group) fits a separate line to the column vectors, x and y, for each group
defined by the values in the array group. group may be a categorical variable, vector,
character array, or cell array of strings. These types of models are known as one-way
analysis of covariance (ANOCOVA) models. The output consists of three figures:

• An interactive graph of the data and prediction curves
• An ANOVA table
• A table of parameter estimates

You can use the figures to change models and to test different parts of the model. More
information about interactive use of the aoctool function appears in “Analysis of
Covariance Tool” on page 8-58.

aoctool(x,y,group,alpha) determines the confidence levels of the prediction
intervals. The confidence level is 100(1-alpha)%. The default value of alpha is 0.05.

aoctool(x,y,group,alpha,xname,yname,gname) specifies the name to use for the
x, y, and g variables in the graph and tables. If you enter simple variable names for the
x, y, and g arguments, the aoctool function uses those names. If you enter an expression
for one of these arguments, you can specify a name to use in place of that expression by

 aoctool

22-117

supplying these arguments. For example, if you enter m(:,2) as the x argument, you
might choose to enter 'Col 2' as the xname argument.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt) enables the graph
and table displays when displayopt is 'on' (default) and suppresses those displays
when displayopt is 'off'.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model) specifies
the initial model to fit. The value of model can be any of the following:

• 'same mean' — Fit a single mean, ignoring grouping
• 'separate means' — Fit a separate mean to each group
• 'same line' — Fit a single line, ignoring grouping
• 'parallel lines' — Fit a separate line to each group, but constrain the lines to be

parallel
• 'separate lines' — Fit a separate line to each group, with no constraints

h = aoctool(...) returns a vector of handles to the line objects in the plot.

[h,atab,ctab] = aoctool(...) returns cell arrays containing the entries in ANOVA
table (atab) and the table of coefficient estimates (ctab). (You can copy a text version of
either table to the clipboard by using the Copy Text item on the Edit menu.)

[h,atab,ctab,stats] = aoctool(...) returns a stats structure that you can
use to perform a follow-up multiple comparison test. The ANOVA table output includes
tests of the hypotheses that the slopes or intercepts are all the same, against a general
alternative that they are not all the same. Sometimes it is preferable to perform a test to
determine which pairs of values are significantly different, and which are not. You can
use the multcompare function to perform such tests by supplying the stats structure
as input. You can test either the slopes, the intercepts, or population marginal means
(the heights of the curves at the mean x value).

Examples

This example illustrates how to fit different models non-interactively. After loading the
smaller car data set and fitting a separate-slopes model, you can examine the coefficient
estimates.

load carsmall

22 Functions — Alphabetical List

22-118

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...

 '','','','off','separate lines');

c(:,1:2)

ans =

 'Term' 'Estimate'

 'Intercept' [45.97983716833132]

 ' 70' [-8.58050531454973]

 ' 76' [-3.89017396094922]

 ' 82' [12.47067927549897]

 'Slope' [-0.00780212907455]

 ' 70' [0.00195840368824]

 ' 76' [0.00113831038418]

 ' 82' [-0.00309671407243]

Roughly speaking, the lines relating MPG to Weight have an intercept close to 45.98 and
a slope close to -0.0078. Each group's coefficients are offset from these values somewhat.
For instance, the intercept for the cars made in 1970 is 45.98-8.58 = 37.40.

Next, try a fit using parallel lines. (The ANOVA table shows that the parallel-lines fit is
significantly worse than the separate-lines fit.)

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...

 '','','','off','parallel lines');

c(:,1:2)

ans =

 'Term' 'Estimate'

 'Intercept' [43.38984085130596]

 ' 70' [-3.27948192983761]

 ' 76' [-1.35036234809006]

 ' 82' [4.62984427792768]

 'Slope' [-0.00664751826198]

Again, there are different intercepts for each group, but this time the slopes are
constrained to be the same.

See Also
anova1 | multcompare | polytool

 append

22-119

append
Class: TreeBagger

Append new trees to ensemble

Syntax

B = append(B,other)

Description

B = append(B,other) appends the trees from the other ensemble to those in B. This
method checks for consistency of the X and Y properties of the two ensembles, as well as
consistency of their compact objects and out-of-bag indices, before appending the trees.
The output ensemble B takes training parameters such as FBoot, Prior, Cost, and
other from the B input. There is no attempt to check if these training parameters are
consistent between the two objects.

See Also
CompactTreeBagger.combine

22 Functions — Alphabetical List

22-120

BandWidth property
Class: ProbDistKernel

Read-only value specifying bandwidth of kernel smoothing function for ProbDistKernel
object

Description

BandWidth is a read-only property of the ProbDistKernel class. BandWidth is a value
specifying the width of the kernel smoothing function used to compute a nonparametric
estimate of the probability distribution when creating a ProbDistKernel object.

Values

For a distribution specified to cover only the positive numbers or only a finite interval,
the data are transformed before the kernel density is applied, and the bandwidth is on
the scale of the transformed data.

Use this information to view and compare the width of the kernel smoothing function
used to create distributions.

See Also
ksdensity

 barttest

22-121

barttest
Bartlett’s test

Syntax

ndim = barttest(x,alpha)

[ndim,prob,chisquare] = barttest(x,alpha)

Description

ndim = barttest(x,alpha) returns the number of dimensions necessary to explain
the nonrandom variation in the data matrix x at the alpha significance level.

[ndim,prob,chisquare] = barttest(x,alpha) also returns the significance values
for the hypothesis tests prob, and the χ2 values associated with the tests chisquare.

Examples

Determine Dimensions Needed to Explain Nonrandom Data Variation

Generate a 20-by-6 matrix of random numbers from a multivariate normal distribution
with mean mu = [0 0] and covariance sigma = [1 0.99; 0.99 1].

rng default % for reproducibility

mu = [0 0];

sigma = [1 0.99; 0.99 1];

X = mvnrnd(mu,sigma,20); % columns 1 and 2

X(:,3:4) = mvnrnd(mu,sigma,20); % columns 3 and 4

X(:,5:6) = mvnrnd(mu,sigma,20); % columns 5 and 6

Determine the number of dimensions necessary to explain the nonrandom variation in
data matrix X. Report the significance values for the hypothesis tests.

[ndim, prob] = barttest(X,0.05)

ndim =

22 Functions — Alphabetical List

22-122

 3

prob =

 0.0000

 0.0000

 0.0000

 0.5148

 0.3370

The returned value of ndim indicates that three dimensions are necessary to explain the
nonrandom variation in X.

Input Arguments

x — Input data
matrix of scalar values

Input data, specified as a matrix of scalar values.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as a scalar value in the range (0,1).

Example: 0.1

Data Types: single | double

Output Arguments

ndim — Number of dimensions
positive integer value

Number of dimensions, returned as a positive integer value. The dimension is
determined by a series of hypothesis tests. The test for ndim = 1 tests the hypothesis

 barttest

22-123

that the variances of the data values along each principal component are equal, the test
for ndim = 2 tests the hypothesis that the variances along the second through last
components are equal, and so on. The null hypothesis is that the number of dimensions is
equal to the number of the largest unequal eigenvalues of the covariance matrix of x.

prob — Significance value
vector of scalar values in the range (0,1)

Significance value for the hypothesis tests, returned as a vector of scalar values in the
range (0,1). Each element in prob corresponds to an element of chisquare.

chisquare — Test statistics
vector of scalar values

Test statistics for each dimension’s hypothesis test, returned as a vector of scalar values.

22 Functions — Alphabetical List

22-124

bbdesign
Box-Behnken design

Syntax

dBB = bbdesign(n)

[dBB,blocks] = bbdesign(n)

[...] = bbdesign(n,param,val)

Description

dBB = bbdesign(n) generates a Box-Behnken design for n factors. n must be an
integer 3 or larger. The output matrix dBB is m-by-n, where m is the number of runs in
the design. Each row represents one run, with settings for all factors represented in the
columns. Factor values are normalized so that the cube points take values between -1
and 1.

[dBB,blocks] = bbdesign(n) requests a blocked design. The output blocks is
an m-by-1 vector of block numbers for each run. Blocks indicate runs that are to be
measured under similar conditions to minimize the effect of inter-block differences on the
parameter estimates.

[...] = bbdesign(n,param,val) specifies one or more optional parameter/value
pairs for the design. The following table lists valid parameter/value pairs.

Parameter Description Values

'center' Number of center
points.

Integer. The default depends on n.

'blocksize' Maximum number of
points per block.

Integer. The default is Inf.

Examples

The following creates a 3-factor Box-Behnken design:

 bbdesign

22-125

dBB = bbdesign(3)

dBB =

 -1 -1 0

 -1 1 0

 1 -1 0

 1 1 0

 -1 0 -1

 -1 0 1

 1 0 -1

 1 0 1

 0 -1 -1

 0 -1 1

 0 1 -1

 0 1 1

 0 0 0

 0 0 0

 0 0 0

The center point is run 3 times to allow for a more uniform estimate of the prediction
variance over the entire design space.

Visualize the design as follows:

plot3(dBB(:,1),dBB(:,2),dBB(:,3),'ro',...

 'MarkerFaceColor','b')

X = [1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1; ...

 1 1 1 -1 1 1 1 -1 1 1 -1 -1];

Y = [-1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1; ...

 1 -1 1 1 1 -1 1 1 1 -1 1 -1];

Z = [1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1; ...

 1 1 1 1 -1 -1 -1 -1 1 1 1 1];

line(X,Y,Z,'Color','b')

axis square equal

22 Functions — Alphabetical List

22-126

See Also
ccdesign

 prob.BetaDistribution class

22-127

prob.BetaDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Beta probability distribution object

Description

prob.BetaDistribution is an object consisting of parameters, a model description,
and sample data for a beta probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Beta') creates a beta probability distribution object using the
default parameter values.

pd = makedist('Beta','a',a,'b',b) creates a beta probability distribution object
using the specified parameter values.

Input Arguments

a — First shape parameter
1 (default) | positive scalar value

First shape parameter of the beta distribution, specified as a positive scalar value.
Data Types: single | double

b — Second shape parameter
1 (default) | positive scalar value

Second shape parameter of the beta distribution, specified as a positive scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-128

Properties

a — First shape parameter
positive scalar value

First shape parameter of the beta distribution, stored as a positive scalar value.
Data Types: single | double

b — Second shape parameter
positive scalar value

Second shape parameter of the beta distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.

 prob.BetaDistribution class

22-129

Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

22 Functions — Alphabetical List

22-130

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

 prob.BetaDistribution class

22-131

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Beta Distribution

The beta distribution describes a family of curves that are unique in that they are
nonzero only on the interval (0,1). A more general version of the distribution assigns
parameters to the endpoints of the interval.

The beta distribution uses the following parameters.

Parameter Description Support

a First shape parameter
a > 0

b Second shape parameter b > 0

The probability density function (pdf) is

22 Functions — Alphabetical List

22-132

f x a b
B a b

x x xa b
| ,

,
; ,() =

()
-() < <

- -1
1 0 11 1

where B ◊() is the beta function.

Examples

Create a Beta Distribution Object Using Default Parameters

Create a beta distribution object using the default parameter values.

pd = makedist('Beta')

pd =

 BetaDistribution

 Beta distribution

 a = 1

 b = 1

Create a Beta Distribution Object Using Specified Parameters

Create a beta distribution object by specifying the parameter values.

pd = makedist('Beta','a',2,'b',4)

pd =

 BetaDistribution

 Beta distribution

 a = 2

 b = 4

Compute the mean of the distribution.

m = mean(pd)

m =

 prob.BetaDistribution class

22-133

 0.3333

See Also
dfittool | fitdist | makedist

More About
• “Beta Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-134

betacdf
Beta cumulative distribution function

Syntax

p = betacdf(x,a,b)

p = betacdf(x,a,b,'upper')

Description

p = betacdf(x,a,b) returns the beta cdf at each of the values in x using the
corresponding parameters in a and b. x, a, and b can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other inputs. The parameters in a and b
must all be positive, and the values in x must lie on the interval [0,1].

p = betacdf(x,a,b,'upper') returns the complement of the beta cdf at each of the
values in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

The beta cdf for a given value x and given pair of parameters a and b is

p F x a b
B a b

t t dta b
x

= () = −− −∫| ,
(,)

()
1

11 1

0

where B(·) is the Beta function.

Examples

Compute Beta Distribution CDF

Compute the cdf for a beta distribution with parmaters a = 2 and b = 2.

x = 0.1:0.2:0.9;

 betacdf

22-135

a = 2;

b = 2;

p = betacdf(x,a,b)

p =

 0.0280 0.2160 0.5000 0.7840 0.9720

a = [1 2 3];

p = betacdf(0.5,a,a)

p =

 0.5000 0.5000 0.5000

More About
• “Beta Distribution” on page B-4

See Also
cdf | betapdf | betainv | betastat | betalike | betarnd | betafit

22 Functions — Alphabetical List

22-136

betafit

Beta parameter estimates

Syntax

phat = betafit(data)

[phat,pci] = betafit(data,alpha)

Description

phat = betafit(data) computes the maximum likelihood estimates of the beta
distribution parameters a and b from the data in the vector data and returns a column
vector containing the a and b estimates, where the beta cdf is given by

F x a b
B a b

t t dt
a

x

b(| ,)
(,)

()= −− −∫
1

11

0

1

and B(·) is the Beta function. The elements of data must lie in the open interval (0,
1), where the beta distribution is defined. However, it is sometimes also necessary to
fit a beta distribution to data that include exact zeros or ones. For such data, the beta
likelihood function is unbounded, and standard maximum likelihood estimation is not
possible. In that case, betafit maximizes a modified likelihood that incorporates the
zeros or ones by treating them as if they were values that have been left-censored at
sqrt(realmin) or right-censored at 1-eps/2, respectively.

[phat,pci] = betafit(data,alpha) returns confidence intervals on the a and
b parameters in the 2-by-2 matrix pci. The first column of the matrix contains the
lower and upper confidence bounds for parameter a, and the second column contains the
confidence bounds for parameter b. The optional input argument alpha is a value in the
range [0, 1] specifying the width of the confidence intervals. By default, alpha is 0.05,
which corresponds to 95% confidence intervals. The confidence intervals are based on a
normal approximation for the distribution of the logs of the parameter estimates.

 betafit

22-137

Examples

This example generates 100 beta distributed observations. The true a and b parameters
are 4 and 3, respectively. Compare these to the values returned in p by the beta fit. Note
that the columns of ci both bracket the true parameters.

data = betarnd(4,3,100,1);

[p,ci] = betafit(data,0.01)

p =

 5.5328 3.8097

ci =

 3.6538 2.6197

 8.3781 5.5402

More About
• “Beta Distribution” on page B-4

References

[1] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in Engineering. Hoboken, NJ:
John Wiley & Sons, Inc., 1994, p. 95.

See Also
mle | betapdf | betainv | betastat | betalike | betarnd | betacdf

22 Functions — Alphabetical List

22-138

betainv
Beta inverse cumulative distribution function

Syntax

X = betainv(P,A,B)

Description

X = betainv(P,A,B) computes the inverse of the beta cdf with parameters specified
by A and B for the corresponding probabilities in P. P, A, and B can be vectors, matrices,
or multidimensional arrays that are all the same size. A scalar input is expanded to a
constant array with the same dimensions as the other inputs. The parameters in A and B
must all be positive, and the values in P must lie on the interval [0, 1].

The inverse beta cdf for a given probability p and a given pair of parameters a and b is

x F p a b x F x a b p= = =−1 (| ,) { : (| ,) }

where

p F x a b
B a b

t t dta b
x

= = −− −∫(| ,)
(,)

()
1

11 1

0

and B(·) is the Beta function. Each element of output X is the value whose cumulative
probability under the beta cdf defined by the corresponding parameters in A and B is
specified by the corresponding value in P.

Examples
p = [0.01 0.5 0.99];

x = betainv(p,10,5)

x =

 betainv

22-139

 0.3726 0.6742 0.8981

According to this result, for a beta cdf with a = 10 and b = 5, a value less than or equal
to 0.3726 occurs with probability 0.01. Similarly, values less than or equal to 0.6742 and
0.8981 occur with respective probabilities 0.5 and 0.99.

More About

Algorithms

The betainv function uses Newton's method with modifications to constrain steps to the
allowable range for x, i.e., [0 1].
• “Beta Distribution” on page B-4

See Also
icdf | betapdf | betafit | betainv | betastat | betalike | betarnd | betacdf

22 Functions — Alphabetical List

22-140

betalike

Beta negative log-likelihood

Syntax

nlogL = betalike(params,data)

[nlogL,AVAR] = betalike(params,data)

Description

nlogL = betalike(params,data) returns the negative of the beta log-likelihood
function for the beta parameters a and b specified in vector params and the observations
specified in the column vector data.

The elements of data must lie in the open interval (0, 1), where the beta distribution is
defined. However, it is sometimes also necessary to fit a beta distribution to data that
include exact zeros or ones. For such data, the beta likelihood function is unbounded,
and standard maximum likelihood estimation is not possible. In that case, betalike
computes a modified likelihood that incorporates the zeros or ones by treating them as
if they were values that have been left-censored at sqrt(realmin) or right-censored at
1-eps/2, respectively.

[nlogL,AVAR] = betalike(params,data) also returns AVAR, which is the
asymptotic variance-covariance matrix of the parameter estimates if the values
in params are the maximum likelihood estimates. AVAR is the inverse of Fisher's
information matrix. The diagonal elements of AVAR are the asymptotic variances of their
respective parameters.

betalike is a utility function for maximum likelihood estimation of the beta
distribution. The likelihood assumes that all the elements in the data sample are
mutually independent. Since betalike returns the negative beta log-likelihood function,
minimizing betalike using fminsearch is the same as maximizing the likelihood.

 betalike

22-141

Examples

This example continues the betafit example, which calculates estimates of the beta
parameters for some randomly generated beta distributed data.

r = betarnd(4,3,100,1);

[nlogl,AVAR] = betalike(betafit(r),r)

nlogl =

 -27.5996

AVAR =

 0.2783 0.1316

 0.1316 0.0867

More About
• “Beta Distribution” on page B-4

See Also
betapdf | betafit | betainv | betastat | betarnd | betacdf

22 Functions — Alphabetical List

22-142

betapdf
Beta probability density function

Syntax

Y = betapdf(X,A,B)

Description

Y = betapdf(X,A,B) computes the beta pdf at each of the values in X using
the corresponding parameters in A and B. X, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions of the other inputs. The parameters in A and B
must all be positive, and the values in X must lie on the interval [0, 1].

The beta probability density function for a given value x and given pair of parameters a
and b is

y f x a b
B a b

x x I xa b= = −− −(| ,)
(,)

() ()(,)
1

11 1
0 1

where B(·) is the Beta function. The indicator function I x(,) ()0 1 ensures that only values
of x in the range (0 1) have nonzero probability. The uniform distribution on (0 1) is a
degenerate case of the beta pdf where a = 1 and b = 1.

A likelihood function is the pdf viewed as a function of the parameters. Maximum
likelihood estimators (MLEs) are the values of the parameters that maximize the
likelihood function for a fixed value of x.

Examples
a = [0.5 1; 2 4]

a =

 0.5000 1.0000

 betapdf

22-143

 2.0000 4.0000

y = betapdf(0.5,a,a)

y =

 0.6366 1.0000

 1.5000 2.1875

More About
• “Beta Distribution” on page B-4

See Also
pdf | betafit | betainv | betastat | betalike | betarnd | betacdf

22 Functions — Alphabetical List

22-144

betarnd
Beta random numbers

Syntax

R = betarnd(A,B)

R = betarnd(A,B,m,n,...)

R = betarnd(A,B,[m,n,...])

Description

R = betarnd(A,B) generates random numbers from the beta distribution with
parameters specified by A and B. A and B can be vectors, matrices, or multidimensional
arrays that have the same size, which is also the size of R. A scalar input for A or B is
expanded to a constant array with the same dimensions as the other input.

R = betarnd(A,B,m,n,...) or R = betarnd(A,B,[m,n,...]) generates an m-by-n-
by-... array containing random numbers from the beta distribution with parameters A
and B. A and B can each be scalars or arrays of the same size as R.

Examples
a = [1 1;2 2];

b = [1 2;1 2];

r = betarnd(a,b)

r =

 0.6987 0.6139

 0.9102 0.8067

r = betarnd(10,10,[1 5])

r =

 0.5974 0.4777 0.5538 0.5465 0.6327

r = betarnd(4,2,2,3)

r =

 betarnd

22-145

 0.3943 0.6101 0.5768

 0.5990 0.2760 0.5474

More About
• “Beta Distribution” on page B-4

See Also
random | betapdf | betafit | betainv | betastat | betalike | betacdf

22 Functions — Alphabetical List

22-146

betastat
Beta mean and variance

Syntax

[M,V] = betastat(A,B)

Description

[M,V] = betastat(A,B), with A>0 and B>0, returns the mean of and variance for the
beta distribution with parameters specified by A and B. A and B can be vectors, matrices,
or multidimensional arrays that have the same size, which is also the size of M and V. A
scalar input for A or B is expanded to a constant array with the same dimensions as the
other input.

The mean of the beta distribution with parameters a and b is a a b/ ()+ and the variance
is

ab

a b a b()()+ + +1
2

Examples

If parameters a and b are equal, the mean is 1/2.

a = 1:6;

[m,v] = betastat(a,a)

m =

 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

v =

 0.0833 0.0500 0.0357 0.0278 0.0227 0.0192

More About
• “Beta Distribution” on page B-4

 betastat

22-147

See Also
betapdf | betafit | betainv | betalike | betarnd | betacdf

22 Functions — Alphabetical List

22-148

BIC property
Class: gmdistribution

Bayes Information Criterion

Description

The Bayes Information Criterion: 2*NlogL + m*log(n), where NlogL is the negative
loglikelihood, n is the number of observations, and m is the number of estimated
parameters.

 prob.BinomialDistribution class

22-149

prob.BinomialDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Binomial probability distribution object

Description

prob.BinomialDistribution is an object consisting of parameters, a model
description, and sample data for a binomial probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Binomial') creates a binomial probability distribution object using
the default parameter values.

pd = makedist('Binomial','N',N,'p',p) creates a binomial probability
distribution object using the specified parameter values.

Input Arguments

N — Number of trials
1 (default) | positive integer value

Number of trials for the binomial distribution, specified as a positive integer value.
Data Types: single | double

p — Probability of success
0.5 (default) | positive scalar value in the range [0,1]

Probability of success of any individual trial for the binomial distribution, specified as a
positive scalar value in the range [0,1].

22 Functions — Alphabetical List

22-150

Data Types: single | double

Properties

N — Number of trials
positive integer value

Number of trials for the binomial distribution, stored as a positive integer value.
Data Types: single | double

p — Probability of success
positive scalar value in the range [0,1]

Probability of success of any individual trial for the binomial distribution, stored as a
positive scalar value in the range [0,1].

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

 prob.BinomialDistribution class

22-151

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

22 Functions — Alphabetical List

22-152

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

 prob.BinomialDistribution class

22-153

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Binomial Distribution

The binomial distribution models the total number of successes in repeated trials from an
infinite population under the following conditions:

• Only two outcomes are possible for each of n trials.
• The probability of success for each trial is constant.

22 Functions — Alphabetical List

22-154

• All trials are independent of each other.

The binomial distribution uses the following parameters.

Parameter Description Support

N Number of trials positive integer
p Probability of success 0 1£ £p

The probability density function (pdf) is

f x N p
N

x
p p x Nx N x

| , ; , , , ..., ,() =
Ê

Ë
Á

ˆ

¯
˜ -() =-

1 0 1 2

where x is the number of successes in N trials of a Bernoulli process with probability of
success p.

Examples

Create a Binomial Distribution Object Using Default Parameters

Create a binomial distribution object using the default parameter values.

pd = makedist('Binomial')

pd =

 BinomialDistribution

 Binomial distribution

 N = 1

 p = 0.5

Create a Binomial Distribution Object Using Specified Parameters

Create a binomial distribution object by specifying the parameter values.

pd = makedist('Binomial','N',30,'p',0.25)

pd =

 prob.BinomialDistribution class

22-155

 BinomialDistribution

 Binomial distribution

 N = 30

 p = 0.25

Compute the mean of the distribution.

m = mean(pd)

m =

 7.5000

See Also
dfittool | fitdist | makedist

More About
• “Binomial Distribution”
• “Bernoulli Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-156

binocdf

Binomial cumulative distribution function

Syntax

y = binocdf(x,N,p)

y = binocdf(x,N,p,'upper')

Description

y = binocdf(x,N,p) computes a binomial cdf at each of the values in x using the
corresponding number of trials in N and probability of success for each trial in p. x, N,
and p can be vectors, matrices, or multidimensional arrays that are all the same size.
A scalar input is expanded to a constant array with the same dimensions of the other
inputs. The values in N must all be positive integers, the values in x must lie on the
interval [0,N], and the values in p must lie on the interval [0, 1].

y = binocdf(x,N,p,'upper') returns the complement of the binomial cdf at each
value in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

The binomial cdf for a given value x and a given pair of parameters n and p is

y F x n p
n

i
p p I i

i

x
i n i

n= =
Ê

Ë
Á

ˆ

¯
˜ -

=

-Â(| ,) () ().()
(, ,...,)

0
0 11

The result, y, is the probability of observing up to x successes in n independent trials,
where the probability of success in any given trial is p. The indicator function I in(, ,...,) ()0 1

ensures that x only adopts values of 0,1,...,n.

 binocdf

22-157

Examples

Compute Binomial CDF

If a baseball team plays 162 games in a season and has a 50-50 chance of winning any
game, then the probability of that team winning more than 100 games in a season is:

1 - binocdf(100,162,0.5)

ans =

 0.0010

The result is 0.001 (i.e., 1-0.999). If a team wins 100 or more games in a season, this
result suggests that it is likely that the team's true probability of winning any game is
greater than 0.5.

More About
• “Binomial Distribution” on page B-9

See Also
cdf | binopdf | binoinv | binostat | binofit | binornd

22 Functions — Alphabetical List

22-158

binofit
Binomial parameter estimates

Syntax

phat = binofit(x,n)

[phat,pci] = binofit(x,n)

[phat,pci] = binofit(x,n,alpha)

Description

phat = binofit(x,n) returns a maximum likelihood estimate of the probability of
success in a given binomial trial based on the number of successes, x, observed in n
independent trials. If x = (x(1), x(2), ... x(k)) is a vector, binofit returns a
vector of the same size as x whose ith entry is the parameter estimate for x(i). All k
estimates are independent of each other. If n = (n(1), n(2), ..., n(k)) is a vector
of the same size as x, the binomial fit, binofit, returns a vector whose ith entry is the
parameter estimate based on the number of successes x(i) in n(i) independent trials.
A scalar value for x or n is expanded to the same size as the other input.

[phat,pci] = binofit(x,n) returns the probability estimate, phat, and the 95%
confidence intervals, pci. binofit uses the Clopper-Pearson method to calculate
confidence intervals.

[phat,pci] = binofit(x,n,alpha) returns the 100(1 - alpha)% confidence
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

Note binofit behaves differently than other Statistics and Machine Learning Toolbox
functions that compute parameter estimates, in that it returns independent estimates for
each entry of x. By comparison, expfit returns a single parameter estimate based on all
the entries of x.

Unlike most other distribution fitting functions, the binofit function treats its input
x vector as a collection of measurements from separate samples. If you want to treat

 binofit

22-159

x as a single sample and compute a single parameter estimate for it, you can use
binofit(sum(x),sum(n)) when n is a vector, and binofit(sum(X),N*length(X))
when n is a scalar.

Examples

This example generates a binomial sample of 100 elements, where the probability of
success in a given trial is 0.6, and then estimates this probability from the outcomes in
the sample.

r = binornd(100,0.6);

[phat,pci] = binofit(r,100)

phat =

 0.5800

pci =

 0.4771 0.6780

The 95% confidence interval, pci, contains the true value, 0.6.

More About
• “Binomial Distribution” on page B-9

References

[1] Johnson, N. L., S. Kotz, and A. W. Kemp. Univariate Discrete Distributions. Hoboken,
NJ: Wiley-Interscience, 1993.

See Also
mle | binopdf | binocdf | binoinv | binostat | binornd

22 Functions — Alphabetical List

22-160

binoinv
Binomial inverse cumulative distribution function

Syntax

X = binoinv(Y,N,P)

Description

X = binoinv(Y,N,P) returns the smallest integer X such that the binomial cdf
evaluated at X is equal to or exceeds Y. You can think of Y as the probability of observing
X successes in N independent trials where P is the probability of success in each trial.
Each X is a positive integer less than or equal to N.

Y, N, and P can be vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same dimensions as the
other inputs. The parameters in N must be positive integers, and the values in both P and
Y must lie on the interval [0 1].

Examples

If a baseball team has a 50-50 chance of winning any game, what is a reasonable range of
games this team might win over a season of 162 games?

binoinv([0.05 0.95],162,0.5)

ans =

 71 91

This result means that in 90% of baseball seasons, a .500 team should win between 71
and 91 games.

More About
• “Binomial Distribution” on page B-9

 binoinv

22-161

See Also
icdf | binopdf | binocdf | binofit | binostat | binornd

22 Functions — Alphabetical List

22-162

binopdf
Binomial probability density function

Syntax

Y = binopdf(X,N,P)

Description

Y = binopdf(X,N,P) computes the binomial pdf at each of the values in X using the
corresponding number of trials in N and probability of success for each trial in P. Y, N,
and P can be vectors, matrices, or multidimensional arrays that all have the same size.
A scalar input is expanded to a constant array with the same dimensions of the other
inputs.

The parameters in N must be positive integers, and the values in P must lie on the
interval [0, 1].

The binomial probability density function for a given value x and given pair of
parameters n and p is

y f x n p
n

x
p q I xx n x

n= =










−(| ,) ()()
(, ,...,)0 1

where q = 1 – p. The result, y, is the probability of observing x successes in n
independent trials, where the probability of success in any given trial is p. The indicator
function I(0,1,...,n)(x) ensures that x only adopts values of 0, 1, ..., n.

Examples

A Quality Assurance inspector tests 200 circuit boards a day. If 2% of the boards have
defects, what is the probability that the inspector will find no defective boards on any
given day?

binopdf(0,200,0.02)

 binopdf

22-163

ans =

 0.0176

What is the most likely number of defective boards the inspector will find?

defects=0:200;

y = binopdf(defects,200,.02);

[x,i]=max(y);

defects(i)

ans =

 4

More About
• “Binomial Distribution” on page B-9

See Also
pdf | binoinv | binocdf | binofit | binostat | binornd

22 Functions — Alphabetical List

22-164

binornd
Binomial random numbers

Syntax

R = binornd(N,P)

R = binornd(N,P,m,n,...)

R = binornd(N,P,[m,n,...])

Description

R = binornd(N,P) generates random numbers from the binomial distribution with
parameters specified by the number of trials, N, and probability of success for each trial,
P. N and P can be vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of R. A scalar input for N or P is expanded to a constant array with
the same dimensions as the other input.

R = binornd(N,P,m,n,...) or R = binornd(N,P,[m,n,...]) generates an m-by-n-
by-... array containing random numbers from the binomial distribution with parameters
N and P. N and P can each be scalars or arrays of the same size as R.

Examples
n = 10:10:60;

r1 = binornd(n,1./n)

r1 =

 2 1 0 1 1 2

r2 = binornd(n,1./n,[1 6])

r2 =

 0 1 2 1 3 1

r3 = binornd(n,1./n,1,6)

r3 =

 0 1 1 1 0 3

 binornd

22-165

More About

Algorithms

The binornd function uses the direct method using the definition of the binomial
distribution as a sum of Bernoulli random variables.
• “Binomial Distribution” on page B-9

See Also
random | binoinv | binocdf | binofit | binostat | binopdf

22 Functions — Alphabetical List

22-166

binostat
Binomial mean and variance

Syntax

[M,V] = binostat(N,P)

Description

[M,V] = binostat(N,P) returns the mean of and variance for the binomial
distribution with parameters specified by the number of trials, N, and probability of
success for each trial, P. N and P can be vectors, matrices, or multidimensional arrays
that have the same size, which is also the size of M and V. A scalar input for N or P is
expanded to a constant array with the same dimensions as the other input.

The mean of the binomial distribution with parameters n and p is np. The variance is
npq, where q = 1 – p.

Examples
n = logspace(1,5,5)

n =

 10 100 1000 10000 100000

[m,v] = binostat(n,1./n)

m =

 1 1 1 1 1

v =

 0.9000 0.9900 0.9990 0.9999 1.0000

[m,v] = binostat(n,1/2)

m =

 5 50 500 5000 50000

v =

 1.0e+04 *

 0.0003 0.0025 0.0250 0.2500 2.5000

 binostat

22-167

More About
• “Binomial Distribution” on page B-9

See Also
binoinv | binocdf | binofit | binornd | binopdf

22 Functions — Alphabetical List

22-168

biplot
Biplot

Syntax

biplot(coefs)

h = biplot(coefs,'Name',Value)

Description

biplot(coefs) creates a biplot of the coefficients in the matrix coefs. The biplot is
2-D if coefs has two columns or 3-D if it has three columns. coefs usually contains
principal component coefficients created with pca, pcacov, or factor loadings estimated
with factoran. The axes in the biplot represent the principal components or latent
factors (columns of coefs), and the observed variables (rows of coefs) are represented
as vectors.

A biplot allows you to visualize the magnitude and sign of each variable's contribution to
the first two or three principal components, and how each observation is represented in
terms of those components.

biplot imposes a sign convention, forcing the element with largest magnitude in each
column of coefs to be positive. This flips some of the vectors in coefs to the opposite
direction, but often makes the plot easier to read. Interpretation of the plot is unaffected,
because changing the sign of a coefficient vector does not change its meaning.

biplot scales the scores so that they fit on the plot: It divides each score by the
maximum absolute value of all scores, and multiplies by the maximum coefficient length
of coefs. Then biplot changes the sign of score coordinates according to the sign
convention for the coefs.

h = biplot(coefs,'Name',Value) specifies one or more name/value input pairs
and returns a column vector of handles to the graphics objects created by biplot. The h
contains, in order, handles corresponding to variables (line handles, followed by marker
handles, followed by text handles), to observations (if present, marker handles followed
by text handles), and to the axis lines.

 biplot

22-169

Input Arguments

Name-Value Pair Arguments

'Scores'

Plots both coefs and the scores in the matrix scores in the biplot. scores usually
contains principal component scores created with pca or factor scores estimated with
factoran. Each observation (row of scores) is represented as a point in the biplot.

'VarLabels'

Labels each vector (variable) with the text in the character array or cell array
varlabels.

'ObsLabels'

Uses the text in the character array or cell array obslabels as observation names when
displaying data cursors.

'Positive'

• 'true' — restricts the biplot to the positive quadrant (in 2-D) or octant (in 3-D).
• 'false' — makes the biplot over the range +/- max(coefs(:)) for all coordinates.

Default: false

'PropertyName'

Specifies optional property name/value pairs for all Primitive Line Properties graphics
objects created by biplot.

Examples
Biplot of Coefficients and Scores

Load the sample data.

load carsmall

Define the variable matrix and delete the rows with missing values.

x = [Acceleration Displacement Horsepower MPG Weight];

22 Functions — Alphabetical List

22-170

x = x(all(~isnan(x),2),:);

Perform a principal component analysis of the data.

[coefs,score] = pca(zscore(x));

View the data and the original variables in the space of the first three principal
components.

vbls = {'Accel','Disp','HP','MPG','Wgt'};

biplot(coefs(:,1:3),'scores',score(:,1:3),'varlabels',vbls);

See Also
factoran | nnmf | pca | pcacov | rotatefactors

 prob.BirnbaumSaundersDistribution class

22-171

prob.BirnbaumSaundersDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Birnbaum-Saunders probability distribution object

Description

prob.BirnbaumSaundersDistribution is an object consisting of parameters, a model
description, and sample data for a Birnbaum-Saunders probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('BirnbaumSaunders') creates a Birnbaum-Saunders probability
distribution object using the default parameter values.

pd = makedist('BirnbaumSaunders','beta',beta,'gamma',gamma) creates a
Birnbaum-Saunders distribution object using the specified parameter values.

Input Arguments

beta — Scale parameter
1 (default) | positive scalar value

Scale parameter of the Birnbaum-Saunders distribution, specified as a positive scalar
value.
Data Types: single | double

gamma — Shape parameter
1 (default) | nonnegative scalar value

Shape parameter of the Birnbaum-Saunders distribution, specified as a nonnegative
scalar value.

22 Functions — Alphabetical List

22-172

Data Types: single | double

Properties

beta — Scale parameter
positive scalar value

Scale parameter of the Birnbaum-Saunders distribution, stored as a positive scalar
value.
Data Types: single | double

gamma — Shape parameter
nonnegative scalar value

Shape parameter of the Birnbaum-Saunders distribution, stored as a nonnegative scalar
value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

 prob.BirnbaumSaundersDistribution class

22-173

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

22 Functions — Alphabetical List

22-174

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

 prob.BirnbaumSaundersDistribution class

22-175

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Birnbaum-Saunders Distribution

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for
materials subject to cyclic patterns of stress and strain, where the ultimate failure of
the material comes from the growth of a prominent flaw. It is also called the fatigue life
distribution.

The Birnbaum-Saunders distribution uses the following parameters.

22 Functions — Alphabetical List

22-176

Parameter Description Support

beta Scale parameter b > 0

gamma Shape parameter g ≥ 0

The probability density function (pdf) is

f x

x

x

x

x
| , expb g

p

b
b

g

b
b

() = -

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

-
Ê

Ë
ÁÁ

ˆ

¯1

2 2

2

2

˜̃̃
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜ >

2
0

g x
x; .

Examples

Create a Birnbaum-Saunders Distribution Object Using Default Parameters

Create a Birnbaum-Saunders distribution object using the default parameter values.

pd = makedist('BirnbaumSaunders')

pd =

 BirnbaumSaundersDistribution

 Birnbaum-Saunders distribution

 beta = 1

 gamma = 1

Create a Birnbaum-Saunders Distribution Object Using Specified Parameter Values

Create a Birnbaum-Saunders distribution object by specifying the parameter values.

pd = makedist('BirnbaumSaunders','beta',2,'gamma',5)

pd =

 BirnbaumSaundersDistribution

 Birnbaum-Saunders distribution

 beta = 2

 prob.BirnbaumSaundersDistribution class

22-177

 gamma = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 27

See Also
dfittool | fitdist | makedist

More About
• “Birnbaum-Saunders Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-178

bootci
Bootstrap confidence interval

Syntax

ci = bootci(nboot,bootfun,...)

ci = bootci(nboot,{bootfun,...},'alpha',alpha)

ci = bootci(nboot,{bootfun,...},...,'type',type)

ci = bootci(nboot,

{bootfun,...},...,'type','student','nbootstd',nbootstd)

ci = bootci(nboot,

{bootfun,...},...,'type','student','stderr',stderr)

ci = bootci(nboot,{bootfun,...},...,'Weights',weights)

ci = bootci(nboot,{bootfun,...},...,'Options',options)

[ci,bootstat] = bootci(...)

Description

ci = bootci(nboot,bootfun,...) computes the 95% bootstrap confidence interval
of the statistic computed by the function bootfun. nboot is a positive integer indicating
the number of bootstrap samples used in the computation. bootfun is a function handle
specified with @. The third and later input arguments to bootci are data (scalars,
column vectors, or matrices) that are used to create inputs to bootfun. bootci creates
each bootstrap sample by sampling with replacement from the rows of the non-scalar
data arguments (these must have the same number of rows). Scalar data are passed to
bootfun unchanged.

If bootfun returns a scalar, ci is a vector containing the lower and upper bounds of
the confidence interval. If bootfun returns a vector of length m, ci is an array of size
2-by-m, where ci(1,:) are lower bounds and ci(2,:) are upper bounds. If bootfun
returns an array of size m-by-n-by-p-by-..., ci is an array of size 2-by-m-by-n-by-p-by-...,
where ci(1,:,:,:,...) is an array of lower bounds and ci(2,:,:,:,...) is an
array of upper bounds.

ci = bootci(nboot,{bootfun,...},'alpha',alpha) computes the 100*(1-
alpha) bootstrap confidence interval of the statistic defined by the function bootfun.

 bootci

22-179

bootfun and the data that bootci passes to it are contained in a single cell array.
alpha is a scalar between 0 and 1. The default value of alpha is 0.05.

ci = bootci(nboot,{bootfun,...},...,'type',type) computes the bootstrap
confidence interval of the statistic defined by the function bootfun. type is the
confidence interval type, chosen from among the following strings:

• 'norm' or 'normal' — Normal approximated interval with bootstrapped bias and
standard error.

• 'per' or 'percentile' — Basic percentile method.
• 'cper' or 'corrected percentile' — Bias corrected percentile method.
• 'bca' — Bias corrected and accelerated percentile method. This is the default.
• 'stud' or 'student' — Studentized confidence interval.

ci = bootci(nboot,

{bootfun,...},...,'type','student','nbootstd',nbootstd) computes
the studentized bootstrap confidence interval of the statistic defined by the function
bootfun. The standard error of the bootstrap statistics is estimated using bootstrap,
with nbootstd bootstrap data samples. nbootstd is a positive integer value. The
default value of nbootstd is 100.

ci = bootci(nboot,

{bootfun,...},...,'type','student','stderr',stderr) computes the
studentized bootstrap confidence interval of statistics defined by the function bootfun.
The standard error of the bootstrap statistics is evaluated by the function stderr.
stderr is a function handle. stderr takes the same arguments as bootfun and returns
the standard error of the statistic computed by bootfun.

ci = bootci(nboot,{bootfun,...},...,'Weights',weights) specifies
observation weights. weights must be a vector of non-negative numbers with at least
one positive element. The number of elements in weights must be equal to the number
of rows in non-scalar input arguments to bootfun. To obtain one bootstrap replicate,
bootstrp samples N out of N with replacement using these weights as multinomial
sampling probabilities.

ci = bootci(nboot,{bootfun,...},...,'Options',options) specifies options
that govern the computation of bootstrap iterations. One option requests that bootci
perform bootstrap iterations using multiple processors, if the Parallel Computing Toolbox
is available. Two options specify the random number streams to be used in bootstrap

22 Functions — Alphabetical List

22-180

resampling. This argument is a struct that you can create with a call to statset. You
can retrieve values of the individual fields with a call to statget. Applicable statset
parameters are:

• 'UseParallel' — If true and if a parpool of the Parallel Computing Toolbox is
open, compute bootstrap iterations in parallel. If the Parallel Computing Toolbox is
not installed, or a parpool is not open, computation occurs in serial mode. Default is
false, or serial computation.

• UseSubstreams — Set to true to compute in parallel in a reproducible fashion.
Default is false. To compute reproducibly, set Streams to a type allowing
substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do not specify
Streams, bootci uses the default stream or streams. If you choose to specify
Streams, use a single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

[ci,bootstat] = bootci(...) also returns the bootstrapped statistic computed
for each of the nboot bootstrap replicate samples. Each row of bootstat contains the
results of applying bootfun to one bootstrap sample. If bootfun returns a matrix or
array, then this output is converted to a row vector for storage in bootstat.

Examples

Compute the confidence interval for the capability index in statistical process control:
y = normrnd(1,1,30,1); % Simulated process data

LSL = -3; USL = 3; % Process specifications

capable = @(x)(USL-LSL)./(6* std(x)); % Process capability

ci = bootci(2000,capable,y) % BCa confidence interval

ci =

 0.8122

 1.2657

sci = bootci(2000,{capable,y},'type','student') % Studentized ci

sci =

 0.7739

 1.2707

 bootci

22-181

See Also
bootstrp | jackknife | parfor | statget | statset | randsample

22 Functions — Alphabetical List

22-182

bootstrp
Bootstrap sampling

Syntax

bootstat = bootstrp(nboot,bootfun,d1,...)

[bootstat,bootsam] = bootstrp(...)

bootstat = bootstrp(...,'Name',Value)

Description

bootstat = bootstrp(nboot,bootfun,d1,...) draws nboot bootstrap data
samples, computes statistics on each sample using bootfun, and returns the results in
the matrix bootstat. nboot must be a positive integer. bootfun is a function handle
specified with @. Each row of bootstat contains the results of applying bootfun to one
bootstrap sample. If bootfun returns a matrix or array, then this output is converted to
a row vector for storage in bootstat.

The third and later input arguments (d1,...) are data (scalars, column vectors, or
matrices) used to create inputs to bootfun. bootstrp creates each bootstrap sample by
sampling with replacement from the rows of the non-scalar data arguments (these must
have the same number of rows). bootfun accepts scalar data unchanged.

[bootstat,bootsam] = bootstrp(...) returns an n-by-nboot matrix of bootstrap
indices, bootsam. Each column in bootsam contains indices of the values that were
drawn from the original data sets to constitute the corresponding bootstrap sample. For
example, if d1,... each contain 16 values, and nboot = 4, then bootsam is a 16-by-4
matrix. The first column contains the indices of the 16 values drawn from d1,..., for
the first of the four bootstrap samples, the second column contains the indices for the
second of the four bootstrap samples, and so on. (The bootstrap indices are the same for
all input data sets.) To get the output samples bootsam without applying a function, set
bootfun to empty ([]).

bootstat = bootstrp(...,'Name',Value) uses additional arguments specified by
one or more Name,Value pair arguments. The name-value pairs must appear after the
data arguments. The available name-value pairs:

 bootstrp

22-183

• 'Weights' — Observation weights. The weights value must be a vector of
nonnegative numbers with at least one positive element. The number of elements
in weights must be equal to the number of rows in non-scalar input arguments to
bootstrp. To obtain one bootstrap replicate, bootstrp samples N out of N with
replacement using these weights as multinomial sampling probabilities.

• 'Options' — The value is a structure that contains options specifying whether
to compute bootstrap iterations in parallel, and specifying how to use random
numbers during the bootstrap sampling. Create the options structure with statset.
Applicable statset parameters are:

• 'UseParallel' — If true and if a parpool of the Parallel Computing Toolbox is
open, compute bootstrap iterations in parallel. If the Parallel Computing Toolbox
is not installed, or a parpool is not open, computation occurs in serial mode.
Default is false, meaning serial computation.

• UseSubstreams — Set to true to compute in parallel in a reproducible fashion.
Default is false. To compute reproducibly, set Streams to a type allowing
substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do not specify
Streams, bootstrp uses the default stream or streams. If you choose to specify
Streams, use a single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

Examples

Bootstrapping a Correlation Coefficient Standard Error

This example shows how to compute a correlation coefficient standard error using
bootstrap resampling of the sample data.

Load a data set containing the LSAT scores and law-school GPA for 15 students. These
15 data points are resampled to create 1000 different data sets, and the correlation
between the two variables is computed for each data set.

load lawdata

22 Functions — Alphabetical List

22-184

rng default % For reproducibility

[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);

Display the first 5 bootstrapped correlation coefficients.

bootstat(1:5,:)

ans =

 0.9874

 0.4918

 0.5459

 0.8458

 0.8959

Display the indices of the data selected for the first 5 bootstrap samples.

bootsam(:,1:5)

figure

histogram(bootstat)

ans =

 13 3 11 8 12

 14 7 1 7 4

 2 14 5 10 8

 14 12 1 11 11

 10 15 2 12 14

 2 10 13 5 15

 5 1 11 11 9

 9 13 5 10 3

 15 15 15 3 3

 15 11 1 2 4

 3 12 7 8 13

 15 12 6 15 4

 15 6 12 6 13

 8 10 12 9 4

 13 3 3 4 14

 bootstrp

22-185

The histogram shows the variation of the correlation coefficient across all the bootstrap
samples. The sample minimum is positive, indicating that the relationship between
LSAT score and GPA is not accidental.

Finally, compute a bootstrap standard of error for the estimated correlation coefficient.

se = std(bootstat)

se =

 0.1285

22 Functions — Alphabetical List

22-186

Estimate the Density of Bootstrapped Statistic

This example shows how to estimate the kernel density of bootstrapped means.

Compute a sample of 100 bootstrapped means of random samples taken from the vector
Y.

rng default; % For reproducibility

y = exprnd(5,100,1);

m = bootstrp(100,@mean,y);

Plot an estimate of the density of these bootstrapped means.

figure;

[fi,xi] = ksdensity(m);

plot(xi,fi);

 bootstrp

22-187

Bootstrapping Multiple Statistics

This example shows how to compute and plot the means and standard deviations of
bootstraped 100 samples from a data vector.

Compute a sample of 100 bootstrapped means and standard deviations of random
samples taken from the vector y.

rng default % For reproducibility

y = exprnd(5,100,1);

stats = bootstrp(100,@(x)[mean(x) std(x)],y);

Plot the bootstrap estimate pairs.

plot(stats(:,1),stats(:,2),'o')

22 Functions — Alphabetical List

22-188

Bootstrapping a Regression Model

This example shows how to estimate the standard errors for a coefficient vector in a
linear regression by bootstrapping the residuals.

Load the sample data.

load hald

Perform a linear regression and compute the residuals.

x = [ones(size(heat)),ingredients];

y = heat;

b = regress(y,x);

 bootstrp

22-189

yfit = x*b;

resid = y - yfit;

Estimate the standard errors by bootstrapping the residuals.

se = std(bootstrp(...

 1000,@(bootr)regress(yfit+bootr,x),resid))

se =

 56.1752 0.5940 0.5815 0.5989 0.5691

See Also
histogram | parfor | random | bootci | ksdensity | randsample | RandStream
| statget | statset

22 Functions — Alphabetical List

22-190

boxplot
Box plot

Syntax

boxplot(X)

boxplot(X,G)

boxplot(axes,X,...)

boxplot(...,'Name',value)

Description

boxplot(X) produces a box plot of the data in X. If X is a matrix, there is one box
per column; if X is a vector, there is just one box. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and outliers are plotted
individually. For controlling how much the whiskers extend, see the 'whiskers' name-
value pair argument.

boxplot(X,G) specifies one or more grouping variables G, producing a separate box for
each set of X values sharing the same G value or values. Grouping variables must have
one row per element of X, or one row per column of X. Specify a single grouping variable
in G using a vector, a character array, a cell array of strings, or a vector categorical array;
specify multiple grouping variables in G using a cell array of these variable types, such
as {G1 G2 G3}, or by using a matrix. If multiple grouping variables are used, they must
all be the same length. Groups that contain a NaN value or an empty string in a grouping
variable are omitted, and are not counted in the number of groups considered by other
parameters.

By default, character and string grouping variables are sorted in the order they initially
appear in the data, categorical grouping variables are sorted by the order of their levels,
and numeric grouping variables are sorted in numeric order. To control the order of
groups, do one of the following:

• Use categorical variables in G and specify the order of their levels.
• Use the 'grouporder' parameter described below.

 boxplot

22-191

• Pre-sort your data.

boxplot(axes,X,...) creates the plot in the axes with handle axes.

boxplot(...,'Name',value) specifies one or more optional parameter name/value
pairs, as described in the following table. Specify Name in single quotes.

Name Value

'plotstyle' • 'traditional' — Traditional box style. This is the
default.

• 'compact' — Box style designed for plots with many
groups. This style changes the defaults for some other
parameters, as described in the following table.

'boxstyle' • 'outline' — Draws an unfilled box with dashed
whiskers. This is the default.

• 'filled' — Draws a narrow filled box with lines for
whiskers.

'colorgroup' One or more grouping variables, of the same type as
permitted for G, specifying that the box color should change
when the specified variables change. The default is [] for
no box color change.

'colors' Colors for boxes, specified as a single color (such as 'r' or
[1 0 0]) or multiple colors (such as 'rgbm' or a three-
column matrix of RGB values). The sequence is replicated
or truncated as required, so for example 'rb' gives boxes
that alternate in color. The default when no 'colorgroup'
is specified is to use the same color scheme for all boxes.
The default when 'colorgroup' is specified is a modified
hsv colormap.

'datalim' A two-element vector containing lower and upper limits,
used by 'extrememode' to determine which points are
extreme. The default is [-Inf Inf].

'extrememode' • 'clip' — Moves data outside the datalim limits to
the limit. This is the default.

• 'compress' — Evenly distributes data outside the
datalim limits in a region just outside the limit,
retaining the relative order of the points.

22 Functions — Alphabetical List

22-192

Name Value

A dotted line marks the limit if any points are outside it,
and two gray lines mark the compression region if any
points are compressed. Values at +/–Inf can be clipped or
compressed, but NaN values still do not appear on the plot.
Box notches are drawn to scale and may extend beyond the
bounds if the median is inside the limit; they are not drawn
if the median is outside the limits.

'factordirection' • 'data' — Arranges factors with the first value next to
the origin. This is the default.

• 'list' — Arranges factors left-to-right if on the x axis
or top-to-bottom if on the y axis.

• 'auto' — Uses 'data' for numeric grouping variables
and 'list' for strings.

'fullfactors' • 'off' — One group for each unique row of G. This is
the default.

• 'on' — Create a group for each possible combination of
group variable values, including combinations that do
not appear in the data.

'factorseparator' Specifies which factors should have their values separated
by a grid line. The value may be 'auto' or a vector of
grouping variable numbers. For example, [1 2] adds a
separator line when the first or second grouping variable
changes value. 'auto' is [] for one grouping variable and
[1] for two or more grouping variables. The default is [].

'factorgap' Specifies an extra gap to leave between boxes when the
corresponding grouping factor changes value, expressed as
a percentage of the width of the plot. For example, with [3
1], the gap is 3% of the width of the plot between groups
with different values of the first grouping variable, and 1%
between groups with the same value of the first grouping
variable but different values for the second. 'auto'
specifies that boxplot should choose a gap automatically.
The default is [].

 boxplot

22-193

Name Value

'grouporder' Order of groups for plotting, specified as a cell array of
strings. With multiple grouping variables, separate values
within each string with a comma. Using categorical arrays
as grouping variables is an easier way to control the order
of the boxes. The default is [], which does not reorder the
boxes.

'jitter' Maximum distance d to displace outliers along the factor
axis by a uniform random amount, in order to make
duplicate points visible. A d of 1 makes the jitter regions
just touch between the closest adjacent groups. The default
is 0.

'labels' A character array, cell array of strings, or numeric vector
of box labels. There may be one label per group or one label
per X value. Multiple label variables may be specified via
a numeric matrix or a cell array containing any of these
types.

Tip To remove labels from a plot, use the following
command:

set(gca,'XTickLabel',{' '})

'labelorientation' • 'inline' — Rotates the labels to be vertical. This is
the default when plotstyle is 'compact'.

• 'horizontal' — Leaves the labels horizontal. This is
the default when plotstyle has the default value of
'traditional'.

When the labels are on the y axis, both settings leave the
labels horizontal.

'labelverbosity' • 'all' — Displays every label. This is the default.
• 'minor' — Displays a label for a factor only when that

factor has a different value from the previous group.
• 'majorminor' — Displays a label for a factor when

that factor or any factor major to it has a different value
from the previous group.

22 Functions — Alphabetical List

22-194

Name Value

'medianstyle' • 'line' — Draws a line for the median. This is the
default.

• 'target' — Draws a black dot inside a white circle for
the median.

'notch' • 'on' — Draws comparison intervals using notches
when plotstyle is 'traditional', or triangular
markers when plotstyle is 'compact'.

• 'marker' — Draws comparison intervals using
triangular markers.

• 'off' — Omits notches. This is the default.

Two medians are significantly different at the 5%
significance level if their intervals do not overlap. Interval
endpoints are the extremes of the notches or the centers
of the triangular markers. The extremes correspond to q2
– 1.57(q3 – q1)/sqrt(n) and q2 + 1.57(q3 – q1)/sqrt(n), where
q2 is the median (50th percentile), q1 and q3 are the 25th
and 75th percentiles, respectively, and n is the number of
observations without any NaN values. When the sample size
is small, notches may extend beyond the end of the box.

'orientation' • 'vertical' — Plots X on the y axis. This is the default.
• 'horizontal' — Plots X on the x axis.

'outliersize' Size of the marker used for outliers, in points. The default
is 6 (6/72 inch).

'positions' Box positions specified as a numeric vector with one entry
per group or X value. The default is 1:numGroups, where
numGroups is the number of groups.

'symbol' Symbol and color to use for outliers, using the same values
as the LineSpec parameter in plot. The default is 'r+'.
If the symbol is omitted then the outliers are invisible; if
the color is omitted then the outliers have the same color as
their corresponding box.

 boxplot

22-195

Name Value

'whisker' Maximum whisker length w. The default is a w of 1.5.
Points are drawn as outliers if they are larger than q3 +
w(q3 – q1) or smaller than q1 – w(q3 – q1), where q1 and q3
are the 25th and 75th percentiles, respectively. The default
of 1.5 corresponds to approximately +/–2.7σ and 99.3
coverage if the data are normally distributed. The plotted
whisker extends to the adjacent value, which is the most
extreme data value that is not an outlier. Set whisker to
0 to give no whiskers and to make every point outside of q1
and q3 an outlier.

'widths' A scalar or vector of box widths for when boxstyle is
'outline'. The default is half of the minimum separation
between boxes, which is 0.5 when the positions
argument takes its default value. The list of values is
replicated or truncated as necessary.

When the plotstyle parameter takes the value 'compact', the following default
values for other parameters apply.

Parameter Default when plotstyle is 'compact'

'boxstyle' 'filled'

'factorseparator' 'auto'

'factorgap' 'auto'

'jitter' 0.5

'labelorientation' 'inline'

'labelverbosity' 'majorminor'

'medianstyle' 'target'

'outliersize' 4

'symbol' 'o'

You can see data values and group names using the data cursor in the figure window.
The cursor shows the original values of any points affected by the datalim parameter.
You can label the group to which an outlier belongs using the gname function.

22 Functions — Alphabetical List

22-196

To modify graphics properties of a box plot component, use findobj with the Tag
property to find the component's handle. Tag values for box plot components depend on
parameter settings, and are listed in the table below.

Parameter Settings Tag Values

All settings • 'Box'

• 'Outliers'

When 'plotstyle' is
'traditional'

• 'Median'

• 'Upper Whisker'

• 'Lower Whisker'

• 'Upper Adjacent Value'

• 'Lower Adjacent Value'

When 'plotstyle' is
'compact'

• 'Whisker'

• 'MedianOuter'

• 'MedianInner'

When 'notch' is
'marker'

• 'NotchLo'

• 'NotchHi'

Examples

Create Box Plots for Grouped Data

Load the sample data.

load carsmall

Create a box plot of the miles per gallon (MPG) measurements from the sample data,
grouped by the vehicles' country of origin, Origin. Add a title and label the axes.

boxplot(MPG,Origin)

title('Miles per Gallon by Vehicle Origin')

xlabel('Country of Origin')

ylabel('Miles per Gallon (MPG)')

 boxplot

22-197

Create Notched Box Plots

Generate two sets of sample data. The first sample, x1, contains random numbers
generated from a normal distribution with mu = 5 and sigma = 1. The second sample,
x2, contains random numbers generated from a normal distribution with mu = 6 and
sigma = 1.

rng default; % For reproducibility

x1 = normrnd(5,1,100,1);

x2 = normrnd(6,1,100,1);

Create notched box plots of x1 and x2. Label each box with its corresponding mu value.

figure;

22 Functions — Alphabetical List

22-198

boxplot([x1,x2],'notch','on','labels',{'mu = 5','mu = 6'})

The difference between the medians of the two groups is approximately 1. Since the
notches in the box plot do not overlap, you can conclude, with 95% confidence, that the
true medians do differ.

The following figure shows the box plot for the same data with the length of the whiskers
specified as 1.0 times the interquartile range. Points beyond the whiskers are displayed
using +.

figure;

boxplot([x1,x2],'notch','on','labels',{'mu = 5','mu = 6'},'whisker',1)

 boxplot

22-199

Create Compact Box Plots

Create a 100-by-25 matrix of random numbers generated from a standard normal
distribution to use as sample data.

rng('default'); % For reproducibility

X = randn(100,25);

Create two box plots for the data in X on the same figure. The top plot uses the default
box plot formatting. The bottom plot uses compact formatting.

figure;

subplot(2,1,1)

22 Functions — Alphabetical List

22-200

boxplot(X)

subplot(2,1,2)

boxplot(X,'plotstyle','compact')

References

[1] McGill, R., J. W. Tukey, and W. A. Larsen. “Variations of Boxplots.” The American
Statistician. Vol. 32, No. 1, 1978, pp. 12–16.

[2] Velleman, P.F., and D.C. Hoaglin. Applications, Basics, and Computing of Exploratory
Data Analysis. Pacific Grove, CA: Duxbury Press, 1981.

 boxplot

22-201

[3] Nelson, L. S. “Evaluating Overlapping Confidence Intervals.” Journal of Quality
Technology. Vol. 21, 1989, pp. 140–141.

[4] Langford, E. “Quartiles in Elementary Statistics”, Journal of Statistics Education.
Vol. 14, No. 3, 2006.

See Also
anova1 | kruskalwallis | multcompare

22 Functions — Alphabetical List

22-202

boundary
Class: piecewisedistribution

Piecewise distribution boundaries

Syntax

[p,q] = boundary(obj)

[p,q] = boundary(obj,i)

Description

[p,q] = boundary(obj) returns the boundary points between segments of the
piecewise distribution object, obj. p is a vector of cumulative probabilities at each
boundary. q is a vector of quantiles at each boundary.

[p,q] = boundary(obj,i) returns p and q for the ith boundary.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

[p,q] = boundary(obj)

p =

 0.1000

 0.9000

q =

 -1.7766

 1.8432

See Also
paretotails | icdf | cdf | nsegments

 prob.BurrDistribution class

22-203

prob.BurrDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Burr probability distribution object

Description

prob.BurrDistribution is an object consisting of parameters, a model description,
and sample data for a Burr probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Burr') creates a Burr probability distribution object using the
default parameter values.

pd = makedist('Burr','alpha',alpha,'c',c,'k',k) creates a Burr probability
distribution object using the specified parameter values.

Input Arguments

alpha — Scale parameter
1 (default) | positive scalar value

Scale parameter of the Burr distribution, specified as a positive scalar value.
Data Types: single | double

c — First shape parameter
1 (default) | positive scalar value

First shape parameter of the Burr distribution, specified as a positive scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-204

k — Second shape parameter
1 (default) | positive scalar value

Second shape parameter of the Burr distribution, specified as a positive scalar value.
Data Types: single | double

Properties
alpha — Scale parameter
positive scalar value

Scale parameter of the Burr distribution, stored as a positive scalar value.
Data Types: single | double

c — First shape parameter
positive scalar value

First shape parameter of the Burr distribution, stored as a positive scalar value.
Data Types: single | double

k — Second shape parameter
positive scalar value

Second shape parameter of the Burr distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.

 prob.BurrDistribution class

22-205

• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

22 Functions — Alphabetical List

22-206

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

 prob.BurrDistribution class

22-207

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

22 Functions — Alphabetical List

22-208

Definitions

Burr Distribution

The Burr distribution is a three-parameter family of distributions on the positive real
line. It can fit a wide range of empirical data, and is used in various fields such as
finance, hydrology, and reliability to model a variety of data types.

The Burr distribution uses the following parameters.

Parameter Description Support

alpha Scale parameter a > 0

c First shape parameter
c > 0

k Second shape parameter k > 0

The probability density function (pdf) is

f x c k

kc x

x

x

c

c k
| , , ; .a a a

a

() =

Ê
ËÁ

ˆ
¯̃

+ Ê
Ë
Á

ˆ
¯
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

>

-

+

1

1

1

0

Examples

Create a Burr Distribution Object Using Default Parameters

Create a Burr distribution object using the default parameter values.

pd = makedist('Burr')

pd =

 BurrDistribution

 Burr distribution

 prob.BurrDistribution class

22-209

 alpha = 1

 c = 1

 k = 1

Create a Burr Distribution Object Using Specified Parameters

Create a Burr distribution object by specifying parameter values.

pd = makedist('Burr','alpha',1,'c',2,'k',5)

pd =

 BurrDistribution

 Burr distribution

 alpha = 1

 c = 2

 k = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 0.4295

See Also
dfittool | fitdist | makedist

More About
• “Burr Type XII Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-210

clustering.evaluation.CalinskiHarabaszEvaluation
class
Package: clustering.evaluation
Superclasses: clustering.evaluation.ClusterCriterion

Calinski-Harabasz criterion clustering evaluation object

Description

clustering.evaluation.CalinskiHarabaszEvaluation is an object consisting of
sample data, clustering data, and Calinski-Harabasz criterion values used to evaluate
the optimal number of clusters. Create a Calinski-Harabasz criterion clustering
evaluation object using evalclusters.

Construction

eva = evalclusters(x,clust,'CalinskiHarabasz') creates a Calinski-Harabasz
criterion clustering evaluation object.

eva = evalclusters(x,clust,'CalinskiHarabasz',Name,Value) creates
a Calinski-Harabasz criterion clustering evaluation object using additional options
specified by one or more name-value pair arguments.

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the
number of variables.
Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions |
function handle

 clustering.evaluation.CalinskiHarabaszEvaluation class

22-211

Clustering algorithm, specified as one of the following.

'kmeans' Cluster the data in x using the kmeans clustering
algorithm, with 'EmptyAction' set to 'singleton' and
'Replicates' set to 5.

'linkage' Cluster the data in x using the clusterdata
agglomerative clustering algorithm, with 'Linkage' set
to 'ward'.

'gmdistribution' Cluster the data in x using the gmdistribution
Gaussian mixture distribution algorithm, with
'SharedCov' set to true and 'Replicates' set to 5.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you can
specify a clustering algorithm using the function_handle (@) operator. The function
must be of the form C = clustfun(DATA,K), where DATA is the data to be clustered,
and K is the number of clusters. The output of clustfun must be one of the following:

• A vector of integers representing the cluster index for each observation in DATA. There
must be K unique values in this vector.

• A numeric n-by-K matrix of score for n observations and K classes. In this case, the
cluster index for each observation is determined by taking the largest score value in
each row.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you
can also specify clust as a n-by-K matrix containing the proposed clustering solutions.
n is the number of observations in the sample data, and K is the number of proposed
clustering solutions. Column j contains the cluster indices for each of the N points in the
jth clustering solution.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'KList',[1:6] specifies to test 1, 2, 3, 4, 5, and 6 clusters to find the optimal
number.

'KList' — List of number of clusters to evaluate
vector

22 Functions — Alphabetical List

22-212

List of number of clusters to evaluate, specified as the comma-separated pair consisting
of 'KList' and a vector of positive integer values. You must specify KList when clust is
a clustering algorithm name string or a function handle. When criterion is 'gap', clust
must be a string or a function handle, and you must specify KList.
Example: 'KList',[1:6]

Properties

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering
algorithm name string or function handle. If the clustering solutions are provided in the
input, ClusteringFunction is empty.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name
string.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK,
stored as a vector of numerical values.

Distance

Distance measure used for clustering data, stored as a valid distance measure name
string.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a
vector of positive integer values.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing
equals true, then the corresponding value in the data matrix x is not used in the
clustering solution.

 clustering.evaluation.CalinskiHarabaszEvaluation class

22-213

NumObservations

Number of observations in the data matrix X, minus the number of missing (NaN) values
in X, stored as a positive integer value.

OptimalK

Optimal number of clusters, stored as a positive integer value.

OptimalY

Optimal clustering solution corresponding to OptimalK, stored as a column vector of
positive integer values. If the clustering solutions are provided in the input, OptimalY is
empty.

X

Data used for clustering, stored as a matrix of numerical values.

Methods

Inherited Methods

addK
Evaluate additional numbers of clusters

plot
Plot clustering evaluation object criterion
values

compact
Compact clustering evaluation object

Definitions

Calinski-Harabasz Criterion

The Calinski-Harabasz criterion is sometimes called the variance ratio criterion (VRC).
The Calinski-Harabasz index is defined as

22 Functions — Alphabetical List

22-214

VRC
SS

SS

N k

k
k

B

W

= ¥
-()

-()1
,

, where SSB is the overall between-cluster variance, SSW is the overall within-cluster
variance, k is the number of clusters, and N is the number of observations.

The overall between-cluster variance SSB is defined as

SS n m mB i i

i

k

= -

=

Â
2

1

,

where k is the number of clusters, mi is the centroid of cluster i, m is the overall mean
of the sample data, and m m

i
- is the L2 norm (Euclidean distance) between the two

vectors.

The overall within-cluster variance SSW is defined as

SS x mW i

x ci

k

i

= -

Œ=

ÂÂ
2

1

,

where k is the number of clusters, x is a data point, ci is the ith cluster, mi is the centroid
of cluster i, and x m

i
- is the L2 norm (Euclidean distance) between the two vectors.

Well-defined clusters have a large between-cluster variance (SSB) and a small within-
cluster variance (SSW). The larger the VRCk ratio, the better the data partition. To
determine the optimal number of clusters, maximize VRCk with respect to k. The optimal
number of clusters is the solution with the highest Calinski-Harabasz index value.

The Calinski-Harabasz criterion is best suited for k-means clustering solutions with
squared Euclidean distances.

Examples

Evaluate the Clustering Solution Using Calinski-Harabasz Criterion

Evaluate the optimal number of clusters using the Calinski-Harabasz clustering
evaluation criterion.

 clustering.evaluation.CalinskiHarabaszEvaluation class

22-215

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion. Cluster
the data using kmeans.

rng('default'); % For reproducibility

eva = evalclusters(meas,'kmeans','CalinskiHarabasz','KList',[1:6])

eva =

 CalinskiHarabaszEvaluation with properties:

 NumObservations: 150

 InspectecedK: [1 2 3 4 5 6]

 CriterionValues: [1x6 double]

 OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the
optimal number of clusters is three.

Plot the Calinski-Harabasz criterion values for each number of clusters tested.

figure;

plot(eva);

22 Functions — Alphabetical List

22-216

The plot shows that the highest Calinski-Harabasz value occurs at three clusters,
suggesting that the optimal number of clusters is three.

Create a grouped scatter plot to examine the relationship between petal length and
width. Group the data by suggested clusters.

PetalLength = meas(:,3);

PetalWidth = meas(:,4);

ClusterGroup = eva.OptimalY;

figure;

gscatter(PetalLength,PetalWidth,ClusterGroup,'rbg','xod');

 clustering.evaluation.CalinskiHarabaszEvaluation class

22-217

The plot shows cluster 1 in the lower-left corner, completely separated from the other two
clusters. Cluster 1 contains flowers with the smallest petal widths and lengths. Cluster
3 is in the upper-right corner, and contains flowers with the largest petal widths and
lengths. Cluster 2 is near the center of the plot, and contains flowers with measurements
between these two extremes.

References

[1] Calinski, T., and J. Harabasz. “A dendrite method for cluster analysis.”
Communications in Statistics. Vol. 3, No. 1, 1974, pp. 1–27.

22 Functions — Alphabetical List

22-218

See Also
clustering.evaluation.DaviesBouldinEvaluation

| clustering.evaluation.GapEvaluation |
clustering.evaluation.SilhouetteEvaluation | evalclusters

More About
• Class Attributes
• Property Attributes

 candexch

22-219

candexch
D-optimal design from candidate set using row exchanges

Syntax

rlist = candexch(C,nrows)

rlist = candexch(C,nrows,Name,Value)

Description

rlist = candexch(C,nrows) uses a row-exchange algorithm to select a D-optimal
design from the candidate set C.

rlist = candexch(C,nrows,Name,Value) generates a D-optimal design with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

C

N-by-P matrix containing the values of P model terms at each of N points.

Default:

nrows

The desired number of rows in the design.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-220

'display'

When 'on', displays iteration number. Disable the display by setting to 'off'.

Default: 'on', except when the UseParallel option is true

'init'

nrows-by-P matrix giving an initial design.

Default: A random subset of the rows of C

'maxiter'

Maximum number of iterations, a positive integer.

Default: 10

'options'

A structure that specifies whether to run in parallel, and specifies the random stream or
streams. Create the options structure with statset. Option fields:

• UseParallel — Set to true to compute in parallel. Default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible fashion.

Default is false. To compute reproducibly, set Streams to a type allowing
substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do not specify
Streams, candexch uses the default stream or streams. If you choose to specify
Streams, use a single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

Default: []

'start'

An nobs-by-p matrix of factor settings, specifying a set of nobs fixed design points to
include in the design. candexch finds nrows additional rows to add to the start design.

 candexch

22-221

The parameter provides the same functionality as the daugment function, using a row-
exchange algorithm rather than a coordinate-exchange algorithm.

Default: []

'tries'

Number of times to try to generate a design from a new starting point. The algorithm
uses random points for each try, except possibly the first.

Default: 1

Output Arguments

rlist

Vector of length nrows listing the selected rows.

Examples

This example shows how to generate a D-optimal design when there is a restriction on
the candidate set, so the rowexch function isn't appropriate.

F = (fullfact([5 5 5])-1)/4; % factor settings in unit cube

T = sum(F,2)<=1.51; % find rows matching a restriction

F = F(T,:); % take only those rows

C = [ones(size(F,1),1) F F.^2];

 % compute model terms including

 % a constant and all squared terms

R = candexch(C,12); % find a D-optimal 12-point subset

X = F(R,:); % get factor settings

Alternatives

The rowexch function also generates D-optimal designs using a row-exchange algorithm,
but it automatically generates a candidate set that is appropriate for a specified model.
The daugment function augments a set of fixed design points using a coordinate-
exchange algorithm; the 'start' parameter provides the same functionality using the
row exchange algorithm.

22 Functions — Alphabetical List

22-222

More About

Algorithms

candexch selects a starting design X at random, and uses a row-exchange algorithm to
iteratively replace rows of X by rows of C in an attempt to improve the determinant of
X'*X.
• “D-Optimal Designs” on page 19-15

See Also
candgen | rowexch | cordexch | daugment | x2fx

 candgen

22-223

candgen
Candidate set generation

Syntax

dC = candgen(nfactors,'model')

[dC,C] = candgen(nfactors,'model')

[...] = candgen(nfactors,'model','Name',value)

Description

dC = candgen(nfactors,'model') generates a candidate set dC of treatments
appropriate for estimating the parameters in the model with nfactors factors. dC
has nfactors columns and one row for each candidate treatment. model is one of the
following strings, specified inside single quotes:

• linear — Constant and linear terms. This is the default.
• interaction — Constant, linear, and interaction terms
• quadratic — Constant, linear, interaction, and squared terms
• purequadratic — Constant, linear, and squared terms

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In
this case, model should have one column for each factor and one row for each term in
the model. The entries in any row of model are powers for the factors in the columns.
For example, if a model has factors X1, X2, and X3, then a row [0 1 2] in model
specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies
a constant term, which can be omitted.

[dC,C] = candgen(nfactors,'model') also returns the design matrix C evaluated
at the treatments in dC. The order of the columns of C for a full quadratic model with n
terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)

22 Functions — Alphabetical List

22-224

4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Pass C to candexch to generate a D-optimal design using a coordinate-exchange
algorithm.

[...] = candgen(nfactors,'model','Name',value) specifies one or more
optional name/value pairs for the design. Valid parameters and their values are listed in
the following table. Specify Name inside single quotes.

Name Value

bounds Lower and upper bounds for each factor, specified as a 2-
by-nfactors matrix. Alternatively, this value can be a cell array
containing nfactors elements, each element specifying the vector
of allowable values for the corresponding factor.

categorical Indices of categorical predictors.
levels Vector of number of levels for each factor.

Note The rowexch function automatically generates a candidate set using candgen, and
then creates a D-optimal design from that candidate set using candexch. Call candexch
separately to specify your own candidate set to the row-exchange algorithm.

Examples

The following example uses rowexch to generate a five-run design for a two-factor pure
quadratic model using a candidate set that is produced internally:

dRE1 = rowexch(2,5,'purequadratic','tries',10)

dRE1 =

 -1 1

 0 0

 1 -1

 1 0

 1 1

The same thing can be done using candgen and candexch in sequence:

[dC,C] = candgen(2,'purequadratic') % Candidate set, C

 candgen

22-225

dC =

 -1 -1

 0 -1

 1 -1

 -1 0

 0 0

 1 0

 -1 1

 0 1

 1 1

C =

 1 -1 -1 1 1

 1 0 -1 0 1

 1 1 -1 1 1

 1 -1 0 1 0

 1 0 0 0 0

 1 1 0 1 0

 1 -1 1 1 1

 1 0 1 0 1

 1 1 1 1 1

treatments = candexch(C,5,'tries',10) % Find D-opt subset

treatments =

 2

 1

 7

 3

 4

dRE2 = dC(treatments,:) % Display design

dRE2 =

 0 -1

 -1 -1

 -1 1

 1 -1

 -1 0

See Also
candexch | rowexch

22 Functions — Alphabetical List

22-226

canoncorr

Canonical correlation

Syntax

[A,B] = canoncorr(X,Y)

[A,B,r] = canoncorr(X,Y)

[A,B,r,U,V] = canoncorr(X,Y)

[A,B,r,U,V,stats] = canoncorr(X,Y)

Description

[A,B] = canoncorr(X,Y) computes the sample canonical coefficients for the n-by-d1
and n-by-d2 data matrices X and Y. X and Y must have the same number of observations
(rows) but can have different numbers of variables (columns). A and B are d1-by-d and
d2-by-d matrices, where d = min(rank(X),rank(Y)). The jth columns of A and B
contain the canonical coefficients, i.e., the linear combination of variables making up
the jth canonical variable for X and Y, respectively. Columns of A and B are scaled to
make the covariance matrices of the canonical variables the identity matrix (see U and V
below). If X or Y is less than full rank, canoncorr gives a warning and returns zeros in
the rows of A or B corresponding to dependent columns of X or Y.

[A,B,r] = canoncorr(X,Y) also returns a 1-by-d vector containing the sample
canonical correlations. The jth element of r is the correlation between the jth columns of
U and V (see below).

[A,B,r,U,V] = canoncorr(X,Y) also returns the canonical variables, scores. U and V
are n-by-d matrices computed as

U = (X-repmat(mean(X),N,1))*A

V = (Y-repmat(mean(Y),N,1))*B

[A,B,r,U,V,stats] = canoncorr(X,Y) also returns a structure stats containing
information relating to the sequence of d null hypotheses H

k

0
() , that the (k+1)st through

dth correlations are all zero, for k = 0:(d-1). stats contains seven fields, each a 1-

 canoncorr

22-227

by-d vector with elements corresponding to the values of k, as described in the following
table:

Field Description

Wilks Wilks' lambda (likelihood ratio) statistic
df1 Degrees of freedom for the chi-squared statistic, and the numerator

degrees of freedom for the F statistic
df2 Denominator degrees of freedom for the F statistic
F Rao's approximate F statistic for H

k

0
()

pF Right-tail significance level for F
chisq Bartlett's approximate chi-squared statistic for H

k

0
() with Lawley's

modification
pChisq Right-tail significance level for chisq

stats has two other fields (dfe and p) which are equal to df1 and pChisq, respectively,
and exist for historical reasons.

Examples

Compute Sample Canonical Correlation

Load the sample data.

load carbig;

X = [Displacement Horsepower Weight Acceleration MPG];

nans = sum(isnan(X),2) > 0;

Compute the sample canonical correlation.

[A B r U V] = canoncorr(X(~nans,1:3),X(~nans,4:5));

Plot the canonical variables scores.

plot(U(:,1),V(:,1),'.')

xlabel('0.0025*Disp+0.020*HP-0.000025*Wgt')

ylabel('-0.17*Accel-0.092*MPG')

22 Functions — Alphabetical List

22-228

References

[1] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New
York: Oxford University Press, 1988.

[2] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc.,
1984.

See Also
manova1 | pca

 capability

22-229

capability
Process capability indices

Syntax

S = capability(data,specs)

Description

S = capability(data,specs) estimates capability indices for measurements in
data given the specifications in specs. data can be either a vector or a matrix of
measurements. If data is a matrix, indices are computed for the columns. specs can be
either a two-element vector of the form [L,U] containing lower and upper specification
limits, or (if data is a matrix) a two-row matrix with the same number of columns as
data. If there is no lower bound, use -Inf as the first element of specs. If there is no
upper bound, use Inf as the second element of specs.

The output S is a structure with the following fields:

• mu — Sample mean
• sigma — Sample standard deviation
• P — Estimated probability of being within limits
• Pl — Estimated probability of being below L
• Pu — Estimated probability of being above U
• Cp — (U-L)/(6*sigma)
• Cpl — (mu-L)./(3.*sigma)
• Cpu — (U-mu)./(3.*sigma)
• Cpk — min(Cpl,Cpu)

Indices are computed under the assumption that data values are independent samples
from a normal population with constant mean and variance.

Indices divide a “specification width” (between specification limits) by a “process
width” (between control limits). Higher ratios indicate a process with fewer
measurements outside of specification.

22 Functions — Alphabetical List

22-230

Examples

Compute Capability Indices

Simulate a sample from a process with a mean of 3 and a standard deviation of 0.005.

rng default; % for reproducibility

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of 3.01 and a
lower specification limit of 2.99.

S = capability(data,[2.99 3.01])

S =

 mu: 3.0006

 sigma: 0.0058

 P: 0.9129

 Pl: 0.0339

 Pu: 0.0532

 Cp: 0.5735

 Cpl: 0.6088

 Cpu: 0.5382

 Cpk: 0.5382

Visualize the specification and process widths.

capaplot(data,[2.99 3.01]);

grid on

 capability

22-231

References

[1] Montgomery, D. Introduction to Statistical Quality Control. Hoboken, NJ: John Wiley
& Sons, 1991, pp. 369–374.

See Also
capaplot | histfit

22 Functions — Alphabetical List

22-232

capaplot

Process capability plot

Syntax

p = capaplot(data,specs)

[p,h] = capaplot(data,specs)

Description

p = capaplot(data,specs) estimates the mean of and variance for the observations
in input vector data, and plots the pdf of the resulting T distribution. The observations
in data are assumed to be normally distributed. The output, p, is the probability that
a new observation from the estimated distribution will fall within the range specified
by the two-element vector specs. The portion of the distribution between the lower and
upper bounds specified in specs is shaded in the plot.

[p,h] = capaplot(data,specs) additionally returns handles to the plot elements in
h.

capaplot treats NaN values in data as missing, and ignores them.

Examples

Create a Process Capability Plot

Randomly generate sample data from a normal process with a mean of 3 and a standard
deviation of 0.005.

rng default; % For reproducibility

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of 3.01 and a
lower specification limit of 2.99.

 capaplot

22-233

S = capability(data,[2.99 3.01])

S =

 mu: 3.0006

 sigma: 0.0058

 P: 0.9129

 Pl: 0.0339

 Pu: 0.0532

 Cp: 0.5735

 Cpl: 0.6088

 Cpu: 0.5382

 Cpk: 0.5382

Visualize the specification and process widths.

capaplot(data,[2.99 3.01]);

grid on

22 Functions — Alphabetical List

22-234

See Also
capability | histfit

 caseread

22-235

caseread
Read case names from file

Syntax

names = caseread('filename')

names = caseread

Description

names = caseread('filename') reads the contents of filename and returns a
string matrix of names. filename is the name of a file in the current folder, or the
complete path name of any file elsewhere. caseread treats each line as a separate case.

names = caseread displays the Select File to Open dialog box for interactive
selection of the input file.

Examples

Read the file months.dat created using the casewrite function.

type months.dat

January

February

March

April

May

names = caseread('months.dat')

names =

January

February

March

April

May

22 Functions — Alphabetical List

22-236

See Also
casewrite | gname | tdfread | tblread

 casewrite

22-237

casewrite
Write case names to file

Syntax

casewrite(strmat,'filename')

casewrite(strmat)

Description

casewrite(strmat,'filename') writes the contents of string matrix strmat to
filename. Each row of strmat represents one case name. filename is the name of a
file in the current folder, or the complete path name of any file elsewhere. casewrite
writes each name to a separate line in filename.

casewrite(strmat) displays the Select File to Write dialog box for interactive
specification of the output file.

Examples
strmat = char('January','February',...

 'March','April','May')

strmat =

January

February

March

April

May

casewrite(strmat,'months.dat')

type months.dat

January

February

March

April

22 Functions — Alphabetical List

22-238

May

See Also
gname | caseread | tblwrite | tdfread

 clustering.evaluation.DaviesBouldinEvaluation class

22-239

clustering.evaluation.DaviesBouldinEvaluation class

Package: clustering.evaluation
Superclasses: clustering.evaluation.ClusterCriterion

Davies-Bouldin criterion clustering evaluation object

Description

clustering.evaluation.DaviesBouldinEvaluation is an object consisting of
sample data, clustering data, and Davies-Bouldin criterion values used to evaluate the
optimal number of clusters. Create a Davies-Bouldin criterion clustering evaluation
object using evalclusters.

Construction

eva = evalclusters(x,clust,'DaviesBouldin') creates a Davies-Bouldin
criterion clustering evaluation object.

eva = evalclusters(x,clust,'DaviesBouldin',Name,Value) creates a Davies-
Bouldin criterion clustering evaluation object using additional options specified by one or
more name-value pair arguments.

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the
number of variables.
Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions |
function handle

22 Functions — Alphabetical List

22-240

Clustering algorithm, specified as one of the following.

'kmeans' Cluster the data in x using the kmeans clustering
algorithm, with 'EmptyAction' set to 'singleton' and
'Replicates' set to 5.

'linkage' Cluster the data in x using the clusterdata
agglomerative clustering algorithm, with 'Linkage' set
to 'ward'.

'gmdistribution' Cluster the data in x using the gmdistribution
Gaussian mixture distribution algorithm, with
'SharedCov' set to true and 'Replicates' set to 5.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you can
specify a clustering algorithm using the function_handle (@) operator. The function
must be of the form C = clustfun(DATA,K), where DATA is the data to be clustered,
and K is the number of clusters. The output of clustfun must be one of the following:

• A vector of integers representing the cluster index for each observation in DATA. There
must be K unique values in this vector.

• A numeric n-by-K matrix of score for n observations and K classes. In this case, the
cluster index for each observation is determined by taking the largest score value in
each row.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you
can also specify clust as a n-by-K matrix containing the proposed clustering solutions.
n is the number of observations in the sample data, and K is the number of proposed
clustering solutions. Column j contains the cluster indices for each of the N points in the
jth clustering solution.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'KList',[1:5] specifies to test 1, 2, 3, 4, and 5 clusters to find the optimal
number.

'KList' — List of number of clusters to evaluate
vector

 clustering.evaluation.DaviesBouldinEvaluation class

22-241

List of number of clusters to evaluate, specified as the comma-separated pair consisting
of 'KList' and a vector of positive integer values. You must specify KList when clust is
a clustering algorithm name string or a function handle. When criterion is 'gap', clust
must be a string or a function handle, and you must specify KList.
Example: 'KList',[1:6]

Properties

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering
algorithm name string or function handle. If the clustering solutions are provided in the
input, ClusteringFunction is empty.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name
string.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK,
stored as a vector of numerical values.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a
vector of positive integer values.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing
equals true, then the corresponding value in the data matrix x is not used in the
clustering solution.

NumObservations

Number of observations in the data matrix X, minus the number of missing (NaN) values
in X, stored as a positive integer value.

22 Functions — Alphabetical List

22-242

OptimalK

Optimal number of clusters, stored as a positive integer value.

OptimalY

Optimal clustering solution corresponding to OptimalK, stored as a column vector of
positive integer values. If the clustering solutions are provided in the input, OptimalY is
empty.

X

Data used for clustering, stored as a matrix of numerical values.

Methods

Inherited Methods

addK
Evaluate additional numbers of clusters

plot
Plot clustering evaluation object criterion
values

compact
Compact clustering evaluation object

Definitions

Davies-Bouldin Criterion

The Davies-Bouldin criterion is based on a ratio of within-cluster and between-cluster
distances. The Davies-Bouldin index is defined as

DB
k

Dj i i j
i

k

= { }π
=
Â

1

1

max ,,

 clustering.evaluation.DaviesBouldinEvaluation class

22-243

where Di,j is the within-to-between cluster distance ratio for the ith and jth clusters. In
mathematical terms,

D
d d

d
i j

i j

i j
,

,

.=
+()

d
i is the average distance between each point in the ith cluster and the centroid of the

ith cluster. dj is the average distance between each point in the ith cluster and the

centroid of the jth cluster. di j,

 is the Euclidean distance between the centroids of the ith
and jth clusters.

The maximum value of Di,j represents the worst-case within-to-between cluster ratio for
cluster i. The optimal clustering solution has the smallest Davies-Bouldin index value.

Examples

Evaluate the Clustering Solution Using Davies-Bouldin Criterion

Evaluate the optimal number of clusters using the Davies-Bouldin clustering evaluation
criterion.

Generate sample data containing random numbers from three multivariate distributions
with different parameter values.

rng('default'); % For reproducibility

mu1 = [2 2];

sigma1 = [0.9 -0.0255; -0.0255 0.9];

mu2 = [5 5];

sigma2 = [0.5 0 ; 0 0.3];

mu3 = [-2, -2];

sigma3 = [1 0 ; 0 0.9];

N = 200;

22 Functions — Alphabetical List

22-244

X = [mvnrnd(mu1,sigma1,N);...

 mvnrnd(mu2,sigma2,N);...

 mvnrnd(mu3,sigma3,N)];

Evaluate the optimal number of clusters using the Davies-Bouldin criterion. Cluster the
data using kmeans.

E = evalclusters(X,'kmeans','DaviesBouldin','klist',[1:6])

E =

 DaviesBouldinEvaluation with properties:

 NumObservations: 600

 InspectedK: [1 2 3 4 5 6]

 CriterionValues: [NaN 0.4663 0.4454 0.8300 0.7283 0.9199]

 OptimalK: 3

The OptimalK value indicates that, based on the Davies-Bouldin criterion, the optimal
number of clusters is three.

Plot the Davies-Bouldin criterion values for each number of clusters tested.

figure;

plot(E)

 clustering.evaluation.DaviesBouldinEvaluation class

22-245

The plot shows that the lowest Davies-Bouldin value occurs at three clusters, suggesting
that the optimal number of clusters is three.

Create a grouped scatter plot to visually examine the suggested clusters.

figure;

gscatter(X(:,1),X(:,2),E.OptimalY,'rbg','xod')

22 Functions — Alphabetical List

22-246

The plot shows three distinct clusters within the data: Cluster 1 is in the lower-left
corner, cluster 2 is near the center of the plot, and cluster 3 is in the upper-right corner.

References

[1] Davies, D. L., and D. W. Bouldin. “A Cluster Separation Measure.” IEEE Transactions
on Pattern Analysis and Machine Intelligence. Vol. PAMI-1, No. 2, 1979, pp. 224–
227.

 clustering.evaluation.DaviesBouldinEvaluation class

22-247

See Also
clustering.evaluation.CalinskiHarabaszEvaluation

| clustering.evaluation.GapEvaluation |
clustering.evaluation.SilhouetteEvaluation | evalclusters

More About
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-248

cat
Class: dataset

Concatenate dataset arrays

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

ds = cat(dim, ds1, ds2, ...)

Description

ds = cat(dim, ds1, ds2, ...) concatenates the dataset arrays ds1, ds2, ...
along dimension dim by calling the dataset/horzcat or dataset/vertcat method.
dim must be 1 or 2.

See Also
horzcat | vertcat

 catsplit

22-249

catsplit
Class: classregtree

Categorical splits used for branches in decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

v=catsplit(t)

v=catsplit(t,j)

Description

v=catsplit(t) returns an n-by-2 cell array v. Each row in v gives left and right values
for a categorical split. For each branch node j based on a categorical predictor variable
z, the left child is chosen if z is in v(j,1) and the right child is chosen if z is in v(j,2).
The splits are in the same order as nodes of the tree. Nodes for these splits can be found
by running cuttype and selecting 'categorical' cuts from top to bottom.

v=catsplit(t,j) takes an array j of rows and returns the splits for the specified rows.

See Also
classregtree

22 Functions — Alphabetical List

22-250

cdf

Class: gmdistribution

Cumulative distribution function for Gaussian mixture distribution

Syntax

y = cdf(obj,X)

Description

y = cdf(obj,X) returns a vector y of length n containing the values of the cumulative
distribution function (cdf) for the gmdistribution object obj, evaluated at the n-
by-d data matrix X, where n is the number of observations and d is the dimension of the
data. obj is an object created by gmdistribution or fitgmdist. y(I) is the cdf of
observation I.

Examples

Plot a Gaussian Mixture CDF

Create a gmdistribution object defining a two-component mixture of bivariate
Gaussian distributions.

MU = [1 2;-3 -5];

SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);

p = ones(1,2)/2;

obj = gmdistribution(MU,SIGMA,p);

ezsurf(@(x,y)cdf(obj,[x y]),[-10 10],[-10 10])

 cdf

22-251

See Also
gmdistribution | fitgmdist | pdf | mvncdf

22 Functions — Alphabetical List

22-252

ccdesign
Central composite design

Syntax

dCC = ccdesign(n)

[dCC,blocks] = ccdesign(n)

[...] = ccdesign(n,'Name',value)

Description

dCC = ccdesign(n) generates a central composite design for n factors. n must be an
integer 2 or larger. The output matrix dCC is m-by-n, where m is the number of runs in
the design. Each row represents one run, with settings for all factors represented in the
columns. Factor values are normalized so that the cube points take values between -1
and 1.

[dCC,blocks] = ccdesign(n) requests a blocked design. The output blocks is
an m-by-1 vector of block numbers for each run. Blocks indicate runs that are to be
measured under similar conditions to minimize the effect of inter-block differences on the
parameter estimates.

[...] = ccdesign(n,'Name',value) specifies one or more optional name/value
pairs for the design. Valid parameters and their values are listed in the following table.
Specify Name in single quotes.

Parameter Description Values Value Description

Integer Number of center points
to include.

'uniform' Select number of center
points to give uniform
precision.

center Number of center
points.

'orthogonal' Select number of
center points to give an

 ccdesign

22-253

Parameter Description Values Value Description

orthogonal design. This
is the default.

0 Whole design. Default
when n ≤ 4.

1 1/2 fraction. Default
when
4 < n ≤ 7 or n > 11.

2 1/4 fraction. Default
when
7 < n ≤ 9

3 1/8 fraction. Default
when
n = 10.

fraction Fraction of full-
factorial cube,
expressed as an
exponent of 1/2.

4 1/16 fraction. Default
when n = 11.

'circumscribed' Circumscribed (CCC).
This is the default.

'inscribed' Inscribed (CCI).

type Type of CCD.

'faced' Faced (CCF).
blocksize Maximum number of

points per block.
Integer The default is Inf.

Examples

Two-Factor Central Composite Design

Create a 2-factor central composite design.

dCC = ccdesign(2,'type','circumscribed')

dCC =

 -1.0000 -1.0000

 -1.0000 1.0000

22 Functions — Alphabetical List

22-254

 1.0000 -1.0000

 1.0000 1.0000

 -1.4142 0

 1.4142 0

 0 -1.4142

 0 1.4142

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

The center point is run 8 times to reduce the correlations among the coefficient
estimates.

Visualize the design.

plot(dCC(:,1),dCC(:,2),'ro','MarkerFaceColor','b')

X = [1 -1 -1 -1; 1 1 1 -1];

Y = [-1 -1 1 -1; 1 -1 1 1];

line(X,Y,'Color','b')

axis square equal

 ccdesign

22-255

See Also
bbdesign

22 Functions — Alphabetical List

22-256

cdf

Cumulative distribution functions

Syntax

y = cdf('name',x,A)

y = cdf('name',x,A,B)

y = cdf('name',x,A,B,C)

y = cdf(pd,x)

y = cdf(___ ,'upper')

Description

y = cdf('name',x,A) returns the cumulative distribution function (cdf) for the one-
parameter distribution family specified by 'name', evaluated at the values in x. A contains
the parameter value for the distribution.

y = cdf('name',x,A,B) returns the cdf for the two-parameter distribution family
specified by 'name', evaluated at the values in x. A and B contain the parameter values
for the distribution.

y = cdf('name',x,A,B,C) returns the cdf for the three-parameter distribution family
specified by 'name', evaluated at the values in x. A, B, and C contain the parameter
values for the distribution.

y = cdf(pd,x) returns the cumulative distribution function of the probability
distribution object, pd, evaluated at the values in x.

y = cdf(___ ,'upper') returns the complement of the cumulative distribution
function using an algorithm that more accurately computes the extreme upper tail
probabilities. You can use the 'upper' argument with any of the previous syntaxes.

 cdf

22-257

Examples

Compute the Normal Distribution cdf

Create a standard normal distribution object with the mean, , equal to 0 and the
standard deviation, , equal to 1.

mu = 0;

sigma = 1;

pd = makedist('Normal',mu,sigma);

Define the input vector x to contain the values at which to calculate the cdf.

x = [-2,-1,0,1,2];

Compute the cdf values for the standard normal distribution at the values in x.

y = cdf(pd,x)

y =

 0.0228 0.1587 0.5000 0.8413 0.9772

Each value in y corresponds to a value in the input vector x. For example, at the value x
equal to 1, the corresponding cdf value y is equal to 0.8413.

Alternatively, you can compute the same cdf values without creating a probability
distribution object. Use the cdf function, and specify a standard normal distribution
using the same parameter values for and .

y2 = cdf('Normal',x,mu,sigma)

y2 =

 0.0228 0.1587 0.5000 0.8413 0.9772

The cdf values are the same as those computed using the probability distribution object.

Compute the Poisson Distribution cdf

Create a Poisson distribution object with the rate parameter, , equal to 2.

22 Functions — Alphabetical List

22-258

lambda = 2;

pd = makedist('Poisson',lambda);

Define the input vector x to contain the values at which to calculate the cdf.

x = [0,1,2,3,4];

Compute the cdf values for the Poisson distribution at the values in x.

y = cdf(pd,x)

y =

 0.1353 0.4060 0.6767 0.8571 0.9473

Each value in y corresponds to a value in the input vector x. For example, at the value x
equal to 3, the corresponding cdf value y is equal to 0.8571.

Alternatively, you can compute the same cdf values without creating a probability
distribution object. Use the cdf function, and specify a Poisson distribution using the
same value for the rate parameter, .

y2 = cdf('Poisson',x,lambda)

y2 =

 0.1353 0.4060 0.6767 0.8571 0.9473

The cdf values are the same as those computed using the probability distribution object.

Input Arguments

'name' — Probability distribution name
probability distribution name string

Probability distribution name, specified as one of the following probability distribution
name strings.

 cdf

22-259

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Beta' “Beta Distribution” on page
B-4

a: first
shape
parameter

b: second
shape
parameter

—

'Binomial' “Binomial Distribution” on page
B-9

n: number of
trials

p: probability
of success for
each trial

—

'BirnbaumSaunders'“Birnbaum-Saunders Distribution”
on page B-13

β: scale
parameter

γ: shape
parameter

—

'Burr' “Burr Type XII Distribution” on
page B-15

α: scale
parameter

c: first shape
parameter

k: second
shape
parameter

'Chisquare' “Chi-Square Distribution” on page
B-29

ν: degrees of
freedom

— —

'Exponential' “Exponential Distribution” on page
B-35

μ: mean — —

'Extreme

Value'

“Extreme Value Distribution” on
page B-39

μ: location
parameter

σ: scale
parameter

—

'F' “F Distribution” on page B-45 ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

—

'Gamma' “Gamma Distribution” on page
B-48

a: shape
parameter

b: scale
parameter

—

'Generalized

Extreme

Value'

“Generalized Extreme Value
Distribution” on page B-54

k: shape
parameter

σ: scale
parameter

μ: location
parameter

'Generalized

Pareto'

“Generalized Pareto Distribution”
on page B-60

k: tail index
(shape)
parameter

σ: scale
parameter

μ: threshold
(location)
parameter

'Geometric' “Geometric Distribution” on page
B-65

p:
probability
parameter

— —

22 Functions — Alphabetical List

22-260

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Hypergeometric'“Hypergeometric Distribution” on
page B-74

m: size
of the
population

k: number of
items with
the desired
characteristic
in the
population

n: number
of samples
drawn

'InverseGaussian'“Inverse Gaussian Distribution” on
page B-77

μ: scale
parameter

λ: shape
parameter

—

'Logistic' “Logistic Distribution” on page
B-91

μ: mean σ: scale
parameter

—

'LogLogistic' “Loglogistic Distribution” on page
B-93

μ: log mean σ: log scale
parameter

—

'Lognormal' “Lognormal Distribution” on page
B-95

μ: log mean σ: log
standard
deviation

—

'Nakagami' “Nakagami Distribution” on page
B-113

μ: shape
parameter

ω: scale
parameter

—

'Negative

Binomial'

“Negative Binomial Distribution”
on page B-115

r: number of
successes

p: probability
of success in
a single trial

—

'Noncentral

F'

“Noncentral F Distribution” on
page B-123

ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

δ:
noncentrality
parameter

'Noncentral

t'

“Noncentral t Distribution” on page
B-126

ν: degrees of
freedom

δ:
noncentrality
parameter

—

'Noncentral

Chi-square'

“Noncentral Chi-Square
Distribution” on page B-120

ν: degrees of
freedom

δ:
noncentrality
parameter

—

'Normal' “Normal Distribution” on page
B-130

μ: mean σ: standard
deviation

—

 cdf

22-261

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Poisson' “Poisson Distribution” on page
B-138

λ: mean — —

'Rayleigh' “Rayleigh Distribution” on page
B-141

b: scale
parameter

— —

'Rician' “Rician Distribution” on page
B-144

s:
noncentrality
parameter

σ: scale
parameter

—

'T' “Student's t Distribution” on page
B-146

ν: degrees of
freedom

— —

'tLocationScale'“t Location-Scale Distribution” on
page B-154

μ: location
parameter

σ: scale
parameter

ν: shape
parameter

'Uniform' “Uniform Distribution
(Continuous)” on page B-163

a: lower
endpoint
(minimum)

b: upper
endpoint
(maximum)

—

'Discrete

Uniform'

“Uniform Distribution (Discrete)”
on page B-169

n: maximum
observable
value

— —

'Weibull' “Weibull Distribution” on page
B-172

a: scale
parameter

b: shape
parameter

—

x — Values at which to evaluate cdf
scalar value | array of scalar values

Values at which to evaluate the cdf, specified as a scalar value, or an array of scalar
values.

• If x is a scalar value, and if you specify distribution parameters A, B, or C as arrays,
then cdf expands x into a constant matrix the same size as A and B.

• If x is an array, and if you specify distribution parameters A, B, or C as arrays, then x,
A, B, and C must all be the same size.

Example: [0.1,0.25,0.5,0.75,0.9]

Data Types: single | double

22 Functions — Alphabetical List

22-262

A — First probability distribution parameter
scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value, or an array of scalar
values.

If x and A are arrays, they must be the same size. If x is a scalar, then cdf expands it
into a constant matrix the same size as A. If A is a scalar, then cdf expands it into a
constant matrix the same size as x.
Data Types: single | double

B — Second probability distribution parameter
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value, or an array of
scalar values.

If x, A, and B are arrays, they must be the same size. If x is a scalar, then cdf expands it
into a constant matrix the same size as A and B. If A or B are scalars, then cdf expands
them into constant matrices the same size as x
Data Types: single | double

C — Third probability distribution parameter
scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value, or an array of scalar
values.

If x, A, B, and C are arrays, they must be the same size. If x is a scalar, then cdf expands
it into a constant matrix the same size as A, B, and C. If any of A, B or C are scalars,
then cdf expands them into constant matrices the same size as x.

Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object created using one of
the following.

makedist Create a probability distribution object
using specified parameter values.

 cdf

22-263

fitdist Fit a probability distribution object to
sample data.

dfittool Fit a probability distribution object
to sample data using the interactive
Distribution Fitting app.

paretotails Create a Pareto tails object.
gmdistribution Create a Gaussian mixture distribution

object.

Output Arguments

y — Cumulative distribution function
array

Cumulative distribution function of the specified probability distribution, returned as an
array.

• If you specify distribution parameters A, B, or C, then y is the same size as x, A, B,
and C, after any necessary scalar expansion.

• If you specify a probability distribution object, pd, then y has the same dimensions as
x.

See Also
ecdf | icdf | pdf

22 Functions — Alphabetical List

22-264

cdf
Class: piecewisedistribution

Cumulative distribution function for piecewise distribution

Syntax

p= cdf(obj,x)

p= cdf(obj,x,'upper')

Description

p= cdf(obj,x) returns an array P of values of the cumulative distribution function for
the piecewise distribution object obj, evaluated at the values in the array X.

p= cdf(obj,x,'upper') returns the complement of the piecewise distribution cdf
evaluated at the values in x, using an algorithm that more accurately computes the
extreme upper tail probabilities.

Examples

Fit Pareto Tails to t Distribution

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9.

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

[p,q] = boundary(obj)

p =

 0.1000

 0.9000

q =

 -1.7766

 1.8432

Compute the cdf at the values in q.

 cdf

22-265

cdf(obj,q)

ans =

 0.1000

 0.9000

See Also
paretotails | icdf | pdf

22 Functions — Alphabetical List

22-266

cdf
Class: ProbDist

Return cumulative distribution function (CDF) for ProbDist object

Syntax

Y = cdf(PD, X)

Description

Y = cdf(PD, X) returns Y, an array containing the cumulative distribution function
(CDF) for the ProbDist object PD, evaluated at values in X.

Input Arguments

PD An object of the class ProbDistUnivParam or
ProbDistUnivKernel.

X A numeric array of values where you want to evaluate the CDF.

Output Arguments

Y An array containing the cumulative distribution function (CDF)
for the ProbDist object PD.

See Also
cdf

 cdf

22-267

cdf

Class: prob.TruncatableDistribution
Package: prob

Cumulative distribution function of probability distribution object

Syntax

y = cdf(pd,x)

y = cdf(pd,x,'upper')

Description

y = cdf(pd,x) returns the cumulative distribution function (cdf) of the probability
distribution pd at the values in x.

y = cdf(pd,x,'upper') returns the complement of the cumulative distribution
function (cdf) of the probability distribution pd at the values in x, using an algorithm that
more accurately computes the extreme upper tail probabilities.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

x — Values at which to calculate cdf
array

Values at which to calculate the cdf, specified as an array.

22 Functions — Alphabetical List

22-268

Data Types: single | double

upper — Upper tail probability flag
'upper'

Upper tail probability flag, specified as 'upper'. If you specify 'upper', then cdf
returns the complement of the cdf of pd, using an algorithm that more accurately
computes the extreme upper tail probabilities.

Output Arguments

y — Cumulative distribution function
array

Cumulative distribution function of the specified probability distribution, evaluated at
the values in x, returned as a array. y has the same dimensions as x.

Examples

Plot Standard Normal Distribution cdf

Create a standard normal distribution object.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Specify the x values and compute the cdf.

x = -3:.1:3;

cdf_normal = cdf(pd,x);

Plot the cdf of the standard normal distribution.

plot(x,cdf_normal,'LineWidth',2)

 cdf

22-269

Plot Gamma Distribution cdf

Create three gamma distribution objects. The first uses the default parameter values.
The second specifies a = 1 and b = 2. The third specifies a = 2 and b = 1.

pd_gamma = makedist('Gamma')

pd_gamma =

 GammaDistribution

 Gamma distribution

 a = 1

 b = 1

22 Functions — Alphabetical List

22-270

pd_12 = makedist('Gamma','a',1,'b',2)

pd_12 =

 GammaDistribution

 Gamma distribution

 a = 1

 b = 2

pd_21 = makedist('Gamma','a',2,'b',1)

pd_21 =

 GammaDistribution

 Gamma distribution

 a = 2

 b = 1

Specify the x values and compute the cdf for each distribution.

x = 0:.1:5;

cdf_gamma = cdf(pd_gamma,x);

cdf_12 = cdf(pd_12,x);

cdf_21 = cdf(pd_21,x);

Create a plot to visualize how the cdf of the gamma distribution changes when you
specify different values for the shape parameters a and b.

figure;

J = plot(x,cdf_gamma)

hold on;

K = plot(x,cdf_gamma_12,'r--')

L = plot(x,cdf_gamma_21,'k-.')

set(J,'LineWidth',2);

set(K,'LineWidth',2);

legend([J K L],'a = 1, b = 1','a = 1, b = 2','a = 2, b = 1','Location','southeast');

hold off;

 cdf

22-271

See Also
cdf | dfittool | ecdf | fitdist | icdf | makedist | pdf

22 Functions — Alphabetical List

22-272

cdfplot

Empirical cumulative distribution function plot

Syntax

cdfplot(X)

h = cdfplot(X)

[h,stats] = cdfplot(X)

Description

cdfplot(X) displays a plot of the empirical cumulative distribution function (cdf) for the
data in the vector X. The empirical cdf F(x) is defined as the proportion of X values less
than or equal to x.

This plot is useful for examining the distribution of a sample of data. You can overlay a
theoretical cdf on the same plot to compare the empirical distribution of the sample to the
theoretical distribution.

The kstest, kstest2, and lillietest functions compute test statistics that are
derived from the empirical cdf. You may find the empirical cdf plot produced by cdfplot
useful in helping you to understand the output from those functions.

h = cdfplot(X) returns a handle to the cdf curve.

[h,stats] = cdfplot(X) also returns a stats structure with the following fields.

Field Description

stats.min Minimum value
stats.max Maximum value
stats.mean Sample mean
stats.median Sample median (50th percentile)
stats.std Sample standard deviation

 cdfplot

22-273

Examples

Compare Empirical cdf with Sampling Distribution

This example shows how to plot the empirical cdf of sample data and compare it with a
plot of the cdf for the sampling distribution. In practice, the sampling distribution would
be unknown, and would be chosen to match the empirical cdf.

Generate random sample data from an extreme value distribution with a location
parameter mu = 0 and scale parameter sigma = 3.

rng default; % For reproducibility

y = evrnd(0,3,100,1);

Plot the empirical cdf of the sample data on the same figure as the cdf of the sampling
distribution.

cdfplot(y)

hold on

x = -20:0.1:10;

f = evcdf(x,0,3);

plot(x,f,'m')

legend('Empirical','Theoretical','Location','NW')

22 Functions — Alphabetical List

22-274

See Also
ecdf

 cell2dataset

22-275

cell2dataset
Convert cell array to dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

ds = cell2dataset(C)

ds = cell2dataset(C,Name,Value)

Description

ds = cell2dataset(C) converts a cell array to a dataset array.

ds = cell2dataset(C,Name,Value) performs the conversion using additional
options specified by one or more Name,Value pair arguments.

Examples

Convert Cell Array to Dataset Array

Convert a cell array to a dataset array using the default options.

Create a cell array to convert.

C = {'Name','Gender','SystolicBP','DiastolicBP';

 'CLARK','M',124,93;

 'BROWN','F',122,80;

 'MARTIN','M',130,92}

C =

22 Functions — Alphabetical List

22-276

 'Name' 'Gender' 'SystolicBP' 'DiastolicBP'

 'CLARK' 'M' [124] [93]

 'BROWN' 'F' [122] [80]

 'MARTIN' 'M' [130] [92]

Convert the cell array to a dataset array.

ds = cell2dataset(C)

ds =

 Name Gender SystolicBP DiastolicBP

 'CLARK' 'M' 124 93

 'BROWN' 'F' 122 80

 'MARTIN' 'M' 130 92

The first row of C become the variable names in the output dataset array, ds.

Create a Dataset Array with Multicolumn Variables

Convert a cell array to a dataset array containing multicolumn variables.

Create a cell array to convert.

C = {'Name','Gender','SystolicBP','DiastolicBP';

 'CLARK','M',124,93;

 'BROWN','F',122,80;

 'MARTIN','M',130,92}

C =

 'Name' 'Gender' 'SystolicBP' 'DiastolicBP'

 'CLARK' 'M' [124] [93]

 'BROWN' 'F' [122] [80]

 'MARTIN' 'M' [130] [92]

Convert the cell array to a dataset array, combining the systolic and diastolic blood
pressure measurements into one variable named BloodPressure.

ds = cell2dataset(C,'NumCols',[1,1,2]);

ds.Properties.VarNames{3} = 'BloodPressure';

ds

ds =

 cell2dataset

22-277

 Name Gender BloodPressure

 'CLARK' 'M' 124 93

 'BROWN' 'F' 122 80

 'MARTIN' 'M' 130 92

The output dataset array has three observations and three variables.

• “Create a Dataset Array from Workspace Variables” on page 2-63
• “Create a Dataset Array from a File” on page 2-69

Input Arguments

C — Input cell array
cell array

Input cell array to convert to a dataset array, specified as an M-by-N cell array.
Each column of C becomes a variable in the output dataset array, ds. By default,
cell2dataset assumes that the first row of C contains variable names.

Data Types: cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ReadVarNames',false,'ReadObsNames',true specifies that the first
row of the cell array does not contain variable names, but the first column contains
observation names.

'ReadVarNames' — Indicator for whether or not to read variable names
true (default) | false

Indicator for whether or not to read variable names from the first row of the input cell
array, specified as the comma-separated pair consisting of 'ReadVarNames' and either
true or false. The default value is true, unless variable names are specified using the
name-value pair argument VarNames. When ReadVarNames is false, cell2dataset
creates default variable names if you do not provide any.

22 Functions — Alphabetical List

22-278

Example: 'ReadVarNames',false

'VarNames' — Variable names for output dataset array
cell array of strings

Variable names for the output dataset array, specified as the comma-separated pair
consisting of 'VarNames' and a cell array of strings. You must provide a variable name
for each variable in ds. The names must be valid MATLAB identifiers, and must be
unique.
Example: 'VarNames',{'myVar1','myVar2','myVar3'}

'ReadObsNames' — Indicator for whether or not to read observation names
false (default) | true

Indicator for whether or not to read observation names from the input cell array,
specified as the comma-separated pair consisting of 'ReadObsNames' and either true
or false. When ReadObsNames has the value true, cell2dataset creates observation
names in ds using the first column of C, and sets ds.Properties.DimNames equal to
{C{1,1},'Variables'}.

Example: 'ReadObsNames',true

'ObsNames' — Observation names for output dataset array
cell array of strings

Observation names for the output dataset array, specified as the comma-separated pair
consisting of 'ObsNames' and a cell array of strings. The names do not need to be valid
MATLAB identifiers, but they must be unique.

'NumCols' — Number of columns for each variable
vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair
consisting of 'NumCols' and a vector of nonnegative integers. When the number of
columns for a variable is greater than one, cell2dataset combines multiple columns
in C into a single variable in ds. The vector you assign to NumCols must sum to
size(C,2), or size(C,1) of ReadObsNames is equal to true.

For example, to convert a cell array with eight columns into a dataset array with five
variables, specify a vector with five elements that sum to eight, such as 'NumCols',
[1,1,3,1,2].

 cell2dataset

22-279

Output Arguments

ds — Output dataset array
dataset array

Output dataset array, returned by default with a variable for each column of C, an
observation for each row of C (except for the first row), and variable names corresponding
to the first row of C.

• If you set ReadVarNames equal to false (or specify VarNames), then there is an
observation in ds for each row of C, and cell2dataset creates default variable
names (or uses the names in VarNames).

• If you set ReadObsNames equal to true, then cell2dataset uses the first column of
C as observation names.

• If you specify NumCols, then the number of variables in ds is equal to the length of
the specified vector of column numbers.

More About
• “Dataset Arrays” on page 2-132

See Also
dataset | dataset2cell | struct2dataset

22 Functions — Alphabetical List

22-280

cellstr
Class: dataset

Create cell array of strings from dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

B = cellstr(A)

B = cellstr(A,VARS)

Description

B = cellstr(A) returns the contents of the dataset A, converted to a cell array
of strings. The variables in the dataset must support the conversion and must have
compatible sizes.

B = cellstr(A,VARS) returns the contents of the dataset variables specified by VARS.
VARS is a positive integer, a vector of positive integers, a variable name, a cell array
containing one or more variable names, or a logical vector.

See Also
dataset.double | dataset.replacedata

 chi2cdf

22-281

chi2cdf
Chi-square cumulative distribution function

Syntax

p = chi2cdf(x,v)

p = chi2cdf(x,v,'upper')

Description

p = chi2cdf(x,v) computes the chi-square cdf at each of the values in x using
the corresponding degrees of freedom in v. x and v can be vectors, matrices, or
multidimensional arrays that have the same size. The degrees of freedom parameters
in v must be positive integers, and the values in x must lie on the interval [0 Inf].
A scalar input is expanded to a constant array with the same dimensions as the other
input.

p = chi2cdf(x,v,'upper') returns the complement of the chi-square cdf at each
value in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

The χ2 cdf for a given value x and degrees-of-freedom ν is

p F x
t e

dt
t

x
= =

− −

∫(|)
(/)

() / /

/
n

n

n

n

2 2 2

20 2 2Γ

where Γ(·) is the Gamma function.

The chi-square density function with ν degrees-of-freedom is the same as the gamma
density function with parameters ν/2 and 2.

Examples

Compute Chi-Square CDF

probability = chi2cdf(5,1:5)

22 Functions — Alphabetical List

22-282

probability =

 0.9747 0.9179 0.8282 0.7127 0.5841

probability = chi2cdf(1:5,1:5)

probability =

 0.6827 0.6321 0.6084 0.5940 0.5841

More About
• “Chi-Square Distribution” on page B-29

See Also
cdf | chi2pdf | chi2inv | chi2stat | chi2rnd

 chi2gof

22-283

chi2gof
Chi-square goodness-of-fit test

Syntax

h = chi2gof(x)

h = chi2gof(x,Name,Value)

[h,p] = chi2gof(___)

[h,p,stats] = chi2gof(___)

Description

h = chi2gof(x) returns a test decision for the null hypothesis that the data in vector x
comes from a normal distribution with a mean and variance estimated from x, using the
chi-square goodness-of-fit test. The alternative hypothesis is that the data does not come
from such a distribution. The result h is 1 if the test rejects the null hypothesis at the 5%
significance level, and 0 otherwise.

h = chi2gof(x,Name,Value) returns a test decision for the chi-square goodness-of-
fit test with additional options specified by one or more name-value pair arguments. For
example, you can test for a distribution other than normal, or change the significance
level of the test.

[h,p] = chi2gof(___) also returns the p-value p of the hypothesis test, using any of
the input arguments from the previous syntaxes.

[h,p,stats] = chi2gof(___) also returns the structure stats, containing
information about the test statistic.

Examples

Test for a Normal Distribution

Create a standard normal probability distribution object. Generate a data vector x using
random numbers from the distribution.

22 Functions — Alphabetical List

22-284

pd = makedist('Normal');

rng default; % for reproducibility

x = random(pd,100,1);

Test the null hypothesis that the data in x comes from a population with a normal
distribution.

h = chi2gof(x)

h =

 0

The returned value h = 0 indicates that chi2gof does not reject the null hypothesis at
the default 5% significance level.

Test the Hypothesis at a Different Significance Level

Create a standard normal probability distribution object. Generate a data vector x using
random numbers from the distribution.

pd = makedist('Normal');

rng default; % for reproducibility

x = random(pd,100,1);

Test the null hypothesis that the data in x comes from a population with a normal
distribution at the 1% significance level.

[h,p] = chi2gof(x,'Alpha',0.01)

h =

 0

p =

 0.3775

The returned value h = 0 indicates that chi2gof does not reject the null hypothesis at
the 1% significance level.

Test for a Weibull Distribution Using a Probability Distribution Object

Navigate to the appropriate folder and load the lightbulb lifetime sample data.

cd(matlabroot);

cd('help/toolbox/stats/examples');

load lightbulb;

 chi2gof

22-285

Create a vector from the first column of the data matrix, which contains the lifetime in
hours of the lightbulbs.

x = lightbulb(:,1);

Test the null hypothesis that the data in x comes from a population with a Weibull
distribution. Use fitdist to create a probability distribution object with A and B
parameters estimated from the data.

pd = fitdist(x,'Weibull');

h = chi2gof(x,'CDF',pd)

h =

 1

The returned value h = 1 indicates that chi2gof rejects the null hypothesis at the
default 5% significance level.

Test for a Poisson Distribution

Create six bins, numbered 0 through 5, to use for data pooling.

bins = 0:5;

Create a vector containing the observed counts for each bin and compute the total
number of observations.

obsCounts = [6 16 10 12 4 2];

n = sum(obsCounts);

Fit a Poisson probability distribution object to the data and compute the expected count
for each bin. Use the transpose operator .' to transform bins and obsCounts from row
vectors to column vectors.

pd = fitdist(bins','Poisson','Frequency',obsCounts');

expCounts = n * pdf(pd,bins);

Test the null hypothesis that the data in obsCounts comes from a Poisson distribution
with a lambda parameter equal to lambdaHat.

[h,p,st] = chi2gof(bins,'Ctrs',bins,...

 'Frequency',obsCounts, ...

 'Expected',expCounts,...

 'NParams',1)

22 Functions — Alphabetical List

22-286

h =

 0

p =

 0.4654

st =

 chi2stat: 2.5550

 df: 3

 edges: [1x6 double]

 O: [6 16 10 12 6]

 E: [7.0429 13.8041 13.5280 8.8383 6.0284]

The returned value h = 0 indicates that chi2gof does not reject the null hypothesis at
the default 5% significance level. The vector E contains the expected counts for each bin
under the null hypothesis, and O contains the observed counts for each bin.

Input Arguments

x — Sample data
vector

Sample data for the hypothesis test, specified as a vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NBins',8,'Alpha',0.01 pools the data into eight bins and conducts the
hypothesis test at the 1% significance level.

'NBins' — Number of bins
10 (default) | positive integer value

Number of bins to use for the data pooling, specified as the comma-separated pair
consisting of 'NBins' and a positive integer value. If you specify a value for NBins, do
not specify a value for Ctrs or Edges.

 chi2gof

22-287

Example: 'NBins',8

Data Types: single | double

'Ctrs' — Bin centers
vector

Bin centers, specified as the comma-separated pair consisting of 'Ctrs' and a vector
of center values for each bin. If you specify a value for Ctrs, do not specify a value for
NBins or Edges.

Example: 'Ctrs',[1 2 3 4 5]

Data Types: single | double

'Edges' — Bin edges
vector

Bin edges, specified as the comma-separated pair consisting of 'Edges' and a vector
of edge values for each bin. If you specify a value for Edges, do not specify a value for
NBins or Ctrs.

Example: 'Edges',[-2.5 -1.5 -0.5 0.5 1.5 2.5]

Data Types: single | double

'CDF' — cdf of hypothesized distribution
probability distribution object | function handle | cell array

The cdf of the hypothesized distribution, specified as the comma-separated pair
consisting of 'CDF' and a probability distribution object, function handle, or cell array.

• If CDF is a probability distribution object, the degrees of freedom account for whether
you estimate the parameters using fitdist or specify them using makedist.

• If CDF is a function handle, the distribution function must take x as its only
argument.

• If CDF is a cell array, the first element must be a function handle, and the remaining
elements must be parameter values, one per cell. The function must take x as its first
argument, and the other parameters in the array as later arguments.

If you specify a value for CDF, do not specify a value for Expected.

Example: 'CDF',pd_object

22 Functions — Alphabetical List

22-288

Data Types: single | double

'Expected' — Expected counts
vector of nonnegative values

Expected counts for each bin, specified as the comma-separated pair of 'Expected'
and a vector of nonnegative values. If Expected depends on estimated parameters, use
NParams to ensure that chi2gof correctly calculates the degrees of freedom. If you
specify a value for Expected, do not specify a value for CDF.

Example: 'Expected',[19.1446 18.3789 12.3224 8.2432 4.1378]

Data Types: single | double

'NParams' — Number of estimated parameters
positive integer value

Number of estimated parameters used to describe the null distribution, specified as the
comma-separated pair consisting of 'NParams' and a positive integer value. This value
adjusts the degrees of freedom of the test based on the number of estimated parameters
used to compute the cdf or expected counts.

The default value for NParams depends on how you specify the null distribution:

• If you specify CDF as a probability distribution object, NParams is equal to the
number of estimated parameters used to create the object.

• If you specify CDF as a function name or handle, the default value of NParams is 0.
• If you specify CDF as a cell array, the default value of NParams is the number of

parameters in the array.
• If you specify Expected, the default value of NParams is 0.

Example: 'NParams',1

Data Types: single | double

'EMin' — Minimum expected count per bin
5 (default) | nonnegative integer value

Minimum expected count per bin, specified as the comma-separated pair consisting of
'EMin' and a nonnegative integer value. If the bin at the extreme end of either tail has
an expected value less than EMin, it is combined with a neighboring bin until the count
in each extreme bin is at least 5. If any interior bins have a count less than 5, chi2gof

 chi2gof

22-289

displays a warning, but does not combine the interior bins. In that case, you should use
fewer bins, or provide bin centers or edges, to increase the expected counts in all bins.
Specify EMin as 0 to prevent the combining of bins.

Example: 'EMin',0

Data Types: single | double

'Frequency' — Frequency
vector of nonnegative integer values

Frequency of data values, specified as the comma-separated pair consisting of
'Frequency' and a vector of nonnegative integer values that is the same length as the
vector x.
Example: 'Frequency',[20 16 13 10 8]

Data Types: single | double

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

22 Functions — Alphabetical List

22-290

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics
structure

Test statistics, returned as a structure containing the following:

• chi2stat — Value of the test statistic.
• df — Degrees of freedom of the test.
• edges — Vector of bin edges after pooling.
• O — Vector of observed counts for each bin.
• E — Vector of expected counts for each bin.

More About

Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test determines if a data sample comes from a specified
probability distribution, with parameters estimated from the data.

The test groups the data into bins, calculating the observed and expected counts for those
bins, and computing the chi-square test statistic

c2 2

1

= -()
=
Â O E Ei i

i

N

i/ ,

where Oi are the observed counts and Ei are the expected counts based on the
hypothesized distribution. The test statistic has an approximate chi-square distribution
when the counts are sufficiently large.

Algorithms

chi2gof compares the value of the test statistic to a chi-square distribution with degrees
of freedom equal to nbins - 1 - nparams, where nbins is the number of bins used for the
data pooling and nparams is the number of estimated parameters used to determine the

 chi2gof

22-291

expected counts. If there are not enough degrees of freedom to conduct the test, chi2gof
returns the p-value as NaN.
• “Chi-Square Distribution” on page B-29

See Also
kstest | lillietest

22 Functions — Alphabetical List

22-292

chi2inv
Chi-square inverse cumulative distribution function

Syntax

X = chi2inv(P,V)

Description

X = chi2inv(P,V) computes the inverse of the chi-square cdf with degrees of freedom
specified by V for the corresponding probabilities in P. P and V can be vectors, matrices,
or multidimensional arrays that have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other inputs.

The degrees of freedom parameters in V must be positive integers, and the values in P
must lie in the interval [0 1].

The inverse chi-square cdf for a given probability p and ν degrees of freedom is

x F p x F x p= = =−1 (|) { : (|) }n n

where

p F x
t e

dt
t

x
= =

− −

∫(|)
(/)

() / /

/
n

n

n

n

2 2 2

20 2 2Γ

and Γ(·) is the Gamma function. Each element of output X is the value whose
cumulative probability under the chi-square cdf defined by the corresponding degrees of
freedom parameter in V is specified by the corresponding value in P.

Examples

Find a value that exceeds 95% of the samples from a chi-square distribution with 10
degrees of freedom.

 chi2inv

22-293

x = chi2inv(0.95,10)

x =

 18.3070

You would observe values greater than 18.3 only 5% of the time by chance.

More About
• “Chi-Square Distribution” on page B-29

See Also
icdf | chi2cdf | chi2pdf | chi2stat | chi2rnd

22 Functions — Alphabetical List

22-294

chi2pdf
Chi-square probability density function

Syntax

Y = chi2pdf(X,V)

Description

Y = chi2pdf(X,V) computes the chi-square pdf at each of the values in X using
the corresponding degrees of freedom in V. X and V can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of the output Y.
A scalar input is expanded to a constant array with the same dimensions as the other
input.

The degrees of freedom parameters in V must be positive integers, and the values in X
must lie on the interval [0 Inf].

The chi-square pdf for a given value x and ν degrees of freedom is

y f x
x e x

= =
− −

(|)
(/)

()/ /

/
n

n

n

n

2 2 2

22 2Γ

where Γ(·) is the Gamma function.

If x is standard normal, then x2 is distributed chi-square with one degree of freedom. If
x1, x2, ..., xn are n independent standard normal observations, then the sum of the squares
of the x's is distributed chi-square with n degrees of freedom (and is equivalent to the
gamma density function with parameters ν/2 and 2).

Examples
nu = 1:6;

x = nu;

 chi2pdf

22-295

y = chi2pdf(x,nu)

y =

 0.2420 0.1839 0.1542 0.1353 0.1220 0.1120

The mean of the chi-square distribution is the value of the degrees of freedom parameter,
nu. The above example shows that the probability density of the mean falls as nu
increases.

More About
• “Chi-Square Distribution” on page B-29

See Also
pdf | chi2cdf | chi2inv | chi2stat | chi2rnd

22 Functions — Alphabetical List

22-296

chi2rnd

Chi-square random numbers

Syntax

R = chi2rnd(V)

R = chi2rnd(V,m,n,...)

R = chi2rnd(V,[m,n,...])

Description

R = chi2rnd(V) generates random numbers from the chi-square distribution
with degrees of freedom parameters specified by V. V can be a vector, a matrix, or a
multidimensional array. R is the same size as V.

R = chi2rnd(V,m,n,...) or R = chi2rnd(V,[m,n,...]) generates an m-by-n-
by-... array containing random numbers from the chi-square distribution with degrees of
freedom parameter V. V can be a scalar or an array of the same size as R.

Examples

Note that the first and third commands are the same, but are different from the second
command.

r = chi2rnd(1:6)

r =

 0.0037 3.0377 7.8142 0.9021 3.2019 9.0729

r = chi2rnd(6,[1 6])

r =

 6.5249 2.6226 12.2497 3.0388 6.3133 5.0388

r = chi2rnd(1:6,1,6)

r =

 0.7638 6.0955 0.8273 3.2506 1.5469 10.9197

 chi2rnd

22-297

More About
• “Chi-Square Distribution” on page B-29

See Also
random | chi2cdf | chi2pdf | chi2inv | chi2stat

22 Functions — Alphabetical List

22-298

chi2stat
Chi-square mean and variance

Syntax

[M,V] = chi2stat(NU)

Description

[M,V] = chi2stat(NU) returns the mean of and variance for the chi-square
distribution with degrees of freedom parameters specified by NU.

The mean of the chi-square distribution is ν, the degrees of freedom parameter, and the
variance is 2ν.

Examples
nu = 1:10;

nu = nu'*nu;

[m,v] = chi2stat(nu)

m =

 1 2 3 4 5 6 7 8 9 10

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

 4 8 12 16 20 24 28 32 36 40

 5 10 15 20 25 30 35 40 45 50

 6 12 18 24 30 36 42 48 54 60

 7 14 21 28 35 42 49 56 63 70

 8 16 24 32 40 48 56 64 72 80

 9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

v =

 2 4 6 8 10 12 14 16 18 20

 4 8 12 16 20 24 28 32 36 40

 6 12 18 24 30 36 42 48 54 60

 8 16 24 32 40 48 56 64 72 80

 chi2stat

22-299

10 20 30 40 50 60 70 80 90 100

12 24 36 48 60 72 84 96 108 120

14 28 42 56 70 84 98 112 126 140

16 32 48 64 80 96 112 128 144 160

18 36 54 72 90 108 126 144 162 180

20 40 60 80 100 120 140 160 180 200

More About
• “Chi-Square Distribution” on page B-29

See Also
chi2cdf | chi2pdf | chi2inv | chi2rnd

22 Functions — Alphabetical List

22-300

children
Class: classregtree

Child nodes

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

C = children(t)

C = children(t,nodes)

Description

C = children(t) returns an n-by-2 array C containing the numbers of the child nodes
for each node in the tree t, where n is the number of nodes. Leaf nodes have child node 0.

C = children(t,nodes) takes a vector nodes of node numbers and returns the
children for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

 children

22-301

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

C = children(t)

C =

 2 3

 0 0

 4 5

 6 7

 0 0

22 Functions — Alphabetical List

22-302

 8 9

 0 0

 0 0

 0 0

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | parent | numnodes

 cholcov

22-303

cholcov
Cholesky-like covariance decomposition

Syntax

T = cholcov(SIGMA)

[T,num] = cholcov(SIGMA)

[T,num] = cholcov(SIGMA,0)

Description

T = cholcov(SIGMA) computes T such that SIGMA = T'*T. SIGMA must be square,
symmetric, and positive semi-definite. If SIGMA is positive definite, then T is the square,
upper triangular Cholesky factor. If SIGMA is not positive definite, T is computed from
an eigenvalue decomposition of SIGMA. T is not necessarily triangular or square in this
case. Any eigenvectors whose corresponding eigenvalue is close to zero (within a small
tolerance) are omitted. If any remaining eigenvalues are negative, T is empty.

[T,num] = cholcov(SIGMA) returns the number num of negative eigenvalues of
SIGMA, and T is empty if num is positive. If num is zero, SIGMA is positive semi-definite. If
SIGMA is not square and symmetric, num is NaN and T is empty.

[T,num] = cholcov(SIGMA,0) returns num equal to zero if SIGMA is positive
definite, and T is the Cholesky factor. If SIGMA is not positive definite, num is a positive
integer and T is empty. [...] = cholcov(SIGMA,1) is equivalent to [...] =
cholcov(SIGMA).

Examples

The following 4-by-4 covariance matrix is rank-deficient:

C1 = [2 1 1 2;1 2 1 2;1 1 2 2;2 2 2 3]

C1 =

 2 1 1 2

 1 2 1 2

 1 1 2 2

22 Functions — Alphabetical List

22-304

 2 2 2 3

rank(C1)

ans =

 3

Use cholcov to factor C1:

T = cholcov(C1)

T =

 -0.2113 0.7887 -0.5774 0

 0.7887 -0.2113 -0.5774 0

 1.1547 1.1547 1.1547 1.7321

C2 = T'*T

C2 =

 2.0000 1.0000 1.0000 2.0000

 1.0000 2.0000 1.0000 2.0000

 1.0000 1.0000 2.0000 2.0000

 2.0000 2.0000 2.0000 3.0000

Use T to generate random data with the specified covariance:

C3 = cov(randn(1e6,3)*T)

C3 =

 1.9973 0.9982 0.9995 1.9975

 0.9982 1.9962 0.9969 1.9956

 0.9995 0.9969 1.9980 1.9972

 1.9975 1.9956 1.9972 2.9951

See Also
chol | cov

 CIsNonEmpty property

22-305

CIsNonEmpty property
Class: NaiveBayes

Flag for non-empty classes

Description

The CIsNonEmpty property is a logical vector of length NClasses specifying which
classes are not empty. When the grouping variable is categorical, it may contain
categorical levels that don't appear in the elements of the grouping variable. Those levels
are empty and NaiveBayes ignores them for the purposes of training the classifier.

22 Functions — Alphabetical List

22-306

classcount
Class: classregtree

Class counts

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

P = classcount(t)

P = classcount(t,nodes)

Description

P = classcount(t) returns an n-by-m array P of class counts for the nodes in the
classification tree t, where n is the number of nodes and m is the number of classes. For
any node number i, the class counts P(i,:) are counts of observations (from the data
used in fitting the tree) from each class satisfying the conditions for node i.

P = classcount(t,nodes) takes a vector nodes of node numbers and returns the
class counts for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

 classcount

22-307

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

P = classcount(t)

P =

 50 50 50

 50 0 0

 0 50 50

22 Functions — Alphabetical List

22-308

 0 49 5

 0 1 45

 0 47 1

 0 2 4

 0 47 0

 0 0 1

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | numnodes

 ClassificationBaggedEnsemble class

22-309

ClassificationBaggedEnsemble class

Classification ensemble grown by resampling

Description

ClassificationBaggedEnsemble combines a set of trained weak learner models and
data on which these learners were trained. It can predict ensemble response for new data
by aggregating predictions from its weak learners.

Construction

ens = fitensemble(X,Y,'bag',nlearn,learners,'type','classification')

creates a bagged classification ensemble. For syntax details, see the fitensemble
reference page.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CombineWeights

String describing how ens combines weak learner weights, either 'WeightedSum' or
'WeightedAverage'.

FitInfo

Numeric array of fit information. The FitInfoDescription property describes the
content of this array.

FitInfoDescription

String describing the meaning of the FitInfo array.

22 Functions — Alphabetical List

22-310

FResample

Numeric scalar between 0 and 1. FResample is the fraction of training data
fitensemble resampled at random for every weak learner when constructing the
ensemble.

Method

String describing the method that creates ens.

ModelParameters

Parameters used in training ens.

NumTrained

Number of trained weak learners in ens, a scalar.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in X.

ReasonForTermination

String describing the reason fitensemble stopped adding weak learners to the
ensemble.

Replace

Logical value indicating if the ensemble was trained with replacement (true) or without
replacement (false).

ResponseName

String with the name of the response variable Y.

ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For
a list of built-in transformation functions and the syntax of custom transformation
functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

 ClassificationBaggedEnsemble class

22-311

ens.ScoreTransform = 'function'

or

ens.ScoreTransform = @function

Trained

Trained learners, a cell array of compact classification models.

TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T
elements, where T is the number of weak learners in learners.

UseObsForLearner

Logical matrix of size N-by-NumTrained, where N is the number of observations
in the training data and NumTrained is the number of trained weak learners.
UseObsForLearner(I,J) is true if observation I was used for training learner J, and
is false otherwise.

W

Scaled weights, a vector with length n, the number of rows in X. The sum of the elements
of W is 1.

X

Matrix of predictor values that trained the ensemble. Each column of X represents one
variable, and each row represents one observation.

Y

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of Y represents the classification of
the corresponding row of X.

Methods

oobEdge
Out-of-bag classification edge

22 Functions — Alphabetical List

22-312

oobLoss
Out-of-bag classification error

oobMargin
Out-of-bag classification margins

oobPredict
Predict out-of-bag response of ensemble

Inherited Methods

compact
Compact classification ensemble

crossval
Cross validate ensemble

resubEdge
Classification edge by resubstitution

resubLoss
Classification error by resubstitution

resubMargin
Classification margins by resubstitution

resubPredict
Predict ensemble response by
resubstitution

resume
Resume training ensemble

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge

loss
Classification error

margin
Classification margins

 ClassificationBaggedEnsemble class

22-313

predict
Predict classification

predictorImportance
Estimates of predictor importance

removeLearners
Remove members of compact classification
ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a bagged ensemble for the ionosphere data, and examine its resubstitution
loss:

load ionosphere

rng(0,'twister') % for reproducibility

ens = fitensemble(X,Y,'bag',100,'Tree',...

 'type','classification');

L = resubLoss(ens)

L =

 0

The ensemble does a perfect job classifying its training data.

See Also
ClassificationEnsemble | fitensemble | fitctree

How To
• “Ensemble Methods” on page 16-68

22 Functions — Alphabetical List

22-314

ClassificationECOC class

Superclasses: CompactClassificationECOC

Multiclass model for support vector machines or other classifiers

Description

ClassificationECOC is an error-correcting output codes (ECOC) classifier for
multiclass learning by reduction to multiple, binary classifiers such as support vector
machines (SVMs). Train a ClassificationECOC classifier using fitcecoc and the
training data.

Trained ClassificationECOC classifiers store the training data, parameter values,
prior probabilities, and coding matrices. You can use these classifiers to:

• Estimate resubstitution predictions. For details, see resubPredict.
• Predict labels or posterior probabilities for new data. For details, see predict.

Construction

Mdl = fitcecoc(X,Y) returns a trained ECOC multiclass model (Mdl) based on the
input variables (also known as predictors, features, or attributes) X and output variables
(also known as responses or class labels) Y. By default, fitcecoc uses the one-versus-
one encoding scheme to train multiple, binary support vector machine (SVM) classifiers.
For details, see fitcecoc.

Mdl = fitcecoc(X,Y,Name,Value) returns a trained ECOC classifier with additional
options specified by one or more Name,Value pair arguments. For name-value pair
argument details, e.g., binary learner types or coding design options, see fitcecoc.

If you set one of the following five options, then Mdl is a
ClassificationPartitionedECOC model: 'CrossVal', 'CVPartition',
'Holdout', 'KFold', or 'Leaveout'. Otherwise, Mdl is a ClassificationECOC
classifier.

 ClassificationECOC class

22-315

Input Arguments

X — Predictor data
matrix of numeric values

Predictor data to which the ECOC classifier is trained, specified as a matrix of numeric
values.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one predictor.

The length of Y and the number of rows of X must be equal.

It is good practice to standardize the predictor variables using the Standardize name-
value pair argument.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels to which the ECOC classifier is trained, specified as a categorical or
character array, logical or numeric vector, or cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The length of Y and the number of rows of X must be equal.

It is good practice to specify the order of the classes using the ClassNames name-value
pair argument.

To specify the response variable name, use the ResponseName name-value pair
argument.

Note: The software treats NaN, empty strings (''), and <undefined> elements as
missing data. The software removes rows of X corresponding to missing values in Y.
However, the treatment of missing values in X varies among binary learners. For details,

22 Functions — Alphabetical List

22-316

see the training functions for your binary learners: fitcdiscr, fitcknn, fitcnb,
fitcsvm, fitctree, or fitensemble. Removing observations decreases the effective
training or cross-validation sample size.

Properties

BinaryLearners — Trained binary learners
cell vector of model objects

Trained binary learners, specified as a cell vector of model objects. BinaryLearners has
as many elements as classes in Y.

BinaryLearner{j} was trained by the software to solve the binary problem specified
by CodingMatrix(:,j). For example, for multiclass learning using SVM learners, each
element of BinaryLearners is a CompactClassificationSVM classifier.

Data Types: cell

BinaryLoss — Binary learner loss function
string

Binary learner loss function, specified as a string.

If you train using binary learners that use different loss functions, then the software sets
BinaryLoss to 'hamming'. To potentially increase accuracy, set a different binary loss
function than this default during prediction or loss computation using the BinaryLoss
name-value pair argument of predict or loss.

Data Types: char

BinaryY — Binary learner class labels
numeric matrix

Binary learner class labels, specified as a numeric matrix. BinaryY is a
NumObservations-by-L matrix, where L is the number of binary learners
(size(CodingMatrix,2)).

Elements of BinaryY are -1, 0, or 1, and the value corresponds to a dichotomous class
assignment. This table describes how learner j assigns observation k to a dichotomous
class corresponding to the value of BinaryY(k,j).

 ClassificationECOC class

22-317

Value Dichotomous Class Assignment

-1 Negative class
0 Before training, learner j removes

observations in class i from the data set.
1 Positive class

Data Types: double

CategoricalPredictors — Categorical predictor indices
numeric vector

Categorical predictor indices, specified as a numeric vector. CategoricalPredictors
contains indices 1 through p, where p is the number of columns of X (size(X,2)).

Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Unique class labels in the response data (Y), specified as a categorical or character array,
logical or numeric vector, or cell array of strings. ClassNames has the same data type as
Y.

CodingMatrix — Codes specifying class assignments
numeric matrix

Codes specifying class assignments for the binary learners, specified as a numeric
matrix. CodingMatrix is a K-by-L matrix, where K is the number of classes and L is the
number of binary learners.

Elements of CodingMatrix are -1, 0, or 1, and the value corresponds to a dichotomous
class assignment. This table describes the meaning of CodingMatrix(i,j), that is, the
class that learner j assigns to observations in class i.

Value Dichotomous Class Assignment

-1 Negative class
0 Before training, learner j removes

observations in class i from the data set.

22 Functions — Alphabetical List

22-318

Value Dichotomous Class Assignment

1 Positive class

Data Types: double | single | int8 | int16 | int32 | int64

CodingName — Coding design name
string

Coding design name, specified as a string. For more details, see “Coding Design” on page
22-324.
Data Types: char

Cost — Misclassification costs
square numeric matrix

Misclassification costs, specified as a square numeric matrix. Cost has K rows and
columns, where K is the number of classes.

Cost(i,j) is the cost of misclassifying a point into class j if its true class is i. The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary
learners.

This property is read-only.
Data Types: double

LearnerWeights — Binary learner weights
numeric row vector

Binary learner weights, specified as a numeric row vector. LeanerWeights has length
equal to the number of binary learners (size(CodingMatrix,2)).

LearnerWeights(j) is the sum of the observation weights that binary learner j used to
train its classifier.

The software uses LearnerWeights to fit posterior probabilities by minimizing the
Kullback-Leibler divergence.
Data Types: double | single

 ClassificationECOC class

22-319

ModelParameters — Parameter values
object

Parameter values, e.g., the name-value pair argument values, used to train the ECOC
classifier, specified as an object. ModelParameters does not contain estimated
parameters.

Access properties of ModelParameters using dot notation. For example,
list the templates containing parameters the binary learners using
SVMModel.ModelParameters.BinaryLearner.

NumObservations — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

PredictorNames — Predictors names
cell array of strings

Predictors names in the order that they appear in X, specified as a cell array of strings
containing the predictor names. PredictorNames has length equal to the number of
columns in X.

Data Types: cell

Prior — Prior class probabilities
numeric vector

Prior class probabilities, specified as a numeric vector. Prior has as many elements as
classes in Y, and the order of the elements corresponds to the elements of ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary
learners.

This property is read only.
Data Types: double

ResponseName — Response variable name
string

Response variable name, specified as a string.

22 Functions — Alphabetical List

22-320

Data Types: char

ScoreTransform — Score transformation function
string | function handle

Score transformation function, specified as a string or function handle. ScoreTransform
describes how the software transforms raw, predicted classification scores.

To change the score transformation function to, e.g., function, use dot notation.

• For a built-in function, enter a string.

SVMModel.ScoreTransform = 'function';

This table lists the supported, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

SVMModel.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

 ClassificationECOC class

22-321

Data Types: char | function_handle

W — Observation weights
numeric vector

Observation weights used to train the classifier, specified as a numeric vector. W has
NumObervations elements.

The software normalizes the weights used for training so that nansum(W) is 1.

Data Types: single | double

X — Unstandardized predictor data used to train the classifier
numeric matrix

Unstandardized predictor data used to train the classifier, specified as a numeric matrix.
X is a NumObservations-by-p matrix, where p is the number of predictors.

Each row of X corresponds to one observation, and each column corresponds to one
variable.
Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of
strings

Observed class labels used to train the classifier, specified as a categorical or character
array, logical or numeric vector, or cell array of strings. Y has NumObservations
elements, and is the same data type as the input argument Y of fitcecoc.

Each row of Y represents the observed classification of the corresponding row of X.

Methods

compact
Compact error-correcting output codes
multiclass model

crossval
Cross-validated, error-correcting output
code multiclass model

22 Functions — Alphabetical List

22-322

resubEdge
Classification edge for error-correcting
output codes, multiclass models by
resubstitution

resubLoss
Classification loss for error-correcting
output codes, multiclass models by
resubstitution

resubMargin
Classification margins for error-correcting
output codes, multiclass models by
resubstitution

resubPredict
Predict error-correcting output codes,
multiclass model resubstitution responses

Inherited Methods

compareHoldout
Compare accuracies of two classification
models using new data

discardSupportVectors
Discard support vectors of linear support
vector machine binary learners

edge
Classification edge for error-correcting
output code mutliclass classifiers

loss
Classification loss for error-correcting
output code multiclass classifiers

margin
Classification margins for error-correcting
output code multiclass classifiers

predict
Predict labels for error-correcting output
code multiclass classifiers

 ClassificationECOC class

22-323

Definitions

Error-Correcting Output Code Multiclass Model

An error-correcting output code multiclass model (ECOC) reduces the problem of
classification with three or more classes to a set of binary classifiers.

ECOC classification requires a coding design, which determines the classes that the
binary learners train on, and a decoding scheme, which determines how the results
(predictions) of the binary classifiers are aggregated. Suppose that there are three
classes, the coding design is one-versus-one, the decoding scheme uses loss g, and the
learners are SVMs. To build this classification model, ECOC follows these steps.

1

A one-versus-one coding design is

Learner 1 Learner 2 Learner 3

Class 1

Class 2

Class 3

1 1 0

1 0 1

0 1

-

- --1

Learner 1 trains on observations having Class 1 and Class 2, and treats Class
1 as the positive class and Class 2 as the negative class. The other learners are
trained similarly. Let M be the coding design matrix with elements mkl, and sl be the
predicted classification score for the positive class of learner l.

2 A new observation is assigned to the class (ˆk) that minimizes the aggregation of the
losses for the L binary learners. That is,

ˆ

,

.k

sm g m

m
k

l

L

kl kl l

l

L

kl

=

()
=

=

Â

Â

argmin 1

1

ECOC models can improve classification accuracy, even compared to other multiclass
models [2].

22 Functions — Alphabetical List

22-324

Coding Design

A coding design is a matrix where elements direct which classes are trained by each
binary learner, that is, how the multiclass problem is reduced to a series of binary
problems.

Each row of the coding design corresponds to a distinct class, and each column
corresponds to a binary learner. In a ternary coding design (adopted by the software), for
a particular column (or binary learner):

• Rows containing a 1 indicate to the binary learner to group all observations in the
corresponding classes into a positive class.

• Rows containing a -1 indicate to the binary learner to group all observations in the
corresponding classes into a negative class.

• Rows containing a 0 indicate to the binary learner to ignore all observations in the
corresponding classes.

Coding matrices with large, minimal, pair-wise row distances based on the Hamming
measure are desirable. For details on the pair-wise row distance measure, see “Random
Coding Design Matrices” on page 22-1542 and [4].

This table describes popular coding designs. For the example, suppose K (the number of
distinct classes) is 3.

Coding Design Description Number of Learners Minimal Pair-Wise
Row Distance

one-versus-all (OVA) For each binary
learner, one class
is positive and the
rest are negative.
This design exhausts
all combinations
of positive class
assignments.

K 2

one-versus-one
(OVO)

For each binary
learner, one class
is positive, another
is negative, and the
rest are ignored.
This design exhausts

K(K – 1)/2 1

 ClassificationECOC class

22-325

Coding Design Description Number of Learners Minimal Pair-Wise
Row Distance

all combinations
of class pair
assignments.

binary complete This design
partitions the classes
into all binary
combinations, and
does not ignore any
classes. That is, all
class assignments
are -1 and 1 with
at least one positive
and negative class in
the assignment for
each binary learner.

2K – 1 – 1 2K – 2

ternary complete This design
partitions the classes
into all ternary
combinations.
That is, all class
assignments are 0,
-1, and 1 with at
least one positive
and negative class in
the assignment for
each binary learner.

(3K – 2K + 1 + 1)/2 3K – 2

ordinal For the first binary
learner, the first
class is negative, and
the rest positive. For
the second binary
learner, the first two
classes are negative,
and the rest positive,
and so on.

K – 1 1

22 Functions — Alphabetical List

22-326

Coding Design Description Number of Learners Minimal Pair-Wise
Row Distance

dense random For each binary
learner, the software
randomly assigns
classes into positive
or negative classes,
with at least one
of each type. For
more details, see
“Random Coding
Design Matrices” on
page 22-1542.

Random, but
approximately 10
log2K

Variable

sparse random For each binary
learner, the software
randomly assigns
classes as positive
or negative with
probability 0.25
for each, and
ignores classes with
probability 0.5. For
more details, see
“Random Coding
Design Matrices” on
page 22-1542.

Random, but
approximately 15
log2K

Variable

This plot compares the number of binary learners for the coding designs with increasing
K.

 ClassificationECOC class

22-327

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples
Train a Multiclass Model Using SVM Learners

Train an error-correcting output codes (ECOC) multiclass model using support vector
machine (SVM) binary learners.

22 Functions — Alphabetical List

22-328

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

Train an ECOC multiclass model using the default options.

Mdl = fitcecoc(X,Y)

Mdl =

 ClassificationECOC

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 BinaryLearners: {3x1 cell}

 CodingName: 'onevsone'

Mdl is a ClassificationECOC model. By default, fitcecoc uses SVM binary learners,
and uses a one-versus-one coding design. You can access Mdl properties using dot
notation.

Display the coding design matrix.

Mdl.ClassNames

CodingMat = Mdl.CodingMatrix

ans =

 'setosa'

 'versicolor'

 'virginica'

CodingMat =

 1 1 0

 -1 0 1

 ClassificationECOC class

22-329

 0 -1 -1

A one-versus-one coding design on three classes yields three binary learners. Columns
of CodingMat correspond to learners and rows correspond to classes. The class order
corresponds to the order in Mdl.ClassNames. For example, CodingMat(:,1) is [1;
-1; 0], and indicates that the software trains the first SVM binary learner using all
observations classified as 'setosa' and 'versicolor'. Since 'setosa' corresponds
to 1, it is the positive class, and since 'versicolor' corresponds to -1, it is the negative
class.

You can access each binary learner using cell indexing and dot notation.

Mdl.BinaryLearners{1} % The first binary learner

Mdl.BinaryLearners{1}.SupportVectors % Support vector indices

ans =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: [-1 1]

 ScoreTransform: 'none'

 Beta: [4x1 double]

 Bias: 1.4505

 KernelParameters: [1x1 struct]

ans =

 []

Compute the in-sample classification error.

isLoss = resubLoss(Mdl)

isLoss =

 0.0067

22 Functions — Alphabetical List

22-330

The classification error is small, but the classifier might have been overfit. You can cross
validate the classifier using crossval.

Inspect Binary Leaner Properties of ECOC Classifiers

You can access properties of binary learners, such as estimated parameters, using dot
notation.

Load Fisher's iris data set. Use the petal dimensions as predictors.

load fisheriris

X = meas(:,3:4);

Y = species;

Train an ECOC classifier using the SVM binary learners (SVM) and the default coding
design (one-versus-one). Specify to standardize the predictors, and to use the default
linear kernel.

t = templateSVM('Standardize',1,'SaveSupportVectors',true);

predictorNames = {'petalLength','petalWidth'};

responseName = 'irisSpecies';

classNames = {'setosa','versicolor','virginica'}; % Specify class order

Mdl = fitcecoc(X,Y,'Learners',t,'ResponseName',responseName,...

 'PredictorNames',predictorNames,'ClassNames',classNames)

t is a template object that contains options for SVM classification. All properties are
empty ([]), except for Method, StandardizeData, and Type. fitcecoc uses the
default values of the empty properties. Mdl is a ClassificationECOC classifier. You
can access its properties using dot notation.

Display the class names and coding design matrix.

Mdl.ClassNames

Mdl.CodingMatrix

L = size(Mdl.CodingMatrix,2); % Number of SVMs

The columns correspond to SVM binary learners, and the rows to the distinct classes. The
row order corresponds to the order of the ClassNames property of Mdl. For each column:

• A 1 indicates that fitcecoc trained the SVM using observations in the
corresponding class as members of the positive group.

• A -1 indicates that fitcecoc trained the SVM using observations in the
corresponding class as members of the negative group.

• A 0 indicates that the SVM did not use observations in the corresponding class.

 ClassificationECOC class

22-331

For example, fitcecoc assigns all observations to 'setosa' or 'versicolor', but not
'virginica' in the first SVM.

You can access properties of the SVMs using cell subscripting and dot notation. Store the
standardized support vectors of each SVM. Unstandardize the support vectors.

sv = cell(L,1); % Preallocate for support vector indices

for j = 1:L;

 SVM = Mdl.BinaryLearners{j};

 sv{j} = SVM.SupportVectors;

 sv{j} = bsxfun(@plus,bsxfun(@times,sv{j},SVM.Sigma),SVM.Mu);

end

sv is a cell array of matrices containing the unstandardized support vectors for the
SVMs.

Plot the data, and identify the support vectors.

figure;

h = zeros(3 + L,1); % Preallocate for handles

h(1:3) = gscatter(X(:,1),X(:,2),Y);

hold on;

markers = {'ko','ro','bo'};

for j = 1:L;

 svs = sv{j};

 h(j + 3) = plot(svs(:,1),svs(:,2),markers{j},...

 'MarkerSize',10 + (j - 1)*3);

end

title 'Fisher''s Iris -- ECOC Support Vectors';

xlabel(predictorNames{1});

ylabel(predictorNames{2});

legend(h,[classNames,{'Support vectors - SVM 1',...

 'Support vectors - SVM 2','Support vectors - SVM 3'}],...

 'Location','Best')

hold off

You can pass Mdl to:

• predict to classify new observations
• resubLoss to estimate the in-sample classification error
• crossval to perform 10-fold cross validation.

Cross Validate an ECOC Classifier

Train a one-versus-one ECOC classifier using binary SVM learners.

22 Functions — Alphabetical List

22-332

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

rng(1); % For reproducibility

Create an SVM template. It is good practice to standardize the predictors.

t = templateSVM('Standardize',1)

t =

Fit template for classification SVM.

 Alpha: [0x1 double]

 BoxConstraint: []

 CacheSize: []

 CachingMethod: ''

 DeltaGradientTolerance: []

 GapTolerance: []

 KKTTolerance: []

 IterationLimit: []

 KernelFunction: ''

 KernelScale: []

 KernelOffset: []

 KernelPolynomialOrder: []

 NumPrint: []

 Nu: []

 OutlierFraction: []

 ShrinkagePeriod: []

 Solver: ''

 StandardizeData: 1

 SaveSupportVectors: []

 VerbosityLevel: []

 Method: 'SVM'

 Type: 'classification'

t is an SVM template. All of its properties are empty, except for StandardizeData,
Method, and Type. When the software trains the ECOC classifier, it sets the applicable
properties to their default values.

Train the ECOC classifier. It is good practice to specify the class order.

 ClassificationECOC class

22-333

Mdl = fitcecoc(X,Y,'Learners',t,...

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot
notation.

Cross validate Mdl using 10-fold cross validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalization error.

oosLoss = kfoldLoss(CVMdl)

oosLoss =

 0.0400

The out-of-sample classification error is 4%, which indicates that the ECOC classifier
generalizes fairly well.

Algorithms

Random Coding Design Matrices

For a given number of classes, e.g., K, the software generates random coding design
matrices as follows.

1 The software generates one of the following:

a Dense random — The software sets each element of the K-by-Ld coding design
matrix with a 1 or a -1 with equal probability, where L K

d
ª ÈÍ ˘̇10 2log .

b Sparse random — The software sets each element of the K-by-Ls coding design
matrix with a 1, with probability 0.25, a -1 with probability 0.25, and a 0 with
probability 0.5, where L K

s
ª ÈÍ ˘̇15 2log .

22 Functions — Alphabetical List

22-334

2 If a column does not contain at least one 1 and at least one -1, then the software
removes that column.

3 For distinct columns u and v, if u = v or u ≠ -v, then the software removes v from the
coding design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix
with the largest, minimal pair-wise row distance based on the Hamming measure ([4])
given by

D(,) . ,k k m m m m

l

L

k l k l k l k l1 2

1

0 5
1 2 1 2

= -

=

Â

where mkjl is an element of coding design matrix j.

Support Vector Storage

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties
Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather
than Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM
template that specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors','on')

Mdl = fitcecoc(X,Y,'Learners',t);

You can subsequently remove the support vectors and related values by passing the
resulting ClassificationECOC model to discardSupportVectors.

References

[1] Fürnkranz, Johannes. “Round Robin Classification.” J. Mach. Learn. Res., Vol. 2,
2002, pp. 721–747.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp.
285–297.

 ClassificationECOC class

22-335

Alternatives

You can use these alternative algorithms to train a multiclass model:

• Classification ensembles; see fitensemble and ClassificationEnsemble
• Classification trees; see fitctree and ClassificationTree
• Discriminant analysis classifiers; see fitcdiscr and

ClassificationDiscriminant

• k-nearest neighbor classifiers; see fitcknn and ClassificationKNN
• Naive Bayes classifiers; see fitcnb and ClassificationNaiveBayes

See Also
ClassificationDiscriminant | ClassificationEnsemble
| ClassificationKNN | ClassificationNaiveBayes |
ClassificationPartitonedECOC | ClassificationTree |
CompactClassificationECOC | fitcdiscr | fitcecoc | fitcknn | fitcnb |
fitcsvm | fitctree | fitensemble

22 Functions — Alphabetical List

22-336

ClassificationDiscriminant class

Superclasses: CompactClassificationDiscriminant

Discriminant analysis classification

Description

A ClassificationDiscriminant object encapsulates a discriminant
analysis classifier, which is a Gaussian mixture model for data generation. A
ClassificationDiscriminant object can predict responses for new data using
the predict method. The object contains the data used for training, so can compute
resubstitution predictions.

Construction

obj = fitcdiscr(x,y) creates a discriminant classification object based on the input
variables (also known as predictors, features, or attributes) x and output (response) y.
For syntax details, see fitcdiscr.

obj = fitcdiscr(x,y,Name,Value) creates a classifier with additional options
specified by one or more Name,Value pair arguments. If you use one of the following
five options, obj is of class ClassificationPartitionedModel: 'CrossVal',
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. Otherwise, obj is of class
ClassificationDiscriminant.

Input Arguments

x

Matrix of numeric predictor values. Each column of x represents one variable, and each
row represents one observation.

NaN values in x are considered missing values. Observations with missing values for x
are not used in the fit.

 ClassificationDiscriminant class

22-337

y

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector with the same number of rows as x. Each row of y represents the classification of
the corresponding row of x. NaN values in y are considered missing values. Observations
with missing values for y are not used in the fit.

Properties

BetweenSigma

p-by-p matrix, the between-class covariance, where p is the number of predictors.

CategoricalPredictors

List of categorical predictors, which is always empty ([]) for SVM and discriminant
analysis classifiers.

ClassNames

List of the elements in the training data Y with duplicates removed. ClassNames can
be a categorical array, cell array of strings, character array, logical vector, or a numeric
vector. ClassNames has the same data type as the data in the argument Y.

Coeffs

k-by-k structure of coefficient matrices, where k is the number of classes. Coeffs(i,j)
contains coefficients of the linear or quadratic boundaries between classes i and j. Fields
in Coeffs(i,j):

• DiscrimType
• Class1 — ClassNames(i)
• Class2 — ClassNames(j)
• Const — A scalar
• Linear — A vector with p components, where p is the number of columns in X
• Quadratic — p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class i and class j is

22 Functions — Alphabetical List

22-338

Const + Linear * x + x' * Quadratic * x = 0,

where x is a column vector of length p.

If fitcdiscr had the FillCoeffs name-value pair set to 'off' when constructing the
classifier, Coeffs is empty ([]).

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response.

Change a Cost matrix using dot notation: obj.Cost = costMatrix.

Delta

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a
coefficient of obj has magnitude smaller than Delta, obj sets this coefficient to 0, and
so you can eliminate the corresponding predictor from the model. Set Delta to a higher
value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Change Delta using dot notation: obj.Delta = newDelta.

DeltaPredictor

Row vector of length equal to the number of predictors in obj. If
DeltaPredictor(i) < Delta then coefficient i of the model is 0.

If obj is a quadratic discriminant model, all elements of DeltaPredictor are 0.

DiscrimType

String specifying the discriminant type. One of:

• 'linear'

• 'quadratic'

 ClassificationDiscriminant class

22-339

• 'diagLinear'

• 'diagQuadratic'

• 'pseudoLinear'

• 'pseudoQuadratic'

Change DiscrimType using dot notation: obj.DiscrimType = newDiscrimType.

You can change between linear types, or between quadratic types, but cannot change
between linear and quadratic types.

Gamma

Value of the Gamma regularization parameter, a scalar from 0 to 1. Change Gamma using
dot notation: obj.Gamma = newGamma.

• If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
• If you set a value between MinGamma and 1 for linear discriminant, the discriminant

sets its type to 'linear'.
• You cannot set values below the value of the MinGamma property.
• For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or

1 (for DiscrimType 'diagQuadratic').

LogDetSigma

Logarithm of the determinant of the within-class covariance matrix. The type of
LogDetSigma depends on the discriminant type:

• Scalar for linear discriminant analysis
• Vector of length K for quadratic discriminant analysis, where K is the number of

classes

MinGamma

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation
matrix is invertible. If the correlation matrix is not singular, MinGamma is 0.

ModelParameters

Parameters used in training obj.

22 Functions — Alphabetical List

22-340

Mu

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the
number of classes, and p is the number of predictors. Each row of Mu represents the mean
of the multivariate normal distribution of the corresponding class. The class indices are
in the ClassNames attribute.

NumObservations

Number of observations in the training data, a numeric scalar. NumObservations can
be less than the number of rows of input data X when there are missing values in X or
response Y.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in the
training data X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames.

Add or change a Prior vector using dot notation: obj.Prior = priorVector.

ResponseName

String describing the response variable Y.

ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For
a list of built-in transformation functions and the syntax of custom transformation
functions, see fitcdiscr.

Implement dot notation to add or change a ScoreTransform function using one of the
following:

• cobj.ScoreTransform = 'function'

• cobj.ScoreTransform = @function

 ClassificationDiscriminant class

22-341

Sigma

Within-class covariance matrix or matrices. The dimensions depend on DiscrimType:

• 'linear' (default) — Matrix of size p-by-p, where p is the number of predictors
• 'quadratic' — Array of size p-by-p-by-K, where K is the number of classes
• 'diagLinear' — Row vector of length p
• 'diagQuadratic' — Array of size 1-by-p-by-K
• 'pseudoLinear' — Matrix of size p-by-p
• 'pseudoQuadratic' — Array of size p-by-p-by-K

W

Scaled weights, a vector with length n, the number of rows in X.

X

Matrix of predictor values. Each column of X represents one predictor (variable), and
each row represents one observation.

Xcentered

X data with class means subtracted. If Y(i) is of class j,
Xcentered(i,:) = X(i,:) – Mu(j,:),

where Mu is the class mean property.

Y

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of Y represents the classification of
the corresponding row of X.

Methods

compact
Compact discriminant analysis classifier

22 Functions — Alphabetical List

22-342

crossval
Cross-validated discriminant analysis
classifier

cvshrink
Cross-validate regularization of linear
discriminant

resubEdge
Classification edge by resubstitution

resubLoss
Classification error by resubstitution

resubMargin
Classification margins by resubstitution

resubPredict
Predict resubstitution response of classifier

Inherited Methods

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge

logP
Log unconditional probability density for
discriminant analysis classifier

loss
Classification error

mahal
Mahalanobis distance to class means

margin
Classification margins

nLinearCoeffs
Number of nonzero linear coefficients

predict
Predict classification

 ClassificationDiscriminant class

22-343

Definitions

Discriminant Classification

The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. That is,
the model assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for
each class, only the means vary.

• For quadratic discriminant analysis, both means and covariances of each class
vary.

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

• ŷ is the predicted classification.

• K is the number of classes.
• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

For details, see “How the predict Method Classifies” on page 15-6.

Regularization

Regularization is the process of finding a small set of predictors that yield an effective
predictive model. For linear discriminant analysis, there are two parameters, γ and δ,
that control regularization as follows. cvshrink helps you select appropriate values of
the parameters.

22 Functions — Alphabetical List

22-344

Let Σ represent the covariance matrix of the data X, and let X̂ be the centered data (the
data X minus the mean by class). Define

D X X
T

= ()diag ˆ * ˆ .

The regularized covariance matrix %S is

%S S= -() +1 g g D.

Whenever γ ≥ MinGamma, %S is nonsingular.

Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean
vector (the mean of the rows of X). Let C be the correlation matrix of the data X, and let
%C be the regularized correlation matrix:

%C C I= -() +1 g g ,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

x x D C D
T

k

T

k-() -() = -()È
Î

˘
˚ -()È

Î
˘
˚

- - - -m m m m m m0
1

0 0
1 2 1 1 2

0
% %S / /

.

The parameter δ enters into this equation as a threshold on the final term in square

brackets. Each component of the vector %C D k
- - -()È

Î
˘
˚

1 1 2
0

/ m m is set to zero if it is smaller
in magnitude than the threshold δ. Therefore, for class k, if component j is thresholded to
zero, component j of x does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

%C D k
- - -() £1 1 2

0
/

.m m d

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use
predictor i.

 ClassificationDiscriminant class

22-345

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a discriminant analysis classifier for the Fisher iris data:

load fisheriris

obj = fitcdiscr(meas,species)

obj =

ClassificationDiscriminant:

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 DiscrimType: 'linear'

 Mu: [3x4 double]

 Coeffs: [3x3 struct]

References

[1] Guo, Y., T. Hastie, and R. Tibshirani. Regularized linear discriminant analysis and its
application in microarrays. Biostatistics, Vol. 8, No. 1, pp. 86–100, 2007.

See Also
CompactClassificationDiscriminant | fitcdiscr

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-346

ClassificationEnsemble class
Superclasses: CompactClassificationEnsemble

Ensemble classifier

Description

ClassificationEnsemble combines a set of trained weak learner models and data
on which these learners were trained. It can predict ensemble response for new data by
aggregating predictions from its weak learners. It also stores data used for training and
can compute resubstitution predictions. It can resume training if desired.

Construction

ens = fitensemble(X,Y,method,nlearn,learners) returns an ensemble model
that can predict responses to data. The ensemble consists of models listed in learners.
For more information on the syntax, see the fitensemble function reference page.

ens = fitensemble(X,Y,method,nlearn,learners,Name,Value) returns an
ensemble model with additional options specified by one or more Name,Value pair
arguments. For more information on the syntax, see the fitensemble function reference
page.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector,
categorical vector, logical vector, character array, or cell array of strings. ClassNames
has the same data type as the data in the argument Y.

 ClassificationEnsemble class

22-347

CombineWeights

String describing how ens combines weak learner weights, either 'WeightedSum' or
'WeightedAverage'.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response. This property is read-only.

FitInfo

Numeric array of fit information. The FitInfoDescription property describes the
content of this array.

FitInfoDescription

String describing the meaning of the FitInfo array.

LearnerNames

Cell array of strings with names of weak learners in the ensemble. The name of
each learner appears just once. For example, if you have an ensemble of 100 trees,
LearnerNames is {'Tree'}.

Method

String describing the method that creates ens.

ModelParameters

Parameters used in training ens.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrained

Number of trained weak learners in ens, a scalar.

22 Functions — Alphabetical List

22-348

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames. The number of elements of Prior
is the number of unique classes in the response. This property is read-only.

ReasonForTermination

String describing the reason fitensemble stopped adding weak learners to the
ensemble.

ResponseName

String with the name of the response variable Y.

ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For
a list of built-in transformation functions and the syntax of custom transformation
functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ens.ScoreTransform = 'function'

or

ens.ScoreTransform = @function

Trained

Trained learners, a cell array of compact classification models.

TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T
elements, where T is the number of weak learners in learners.

 ClassificationEnsemble class

22-349

UsePredForLearner

Logical matrix of size P-by-NumTrained, where P is the number of predictors (columns)
in the training data X. UsePredForLearner(i,j) is true when learner j uses
predictor i, and is false otherwise. For each learner, the predictors have the same order
as the columns in the training data X.

If the ensemble is not of type Subspace, all entries in UsePredForLearner are true.

W

Scaled weights, a vector with length n, the number of rows in X. The sum of the elements
of W is 1.

X

Matrix of predictor values that trained the ensemble. Each column of X represents one
variable, and each row represents one observation.

Y

Numeric vector, categorical vector, logical vector, character array, or cell array of strings.
Each row of Y represents the classification of the corresponding row of X.

Methods

compact
Compact classification ensemble

crossval
Cross validate ensemble

resubEdge
Classification edge by resubstitution

resubLoss
Classification error by resubstitution

resubMargin
Classification margins by resubstitution

resubPredict
Predict ensemble response by
resubstitution

22 Functions — Alphabetical List

22-350

resume
Resume training ensemble

Inherited Methods

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge

loss
Classification error

margin
Classification margins

predict
Predict classification

predictorImportance
Estimates of predictor importance

removeLearners
Remove members of compact classification
ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a boosted classification ensemble for the ionosphere data, using the
AdaBoostM1 method:

load ionosphere

ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree')

ens =

 ClassificationEnsemble class

22-351

 classreg.learning.classif.ClassificationEnsemble

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 NumTrained: 100

 Method: 'AdaBoostM1'

 LearnerNames: {'Tree'}

 ReasonForTermination: 'Terminated normally after comp...'

 FitInfo: [100x1 double]

 FitInfoDescription: {2x1 cell}

 Properties, Methods

Predict the classification of the mean of X:

ypredict = predict(ens,mean(X))

ypredict =

 'g'

See Also
RegressionEnsemble | ClassificationTree | fitensemble |
CompactClassificationEnsemble

22 Functions — Alphabetical List

22-352

ClassificationKNN class

k-nearest neighbor classification

Description

A nearest-neighbor classification object, where both distance metric (“nearest”) and
number of neighbors can be altered. The object classifies new observations using the
predict method. The object contains the data used for training, so can compute
resubstitution predictions.

Construction

mdl = fitcknn(X,y) creates a k-nearest neighbor classification model.

mdl = fitcknn(X,y,Name,Value) creates a classifier with additional options
specified by one or more Name,Value pair arguments. For details, see fitcknn.

Input Arguments

X — Predictor values
numeric matrix

Predictor values, specified as a numeric matrix. Each column of X represents one
variable, and each row represents one observation.
Data Types: single | double

y — Classification values
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Classification values, specified as a numeric vector, categorical vector, logical vector,
character array, or cell array of strings, with the same number of rows as X. Each row of
y represents the classification of the corresponding row of X.

 ClassificationKNN class

22-353

Data Types: single | double | cell | logical | char

Properties

BreakTies

String specifying the method predict uses to break ties if multiple classes have the
same smallest cost. By default, ties occur when multiple classes have the same number of
nearest points among the K nearest neighbors.

• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.
• 'smallest' — Use the smallest index among tied groups.

'BreakTies' applies when 'IncludeTies' is false.

Change BreakTies using dot notation: mdl.BreakTies = newBreakTies.

CategoricalPredictors

Specification of which predictors are categorical.

• 'all' — All predictors are categorical.
• [] — No predictors are categorical.

ClassNames

List of elements in the training data Y with duplicates removed. ClassNames can be
a numeric vector, vector of categorical variables, logical vector, character array, or cell
array of strings. ClassNames has the same data type as the data in the argument Y.

Change ClassNames using dot notation: mdl.ClassNames = newClassNames

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of

22 Functions — Alphabetical List

22-354

the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response.

Change a Cost matrix using dot notation: obj.Cost = costMatrix.

Distance

String or function handle specifying the distance metric. The allowable strings depend
on the NSMethod parameter, which you set in fitcknn, and which exists as a field in
ModelParameters.

NSMethod Distance Metric Names

exhaustive Any distance metric of ExhaustiveSearcher
kdtree 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

For definitions, see “Distance Metrics”.

The distance metrics of ExhaustiveSearcher:

Value Description

'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'cosine' One minus the cosine of the included angle between

observations (treated as vectors).
'euclidean' Euclidean distance.
'hamming' Hamming distance, percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of

nonzero coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample
covariance matrix of X, as computed by nancov(X). To
specify a different value for C, use the 'Cov' name-value
pair.

'minkowski' Minkowski distance. The default exponent is 2. To specify a
different exponent, use the 'P' name-value pair.

 ClassificationKNN class

22-355

Value Description

'seuclidean' Standardized Euclidean distance. Each coordinate
difference between X and a query point is scaled, meaning
divided by a scale value S. The default value of S is the
standard deviation computed from X, S = nanstd(X). To
specify another value for S, use the Scale name-value pair.

'spearman' One minus the sample Spearman's rank correlation
between observations (treated as sequences of values).

@distfun Distance function handle. distfun has the form

function D2 = DISTFUN(ZI,ZJ)

% calculation of distance

...

where

• ZI is a 1-by-N vector containing one row of X or Y.
• ZJ is an M2-by-N matrix containing multiple rows of X or

Y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the

distance between observations ZI and ZJ(J,:).

Change Distance using dot notation: mdl.Distance = newDistance.

If NSMethod is kdtree, you can use dot notation to change Distance only among the
types 'cityblock', 'chebychev', 'euclidean', or 'minkowski'.

DistanceWeight

String or function handle specifying the distance weighting function.

DistanceWeight Meaning

'equal' No weighting
'inverse' Weight is 1/distance
'inversesquared' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative
distances, and returns a matrix the same size
containing nonnegative distance weights. For example,
'inversesquared' is equivalent to @(d)d.^(-2).

22 Functions — Alphabetical List

22-356

Change DistanceWeight using dot notation: mdl.DistanceWeight =
newDistanceWeight.

DistParameter

Additional parameter for the distance metric.

Distance Metric Parameter

'mahalanobis' Positive definite covariance matrix C.
'minkowski' Minkowski distance exponent, a positive scalar.
'seuclidean' Vector of positive scale values with length equal to the

number of columns of X.

For values of the distance metric other than those in the table, DistParameter must be
[].

You can alter DistParameter using dot notation: mdl.DistParameter =
newDistParameter. However, if Distance is mahalanobis or seuclidean, then you
cannot alter DistParameter.

IncludeTies

Logical value indicating whether predict includes all the neighbors whose distance
values are equal to the Kth smallest distance. If IncludeTies is true, predict
includes all these neighbors. Otherwise, predict uses exactly K neighbors (see
'BreakTies').

Change IncludeTies using dot notation: mdl.IncludeTies = newIncludeTies.

ModelParameters

Parameters used in training mdl.

Mu

Numeric vector of predictor means with length numel(PredictorNames).

If you did not standardize mdl when you trained it using fitcknn, then Mu is empty
([]).

 ClassificationKNN class

22-357

NumNeighbors

Positive integer specifying the number of nearest neighbors in X to find for
classifying each point when predicting. Change NumNeighbors using dot notation:
mdl.NumNeighbors = newNumNeighbors.

NumObservations

Number of observations used in training mdl. This can be less than the number of rows
in the training data, because data rows containing NaN values are not part of the fit.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in the
training data X. Change PredictorNames using dot notation: mdl.PredictorNames =
newPredictorNames.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames.

Add or change a Prior vector using dot notation: obj.Prior = priorVector.

ResponseName

String describing the response variable Y. Change ResponseName using dot notation:
mdl.ResponseName = newResponseName.

Sigma

Numeric vector of predictor standard deviations with length numel(PredictorNames).

If you did not standardize mdl when you trained it using fitcknn, then Sigma is empty
([]).

W

Numeric vector of nonnegative weights with the same number of rows as Y. Each entry in
W specifies the relative importance of the corresponding observation in Y.

X

Numeric matrix of unstandardized predictor values. Each column of X represents one
predictor (variable), and each row represents one observation.

22 Functions — Alphabetical List

22-358

Y

A numeric vector, vector of categorical variables, logical vector, character array, or cell
array of strings, with the same number of rows as X.

Y is of the same type as the passed-in Y data.

Methods

compareHoldout
Compare accuracies of two models using
new data

crossval
Cross-validated k-nearest neighbor
classifier

edge
Edge of k-nearest neighbor classifier

loss
Loss of k-nearest neighbor classifier

margin
Margin of k-nearest neighbor classifier

predict
Predict k-nearest neighbor classification

resubEdge
Edge of k-nearest neighbor classifier by
resubstitution

resubLoss
Loss of k-nearest neighbor classifier by
resubstitution

resubMargin
Margin of k-nearest neighbor classifier by
resubstitution

resubPredict
Predict resubstitution response of k-nearest
neighbor classifier

 ClassificationKNN class

22-359

Definitions

Prediction

ClassificationKNN predicts the classification of a point Xnew using a procedure
equivalent to this:

1 Find the NumNeighbors points in the training set X that are nearest to Xnew.
2 Find the NumNeighbors response values Y to those nearest points.
3 Assign the classification label Ynew that has smallest expected misclassification cost

among the values in Y.

For details, see “Posterior Probability” on page 22-3654 and “Expected Cost” on page
22-3655 in the predict documentation.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Train a k-Nearest Neighbor Classifier

Construct a k-nearest neighbor classifier for Fisher's iris data, where k, the number of
nearest neighbors in the predictors, is 5.

Load Fisher's iris data.

load fisheriris

X = meas;

Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell
array of strings that contains the corresponding iris species.

Train a 5-nearest neighbors classifier. It is good practice to standardize noncategorical
predictor data.

22 Functions — Alphabetical List

22-360

Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)

Mdl =

 ClassificationKNN

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 Distance: 'euclidean'

 NumNeighbors: 5

Mdl is a trained ClassificationKNN classifier, and some of its properties display in the
Command Window.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames

Mdl.Prior

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 0.3333 0.3333 0.3333

Mdl.Prior contains the class prior probabilities, which are settable using the name-
value pair argument 'Prior' in fitcknn. The order of the class prior probabilities
corresponds to the order of the classes in Mdl.ClassNames. By default, the prior
probabilities are the respective relative frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior
probabilities to 0.5, 0.2, and 0.3 respectively.

 ClassificationKNN class

22-361

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to, for example, predict (ClassificationKNN) to label new
measurements, or crossval (ClassificationKNN) to cross validate the classifier.

• “Construct a KNN Classifier” on page 16-28
• “Examine the Quality of a KNN Classifier” on page 16-29
• “Predict Classification Based on a KNN Classifier” on page 16-30
• “Modify a KNN Classifier” on page 16-30

Alternatives

knnsearch finds the k-nearest neighbors of points. rangesearch finds all the
points within a fixed distance. You can use these functions for classification, as
shown in “Classify Query Data” on page 16-16. If you want to perform classification,
ClassificationKNN can be more convenient, in that you can construct a classifier in
one step and classify in other steps. Also, ClassificationKNN has cross-validation
options.

See Also
fitcknn | predict

More About
• “Classification Using Nearest Neighbors” on page 16-8

22 Functions — Alphabetical List

22-362

ClassificationNaiveBayes class
Superclasses: CompactClassificationNaiveBayes

Naive Bayes classification

Description

ClassificationNaiveBayes is a naive Bayes classifier for multiclass learning. Use
fitcnb and the training data to train a ClassificationNaiveBayes classifier.

Trained ClassificationNaiveBayes classifiers store the training data, parameter
values, data distribution, and prior probabilities. You can use these classifiers to:

• Estimate resubstitution predictions. For details, see resubPredict.
• Predict labels or posterior probabilities for new data. For details, see predict.

Construction

Mdl = fitcnb(X,Y) returns a trained naive Bayes classifier (Mdl), based on the input
variables X (also known as predictors, features, or attributes) and output variable Y (also
known as responses or class labels) for multiclass classification. Mdl stores the training
data.

Predict labels for new data by passing the data and Mdl to predict.

Mdl = fitcnb(X,Y,Name,Value) returns a trained naive Bayes classifier with
additional options specified by one or more Name,Value pair arguments.

If you set one of the following five options, then Mdl is a
ClassificationPartitionedModel model: 'CrossVal',
'CVPartition', 'Holdout', 'KFold', or 'Leaveout'. Otherwise, Mdl is a
ClassificationNaiveBayes classifier.

Input Arguments

X — Predictor data
matrix of numeric values

 ClassificationNaiveBayes class

22-363

Predictor data to which the naive Bayes classifier is trained, specified as a matrix of
numeric values.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equivalent.

Data Types: double

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels to which the naive Bayes classifier is trained, specified as a categorical or
character array, logical or numeric vector, or cell array of strings. Each element of Y
defines the class membership of the corresponding row of X. Y supports K class levels.

If Y is a character array, then each row must correspond to one class label.

The length of Y and the number of rows of X must be equivalent.

Data Types: cell | char | double | logical

Note: The software treats NaN, empty string (''), and <undefined> elements as missing
values.

• If Y contains missing values, then the software removes them and the corresponding
rows of X.

• If X contains any rows composed entirely of missing values, then the software removes
those rows and the corresponding elements of Y.

• If X contains missing values and you set 'Distribution','mn', then the software
removes those rows of X and the corresponding elements of Y.

• If a predictor is not represented in a class, that is, if all of its values are NaN within a
class, then the software returns an error.

Removing rows of X and corresponding elements of Y decreases the effective training or
cross-validation sample size.

22 Functions — Alphabetical List

22-364

Properties

CategoricalPredictors — Categorical predictor indices
numeric vector

Categorical predictor indices, specified as a numeric vector.
Data Types: double

CategoricalLevels — Multivariate multinomial levels
cell vector of numeric vectors

Multivariate multinomial levels, specified as a cell vector of numeric vectors.
CategoricalLevels has length equal to the number of predictors (size(X,2)).

The cells of CategoricalLevels correspond to predictors that you specified as 'mvmn'
(i.e., having a multivariate multinomial distribution) during training. Cells that do not
correspond to a multivariate multinomial distribution are empty ([]).

If predictor j is multivariate multinomial, then CategoricalLevels{j} is a list of all
distinct values of predictor j in the sample (NaNs removed from unique(X(:,j))).

Data Types: cell

ClassNames — Distinct class names
categorical array | character array | logical vector | numeric vector | cell array of
strings

Distinct class names, specified as a categorical or character array, logical or numeric
vector, or cell vector of strings.

ClassNames is the same data type as Y, and has as K elements or rows for character
arrays.

Cost — Misclassification cost
square matrix

Misclassification cost, specified as a K-by-K square matrix.

The value of Cost(i,j) is the cost of classifying a point into class j if its true class is
i. The order of the rows and columns of Cost correspond to the order of the classes in
ClassNames.

 ClassificationNaiveBayes class

22-365

The value of Cost does not influence training. You can reset Cost after training Mdl
using dot notation, e.g., Mdl.Cost = [0 0.5; 1 0];.

Data Types: double | single

DistributionNames — Predictor distributions
'normal' (default) | 'kernel' | 'mn' | 'mvmn' | cell array of strings

Predictor distributions fitcnb uses to model the predictors, specified as a string or cell
array of strings.

This table summarizes the available distributions.

Value Description

'kernel' Kernel smoothing density estimate.
'mn' Multinomial bag-of-tokens model. Indicates

that all predictors have this distribution.
'mvmn' Multivariate multinomial distribution.
'normal' Normal (Gaussian) distribution.

If Distribution is a 1-by-P cell array of strings, then the software models feature j
using the distribution in element j of the cell array.
Data Types: cell | char

DistributionParameters — Distribution parameter estimates
cell array

Distribution parameter estimates, specified as a cell array. DistributionParameters
is a K-by-P cell array, where cell (k,d) contains the distribution parameter estimates for
instances of predictor d in class k. The order of the rows follows the order of the classes in
the property ClassNames, and the order of the predictors follows the order of the columns
of X.

If class k has no observations for predictor j, then Distribution{k,j} is empty ([]).

The elements of DistributionParameters depends on the distributions of the
predictors. This table describes the values in DistributionParameters{k,j}.

22 Functions — Alphabetical List

22-366

Value \Distribution of Predictor j

kernel A prob.KernelDistribution model.
Display properties using cell indexing and
dot notation. For example, to display the
estimated bandwidth of the kernel density
for predictor 2 in the third class, use
Mdl.DistributionParameters{3,2}.BandWidth.

mn A scalar representing the probability that
token j appears in class k. For details, see
“Algorithms”.

mvmn A numeric vector containing the
probabilities for each possible level of
predictor j in class k. The software orders
the probabilities by the sorted order of
all unique levels of predictor j (stored in
the property CategoricalLevels). For more
details, see “Algorithms”.

normal A 2-by-1 numeric vector. The first element
is the sample mean and the second element
is the sample standard deviation.

Kernel — Kernel smoother types
'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | cell array of strings

Kernel smoother types, specified as a string or cell array of strings. Kernel has length
equal to the number of predictors (size(X,2)). Kernel{j} corresponds to predictor j,
and contains a string describing the type of kernel smoother. This table describes the
supported kernel smoother types. Let I{u} denote the indictor function.

Value Kernel Formula

'box' Box (uniform)
f x I x() .= { }£0 5 1

'epanechnikov'Epanechnikov
f x x I x() .= -() { }£0 75 1 1

2

'normal' Gaussian
f x x() exp .= -()1

2
0 5 2

p

 ClassificationNaiveBayes class

22-367

Value Kernel Formula

'triangle'Triangular
f x x I x() = -() { }£1 1

If a cell is empty ([]), then the software did not fit a kernel distribution to the
corresponding predictor.

ModelParameters — Parameter values used to train
object

Parameter values used to train the classifier (such as the name-value pair
argument values), specified as an object. This table summarizes the properties of
ModelParameters. The properties correspond to the name-value pair argument values
set for training the classifier.

Property Purpose

DistributionNames Data distribution or distributions.
This is the same value as the property
DistributionNames.

Kernel Kernel smoother type. This is the same as
the property Kernel.

Method Training method. For naive Bayes, the
value is 'NaiveBayes'.

Support Kernel-smoothing density support. This is
the same as the property Support.

Type Learning type. For classification, the value
is 'classification'.

Width Kernel smoothing window width. This is
the same as the property Width.

Access fields of ModelParameters using dot notation. For example, access the kernel
support using Mdl.ModelParameters.Support.

NumObservations — Number of training observations
numeric scalar

Number of training observations, specified as a numeric scalar.

22 Functions — Alphabetical List

22-368

If X or Y contain missing values, then NumObservations might be less than the length
of Y.

Data Types: double

PredictorNames — Predictor names
string

Predictor names, specified as a cell vector of strings. The order of the elements in
PredictorNames corresponds to the order in X.

Data Types: cell

Prior — Class prior probabilities
numeric vector

Class prior probabilities, specified as a numeric row vector. Prior is a 1-by-K vector, and
the order of its elements correspond to the elements of ClassNames.

fitcnb normalizes the prior probabilities you set using the name-value pair parameter
'Prior' so that sum(Prior) = 1.

The value of Prior does not change the best-fitting model. Therefore, you can reset
Prior after training Mdl using dot notation, e.g., Mdl.Prior = [0.2 0.8];.

Data Types: double | single

ResponseName — Response name
string

Response name, specified as a string.
Data Types: char

ScoreTransform — Classification score transformation function
function handle | string

Classification score transformation function, specified as a function handle or a string.

To change the score transformation function to e.g., function, use dot notation.

• For a built-in function, enter a string.

Mdl.ScoreTransform = 'function';

This table lists available, built-in functions.

 ClassificationNaiveBayes class

22-369

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Data Types: char | function_handle

Support — Kernel smoother density support
cell vector

Kernel smoother density support, specified as a cell vector. Support has length equal
to the number of predictors (size(X,2)). The cells represent the regions to apply the
kernel density.

This table describes the supported options.

Value Description

1-by-2 numeric row
vector

For example, [L,U], where L and U are the finite lower and
upper bounds, respectively, for the density support.

22 Functions — Alphabetical List

22-370

Value Description

'positive' The density support is all positive real values.
'unbounded' The density support is all real values.

If a cell is empty ([]), then the software did not fit a kernel distribution to the
corresponding predictor.

W — Observation weights
numeric vector

Observation weights, specified as a numeric vector.

The length of W is NumObservations.

fitcnb normalizes the value you set for the name-value pair parameter 'Weights' so
that the weights within a particular class sum to the prior probability for that class.
Data Types: double

Width — Kernel smoother window width
numeric matrix

Kernel smoother window width, specified as a numeric matrix. Width is a K-by-P
matrix, where K is the number of classes in the data, and P is the number of predictors
(size(X,2)).

Width(k,j) is the kernel smoother window width for the kernel smoothing density of
predictor j within class k. NaNs in column j indicate that the software did not fit predictor
j using a kernel density.

X — Unstandardized predictor data
numeric matrix

Unstandardized predictor data, specified as a numeric matrix. X has NumObservations
rows and P columns.

Each row of X corresponds to one observation, and each column corresponds to one
variable.

The software excludes rows removed due to missing values from X.

Data Types: double

 ClassificationNaiveBayes class

22-371

Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of
strings

Observed class labels, specified as a categorical or character array, logical or numeric
vector, or cell array of strings. Y is the same data type as the input argument Y of
fitcnb.

Each row of Y represents the observed classification of the corresponding row of X.

The software excludes elements removed due to missing values from Y.

Methods

compact
Compact naive Bayes classifier

crossval
Cross-validated naive Bayes classifier

resubEdge
Classification edge for naive Bayes
classifiers by resubstitution

resubLoss
Classification loss for naive Bayes
classifiers by resubstitution

resubMargin
Classification margins for naive Bayes
classifiers by resubstitution

resubPredict
Predict naive Bayes classifier
resubstitution response

Inherited Methods

compareHoldout
Compare accuracies of two classification
models using new data

22 Functions — Alphabetical List

22-372

edge
Classification edge for naive Bayes
classifiers

logP
Log unconditional probability density for
naive Bayes classifier

loss
Classification error for naive Bayes
classifier

margin
Classification margins for naive Bayes
classifiers

predict
Predict classification for naive Bayes
models

Definitions

Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of
occurrences of token j in this observation. The number of categories (bins) in this
multinomial model is the number of distinct tokens, that is, the number of predictors.

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are
conditionally independent, given the class. Though the assumption is usually violated
in practice, naive Bayes classifiers tend to yield posterior distributions that are robust
to biased class density estimates, particularly where the posterior is 0.5 (the decision
boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words,
the maximum a posteriori decision rule). Explicitly, the algorithm:

 ClassificationNaiveBayes class

22-373

1 Estimates the densities of the predictors within each class.
2 Models posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

ˆ ,..,

|

|

|

P X

Y k P Y k

Y k P

Y k X

X

X Y

P
j

j

k

K

j

j

P

P
=() =

() ()

()

= =

=

=

= =

’

Â ’
1

1

1 1

p

p ==()k

,

where:

• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• p Y k=() is the prior probability that a class index is k.

3 Classifies an observation by estimating the posterior probability for each class, and
then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior
probability ˆ ,.., , ..., || ,P X Y k X Y kY k X P XP Pmn=() () ()µ = =1 1p where

P X X Y kmn P1,..., | =() is the probability mass function of a multinomial distribution.

Algorithms

• If you specify 'Distribution','mn' when training Mdl using fitcnb, then
the software fits a multinomial distribution using the bag-of-tokens model. The
software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. Using additive smoothing [2], the estimated
probability is

P
c

P c
j k

j k

k

()| ,
|

token class =

+

+

1

where:

22 Functions — Alphabetical List

22-374

•

c

w

n

x w

j k k

ij

i y k

i

i
i y k

i

i

|
:

:

;=
Œ

Œ

Â

Â

class

class

 which is the weighted number of occurrences of token j in

class k.
• nk is the number of observations in class k.
•

w
i is the weight for observation i. The software normalizes weights within a class

such that they sum to the prior probability for that class.
•

c ck j k

j

P

=

=

Â | ;
1

 which is the total weighted number of occurrences of all tokens in

class k.
• If you specify 'Distribution','mvmn' when training Mdl using fitcnb, then:

1 For each predictor, the software collects a list of the unique levels, stores
the sorted list in CategoricalLevels, and considers each level a bin. Each
predictor/class combination is a separate, independent multinomial random
variable.

2 For predictor j in class k, the software counts instances of each categorical level
using the list stored in CategoricalLevels{j}.

3 The software stores the probability that predictor j, in class k, has level
L in the property DistributionParameters{k,j}, for all levels in
CategoricalLevels{j}. Using additive smoothing [2], the estimated probability
is

P
m

m
j L k

L

m

j k

j k

predictor class =
+

() =
+

|
()

,
|1

where:

 ClassificationNaiveBayes class

22-375

•

m L n

I x L w

w

j k k

ij i

i y k

i
i y k

i

i

|
:

:

()

{ }

;=

=

Œ

Œ

Â

Â

 class

 class

 which is the weighted number of

observations for which predictor j equals L in class k.
• nk is the number of observations in class k.
•

I x Lij ={ } = 1 if xij = L, 0 otherwise.

•
w

i is the weight for observation i. The software normalizes weights within a
class such that they sum to the prior probability for that class.

• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Train a Naive Bayes Classifier

Construct a naive Bayes classifier for Fisher's iris data. Also, specify prior probabilites
after training.

Load Fisher's iris data.

load fisheriris

X = meas;

Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell
array of strings that contains the corresponding iris species.

22 Functions — Alphabetical List

22-376

Train a naive Bayes classifier.

Mdl = fitcnb(X,Y)

Mdl =

 ClassificationNaiveBayes

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 DistributionNames: {'normal' 'normal' 'normal' 'normal'}

 DistributionParameters: {3x4 cell}

Mdl is a trained ClassificationNaiveBayes classifier, and some of its properties
display in the Command Window. By default, the software treats each predictor as
independent, and fits them using normal distributions.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames

Mdl.Prior

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 0.3333 0.3333 0.3333

Mdl.Prior contains the class prior probabilities, which are settable using the name-
value pair argument 'Prior' in fitcnb. The order of the class prior probabilities
corresponds to the order of the classes in Mdl.ClassNames. By default, the prior
probabilities are the respective relative frequencies of the classes in the data.

 ClassificationNaiveBayes class

22-377

You can also reset the prior probabilities after training. For example, set the prior
probabilities to 0.5, 0.2, and 0.3 respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to e.g., predict to label new measurements, or crossval to cross
validate the classifier.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[2] Manning, C. D., P. Raghavan, and M. Schütze. Introduction to Information Retrieval,
NY: Cambridge University Press, 2008.

See Also
CompactClassificationNaiveBayes | fitcnb | loss | predict

More About
• “Naive Bayes Classification” on page 15-31
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-378

ClassificationPartitionedECOC class
Superclasses: ClassificationPartitionedModel

Cross-validated multiclass model for support vector machines or other classifiers

Description

ClassificationPartitionedECOC is a set of error-correcting output codes (ECOC)
models trained on cross-validated folds. Estimate the quality of classification by
cross validation using one or more “kfold” functions: kfoldPredict, kfoldLoss,
kfoldMargin, kfoldEdge, and kfoldfun.

Every “kfold” method uses models trained on in-fold observations to predict the response
for out-of-fold observations. For example, suppose you cross validate using five folds. In
this case, the software randomly assigns each observation into five roughly equal-sized
groups. The training fold contains four of the groups (i.e., roughly 4/5 of the data) and
the test fold contains the other group (i.e., roughly 1/5 of the data). In this case, cross
validation proceeds as follows.

• The software trains the first model (stored in CVMdl.Trained{1}) using the
observations in the last four groups and reserves the observations in the first group
for validation.

• The software trains the second model (stored in CVMdl.Trained{2}) using the
observations in the first group and last three groups, and reserves the observations in
the second group for validation.

• The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations
in group 1 using the first model, group 2 for the second model, and so on. In short, the
software estimates a response for every observation using the model trained without that
observation.

Construction

CVMdl = crossval(Mdl) returns a cross-validated ECOC model from Mdl, an ECOC
model. For details, see crossval.

 ClassificationPartitionedECOC class

22-379

Alternatively, CVMdl = fitcecoc(X,Y,Name,Value) returns a cross-validated
ECOC model when Name is one of 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'. For syntax details, see fitcecoc.

Properties

BinaryLoss — Binary learner loss function
string

Binary learner loss function, specified as a string.

If you train using binary learners that use different loss functions, then the software sets
BinaryLoss to 'hamming'. To potentially increase accuracy, set a different binary loss
function than this default during prediction or loss computation using the BinaryLoss
name-value pair argument of predict or loss.

Data Types: char

BinaryY — Binary learner class labels
numeric matrix | []

Binary learner class labels, specified as a numeric matrix or [].

• If the coding matrix is the same across folds, then BinaryY is a NumObservations-
by-L matrix, where L is the number of binary learners (size(CodingMatrix,2)).

Elements of BinaryY are -1, 0, or 1, and the value corresponds to a dichotomous
class assignment. This table describes how learner j assigns observation k to a
dichotomous class corresponding to the value of BinaryY(k,j).

Value Dichotomous Class Assignment

-1 Negative class
0 Before training, learner j removes

observations in class i from the data set.
1 Positive class

• If the coding matrix varies across folds, then BinaryY is empty ([]).

Data Types: double

22 Functions — Alphabetical List

22-380

CategoricalPredictors — Categorical predictor indices
numeric vector

Categorical predictor indices, specified as a numeric vector. CategoricalPredictors
contains indices 1 through p, where p is the number of columns of X (size(X,2)).

Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Unique class labels in the response data (Y), specified as a categorical or character array,
logical or numeric vector, or cell array of strings. ClassNames has the same data type as
Y.

CodingMatrix — Codes specifying class assignments
numeric matrix | []

Codes specifying class assignments for the binary learners, specified as a numeric matrix
or [].

• If the coding matrix is the same across folds, then CodingMatrix is a K-by-L matrix,
where K is the number of classes and L is the number of binary learners.

Elements of CodingMatrix are -1, 0, or 1, and the value corresponds to a
dichotomous class assignment. This table describes how learner j assigns
observations in class k to a dichotomous class corresponding to the value of
CodingMatrix(k,j).

Value Dichotomous Class Assignment

-1 Negative class
0 Before training, learner j removes

observations in class i from the data set.
1 Positive class

• If the coding matrix varies across folds, then CodingMatrix is empty ([]).
Obtain the coding matrix for each fold using the Trained property. For example,
CVMdl.Trained{1}.CodingMatrix is the coding matrix in the first fold of the
cross-validated ECOC model CVMdl.

Data Types: char | double | single | int8 | int16 | int32 | int64

 ClassificationPartitionedECOC class

22-381

Cost — Misclassification costs
square numeric matrix

Misclassification costs, specified as a square numeric matrix. Cost has K rows and
columns, where K is the number of classes.

Cost(i,j) is the cost of misclassifying a point into class j if its true class is i. The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary
learners.

This property is read-only.
Data Types: double

CrossValidatedModel — Cross-validated model name
string

Cross-validated model name, specified as a string.

For example, ECOC specifies a cross-validated ECOC model.

Data Types: char

Kfold — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
object

Cross-validation parameter values, e.g., the name-value pair argument values used to
cross-validate the ECOC classifier, specified as an object. ModelParameters does not
contain estimated parameters.

Access properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

22 Functions — Alphabetical List

22-382

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

Data partition indicating how the software splits the data into cross-validation folds,
specified as a cvpartition model.

PredictorNames — Predictors names
cell array of strings

Predictors names in the order that they appear in X, specified as a cell array of strings
containing the predictor names. PredictorNames has length equal to the number of
columns in X.

Data Types: cell

Prior — Prior class probabilities
numeric vector

Prior class probabilities, specified as a numeric vector. Prior has as many elements as
classes in Y, and the order of the elements corresponds to the elements of ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary
learners.

This property is read only.
Data Types: double

ResponseName — Response variable name
string

Response variable name, specified as a string.
Data Types: char

ScoreTransform — Score transformation function
string | function handle

Score transformation function, specified as a string or function handle. ScoreTransform
describes how the software transforms raw, predicted classification scores.

 ClassificationPartitionedECOC class

22-383

To change the score transformation function to, e.g., function, use dot notation.

• For a built-in function, enter a string.

SVMModel.ScoreTransform = 'function';

This table lists the supported, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

SVMModel.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Data Types: char | function_handle

Trained — Compact classifiers trained on cross-validation folds
cell array of CompactClassificationECOC models

Compact classifiers trained on cross-validation folds, specified cell as a array of
CompactClassificationECOC models. Trained has k cells, where k is the number of
folds.

22 Functions — Alphabetical List

22-384

Data Types: cell

W — Observation weights
numeric vector

Observation weights used to cross validate the classifier, specified as a numeric vector. W
has NumObervations elements.

The software normalizes the weights used for training so that nansum(W) is 1.

Data Types: single | double

X — Unstandardized predictor data used to cross validate the classifier
numeric matrix

Unstandardized predictor data used to cross validate the classifier, specified as
a numeric matrix. X is a NumObervations-by-p matrix, where p is the number of
predictors.

Each row of X corresponds to one observation, and each column corresponds to one
variable.
Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Observed class labels used to train the classifier, specified as a categorical or character
array, logical or numeric vector, or cell array of strings. Y has NumObervations elements,
and is the same data type as the input argument Y of fitcecoc.

Each row of Y represents the observed classification of the corresponding row of X.

Methods

kfoldEdge
Classification edge for observations not
used for training

 ClassificationPartitionedECOC class

22-385

kfoldfun
Cross validate function

kfoldLoss
Classification loss for observations not used
for training

kfoldMargin
Classification margins for observations not
used for training

kfoldPredict
Predict responses for observations not used
for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Cross Validate an ECOC Classifier

Train a one-versus-one ECOC classifier using binary SVM learners.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

rng(1); % For reproducibility

Create an SVM template. It is good practice to standardize the predictors.

t = templateSVM('Standardize',1)

t =

Fit template for classification SVM.

22 Functions — Alphabetical List

22-386

 Alpha: [0x1 double]

 BoxConstraint: []

 CacheSize: []

 CachingMethod: ''

 DeltaGradientTolerance: []

 GapTolerance: []

 KKTTolerance: []

 IterationLimit: []

 KernelFunction: ''

 KernelScale: []

 KernelOffset: []

 KernelPolynomialOrder: []

 NumPrint: []

 Nu: []

 OutlierFraction: []

 ShrinkagePeriod: []

 Solver: ''

 StandardizeData: 1

 SaveSupportVectors: []

 VerbosityLevel: []

 Method: 'SVM'

 Type: 'classification'

t is an SVM template. All of its properties are empty, except for StandardizeData,
Method, and Type. When the software trains the ECOC classifier, it sets the applicable
properties to their default values.

Train the ECOC classifier. It is good practice to specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot
notation.

Cross validate Mdl using 10-fold cross validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalization error.

 ClassificationPartitionedECOC class

22-387

oosLoss = kfoldLoss(CVMdl)

oosLoss =

 0.0400

The out-of-sample classification error is 4%, which indicates that the ECOC classifier
generalizes fairly well.

Train ECOC Classifiers Using Ensembles and Parallel Computing

Train a one-versus-all ECOC classifier using a GentleBoost ensemble of decision trees
with surrogate splits. Estimate the classification error using 10-fold cross validation.

Load and inspect the arrhythmia data set.

load arrhythmia

[n,p] = size(X)

isLabels = unique(Y);

nLabels = numel(isLabels)

tabulate(categorical(Y))

n =

 452

p =

 279

nLabels =

 13

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

22 Functions — Alphabetical List

22-388

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 279 predictors, and a relatively small sample size of 452. There are 16 distinct
labels, but only 13 are represented in the response (Y), and each label describes various
degrees of arrhythmia. 54.20% of the observations are in class 1.

Create an ensemble template. You must specify at least three arguments: a method, a
number of learners, and the type of learner. For this example, specify 'GentleBoost'
for the method, 100 for the number of learners, and a decision tree template that uses
surrogate splits since there are missing observations.

tTree = templateTree('surrogate','on');

tEnsemble = templateEnsemble('GentleBoost',100,tTree);

tEnsemble is a template object. Most of its properties are empty, but the software fills
them with their default values during training.

Train a one-versus-all ECOC classifier using the ensembles of decision trees as binary
learners. If you have a Parallel Computing Toolbox license, then you can speed up the
computation by specifying to use parallel computing. This sends each binary learner to a
worker in the pool (the number of workers depends on your system configuration). Also,
specify that the prior probabilities are 1/K, where K = 13, which is the number of distinct
classes.

pool = parpool; % Invoke workers

options = statset('UseParallel',1);

Mdl = fitcecoc(X,Y,'Coding','onevsall','Learners',tEnsemble,...

 'Prior','uniform','Options',options);

Starting parallel pool (parpool) using the 'local' profile ... connected to 2 workers.

Mdl is a ClassificationECOC model.

Cross validate the ECOC classifier using 10-fold cross validation.

CVMdl = crossval(Mdl,'Options',options);

 ClassificationPartitionedECOC class

22-389

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. The warning indicates that
some classes are not represented while the software trains at least one fold. Therefore,
those folds cannot predict labels for the missing classes. You can inspect the results of
a fold using cell indexing and dot notation, e.g., access the results of the first fold by
entering CVMdl.Trained{1}. Your results might vary.

Use the cross-validated ECOC classifier to predict out-of-fold labels. You can compute
the confusion matrix using confusionmat. However, if you have a Neural Network
Toolbox™ license, you can plot the confusion matrix using plotconfusion. The input
arguments of plotconfusion are not vectors of the true and predicted labels like
confusionmat, but indicator matrices of the true and predicted labels. Both start as
K-by-n matrices of 0s. If observation j has label index k (or has predicted label k), then
element (k,j) of the true label indicator matrix (or predicted label indicator matrix) is 1.
You can convert label indices returned by predict, resubPredict, or kfoldPredict
to label indicator matrices using linear indexing. For details on linear indexing, see
sub2ind and ind2sub.

oofLabel = kfoldPredict(CVMdl,'Options',options);

ConfMat = confusionmat(Y,oofLabel);

% Convert the integer label vector to a class-identifier matrix.

[~,grp] = ismember(oofLabel,isLabels);

oofLabelMat = zeros(nLabels,n);

idxLinear = sub2ind([nLabels n],grp,(1:n)');

oofLabelMat(idxLinear) = 1; % Flags the row corresponding to the class

YMat = zeros(nLabels,n);

idxLinearY = sub2ind([nLabels n],grp,(1:n)');

YMat(idxLinearY) = 1;

figure;

plotconfusion(YMat,oofLabelMat);

h = gca;

h.XTickLabel = [num2cell(isLabels); {''}];

h.YTickLabel = [num2cell(isLabels); {''}];

22 Functions — Alphabetical List

22-390

Algorithms

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties
Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather
than Alpha, in the model display.

 ClassificationPartitionedECOC class

22-391

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM
template that specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors','on')

Mdl = fitcecoc(X,Y,'Learners',t);

You can subsequently remove the support vectors and related values by passing the
resulting ClassificationECOC model to discardSupportVectors.

See Also
ClassificationECOC | CompactClassificationECOC | cvpartiton | fitcecoc

22 Functions — Alphabetical List

22-392

ClassificationPartitionedEnsemble class

Cross-validated classification ensemble

Description
ClassificationPartitionedEnsemble is a set of classification ensembles trained on
cross-validated folds. Estimate the quality of classification by cross validation using one
or more “kfold” methods: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and
kfoldfun.

Every “kfold” method uses models trained on in-fold observations to predict response
for out-of-fold observations. For example, suppose you cross validate using five folds. In
this case, every training fold contains roughly 4/5 of the data and every test fold contains
roughly 1/5 of the data. The first model stored in Trained{1} was trained on X and Y
with the first 1/5 excluded, the second model stored in Trained{2} was trained on X and
Y with the second 1/5 excluded, and so on. When you call kfoldPredict, it computes
predictions for the first 1/5 of the data using the first model, for the second 1/5 of data
using the second model, and so on. In short, response for every observation is computed
by kfoldPredict using the model trained without this observation.

Construction
cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification
ensemble. For syntax details, see the crossval method reference page.

cvens = fitensemble(X,Y,method,nlearn,learners,name,value) creates
a cross-validated ensemble when name is one of 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'. For syntax details, see the fitensemble function
reference page.

Properties
CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

 ClassificationPartitionedEnsemble class

22-393

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector,
vector of categorical variables, logical vector, character array, or cell array of strings.
ClassNames has the same data type as the data in the argument Y.

Combiner

Cell array of combiners across all folds.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response. This property is read-only.

CrossValidatedModel

Name of the cross-validated model, a string.

Kfold

Number of folds used in a cross-validated ensemble, a positive integer.

ModelParameters

Object holding parameters of cvens.

NumObservations

Number of data points used in training the ensemble, a positive integer.

NTrainedPerFold

Number of data points used in training each fold of the ensemble, a positive integer.

Partition

Partition of class cvpartition used in creating the cross-validated ensemble.

22 Functions — Alphabetical List

22-394

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames. The number of elements of Prior
is the number of unique classes in the response. This property is read-only.

ResponseName

Name of the response variable Y, a string.

ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For
a list of built-in transformation functions and the syntax of custom transformation
functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ens.ScoreTransform = 'function'

or

ens.ScoreTransform = @function

Trainable

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning
it contains its training data and weights.

Trained

Cell array of compact ensembles trained on cross-validation folds.

W

Scaled weights, a vector with length n, the number of rows in X.

 ClassificationPartitionedEnsemble class

22-395

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the
response to the data in the corresponding row of X.

Methods

kfoldEdge
Classification edge for observations not
used for training

kfoldLoss
Classification loss for observations not used
for training

resume
Resume training learners on cross-
validation folds

Inherited Methods

kfoldEdge
Classification edge for observations not
used for training

kfoldfun
Cross validate function

kfoldLoss
Classification loss for observations not used
for training

kfoldMargin
Classification margins for observations not
used for training

22 Functions — Alphabetical List

22-396

kfoldPredict
Predict response for observations not used
for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Evaluate the k-fold cross-validation error for a classification ensemble that models the
Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

cvens = crossval(ens);

L = kfoldLoss(cvens)

L =

 0.0533

See Also
RegressionPartitionedEnsemble | ClassificationPartitionedModel |
ClassificationEnsemble | fitctree

 ClassificationPartitionedModel class

22-397

ClassificationPartitionedModel class

Cross-validated classification model

Description

ClassificationPartitionedModel is a set of classification models trained on cross-
validated folds. Estimate the quality of classification by cross validation using one or
more “kfold” methods: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and
kfoldfun.

Every “kfold” method uses models trained on in-fold observations to predict the response
for out-of-fold observations. For example, suppose you cross validate using five folds. In
this case, the software randomly assigns each observation into five roughly equally sized
groups. The training fold contains four of the groups (i.e., roughly 4/5 of the data) and
the test fold contains the other group (i.e., roughly 1/5 of the data). In this case, cross
validation proceeds as follows:

• The software trains the first model (stored in CVMdl.Trained{1}) using the
observations in the last four groups and reserves the observations in the first group
for validation.

• The software trains the second model (stored in CVMdl.Trained{2}) using the
observations in the first group and last three groups, and reserves the observations in
the second group for validation.

• The software proceeds in a similar fashion for the third to fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations
in group 1 using the first model, group 2 for the second model, and so on. In short, the
software estimates a response for every observation using the model trained without that
observation.

Construction

CVMdl = crossval(Mdl) creates a cross-validated classification model from a
classification model (Mdl).

Alternatively:

22 Functions — Alphabetical List

22-398

• CVDiscrMdl = fitcdiscr(X,Y,Name,Value)

• CVEnsMdl = fitensemble(X,Y,Name,Value)

• CVKNNMdl = fitcknn(X,Y,Name,Value)

• CVNBMdl = fitcnb(X,Y,Name,Value)

• CVSVMMdl = fitcsvm(X,Y,Name,Value)

• CVTreeMdl = fitctree(X,Y,Name,Value)

create a cross-validated model when name is either 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'. For syntax details, see fitcdiscr, fitensemble,
fitcknn, fitcnb, fitcsvm, and fitctree.

For a cross-validated, error-correcting output code multiclass model, see
ClassificationPartitionedECOC and fitcecoc.

Input Arguments

Mdl

A classification model. Mdl can be any of the following:

• A classification tree trained using fitctree
• A classification ensemble trained using fitensemble
• A discriminant analysis classifier trained using fitcdiscr
• A naive Bayes classifier trained using fitcnb
• A nearest-neighbor classifier trained using fitcknn
• A support vector machine classifier trained using fitcsvm

Properties

CategoricalPredictors

List of categorical predictors.

If Model is a trained classification tree, then CategoricalPredictors is a numeric
vector with indices from 1 through p, where p is the number of columns of X.

 ClassificationPartitionedModel class

22-399

If Model is a trained discriminant analysis or support vector machine classifier, then
CategoricalPredictors is an empty vector ([]).

ClassNames

List of elements in Y with duplicates removed. ClassNames has the same data type as
the data in the argument Y, and therefore can be a categorical or character array, logical
or numeric vector, or cell array of strings.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response.

If CVModel is a cross-validated ClassificationDiscriminant,
ClassificationKNN, or ClassificationNaiveBayes model, then you can change its
cost matrix to e.g., CostMatrix, using dot notation.

CVModel.Cost = CostMatrix;

CrossValidatedModel

Name of the cross-validated model, which is a string.

KFold

Number of folds used in cross-validated model, which is a positive integer.

ModelParameters

Object holding parameters of CVModel.

Partition

The partition of class CVPartition used in creating the cross-validated model.

PredictorNames

Cell array of strings containing the predictor names, in the order that they appear in X.

22 Functions — Alphabetical List

22-400

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames.

If CVModel is a cross-validated ClassificationDiscriminant or
ClassificationNaiveBayes model, then you can change its vector of priors to e.g.,
priorVector, using dot notation.

CVModel.Prior = priorVector;

ResponseName

String describing the response variable Y.

ScoreTransform

String representing a built-in transformation function, or a function handle for
transforming predicted classification scores.

To change the score transformation function to, e.g., function, use dot notation.

• For a built-in function, enter a string.

SVMModel.ScoreTransform = 'function';

This table contains the available, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1

 ClassificationPartitionedModel class

22-401

String Formula

'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

SVMModel.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Trained

The trained learners, which is a cell array of compact classification models.

W

The scaled weights, which is a vector with length n, the number of rows in X.

X

Numeric matrix of predictor values. Each column of X represents one variable, and each
row represents one observation.

Y

Categorical or character array, logical or numeric vector, or cell array of strings
specifying the class labels for each observation. Y has the same number of rows as X, and
each entry of Y is the response to the data in the corresponding row of X.

Methods

kfoldEdge
Classification edge for observations not
used for training

kfoldfun
Cross validate function

22 Functions — Alphabetical List

22-402

kfoldLoss
Classification loss for observations not used
for training

kfoldMargin
Classification margins for observations not
used for training

kfoldPredict
Predict response for observations not used
for training

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Tips

To estimate posterior probabilities of trained, cross-validated SVM classifiers, use
fitSVMPosterior.

Examples

Evaluate the Classification Error of a Classification Tree Classifier

Evaluate the k-fold cross-validation error for a classification tree model.

Load Fisher's iris data set.

load fisheriris

Train a classification tree using default options.

Mdl = fitctree(meas,species);

Cross validate the classification tree model.

CVMdl = crossval(Mdl);

 ClassificationPartitionedModel class

22-403

Estimate the 10-fold cross-validation loss.

L = kfoldLoss(CVMdl)

L =

 0.0533

Estimate Posterior Probabilities for Test Samples

Estimate positive class posterior probabilities for the test set of an SVM algorithm.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Specify a 20% holdout sample. It is good practice to standardize
the predictors and specify the class order.

rng(1) % For reproducibility

CVSVMModel = fitcsvm(X,Y,'Holdout',0.2,'Standardize',true,...

 'ClassNames',{'b','g'});

CVSVMModel is a trained ClassificationPartitionedModel cross-validated
classifier.

Estimate the optimal score function for mapping observation scores to posterior
probabilities of an observation being classified as 'g'.

ScoreCVSVMModel = fitSVMPosterior(CVSVMModel);

ScoreSVMModel is a trained ClassificationPartitionedModel cross-validated
classifier containing the optimal score transformation function estimated from the
training data.

Estimate the out-of-sample positive class posterior probabilities. Display the results for
the first 10 out-of-sample observations.

[~,OOSPostProbs] = kfoldPredict(ScoreCVSVMModel);

indx = ~isnan(OOSPostProbs(:,2));

hoObs = find(indx); % Holdout observation numbers

OOSPostProbs = [hoObs, OOSPostProbs(indx,2)];

table(OOSPostProbs(1:10,1),OOSPostProbs(1:10,2),...

22 Functions — Alphabetical List

22-404

 'VariableNames',{'ObservationIndex','PosteriorProbability'})

ans =

 ObservationIndex PosteriorProbability

 ________________ ____________________

 6 0.17378

 7 0.89637

 8 0.0076609

 9 0.91602

 16 0.026718

 22 4.6081e-06

 23 0.9024

 24 2.4129e-06

 38 0.00042697

 41 0.86427

• “Cross Validating a Discriminant Analysis Classifier” on page 15-18

See Also
ClassificationSVM | ClassificationTree | ClassificationDiscriminant
| CompactClassificationSVM | CompactClassificationTree |
CompactClassificationDiscriminant | ClassificationKNN |
ClassificationEnsemble | CompactClassificationEnsemble
| ClassificationECOC | ClassificationNaiveBayes |
ClassificationPartitionedEnsemble | CompactClassificationNaiveBayes |
fitcdiscr | fitcecoc | fitcknn | fitcnb | fitcsvm | fitctree | fitensemble
| fitSVMPosterior | RegressionPartitionedModel

 ClassificationSVM class

22-405

ClassificationSVM class
Superclasses: CompactClassificationSVM

Support vector machine for binary classification

Description

ClassificationSVM is a support vector machine classifier for one- or two-class
learning. Use fitcsvm and the training data to train a ClassificationSVM classifier.

Trained ClassificationSVM classifiers store the training data, parameter values, prior
probabilities, support vectors, and algorithmic implementation information. You can use
these classifiers to:

• Estimate resubstitution predictions. For details, see resubPredict.
• Predict labels or posterior probabilities for new data. For details, see predict.

Construction

SVMModel = fitcsvm(X,Y) returns a trained SVM classifier (SVMModel) based on the
input variables (also known as predictors, features, or attributes) X and output variables
(also known as responses or class labels) Y. For details, see fitcsvm.

SVMModel = fitcsvm(X,Y,Name,Value) returns a trained SVM classifier with
additional options specified by one or more Name,Value pair arguments. For name-value
pair argument details, see fitcsvm.

If you set one of the following five options, then SVMModel is a
ClassificationPartitionedModel model: 'CrossVal', 'CVPartition',
'Holdout', 'KFold', or 'Leaveout'. Otherwise, SVMModel is a ClassificationSVM
classifier.

Input Arguments

X — Predictor data
matrix of numeric values

22 Functions — Alphabetical List

22-406

Predictor data to which the SVM classifier is trained, specified as a matrix of numeric
values.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one predictor.

The length of Y and the number of rows of X must be equal.

It is good practice to:

• Cross validate using the KFold name-value pair argument. The cross-validation
results determine how well the SVM classifier generalizes.

• Standardize the predictor variables using the Standardize name-value pair
argument.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels to which the SVM classifier is trained, specified as a categorical or character
array, logical or numeric vector, or cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The length of Y and the number of rows of X must be equal.

It is good practice to specify the order of the classes using the ClassNames name-value
pair argument.

To specify the response variable name, use the ResponseName name-value pair
argument.

Note: The software treats NaN, empty string (''), and <undefined> elements as missing
values. If a row of X or an element of Y contains at least one NaN, then the software
removes those rows and elements from both arguments. Such deletion decreases the
effective training or cross-validation sample size.

 ClassificationSVM class

22-407

Properties
Alpha

Numeric vector of trained classifier coefficients from the dual problem (i.e., the estimated
Lagrange multipliers). Alpha has length equal to the number of support vectors in the
trained classifier (i.e., sum(SVMModel.IsSupportVector)).

Beta

Numeric vector of linear predictor coefficients. Beta has length equal to the number of
predictors (i.e., size(SVMModel.X,2)).

If KernelParameters.Function is 'linear', then the software estimates the
classification score for the observation x using

f x x s b() = () ¢ +/ .b

SVMModel stores β, b, and s in the properties Beta, Bias, and KernelParameters.Scale,
respectively.

If KernelParameters.Function is not 'linear', then Beta is empty ([]).

Bias

Scalar corresponding to the trained classifier bias term.

BoxConstraints

Numeric vector of box constraints.

BoxConstraints has length equal to the number of observations (i.e.,
size(SVMModel.X,1)).

CacheInfo

Structure array containing:

• The cache size (in MB) that the software reserves to train the SVM classifier
(SVMModel.CacheInfo.Size). To set the cache size to CacheSize MB, set the
fitcsvm name-value pair argument to 'CacheSize',CacheSize.

• The caching algorithm that the software uses during optimization
(SVMModel.CacheInfo.Algorithm). Currently, the only available caching
algorithm is Queue. You cannot set the caching algorithm.

22 Functions — Alphabetical List

22-408

CategoricalPredictors

List of categorical predictors, which is always empty ([]) for SVM and discriminant
analysis classifiers.

ClassNames

List of elements in Y with duplicates removed. ClassNames has the same data type as
the data in the argument Y, and therefore can be a categorical or character array, logical
or numeric vector, or cell array of strings.

ConvergenceInfo

Structure array containing convergence information.

Field Description

Converged Logical flag indicating whether the
algorithm converged (1 indicates
convergence)

ReasonForConvergence String indicating the criterion the software
uses to detect convergence

Gap Scalar feasibility gap between the dual and
primal objective functions

GapTolerance Scalar feasibility gap tolerance. Set this
tolerance to, e.g., gt, using the name-value
pair argument 'GapTolerance',gt of
fitcsvm.

DeltaGradient Scalar-attained gradient difference
between upper and lower violators

DeltaGradientTolerance Scalar tolerance for gradient difference
between upper and lower violators.
Set this tolerance to, e.g., dgt, using
the name-value pair argument
'DeltaGradientTolerance',dgt of
fitcsvm.

LargestKKTViolation Maximal, scalar Karush-Kuhn-Tucker
(KKT) violation value

KKTTolerance Scalar tolerance for the largest KKT
violation. Set this tolerance to, e.g., kktt,

 ClassificationSVM class

22-409

Field Description

using the name-value pair argument
'KKTTolerance',kktt of fitcsvm.

History Structure array containing convergence
information at set optimization iterations.
The fields are:

• NumIterations: numeric vector of
iteration indices for which the software
records convergence information

• Gap: numeric vector of Gap values at the
iterations

• DeltaGradient numeric vector
of DeltaGradient values at the
iterations

• LargestKKTViolation: numeric
vector of LargestKKTViolation
values at the iterations

• NumSupportVectors: numeric vector
indicating the number of support
vectors at the iterations

• Objective: numeric vector of
Objective values at the iterations

Objective Scalar value of the dual objective function

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i.

During training, the software updates the prior probabilities by incorporating the
penalties described in the cost matrix. Therefore,

• For two-class learning, Cost always has this form: Cost(i,j) = 1 if i ~= j,
and Cost(i,j) = 0 if i = j (i.e., the rows correspond to the true class and the
columns correspond to the predicted class). The order of the rows and columns of Cost
corresponds to the order of the classes in ClassNames.

• For one-class learning, Cost = 0.

22 Functions — Alphabetical List

22-410

This property is read-only. For more details, see Algorithms.

Gradient

Numeric vector of training data gradient values. Gradient has length equal to the
number of observations (i.e., size(SVMModel.X,1)).

IsSupportVector

Logical vector indicating whether a corresponding row in the predictor data matrix is a
support vector. IsSupportVector has length equal to the number of observations (i.e.,
size(SVMModel.X,1)).

KernelParameters

Structure array containing the kernel name and parameter values.

To display the values of KernelParameters, use dot notation, e.g.,
SVMModel.KernelParameters.Scale displays the scale parameter value.

The software accepts KernelParameters as inputs, and does not modify them. Alter
KernelParameters by setting the appropriate name-value pair arguments when you
train the SVM classifier using fitcsvm.

ModelParameters

Object containing parameter values, e.g., the name-value pair argument values, used to
train the SVM classifier. ModelParameters does not contain estimated parameters.

Access fields of ModelParameters using dot notation. For example, access the initial
values for estimating Alpha using SVMModel.ModelParameters.Alpha.

Mu

Numeric vector of predictor means.

If you specify 'Standardize',1 or 'Standardize',true when you train an SVM
classifier using fitcsvm, then Mu has length equal to the number of predictors (i.e.,
size(SVMModel.X,2)). Otherwise, Mu is an empty vector ([]).

NumIterations

Positive integer indicating the number of iterations required by the optimization routine
to attain convergence.

 ClassificationSVM class

22-411

To set a limit on the number of iterations to, e.g., k, specify the name-value pair
argument 'IterationLimit',k of fitcsvm.

Nu

Positive scalar representing the ν parameter for one-class learning.

NumObservations

Numeric scalar representing the number of observations in the training data. If the input
arguments X or Y contain missing values, then NumObservations is less than the length
of Y.

OutlierFraction

Scalar indicating the expected proportion of outliers in the training data.

PredictorNames

Cell array of strings containing the predictor names, in the order that they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the elements of SVMModel.ClassNames.

For two-class learning, if you specify a cost matrix, then the software updates the prior
probabilities by incorporating the penalties described in the cost matrix.

This property is read-only. For more details, see Algorithms.

ResponseName

String describing the response variable Y.

ScoreTransform

String representing a built-in transformation function, or a function handle for
transforming predicted classification scores.

To change the score transformation function to, e.g., function, use dot notation.

• For a built-in function, enter a string.

22 Functions — Alphabetical List

22-412

SVMModel.ScoreTransform = 'function';

This table contains the available, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

SVMModel.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

ShrinkagePeriod

Nonnegative integer indicating the shrinkage period, i.e., number of iterations between
reductions of the active set.

To set the shrinkage period to, e.g., sp, specify the name-value pair argument
'ShrinkagePeriod',sp of fitcsvm.

Sigma

Numeric vector of predictor standard deviations.

 ClassificationSVM class

22-413

If you specify 'Standardize',1 or 'Standardize',true when you train the
SVM classifier, then Sigma has length equal to the number of predictors (i.e.,
size(SVMModel.X,2)). Otherwise, Sigma is an empty vector ([]).

Solver

String indicating the solving routine that the software used to train the SVM classifier.

To set the solver to, e.g., solver, specify the name-value pair argument
'Solver',solver of fitcsvm.

SupportVectors

Matrix containing rows of X that the software considers the support vectors.

If you specify 'Standardize',1 or 'Standardize',true, then SupportVectors are
the standardized rows of X.

SupportVectorLabels

Numeric vector of support vector class labels. SupportVectorLabels has length equal
to the number of support vectors (i.e., sum(SVMModel.IsSupportVector)).

+1 indicates that the corresponding support vector is in the positive class
(SVMModel.ClassNames{2}). -1 indicates that the corresponding support vector is in
the negative class (SVMModel.ClassNames{1}).

W

Numeric vector of observation weights that the software used to train the SVM classifier.

The length of W is SVMModel.NumObservations.

fitcsvm normalizes Weights so that the elements of W within a particular class sum up
to the prior probability of that class.

X

Numeric matrix of unstandardized predictor values that the software used to train the
SVM classifier.

Each row of X corresponds to one observation, and each column corresponds to one
variable.

22 Functions — Alphabetical List

22-414

The software excludes predictor data rows removed due to NaNs from X.

Y

Categorical or character array, logical or numeric vector, or cell array of strings
representing the observed class labels that the software used to train the SVM classifier.
Y is the same data type as the input argument Y of fitcsvm.

Each row of Y represents the observed classification of the corresponding row of X.

The software excludes elements removed due to NaNs from Y.

Methods

compact
Compact support vector machine classifier

crossval
Cross-validated support vector machine
classifier

fitPosterior
Fit posterior probabilities

resubEdge
Classification edge for support vector
machine classifiers by resubstitution

resubLoss
Classification loss for support vector
machine classifiers by resubstitution

resubMargin
Classification margins for support vector
machine classifiers by resubstitution

resubPredict
Predict support vector machine classifier
resubstitution responses

resume
Resume training support vector machine
classifier

 ClassificationSVM class

22-415

Inherited Methods

compareHoldout
Compare accuracies of two classification
models using new data

discardSupportVectors
Discard support vectors for linear support
vector machine models

edge
Classification edge for support vector
machine classifiers

fitPosterior
Fit posterior probabilities

loss
Classification error for support vector
machine classifiers

margin
Classification margins for support vector
machine classifiers

predict
Predict labels for support vector machine
classifiers

Definitions

Box Constraint

A parameter that controls the maximum penalty imposed on margin-violating
observations, and aids in preventing overfitting (regularization).

If you increase the box constraint, then the SVM classifier assigns fewer support vectors.
However, increasing the box constraint can lead to longer training times.

22 Functions — Alphabetical List

22-416

Gram Matrix

The Gram matrix of a set of n vectors {x1,..,xn; xj ∊ Rp} is an n-by-n matrix with element
(j,k) defined as G(xj,xk) = <ϕ(xj),ϕ(xk)>, an inner product of the transformed predictors
using the kernel function ϕ.

For nonlinear SVM, the algorithm forms a Gram matrix using the predictor matrix
columns. The dual formalization replaces the inner product of the predictors with
corresponding elements of the resulting Gram matrix (called the “kernel trick”).
Subsequently, nonlinear SVM operates in the transformed predictor space to find a
separating hyperplane.

Karush-Kuhn-Tucker Complementarity Conditions

KKT complementarity conditions are optimization constraints required for optimal
nonlinear programming solutions.

In SVM, the KKT complementarity conditions are

a f x

x a

j j j j

j j

y

C

w x b¢ +()() - +È
Î

˘
˚

=

-() =

Ï

Ì
Ô

Ó
Ô

1 0

0

for all j = 1,...,n, where wj is a weight, ϕ is a kernel function (see Gram matrix), and ξj is a
slack variable. If the classes are perfectly separable, then ξj = 0 for all j = 1,...,n.

One-Class Learning

One-class learning, or unsupervised SVM, aims at separating data from the origin in the
high-dimensional, predictor space (not the original predictor space), and is an algorithm
used for outlier detection.

The algorithm resembles that of SVM for binary classification. The objective is to
minimize dual expression

0 5. (,)a aj
jk

k j kG x xÂ

with respect to a a1,...,
n

, subject to

 ClassificationSVM class

22-417

a nj nÂ =

and 0 1£ £a j for all j = 1,...,n. G(xj,xk,) is element (j,k) of the Gram matrix.

A small value of ν leads to fewer support vectors, and, therefore, a smooth, crude decision
boundary. A large value of ν leads to more support vectors, and therefore, a curvy,
flexible decision boundary. The optimal value of ν should be large enough to capture the
data complexity and small enough to avoid overtraining. Also, 0 < ν ≤ 1.

For more details, see [5].

Support Vector

Support vectors are observations corresponding to strictly positive estimates of α1,...,αn.

SVM classifiers that yield fewer support vectors for a given training set are more
desirable.

Support Vector Machines for Binary Classification

The SVM binary classification algorithm searches for an optimal hyperplane that
separates the data into two classes. For separable classes, the optimal hyperplane
maximizes a margin (space that does not contain any observations) surrounding itself,
which creates boundaries for the positive and negative classes. For inseparable classes,
the objective is the same, but the algorithm imposes a penalty on the length of the
margin for every observation that is on the wrong side of its class boundary.

The linear SVM score function is

f x x() ,= ¢ +b b0

where:

• x is an observation (corresponding to a row of X).
• The vector β contains the coefficients that define an orthogonal vector to the

hyperplane (corresponding to SVMModel.Beta). For separable data, the optimal

margin length is 2 / .b

• β0 is the bias term (corresponding to SVMModel.Bias).

22 Functions — Alphabetical List

22-418

The root of f(x) for particular coefficients defines a hyperplane. For a particular
hyperplane, f(z) is the distance from point z to the hyperplane.

An SVM classifier searches for the maximum margin length, while keeping observations
in the positive (y = 1) and negative (y = –1) classes separate. Therefore:

•
For separable classes, the objective is to minimize b with respect to the β and β0
subject to yjf(xj) ≥ 1, for all j = 1,..,n. This is the primal formalization for separable
classes.

• For inseparable classes, SVM uses slack variables (ξj) to penalize the objective
function for observations that cross the margin boundary for their class. ξj = 0 for
observations that do not cross the margin boundary for their class, otherwise ξj ≥ 0.

The objective is to minimize 0 5
2

. b x+ ÂC j with respect to the β, β0, and ξj subject to
y f xj j j() ≥ -1 x and x j ≥ 0 for all j = 1,..,n, and for a positive scalar box constraint C.

This is the primal formalization for inseparable classes.

SVM uses the Lagrange multipliers method to optimize the objective. This introduces
n coefficients α1,...,αn (corresponding to SVMModel.Alpha). The dual formalizations for
linear SVM are:

• For separable classes, minimize

0 5

11 1

.

k

n

j

n

j k j k j k

j

n

jy y x x

== =

ÂÂ Â¢ -a a a

with respect to α1,...,αn, subject to a j jyÂ = 0 , αj ≥ 0 for all j = 1,...,n, and Karush-
Kuhn-Tucker (KKT) complementarity conditions.

• For inseparable classes, the objective is the same as for separable classes, except for

the additional condition 0 £ £a j C for all j = 1,..,n.

The resulting score function is

f x y x x bj

j

n

j j() � � .= ¢ +

=

Â a

1

 ClassificationSVM class

22-419

The score function is free of the estimate of β as a result of the primal formalization.

In some cases, there is a nonlinear boundary separating the classes. Nonlinear SVM
works in a transformed predictor space to find an optimal, separating hyperplane.

The dual formalization for nonlinear SVM is

0 5

11 1

. (,)a a aj

k

n

j

n

k j k j k j

j

n

y y G x x

== =

ÂÂ Â-

with respect to α1,...,αn, subject to a j jyÂ = 0 , 0 £ £a j C for all j = 1,..,n, and the KKT
complementarity conditions.G(xk,xj) are elements of the Gram matrix. The resulting score
function is

f x y G x x bj

j

n

j j() (,) .= +

=

Â a

1

For more details, see Understanding Support Vector Machines, [1], and [3].

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Train a Support Vector Machine Classifier

Load Fisher's iris data set. Remove the sepal lengths and widths, and all observed setosa
irises.

load fisheriris

inds = ~strcmp(species,'setosa');

X = meas(inds,3:4);

y = species(inds);

22 Functions — Alphabetical List

22-420

Train an SVM classifier using the processed data set.

SVMModel = fitcsvm(X,y)

SVMModel =

 ClassificationSVM

 PredictorNames: {'x1' 'x2'}

 ResponseName: 'Y'

 ClassNames: {'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 100

 Alpha: [24x1 double]

 Bias: -14.4149

 KernelParameters: [1x1 struct]

 BoxConstraints: [100x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [100x1 logical]

 Solver: 'SMO'

The Command Window shows that SVMModel is a trained ClassificationSVM
classifier and a property list. Display the properties of SVMModel, for example, to
determine the class order, by using dot notation.

classOrder = SVMModel.ClassNames

classOrder =

 'versicolor'

 'virginica'

The first class ('versicolor') is the negative class, and the second ('virginica')
is the positive class. You can change the class order during training by using the
'ClassNames' name-value pair argument.

Plot a scatter diagram of the data and circle the support vectors.

sv = SVMModel.SupportVectors;

figure

gscatter(X(:,1),X(:,2),y)

 ClassificationSVM class

22-421

hold on

plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)

legend('versicolor','virginica','Support Vector')

hold off

The support vectors are observations that occur on or beyond their estimated class
boundaries.

You can adjust the boundaries (and therefore the number of support vectors) by setting a
box constraint during training using the 'BoxConstraint' name-value pair argument.

Train and Cross Validate Support Vector Machine Classifiers

Load the ionosphere data set.

22 Functions — Alphabetical List

22-422

load ionosphere

Train and cross validate an SVM classifier. It is good practice to standardize the
predictors and specify the order of the classes.

rng(1); % For reproducibility

CVSVMModel = fitcsvm(X,Y,'Standardize',true,...

 'ClassNames',{'b','g'},'CrossVal','on')

CVSVMModel =

 classreg.learning.partition.ClassificationPartitionedModel

 CrossValidatedModel: 'SVM'

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 NumObservations: 351

 KFold: 10

 Partition: [1x1 cvpartition]

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

CVSVMModel is not a ClassificationSVM classifier, but a
ClassificationPartitionedModel cross-validated, SVM classifier. By default, the
software implements 10-fold cross validation.

Alternatively, you can cross validate a trained ClassificationSVM classifier by
passing it to crossval.

Inspect one of the trained folds using dot notation.

CVSVMModel.Trained{1}

ans =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 Alpha: [78x1 double]

 ClassificationSVM class

22-423

 Bias: -0.2209

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 SupportVectors: [78x34 double]

 SupportVectorLabels: [78x1 double]

Each fold is a CompactClassificationSVM classifier trained on 90% of the data.

Estimate the generalization error.

genError = kfoldLoss(CVSVMModel)

genError =

 0.1168

On average, the generalization error is approximately 12%.

• Using Support Vector Machines

Algorithms

• All solvers implement L1 soft-margin minimization.
• fitcsvm and svmtrain use, among other algorithms, SMO for optimization. The

software implements SMO differently between the two functions, but numerical
studies show that there is sensible agreement in the results.

• For one-class learning, the software estimates the Lagrange multipliers, α1,...,αn, such
that

a nj

j

n

n

=

Â =

1

.

• For two-class learning, if you specify a cost matrix C, then the software updates the
class prior probabilities (p) to pc by incorporating the penalties described in C. The
formula for the updated prior probability vector is

22 Functions — Alphabetical List

22-424

p
p

p

C

C
c =

¢

¢Â
.

Subsequently, the software resets the cost matrix to the default:

C =
È

Î
Í

˘

˚
˙

0 1

1 0
.

• If you set 'Standardize',true when you train the SVM classifier using fitcsvm,
then the software trains the classifier using the standardized predictor matrix,
but stores the unstandardized data in the classifier property X. However, if you
standardize the data, then the data size in memory doubles until optimization ends.

• If you set 'Standardize',true and any of 'Cost', 'Prior', or 'Weights', then
the software standardizes the predictors using their corresponding weighted means
and weighted standard deviations.

• Let p be the proportion of outliers you expect in the training data. If you use
'OutlierFraction',p when you train the SVM classifier using fitcsvm, then:

• For one-class learning, the software trains the bias term such that 100p% of the
observations in the training data have negative scores.

• The software implements robust learning for two-class learning. In other words,
the software attempts to remove 100p% of the observations when the optimization
algorithm converges. The removed observations correspond to gradients that are
large in magnitude.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[2] Scholkopf, B., J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
“Estimating the Support of a High-Dimensional Distribution.” Neural Comput.,
Vol. 13, Number 7, 2001, pp. 1443–1471.

[3] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

 ClassificationSVM class

22-425

[4] Scholkopf, B. and A. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond, Adaptive Computation and Machine
Learning Cambridge, MA: The MIT Press, 2002.

See Also
ClassificationPartitionedModel | CompactClassificationSVM | fitcsvm

More About
• Understanding Support Vector Machines

22 Functions — Alphabetical List

22-426

ClassificationTree class
Superclasses: CompactClassificationTree

Binary decision tree for classification

Description
A decision tree with binary splits for classification. An object of class
ClassificationTree can predict responses for new data with the predict method.
The object contains the data used for training, so can compute resubstitution predictions.

Construction
tree = fitctree(X,Y) returns a classification tree based on the input variables (also
known as predictors, features, or attributes) X and output (response) Y. tree is a binary
tree, where each branching node is split based on the values of a column of X.

tree = fitctree(X,Y,Name,Value) fits a tree with additional options specified
by one or more Name,Value pair arguments. If you use one of the following five
options, tree is of class ClassificationPartitionedModel: 'CrossVal',
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. Otherwise, tree is of class
ClassificationTree.

Input Arguments

X

A matrix of numeric predictor values. Each column of X represents one variable, and
each row represents one observation.

NaN values in X are taken to be missing values. Observations with all missing values for
X are not used in the fit. Observations with some missing values for X are used to find
splits on variables for which these observations have valid values.

Y

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of y represents the classification

 ClassificationTree class

22-427

of the corresponding row of X. For numeric Y, consider using fitrtree instead of
fitctree.

NaN values in Y are taken to be missing values. Observations with missing values for Y
are not used in the fit.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'AlgorithmForCategorical' — Algorithm for best categorical predictor split
'Exact' | 'PullLeft' | 'PCA' | 'OVAbyClass'

Algorithm to find the best split on a categorical predictor with C categories
for data and K ≥ 3 classes, specified as the comma-separated pair consisting of
'AlgorithmForCategorical' and one of the following.

'Exact' Consider all 2C–1 – 1 combinations.
'PullLeft' Start with all C categories on the right

branch. Consider moving each category to
the left branch as it achieves the minimum
impurity for the K classes among the
remaining categories. From this sequence,
choose the split that has the lowest
impurity.

'PCA' Compute a score for each category
using the inner product between the
first principal component of a weighted
covariance matrix (of the centered class
probability matrix) and the vector of class
probabilities for that category. Sort the
scores in ascending order, and consider all
C – 1 splits.

'OVAbyClass' Start with all C categories on the right
branch. For each class, order the categories
based on their probability for that class.
For the first class, consider moving each

22 Functions — Alphabetical List

22-428

category to the left branch in order,
recording the impurity criterion at each
move. Repeat for the remaining classes.
From this sequence, choose the split that
has the minimum impurity.

fitctree automatically selects the optimal subset of algorithms for each split using
the known number of classes and levels of a categorical predictor. For K = 2 classes,
fitctree always performs the exact search. Use the 'AlgorithmForCategorical'
name-value pair argument to specify a particular algorithm.
Example: 'AlgorithmForCategorical','PCA'

'CategoricalPredictors' — Categorical predictors list
numeric or logical vector | cell array of strings | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

• A numeric vector with indices from 1 through p, where p is the number of columns of
X.

• A logical vector of length p, where a true entry means that the corresponding column
of X is a categorical variable.

• A cell array of strings, where each element in the array is the name of a predictor
variable. The names must match entries in PredictorNames values.

• A character matrix, where each row of the matrix is a name of a predictor variable.
The names must match entries in PredictorNames values. Pad the names with
extra blanks so each row of the character matrix has the same length.

• 'all', meaning all predictors are categorical.

Example: 'CategoricalPredictors','all'

Data Types: single | double | char

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array representing the class names. Use the same data type as the values that exist in Y.

 ClassificationTree class

22-429

Use ClassNames to order the classes or to select a subset of classes for training. The
default is the class names that exist in Y.
Data Types: single | double | char | logical | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of
'Cost' and one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its
true class is i (i.e., the rows correspond to the true class and the columns correspond
to the predicted class). To specify the class order for the corresponding rows and
columns of Cost, additionally specify the ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a
variable of the same data type as Y, and S.ClassificationCosts containing the
cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'CrossVal' — Flag to grow cross-validated decision tree
'off' (default) | 'on'

Flag to grow a cross-validated decision tree, specified as the comma-separated pair
consisting of 'CrossVal' and 'on' or 'off'.

If 'on', fitctree grows a cross-validated decision tree with 10 folds. You can override
this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' name-value pair arguments. Note that you can only use one of these
four arguments at a time when creating a cross-validated tree.

Alternatively, cross validate tree later using the crossval method.

Example: 'CrossVal','on'

'CVPartition' — Partition for cross-validated tree
cvpartition object

Partition to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'CVPartition' and an object created using cvpartition.

22 Functions — Alphabetical List

22-430

If you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or
'Leaveout' name-value pair arguments.

'Holdout' — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the rest of the data for training.

If you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or
'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or
'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout' and 'on' or 'off'. Specify 'on' to use leave-one-out cross-validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or
'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'MaxNumCategories' — Maximum category levels
10 (default) | nonnegative scalar value

Maximum category levels, specified as the comma-separated pair consisting
of 'MaxNumCategories' and a nonnegative scalar value. fitctree splits a

 ClassificationTree class

22-431

categorical predictor using the exact search algorithm if the predictor has at most
MaxNumCategories levels in the split node. Otherwise, fitctree finds the best
categorical split using one of the inexact algorithms.

Passing a small value can lead to loss of accuracy and passing a large value can increase
computation time and memory overload.
Example: 'MaxNumCategories',8

'MaxNumSplits' — Maximal number of decision splits
size(X,1) - 1 (default) | positive integer

Maximal number of decision splits (or branch nodes), specified as the comma-separated
pair consisting of 'MaxNumSplits' and a positive integer. ClassificationTree
splits MaxNumSplits or fewer branch nodes. For more details on splitting behavior, see
Algorithms.
Example: 'MaxNumSplits',5

Data Types: single | double

'MergeLeaves' — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves'
and 'on' or 'off'.

If MergeLeaves is 'on', then ClassificationTree:

• Merges leaves that originate from the same parent node, and that yields a sum of risk
values greater or equal to the risk associated with the parent node

• Estimates the optimal sequence of pruned subtrees, but does not prune the
classification tree

Otherwise, ClassificationTree does not merge leaves.

Example: 'MergeLeaves','off'

'MinLeafSize' — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair
consisting of 'MinLeafSize' and a positive integer value. Each leaf has at least
MinLeafSize observations per tree leaf. If you supply both MinParentSize and

22 Functions — Alphabetical List

22-432

MinLeafSize, fitctree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

Example: 'MinLeafSize',3

Data Types: single | double

'MinParentSize' — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair
consisting of 'MinParentSize' and a positive integer value. Each branch node in the
tree has at least MinParentSize observations. If you supply both MinParentSize and
MinLeafSize, fitctree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

Example: 'MinParentSize',8

Data Types: single | double

'NumVariablesToSample' — Number of predictors to select at random for each split
'all' | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated
pair consisting of 'NumVariablesToSample' and a positive integer value. You can also
specify 'all' to use all available predictors.

Example: 'NumVariablesToSample',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in X.

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• A string:

 ClassificationTree class

22-433

• 'empirical' determines class probabilities from class frequencies in Y. If
you pass observation weights, fitctree uses the weights to compute the class
probabilities.

• 'uniform' sets all class probabilities equal.
• A vector (one scalar value for each class). To specify the class order for the

corresponding elements of Prior, additionally specify the ClassNames name-value
pair argument.

• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as Y
• S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to
the value of the prior probability in the respective class.
Example: 'Prior','uniform'

'Prune' — Flag to estimate optimal sequence of pruned subtrees
'on' (default) | 'off'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-
separated pair consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then ClassificationTree grows the classification tree without
pruning it, but estimates the optimal sequence of pruned subtrees. Otherwise,
ClassificationTree grows the classification tree without estimating the optimal
sequence of pruned subtrees.

To prune a trained ClassificationTree model, pass it to prune.

Example: 'Prune','off'

'PruneCriterion' — Pruning criterion
'error' (default) | 'impurity'

Pruning criterion, specified as the comma-separated pair consisting of
'PruneCriterion' and 'error' or 'impurity'.

Example: 'PruneCriterion','impurity'

'ResponseName' — Response variable name
'Y' (default) | string

22 Functions — Alphabetical List

22-434

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string representing the name of the response variable Y.

Example: 'ResponseName','Response'

'ScoreTransform' — Score transform function
'none' | 'symmetric' | 'invlogit' | 'ismax' | function handle | ...

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and a function handle for transforming scores. Your function
should accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Alternatively, you can specify one of the following strings representing a built-in
transformation function.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest score

to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest score

to 1, and scores for all other classes to -1.

Example: 'ScoreTransform','logit'

'SplitCriterion' — Split criterion
'gdi' (default) | 'twoing' | 'deviance'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion'
and 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for
maximum deviance reduction (also known as cross entropy).

 ClassificationTree class

22-435

Example: 'SplitCriterion','deviance'

'Surrogate' — Surrogate decision splits flag
'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of
'Surrogate' and 'on', 'off', 'all', or a positive integer value.

• When set to 'on', fitctree finds at most 10 surrogate splits at each branch node.
• When set to 'all', fitctree finds all surrogate splits at each branch node. The

'all' setting can use considerable time and memory.
• When set to a positive integer value, fitctree finds at most the specified number of

surrogate splits at each branch node.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also lets you compute measures of predictive association between predictors.
Example: 'Surrogate','on'

'Weights' — Observation weights
ones(size(x,1),1) (default) | vector of scalar values

Vector of observation weights, specified as the comma-separated pair consisting of
'Weights' and a vector of scalar values. The length of Weights equals the number of
rows in X. fitctree normalizes the weights in each class to add up to the value of the
prior probability of the class.
Data Types: single | double

Properties

CategoricalPredictors

List of categorical predictors, a numeric vector with indices from 1 to p, where p is the
number of columns of X.

CategoricalSplits

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplits gives left and right values for a categorical split. For each branch
node with categorical split j based on a categorical predictor variable z, the left child
is chosen if z is in CategoricalSplits(j,1) and the right child is chosen if z is in

22 Functions — Alphabetical List

22-436

CategoricalSplits(j,2). The splits are in the same order as nodes of the tree. Find
the nodes for these splits by selecting 'categorical' cuts from top to bottom in the
CutType property.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n
is the number of nodes. Leaf nodes have child node 0.

ClassCount

An n-by-k array of class counts for the nodes in tree, where n is the number of nodes and
k is the number of classes. For any node number i, the class counts ClassCount(i,:)
are counts of observations (from the data used in fitting the tree) from each class
satisfying the conditions for node i.

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a categorical
array, cell array of strings, character array, logical vector, or a numeric vector.
ClassNames has the same data type as the data in the argument Y.

ClassProbability

An n-by-k array of class probabilities for the nodes in tree, where n is the number of
nodes and k is the number of classes. For any node number i, the class probabilities
ClassProbability(i,:) are the estimated probabilities for each class for a point
satisfying the conditions for node i.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response. This property is read-only.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of
nodes. For each branch node i based on a categorical predictor variable X, the left child
is chosen if X is among the categories listed in CutCategories{i,1}, and the right
child is chosen if X is among those listed in CutCategories{i,2}. Both columns of

 ClassificationTree class

22-437

CutCategories are empty for branch nodes based on continuous predictors and for leaf
nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of
nodes. For each branch node i based on a continuous predictor variable X, the left child is
chosen if X<CutPoint(i) and the right child is chosen if X>=CutPoint(i). CutPoint
is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the
number of nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form X < v for a variable X and cut
point v.

• 'categorical' — If the cut is defined by whether a variable X takes a value in a set
of categories.

• '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutPredictor

An n-element cell array of the names of the variables used for branching in each node
in tree, where n is the number of nodes. These variables are sometimes known as cut
variables. For leaf nodes, CutPredictor contains an empty string.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

IsBranchNode

An n-element logical vector that is true for each branch node and false for each leaf
node of tree.

22 Functions — Alphabetical List

22-438

ModelParameters

Parameters used in training tree. To display all parameter values, enter
tree.ModelParameters. To access a particular parameter, use dot notation.

NumObservations

Number of observations in the training data, a numeric scalar. NumObservations can
be less than the number of rows of input data X when there are missing values in X or
response Y.

NodeClass

An n-element cell array with the names of the most probable classes in each node of tree,
where n is the number of nodes in the tree. Every element of this array is a string equal
to one of the class names in ClassNames.

NodeError

An n-element vector of the errors of the nodes in tree, where n is the number of nodes.
NodeError(i) is the misclassification probability for node i.

NodeProbability

An n-element vector of the probabilities of the nodes in tree, where n is the number of
nodes. The probability of a node is computed as the proportion of observations from the
original data that satisfy the conditions for the node. This proportion is adjusted for any
prior probabilities assigned to each class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes.
The risk for each node is the measure of impurity (Gini index or deviance) for this node
weighted by the node probability. If the tree is grown by twoing, the risk for each node is
zero.

NodeSize

An n-element vector of the sizes of the nodes in tree, where n is the number of nodes. The
size of a node is defined as the number of observations from the data used to create the
tree that satisfy the conditions for the node.

NumNodes

The number of nodes in tree.

 ClassificationTree class

22-439

Parent

An n-element vector containing the number of the parent node for each node in tree,
where n is the number of nodes. The parent of the root node is 0.

PredictorNames

Cell array of strings containing the predictor names, in the order which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames. The number of elements of Prior
is the number of unique classes in the response. This property is read-only.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to
M, then PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is
for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is
the number of nodes. The pruning levels range from 0 (no pruning) to M, where M is the
distance between the deepest leaf and the root node.

ResponseNames

String describing the response variable Y.

ScoreTransform

Function handle for transforming predicted classification scores, or string representing a
built-in transformation function.

none means no transformation, or @(x)x.

To change the score transformation function to, e.g., function, use dot notation.

• For available functions (see fitctree), enter

Mdl.ScoreTransform = 'function';

22 Functions — Alphabetical List

22-440

• You can set a function handle for an available function, or a function you define
yourself by entering

tree.ScoreTransform = @function;

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrogateCutCategories{k} is a cell
array. The length of SurrogateCutCategories{k} is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutCategories{k} is either
an empty string for a continuous surrogate predictor, or is a two-element cell array with
categories for a categorical surrogate predictor. The first element of this two-element cell
array lists categories assigned to the left child by this surrogate split, and the second
element of this two-element cell array lists categories assigned to the right child by this
surrogate split. The order of the surrogate split variables at each node is matched to the
order of variables in SurrogateCutPredictor. The optimal-split variable at this node
does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an
empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in
tree, where n is the number of nodes in tree. For each node k, SurrogateCutFlip{k}
is a numeric vector. The length of SurrogateCutFlip{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogateCutFlip{k}
is either zero for a categorical surrogate predictor, or a numeric cut assignment for a
continuous surrogate predictor. The numeric cut assignment can be either –1 or +1. For
every surrogate split with a numeric cut C based on a continuous predictor variable
Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1,
or if Z≥C and the cut assignment for this surrogate split is –1. Similarly, the right
child is chosen if Z≥C and the cut assignment for this surrogate split is +1, or if Z<C
and the cut assignment for this surrogate split is –1. The order of the surrogate split
variables at each node is matched to the order of variables in SurrogateCutPredictor.
The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes,
SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric
vector. The length of SurrogateCutPoint{k} is equal to the number of surrogate

 ClassificationTree class

22-441

predictors found at this node. Every element of SurrogateCutPoint{k} is either
NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate
predictor. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this surrogate
split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly,
the right child is chosen if Z≥C and SurrogateCutFlip for this surrogate split is
+1, or if Z<C and SurrogateCutFlip for this surrogate split is –1. The order of the
surrogate split variables at each node is matched to the order of variables returned by
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPoint contains an empty cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array
with the types of the surrogate split variables at this node. The variables are sorted
by the predictive measure of association with the optimal predictor in the descending
order, and only variables with the positive predictive measure are included. The order
of the surrogate split variables at each node is matched to the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z
and cut point V or 'categorical' if the cut is defined by whether Z takes a value in a
set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits
in each node in tree, where n is the number of nodes in tree. Every element of
SurrogateCutPredictor is a cell array with the names of the surrogate split variables
at this node. The variables are sorted by the predictive measure of association with the
optimal predictor in the descending order, and only variables with the positive predictive
measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate
splits in tree, where n is the number of nodes in tree. For each node k,
SurrogatePredictorAssociation{k} is a numeric vector. The length of
SurrogatePredictorAssociation{k} is equal to the number of surrogate predictors

22 Functions — Alphabetical List

22-442

found at this node. Every element of SurrogatePredictorAssociation{k} gives
the predictive measure of association between the optimal split and this surrogate
split. The order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector. Each row of Y represents the classification of the corresponding row of X.

Methods

compact
Compact tree

crossval
Cross-validated decision tree

cvloss
Classification error by cross validation

prune
Produce sequence of subtrees by pruning

resubEdge
Classification edge by resubstitution

resubLoss
Classification error by resubstitution

resubMargin
Classification margins by resubstitution

resubPredict
Predict resubstitution response of tree

 ClassificationTree class

22-443

Inherited Methods

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge

loss
Classification error

margin
Classification margins

surrogateAssociation
Mean predictive measure of association for
surrogate splits in decision tree

predict
Predict classification

predictorImportance
Estimates of predictor importance

view
View tree

Definitions

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion
name-value pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1 2
- Â p i

i

(),

22 Functions — Alphabetical List

22-444

where the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node. A node with just one class (a pure node) has
Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of
node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the
deviance of a node is

-Â p i p i

i

() log ().

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a

different measure for deciding how to split a node. Let L(i) denote the fraction of
members of class i in the left child node after a split, and R(i) denote the fraction of
members of class i in the right child node after a split. Choose the split criterion to
maximize

P L P R L i R i

i

() () () () ,-
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

2

where P(L) and P(R) are the fractions of observations that split to the left and
right respectively. If the expression is large, the split made each child node purer.
Similarly, if the expression is small, the split made each child node similar to each
other, and hence similar to the parent node, and so the split did not increase node
purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is
the class with the largest number of training samples at a node, the node error is
1 – p(j).

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

 ClassificationTree class

22-445

Examples

Construct a Classification Tree

Construct a classification tree for the data in ionosphere.mat.

load ionosphere

tc = fitctree(X,Y)

tc =

 ClassificationTree

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 CategoricalPredictors: []

 NumObservations: 351

 Properties, Methods

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
ClassificationEnsemble | fitctree | predict | RegressionTree |
CompactClassificationTree

How To
• “Classification Trees and Regression Trees” on page 16-33

22 Functions — Alphabetical List

22-446

classify
Discriminant analysis

Compatibility
classify will be removed in a future release. Use fitcdiscr instead.

Syntax
class = classify(sample,training,group)

class = classify(sample,training,group,'type')

class = classify(sample,training,group,'type',prior)

[class,err] = classify(...)

[class,err,POSTERIOR] = classify(...)

[class,err,POSTERIOR,logp] = classify(...)

[class,err,POSTERIOR,logp,coeff] = classify(...)

Description
class = classify(sample,training,group) classifies each row of the data in
sample into one of the groups in training. sample and training must be matrices
with the same number of columns. group is a grouping variable for training. Its
unique values define groups; each element defines the group to which the corresponding
row of training belongs. group can be a categorical variable, a numeric vector, a string
array, or a cell array of strings. training and group must have the same number of
rows. classify treats NaNs or empty strings in group as missing values, and ignores
the corresponding rows of training. The output class indicates the group to which
each row of sample has been assigned, and is of the same type as group.

class = classify(sample,training,group,'type') allows you to specify the
type of discriminant function. Specify type inside single quotes. type is one of:

• linear — Fits a multivariate normal density to each group, with a pooled estimate of
covariance. This is the default.

• diaglinear — Similar to linear, but with a diagonal covariance matrix estimate
(naive Bayes classifiers).

 classify

22-447

• quadratic — Fits multivariate normal densities with covariance estimates stratified
by group.

• diagquadratic — Similar to quadratic, but with a diagonal covariance matrix
estimate (naive Bayes classifiers).

• mahalanobis — Uses Mahalanobis distances with stratified covariance estimates.

class = classify(sample,training,group,'type',prior) allows you to specify
prior probabilities for the groups. prior is one of:

• A numeric vector the same length as the number of unique values in group (or the
number of levels defined for group, if group is categorical). If group is numeric or
categorical, the order of prior must correspond to the ordered values in group, or, if
group contains strings, to the order of first occurrence of the values in group.

• A 1-by-1 structure with fields:

• prob — A numeric vector.
• group — Of the same type as group, containing unique values indicating the

groups to which the elements of prob correspond.

As a structure, prior can contain groups that do not appear in group. This can be
useful if training is a subset a larger training set. classify ignores any groups
that appear in the structure but not in the group array.

• The string 'empirical', indicating that group prior probabilities should be
estimated from the group relative frequencies in training.

prior defaults to a numeric vector of equal probabilities, i.e., a uniform distribution.
prior is not used for discrimination by Mahalanobis distance, except for error rate
calculation.

[class,err] = classify(...) also returns an estimate err of the misclassification
error rate based on the training data. classify returns the apparent error rate, i.e.,
the percentage of observations in training that are misclassified, weighted by the prior
probabilities for the groups.

[class,err,POSTERIOR] = classify(...) also returns a matrix POSTERIOR
of estimates of the posterior probabilities that the jth training group was the source
of the ith sample observation, i.e., Pr(group j|obs i). POSTERIOR is not computed for
Mahalanobis discrimination.

22 Functions — Alphabetical List

22-448

[class,err,POSTERIOR,logp] = classify(...) also returns a vector logp
containing estimates of the logarithms of the unconditional predictive probability density
of the sample observations, p(obs i) = ∑p(obs i|group j)Pr(group j) over all groups. logp
is not computed for Mahalanobis discrimination.

[class,err,POSTERIOR,logp,coeff] = classify(...) also returns a structure
array coeff containing coefficients of the boundary curves between pairs of groups.
Each element coeff(I,J) contains information for comparing group I to group J in the
following fields:

• type — Type of discriminant function, from the type input.
• name1 — Name of the first group.
• name2 — Name of the second group.
• const — Constant term of the boundary equation (K)
• linear — Linear coefficients of the boundary equation (L)
• quadratic — Quadratic coefficient matrix of the boundary equation (Q)

For the linear and diaglinear types, the quadratic field is absent, and a row x from
the sample array is classified into group I rather than group J if 0 < K+x*L. For the
other types, x is classified into group I if 0 < K+x*L+x*Q*x'.

Examples

Classify Using Discriminant Analysis

For training data, use Fisher's sepal measurements for iris versicolor and virginica:

load fisheriris

SL = meas(51:end,1);

SW = meas(51:end,2);

group = species(51:end);

h1 = gscatter(SL,SW,group,'rb','v^',[],'off');

set(h1,'LineWidth',2)

legend('Fisher versicolor','Fisher virginica',...

 'Location','NW')

 classify

22-449

Classify a grid of measurements on the same scale:

[X,Y] = meshgrid(linspace(4.5,8),linspace(2,4));

X = X(:); Y = Y(:);

[C,err,P,logp,coeff] = classify([X Y],[SL SW],...

 group,'Quadratic');

Visualize the classification:

hold on;

gscatter(X,Y,C,'rb','.',1,'off');

K = coeff(1,2).const;

L = coeff(1,2).linear;

Q = coeff(1,2).quadratic;

% Function to compute K + L*v + v'*Q*v for multiple vectors

22 Functions — Alphabetical List

22-450

% v=[x;y]. Accepts x and y as scalars or column vectors.

f = @(x,y) K + [x y]*L + sum(([x y]*Q) .* [x y], 2);

h2 = ezplot(f,[4.5 8 2 4]);

set(h2,'Color','m','LineWidth',2)

axis([4.5 8 2 4])

xlabel('Sepal Length')

ylabel('Sepal Width')

title('{\bf Classification with Fisher Training Data}')

More About
• “Grouping Variables” on page 2-52

 classify

22-451

References

[1] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New
York: Oxford University Press, 1988.

[2] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc.,
1984.

See Also
mahal | fitctree | fitNaiveBayes

22 Functions — Alphabetical List

22-452

classname
Class: classregtree

Class names for classification decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

CNAMES = classname(T)

CNAMES = classname(T,J)

Description

CNAMES = classname(T) returns a cell array of strings with class names for this
classification decision tree.

CNAMES = classname(T,J) takes an array J of class numbers and returns the class
names for the specified numbers.

See Also
classregtree

 ClassNames property

22-453

ClassNames property
Class: TreeBagger

Names of classes

Description

The ClassNames property is a cell array containing the class names for the response
variable Y. This property is empty for regression trees.

22 Functions — Alphabetical List

22-454

classprob
Class: classregtree

Class probabilities

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

P = classprob(t)

P = classprob(t,nodes)

Description

P = classprob(t) returns an n-by-m array P of class probabilities for the nodes in the
classification tree t, where n is the number of nodes and m is the number of classes. For
any node number i, the class probabilities P(i,:) are the estimated probabilities for
each class for a point satisfying the conditions for node i.

P = classprob(t,nodes) takes a vector nodes of node numbers and returns the class
probabilities for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

 classprob

22-455

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

P = classprob(t)

P =

 0.3333 0.3333 0.3333

 1.0000 0 0

 0 0.5000 0.5000

22 Functions — Alphabetical List

22-456

 0 0.9074 0.0926

 0 0.0217 0.9783

 0 0.9792 0.0208

 0 0.3333 0.6667

 0 1.0000 0

 0 0 1.0000

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | numnodes

 classregtree class

22-457

classregtree class

Classification and regression trees

Compatibility

Use ClassificationTree and RegressionTree classes instead. This class is
superseded by ClassificationTree and RegressionTree classes and is maintained
only for backwards compatibility.

Construction

.classregtree
Construct classification and regression
trees

Methods

catsplit
Categorical splits used for branches in
decision tree

children
Child nodes

classcount
Class counts

classname
Class names for classification decision tree

classprob
Class probabilities

cutcategories
Cut categories

cutpoint
Decision tree cut point values

22 Functions — Alphabetical List

22-458

cuttype
Cut types

cutvar
Cut variable names

disp
Display classregtree object

display
Display classregtree object

eval
Predicted responses

isbranch
Test node for branch

meansurrvarassoc
Mean predictive measure of association for
surrogate splits in decision tree

nodeclass
Class values of nodes of classification tree

nodeerr
Return vector of node errors

nodemean
Mean values of nodes of regression tree

nodeprob
Node probabilities

nodesize
Return node size

numnodes
Number of nodes

parent
Parent node

prune
Prune tree

prunelist
Pruning levels for decision tree nodes

 classregtree class

22-459

risk
Node risks

subsasgn
Subscripted reference for classregtree
object

subsref
Subscripted reference for classregtree
object

surrcutcategories
Categories used for surrogate splits in
decision tree

surrcutflip
Numeric cutpoint assignments used for
surrogate splits in decision tree

surrcutpoint
Cutpoints used for surrogate splits in
decision tree

surrcuttype
Types of surrogate splits used at branches
in decision tree

surrcutvar
Variables used for surrogate splits in
decision tree

surrvarassoc
Predictive measure of association for
surrogate splits in decision tree

test
Error rate

type
Tree type

varimportance
Compute embedded estimates of input
feature importance

view
Plot tree

22 Functions — Alphabetical List

22-460

Properties

Objects of the classregtree class have no properties accessible by dot indexing, get
methods, or set methods. To obtain information about a classregtree object, use the
appropriate method.

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

How To
• “Ensemble Methods” on page 16-68
• “Classification Trees and Regression Trees” on page 16-33
• “Grouping Variables” on page 2-52

 classregtree

22-461

classregtree
Class: classregtree

Construct classification and regression trees

Compatibility

Use fitctree or fitrtree instead. This function is superseded by fitctree and
fitrtree of ClassificationTree and RegressionTree classes. It is maintained
only for backwards compatibility.

Syntax

t = classregtree(X,y)

t = classregtree(X,y,'Name',value)

Description

t = classregtree(X,y) creates a decision tree t for predicting the response y as
a function of the predictors in the columns of X. X is an n-by-m matrix of predictor
values. If y is a vector of n response values, classregtree performs regression. If y is
a categorical variable, character array, or cell array of strings, classregtree performs
classification. Either way, t is a binary tree where each branching node is split based
on the values of a column of X. NaN values in X or y are taken to be missing values.
Observations with all missing values for X or missing values for y are not used in the
fit. Observations with some missing values for X are used to find splits on variables for
which these observations have valid values.

t = classregtree(X,y,'Name',value) specifies one or more optional parameter
name/value pairs. Specify Name in single quotes. The following options are available:

For all trees:

• categorical — Vector of indices of the columns of X that are to be treated as
unordered categorical variables

22 Functions — Alphabetical List

22-462

• method — Either 'classification' (default if y is text or a categorical variable) or
'regression' (default if y is numeric).

• names — A cell array of names for the predictor variables, in the order in which they
appear in the X from which the tree was created.

• prune — 'on' (default) to compute the full tree and the optimal sequence of pruned
subtrees, or 'off' for the full tree without pruning.

• minparent — A number k such that impure nodes must have k or more observations
to be split (default is 10).

• minleaf — A minimal number of observations per tree leaf (default is 1). If you
supply both 'minparent' and 'minleaf', classregtree uses the setting which
results in larger leaves: minparent = max(minparent,2*minleaf)

• mergeleaves — 'on' (default) to merge leaves that originate from the same parent
node and give the sum of risk values greater or equal to the risk associated with the
parent node. If 'off', classregtree does not merge leaves.

• nvartosample — Number of predictor variables randomly selected for each split. By
default all variables are considered for each decision split.

• stream — Random number stream. Default is the MATLAB default random number
stream.

• surrogate — 'on' to find surrogate splits at each branch node. Default is 'off'.
If you set this parameter to 'on',classregtree can run significantly slower and
consume significantly more memory.

• weights — Vector of observation weights. By default the weight of every observation
is 1. The length of this vector must be equal to the number of rows in X.

For regression trees only:

• qetoler — Defines tolerance on quadratic error per node for regression trees.
Splitting nodes stops when quadratic error per node drops below qetoler*qed,
where qed is the quadratic error for the entire data computed before the decision tree
is grown: qed = norm(y-ybar) with ybar estimated as the average of the input
array Y. Default value is 1e-6.

For classification trees only:

• cost — Square matrix C, where C(i,j) is the cost of classifying a point into
class j if its true class is i (default has C(i,j)=1 if i~=j, and C(i,j)=0 if i=j).
Alternatively, this value can be a structure S having two fields: S.group containing

 classregtree

22-463

the group names as a categorical variable, character array, or cell array of strings;
and S.cost containing the cost matrix C.

• splitcriterion — Criterion for choosing a split. One of 'gdi' (default) or Gini's
diversity index, 'twoing' for the twoing rule, or 'deviance' for maximum deviance
reduction.

• priorprob — Prior probabilities for each class, specified as a string ('empirical'
or 'equal') or as a vector (one value for each distinct group name) or as a structure S
with two fields:

• S.group containing the group names as a categorical variable, character array, or
cell array of strings

• S.prob containing a vector of corresponding probabilities.

If the input value is 'empirical' (default), class probabilities are determined
from class frequencies in Y. If the input value is 'equal', all class probabilities
are set equal. If both observation weights and class prior probabilities are supplied,
the weights are renormalized to add up to the value of the prior probability in the
respective class.

Examples

Plot a Classification Tree

Create a classification decision tree for Fisher's iris data:

load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

view(t)

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

22 Functions — Alphabetical List

22-464

7 class = virginica

8 class = versicolor

9 class = virginica

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

 classregtree

22-465

See Also
eval | test | view | fitctree | fitrtree | prune

How To
• “Grouping Variables” on page 2-52
• “Ensemble Methods” on page 16-68

22 Functions — Alphabetical List

22-466

ClassLevels property
Class: NaiveBayes

Class levels

Description

The ClassLevels property is a vector of the same type as the grouping variable,
containing the unique levels of the grouping variable.

 cluster

22-467

cluster

Construct agglomerative clusters from linkages

Syntax

T = cluster(Z,'cutoff',c)

T = cluster(Z,'cutoff',c,'depth',d)

T = cluster(Z,'cutoff',c,'criterion',criterion)

T = cluster(Z,'maxclust',n)

Description

T = cluster(Z,'cutoff',c) constructs clusters from the agglomerative hierarchical
cluster tree, Z, as generated by the linkage function. Z is a matrix of size (m – 1)-
by-3, where m is the number of observations in the original data. c is a threshold for
cutting Z into clusters. Clusters are formed when a node and all of its subnodes have
inconsistent value less than c. All leaves at or below the node are grouped into a
cluster. t is a vector of size m containing the cluster assignments of each observation.

If c is a vector, T is a matrix of cluster assignments with one column per cutoff value.

T = cluster(Z,'cutoff',c,'depth',d) evaluates inconsistent values by looking to
a depth d below each node. The default depth is 2.

T = cluster(Z,'cutoff',c,'criterion',criterion) uses the specified criterion
for forming clusters, where criterion is one of the strings 'inconsistent' (default)
or 'distance'. The 'distance' criterion uses the distance between the two subnodes
merged at a node to measure node height. All leaves at or below a node with height less
than c are grouped into a cluster.

T = cluster(Z,'maxclust',n) constructs a maximum of n clusters using the
'distance' criterion. cluster finds the smallest height at which a horizontal cut
through the tree leaves n or fewer clusters.

If n is a vector, T is a matrix of cluster assignments with one column per maximum value.

22 Functions — Alphabetical List

22-468

Examples

Compare clusters from Fisher iris data with species:

load fisheriris

d = pdist(meas);

Z = linkage(d);

c = cluster(Z,'maxclust',3:5);

crosstab(c(:,1),species)

ans =

 0 0 2

 0 50 48

 50 0 0

crosstab(c(:,2),species)

ans =

 0 0 1

 0 50 47

 0 0 2

 50 0 0

crosstab(c(:,3),species)

ans =

 0 4 0

 0 46 47

 0 0 1

 0 0 2

 50 0 0

See Also
clusterdata | linkage | pdist | cophenet | inconsistent

 cluster

22-469

cluster
Class: gmdistribution

Construct clusters from Gaussian mixture distribution

Syntax
idx = cluster(obj,X)

[idx,nlogl] = cluster(obj,X)

[idx,nlogl,P] = cluster(obj,X)

[idx,nlogl,P,logpdf] = cluster(obj,X)

[idx,nlogl,P,logpdf,M] = cluster(obj,X)

Description
idx = cluster(obj,X) partitions data in the n-by-d matrix X, where n is the number
of observations and d is the dimension of the data, into k clusters determined by the k
components of the Gaussian mixture distribution defined by obj. obj is an object created
by gmdistribution or fitgmdist. idx is an n-by-1 vector, where idx(I) is the cluster
index of observation I. The cluster index gives the component with the largest posterior
probability for the observation, weighted by the component probability.

Note: The data in X is typically the same as the data used to create the Gaussian mixture
distribution defined by obj. Clustering with cluster is treated as a separate step, apart
from density estimation. For cluster to provide meaningful clustering with new data, X
should come from the same population as the data used to create obj.

cluster treats NaN values as missing data. Rows of X with NaN values are excluded from
the partition.

[idx,nlogl] = cluster(obj,X) also returns nlogl, the negative log-likelihood of
the data.

[idx,nlogl,P] = cluster(obj,X) also returns the posterior probabilities of each
component for each observation in the n-by-k matrix P. P(I,J) is the probability of
component J given observation I.

22 Functions — Alphabetical List

22-470

[idx,nlogl,P,logpdf] = cluster(obj,X) also returns the n-by-1 vector logpdf
containing the logarithm of the estimated probability density function for each
observation. The density estimate for observation I is a sum over all components of the
component density at I times the component probability.

[idx,nlogl,P,logpdf,M] = cluster(obj,X) also returns an n-by-k matrix M
containing Mahalanobis distances in squared units. M(I,J) is the Mahalanobis distance
of observation I from the mean of component J.

Examples

Cluster Data from a Gaussian Mixture Distribution

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd
function

MU1 = [2 2];

SIGMA1 = [2 0; 0 1];

MU2 = [-2 -1];

SIGMA2 = [1 0; 0 1];

rng(1); % For reproducibility

X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')

hold on

 cluster

22-471

Fit a two-component Gaussian mixture model.

obj = fitgmdist(X,2);

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

22 Functions — Alphabetical List

22-472

Use the fit to cluster the data.

idx = cluster(obj,X);

cluster1 = X(idx == 1,:);

cluster2 = X(idx == 2,:);

delete(h)

h1 = scatter(cluster1(:,1),cluster1(:,2),10,'r.');

h2 = scatter(cluster2(:,1),cluster2(:,2),10,'g.');

legend([h1 h2],'Cluster 1','Cluster 2','Location','NW')

 cluster

22-473

See Also
fitgmdist | posterior | gmdistribution | mahal

22 Functions — Alphabetical List

22-474

clustering.evaluation.ClusterCriterion class
Package: clustering.evaluation

Clustering evaluation object

Description

Create a clustering evaluation object using evalclusters.

Properties

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering
algorithm name string or function handle. If the clustering solutions are provided in the
input, ClusteringFunction is empty.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name
string.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK,
stored as a vector of numerical values.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a
vector of positive integer values.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing
equals true, then the corresponding value in the data matrix x is not used in the
clustering solution.

 clustering.evaluation.ClusterCriterion class

22-475

NumObservations

Number of observations in the data matrix X, minus the number of missing (NaN) values
in X, stored as a positive integer value.

OptimalK

Optimal number of clusters, stored as a positive integer value.

OptimalY

Optimal clustering solution corresponding to OptimalK, stored as a column vector of
positive integer values. If the clustering solutions are provided in the input, OptimalY is
empty.

X

Data used for clustering, stored as a matrix of numerical values.

Methods

addK
Evaluate additional numbers of clusters

plot
Plot clustering evaluation object criterion
values

compact
Compact clustering evaluation object

See Also
clustering.evaluation.CalinskiHarabaszEvaluation

| clustering.evaluation.DaviesBouldinEvaluation
| clustering.evaluation.GapEvaluation |
clustering.evaluation.SilhouetteEvaluation | evalclusters

More About
• Class Attributes

22 Functions — Alphabetical List

22-476

• Property Attributes

 clusterdata

22-477

clusterdata
Agglomerative clusters from data

Syntax

T = clusterdata(X,cutoff)

T = clusterdata(X,Name,Value)

Description

T = clusterdata(X,cutoff) returns the cluster indices (T) for each observation (row)
of the data (X) while adhering to a threshold for cutting the hierarchical tree (cutoff).

T = clusterdata(X,Name,Value) clusters with additional options specified by one or
more Name,Value pair arguments.

Input Arguments

X

Matrix with two or more rows. The rows represent observations, the columns represent
categories or dimensions.

cutoff

When 0 < cutoff < 2, clusterdata forms clusters when inconsistent values
are greater than cutoff (see inconsistent). When cutoff is an integer ≥ 2,
clusterdata interprets cutoff as the maximum number of clusters to keep in the
hierarchical tree generated by linkage.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-478

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'criterion'

Either 'inconsistent' or 'distance'.

'cutoff'

Cutoff for inconsistent or distance measure, a positive scalar. When 0 < cutoff < 2,
clusterdata forms clusters when inconsistent values are greater than cutoff (see
inconsistent). When cutoff is an integer ≥ 2, clusterdata interprets cutoff as
the maximum number of clusters to keep in the hierarchical tree generated by linkage.

'depth'

Depth for computing inconsistent values, a positive integer.

'distance'

Any of the distance metric names allowed by pdist (follow the 'minkowski' option by
the value of the exponent p):

Metric Description

'euclidean' Euclidean distance (default).
'seuclidean' Standardized Euclidean distance. Each coordinate difference

between rows in X is scaled by dividing by the corresponding
element of the standard deviation S=nanstd(X). To specify
another value for S, use D=pdist(X,'seuclidean',S).

'cityblock' City block metric.
'minkowski' Minkowski distance. The default exponent is 2. To specify a

different exponent, use D = pdist(X,'minkowski',P),
where P is a scalar positive value of the exponent.

'chebychev' Chebychev distance (maximum coordinate difference).
'mahalanobis' Mahalanobis distance, using the sample covariance of X

as computed by nancov. To compute the distance with a
different covariance, use D = pdist(X,'mahalanobis',C),
where the matrix C is symmetric and positive definite.

 clusterdata

22-479

Metric Description

'cosine' One minus the cosine of the included angle between points
(treated as vectors).

'correlation' One minus the sample correlation between points (treated as
sequences of values).

'spearman' One minus the sample Spearman's rank correlation between
observations (treated as sequences of values).

'hamming' Hamming distance, which is the percentage of coordinates
that differ.

'jaccard' One minus the Jaccard coefficient, which is the percentage of
nonzero coordinates that differ.

custom distance function A distance function specified using @:
D = pdist(X,@distfun)

A distance function must be of form

d2 = distfun(XI,XJ)

taking as arguments a 1-by-n vector XI, corresponding to a
single row of X, and an m2-by-n matrix XJ, corresponding to
multiple rows of X. distfun must accept a matrix XJ with
an arbitrary number of rows. distfun must return an m2-
by-1 vector of distances d2, whose kth element is the distance
between XI and XJ(k,:).

'linkage'

Any of the linkage methods allowed by the linkage function:

• 'average'

• 'centroid'

• 'complete'

• 'median'

• 'single'

• 'ward'

• 'weighted'

For details, see the definitions in the linkage function reference page.

22 Functions — Alphabetical List

22-480

'maxclust'

Maximum number of clusters to form, a positive integer.

'savememory'

A string, either 'on' or 'off'. When applicable, the 'on' setting causes clusterdata
to construct clusters without computing the distance matrix. savememory is applicable
when:

• linkage is 'centroid', 'median', or 'ward'
• distance is 'euclidean' (default)

When savememory is 'on', linkage run time is proportional to the number of
dimensions (number of columns of X). When savememory is 'off', linkage memory
requirement is proportional to N2, where N is the number of observations. So choosing the
best (least-time) setting for savememory depends on the problem dimensions, number
of observations, and available memory. The default savememory setting is a rough
approximation of an optimal setting.

Default: 'on' when X has 20 columns or fewer, or the computer does not have enough
memory to store the distance matrix; otherwise 'off'

Output Arguments

T

T is a vector of size m containing a cluster number for each observation.

• When 0 < cutoff < 2, T = clusterdata(X,cutoff) is equivalent to:

Y = pdist(X,'euclid');

Z = linkage(Y,'single');

T = cluster(Z,'cutoff',cutoff);

• When cutoff is an integer ≥ 2, T = clusterdata(X,cutoff) is equivalent to:

Y = pdist(X,'euclid');

Z = linkage(Y,'single');

T = cluster(Z,'maxclust',cutoff);

 clusterdata

22-481

Examples

Create Hierarchical Cluster Tree From Sample Data

This example shows how to create a hierarchical cluster tree from sample data, and
visualize the clusters using a 3-dimensional scatter plot.

Generate sample data matrices containing random numbers from the standard uniform
distribution.

rng default; % For reproducibility

X = [gallery('uniformdata',[10 3],12);...

 gallery('uniformdata',[10 3],13)+1.2;...

 gallery('uniformdata',[10 3],14)+2.5];

Compute the distances between items and create a hierarchical cluster tree from the
sample data. List all of the items in cluster 2.

T = clusterdata(X,'maxclust',3);

find(T==2)

ans =

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

Plot the data with each cluster shown in a different color.

scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')

22 Functions — Alphabetical List

22-482

Create Hierarchical Cluster Tree Using Ward's Linkage

This example shows how to create a hierarchical cluster tree using Ward's linkage, and
visualize the clusters using a 3-dimensional scatter plot.

Create a 20,000-by-3 matrix of sample data generated from the standard uniform
distribution.

rng default; % For reproducibility

X = rand(20000,3);

Create a hierarchical cluster tree from the sample data using Ward's linkage. Set
'savememory' to 'on' to construct clusters without computing the distance matrix.

 clusterdata

22-483

c = clusterdata(X,'linkage','ward','savememory','on','maxclust',4);

Plot the data with each cluster shown in a different color.

scatter3(X(:,1),X(:,2),X(:,3),10,c)

More About

Tips

• The centroid and median methods can produce a cluster tree that is not monotonic.
This occurs when the distance from the union of two clusters, r and s, to a third

22 Functions — Alphabetical List

22-484

cluster is less than the distance between r and s. In this case, in a dendrogram
drawn with the default orientation, the path from a leaf to the root node takes some
downward steps. To avoid this, use another method. The following image shows a
nonmonotonic cluster tree.

In this case, cluster 1 and cluster 3 are joined into a new cluster, while the distance
between this new cluster and cluster 2 is less than the distance between cluster 1 and
cluster 3. This leads to a nonmonotonic tree.

• You can provide the output T to other functions including dendrogram to display the
tree, cluster to assign points to clusters, inconsistent to compute inconsistent
measures, and cophenet to compute the cophenetic correlation coefficient.

See Also
cluster | inconsistent | kmeans | linkage | pdist

 cmdscale

22-485

cmdscale
Classical multidimensional scaling

Syntax

Y = cmdscale(D)

[Y,e] = cmdscale(D)

Description

Y = cmdscale(D) takes an n-by-n distance matrix D, and returns an n-by-p
configuration matrix Y. Rows of Y are the coordinates of n points in p-dimensional space
for some p < n. When D is a Euclidean distance matrix, the distances between those
points are given by D. p is the dimension of the smallest space in which the n points
whose inter-point distances are given by D can be embedded.

[Y,e] = cmdscale(D) also returns the eigenvalues of Y*Y'. When D is Euclidean,
the first p elements of e are positive, the rest zero. If the first k elements of e are
much larger than the remaining (n-k), then you can use the first k columns of Y as k-
dimensional points whose inter-point distances approximate D. This can provide a useful
dimension reduction for visualization, e.g., for k = 2.

D need not be a Euclidean distance matrix. If it is non-Euclidean or a more general
dissimilarity matrix, then some elements of e are negative, and cmdscale chooses p as
the number of positive eigenvalues. In this case, the reduction to p or fewer dimensions
provides a reasonable approximation to D only if the negative elements of e are small in
magnitude.

You can specify D as either a full dissimilarity matrix, or in upper triangle vector form
such as is output by pdist. A full dissimilarity matrix must be real and symmetric, and
have zeros along the diagonal and positive elements everywhere else. A dissimilarity
matrix in upper triangle form must have real, positive entries. You can also specify D as a
full similarity matrix, with ones along the diagonal and all other elements less than one.
cmdscale transforms a similarity matrix to a dissimilarity matrix in such a way that
distances between the points returned in Y equal or approximate sqrt(1-D). To use a
different transformation, you must transform the similarities prior to calling cmdscale.

22 Functions — Alphabetical List

22-486

Examples

Generate some points in 4-D space, but close to 3-D space, then reduce them to distances
only.

X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];

D = pdist(X,'euclidean');

Find a configuration with those inter-point distances.

[Y,e] = cmdscale(D);

% Four, but fourth one small

dim = sum(e > eps^(3/4))

% Poor reconstruction

maxerr2 = max(abs(pdist(X)-pdist(Y(:,1:2))))

% Good reconstruction

maxerr3 = max(abs(pdist(X)-pdist(Y(:,1:3))))

% Exact reconstruction

maxerr4 = max(abs(pdist(X)-pdist(Y)))

% D is now non-Euclidean

D = pdist(X,'cityblock');

[Y,e] = cmdscale(D);

% One is large negative

min(e)

% Poor reconstruction

maxerr = max(abs(pdist(X)-pdist(Y)))

References

[1] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc.,
1984.

See Also
mdscale | pdist | procrustes

 coefCI

22-487

coefCI
Class: GeneralizedLinearModel

Confidence intervals of coefficient estimates of generalized linear model

Syntax

ci = coefCI(mdl)

ci = coefCI(mdl,alpha)

Description

ci = coefCI(mdl) returns confidence intervals for the coefficients in mdl.

ci = coefCI(mdl,alpha) returns confidence intervals with confidence level
1 - alpha.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

alpha

Scalar from 0 to 1, the probability that the confidence interval does not contain the true
value.

Default: 0.05

Output Arguments

ci

k-by-2 matrix of confidence intervals. The jth row of ci is the confidence interval of
coefficient j of mdl. The name of coefficient j of mdl is in mdl.CoefficientNames.

22 Functions — Alphabetical List

22-488

Definitions

Confidence Interval

Assume that model assumptions hold (data comes from a generalized linear model
represented by the formula mdl.Formula and the specified link function, and with
observations that are independent conditional on the predictor values). Then row j of the
confidence interval matrix ci gives a confidence interval [ci(j,1),ci(j,2)] computed
such that, with repeated experimentation, a proportion 1 - alpha of the intervals will
contain the true value of the coefficient.

Examples

Confidence Interval for Coefficients of a Generalized Linear Model

Find confidence intervals for the coefficients of a fitted generalized nonlinear model.

Generate artificial data for the model using Poisson random numbers with two
underlying predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,...

 'y ~ x1 + x2','distr','poisson')

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x2

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.0405 0.022122 47.034 0

 coefCI

22-489

 x1 0.9968 0.003362 296.49 0

 x2 1.987 0.0063433 313.24 0

100 observations, 97 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Find 95% (default) confidence intervals on the coefficients of the model.

ci = coefCI(mdl)

ci =

 0.9966 1.0844

 0.9901 1.0035

 1.9744 1.9996

Find 99% confidence intervals on the coefficients.

alpha = .01;

ci = coefCI(mdl,alpha)

ci =

 0.9824 1.0986

 0.9880 1.0056

 1.9703 2.0036

• “Generalized Linear Model Workflow” on page 10-39

See Also
GeneralizedLinearModel

22 Functions — Alphabetical List

22-490

coefCI
Class: GeneralizedLinearMixedModel

Confidence intervals for coefficients of generalized linear mixed-effects model

Syntax

feCI = coefCI(glme)

feCI = coefCI(glme,Name,Value)

[feCI,reCI] = coefCI(___)

Description

feCI = coefCI(glme) returns the 95% confidence intervals for the fixed-effects
coefficients in the generalized linear mixed-effects model glme.

feCI = coefCI(glme,Name,Value) returns the confidence intervals using additional
options specified by one or more Name,Value pair arguments. For example, you can
specify a different confidence level or the method used to compute the approximate
degrees of freedom.

[feCI,reCI] = coefCI(___) also returns the confidence intervals for the random-
effects coefficients using any of the previous syntaxes.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 coefCI

22-491

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'DFMethod' — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated
pair consisting of 'DFMethod' and one of the following.

'residual' The degrees of freedom are assumed to
be constant and equal to n – p, where n is
the number of observations and p is the
number of fixed effects.

'none' All degrees of freedom are set to infinity.

Example: 'DFMethod','none'

Output Arguments

feCI — Fixed-effects confidence intervals
p-by-2 matrix

Fixed-effects confidence intervals, returned as a p-by-2 matrix. feCI contains the
confidence limits that correspond to the p-by-1 fixed-effects vector returned by the
fixedEffects method. The first column of feCI contains the lower confidence limits and
the second column contains the upper confidence limits.

When fitting a GLME model using fitglme and one of the maximum likelihood fit
methods ('Laplace' or 'ApproximateLaplace'):

22 Functions — Alphabetical List

22-492

• If you specify the 'CovarianceMethod' name-value pair argument as
'conditional', then the confidence intervals are conditional on the estimated
covariance parameters.

• If you specify the 'CovarianceMethod' name-value pair argument as
'JointHessian', then the confidence intervals account for the uncertainty in the
estimated covariance parameters.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods
('MPL' or 'REMPL'), coefci uses the fitted linear mixed effects model from the final
pseudo likelihood iteration to compute confidence intervals on the fixed effects.

reCI — Random-effects confidence intervals
q-by-2 matrix

Random-effects confidence intervals, returned as a q-by-2 matrix. reCI contains the
confidence limits corresponding to the q-by-1 random-effects vector B returned by the
randomEffects method. The first column of reCI contains the lower confidence limits,
and the second column contains the upper confidence limits.

When fitting a GLME model using fitglme and one of the maximum likelihood fit
methods ('Laplace' or 'ApproximateLaplace'), coefCI computes the confidence
intervals using the conditional mean squared error of prediction (CMSEP) approach
conditional on the estimated covariance parameters and the observed response.
Alternatively, you can interpret the confidence intervals from coefCI as approximate
Bayesian credible intervals conditional on the estimated covariance parameters and the
observed response.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods
('MPL' or 'REMPL'), coefci uses the fitted linear mixed effects model from the final
pseudo likelihood iteration to compute confidence intervals on the random effects.

Examples

95% Confidence Intervals for Fixed Effects

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

 coefCI

22-493

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

22 Functions — Alphabetical List

22-494

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Use fixedEffects to display the estimates and names of the fixed-effects coefficients in
glme.

[beta,betanames] = fixedEffects(glme)

beta =

 1.4689

 -0.3677

 -0.0945

 -0.2832

 -0.0719

 0.0711

betanames =

 Name

 '(Intercept)'

 'newprocess'

 'time_dev'

 'temp_dev'

 'supplier_C'

 'supplier_B'

 coefCI

22-495

Each row of beta contains the estimated value for the coefficient named in the
corresponding row of betanames. For example, the value –0.0945 in row 3 of beta is the
estimated coefficient for the predictor variable time_dev.

Compute the 95% confidence intervals for the fixed-effects coefficients.

feCI = coefCI(glme)

feCI =

 1.1515 1.7864

 -0.7202 -0.0151

 -1.7395 1.5505

 -2.1926 1.6263

 -0.2268 0.0831

 -0.0826 0.2247

Column 1 of feCI contains the lower bound of the 95% confidence interval. Column
2 contains the upper bound. Row 1 corresponds to the intercept term. Rows 2, 3, and
4 correspond to newprocess, time_dev, and temp_dev, respectively. Rows 5 and
6 correspond to the indicator variables supplier_C and supplier_B, respectively.
For example, the 95% confidence interval for the coefficient for time_dev is [-1.7395 ,
1.5505]. Some of the confidence intervals include 0, which indicates that those predictors
are not significant at the 5% significance level. To obtain specific p-values for each fixed-
effects term, use fixedEffects. To test significance for entire terms, use anova.

99% Confidence Intervals for Random Effects

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

22 Functions — Alphabetical List

22-496

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects intercept grouped
by factory, to account for quality differences that might exist due to factory-specific
variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i (where i =
1, 2, ..., 20) during batch j (where j = 1, 2, ..., 5).

• μij is the mean number of defects corresponding to factory i during batch j.
• supplier_Cij and supplier_Bij are dummy variables that indicate whether company C

or B, respectively, supplied the process chemicals for the batch produced by factory i
during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

 coefCI

22-497

Use randomEffects to compute and display the estimates of the empirical Bayes
predictors (EBPs) for the random effects associated with factory.

[B,Bnames] = randomEffects(glme)

B =

 0.2913

 0.1542

 -0.2633

 -0.4257

 0.5453

 -0.1069

 0.3040

 -0.1653

 -0.1458

 -0.0816

 0.0145

 0.1771

 0.2487

 0.2115

 0.2777

 -0.2518

 -0.1351

 -0.1627

 -0.3208

 0.0584

Bnames =

 Group Level Name

 _________ _____ _____________

 'factory' '1' '(Intercept)'

 'factory' '2' '(Intercept)'

 'factory' '3' '(Intercept)'

 'factory' '4' '(Intercept)'

 'factory' '5' '(Intercept)'

 'factory' '6' '(Intercept)'

 'factory' '7' '(Intercept)'

 'factory' '8' '(Intercept)'

 'factory' '9' '(Intercept)'

 'factory' '10' '(Intercept)'

 'factory' '11' '(Intercept)'

22 Functions — Alphabetical List

22-498

 'factory' '12' '(Intercept)'

 'factory' '13' '(Intercept)'

 'factory' '14' '(Intercept)'

 'factory' '15' '(Intercept)'

 'factory' '16' '(Intercept)'

 'factory' '17' '(Intercept)'

 'factory' '18' '(Intercept)'

 'factory' '19' '(Intercept)'

 'factory' '20' '(Intercept)'

Each row of B contains the estimated EBPs for the random-effects coefficient named in
the corresponding row of Bnames. For example, the value –0.2633 in row 3 of B is the
estimated coefficient of '(Intercept)' for level '3' of factory.

Compute the 99% confidence intervals of the EBPs for the random effects.

[feCI,reCI] = coefCI(glme,'Alpha',0.01);

reCI

reCI =

 -0.2125 0.7951

 -0.3510 0.6595

 -0.8219 0.2954

 -0.9953 0.1440

 0.0730 1.0176

 -0.6362 0.4224

 -0.1796 0.7877

 -0.7044 0.3738

 -0.6795 0.3880

 -0.6142 0.4509

 -0.5487 0.5777

 -0.3677 0.7219

 -0.2908 0.7883

 -0.3322 0.7551

 -0.2572 0.8126

 -0.8451 0.3416

 -0.7214 0.4513

 -0.7482 0.4228

 -0.9333 0.2916

 -0.5064 0.6232

Column 1 of reCI contains the lower bound of the 99% confidence interval. Column 2
contains the upper bound. Each row corresponds to a level of factory, in the order

 coefCI

22-499

shown in Bnames. For example, row 3 corresponds to the coefficient of '(Intercept)'
for level '3' of factory, which has a 99% confidence interval of [-0.8219 , 0.2954]. For
additional statistics related to each random-effects term, use randomEffects.

References

[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear
Mixed Models.” Journal of the American Statistical Association. Vol. 93, 1998, pp.
262–272.

See Also
GeneralizedLinearMixedModel | anova | coefTest | covarianceParameters |
fixedEffects | randomEffects

22 Functions — Alphabetical List

22-500

coefCI
Class: LinearModel

Confidence intervals of coefficient estimates of linear model

Syntax

ci = coefCI(mdl)

ci = coefCI(mdl,alpha)

Description

ci = coefCI(mdl) returns confidence intervals for the coefficients in mdl.

ci = coefCI(mdl,alpha) returns confidence intervals with confidence level
1 - alpha.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

alpha

Scalar from 0 to 1, the probability that the confidence interval does not contain the true
value.

Default: 0.05

Output Arguments

ci

k-by-2 matrix of confidence intervals. The jth row of ci is the confidence interval of
coefficient j of mdl. The name of coefficient j of mdl is in mdl.CoefficientNames.

 coefCI

22-501

Definitions

Confidence Interval

Assume that model assumptions hold (data comes from a generalized linear model
represented by the formula mdl.Formula, and with observations that are independent
conditional on the predictor values). Then row j of the confidence interval matrix ci
gives a confidence interval [ci(j,1),ci(j,2)] computed such that, with repeated
experimentation, a proportion 1 - alpha of the intervals will contain the true value of
the coefficient.

Examples
Default Confidence Intervals

Create a linear model for auto mileage based on the carbig data. Then obtain confidence
intervals for the resulting model coefficients.

Load the data and create a model.

load carbig

Origin = nominal(Origin);

ds = dataset(Horsepower,Weight,MPG,Origin);

modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';

mdl = fitlm(ds,modelspec);

View the names of the coefficients.

mdl.CoefNames

ans =

 Columns 1 through 4

 '(Intercept)' 'Horsepower' 'Weight' 'Origin_France'

 Columns 5 through 8

 'Origin_Germany' 'Origin_Italy' 'Origin_Japan' 'Origin_Sweden'

 Column 9

 'Origin_USA'

Find confidence intervals for the coefficients of the model.

ci = coefCI(mdl)

ci =

 43.361 59.939

22 Functions — Alphabetical List

22-502

 -0.074778 -0.031499

 -0.0058669 -0.0037122

 -17.362 -0.34772

 -15.75 0.74338

 -17.209 0.0613

 -14.511 1.8738

 -18.582 -1.5036

 -17.311 -0.96419

Custom Confidence Intervals

Create a linear model for auto mileage based on the carbig data. Then obtain confidence
intervals for the resulting model coefficients at the 99% level.

Load the data and create a model.

load carbig

Origin = nominal(Origin);

ds = dataset(Horsepower,Weight,MPG,Origin);

modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';

mdl fitlm(ds,modelspec);

Find 99% confidence intervals for the coefficients.

ci = coefCI(mdl,.01)

ci =

 40.737 62.564

 -0.081629 -0.024647

 -0.006208 -0.0033711

 -20.056 2.3459

 -18.361 3.3546

 -19.943 2.7955

 -17.104 4.4676

 -21.286 1.2002

 -19.899 1.6238

The confidence intervals are wider than the default 5% confidence intervals of “Default
Confidence Intervals” on page 22-501.

Alternatives
You can create the intervals from the model coefficients in
mdl.Coefficients.Estimate and an appropriate multiplier of the standard

 coefCI

22-503

errors sqrt(diag(mdl.CoefficientCovariance)). The multiplier is tinv(1-
alpha/2,dof), where level is the confidence level, and dof is the degrees of freedom
(number of data points minus the number of coefficients).

See Also
LinearModel

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-504

coefCI

Class: LinearMixedModel

Confidence intervals for coefficients of linear mixed-effects model

Syntax

feCI = coefCI(lme)

feCI = coefCI(lme,Name,Value)

[feCI,reCI] = coefCI(___)

Description

feCI = coefCI(lme) returns the 95% confidence intervals for the fixed-effects
coefficients in the linear mixed-effects model lme.

feCI = coefCI(lme,Name,Value) returns the 95% confidence intervals for the fixed-
effects coefficients in the linear mixed-effects model lme with additional options specified
by one or more Name,Value pair arguments.

For example, you can specify the confidence level or method to compute the degrees of
freedom.

[feCI,reCI] = coefCI(___) also returns the 95% confidence intervals for the
random-effects coefficients in the linear mixed-effects model lme.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

 coefCI

22-505

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'DFMethod' — Method for computing approximate degrees of freedom
'Residual' (default) | 'Satterthwaite' | 'None'

Method for computing approximate degrees of freedom for confidence interval
computation, specified as the comma-separated pair consisting of 'DFMethod' and one of
the following.

'Residual' Default. The degrees of freedom are
assumed to be constant and equal to n – p,
where n is the number of observations and
p is the number of fixed effects.

'Satterthwaite' Satterthwaite approximation.
'None' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','Satterthwaite'

Output Arguments

feCI — Fixed-effects confidence intervals
p-by-2 matrix

22 Functions — Alphabetical List

22-506

Fixed-effects confidence intervals, returned as a p-by-2 matrix. feCI contains the
confidence limits that correspond to the p fixed-effects estimates in the vector beta
returned by the fixedEffects method. The first column of feCI has the lower
confidence limits and the second column has the upper confidence limits.

reCI — Random-effects confidence intervals
q-by-2 matrix

Random-effects confidence intervals, returned as a q-by-2 matrix. reCI contains
the confidence limits corresponding to the q random-effects estimates in the vector
B returned by the randomEffects method. The first column of reCI has the lower
confidence limits and the second column has the upper confidence limits.

Examples

95% Confidence Intervals for Fixed-Effects Coefficients

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight, Program, Subject,Week, y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fixed-effects coefficient estimates.

 coefCI

22-507

fe = fixedEffects(lme)

fe =

 0.6610

 0.0032

 0.3608

 -0.0333

 0.1132

 0.1732

 0.0388

 0.0305

 0.0331

The first estimate, 0.6610, corresponds to the constant term. The second row, 0.0032,
and the third row, 0.3608, are estimates for the coefficient of initial weight and week,
respectively. Rows four to six correspond to the indicator variables for programs B-D, and
the last three rows correspond to the interaction of programs B-D and week.

Compute the 95% confidence intervals for the fixed-effects coefficients.

fecI = coefCI(lme)

fecI =

 0.1480 1.1741

 0.0005 0.0059

 0.1004 0.6211

 -0.2932 0.2267

 -0.1471 0.3734

 0.0395 0.3069

 -0.1503 0.2278

 -0.1585 0.2196

 -0.1559 0.2221

Some confidence intervals include 0. To obtain specific p-values for each fixed-effects
term, use the fixedEffects method. To test for entire terms use the anova method.

Confidence Intervals with Specified Options

Load the sample data.

load carbig

22 Functions — Alphabetical List

22-508

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration and horsepower, and a potentially correlated random effect for intercept and
acceleration grouped by model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the fixed-effects coefficient estimates.

fe = fixedEffects(lme)

fe =

 50.1325

 -0.5833

 -0.1695

Compute the 99% confidence intervals for fixed-effects coefficients using the residuals
method to determine the degrees of freedom. This is the default method.

feCI = coefCI(lme,'Alpha',0.01)

feCI =

 44.2690 55.9961

 -0.9300 -0.2365

 -0.1883 -0.1507

Compute the 99% confidence intervals for fixed-effects coefficients using the
Satterthwaite approximation to compute the degrees of freedom.

feCI = coefCI(lme,'Alpha',0.01,'DFMethod','Satterthwaite')

feCI =

 44.0949 56.1701

 -0.9640 -0.2025

 -0.1884 -0.1507

 coefCI

22-509

The Satthertwaite approximation produces similar confidence intervals to the residual
method.

Compute Confidence Intervals for Random Effects

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

The data shows the deviations from the target quality characteristic measured from
the products that five operators manufacture during three shifts: morning, evening,
and night. This is a randomized block design, where the operators are the blocks. The
experiment is designed to study the impact of the time of shift on the performance. The
performance measure is the deviation of the quality characteristics from the target value.
This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);

shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
there is significant difference in the performance according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the estimate of the BLUPs for random effects.

randomEffects(lme)

ans =

 0.5775

 1.1757

 -2.1715

 2.3655

 -1.9472

Compute the 95% confidence intervals for random effects.

22 Functions — Alphabetical List

22-510

[~,reCI] = coefCI(lme)

reCI =

 -1.3916 2.5467

 -0.7934 3.1449

 -4.1407 -0.2024

 0.3964 4.3347

 -3.9164 0.0219

Compute the 99% confidence intervals for random effects using the residuals method to
determine the degrees of freedom. This is the default method.

[~,reCI] = coefCI(lme,'Alpha',0.01)

reCI =

 -2.1831 3.3382

 -1.5849 3.9364

 -4.9322 0.5891

 -0.3951 5.1261

 -4.7079 0.8134

Compute the 99% confidence intervals for random effects using the Satterthwaite
approximation to determine the degrees of freedom.

[~,reCI] = coefCI(lme,'Alpha',0.01,'DFMethod','Satterthwaite')

reCI =

 -2.6840 3.8390

 -2.0858 4.4372

 -5.4330 1.0900

 -0.8960 5.6270

 -5.2087 1.3142

The Satterthwaite approximation might produce smaller DF values than the residual
method. That is why these confidence intervals are larger than the previous ones
computed using the residual method.

See Also
coefTest | fixedEffects | LinearMixedModel | randomEffects

 coefCI

22-511

coefCI
Class: NonLinearModel

Confidence intervals of coefficient estimates of nonlinear regression model

Syntax

ci = coefCI(mdl)

ci = coefCI(mdl,alpha)

Description

ci = coefCI(mdl) returns confidence intervals for the coefficients in mdl.

ci = coefCI(mdl,alpha) returns confidence intervals with confidence level
1 - alpha.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

alpha

Scalar from 0 to 1, the probability that the confidence interval does not contain the true
value.

Default: 0.05

Output Arguments

ci

k-by-2 matrix of confidence intervals. The jth row of ci is the confidence interval of
coefficient j of mdl. The name of coefficient j of mdl is in mdl.CoefNames.

22 Functions — Alphabetical List

22-512

Definitions

Confidence Interval

Assume that model assumptions hold (the data comes from a model represented by the
formula mdl.Formula, with independent normally distributed errors). Then row j of
the confidence interval matrix ci gives a confidence interval [ci(j,1),ci(j,2)] that
contains coefficient j with probability 1 - alpha.

Examples

Default Confidence Intervals

Create a nonlinear model for auto mileage based on the carbig data. Then obtain
confidence intervals for the resulting model coefficients.

Load the data and create a nonlinear model.

load carbig

ds = dataset(Horsepower,Weight,MPG);

modelfun = @(b,x)b(1) + b(2)*x(:,1) + ...

 b(3)*x(:,2) + b(4)*x(:,1).*x(:,2);

beta0 = [1 1 1 1];

mdl = fitnlm(ds,modelfun,beta0)

mdl =

Nonlinear regression model:

 MPG ~ b1 + b2*Horsepower + b3*Weight + b4*Horsepower*Weight

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 63.558 2.3429 27.127 1.2343e-91

 b2 -0.25084 0.027279 -9.1952 2.3226e-18

 b3 -0.010772 0.00077381 -13.921 5.1372e-36

 b4 5.3554e-05 6.6491e-06 8.0542 9.9336e-15

Number of observations: 392, Error degrees of freedom: 388

Root Mean Squared Error: 3.93

R-Squared: 0.748, Adjusted R-Squared 0.746

F-statistic vs. constant model: 385, p-value = 7.26e-116

 coefCI

22-513

All the coefficients have extremely small p-values. This means a confidence interval
around the coefficients will not contain the point 0, unless the confidence level is very
high.

Find 95% confidence intervals for the coefficients of the model.

ci = coefCI(mdl)

ci =

 58.9515 68.1644

 -0.3045 -0.1972

 -0.0123 -0.0093

 0.0000 0.0001

The confidence interval for b4 seems to contain 0. Examine it in more detail.

ci(4,:)

ans =

 1.0e-04 *

 0.4048 0.6663

As expected, the confidence interval does not contain the point 0.

• “Nonlinear Regression Workflow” on page 11-14

Alternatives

You can create the intervals from the model coefficients in
mdl.Coefficients.Estimate and an appropriate multiplier of the standard
errors sqrt(diag(mdl.CoefficientCovariance)). The multiplier is tinv(1-
alpha/2,dof), where level is the confidence level, and dof is the degrees of freedom
(number of data points minus the number of coefficients).

See Also
NonLinearModel

More About
• “Nonlinear Regression” on page 11-2

22 Functions — Alphabetical List

22-514

coefTest

Class: GeneralizedLinearModel

Linear hypothesis test on generalized linear regression model coefficients

Syntax

p = coefTest(mdl)

p = coefTest(mdl,H)

p = coefTest(mdl,H,C)

[p,F] = coefTest(mdl,...)

[p,F,r] = coefTest(mdl,...)

Description

p = coefTest(mdl) computes the p-value for an F test that all coefficient estimates in
mdl are zero, except for the intercept term.

p = coefTest(mdl,H) performs an F test that H*B = 0, where B represents the
coefficient vector.

p = coefTest(mdl,H,C) performs an F test that H*B = C.

[p,F] = coefTest(mdl,...) returns the F test statistic.

[p,F,r] = coefTest(mdl,...) returns the numerator degrees of freedom for the
test.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

 coefTest

22-515

H

Numeric matrix having one column for each coefficient in the model. When H is an input,
the output p is the p-value for an F test that H*B = 0, where B represents the coefficient
vector.

C

Numeric vector with the same number of rows as H. When C is an input, the output p is
the p-value for an F test that H*B = C, where B represents the coefficient vector.

Output Arguments

p

p-value of the F test (see “Definitions” on page 22-515).

F

Value of the test statistic for the F test (see “Definitions” on page 22-515).

r

Numerator degrees of freedom for the F test (see “Definitions” on page 22-515). The F
statistic has r degrees of freedom in the numerator and mdl.DFE degrees of freedom in
the denominator.

Definitions

Test Statistics

The p-value, F statistic, and numerator degrees of freedom are valid under these
assumptions:

• The data comes from a model represented by the formula mdl.Formula.
• The observations are independent conditional on the predictor values.

Suppose these assumptions hold. Let β represent the (unknown) coefficient vector of the
linear regression. Suppose H is a full-rank matrix of size r-by-s, where s is the number

22 Functions — Alphabetical List

22-516

of terms in β. Let v be a vector the same size as β. The following is a test statistic for the
hypothesis that Hβ = v:

F H v HCH H v= -()¢ ¢() -()-ˆ ˆ .b b
1

Here b̂ is the estimate of the coefficient vector β in mdl.Coefs, and C is the estimated
covariance of the coefficient estimates in mdl.CoefCov. When the hypothesis is true, the
test statistic F has an “F Distribution” on page B-45 with r and u degrees of freedom.

Examples

Test Generalized Linear Model Coefficients

Test a generalized linear model to see if its coefficients differ from zero.

Create a generalized linear regression model of Poisson data.

X = 2 + randn(100,1);

mu = exp(1 + X/2);

y = poissrnd(mu);

mdl = fitglm(X,y,'y ~ x1','distr','poisson');

Test whether the fitted model has coefficients that differ significantly from zero.

p = coefTest(mdl)

p =

 1.2461e-30

There is no doubt that the coefficient of x1 is nonzero.

• “Generalized Linear Model Workflow” on page 10-39

Alternatives

The values of commonly used test statistics are available in the mdl.Coefficients
table.

 coefTest

22-517

See Also
GeneralizedLinearModel | linhyptest

More About
• “Generalized Linear Models” on page 10-12

22 Functions — Alphabetical List

22-518

coefTest

Class: GeneralizedLinearMixedModel

Hypothesis test on fixed and random effects of generalized linear mixed-effects model

Syntax

pVal = coefTest(glme)

pVal = coefTest(glme,H)

pVal = coefTest(glme,H,C)

pVal = coefTest(glme,H,C,Name,Value)

[pVal,F,DF1,DF2] = coefTest(___)

Description

pVal = coefTest(glme) returns the p-value of an F-test of the null hypothesis that all
fixed-effects coefficients of the generalized linear mixed-effects model glme, except for the
intercept, are equal to 0.

pVal = coefTest(glme,H) returns the p-value of an F-test using a specified contrast
matrix, H. The null hypothesis is H0: Hβ = 0, where β is the fixed-effects vector.

pVal = coefTest(glme,H,C) returns the p-value for an F-test using the hypothesized
value, C. The null hypothesis is H0: Hβ = C, where β is the fixed-effects vector.

pVal = coefTest(glme,H,C,Name,Value) returns the p-value for an F-test on the
fixed- and/or random-effects coefficients of the generalized linear mixed-effects model
glme, with additional options specified by one or more name-value pair arguments. For
example, you can specify the method to compute the approximate denominator degrees of
freedom for the F-test.

[pVal,F,DF1,DF2] = coefTest(___) also returns the F-statistic, F, and the
numerator and denominator degrees of freedom for F, respectively DF1 and DF2, using
any of the previous syntaxes.

 coefTest

22-519

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

H — Fixed-effects contrasts
m-by-p matrix

Fixed-effects contrasts, specified as an m-by-p matrix, where p is the number of fixed-
effects coefficients in glme. Each row of H represents one contrast. The columns of H (left
to right) correspond to the rows of the p-by-1 fixed-effects vector beta (top to bottom)
whose estimate is returned by the fixedEffects method.

Data Types: single | double

C — Hypothesized value
m-by-1 vector

Hypothesized value for testing the null hypothesis Hβ = C, specified as an m-by-1 vector.
Here, β is the vector of fixed-effects whose estimate is returned by fixedEffects.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'DFMethod' — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated
pair consisting of 'DFMethod' and one of the following.

'residual' The degrees of freedom are assumed to
be constant and equal to n – p, where n is
the number of observations and p is the
number of fixed effects.

22 Functions — Alphabetical List

22-520

'none' All degrees of freedom are set to infinity.

Example: 'DFMethod','none'

'REContrast' — Random-effects contrasts
m-by-q matrix

Random-effects contrasts, specified as the comma-separated pair consisting of
'REContrast' and an m-by-q matrix, where q is the number of random effects
parameters in glme. The columns of the matrix (left to right) correspond to the rows of
the q-by-1 random-effects vector B (top to bottom), whose estimate is returned by the
randomEffects method.

Data Types: single | double

Output Arguments

pVal — p-value
scalar value

p-value for the F-test on the fixed- and/or random-effects coefficients of the generalized
linear mixed-effects model glme, returned as a scalar value.

When fitting a GLME model using fitglme and one of the maximum likelihood fit
methods ('Laplace' or 'ApproximateLaplace'), coefTest uses an approximation
of the conditional mean squared error of prediction (CMSEP) of the estimated linear
combination of fixed- and random-effects to compute p-values. This accounts for
the uncertainty in the fixed-effects estimates, but not for the uncertainty in the
covariance parameter estimates. For tests on fixed effects only, if you specify the
'CovarianceMethod' name-value pair argument in fitglme as 'JointHessian',
then coefTest accounts for the uncertainty in the estimation of covariance parameters.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methos
('MPL' or 'REMPL'), coefTest bases the inference on the fitted linear mixed effects
model from the final pseudo likelihood iteration.

F — F-statistic
scalar value

F-statistic, returned as a scalar value.

 coefTest

22-521

DF1 — Numerator degrees of freedom for F
scalar value

Numerator degrees of freedom for the F-statistic F, returned as a scalar value.

• If you test the null hypothesis H0: Hβ = 0 or H0: Hβ = C, then DF1 is equal to the
number of linearly independent rows in H.

• If you test the null hypothesis H0: Hβ + KB = C, then DF1 is equal to the number of
linearly independent rows in [H,K].

DF2 — Denominator degrees of freedom for F
scalar value

Denominator degrees of freedom for the F-statistic F, returned as a scalar value. The
value of DF2 depends on the option specified by the 'DFMethod' name-value pair
argument.

Examples

Test the Significance of Coefficients

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)

22 Functions — Alphabetical List

22-522

• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the
batch (supplier)

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects intercept grouped
by factory, to account for quality differences that might exist due to factory-specific
variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

 coefTest

22-523

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Test if there is any significant difference between supplier C and supplier B.

H = [0,0,0,0,1,-1];

[pVal,F,DF1,DF2] = coefTest(glme,H)

pVal =

 0.2793

F =

 1.1842

DF1 =

 1

DF2 =

 94

The large p-value indicates that there is no significant difference between supplier C and
supplier B at the 5% significance level. Here, coefTest also returns the F-statistic, the
numerator degrees of freedom, and the approximate denominator degrees of freedom.

Test if there is any significant difference between supplier A and supplier B.

If you specify the 'DummyVarCoding' name-value pair argument as 'effects' when
fitting the model using fitglme, then

b b bA B C+ + = 0 ,

where βA, βB, and βC correspond to suppliers A, B, and C, respectively. βA is the effect of A
minus the average effect of A, B, and C. To determine the contrast matrix corresponding
to a test between supplier A and supplier B,

b b b b b b bB A B B C B C- = - - -() = +2 .

22 Functions — Alphabetical List

22-524

From the output of disp(glme), column 5 of the contrast matrix corresponds to βC, and
column 6 corresponds to βB. Therefore, the contrast matrix for this test is specified as H =
[0,0,0,0,1,2].

H = [0,0,0,0,1,2];

[pVal,F,DF1,DF2] = coefTest(glme,H)

[pVal,F,DF1,DF2] = coefTest(glme,H)

pVal =

 0.6177

F =

 0.2508

DF1 =

 1

DF2 =

 94

The large p-value indicates that there is no significant difference between supplier A and
supplier B at the 5% significance level.

References

[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear
Mixed Models.” Journal of the American Statistical Association, Vol. 93, 1998, pp.
262–272.

See Also
GeneralizedLinearMixedModel | anova | coefCI | covarianceParameters |
fixedEffects | randomEffects

 coefTest

22-525

coefTest

Class: LinearModel

Linear hypothesis test on linear regression model coefficients

Syntax

p = coefTest(mdl)

p = coefTest(mdl,H)

p = coefTest(mdl,H,C)

[p,F] = coefTest(mdl,...)

[p,F,r] = coefTest(mdl,...)

Description

p = coefTest(mdl) computes the p-value for an F test that all coefficient estimates in
mdl are zero, except for the intercept term.

p = coefTest(mdl,H) performs an F test that H*B = 0, where B represents the
coefficient vector.

p = coefTest(mdl,H,C) performs an F test that H*B = C.

[p,F] = coefTest(mdl,...) returns the F test statistic.

[p,F,r] = coefTest(mdl,...) returns the numerator degrees of freedom for the
test.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

22 Functions — Alphabetical List

22-526

H

Numeric matrix having one column for each coefficient in the model. When H is an input,
the output p is the p-value for an F test that H*B = 0, where B represents the coefficient
vector.

C

Numeric vector with the same number of rows as H. When C is an input, the output p is
the p-value for an F test that H*B = C, where B represents the coefficient vector.

Output Arguments

p

p-value of the F test (see “Definitions” on page 22-526).

F

Value of the test statistic for the F test (see “Definitions” on page 22-526).

r

Numerator degrees of freedom for the F test (see “Definitions” on page 22-526). The F
statistic has r degrees of freedom in the numerator and mdl.DFE degrees of freedom in
the denominator.

Definitions

Test Statistics

The p-value, F statistic, and numerator degrees of freedom are valid under these
assumptions:

• The data comes from a model represented by the formula mdl.Formula.
• The observations are independent conditional on the predictor values.

Suppose these assumptions hold. Let β represent the (unknown) coefficient vector of the
linear regression. Suppose H is a full-rank matrix of size r-by-s, where s is the number

 coefTest

22-527

of terms in β. Let v be a vector the same size as β. The following is a test statistic for the
hypothesis that Hβ = v:

F H v HCH H v= -()¢ ¢() -()-ˆ ˆ .b b
1

Here b̂ is the estimate of the coefficient vector β in mdl.Coefs, and C is the estimated
covariance of the coefficient estimates in mdl.CoefCov. When the hypothesis is true, the
test statistic F has an “F Distribution” on page B-45 with r and u degrees of freedom.

Examples

Test Linear Regression Model

Make a linear model of mileage as a function of the weight, weight squared, and model
year from the carsmall data set. Test the coefficients to see if all should be zero.

Load the data and make a table, where the model year is an ordinal variable.

load carsmall

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

mdl = fitlm(tbl,'MPG ~ Year + Weight + Weight^2');

Test the model for significant differences from a constant model.

p = coefTest(mdl)

p =

 5.5208e-41

There is no doubt that the model contains more than the intercept term.

Test a Particular Coefficient

Test the Weight^2 coefficient in a linear model of mileage as a function of the weight,
weight squared, and model year.

Load the data and make a table, where the model year is an ordinal variable.

load carsmall

22 Functions — Alphabetical List

22-528

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

mdl = fitlm(tbl,'MPG ~ Year + Weight + Weight^2');

Test the significance of the Weight^2 coefficient. To do so, find the coefficient
corresponding to Weight^2.

mdl.CoefficientNames

ans =

 '(Intercept)' 'Weight' 'Year_76' 'Year_82' 'Weight^2'

Weight^2 is the fifth (final) coefficient.

Test the significance of the Weight^2 coefficient.

p = coefTest(mdl,[0 0 0 0 1])

p =

 0.0022

Alternatives

The values of commonly used test statistics are available in the mdl.Coefficients
table.

anova provides a test for each model term.

See Also
anova | LinearModel | linhyptest

How To
• “Linear Regression” on page 9-11

 coefTest

22-529

coefTest
Class: LinearMixedModel

Hypothesis test on fixed and random effects of linear mixed-effects model

Syntax

pVal = coefTest(lme)

pVal = coefTest(lme,H)

pVal = coefTest(lme,H,C)

pVal = coefTest(lme,H,C,'REContrast',K)

pVal = coefTest(___ ,Name,Value)

[pVal,F,DF1,DF2] = coefTest(___)

Description

pVal = coefTest(lme) returns the p-value for an F-test that all fixed-effects
coefficients except for the intercept are 0.

pVal = coefTest(lme,H) returns the p-value for an F-test on fixed-effects coefficients
of linear mixed-effects model lme, using the contrast matrix H. It tests the null
hypothesis that H0: Hβ = 0, where β is the fixed-effects vector.

pVal = coefTest(lme,H,C) returns the p-value for an F-test on fixed-effects
coefficients of the linear mixed-effects model lme, using the contrast matrix H. It tests
the null hypothesis that H0: Hβ = C, where β is the fixed-effects vector.

pVal = coefTest(lme,H,C,'REContrast',K) returns the p-value for an F-test on
the fixed- and random-effects coefficients of the linear mixed-effects model lme, using the
contrast matrices H and K. It tests the null hypothesis that H0: Hβ + KB = C, where β is
the fixed-effects vector and B is the random-effects vector.

pVal = coefTest(___ ,Name,Value) returns the p-value for an F-test on the fixed-
and/or random-effects coefficients of the linear mixed-effects model lme, with additional
options specified by one or more Name,Value pair arguments. It can accept any of the
input arguments in the previous syntaxes.

22 Functions — Alphabetical List

22-530

For example, you can specify the method to compute the degrees of freedom.

[pVal,F,DF1,DF2] = coefTest(___) also returns the F-statistic F, and the
numerator and denominator degrees of freedom for F, respectively DF1 and DF2.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

H — Fixed-effects contrasts
m-by-p matrix

Fixed-effects contrasts, specified as an m-by-p matrix, where p is the number of fixed-
effects coefficients in lme. Each row of H represents one contrast. The columns of H (left
to right) correspond to the rows of the p-by-1 fixed-effects vector beta (top to bottom),
returned by the fixedEffects method.

Data Types: single | double

C — Hypothesized value
m-by-1 vector

Hypothesized value for testing the null hypothesis H*beta = C, specified as an
m-by-1 matrix. Here, beta is the vector of fixed-effects estimates returned by the
fixedEffects method.

Data Types: single | double

K — Random-effects contrasts
m-by-q matrix

Random-effects contrasts, specified as an m-by-q matrix, where q is the number of
random effects parameters in lme. The columns of K (left to right) correspond to the rows
of the random-effects best linear unbiased predictor vector B (top to bottom), returned by
the randomEffects method.

 coefTest

22-531

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'DFMethod' — Method for computing approximate denominator degrees of freedom
'Residual' (default) | 'Satterthwaite' | 'None'

Method for computing the approximate denominator degrees of freedom for the F-
test, specified as the comma-separated pair consisting of 'DFMethod' and one of the
following.

'Residual' Default. The degrees of freedom are
assumed to be constant and equal to n – p,
where n is the number of observations and
p is the number of fixed effects.

'Satterthwaite' Satterthwaite approximation.
'None' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','Satterthwaite'

Output Arguments

pVal — p-value
scalar value

p-value for the F-test on the fixed and/or random-effects coefficients of the linear mixed-
effects model lme, returned as a scalar value.

F — F-statistic
scalar value

F-statistic, returned as a scalar value.

22 Functions — Alphabetical List

22-532

DF1 — Numerator degrees of freedom for F
scalar value

Numerator degrees of freedom for F, returned as a scalar value.

• If you test the null hypothesis H0: Hβ = 0, or H0: Hβ = C, then DF1 is equal to the
number of linearly independent rows in H.

• If you test the null hypothesis H0: Hβ + KB= C, then DF1 is equal to the number of
linearly independent rows in [H,K].

DF2 — Denominator degrees of freedom for F
scalar value

Denominator degrees of freedom for F, returned as a scalar value. The value of DF2
depends on the option you select for DFMethod.

Examples

Randomized Block Design

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

The data shows the absolute deviations from the target quality characteristic measured
from the products that five operators manufacture during three different shifts:
morning, evening, and night. This is a randomized block design, where the operators
are the blocks. The experiment is designed to study the impact of the time of shift on
the performance. The performance measure is the absolute deviation of the quality
characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);

shift.Operator = nominal(shift.Operator);

 coefTest

22-533

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
there is significant difference in the performance according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 15

 Fixed effects coefficients 3

 Random effects coefficients 5

 Covariance parameters 2

Formula:

 QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 59.012 62.552 -24.506 49.012

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 3.1196 0.88681 3.5178 12 0.0042407 1.1874 5.0518

 'Shift_Morning' -0.3868 0.48344 -0.80009 12 0.43921 -1.4401 0.66653

 'Shift_Night' 1.9856 0.48344 4.1072 12 0.0014535 0.93227 3.0389

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 1.8297 0.94915 3.5272

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.76439 0.49315 1.1848

Test if all fixed-effects coefficients except for the intercept are 0.

pVal = coefTest(lme)

pVal =

 7.5956e-04

22 Functions — Alphabetical List

22-534

The small p-value indicates that not all fixed-effects coefficients are 0.

Test the significance of the Shift term using a contrast matrix.

H = [0 1 0; 0 0 1];

pVal = coefTest(lme,H)

pVal =

 7.5956e-04

Test the significance of the Shift term using the anova method.

anova(lme)

ans =

 ANOVA marginal tests: DFMethod = 'Residual'

 Term FStat DF1 DF2 pValue

 '(Intercept)' 12.375 1 12 0.0042407

 'Shift' 13.864 2 12 0.00075956

The p-value for Shift, 0.00075956, is the same as the p-value of the previous hypothesis
test.

Test if there is any difference between the evening and morning shifts.

pVal = coefTest(lme,[0 1 -1])

pVal =

 3.6147e-04

This small p-value indicates that the performance of the operators are not the same in
the morning and the evening shifts.

Hypothesis Test for Fixed Effects

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

 coefTest

22-535

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 9

 Random effects coefficients 40

 Covariance parameters 4

Formula:

 y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -22.981 13.257 24.49 -48.981

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.66105 0.25892 2.5531 111 0.012034 0.14798 1.1741

 'InitialWeight' 0.0031879 0.0013814 2.3078 111 0.022863 0.00045067 0.0059252

 'Program_B' 0.36079 0.13139 2.746 111 0.0070394 0.10044 0.62113

 'Program_C' -0.033263 0.13117 -0.25358 111 0.80029 -0.29319 0.22666

22 Functions — Alphabetical List

22-536

 'Program_D' 0.11317 0.13132 0.86175 111 0.39068 -0.14706 0.3734

 'Week' 0.1732 0.067454 2.5677 111 0.011567 0.039536 0.30686

 'Program_B:Week' 0.038771 0.095394 0.40644 111 0.68521 -0.15026 0.2278

 'Program_C:Week' 0.030543 0.095394 0.32018 111 0.74944 -0.15849 0.21957

 'Program_D:Week' 0.033114 0.095394 0.34713 111 0.72915 -0.15592 0.22214

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.18407 0.12281 0.27587

 'Week' '(Intercept)' 'corr' 0.66841 0.21076 0.88573

 'Week' 'Week' 'std' 0.15033 0.11004 0.20537

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10261 0.087882 0.11981

Test for the significance of the interaction between Program and Week.

H = [0 0 0 0 0 0 1 0 0;

 0 0 0 0 0 0 0 1 0;

 0 0 0 0 0 0 0 0 1];

pVal = coefTest(lme,H)

pVal =

 0.9775

The high p-value indicates that the interaction between Program and Week is not
statistically significant.

Now, test whether all coefficients involving Program are 0.

H = [0 0 1 0 0 0 0 0 0;

 0 0 0 1 0 0 0 0 0;

 0 0 0 0 1 0 0 0 0;

 0 0 0 0 0 0 1 0 0;

 0 0 0 0 0 0 0 1 0;

 0 0 0 0 0 0 0 0 1];

C = [0;0;0;0;0;0];

pVal = coefTest(lme,H,C)

pVal =

 0.0274

 coefTest

22-537

The p-value of 0.0274 indicates that not all coefficients involving Program are zero.

Test for Fixed and Random Effects

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated
influenza rates (in 9 different regions, estimated from Google searches, plus a nationwide
estimate from the CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset
array. To fit a linear mixed-effects model with the influenza rates as the responses
and region as the predictor variable, combine the nine columns corresponding to the
regions into a tall array. The new dataset array, flu2, must have the response variable,
FluRate, the nominal variable, Region, that shows which region each estimate is from,
and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with fixed effects for the region and a random intercept
that varies by Date.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')

Linear mixed-effects model fit by ML

Model information:

 Number of observations 468

 Fixed effects coefficients 9

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 FluRate ~ 1 + Region + (1|Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 318.71 364.35 -148.36 296.71

Fixed effects coefficients (95% CIs):

22 Functions — Alphabetical List

22-538

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 1.2233 0.096678 12.654 459 1.085e-31 1.0334 1.4133

 'Region_MidAtl' 0.010192 0.052221 0.19518 459 0.84534 -0.092429 0.11281

 'Region_ENCentral' 0.051923 0.052221 0.9943 459 0.3206 -0.050698 0.15454

 'Region_WNCentral' 0.23687 0.052221 4.5359 459 7.3324e-06 0.13424 0.33949

 'Region_SAtl' 0.075481 0.052221 1.4454 459 0.14902 -0.02714 0.1781

 'Region_ESCentral' 0.33917 0.052221 6.495 459 2.1623e-10 0.23655 0.44179

 'Region_WSCentral' 0.069 0.052221 1.3213 459 0.18705 -0.033621 0.17162

 'Region_Mtn' 0.046673 0.052221 0.89377 459 0.37191 -0.055948 0.14929

 'Region_Pac' -0.16013 0.052221 -3.0665 459 0.0022936 -0.26276 -0.057514

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.6443 0.5297 0.78368

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.26627 0.24878 0.285

Test the hypothesis that the random effects-term for week 10/9/2005 is zero.

[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)

STATS.Level = nominal(STATS.Level);

K = zeros(length(STATS),1);

K(STATS.Level == '10/9/2005') = 1;

pVal = coefTest(lme,[0 0 0 0 0 0 0 0 0],0,'REContrast',K')

pVal =

 0.1692

Refit the model this time with a random intercept and slope.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1 + Region|Date)');

Test the hypothesis that the combined coefficient of region WNCentral for week
10/9/2005 is zero.

[~,~,STATS] = randomEffects(lme); STATS.Level = nominal(STATS.Level);

K = zeros(length(STATS),1);

K(STATS.Level == '10/9/2005' & flu2.Region == 'WNCentral') = 1;

pVal = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K')

ans =

 coefTest

22-539

 1.4536e-12

Also return the F-statistic with the numerator and denominator degrees of freedom.

[pVal,F,DF1,DF2] = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K')

pVal =

 1.4536e-12

F =

 53.0081

DF1 =

 1

DF2 =

 459

Repeat the test using the Satterthwaite approximation for the denominator degrees of
freedom.

[pVal,F,DF1,DF2] = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K',...

 'DFMethod','Satterthwaite')

pVal =

 0.0055

F =

 53.0081

DF1 =

 1

22 Functions — Alphabetical List

22-540

DF2 =

 2.9795

See Also
anova | coefCI | LinearMixedModel

 coefTest

22-541

coefTest

Class: NonLinearModel

Linear hypothesis test on nonlinear regression model coefficients

Syntax

p = coefTest(mdl)

p = coefTest(mdl,H)

p = coefTest(mdl,H,C)

[p,F] = coefTest(mdl,...)

[p,F,r] = coefTest(mdl,...)

Description

p = coefTest(mdl) computes the p-value for an F test that all coefficient estimates in
mdl are zero.

p = coefTest(mdl,H) performs an F test that H*B = 0, where B represents the
coefficient vector.

p = coefTest(mdl,H,C) performs an F test that H*B = C.

[p,F] = coefTest(mdl,...) returns the F test statistic.

[p,F,r] = coefTest(mdl,...) returns the numerator degrees of freedom for the
test.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

22 Functions — Alphabetical List

22-542

H

Numeric matrix having one column for each coefficient in the model. When H is an input,
the output p is the p-value for an F test that H*B = 0, where B represents the coefficient
vector.

C

Numeric vector with the same number of rows as H. When C is an input, the output p is
the p-value for an F test that H*B = C, where B represents the coefficient vector.

Output Arguments

p

p-value of the F test (see “Definitions” on page 22-542).

F

Value of the test statistic for the F test (see “Definitions” on page 22-542).

r

Numerator degrees of freedom for the F test (see “Definitions” on page 22-542). The F
statistic has r degrees of freedom in the numerator and mdl.DFE degrees of freedom in
the denominator.

Definitions

Test Statistics

The p-value, F statistic, and numerator degrees of freedom are valid under these
assumptions:

• The data comes from a normal distribution.
• The entries are independent.

Suppose these assumptions hold. Let β represent the unknown coefficient vector of the
linear regression. Suppose H is a full-rank matrix of size r-by-s, where s is the number

 coefTest

22-543

of terms in β. Let v be a vector the same size as β. The following is a test statistic for the
hypothesis that Hβ = v:

F H v HCH H v= -()¢ ¢() -()-ˆ ˆ .b b
1

Here b̂ is the estimate of the coefficient vector β in mdl.Coefs, and C is the estimated
covariance of the coefficient estimates in mdl.CoefCov. When the hypothesis is true, the
test statistic F has an “F Distribution” on page B-45 with r and u degrees of freedom.

Examples

Test Nonlinear Regression Model Coefficients

Make a nonlinear model of mileage as a function of the weight from the carsmall data
set. Test the coefficients to see if all should be zero.

Create an exponential model of car mileage as a function of weight from the carsmall
data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall

X = Weight;

y = MPG;

modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';

beta0 = [1 1 1];

mdl = fitnlm(X,y,modelfun,beta0);

Test the model for significant differences from a constant model.

p = coefTest(mdl)

p =

 1.3708e-36

There is no doubt that the model contains nonzero terms.

Alternatives

The values of commonly used test statistics are available in the mdl.Coefficients
table.

22 Functions — Alphabetical List

22-544

See Also
NonLinearModel

More About
• “Nonlinear Regression” on page 11-2

 coeftest

22-545

coeftest

Class: RepeatedMeasuresModel

Linear hypothesis test on coefficients of repeated measures model

Syntax

tbl = coeftest(rm,A,C,D)

Description

tbl = coeftest(rm,A,C,D) returns a table tbl containing the multivariate analysis of
variance (manova) for the repeated measures model rm.

Tips

• This test is defined as A*B*C = D, where B is the matrix of coefficients in the
repeated measures model. A and C are numeric matrices of the proper size for this
multiplication. D is a scalar or numeric matrix of the proper size. The default is D =
0.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

A — Specification representing between-subjects model
a-by-p matrix

22 Functions — Alphabetical List

22-546

Specification representing the between-subjects model, specified as an a-by-p numeric
matrix, with rank a ≤ p.
Data Types: single | double

C — Specification representing within-subjects hypothesis
r-by-c matrix

Specification representing the within-subjects (within time) hypotheses, specified as an r-
by-c numeric matrix, with rank c ≤ r ≤ n – p.
Data Types: single | double

D — Hypothesized value
0 (default) | scalar value | a-by-c matrix

Hypothesized value, specified as a scalar value or an a-by-c matrix.
Data Types: single | double

Output Arguments

tbl — Results of multivariate analysis of variance
table

Results of multivariate analysis of variance for the repeated measures model rm,
returned as a table containing the following columns.

Statistic Type of test statistic used
Value Value of the corresponding test statistic
F F-statistic value
RSquare Measure of variance explained
df1 Numerator degrees of freedom for the F-

statistic
df2 Denominator degrees of freedom for the F-

statistic
pValue p-value associated with the test statistic

value

 coeftest

22-547

Examples

Test Coefficients for First and Last Repeated Measures

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 through y8 as responses. The table within includes the
within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the
responses, and age, IQ, group, gender, and the group-gender interaction are the predictor
variables. Also specify the within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Test that the coefficients of all terms in the between-subjects model are the same for the
first and last repeated measurement variable.

coeftest(rm,eye(8),[1 0 0 0 0 0 0 -1]')

ans =

 Statistic Value F RSquare df1 df2 pValue

 _________ _______ ______ _______ ___ ___ _______

 Pillai 0.3355 1.3884 0.3355 8 22 0.25567

 Wilks 0.6645 1.3884 0.3355 8 22 0.25567

 Hotelling 0.50488 1.3884 0.3355 8 22 0.25567

 Roy 0.50488 1.3884 0.3355 8 22 0.25567

The p-value of 0.25567 indicates that there is not enough statistical evidence to conclude
that the coefficients of all terms in the between-subjects model for the first and last
repeated measures variable are different.

See Also
fitrm | manova

22 Functions — Alphabetical List

22-548

combine
Class: CompactTreeBagger

Combine two ensembles

Syntax

B1 = combine(B1,B2)

Description

B1 = combine(B1,B2) appends decision trees from ensemble B2 to those stored in B1
and returns ensemble B1. This method requires that the class and variable names be
identical in both ensembles.

See Also
TreeBagger.append

 combnk

22-549

combnk
Enumeration of combinations

Syntax

C = combnk(v,k)

Description

C = combnk(v,k) returns all combinations of the n elements in v taken k at a time.

C = combnk(v,k) produces a matrix C with k columns and n!/k!(n – k! rows, where each
row contains k of the elements in the vector v.

It is not practical to use this function if v has more than about 15 elements.

Examples

Combinations of characters from a string.

C = combnk('tendril',4);

last5 = C(31:35,:)

last5 =

tedr

tenl

teni

tenr

tend

Combinations of elements from a numeric vector.

c = combnk(1:4,2)

c =

 3 4

 2 4

 2 3

 1 4

22 Functions — Alphabetical List

22-550

 1 3

 1 2

See Also
perms

 compact

22-551

compact
Class: ClassificationDiscriminant

Compact discriminant analysis classifier

Syntax

cobj = compact(obj)

Description

cobj = compact(obj) creates a compact version of obj.

Input Arguments

obj

Discriminant analysis classifier created using fitcdiscr.

Output Arguments

cobj

Compact classifier. cobj has class CompactClassificationDiscriminant. You
can predict classifications using cobj exactly as you can using obj. However, since
cobj does not contain training data, you cannot perform some actions, such as cross
validation.

Examples

Compare the size of the discriminant analysis classifier for Fisher's iris data to the
compact version of the classifier:

22 Functions — Alphabetical List

22-552

load fisheriris

fullobj = fitcdiscr(meas,species);

cobj = compact(fullobj);

b = whos('fullobj'); % b.bytes = size of fullobj

c = whos('cobj'); % c.bytes = size of cobj

[b.bytes c.bytes] % shows cobj uses 60% of the memory

ans =

 18578 11498

See Also
ClassificationDiscriminant | fitcdiscr

How To
• “Discriminant Analysis” on page 15-3

 compact

22-553

compact
Class: ClassificationECOC

Compact error-correcting output codes multiclass model

Syntax

CMdl = compact(Mdl)

Description

CMdl = compact(Mdl) returns a compact error-correcting output codes (ECOC) model
(CMdl), which is the compact version of the trained ECOC model Mdl.

CMdl does not contain the training data, whereas Mdl contains the training data in its
properties Mdl.X and Mdl.Y.

Input Arguments

Mdl — ECOC multiclass model
ClassificationECOC model

ECOC multiclass model, specified as a ClassificationECOC model returned by
fitcecoc.

Output Arguments

CMdl — Compact ECOC model
CompactClassificationECOC model

Compact ECOC model, returned as a CompactClassificationECOC model.

Predict class labels using CMdl exactly as you would using Mdl. However, since CMdl
does not contain training data, you cannot implement cross validation.

22 Functions — Alphabetical List

22-554

Examples

Reduce the Size of Full ECOC Models

Full ECOC models (i.e., ClassificationECOC models) hold the training data. For
efficiency, you might not want to predict new labels using a large classifier.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y);

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the
predictors and define the class order. Specify to standardize the predictors using an SVM
template.

t = templateSVM('Standardize',1);

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. The software uses default values for empty options in t
during training. Mdl is a ClassificationECOC model.

Reduce the size of the trained ECOC model.

CMdl = compact(Mdl)

CMdl =

 classreg.learning.classif.CompactClassificationECOC

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: [1x3 categorical]

 ScoreTransform: 'none'

 BinaryLearners: {3x1 cell}

 CodingMatrix: [3x3 double]

CMdl is a CompactClassificationECOC model. It does not store the training data nor
some of the properties that Mdl stores.

 compact

22-555

Display how much memory each classifier uses.

whos('Mdl','CMdl')

 Name Size Bytes Class Attributes

 CMdl 1x1 11738 classreg.learning.classif.CompactClassificationECOC

 Mdl 1x1 24820 ClassificationECOC

The full ECOC model (Mdl) is approximately double the size of the compact ECOC model
(CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new predictor
values to predict to efficiently label new observations.

See Also
ClassificationECOC | CompactClassificationECOC | fitcecoc | predict

22 Functions — Alphabetical List

22-556

compact
Class: ClassificationEnsemble

Compact classification ensemble

Syntax

cens = compact(ens)

Description

cens = compact(ens) creates a compact version of ens. You can predict classifications
using cens exactly as you can using ens. However, since cens does not contain training
data, you cannot perform some actions, such as cross validation.

Input Arguments

ens

A classification ensemble created with fitensemble.

Output Arguments

cens

A compact classification ensemble. cens has class CompactClassificationEnsemble.

Examples

Compare the size of a classification ensemble for Fisher's iris data to the compact version
of the ensemble:

load fisheriris

 compact

22-557

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

cens = compact(ens);

b = whos('ens'); % b.bytes = size of ens

c = whos('cens'); % c.bytes = size of ens

[b.bytes c.bytes] % shows cens uses less memory

ans =

 571727 532476

See Also
ClassificationTree | fitensemble

How To
• “Ensemble Methods” on page 16-68

22 Functions — Alphabetical List

22-558

compact
Class: ClassificationNaiveBayes

Compact naive Bayes classifier

Syntax

CMdl = compact(Mdl)

Description

CMdl = compact(Mdl) returns a compact naive Bayes classifier (CMdl), which is the
compact version of the trained naive Bayes classifier Mdl.

CMdl stores less than Mdl, e.g., CMdl does not store the training data.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes
model trained by fitcnb.

Output Arguments

CMdl — Compact naive Bayes classifier
CompactClassificationNaiveBayes model

Compact naive Bayes classifier, returned as a CompactClassificationNaiveBayes
model.

Predict class labels using CMdl exactly as you would using Mdl. However, since
CMdl does not contain training data, you cannot perform certain tasks, such as cross
validation.

 compact

22-559

Examples

Reduce the Size of Naive Bayes Classifiers

Full naive Bayes classifiers (i.e., ClassificationNaiveBayes class models) hold the
training data. For efficiency, you might not want to predict new labels using a large
classifier. This example shows how to reduce the size of a full naive Bayes classifier.

Load the ionosphere data set.

load ionosphere

X = X(:,3:end); % Remove two predictors for stability

Train a naive Bayes classifier. Assume that each predictor is conditionally, normally
distributed given its label. It is good practice to specify the order of the labels.

Mdl = fitcnb(X,Y,'ClassNames',{'b','g'})

Mdl =

 ClassificationNaiveBayes

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 DistributionNames: {1x32 cell}

 DistributionParameters: {2x32 cell}

Mdl is a ClassificationNaiveBayes model.

Reduce the size of the naive Bayes classifier.

CMdl = compact(Mdl)

CMdl =

 classreg.learning.classif.CompactClassificationNaiveBayes

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

22 Functions — Alphabetical List

22-560

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 DistributionNames: {1x32 cell}

 DistributionParameters: {2x32 cell}

CMdl is a CompactClassificationNaiveBayes model.

Display how much memory each classifier uses.

whos('Mdl','CMdl')

 Name Size Bytes Class Attributes

 CMdl 1x1 14796 classreg.learning.classif.CompactClassificationNaiveBayes

 Mdl 1x1 111581 ClassificationNaiveBayes

The full naive Bayes classifier (Mdl) is much larger than the compact naive Bayes
classifier (CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new
predictor values to predict (CompactClassificationNaiveBayes) to efficiently label new
observations.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb |
predict

 compact

22-561

compact
Class: ClassificationSVM

Compact support vector machine classifier

Syntax
CompactSVMModel = compact(SVMModel)

Description
CompactSVMModel = compact(SVMModel) returns a compact support vector machine
(SVM) classifier (CompactSVMModel), the compact version of the trained SVM classifier
SVMModel.

CompactSVMModel does not contain the training data, whereas SVMModel contains the
training data in its properties SVMModel.X and SVMModel.Y.

Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained using
fitcsvm.

Output Arguments

CompactSVMModel — Compact SVM classifier
CompactClassificationSVM classifier

Compact SVM classifier, returned as a CompactClassificationSVM classifier.

Predict class labels using CompactSVMModel exactly as you would using SVMModel.
However, since CompactSVMModel does not contain training data, you cannot perform
certain tasks, such as cross validation.

22 Functions — Alphabetical List

22-562

Examples

Reduce the Size of Support Vector Machine Classifiers

Full SVM classifiers (i.e., ClassificationSVM classifiers) hold the training data. For
efficiency, you might not want to predict new labels using a large classifier. This example
shows how to reduce the size of a full SVM classifier.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to standardize the predictors and specify the
order of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,...

 'ClassNames',{'b','g'})

SVMModel =

 ClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 Alpha: [90x1 double]

 Bias: -0.1343

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 BoxConstraints: [351x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [351x1 logical]

 Solver: 'SMO'

SVMModel is a ClassificationSVM classifier.

Reduce the size of the SVM classifier.

CompactSVMModel = compact(SVMModel)

 compact

22-563

CompactSVMModel =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 Alpha: [90x1 double]

 Bias: -0.1343

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 SupportVectors: [90x34 double]

 SupportVectorLabels: [90x1 double]

CompactSVMModel is a CompactClassificationSVM classifier.

Display how much memory each classifier uses.

whos('SVMModel','CompactSVMModel')

 Name Size Bytes Class Attributes

 CompactSVMModel 1x1 30152 classreg.learning.classif.CompactClassificationSVM

 SVMModel 1x1 141126 ClassificationSVM

The full SVM classifier (SVMModel) is more than four times the compact SVM classifier
(CompactSVMModel).

You can remove SVMModel from the MATLAB® Workspace, and pass CompactSVMModel
and new predictor values to predict to efficiently label new observations.

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm

22 Functions — Alphabetical List

22-564

compact
Class: ClassificationTree

Compact tree

Syntax

ctree = compact(tree)

Description

ctree = compact(tree) creates a compact version of tree.

Input Arguments

tree

A classification tree created using fitctree.

Output Arguments

ctree

A compact decision tree. ctree has class CompactClassificationTree. You can
predict classifications using ctree exactly as you can using tree. However, since
ctree does not contain training data, you cannot perform some actions, such as cross
validation.

Examples

Create a Compact Classification Tree

Compare the size of the classification tree for Fisher's iris data to the compact version of
the tree.

 compact

22-565

load fisheriris

fulltree = fitctree(meas,species);

ctree = compact(fulltree);

b = whos('fulltree'); % b.bytes = size of fulltree

c = whos('ctree'); % c.bytes = size of ctree

[b.bytes c.bytes] % shows ctree uses half the memory

ans =

 13913 6818

See Also
ClassificationTree | CompactClassificationTree | fitctree | predict

22 Functions — Alphabetical List

22-566

compact
Class: RegressionEnsemble

Create compact regression ensemble

Syntax

cens = compact(ens)

Description

cens = compact(ens) creates a compact version of ens. You can predict regressions
using cens exactly as you can using ens. However, since cens does not contain training
data, you cannot perform some actions, such as cross validation.

Input Arguments

ens

A regression ensemble created with fitensemble.

Output Arguments

cens

A compact regression ensemble. cens is of class CompactRegressionEnsemble.

Examples

Compare the size of a regression ensemble for the carsmall data to the compact version
of the ensemble:

load carsmall

 compact

22-567

X = [Acceleration Cylinders Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'LSBoost',100,'Tree');

cens = compact(ens);

b = whos('ens'); % b.bytes = size of ens

c = whos('cens'); % c.bytes = size of cens

[b.bytes c.bytes] % shows ctree uses less memory

ans =

 311789 287368

See Also
CompactRegressionEnsemble | RegressionEnsemble

22 Functions — Alphabetical List

22-568

compact
Class: RegressionTree

Compact regression tree

Syntax

ctree = compact(tree)

Description

ctree = compact(tree) creates a compact version of tree.

Input Arguments

tree

A regression tree created using fitrtree.

Output Arguments

ctree

A compact regression tree. ctree has class CompactRegressionTree. You can predict
regressions using ctree exactly as you can using tree. However, since ctree does not
contain training data, you cannot perform some actions, such as cross validation.

Examples

Compare the size of a regression tree for the carsmall data to the compact version of
the tree:

load carsmall

 compact

22-569

X = [Acceleration Cylinders Displacement Horsepower Weight];

fulltree = fitrtree(X,MPG);

ctree = compact(fulltree);

b = whos('fulltree'); % b.bytes = size of fulltree

c = whos('ctree'); % c.bytes = size of ctree

[b.bytes c.bytes] % shows ctree uses 2/3 the memory

ans =

 15715 10258

See Also
predict | fitrtree | CompactRegressionTree | RegressionTree

22 Functions — Alphabetical List

22-570

compact
Class: TreeBagger

Compact ensemble of decision trees

Description

Return an object of class CompactTreeBagger holding the structure of the trained
ensemble. The class is more compact than the full TreeBagger class because it does not
contain information for growing more trees for the ensemble. In particular, it does not
contain X and Y used for training.

See Also
CompactTreeBagger

 CompactClassificationDiscriminant class

22-571

CompactClassificationDiscriminant class

Compact discriminant analysis class

Description

A CompactClassificationDiscriminant object is a compact version of a
discriminant analysis classifier. The compact version does not include the data for
training the classifier. Therefore, you cannot perform some tasks with a compact
classifier, such as cross validation. Use a compact classifier for making predictions
(classifications) of new data.

Construction

cobj = compact(obj) constructs a compact classifier from a full classifier.

cobj = makecdiscr(Mu,Sigma) constructs a compact discriminant analysis
classifier from the class means Mu and covariance matrix Sigma. For syntax details, see
makecdiscr.

Input Arguments

obj

Discriminant analysis classifier, created using fitcdiscr.

Properties

BetweenSigma

p-by-p matrix, the between-class covariance, where p is the number of predictors.

CategoricalPredictors

List of categorical predictors, which is always empty ([]) for SVM and discriminant
analysis classifiers.

22 Functions — Alphabetical List

22-572

ClassNames

List of the elements in the training data Y with duplicates removed. ClassNames can
be a categorical array, cell array of strings, character array, logical vector, or a numeric
vector. ClassNames has the same data type as the data in the argument Y.

Coeffs

k-by-k structure of coefficient matrices, where k is the number of classes. Coeffs(i,j)
contains coefficients of the linear or quadratic boundaries between classes i and j. Fields
in Coeffs(i,j):

• DiscrimType
• Class1 — ClassNames(i)
• Class2 — ClassNames(j)
• Const — A scalar
• Linear — A vector with p components, where p is the number of columns in X
• Quadratic — p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class i and class j is
Const + Linear * x + x' * Quadratic * x = 0,

where x is a column vector of length p.

If fitcdiscr had the FillCoeffs name-value pair set to 'off' when constructing the
classifier, Coeffs is empty ([]).

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response.

Change a Cost matrix using dot notation: obj.Cost = costMatrix.

Delta

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a
coefficient of obj has magnitude smaller than Delta, obj sets this coefficient to 0, and

 CompactClassificationDiscriminant class

22-573

so you can eliminate the corresponding predictor from the model. Set Delta to a higher
value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Change Delta using dot notation: obj.Delta = newDelta.

DeltaPredictor

Row vector of length equal to the number of predictors in obj. If
DeltaPredictor(i) < Delta then coefficient i of the model is 0.

If obj is a quadratic discriminant model, all elements of DeltaPredictor are 0.

DiscrimType

String specifying the discriminant type. One of:

• 'linear'

• 'quadratic'

• 'diagLinear'

• 'diagQuadratic'

• 'pseudoLinear'

• 'pseudoQuadratic'

Change DiscrimType using dot notation: obj.DiscrimType = newDiscrimType.

You can change between linear types, or between quadratic types, but cannot change
between linear and quadratic types.

Gamma

Value of the Gamma regularization parameter, a scalar from 0 to 1. Change Gamma using
dot notation: obj.Gamma = newGamma.

• If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
• If you set a value between MinGamma and 1 for linear discriminant, the discriminant

sets its type to 'linear'.
• You cannot set values below the value of the MinGamma property.
• For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or

1 (for DiscrimType 'diagQuadratic').

22 Functions — Alphabetical List

22-574

LogDetSigma

Logarithm of the determinant of the within-class covariance matrix. The type of
LogDetSigma depends on the discriminant type:

• Scalar for linear discriminant analysis
• Vector of length K for quadratic discriminant analysis, where K is the number of

classes

MinGamma

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation
matrix is invertible. If the correlation matrix is not singular, MinGamma is 0.

Mu

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the
number of classes, and p is the number of predictors. Each row of Mu represents the mean
of the multivariate normal distribution of the corresponding class. The class indices are
in the ClassNames attribute.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in the
training data X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames.

Add or change a Prior vector using dot notation: obj.Prior = priorVector.

ResponseName

String describing the response variable Y.

ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For
a list of built-in transformation functions and the syntax of custom transformation
functions, see fitcdiscr.

 CompactClassificationDiscriminant class

22-575

Implement dot notation to add or change a ScoreTransform function using one of the
following:

• cobj.ScoreTransform = 'function'

• cobj.ScoreTransform = @function

Sigma

Within-class covariance matrix or matrices. The dimensions depend on DiscrimType:

• 'linear' (default) — Matrix of size p-by-p, where p is the number of predictors
• 'quadratic' — Array of size p-by-p-by-K, where K is the number of classes
• 'diagLinear' — Row vector of length p
• 'diagQuadratic' — Array of size 1-by-p-by-K
• 'pseudoLinear' — Matrix of size p-by-p
• 'pseudoQuadratic' — Array of size p-by-p-by-K

Methods

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge

logP
Log unconditional probability density for
discriminant analysis classifier

loss
Classification error

mahal
Mahalanobis distance to class means

margin
Classification margins

nLinearCoeffs
Number of nonzero linear coefficients

22 Functions — Alphabetical List

22-576

predict
Predict classification

Definitions

Discriminant Classification

The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. That is,
the model assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for
each class, only the means vary.

• For quadratic discriminant analysis, both means and covariances of each class
vary.

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

• ŷ is the predicted classification.

• K is the number of classes.
• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

For details, see “How the predict Method Classifies” on page 15-6.

Regularization

Regularization is the process of finding a small set of predictors that yield an effective
predictive model. For linear discriminant analysis, there are two parameters, γ and δ,

 CompactClassificationDiscriminant class

22-577

that control regularization as follows. cvshrink helps you select appropriate values of
the parameters.

Let Σ represent the covariance matrix of the data X, and let X̂ be the centered data (the
data X minus the mean by class). Define

D X X
T

= ()diag ˆ * ˆ .

The regularized covariance matrix %S is

%S S= -() +1 g g D.

Whenever γ ≥ MinGamma, %S is nonsingular.

Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean
vector (the mean of the rows of X). Let C be the correlation matrix of the data X, and let
%C be the regularized correlation matrix:

%C C I= -() +1 g g ,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

x x D C D
T

k

T

k-() -() = -()È
Î

˘
˚ -()È

Î
˘
˚

- - - -m m m m m m0
1

0 0
1 2 1 1 2

0
% %S / /

.

The parameter δ enters into this equation as a threshold on the final term in square

brackets. Each component of the vector %C D k
- - -()È

Î
˘
˚

1 1 2
0

/ m m is set to zero if it is smaller
in magnitude than the threshold δ. Therefore, for class k, if component j is thresholded to
zero, component j of x does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

%C D k
- - -() £1 1 2

0
/

.m m d

22 Functions — Alphabetical List

22-578

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use
predictor i.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a Compact Discriminant Analysis Classifier

Load the sample data.

load fisheriris

Construct a discriminant analysis classifier for the sample data.

fullobj = fitcdiscr(meas,species);

Construct a compact discriminant analysis classifier, and compare its size to that of the
full classifier.

cobj = compact(fullobj);

b = whos('fullobj'); % b.bytes = size of fullobj

c = whos('cobj'); % c.bytes = size of cobj

[b.bytes c.bytes] % shows cobj uses 60% of the memory

ans =

 18578 11498

The compact classifier is smaller than the full classifier.

Construct Classifier Using Means and Covariances

Construct a compact discriminant analysis classifier from the means and covariances of
the Fisher iris data.

load fisheriris

mu(1,:) = mean(meas(1:50,:));

mu(2,:) = mean(meas(51:100,:));

 CompactClassificationDiscriminant class

22-579

mu(3,:) = mean(meas(101:150,:));

mm1 = repmat(mu(1,:),50,1);

mm2 = repmat(mu(2,:),50,1);

mm3 = repmat(mu(3,:),50,1);

cc = meas;

cc(1:50,:) = cc(1:50,:) - mm1;

cc(51:100,:) = cc(51:100,:) - mm2;

cc(101:150,:) = cc(101:150,:) - mm3;

sigstar = cc' * cc / 147;

cpct = makecdiscr(mu,sigstar,...

 'ClassNames',{'setosa','versicolor','virginica'});

See Also
compact | predict | ClassificationDiscriminant | makecdiscr | fitcdiscr

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-580

CompactClassificationECOC class

Compact multiclass model for support vector machines or other classifiers

Description

CompactClassificationECOC is a compact, error-correcting output codes (ECOC)
multiclass model.

The compact classifier does not include the data used for training the ECOC multiclass
model. Therefore, you cannot perform tasks, such as cross validation, using the compact
classifier.

Use a compact ECOC multiclass model for labeling new data (in other words, predicting
the labels of new data).

Construction

CompactMdl = compact(Mdl) returns a compact ECOC multiclass model
(CompactSVMModel) from a full, trained ECOC multiclass model (Mdl).

Input Arguments

Mdl — Trained, full ECOC multiclass model
ClassificationECOC classifier

Trained, full ECOC multiclass model, specified as a ClassificationECOC classifier
trained by fitcecoc.

Properties

BinaryLearners — Trained binary learners
cell vector of model objects

Trained binary learners, specified as a cell vector of model objects. BinaryLearners has
as many elements as classes in Y.

 CompactClassificationECOC class

22-581

BinaryLearner{j} was trained by the software to solve the binary problem specified
by CodingMatrix(:,j). For example, for multiclass learning using SVM learners, each
element of BinaryLearners is a CompactClassificationSVM classifier.

Data Types: cell

BinaryLoss — Binary learner loss function
string

Binary learner loss function, specified as a string.

If you train using binary learners that use different loss functions, then the software sets
BinaryLoss to 'hamming'. To potentially increase accuracy, set a different binary loss
function than this default during prediction or loss computation using the BinaryLoss
name-value pair argument of predict or loss.

Data Types: char

CategoricalPredictors — Categorical predictor indices
numeric vector

Categorical predictor indices, specified as a numeric vector. CategoricalPredictors
contains indices 1 through p, where p is the number of columns of X (size(X,2)).

Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Unique class labels in the response data (Y), specified as a categorical or character array,
logical or numeric vector, or cell array of strings. ClassNames has the same data type as
Y.

CodingMatrix — Codes specifying class assignments
numeric matrix

Codes specifying class assignments for the binary learners, specified as a numeric
matrix. CodingMatrix is a K-by-L matrix, where K is the number of classes and L is the
number of binary learners.

Elements of CodingMatrix are -1, 0, or 1, and the value corresponds to a dichotomous
class assignment. This table describes the meaning of CodingMatrix(i,j), that is, the
class that learner j assigns to observations in class i.

22 Functions — Alphabetical List

22-582

Value Dichotomous Class Assignment

-1 Negative class
0 Before training, learner j removes

observations in class i from the data set.
1 Positive class

Data Types: double | single | int8 | int16 | int32 | int64

Cost — Misclassification costs
square numeric matrix

Misclassification costs, specified as a square numeric matrix. Cost has K rows and
columns, where K is the number of classes.

Cost(i,j) is the cost of misclassifying a point into class j if its true class is i. The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary
learners.

This property is read-only.
Data Types: double

LearnerWeights — Binary learner weights
numeric row vector

Binary learner weights, specified as a numeric row vector. LeanerWeights has length
equal to the number of binary learners (size(CodingMatrix,2)).

LearnerWeights(j) is the sum of the observation weights that binary learner j used to
train its classifier.

The software uses LearnerWeights to fit posterior probabilities by minimizing the
Kullback-Leibler divergence.
Data Types: double | single

PredictorNames — Predictors names
cell array of strings

 CompactClassificationECOC class

22-583

Predictors names in the order that they appear in X, specified as a cell array of strings
containing the predictor names. PredictorNames has length equal to the number of
columns in X.

Data Types: cell

Prior — Prior class probabilities
numeric vector

Prior class probabilities, specified as a numeric vector. Prior has as many elements as
classes in Y, and the order of the elements corresponds to the elements of ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary
learners.

This property is read only.
Data Types: double

ResponseName — Response variable name
string

Response variable name, specified as a string.
Data Types: char

ScoreTransform — Score transformation function
string | function handle

Score transformation function, specified as a string or function handle. ScoreTransform
describes how the software transforms raw, predicted classification scores.

To change the score transformation function to, e.g., function, use dot notation.

• For a built-in function, enter a string.

SVMModel.ScoreTransform = 'function';

This table lists the supported, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)

22 Functions — Alphabetical List

22-584

String Formula

'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

SVMModel.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Data Types: char | function_handle

Methods

compareHoldout
Compare accuracies of two classification
models using new data

discardSupportVectors
Discard support vectors of linear support
vector machine binary learners

edge
Classification edge for error-correcting
output code mutliclass classifiers

 CompactClassificationECOC class

22-585

loss
Classification loss for error-correcting
output code multiclass classifiers

margin
Classification margins for error-correcting
output code multiclass classifiers

predict
Predict labels for error-correcting output
code multiclass classifiers

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Reduce the Size of Full ECOC Models

Full ECOC models (i.e., ClassificationECOC classifiers) hold the training data. For
efficiency, you might not want to predict new labels using a large classifier.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

Train an ECOC model using default SVMs as binary learners.

Mdl = fitcecoc(X,Y)

Mdl =

 ClassificationECOC

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

22 Functions — Alphabetical List

22-586

 BinaryLearners: {3x1 cell}

 CodingName: 'onevsone'

Mdl is a ClassificationECOC model.

Reduce the size of the ECOC model.

CMdl = compact(Mdl)

CMdl =

 classreg.learning.classif.CompactClassificationECOC

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 BinaryLearners: {3x1 cell}

 CodingMatrix: [3x3 double]

CMdl is a CompactClassificationECOC model.

Display how much memory each classifier consumes.

whos('Mdl','CMdl')

 Name Size Bytes Class Attributes

 CMdl 1x1 11546 classreg.learning.classif.CompactClassificationECOC

 Mdl 1x1 24373 ClassificationECOC

The full ECOC model (Mdl) is almost twice the size of the compact ECOC model (CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new predictor
values to predict to efficiently label new observations.

Train and Cross Validate ECOC Classifiers

Train an ECOC classifier using different binary learners and the one-versus-all coding
design. Then, cross validate the classifier.

 CompactClassificationECOC class

22-587

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

classNames = unique(species(~strcmp(species,''))) % Remove empty classes

K = numel(classNames) % Number of classes

rng(1); % For reproducibility

classNames =

 'setosa'

 'versicolor'

 'virginica'

K =

 3

classNames are the unique classes in the data set, and K is the number of classes. You
can use classNames to specify the order of the classes during training.

For a one-versus-all coding design, there are K = 3 binary learners. Specify templates
for the binary learners such that: * Binary learner 1 and 2 are naive Bayes classifiers.
By default, each predictor is conditionally, normally distributed given its label. * Binary
learner 3 is an SVM classifier. Specify to use the Gaussian kernel.

tNB = templateNaiveBayes();

tSVM = templateSVM('KernelFunction','gaussian');

tLearners = {tNB tNB tSVM};

tNB and tSVM are template objects for naive Bayes and SVM learning, respectively. They
indicate what options to use during training. Most of their properties are empty, except
for those specified using name-value pair arguments. The software fills in the empty
properties with their default values during training.

Train and cross validate an ECOC classifier using the binary learner templates and the
one-versus-all coding design. Specify the order of the classes. By default, naive Bayes
classifiers use posterior probabilities as scores, whereas SVM classifiers use distance
from the decision boundary. Therefore, to aggregate the binary learners, you must specify
to fit posterior probabilities.

22 Functions — Alphabetical List

22-588

CVMdl = fitcecoc(X,Y,'ClassNames',classNames,'CrossVal','on',...

 'Learners',tLearners,'FitPosterior',1);

CVMdl is not a ClassificationECOC model, but a
ClassificationPartitionedECOC cross-validated, ECOC model. By default, the
software implements 10-fold cross validation. The the scores across the binary learners
are the same form (i.e., they are posterior probabilities), and so the software can
aggregate the results of the binary classifications properly.

Inspect one of the trained folds using dot notation.

CVMdl.Trained{1}

ans =

 classreg.learning.classif.CompactClassificationECOC

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 BinaryLearners: {3x1 cell}

 CodingMatrix: [3x3 double]

Each fold is a CompactClassificationECOC model trained on 90% of the data.

You can access the results of the binary learners using dot notation and cell indexing.
Display the trained SVM classifier (the third binary learner) in the first fold.

CVMdl.Trained{1}.BinaryLearners{3}

ans =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: [-1 1]

 ScoreTransform: '@(S)sigmoid(S,-4.016735e+00,-3.243073e-01)'

 Alpha: [33x1 double]

 Bias: -0.1345

 KernelParameters: [1x1 struct]

 SupportVectors: [33x4 double]

 CompactClassificationECOC class

22-589

 SupportVectorLabels: [33x1 double]

Estimate the generalization error.

genError = kfoldLoss(CVMdl)

genError =

 0.0333

On average, the generalization error is approximately 3%.

Algorithms

Random Coding Design Matrices

For a given number of classes, e.g., K, the software generates random coding design
matrices as follows.

1 The software generates one of the following:

a Dense random — The software sets each element of the K-by-Ld coding design
matrix with a 1 or a -1 with equal probability, where L K

d
ª ÈÍ ˘̇10 2log .

b Sparse random — The software sets each element of the K-by-Ls coding design
matrix with a 1, with probability 0.25, a -1 with probability 0.25, and a 0 with
probability 0.5, where L K

s
ª ÈÍ ˘̇15 2log .

2 If a column does not contain at least one 1 and at least one -1, then the software
removes that column.

3 For distinct columns u and v, if u = v or u ≠ -v, then the software removes v from the
coding design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix
with the largest, minimal pair-wise row distance based on the Hamming measure ([4])
given by

22 Functions — Alphabetical List

22-590

D(,) . ,k k m m m m

l

L

k l k l k l k l1 2

1

0 5
1 2 1 2

= -

=

Â

where mkjl is an element of coding design matrix j.

Support Vector Storage

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties
Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather
than Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM
template that specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors','on')

Mdl = fitcecoc(X,Y,'Learners',t);

You can subsequently remove the support vectors and related values by passing the
resulting ClassificationECOC model to discardSupportVectors.

References

[1] Fürnkranz, Johannes. “Round Robin Classification.” J. Mach. Learn. Res., Vol. 2,
2002, pp. 721–747.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp.
285–297.

See Also
ClassificationECOC | compact | fitcecoc

 CompactClassificationEnsemble class

22-591

CompactClassificationEnsemble class

Compact classification ensemble class

Description

Compact version of a classification ensemble (of class ClassificationEnsemble).
The compact version does not include the data for training the classification ensemble.
Therefore, you cannot perform some tasks with a compact classification ensemble,
such as cross validation. Use a compact classification ensemble for making predictions
(classifications) of new data.

Construction

cens = compact(ens) constructs a compact decision ensemble from a full decision
ensemble.

Input Arguments

ens

A classification ensemble created by fitensemble.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector,
vector of categorical variables, logical vector, character array, or cell array of strings.
ClassNames has the same data type as the data in the argument Y.

22 Functions — Alphabetical List

22-592

CombineWeights

String describing how ens combines weak learner weights, either 'WeightedSum' or
'WeightedAverage'.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response. This property is read-only.

NumTrained

Number of trained weak learners in cens, a scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames. The number of elements of Prior
is the number of unique classes in the response. This property is read-only.

ResponseName

String with the name of the response variable Y.

ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For
a list of built-in transformation functions and the syntax of custom transformation
functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

cens.ScoreTransform = 'function'

or

 CompactClassificationEnsemble class

22-593

cens.ScoreTransform = @function

Trained

Trained learners, a cell array of compact classification models.

TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T
elements, where T is the number of weak learners in learners.

UsePredForLearner

Logical matrix of size P-by-NumTrained, where P is the number of predictors (columns)
in the training data X. UsePredForLearner(i,j) is true when learner j uses
predictor i, and is false otherwise. For each learner, the predictors have the same order
as the columns in the training data X.

If the ensemble is not of type Subspace, all entries in UsePredForLearner are true.

Methods

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge

loss
Classification error

margin
Classification margins

predict
Predict classification

predictorImportance
Estimates of predictor importance

removeLearners
Remove members of compact classification
ensemble

22 Functions — Alphabetical List

22-594

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a compact classification ensemble for the ionosphere data:

load ionosphere

ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree');

cens = compact(ens)

cens =

 classreg.learning.classif.CompactClassificationEnsemble

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumTrained: 100

 Properties, Methods

See Also
ClassificationEnsemble | predict | compact | fitctree | fitensemble

 CompactClassificationNaiveBayes class

22-595

CompactClassificationNaiveBayes class

Compact naive Bayes classifier

Description

CompactClassificationNaiveBayes is a compact naive Bayes classifier.

The compact classifier does not include the data used for training the naive Bayes
classifier. Therefore, you cannot perform tasks, such as cross validation, using the
compact classifier.

Use a compact naive Bayes classifier to label new data (i.e., predicting the labels of new
data) more efficiently.

Construction

CMdl = compact(Mdl) returns a compact naive Bayes classifier (CMdl) from a full,
trained naive Bayes classifier (Mdl).

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes
model trained by fitcnb.

Properties

CategoricalPredictors — Categorical predictor indices
numeric vector

Categorical predictor indices, specified as a numeric vector.
Data Types: double

22 Functions — Alphabetical List

22-596

CategoricalLevels — Multivariate multinomial levels
cell vector of numeric vectors

Multivariate multinomial levels, specified as a cell vector of numeric vectors.
CategoricalLevels has length equal to the number of predictors (size(X,2)).

The cells of CategoricalLevels correspond to predictors that you specified as 'mvmn'
(i.e., having a multivariate multinomial distribution) during training. Cells that do not
correspond to a multivariate multinomial distribution are empty ([]).

If predictor j is multivariate multinomial, then CategoricalLevels{j} is a list of all
distinct values of predictor j in the sample (NaNs removed from unique(X(:,j))).

Data Types: cell

ClassNames — Distinct class names
categorical array | character array | logical vector | numeric vector | cell array of
strings

Distinct class names, specified as a categorical or character array, logical or numeric
vector, or cell vector of strings.

ClassNames is the same data type as Y, and has as K elements or rows for character
arrays.

Cost — Misclassification cost
square matrix

Misclassification cost, specified as a K-by-K square matrix.

The value of Cost(i,j) is the cost of classifying a point into class j if its true class is
i. The order of the rows and columns of Cost correspond to the order of the classes in
ClassNames.

The value of Cost does not influence training. You can reset Cost after training Mdl
using dot notation, e.g., Mdl.Cost = [0 0.5; 1 0];.

Data Types: double | single

DistributionNames — Predictor distributions
'normal' (default) | 'kernel' | 'mn' | 'mvmn' | cell array of strings

Predictor distributions fitcnb uses to model the predictors, specified as a string or cell
array of strings.

 CompactClassificationNaiveBayes class

22-597

This table summarizes the available distributions.

Value Description

'kernel' Kernel smoothing density estimate.
'mn' Multinomial bag-of-tokens model. Indicates

that all predictors have this distribution.
'mvmn' Multivariate multinomial distribution.
'normal' Normal (Gaussian) distribution.

If Distribution is a 1-by-P cell array of strings, then the software models feature j
using the distribution in element j of the cell array.
Data Types: cell | char

DistributionParameters — Distribution parameter estimates
cell array

Distribution parameter estimates, specified as a cell array. DistributionParameters
is a K-by-P cell array, where cell (k,d) contains the distribution parameter estimates for
instances of predictor d in class k. The order of the rows follows the order of the classes in
the property ClassNames, and the order of the predictors follows the order of the columns
of X.

If class k has no observations for predictor j, then Distribution{k,j} is empty ([]).

The elements of DistributionParameters depends on the distributions of the
predictors. This table describes the values in DistributionParameters{k,j}.

Value \Distribution of Predictor j

kernel A prob.KernelDistribution model.
Display properties using cell indexing and
dot notation. For example, to display the
estimated bandwidth of the kernel density
for predictor 2 in the third class, use
Mdl.DistributionParameters{3,2}.BandWidth.

mn A scalar representing the probability that
token j appears in class k. For details, see
“Algorithms”.

mvmn A numeric vector containing the
probabilities for each possible level of

22 Functions — Alphabetical List

22-598

Value \Distribution of Predictor j

predictor j in class k. The software orders
the probabilities by the sorted order of
all unique levels of predictor j (stored in
the property CategoricalLevels). For more
details, see “Algorithms”.

normal A 2-by-1 numeric vector. The first element
is the sample mean and the second element
is the sample standard deviation.

Kernel — Kernel smoother types
'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | cell array of strings

Kernel smoother types, specified as a string or cell array of strings. Kernel has length
equal to the number of predictors (size(X,2)). Kernel{j} corresponds to predictor j,
and contains a string describing the type of kernel smoother. This table describes the
supported kernel smoother types. Let I{u} denote the indictor function.

Value Kernel Formula

'box' Box (uniform)
f x I x() .= { }£0 5 1

'epanechnikov'Epanechnikov
f x x I x() .= -() { }£0 75 1 1

2

'normal' Gaussian
f x x() exp .= -()1

2
0 5 2

p

'triangle'Triangular
f x x I x() = -() { }£1 1

If a cell is empty ([]), then the software did not fit a kernel distribution to the
corresponding predictor.

PredictorNames — Predictor names
string

Predictor names, specified as a cell vector of strings. The order of the elements in
PredictorNames corresponds to the order in X.

Data Types: cell

 CompactClassificationNaiveBayes class

22-599

Prior — Class prior probabilities
numeric vector

Class prior probabilities, specified as a numeric row vector. Prior is a 1-by-K vector, and
the order of its elements correspond to the elements of ClassNames.

fitcnb normalizes the prior probabilities you set using the name-value pair parameter
'Prior' so that sum(Prior) = 1.

The value of Prior does not change the best-fitting model. Therefore, you can reset
Prior after training Mdl using dot notation, e.g., Mdl.Prior = [0.2 0.8];.

Data Types: double | single

ResponseName — Response name
string

Response name, specified as a string.
Data Types: char

ScoreTransform — Classification score transformation function
function handle | string

Classification score transformation function, specified as a function handle or a string.

To change the score transformation function to e.g., function, use dot notation.

• For a built-in function, enter a string.

Mdl.ScoreTransform = 'function';

This table lists available, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)

22 Functions — Alphabetical List

22-600

String Formula

'sign' –1 for x < 0
0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Data Types: char | function_handle

Support — Kernel smoother density support
cell vector

Kernel smoother density support, specified as a cell vector. Support has length equal
to the number of predictors (size(X,2)). The cells represent the regions to apply the
kernel density.

This table describes the supported options.

Value Description

1-by-2 numeric row
vector

For example, [L,U], where L and U are the finite lower and
upper bounds, respectively, for the density support.

'positive' The density support is all positive real values.
'unbounded' The density support is all real values.

If a cell is empty ([]), then the software did not fit a kernel distribution to the
corresponding predictor.

Width — Kernel smoother window width
numeric matrix

 CompactClassificationNaiveBayes class

22-601

Kernel smoother window width, specified as a numeric matrix. Width is a K-by-P
matrix, where K is the number of classes in the data, and P is the number of predictors
(size(X,2)).

Width(k,j) is the kernel smoother window width for the kernel smoothing density of
predictor j within class k. NaNs in column j indicate that the software did not fit predictor
j using a kernel density.

Methods

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge for naive Bayes
classifiers

logP
Log unconditional probability density for
naive Bayes classifier

loss
Classification error for naive Bayes
classifier

margin
Classification margins for naive Bayes
classifiers

predict
Predict classification for naive Bayes
models

Definitions

Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of
occurrences of token j in this observation. The number of categories (bins) in this
multinomial model is the number of distinct tokens, that is, the number of predictors.

22 Functions — Alphabetical List

22-602

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are
conditionally independent, given the class. Though the assumption is usually violated
in practice, naive Bayes classifiers tend to yield posterior distributions that are robust
to biased class density estimates, particularly where the posterior is 0.5 (the decision
boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words,
the maximum a posteriori decision rule). Explicitly, the algorithm:

1 Estimates the densities of the predictors within each class.
2 Models posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

ˆ ,..,

|

|

|

P X

Y k P Y k

Y k P

Y k X

X

X Y

P
j

j

k

K

j

j

P

P
=() =

() ()

()

= =

=

=

= =

’

Â ’
1

1

1 1

p

p ==()k

,

where:

• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• p Y k=() is the prior probability that a class index is k.

3 Classifies an observation by estimating the posterior probability for each class, and
then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior
probability ˆ ,.., , ..., || ,P X Y k X Y kY k X P XP Pmn=() () ()µ = =1 1p where

P X X Y kmn P1,..., | =() is the probability mass function of a multinomial distribution.

 CompactClassificationNaiveBayes class

22-603

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples
Reduce the Size of Naive Bayes Classifiers

Full naive Bayes classifiers (i.e., ClassificationNaiveBayes class models) hold the
training data. For efficiency, you might not want to predict new labels using a large
classifier. This example shows how to reduce the size of a full naive Bayes classifier.

Load the ionosphere data set.

load ionosphere

X = X(:,3:end); % Remove two predictors for stability

Train a naive Bayes classifier. Assume that each predictor is conditionally, normally
distributed given its label. It is good practice to specify the order of the labels.

Mdl = fitcnb(X,Y,'ClassNames',{'b','g'})

Mdl =

 ClassificationNaiveBayes

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 DistributionNames: {1x32 cell}

 DistributionParameters: {2x32 cell}

Mdl is a ClassificationNaiveBayes model.

Reduce the size of the naive Bayes classifier.

CMdl = compact(Mdl)

22 Functions — Alphabetical List

22-604

CMdl =

 classreg.learning.classif.CompactClassificationNaiveBayes

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 DistributionNames: {1x32 cell}

 DistributionParameters: {2x32 cell}

CMdl is a CompactClassificationNaiveBayes model.

Display how much memory each classifier uses.

whos('Mdl','CMdl')

 Name Size Bytes Class Attributes

 CMdl 1x1 14796 classreg.learning.classif.CompactClassificationNaiveBayes

 Mdl 1x1 111581 ClassificationNaiveBayes

The full naive Bayes classifier (Mdl) is much larger than the compact naive Bayes
classifier (CMdl).

You can remove Mdl from the MATLAB® Workspace, and pass CMdl and new
predictor values to predict (CompactClassificationNaiveBayes) to efficiently label new
observations.

Train and Cross Validate Naive Bayes Classifiers

Load the ionosphere data set.

load ionosphere

X = X(:,3:end); % Remove two predictors for stability

Train and cross validate a naive Bayes classifier. Assume that each predictor is
conditionally, normally distributed given its label. It is good practice to specify the order
of the classes.

rng(1); % For reproducibility

CVMdl = fitcnb(X,Y,'ClassNames',{'b','g'},'CrossVal','on')

 CompactClassificationNaiveBayes class

22-605

CVMdl =

 classreg.learning.partition.ClassificationPartitionedModel

 CrossValidatedModel: 'NaiveBayes'

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 NumObservations: 351

 KFold: 10

 Partition: [1x1 cvpartition]

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

CVMdl is not a ClassificationNaiveBayes model, but a
ClassificationPartitionedModel cross-validated, naive Bayes model. By default,
the software implements 10-fold cross validation.

Alternatively, you can cross validate a trained ClassificationNaiveBayes model by
passing it to crossval (ClassificationNaiveBayes).

Inspect one of the trained folds using dot notation.

CVMdl.Trained{1}

ans =

 classreg.learning.classif.CompactClassificationNaiveBayes

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 DistributionNames: {1x32 cell}

 DistributionParameters: {2x32 cell}

Each fold is a CompactClassificationNaiveBayes model trained on 90% of the data.

Estimate the generalization error.

genError = kfoldLoss(CVMdl)

genError =

22 Functions — Alphabetical List

22-606

 0.1795

On average, the generalization error is approximately 17%.

One way to attempt reducing an unsatisfactory generalization error is to specify different
conditional distributions for the predictors, or tune the parameters of the conditional
distributions.

Algorithms

• If you specify 'Distribution','mn' when training Mdl using fitcnb, then
the software fits a multinomial distribution using the bag-of-tokens model. The
software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. Using additive smoothing [2], the estimated
probability is

P
c

P c
j k

j k

k

()| ,
|

token class =

+

+

1

where:

•

c

w

n

x w

j k k

ij

i y k

i

i
i y k

i

i

|
:

:

;=
Œ

Œ

Â

Â

class

class

 which is the weighted number of occurrences of token j in

class k.
• nk is the number of observations in class k.
•

w
i is the weight for observation i. The software normalizes weights within a class

such that they sum to the prior probability for that class.
•

c ck j k

j

P

=

=

Â | ;
1

 which is the total weighted number of occurrences of all tokens in

class k.

 CompactClassificationNaiveBayes class

22-607

• If you specify 'Distribution','mvmn' when training Mdl using fitcnb, then:

1 For each predictor, the software collects a list of the unique levels, stores
the sorted list in CategoricalLevels, and considers each level a bin. Each
predictor/class combination is a separate, independent multinomial random
variable.

2 For predictor j in class k, the software counts instances of each categorical level
using the list stored in CategoricalLevels{j}.

3 The software stores the probability that predictor j, in class k, has level
L in the property DistributionParameters{k,j}, for all levels in
CategoricalLevels{j}. Using additive smoothing [2], the estimated probability
is

P
m

m
j L k

L

m

j k

j k

predictor class =
+

() =
+

|
()

,
|1

where:

•

m L n

I x L w

w

j k k

ij i

i y k

i
i y k

i

i

|
:

:

()

{ }

;=

=

Œ

Œ

Â

Â

 class

 class

 which is the weighted number of

observations for which predictor j equals L in class k.
• nk is the number of observations in class k.
•

I x Lij ={ } = 1 if xij = L, 0 otherwise.

•
w

i is the weight for observation i. The software normalizes weights within a
class such that they sum to the prior probability for that class.

• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

22 Functions — Alphabetical List

22-608

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[2] Manning, C. D., P. Raghavan, and M. Schütze. Introduction to Information Retrieval,
NY: Cambridge University Press, 2008.

See Also
ClassificationNaiveBayes | fitcnb | loss | predict

More About
• “Naive Bayes Classification” on page 15-31
• “Grouping Variables” on page 2-52

 CompactClassificationSVM class

22-609

CompactClassificationSVM class

Compact support vector machine for binary classification

Description

CompactClassificationSVM is a compact support vector machine (SVM) classifier.

The compact classifier does not include the data used for training the SVM classifier.
Therefore, you cannot perform tasks, such as cross validation, using the compact
classifier.

Use a compact SVM classifier for labeling new data (i.e., predicting the labels of new
data).

Construction

CompactSVMModel = compact(SVMModel) returns a compact SVM classifier
(CompactSVMModel) from a full, trained support vector machine classifier (SVMModel).

Input Arguments

SVMModel

A full, trained ClassificationSVM classifier trained by fitcsvm.

Properties

Alpha

Numeric vector of trained classifier coefficients from the dual problem (i.e., the estimated
Lagrange multipliers). Alpha has length equal to the number of support vectors in the
trained classifier (i.e., sum(SVMModel.IsSupportVector)).

22 Functions — Alphabetical List

22-610

Beta

Numeric vector of linear predictor coefficients. Beta has length equal to the number of
predictors (i.e., size(SVMModel.X,2)).

If KernelParameters.Function is 'linear', then the software estimates the
classification score for the observation x using

f x x s b() = () ¢ +/ .b

SVMModel stores β, b, and s in the properties Beta, Bias, and KernelParameters.Scale,
respectively.

If KernelParameters.Function is not 'linear', then Beta is empty ([]).

Bias

Scalar corresponding to the trained classifier bias term.

CategoricalPredictors

List of categorical predictors, which is always empty ([]) for SVM and discriminant
analysis classifiers.

ClassNames

List of elements in Y with duplicates removed. ClassNames has the same data type as
the data in the argument Y, and therefore can be a categorical or character array, logical
or numeric vector, or cell array of strings.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i.

During training, the software updates the prior probabilities by incorporating the
penalties described in the cost matrix. Therefore,

• For two-class learning, Cost always has this form: Cost(i,j) = 1 if i ~= j,
and Cost(i,j) = 0 if i = j (i.e., the rows correspond to the true class and the

 CompactClassificationSVM class

22-611

columns correspond to the predicted class). The order of the rows and columns of Cost
corresponds to the order of the classes in ClassNames.

• For one-class learning, Cost = 0.

This property is read-only. For more details, see Algorithms.

KernelParameters

Structure array containing the kernel name and parameter values.

To display the values of KernelParameters, use dot notation, e.g.,
SVMModel.KernelParameters.Scale displays the scale parameter value.

The software accepts KernelParameters as inputs, and does not modify them. Alter
KernelParameters by setting the appropriate name-value pair arguments when you
train the SVM classifier using fitcsvm.

Mu

Numeric vector of predictor means.

If you specify 'Standardize',1 or 'Standardize',true when you train an SVM
classifier using fitcsvm, then Mu has length equal to the number of predictors (i.e.,
size(SVMModel.X,2)). Otherwise, Mu is an empty vector ([]).

PredictorNames

Cell array of strings containing the predictor names, in the order that they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the elements of SVMModel.ClassNames.

For two-class learning, if you specify a cost matrix, then the software updates the prior
probabilities by incorporating the penalties described in the cost matrix.

This property is read-only. For more details, see Algorithms.

ScoreTransform

String representing a built-in transformation function, or a function handle for
transforming predicted classification scores.

22 Functions — Alphabetical List

22-612

To change the score transformation function to, e.g., function, use dot notation.

• For a built-in function, enter a string.

SVMModel.ScoreTransform = 'function';

This table contains the available, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

SVMModel.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Sigma

Numeric vector of predictor standard deviations.

If you specify 'Standardize',1 or 'Standardize',true when you train the
SVM classifier, then Sigma has length equal to the number of predictors (i.e.,
size(SVMModel.X,2)). Otherwise, Sigma is an empty vector ([]).

 CompactClassificationSVM class

22-613

SupportVectors

Matrix containing rows of X that the software considers the support vectors.

If you specify 'Standardize',1 or 'Standardize',true, then SupportVectors are
the standardized rows of X.

SupportVectorLabels

Numeric vector of support vector class labels. SupportVectorLabels has length equal
to the number of support vectors (i.e., sum(SVMModel.IsSupportVector)).

+1 indicates that the corresponding support vector is in the positive class
(SVMModel.ClassNames{2}). -1 indicates that the corresponding support vector is in
the negative class (SVMModel.ClassNames{1}).

Methods

compareHoldout
Compare accuracies of two classification
models using new data

discardSupportVectors
Discard support vectors for linear support
vector machine models

edge
Classification edge for support vector
machine classifiers

fitPosterior
Fit posterior probabilities

loss
Classification error for support vector
machine classifiers

margin
Classification margins for support vector
machine classifiers

predict
Predict labels for support vector machine
classifiers

22 Functions — Alphabetical List

22-614

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Reduce the Size of Support Vector Machine Classifiers

Full SVM classifiers (i.e., ClassificationSVM classifiers) hold the training data. For
efficiency, you might not want to predict new labels using a large classifier. This example
shows how to reduce the size of a full SVM classifier.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to standardize the predictors and specify the
order of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,...

 'ClassNames',{'b','g'})

SVMModel =

 ClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 Alpha: [90x1 double]

 Bias: -0.1343

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 BoxConstraints: [351x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [351x1 logical]

 Solver: 'SMO'

 CompactClassificationSVM class

22-615

SVMModel is a ClassificationSVM classifier.

Reduce the size of the SVM classifier.

CompactSVMModel = compact(SVMModel)

CompactSVMModel =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 Alpha: [90x1 double]

 Bias: -0.1343

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 SupportVectors: [90x34 double]

 SupportVectorLabels: [90x1 double]

CompactSVMModel is a CompactClassificationSVM classifier.

Display how much memory each classifier uses.

whos('SVMModel','CompactSVMModel')

 Name Size Bytes Class Attributes

 CompactSVMModel 1x1 30152 classreg.learning.classif.CompactClassificationSVM

 SVMModel 1x1 141126 ClassificationSVM

The full SVM classifier (SVMModel) is more than four times the compact SVM classifier
(CompactSVMModel).

You can remove SVMModel from the MATLAB® Workspace, and pass CompactSVMModel
and new predictor values to predict to efficiently label new observations.

Train and Cross Validate Support Vector Machine Classifiers

Load the ionosphere data set.

22 Functions — Alphabetical List

22-616

load ionosphere

Train and cross validate an SVM classifier. It is good practice to standardize the
predictors and specify the order of the classes.

rng(1); % For reproducibility

CVSVMModel = fitcsvm(X,Y,'Standardize',true,...

 'ClassNames',{'b','g'},'CrossVal','on')

CVSVMModel =

 classreg.learning.partition.ClassificationPartitionedModel

 CrossValidatedModel: 'SVM'

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 NumObservations: 351

 KFold: 10

 Partition: [1x1 cvpartition]

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

CVSVMModel is not a ClassificationSVM classifier, but a
ClassificationPartitionedModel cross-validated, SVM classifier. By default, the
software implements 10-fold cross validation.

Alternatively, you can cross validate a trained ClassificationSVM classifier by
passing it to crossval.

Inspect one of the trained folds using dot notation.

CVSVMModel.Trained{1}

ans =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 Alpha: [78x1 double]

 Bias: -0.2209

 CompactClassificationSVM class

22-617

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 SupportVectors: [78x34 double]

 SupportVectorLabels: [78x1 double]

Each fold is a CompactClassificationSVM classifier trained on 90% of the data.

Estimate the generalization error.

genError = kfoldLoss(CVSVMModel)

genError =

 0.1168

On average, the generalization error is approximately 12%.

• Using Support Vector Machines

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[2] Scholkopf, B., J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
“Estimating the Support of a High-Dimensional Distribution.” Neural Comput.,
Vol. 13, Number 7, 2001, pp. 1443–1471.

[3] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

[4] Scholkopf, B. and A. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond, Adaptive Computation and Machine
Learning Cambridge, MA: The MIT Press, 2002.

See Also
ClassificationSVM | compact | fitcsvm

22 Functions — Alphabetical List

22-618

More About
• Understanding Support Vector Machines

 CompactClassificationTree class

22-619

CompactClassificationTree class

Compact classification tree

Description

Compact version of a classification tree (of class ClassificationTree). The compact
version does not include the data for training the classification tree. Therefore, you
cannot perform some tasks with a compact classification tree, such as cross validation.
Use a compact classification tree for making predictions (classifications) of new data.

Construction

ctree = compact(tree) constructs a compact decision tree from a full decision tree.

Input Arguments

tree

A decision tree constructed using fitctree.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CategoricalSplits

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplits gives left and right values for a categorical split. For each branch
node with categorical split j based on a categorical predictor variable z, the left child

22 Functions — Alphabetical List

22-620

is chosen if z is in CategoricalSplits(j,1) and the right child is chosen if z is in
CategoricalSplits(j,2). The splits are in the same order as nodes of the tree. Find
the nodes for these splits by selecting 'categorical' cuts from top to bottom in the
CutType property.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n
is the number of nodes. Leaf nodes have child node 0.

ClassCount

An n-by-k array of class counts for the nodes in tree, where n is the number of nodes and
k is the number of classes. For any node number i, the class counts ClassCount(i,:)
are counts of observations (from the data used in fitting the tree) from each class
satisfying the conditions for node i.

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector,
vector of categorical variables, logical vector, character array, or cell array of strings.
ClassNames has the same data type as the data in the argument Y.

If the value of a property has at least one dimension of length k, then ClassNames
indicates the order of the elements along that dimension (e.g., Cost and Prior).

ClassProbability

An n-by-k array of class probabilities for the nodes in tree, where n is the number of
nodes and k is the number of classes. For any node number i, the class probabilities
ClassProbability(i,:) are the estimated probabilities for each class for a point
satisfying the conditions for node i.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response. This property is read-only.

 CompactClassificationTree class

22-621

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of
nodes. For each branch node i based on a categorical predictor variable x, the left child
is chosen if x is among the categories listed in CutCategories{i,1}, and the right
child is chosen if x is among those listed in CutCategories{i,2}. Both columns of
CutCategories are empty for branch nodes based on continuous predictors and for leaf
nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of
nodes. For each branch node i based on a continuous predictor variable x, the left child is
chosen if x<CutPoint(i) and the right child is chosen if x>=CutPoint(i). CutPoint
is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the
number of nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut
point v.

• 'categorical' — If the cut is defined by whether a variable x takes a value in a set
of categories.

• '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutPredictor

An n-element cell array of the names of the variables used for branching in each node
in tree, where n is the number of nodes. These variables are sometimes known as cut
variables. For leaf nodes, CutPredictor contains an empty string.

22 Functions — Alphabetical List

22-622

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

IsBranchNode

An n-element logical vector that is true for each branch node and false for each leaf
node of tree.

NodeClass

An n-element cell array with the names of the most probable classes in each node of tree,
where n is the number of nodes in the tree. Every element of this array is a string equal
to one of the class names in ClassNames.

NodeError

An n-element vector of the errors of the nodes in tree, where n is the number of nodes.
NodeError(i) is the misclassification probability for node i.

NodeProbability

An n-element vector of the probabilities of the nodes in tree, where n is the number of
nodes. The probability of a node is computed as the proportion of observations from the
original data that satisfy the conditions for the node. This proportion is adjusted for any
prior probabilities assigned to each class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes.
The risk for each node is the measure of impurity (Gini index or deviance) for this node
weighted by the node probability. If the tree is grown by twoing, the risk for each node is
zero.

NodeSize

An n-element vector of the sizes of the nodes in tree, where n is the number of nodes. The
size of a node is defined as the number of observations from the data used to create the
tree that satisfy the conditions for the node.

NumNodes

The number of nodes in tree.

 CompactClassificationTree class

22-623

Parent

An n-element vector containing the number of the parent node for each node in tree,
where n is the number of nodes. The parent of the root node is 0.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames. The number of elements of Prior
is the number of unique classes in the response. This property is read-only.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to
M, then PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is
for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is
the number of nodes. The pruning levels range from 0 (no pruning) to M, where M is the
distance between the deepest leaf and the root node.

ResponseName

String describing the response variable Y.

ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For
a list of built-in transformation functions and the syntax of custom transformation
functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ctree.ScoreTransform = 'function'

or

ctree.ScoreTransform = @function

22 Functions — Alphabetical List

22-624

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrogateCutCategories{k} is a cell
array. The length of SurrogateCutCategories{k} is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutCategories{k} is either
an empty string for a continuous surrogate predictor, or is a two-element cell array with
categories for a categorical surrogate predictor. The first element of this two-element
cell array lists categories assigned to the left child by this surrogate split and the second
element of this two-element cell array lists categories assigned to the right child by this
surrogate split. The order of the surrogate split variables at each node is matched to the
order of variables in SurrogateCutVar. The optimal-split variable at this node does not
appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in tree,
where n is the number of nodes in tree. For each node k, SurrSurrogateCutFlip{k}
is a numeric vector. The length of SurrogateCutFlip{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogateCutFlip{k}
is either zero for a categorical surrogate predictor, or a numeric cut assignment for a
continuous surrogate predictor. The numeric cut assignment can be either –1 or +1. For
every surrogate split with a numeric cut C based on a continuous predictor variable
Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1,
or if Z≥C and the cut assignment for this surrogate split is –1. Similarly, the right
child is chosen if Z≥C and the cut assignment for this surrogate split is +1, or if Z<C
and the cut assignment for this surrogate split is –1. The order of the surrogate split
variables at each node is matched to the order of variables in SurrogateCutPredictor.
The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes,
SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric
vector. The length of SurrogateCutPoint{k} is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutPoint{k} is either
NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate
predictor. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this surrogate
split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly,

 CompactClassificationTree class

22-625

the right child is chosen if Z≥C and SurrogateCutFlip for this surrogate split is
+1, or if Z<C and SurrogateCutFlip for this surrogate split is –1. The order of the
surrogate split variables at each node is matched to the order of variables returned by
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPoint contains an empty cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array
with the types of the surrogate split variables at this node. The variables are sorted
by the predictive measure of association with the optimal predictor in the descending
order, and only variables with the positive predictive measure are included. The order
of the surrogate split variables at each node is matched to the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z
and cut point V or 'categorical' if the cut is defined by whether Z takes a value in a
set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits
in each node in tree, where n is the number of nodes in tree. Every element of
SurrogateCutPredictor is a cell array with the names of the surrogate split variables
at this node. The variables are sorted by the predictive measure of association with the
optimal predictor in the descending order, and only variables with the positive predictive
measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate
splits in tree, where n is the number of nodes in tree. For each node k,
SurrogatePredictorAssociation{k} is a numeric vector. The length of
SurrogatePredictorAssociation{k} is equal to the number of surrogate predictors
found at this node. Every element of SurrogatePredictorAssociation{k} gives
the predictive measure of association between the optimal split and this surrogate
split. The order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

22 Functions — Alphabetical List

22-626

Methods

compareHoldout
Compare accuracies of two classification
models using new data

edge
Classification edge

loss
Classification error

margin
Classification margins

surrogateAssociation
Mean predictive measure of association for
surrogate splits in decision tree

predict
Predict classification

predictorImportance
Estimates of predictor importance

view
View tree

Definitions

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion
name-value pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1 2
- Â p i

i

(),

 CompactClassificationTree class

22-627

where the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node. A node with just one class (a pure node) has
Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of
node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the
deviance of a node is

-Â p i p i

i

() log ().

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a

different measure for deciding how to split a node. Let L(i) denote the fraction of
members of class i in the left child node after a split, and R(i) denote the fraction of
members of class i in the right child node after a split. Choose the split criterion to
maximize

P L P R L i R i

i

() () () () ,-
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

2

where P(L) and P(R) are the fractions of observations that split to the left and
right respectively. If the expression is large, the split made each child node purer.
Similarly, if the expression is small, the split made each child node similar to each
other, and hence similar to the parent node, and so the split did not increase node
purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is
the class with the largest number of training samples at a node, the node error is
1 – p(j).

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

22 Functions — Alphabetical List

22-628

Examples

Construct a Compact Classification Tree

Construct a compact classification tree for the Fisher iris data.

load fisheriris

tree = fitctree(meas,species);

ctree = compact(tree);

Compare the size of the resulting tree to that of the original tree.

t = whos('tree'); % t.bytes = size of tree in bytes

c = whos('ctree'); % c.bytes = size of ctree in bytes

[c.bytes t.bytes]

ans =

 6818 13913

The compact tree is smaller than the original tree.

See Also
compact | ClassificationTree | fitctree

 CompactRegressionEnsemble class

22-629

CompactRegressionEnsemble class

Compact regression ensemble class

Description

Compact version of a regression ensemble (of class RegressionEnsemble). The compact
version does not include the data for training the regression ensemble. Therefore, you
cannot perform some tasks with a compact regression ensemble, such as cross validation.
Use a compact regression ensemble for making predictions (regressions) of new data.

Construction

cens = compact(ens) constructs a compact decision ensemble from a full decision
ensemble.

Input Arguments

ens

A regression ensemble created by fitensemble.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CombineWeights

A string describing how the ensemble combines learner predictions.

NumTrained

Number of trained learners in the ensemble, a positive scalar.

22 Functions — Alphabetical List

22-630

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ResponseName

A string with the name of the response variable Y.

ResponseTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

cens.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.

TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes
predicted response by aggregating weighted predictions from its learners.

Methods

loss
Regression error

predict
Predict response of ensemble

predictorImportance
Estimates of predictor importance

removeLearners
Remove members of compact regression
ensemble

 CompactRegressionEnsemble class

22-631

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a regression ensemble for the carsmall data. Make a compact version of the
ensemble, and compare its size to that of the full ensemble:

load carsmall

learner = templateTree('MinParent',20);

ens = fitensemble([Weight, Cylinders],MPG,...

 'LSBoost',100,learner,'PredictorNames',{'W','C'},...

 'categoricalpredictors',2);

cens = compact(ens);

ee = whos('ens'); % ee.bytes = size of ensemble in bytes

cee = whos('cens');

[ee.bytes cee.bytes]

ans =

 606903 587096

See Also
RegressionEnsemble | fitensemble | predict | compact | templateTree

22 Functions — Alphabetical List

22-632

CompactRegressionTree class

Compact regression tree

Description

Compact version of a regression tree (of class RegressionTree). The compact version
does not include the data for training the regression tree. Therefore, you cannot perform
some tasks with a compact regression tree, such as cross validation. Use a compact
regression tree for making predictions (regressions) of new data.

Construction

ctree = compact(tree) constructs a compact decision tree from a full decision tree.

Input Arguments

tree

A decision tree constructed by fitrtree.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CategoricalSplits

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplits gives left and right values for a categorical split. For each branch
node with categorical split j based on a categorical predictor variable z, the left child
is chosen if z is in CategoricalSplits(j,1) and the right child is chosen if z is in
CategoricalSplits(j,2). The splits are in the same order as nodes of the tree. Nodes

 CompactRegressionTree class

22-633

for these splits can be found by running cuttype and selecting 'categorical' cuts
from top to bottom.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n
is the number of nodes. Leaf nodes have child node 0.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of
nodes. For each branch node i based on a categorical predictor variable x, the left child
is chosen if x is among the categories listed in CutCategories{i,1}, and the right
child is chosen if x is among those listed in CutCategories{i,2}. Both columns of
CutCategories are empty for branch nodes based on continuous predictors and for leaf
nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of
nodes. For each branch node i based on a continuous predictor variable x, the left child is
chosen if CutPoint<v(i) and the right child is chosen if x>=CutPoint(i). CutPoint
is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the
number of nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut
point v.

• 'categorical' — If the cut is defined by whether a variable x takes a value in a set
of categories.

• '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

22 Functions — Alphabetical List

22-634

CutPredictor

An n-element cell array of the names of the variables used for branching in each node
in tree, where n is the number of nodes. These variables are sometimes known as cut
variables. For leaf nodes, CutPredictor contains an empty string.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

IsBranchNode

An n-element logical vector ib that is true for each branch node and false for each leaf
node of tree.

NodeError

An n-element vector e of the errors of the nodes in tree, where n is the number of nodes.
e(i) is the misclassification probability for node i.

NodeMean

An n-element numeric array with mean values in each node of tree, where n is the
number of nodes in the tree. Every element in NodeMean is the average of the true Y
values over all observations in the node.

NodeProbability

An n-element vector p of the probabilities of the nodes in tree, where n is the number of
nodes. The probability of a node is computed as the proportion of observations from the
original data that satisfy the conditions for the node. This proportion is adjusted for any
prior probabilities assigned to each class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes.
The risk for each node is the node error weighted by the node probability.

NodeSize

An n-element vector sizes of the sizes of the nodes in tree, where n is the number of
nodes. The size of a node is defined as the number of observations from the data used to
create the tree that satisfy the conditions for the node.

 CompactRegressionTree class

22-635

NumNodes

The number of nodes n in tree.

Parent

An n-element vector p containing the number of the parent node for each node in tree,
where n is the number of nodes. The parent of the root node is 0.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to
M, then PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is
for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is
the number of nodes. The pruning levels range from 0 (no pruning) to M, where M is the
distance between the deepest leaf and the root node.

ResponseName

Name of the response variable Y, a string.

ResponseTransform

Function handle for transforming the raw response values (mean squared error). The
function handle should accept a matrix of response values and return a matrix of the
same size. The default string 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

ctree.ResponseTransform = @function

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrogateCutCategories{k} is a cell
array. The length of SurrogateCutCategories{k} is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutCategories{k} is either

22 Functions — Alphabetical List

22-636

an empty string for a continuous surrogate predictor, or is a two-element cell array with
categories for a categorical surrogate predictor. The first element of this two-element cell
array lists categories assigned to the left child by this surrogate split, and the second
element of this two-element cell array lists categories assigned to the right child by this
surrogate split. The order of the surrogate split variables at each node is matched to the
order of variables in SurrogateCutPredictor. The optimal-split variable at this node
does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an
empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in
tree, where n is the number of nodes in tree. For each node k, SurrogateCutFlip{k}
is a numeric vector. The length of SurrogateCutFlip{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogateCutFlip{k}
is either zero for a categorical surrogate predictor, or a numeric cut assignment for a
continuous surrogate predictor. The numeric cut assignment can be either –1 or +1. For
every surrogate split with a numeric cut C based on a continuous predictor variable
Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1,
or if Z≥C and the cut assignment for this surrogate split is –1. Similarly, the right
child is chosen if Z≥C and the cut assignment for this surrogate split is +1, or if Z<C
and the cut assignment for this surrogate split is –1. The order of the surrogate split
variables at each node is matched to the order of variables in SurrogateCutPredictor.
The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes,
SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric
vector. The length of SurrogateCutPoint{k} is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutPoint{k} is either
NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate
predictor. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this surrogate
split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly,
the right child is chosen if Z≥C and SurrogateCutFlip for this surrogate split is
+1, or if Z<C and SurrogateCutFlip for this surrogate split is –1. The order of the
surrogate split variables at each node is matched to the order of variables returned
by SurrogateCutVar. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPoint contains an empty cell.

 CompactRegressionTree class

22-637

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array
with the types of the surrogate split variables at this node. The variables are sorted
by the predictive measure of association with the optimal predictor in the descending
order, and only variables with the positive predictive measure are included. The order
of the surrogate split variables at each node is matched to the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z
and cut point V or 'categorical' if the cut is defined by whether Z takes a value in a
set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits
in each node in tree, where n is the number of nodes in tree. Every element of
SurrogateCutPredictor is a cell array with the names of the surrogate split variables
at this node. The variables are sorted by the predictive measure of association with the
optimal predictor in the descending order, and only variables with the positive predictive
measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate
splits in tree, where n is the number of nodes in tree. For each node k,
SurrogatePredictorAssociation{k} is a numeric vector. The length of
SurrogatePredictorAssociation{k} is equal to the number of surrogate predictors
found at this node. Every element of SurrogatePredictorAssociation{k} gives
the predictive measure of association between the optimal split and this surrogate
split. The order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

Methods

loss
Regression error

22 Functions — Alphabetical List

22-638

surrogateAssociation
Mean predictive measure of association for
surrogate splits in decision tree

predict
Predict response of regression tree

predictorImportance
Estimates of predictor importance

view
View tree

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct and Compact a Regression Tree

Load the sample data.

load carsmall

Construct a regression tree for the sample data.

tree = fitrtree([Weight, Cylinders],MPG,...

 'MinParentSize',20,...

 'PredictorNames',{'W','C'});

Make a compact version of the tree.

ctree = compact(tree);

Compare the size of the compact tree to that of the full tree.

t = whos('tree'); % t.bytes = size of tree in bytes

c = whos('ctree'); % c.bytes = size of ctree in bytes

[c.bytes t.bytes]

 CompactRegressionTree class

22-639

ans =

 4972 8173

The compact tree is smaller than the full tree.

See Also
fitrtree | compact | RegressionTree

22 Functions — Alphabetical List

22-640

CompactTreeBagger class

Compact ensemble of decision trees grown by bootstrap aggregation

Description

CompactTreeBagger class is a lightweight class that contains the trees grown
using TreeBagger. CompactTreeBagger does not preserve any information about
how TreeBagger grew the decision trees. It does not contain the input data used
for growing trees, nor does it contain training parameters such as minimal leaf size
or number of variables sampled for each decision split at random. You can only use
CompactTreeBagger for predicting the response of the trained ensemble given new data
X, and other related functions.

CompactTreeBagger lets you save the trained ensemble to disk, or use it in any other
way, while discarding training data and various parameters of the training configuration
irrelevant for predicting response of the fully grown ensemble. This reduces storage and
memory requirements, especially for ensembles trained on large data sets.

Construction

.CompactTreeBagger
Create CompactTreeBagger object

Methods

combine
Combine two ensembles

error
Error (misclassification probability or MSE)

margin
Classification margin

 CompactTreeBagger class

22-641

mdsProx
Multidimensional scaling of proximity
matrix

meanMargin
Mean classification margin

outlierMeasure
Outlier measure for data

predict
Predict response

proximity
Proximity matrix for data

setDefaultYfit
Set default value for predict

Properties

ClassNames

The ClassNames property is a cell array containing the class names for the response
variable Y supplied to TreeBagger. This property is empty for regression trees.

DeltaCritDecisionSplit

The DeltaCritDecisionSplit property is a numeric array of size 1-by-Nvars of
changes in the split criterion summed over splits on each variable, averaged across the
entire ensemble of grown trees.

See also TreeBagger.DeltaCritDecisionSplit,
ClassificationTree.predictorImportance, and
RegressionTree.predictorImportance

DefaultYfit

The DefaultYfit property controls what predicted value CompactTreeBagger
returns when no prediction is possible, for example when the predict method needs to
predict for an observation which has only false values in the matrix supplied through
'useifort' argument.

22 Functions — Alphabetical List

22-642

For classification, you can set this property to either '' or 'MostPopular'. If you
choose 'MostPopular' (default), the property value becomes the name of the most
probable class in the training data.

For regression, you can set this property to any numeric scalar. The default is the mean
of the response for the training data.

See also predict, setDefaultYfit, TreeBagger.DefaultYfit.

Method

The Method property is 'classification' for classification ensembles and
'regression' for regression ensembles.

NTrees

The NTrees property is a scalar equal to the number of decision trees in the ensemble.

NVarSplit

The NVarSplit property is a numeric array of size 1-by-Nvars, where every element
gives a number of splits on this predictor summed over all trees.

Trees

The Trees property is a cell array of size NTrees-by-1 containing the trees in the
ensemble.

VarAssoc

The VarAssoc property is a matrix of size Nvars-by-Nvars with predictive measures of
variable association, averaged across the entire ensemble of grown trees. If you grew the
ensemble setting 'surrogate' to 'on', this matrix for each tree is filled with predictive
measures of association averaged over the surrogate splits. If you grew the ensemble
setting 'surrogate' to 'off' (default), VarAssoc is diagonal.

See also ClassificationTree.surrogateAssociation,
RegressionTree.surrogateAssociation.

VarNames

The VarNames property is a cell array containing the names of the predictor variables
(features). These names are taken from the optional 'names' parameter that supplied to
TreeBagger. The default names are 'x1', 'x2', etc.

 CompactTreeBagger class

22-643

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

See Also
TreeBagger | ClassificationTree | TreeBagger.compact | RegressionTree

How To
• “Ensemble Methods” on page 16-68
• “Classification Trees and Regression Trees” on page 16-33
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-644

CompactTreeBagger
Class: CompactTreeBagger

Create CompactTreeBagger object

Description

When you use the TreeBagger constructor to grow trees, it creates a
CompactTreeBagger object. You can obtain the compact object from the full
TreeBagger object using the TreeBagger/compact method. You do not create an
instance of CompactTreeBagger directly.

See Also
TreeBagger

How To
• “Grouping Variables” on page 2-52
• “Ensemble Methods” on page 16-68

 compare

22-645

compare
Class: GeneralizedLinearMixedModel

Compare generalized linear mixed-effects models

Syntax

results = compare(glme,altglme)

results = compare(glme,altglme,Name,Value)

Description

results = compare(glme,altglme) returns the results of a likelihood ratio test that
compares the generalized linear mixed-effects models glme and altglme. To conduct a
valid likelihood ratio test, both models must use the same response vector in the fit, and
glme must be nested in altglme. Always input the smaller model first, and the larger
model second.

compare tests the following null and alternate hypotheses:

• H0: Observed response vector is generated by glme.
• H1: Observed response vector is generated by model altglme.

results = compare(glme,altglme,Name,Value) returns the results of a likelihood
ratio test using additional options specified by one or more Name,Value pair arguments.
For example, you can check if the first input model, glme, is nested in the second input
model, altglme.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

22 Functions — Alphabetical List

22-646

You can create a GeneralizedLinearMixedModel object by fitting a generalized linear
mixed-effects model to your sample data using fitglme. To conduct a valid likelihood
ratio test on two models that have response distributions other than normal, you must fit
both models using the 'ApproximateLaplace' or 'Laplace' fit method. Models with
response distributions other than normal that are fitted using 'MPL' or 'REMPL' cannot
be compared using a likelihood ratio test.

altglme — Alternative generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Alternative generalized linear mixed-effects model, specified as a
GeneralizedLinearMixedModel object. altglme be must fit to the same response
vector as glme, but with different model specifications. glme must be nested in altglme,
such that you can obtain glme from altglme by setting some of the model parameters of
altglme to fixed values such as 0.

You can create a GeneralizedLinearMixedModel object by fitting a generalized linear
mixed-effects model to your sample data using fitglme. To conduct a valid likelihood
ratio test on two models that have response distributions other than normal, you must fit
both models using the 'ApproximateLaplace' or 'Laplace' fit method. Models with
response distributions other than normal that are fitted using 'MPL' or 'REMPL' cannot
be compared using a likelihood ratio test.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CheckNesting' — Indicator to check nesting between two models
true (default) | false

Indicator to check nesting between two models, specified as the comma-separated pair
consisting of 'CheckNesting' and either true or false. If 'CheckNesting' is
true, then compare checks if the smaller model glme is nested in the larger model
altglme. If the nesting requirements are not satisfied, then compare returns an error. If
'CheckNesting' is false, then compare does not perform this check.

Example: 'CheckNesting',true

 compare

22-647

Output Arguments

results — Results of likelihood ratio test
table

Results of the likelihood ratio test, returned as a table with two rows. The first row is for
glme, and the second row is for altglme. The columns of results contain the following.

Model Name of the model
DF Degrees of freedom
AIC Akaike information criterion for the model
BIC Bayesian information criterion for the

model
LogLik Maximized log likelihood for the model
LRStat Likelihood ratio test statistic for comparing

altglme and glme
deltaDF DF for altglme minus DF for glme
pValue p-value for the likelihood ratio test

Definitions

Likelihood Ratio Test

A likelihood ratio test compares the specifications of two nested models by assessing the
significance of restrictions to an extended model with unrestricted parameters. Under
the null hypothesis H0, the likelihood ratio test statistic has an approximate chi-squared
reference distribution with degrees of freedom deltaDF.

When comparing two models, compare computes the p-value for the likelihood ratio test
by comparing the observed likelihood ratio test statistic with this chi-squared reference
distribution. A small p-value leads to a rejection of H0 in favor of H1, and acceptance of
the alternate model altglme. On the other hand, a large p-value indicates that we cannot
reject H0, and reflects insufficient evidence to accept the model altglme.

The p-values obtained using the likelihood ratio test can be conservative when testing
for the presence or absence of random-effects terms, and anti-conservative when testing

22 Functions — Alphabetical List

22-648

for the presence or absence of fixed-effects terms. Instead, use the fixedEffects or
coefTest methods to test for fixed effects.

To conduct a valid likelihood ratio test on GLME models, both models must be fitted
using a Laplace or approximate Laplace fit method. Models fitted using a maximum
pseudo likelihood (MPL) or restricted maximum pseudo likelihood (REMPL) method
cannot be compared using a likelihood ratio test. When comparing models fitted using
MPL, the maximized log likelihood of the pseudodata from the final pseudo likelihood
iteration is used in the likelihood ratio test. If you compare models with non-normal
distributions fitted using MPL, then compare gives a warning that the likelihood ratio
test is using maximized log likelihood of pseudodata from the final pseudo likelihood
iteration. To use the true maximized log likelihood in the likelihood ratio test, fit both
glme and altglme using approximate Laplace or Laplace prior to model comparison.

Nesting Requirements

To conduct a valid likelihood ratio test, glme must be nested in altglme. The
'CheckNesting',true name-value pair argument checks the following requirements,
and returns an error if any are not satisfied:

• You must fit both models (glme and altglme) using the 'ApproximateLaplace'
or 'Laplace' fit method. You cannot compare GLME models fitted using 'MPL' or
'REMPL' using a likelihood ratio test.

• You must fit both models using the same response vector, response distribution, and
link function.

• The smaller model (glme) must be nested within the larger model (altglme), such that
you can obtain glme from altglme by setting some of the model parameters of altglme
to fixed values such as 0.

• The maximized log likelihood of the larger model (altglme) must be greater than or
equal to the maximized log likelihood of the smaller model (glme).

• The weight vectors used to fit glme and altglme must be identical.
• The random-effects design matrix of the larger model (altglme) must contain the

random-effects design matrix of the smaller model (glme).
• The fixed-effects design matrix of the larger model (altglme) must contain the fixed-

effects design matrix of the smaller model (glme).

Akaike and Bayesian Information Criteria

The Akaike information criterion (AIC) is AIC = –2logLM + 2(param).

 compare

22-649

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log
likelihood.

• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from
the final pseudo likelihood iteration.

• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the
pseudo data from the final pseudo likelihood iteration.

param is the total number of parameters estimated in the model. For most GLME
models, param is equal to nc + p + 1, where nc is the total number of parameters in the
random-effects covariance, excluding the residual variance, and p is the number of fixed-
effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or
Poisson distributions, then param is equal to (nc + p).

The Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)(param).

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log
likelihood.

• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from
the final pseudo likelihood iteration.

• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the
pseudo data from the final pseudo likelihood iteration.

neff is the effective number of observations.

• If you use 'MPL', 'Laplace', or 'ApproximateLaplace', then neff = n, where n is
the number of observations.

• If you use 'REMPL', then neff = n – p.

param is the total number of parameters estimated in the model. For most GLME
models, param is equal to nc + p + 1, where nc is the total number of parameters in the
random-effects covariance, excluding the residual variance, and p is the number of fixed-
effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or
Poisson distributions, then param is equal to (nc + p).

A lower value of deviance indicates a better fit. As the value of deviance decreases, both
AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on

22 Functions — Alphabetical List

22-650

the number of parameters estimated, p. So, when the number of parameters increase, the
values of AIC and BIC tend to increase as well. When comparing different models, the
model with the lowest AIC or BIC value is considered as the best fitting model.

For models fitted using 'MPL' and 'REMPL', AIC and BIC are based on the log likelihood
(or restricted log likelihood) of pseudo data from the final pseudo likelihood iteration.
Therefore, a direct comparison of AIC and BIC values between models fitted using 'MPL'
and 'REMPL' is not appropriate.

Examples

Compare Mixed-Effects Models

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

 compare

22-651

Fit a fixed-effects-only model using newprocess, time_dev, temp_dev, and supplier
as fixed-effects predictors. Specify the response distribution as Poisson, the link
function as log, and the fit method as Laplace. Specify the dummy variable encoding as
'effects', so the dummy variable coefficients sum to 0.

FEglme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Fit a second model that uses the same fixed-effects predictors, response distribution,
link function, and fit method. This time, include a random-effects intercept grouped
by factory, to account for quality differences that might exist due to factory-specific
variations.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

22 Functions — Alphabetical List

22-652

Compare the two models using a theoretical likelihood ratio test. Specify
'CheckNesting' as true, so compare returns a warning if the nesting requirements
are not satisfied.

results = compare(FEglme,glme,'CheckNesting',true)

results =

 Theoretical Likelihood Ratio Test

 Model DF AIC BIC LogLik LRStat deltaDF

 FEglme 6 431.02 446.65 -209.51

 glme 7 416.35 434.58 -201.17 16.672 1

 pValue

 4.4435e-05

Since compare did not return an error, the nesting requirements are satisfied. The small
p-value indicates that compare rejects the null hypothesis that the observed response
vector is generated by the model FEglme, and instead accepts the alternate model glme.
The smaller AIC and BIC values for glme also support the conclusion that glme provides
a better fitting model for the response.

See Also
GeneralizedLinearMixedModel | covarianceParameters | fixedEffects |
randomEffects

 compare

22-653

compare
Class: LinearMixedModel

Compare linear mixed-effects models

Syntax

results = compare(lme,altlme)

results = compare(___ ,Name,Value)

[results,siminfo] = compare(lme,altlme,'NSim',nsim)

[results,siminfo] = compare(___ ,Name,Value)

Description

results = compare(lme,altlme) returns the results of a likelihood ratio test that
compares the linear mixed-effects models lme and altlme. Both models must use the
same response vector in the fit and lme must be nested in altlme for a valid theoretical
likelihood ratio test. Always input the smaller model first, and the larger model second.

compare tests the following null and alternate hypotheses:

H0: Observed response vector is generated by lme.

H1: Observed response vector is generated by model altlme.

It is recommended that you fit lme and altlme using the maximum likelihood (ML)
method prior to model comparison. If you use the restricted maximum likelihood (REML)
method, then both models must have the same fixed-effects design matrix.

To test for fixed effects, use compare with the simulated likelihood ratio test when lme
and altlme are fit using ML or use the fixedEffects, anova, or coefTest methods.

results = compare(___ ,Name,Value) also returns the results of a likelihood ratio
test that compares linear mixed-effects models lme and altlme with additional options
specified by one or more Name,Value pair arguments.

22 Functions — Alphabetical List

22-654

For example, you can check if the first input model is nested in the second input model.

[results,siminfo] = compare(lme,altlme,'NSim',nsim) returns the results
of a simulated likelihood ratio test that compares linear mixed-effects models lme and
altlme.

You can fit lme and altlme using ML or REML. Also, lme does not have to be nested in
altlme. If you use the restricted maximum likelihood (REML) method to fit the models,
then both models must have the same fixed-effects design matrix.

[results,siminfo] = compare(___ ,Name,Value) also returns the results of
a simulated likelihood ratio test that compares linear mixed-effects models lme and
altlme with additional options specified by one or more Name,Value pair arguments.

For example, you can change the options for performing the simulated likelihood ratio
test, or change the confidence level of the confidence interval for the p-value.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

altlme — Alternative linear mixed-effects model
LinearMixedModel object

Alternative linear mixed-effects model fit to the same response vector but with different
model specifications, specified as a LinearMixedModel object. lme must be nested in
altlme, that is, lme should be obtained from altlme by setting some parameters to
fixed values, such as 0. You can create a linear mixed-effects object using fitlme or
fitlmematrix.

nsim — Number of replications for simulations
positive integer number

Number of replications for simulations in the simulated likelihood ratio test, specified as
a positive integer number. You must specify nsim to do a simulated likelihood ratio test.

Example: 'NSim',1000

 compare

22-655

Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'Options' — Options for performing simulated likelihood ratio test
structure

Options for performing the simulated likelihood ratio test, specified as the
comma-separated pair consisting of 'Options', and a structure created by
statset('LinearMixedModel').

compare uses the following fields.

'UseParallel' • False for serial computation. Default.
• True for parallel computation.

'UseSubstreams' • False for not using a separate
substream of the random number
generator for each iteration. Default.

• True for using a separate substream of
the random number generator for each
iteration. You can only use this option
with random stream types that support
substreams.

22 Functions — Alphabetical List

22-656

'Streams' • If 'UseSubstreams' is True, then
'Streams' must be a single random
number stream, or a scalar cell array
containing a single stream.

• If 'UseSubstreams' is False and

• 'UseParallel' is False, then
'Streams' must be a single random
number stream, or a scalar cell array
containing a single stream.

• 'UseParallel' is True, then
'Streams' must be equal to the
number of processors used. If a
parallel pool is open, then the
'Streams' is the same length
as the size of the parallel pool. If
'UseParallel' is True, a parallel
pool might open up for you. But
since 'Streams' must be equal
to the number of processors used,
it is best to open a pool explicitly
using the parpool command,
before calling compare with
the'UseParallel','True' option.

For information on parallel statistical computing at the command line, enter

help parallelstats

Data Types: struct

'CheckNesting' — Indicator to check nesting between two models
false (default) | true

Indicator to check nesting between two models, specified as the comma-separated pair
consisting of 'CheckNesting' and one of the following.

false Default. No checks.
true compare checks if the smaller model lme is

nested in the bigger model altlme.

 compare

22-657

lme must be nested in the alternate model altlme for a valid theoretical likelihood ratio
test. compare returns an error message if the nesting requirements are not satisfied.

Although valid for both tests, the nesting requirements are weaker for the simulated
likelihood ratio test.
Example: 'CheckNesting',true

Data Types: single | double

Output Arguments
results — Results of likelihood ratio test or simulated likelihood ratio test
dataset array

Results of the likelihood ratio test or simulated likelihood ratio test, returned as a
dataset array with two rows. The first row is for lme, and the second row is for altlme.
The columns of results depend on whether the test is a likelihood ratio or a simulated
likelihood ratio test.

• If you use the likelihood ratio test, then results contains the following columns.

Model Name of the model
DF Degrees of freedom, that is, the number of

free parameters in the model
AIC Akaike information criterion for the

model
BIC Bayesian information criterion for the

model
LogLik Maximized log likelihood for the model
LRStat Likelihood ratio test statistic for

comparing altlme versus lme
deltaDF DF for altlme minus DF for lme
pValue p-value for the likelihood ratio test

• If you use the simulated likelihood ratio test, then results contains the following
columns.

Model Name of the model

22 Functions — Alphabetical List

22-658

DF Degrees of freedom, that is, the number of
free parameters in the model

LogLik Maximized log likelihood for the model
LRStat Likelihood ratio test statistic for

comparing altlme versus lme
pValue p-value for the likelihood ratio test
Lower Lower limit of the confidence interval for

pValue

Upper Upper limit of the confidence interval for
pValue

siminfo — Simulation output
structure

Simulation output, returned as a structure with the following fields.

nsim Value set for nsim.
alpha Value set for 'Alpha'.
pValueSim Simulation-based p-value.
pValueSimCI Confidence interval for pValueSim. The

first element of the vector is the lower
limit and the second element of the vector
contains the upper limit.

deltaDF The number of free parameters in altlme
minus the number of free parameters in
lme. DF for altlme minus DF for lme.

THO A vector of simulated likelihood ratio test
statistics under the null hypothesis that
the model lme generated the observed
response vector y.

Examples

Test for Random Effects

Load the sample data.

 compare

22-659

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated
influenza rates (in 9 different regions, estimated from Google searches, plus a nationwide
estimate from the CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset
array. To fit a linear mixed-effects model with the influenza rates as the responses
and region as the predictor variable, combine the nine columns corresponding to the
regions into a tall array. The new dataset array, flu2, must have the response variable,
FluRate, the nominal variable, Region, that shows which region each estimate is from,
and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model, with a varying intercept and varying slope for each
region, grouped by Date.

altlme = fitlme(flu2,'FluRate ~ 1 + Region + (1 + Region|Date)');

Fit a linear mixed-effects model with fixed effects for the region and a random intercept
that varies by Date.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)');

Compare the two models. Also check if lme2 is nested in lme.

compare(lme,altlme,'CheckNesting',true)

ans =

 Theoretical Likelihood Ratio Test

 Model DF AIC BIC LogLik LRStat deltaDF pValue

 lme 11 318.71 364.35 -148.36

 altlme 55 -305.51 -77.346 207.76 712.22 44 0

The small p-value of 0 indicates that model altlme is significantly better than the
simpler model lme.

Test for Fixed and Random Effects

Navigate to a folder containing sample data.

22 Functions — Alphabetical List

22-660

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type) and the plots within blocks
(tomato types within soil types) independently.

lmeBig = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Refit the model after removing the interaction term Tomato:Fertilizer and the
random-effects term (1 | Soil).

lmeSmall = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)');

Compare the two models using the simulated likelihood ratio test with 1000 replications.
You must use this test to test for both fixed- and random-effect terms. Note that both
models are fit using the default fitting method, ML. That’s why, there is no restriction
on the fixed-effects design matrices. If you use restricted maximum likelihood (REML)
method, both models must have identical fixed-effects design matrices.

[table,siminfo] = compare(lmeSmall,lmeBig,'nsim',1000)

table =

 compare

22-661

 Simulated Likelihood Ratio Test: Nsim = 1000, Alpha = 0.05

 Model DF AIC BIC LogLik LRStat pValue Lower Upper

 lme2 10 511.06 532 -245.53

 lme 23 522.57 570.74 -238.29 14.491 0.54845 0.51702 0.5796

siminfo =

 nsim: 1000

 alpha: 0.0500

 pvalueSim: 0.5485

 pvalueSimCI: [0.5170 0.5796]

 deltaDF: 13

 TH0: [1000x1 double]

The high p-value 0.5485 suggests that the larger model, lme is not significantly better
than the smaller model, lme2. The smaller values of AIC and BIC for lme2 also support
this.

Models with Correlated and Uncorrelated Random Effects

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower, and the cylinders, and potentially correlated random effects for
intercept and acceleration grouped by model year.

First, prepare the design matrices.

X = [ones(406,1) Acceleration Horsepower];

Z = [ones(406,1) Acceleration];

Model_Year = nominal(Model_Year);

G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping
variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'});

22 Functions — Alphabetical List

22-662

Refit the model with uncorrelated random effects for intercept and acceleration. First
prepare the random effects design and the random effects grouping variables.

Z = {ones(406,1),Acceleration};

G = {Model_Year,Model_Year};

lme2 = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',...

{'Model_Year','Model_Year'});

Compare lme and lme2 using the simulated likelihood ratio test.

compare(lme2,lme,'CheckNesting',true,'NSim',1000)

ans =

 Simulated Likelihood Ratio Test: Nsim = 1000, Alpha = 0.05

 Model DF AIC BIC LogLik LRStat pValue Lower Upper

 lme2 6 2194.5 2218.3 -1091.3

 lme 7 2193.5 2221.3 -1089.7 3.0323 0.095904 0.078373 0.11585

The high p-value of 0.095904 indicates that lme2 is not a significantly better fit than
lme.

Simulated Likelihood Ratio Test Using Parallel Computing

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

 compare

22-663

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Refit the model after removing the interaction term Tomato:Fertilizer and the
random-effects term (1|Soil).

lme2 = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)');

Create the options structure for LinearMixedModel.

opt = statset('LinearMixedModel')

opt =

 Display: 'off'

 MaxFunEvals: []

 MaxIter: 10000

 TolBnd: []

 TolFun: 1.0000e-06

 TolTypeFun: []

 TolX: 1.0000e-12

 TolTypeX: []

 GradObj: []

 Jacobian: []

 DerivStep: []

 FunValCheck: []

 Robust: []

 RobustWgtFun: []

 WgtFun: []

 Tune: []

 UseParallel: []

 UseSubstreams: []

 Streams: {}

 OutputFcn: []

22 Functions — Alphabetical List

22-664

Change the options for parallel testing.

opt.UseParallel = true;

Start a parallel environment.

mypool = parpool();

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool =

 Pool with properties:

 AttachedFiles: {0x1 cell}

 NumWorkers: 2

 Cluster: [1x1 parallel.cluster.Local]

 SpmdEnabled: 1

Compare lme2 and lme using the simulated likelihood ratio test with 1000 replications
and parallel computing.

compare(lme2,lme,'nsim',1000,'Options',opt)

ans =

 Simulated Likelihood Ratio Test: Nsim = 1000, Alpha = 0.05

 Model DF AIC BIC LogLik LRStat pValue Lower Upper

 lme2 10 511.06 532 -245.53

 lme 23 522.57 570.74 -238.29 14.491 0.54845 0.51702 0.5796

The high p-value, 0.5485 suggests that the larger model, lme is not significantly better
than the smaller model, lme2. The smaller values of AIC and BIC for lme2 also support
this.

Definitions

Likelihood Ratio Test

Under the null hypothesis H0, the observed likelihood ratio test statistic has an
approximate chi-squared reference distribution with degrees of freedom deltaDF. When

 compare

22-665

comparing two models, compare computes the p-value for the likelihood ratio test by
comparing the observed likelihood ratio test statistic with this chi-squared reference
distribution.

The p-values obtained using the likelihood ratio test can be conservative when testing for
the presence or absence of random-effects terms and anticonservative when testing for
the presence or absence of fixed-effects terms. Hence, use the fixedEffects, anova, or
coefTest method or the simulated likelihood ratio test while testing for fixed effects.

Simulated Likelihood Ratio Test

To perform the simulated likelihood ratio test, compare first generates the reference
distribution of the likelihood ratio test statistic under the null hypothesis. Then, it
assesses the statistical significance of the alternate model by comparing the observed
likelihood ratio test statistic to this reference distribution.

compare produces the simulated reference distribution of the likelihood ratio test
statistic under the null hypothesis as follows:

• Generate random data ysim from the fitted model lme.
• Fit the model specified in lme and alternate model altlme to the simulated data

ysim.
• Calculate the likelihood ratio test statistic using results from step 2 and store the

value.
• Repeat step 1 to 3 nsim times.

Then, compare computes the p-value for the simulated likelihood ratio test by comparing
the observed likelihood ratio test statistic with the simulated reference distribution. The
p-value estimate is the ratio of the number of times the simulated likelihood ratio test
statistic is equal to or exceeds the observed value plus one, to the number of replications
plus one.

Suppose the observed likelihood ratio statistic is T, and the simulated reference
distribution is stored in vector TH0. Then,

p value

I T j T

nsim

H

j

nsim

- =

() ≥()
È

Î

Í
Í

˘

˚

˙
˙

+

+

=
Â

0

1

1

1
.

22 Functions — Alphabetical List

22-666

To account for the uncertainty in the simulated reference distribution, compare
computes a 100*(1 – α)% confidence interval for the true p-value.

You can use the simulated likelihood ratio test to compare arbitrary linear mixed-
effects models. That is, when you are using the simulated likelihood ratio test, lme does
not have to be nested within altlme, and you can fit lme and altlme using either
maximum likelihood (ML) or restricted maximum likelihood (REML) methods. If you use
the restricted maximum likelihood (REML) method to fit the models, then both models
must have the same fixed-effects design matrix.

Nesting Requirements

The 'CheckNesting','True' name-value pair argument checks the following requirements.

For a simulated likelihood ratio test:

• You must use the same method to fit both models (lme and altlme). compare cannot
compare a model fit using ML to a model fit using REML.

• You must fit both models to the same response vector.
• If you use REML to fit lme and altlme, then both models must have the same fixed-

effects design matrix.
• The maximized log likelihood or restricted log likelihood of the bigger model (altlme)

must be greater than or equal to that of the smaller model (lme).

For a theoretical test, 'CheckNesting','True' checks all the requirements listed for a
simulated likelihood ratio test and the following:

• Weight vectors you use to fit lme and altlme must be identical.
• If you use ML to fit lme and altlme, the fixed-effects design matrix of the bigger

model (altlme) must contain that of the smaller model (lme).
• The random-effects design matrix of the bigger model (altlme) must contain that of

the smaller model (lme).

Akaike and Bayesian Information Criteria

Akaike information criterion (AIC) is AIC = –2*logLM + 2*(nc + p + 1), where logLM is the
maximized log likelihood (or maximized restricted log likelihood) of the model, and nc + p
+ 1 is the number of parameters estimated in the model. p is the number of fixed-effects

 compare

22-667

coefficients, and nc is the total number of parameters in the random-effects covariance
excluding the residual variance.

Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)*(nc + p + 1), where
logLM is the maximized log likelihood (or maximized restricted log likelihood) of the
model, neff is the effective number of observations, and (nc + p + 1) is the number of
parameters estimated in the model.

• If the fitting method is maximum likelihood (ML), then neff = n, where n is the number
of observations.

• If the fitting method is restricted maximum likelihood (REML), then neff = n – p.

A lower value of deviance indicates a better fit. As the value of deviance decreases, both
AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on
the number of parameters estimated, p. So, when the number of parameters increase, the
values of AIC and BIC tend to increase as well. When comparing different models, the
model with the lowest AIC or BIC value is considered as the best fitting model.

Deviance

LinearMixedModel computes the deviance of model M as minus two times the
loglikelihood of that model. Let LM denote the maximum value of the likelihood function
for model M. Then, the deviance of model M is

-2* log .L
M

A lower value of deviance indicates a better fit. Suppose M1 and M2 are two different
models, where M1 is nested in M2. Then, the fit of the models can be assessed by
comparing the deviances Dev1 and Dev2 of these models. The difference of the deviances
is

Dev Dev Dev LM LM= - = -()1 2 2 12 log log .

Usually, the asymptotic distribution of this difference has a chi-square distribution with
degrees of freedom v equal to the number of parameters that are estimated in one model
but fixed (typically at 0) in the other. That is, it is equal to the difference in the number
of parameters estimated in M1 and M2. You can get the p-value for this test using 1 –
chi2cdf(Dev,V), where Dev = Dev2 – Dev1.

22 Functions — Alphabetical List

22-668

However, in mixed-effects models, when some variance components fall on the boundary
of the parameter space, the asymptotic distribution of this difference is more complicated.
For example, consider the hypotheses

H0: D
D

=
Ê

Ë
Á

ˆ

¯
˜

11 0

0 0
, D is a q-by-q symmetric positive semidefinite matrix.

H1: D is a (q+1)-by-(q+1) symmetric positive semidefinite matrix.

That is, H1 states that the last row and column of D are different from zero. Here, the
bigger model M2 has q + 1 parameters and the smaller model M1 has q parameters. And
Dev has a 50:50 mixture of χ2

q and χ2
(q + 1) distributions (Stram and Lee, 1994).

References

[1] Hox, J. Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum
Associates, Inc., 2002.

[2] Stram D. O. and J. W. Lee. “Variance components testing in the longitudinal mixed-
effects model”. Biometrics, Vol. 50, 4, 1994, pp. 1171–1177.

See Also
anova | covarianceParameters | fitlme | fitlmematrix | fixedEffects |
LinearMixedModel | randomEffects

 compareHoldout

22-669

compareHoldout
Class: ClassificationKNN

Compare accuracies of two models using new data

compareHoldout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. compareHoldout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = compareHoldout(___)

Description
h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the
null hypothesis that the trained classification models C1 and C2 have equal accuracy
for predicting the true class labels Y. The alternative hypothesis is that the labels have
unequal accuracy.

The first classification model C1 uses predictor data X1 and C2 uses X2. The software
conducts the mid-p-value McNemar test to compare the accuracies.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

Examples of tests you can conduct include:

• Compare the accuracies of a simple classification model and a model that is more
complex by passing the same set of predictor data (i.e., X1 = X2).

22 Functions — Alphabetical List

22-670

• Compare the accuracies of two perhaps different models using two perhaps different
sets of predictors.

• Perform various types of feature selection. For example, you can compare the
accuracy of a model trained using a set of predictors to the accuracy of one trained
on a subset or different set of those predictors. You can arbitrarily choose the set
of predictors, or use a feature selection technique like PCA or sequential feature
selection (see pca and sequentialfs).

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, you can specify the type of alternative hypothesis, and the type
of test, or you can supply a cost matrix.

[h,p,e1,e2] = compareHoldout(___) returns the p-value for the hypothesis test
(p) and the respective classification losses of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

Tips

• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full, test-set predictor data and X2 as the reduced test-set

predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,'Alternative','less'). If

compareHoldout returns 1, then there is enough evidence to suggest that the
classification model that uses fewer predictors performs better than the model
that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','greater' specification in step 4. compareHoldout conducts a
two-sided test, and h = 0 indicates that there is not enough evidence to suggest a
difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data

 compareHoldout

22-671

sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-803.

Input Arguments

C1 — Trained kNN classification model
ClassificationKNN model object

Trained kNN classification model, specified as a ClassificationKNN model object.
That is, C1 is a trained classification model returned by fitcknn.

C2 — Trained classification model
Trained classification model object | Trained, compact classification model object

Trained classification model, specified as any trained or compact classification model
object described in this table.

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of
classification models

ClassificationEnsemble fitensemble

Error-correcting
output codes (ECOC),
multiclass classification
model

ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

Support vector machine
(SVM)

ClassificationSVM fitcsvm

Compact discriminant
analysis

CompactClassificationDiscriminant compact

22 Functions — Alphabetical List

22-672

Trained Model Type Model Object Returned By

Compact ECOC CompactClassificationECOC compact

Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact naive Bayes CompactClassificationNaiveBayes compact

Compact SVM CompactClassificationSVM compact

Compact classification
tree

ClassificationTree compact

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric
matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric
matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

Data Types: double | single

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

 compareHoldout

22-673

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} twice as much as for misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of these values listed in the table.

Value Alternative hypothesis

'unequal'

(default)
For predicting Y, the set of predictions resulting from C1 applied
to X1 and C2 applied to X2 have unequal accuracies.

22 Functions — Alphabetical List

22-674

Value Alternative hypothesis

'greater' For predicting Y, the set of predictions resulting from C1 applied
to X1 is more accurate than C2 applied to X2.

'less' For predicting Y, the set of predictions resulting from C1 applied
to X1 is less accurate than C2 applied to X2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class

 compareHoldout

22-675

and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then ClassificationKNN.compareHoldout
cannot conduct one-sided, exact, or mid-p tests. You must also specify
'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest'
and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost
name-value pair argument, ClassificationKNN.compareHoldout ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.
Example: 'CostTest','chisquare'

22 Functions — Alphabetical List

22-676

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
ClassificationKNN.compareHoldout:

• Removes missing values in Y and the corresponding rows of X1 and X2

• Predicts classes whether X1 and X2 have missing observations.

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

 compareHoldout

22-677

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

ClassificationKNN.compareHoldout estimates p using the distribution of the test
statistic, which varies with the type of test. For details on test statistics derived from
the available variants of the McNemar test, see “McNemar Tests” on page 22-4799. For
details on test statistics derived from cost-sensitive tests, see “Cost-Sensitive Testing” on
page 22-4797.

e1 — Classification loss
scalar

Classification loss, returned as a scalar. e1 summarizes the accuracy of the first set of
class labels predicting the true class labels (Y).

ClassificationKNN.compareHoldout applies the first test-set predictor data (X1)
to the first classification model (C1) to estimate the first set of class labels. Then, the
function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss, returned as a scalar. e2 summarizes the accuracy of the second set of
class labels predicting the true class labels (Y). ClassificationKNN.compareHoldout
applies the second test-set predictor data (X2) to the second classification model (C2) to
estimate the second set of class labels. Then the function compares the estimated labels
to Y to obtain the classification loss.

22 Functions — Alphabetical List

22-678

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second
classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

 compareHoldout

22-679

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification
model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

22 Functions — Alphabetical List

22-680

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

 compareHoldout

22-681

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

22 Functions — Alphabetical List

22-682

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

 compareHoldout

22-683

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

22 Functions — Alphabetical List

22-684

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

ClassificationKNN.compareHoldout returns the classification losses (see e1 and e2)
under the alternative hypothesis (i.e., the unrestricted classification losses). nijk is the
number of test-sample observations with true class k that the first classification model
assigns label i and the second classification model assigns label j, and the corresponding

estimated proportion is ˆ .pijk
ijk

test

n

n
= . The test-set sample size is Â =

i j k
ijk testn n

, ,

. The

indices are taken from 1 through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

 compareHoldout

22-685

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

22 Functions — Alphabetical List

22-686

 'Type','classification');

C1 is a trained ClassificationSVM model. C2 is a trained
ClassificationBaggedEnsemble model.

Test whether the two models have equal predictive accuracies. Use the same test-set
predictor data for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

 compareHoldout

22-687

C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar
test, and compare the results with the mid- p-value test (the cost-insensitive testing
default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...

 'Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject
the null hypothesis that the simpler model is less accurate than the more complex
model. No matter what test you specify, compareHoldout returns the same type of
misclassification measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced
false-positive and false-negative costs, you can statistically compare the predictive
performances of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

22 Functions — Alphabetical List

22-688

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate the predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

 compareHoldout

22-689

cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

t = templateTree('Surrogate','on');

numTrees = 50;

C1 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',cost);

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',cost);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood
ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return
p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...

 'Cost',cost)

h =

 0

p =

 0.0743

e1 =

 1.3581

e2 =

 1.6186

22 Functions — Alphabetical List

22-690

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the out-of-sample accuracy
between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C2);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2)

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

h =

 Axes with properties:

 XLim: [0 35]

 YLim: [0 0.0090]

 XScale: 'linear'

 YScale: 'linear'

 compareHoldout

22-691

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the
five predictors with the best importance.

22 Functions — Alphabetical List

22-692

C1 = fitensemble(X(idxTrain,idx5),Y(idxTrain),'AdaBoostM1',nTrees,...

 'Tree');

Test whether the two models have equal predictive accuracies. Specify the reduced test-
set predictor data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h =

 0

p =

 0.7744

e1 =

 0.0914

e2 =

 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble, C1.

Alternatives

To directly compare the accuracy of two sets of class labels in predicting a set of true
class labels, use testcholdout.

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

 compareHoldout

22-693

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
fitcknn | predict | testcholdout | testckfold

More About
• “Hypothesis Tests”

Introduced in R2015a

22 Functions — Alphabetical List

22-694

compareHoldout
Class: CompactClassificationDiscriminant

Compare accuracies of two classification models using new data

compareHoldout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. compareHoldout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = compareHoldout(___)

Description
h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the
null hypothesis that the trained classification models C1 and C2 have equal accuracy
for predicting the true class labels Y. The alternative hypothesis is that the labels have
unequal accuracy.

The first classification model C1 uses predictor data X1 and C2 uses X2. The software
conducts the mid-p-value McNemar test to compare the accuracies.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

Examples of tests you can conduct include:

• Compare the accuracies of a simple classification model and a model that is more
complex by passing the same set of predictor data (i.e., X1 = X2).

 compareHoldout

22-695

• Compare the accuracies of two perhaps different models using two perhaps different
sets of predictors.

• Perform various types of feature selection. For example, you can compare the
accuracy of a model trained using a set of predictors and one trained on a subset or
different set of those predictors. You can arbitrarily choose the set of predictors, or use
a feature selection technique like PCA or sequential feature selection (see pca and
sequentialfs).

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, you can specify the type of alternative hypothesis, and the type
of test, or you can supply a cost matrix.

[h,p,e1,e2] = compareHoldout(___) returns the p-value for the hypothesis test
(p) and the respective classification losses of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

Tips

• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full, test-set predictor data and X2 as the reduced test-set

predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,'Alternative','less'). If

compareHoldout returns 1, then there is enough evidence to suggest that the
classification model that uses fewer predictors performs better than the model
that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','greater' specification in step 4. compareHoldout conducts a
two-sided test, and h = 0 indicates that there is not enough evidence to suggest a
difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data

22 Functions — Alphabetical List

22-696

sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-803.

Input Arguments

C1 — Trained discriminant analysis classification model
ClassificationDiscriminant model object |
CompactClassificationDiscriminant model object

Trained discriminant analysis classification model, specified as a
ClassificationDiscriminant or CompactClassificationDiscriminant model
object. That is, C1 is a trained classification model returned by fitcdiscr or compact.

C2 — Trained classification model
Trained classification model object | Trained, compact classification model object

Trained classification model, specified as any trained or compact classification model
object described in this table.

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of
classification models

ClassificationEnsemble fitensemble

Error-correcting
output codes (ECOC),
multiclass classification
model

ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

Support vector machine
(SVM)

ClassificationSVM fitcsvm

 compareHoldout

22-697

Trained Model Type Model Object Returned By

Compact discriminant
analysis

CompactClassificationDiscriminant compact

Compact ECOC CompactClassificationECOC compact

Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact naive Bayes CompactClassificationNaiveBayes compact

Compact SVM CompactClassificationSVM compact

Compact classification
tree

ClassificationTree compact

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric
matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric
matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

Data Types: double | single

22 Functions — Alphabetical List

22-698

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} twice as much as for misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of these values listed in the table.

 compareHoldout

22-699

Value Alternative hypothesis

'unequal'

(default)
For predicting Y, the set of predictions resulting from C1 applied
to X1 and C2 applied to X2 have unequal accuracies.

'greater' For predicting Y, the set of predictions resulting from C1 applied
to X1 is more accurate than C2 applied to X2.

'less' For predicting Y, the set of predictions resulting from C1 applied
to X1 is less accurate than C2 applied to X2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class

22 Functions — Alphabetical List

22-700

and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then CompactClassificationDiscriminant.compareHoldout
cannot conduct one-sided, exact, or mid-p tests. You must also specify
'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair
consisting of 'CostTest' and 'chisquare' or 'likelihood'. Unless
you specify a cost matrix using the Cost name-value pair argument,
CompactClassificationDiscriminant.compareHoldout ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.
Example: 'CostTest','chisquare'

 compareHoldout

22-701

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
CompactClassificationDiscriminant.compareHoldout:

• Removes missing values in Y and the corresponding rows of X1 and X2

• Predicts classes whether X1 and X2 have missing observations.

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

22 Functions — Alphabetical List

22-702

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

CompactClassificationDiscriminant.compareHoldout estimates p using the
distribution of the test statistic, which varies with the type of test. For details on test
statistics derived from the available variants of the McNemar test, see “McNemar Tests”
on page 22-4799. For details on test statistics derived from cost-sensitive tests, see
“Cost-Sensitive Testing” on page 22-4797.

e1 — Classification loss
scalar

Classification loss, returned as a scalar. e1 summarizes the accuracy of the first set of
class labels predicting the true class labels (Y).

CompactClassificationDiscriminant.compareHoldout applies the first test-set
predictor data (X1) to the first classification model (C1) to estimate the first set of class
labels. Then, the function compares the estimated labels to Y to obtain the classification
loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss, returned as a scalar. e2 summarizes the accuracy
of the second set of class labels predicting the true class labels (Y).
CompactClassificationDiscriminant.compareHoldout applies the second test-

 compareHoldout

22-703

set predictor data (X2) to the second classification model (C2) to estimate the second
set of class labels. Then the function compares the estimated labels to Y to obtain the
classification loss.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second
classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

22 Functions — Alphabetical List

22-704

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification

 compareHoldout

22-705

model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

22 Functions — Alphabetical List

22-706

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

 compareHoldout

22-707

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

22 Functions — Alphabetical List

22-708

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

 compareHoldout

22-709

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

CompactClassificationDiscriminant.compareHoldout returns the classification
losses (see e1 and e2) under the alternative hypothesis (i.e., the unrestricted
classification losses). nijk is the number of test-sample observations with true class k that
the first classification model assigns label i and the second classification model assigns

label j, and the corresponding estimated proportion is ˆ .pijk
ijk

test

n

n
= . The test-set sample

size is Â =
i j k

ijk testn n
, ,

. The indices are taken from 1 through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

22 Functions — Alphabetical List

22-710

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

 compareHoldout

22-711

 'Type','classification');

C1 is a trained ClassificationSVM model. C2 is a trained
ClassificationBaggedEnsemble model.

Test whether the two models have equal predictive accuracies. Use the same test-set
predictor data for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

22 Functions — Alphabetical List

22-712

C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar
test, and compare the results with the mid- p-value test (the cost-insensitive testing
default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...

 'Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject
the null hypothesis that the simpler model is less accurate than the more complex
model. No matter what test you specify, compareHoldout returns the same type of
misclassification measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced
false-positive and false-negative costs, you can statistically compare the predictive
performances of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

 compareHoldout

22-713

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate the predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

22 Functions — Alphabetical List

22-714

cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

t = templateTree('Surrogate','on');

numTrees = 50;

C1 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',cost);

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',cost);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood
ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return
p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...

 'Cost',cost)

h =

 0

p =

 0.0743

e1 =

 1.3581

e2 =

 1.6186

 compareHoldout

22-715

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the out-of-sample accuracy
between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C2);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2)

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

h =

 Axes with properties:

 XLim: [0 35]

 YLim: [0 0.0090]

 XScale: 'linear'

 YScale: 'linear'

22 Functions — Alphabetical List

22-716

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the
five predictors with the best importance.

 compareHoldout

22-717

C1 = fitensemble(X(idxTrain,idx5),Y(idxTrain),'AdaBoostM1',nTrees,...

 'Tree');

Test whether the two models have equal predictive accuracies. Specify the reduced test-
set predictor data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h =

 0

p =

 0.7744

e1 =

 0.0914

e2 =

 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble, C1.

Alternatives

To directly compare the accuracy of two sets of class labels in predicting a set of true
class labels, use testcholdout.

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

22 Functions — Alphabetical List

22-718

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
fitcdiscr | predict | testcholdout | testckfold

More About
• “Hypothesis Tests”

Introduced in R2015a

 compareHoldout

22-719

compareHoldout
Class: CompactClassificationECOC

Compare accuracies of two classification models using new data

compareHoldout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. compareHoldout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = compareHoldout(___)

Description
h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the
null hypothesis that the trained classification models C1 and C2 have equal accuracy
for predicting the true class labels Y. The alternative hypothesis is that the labels have
unequal accuracy.

The first classification model C1 uses predictor data X1 and C2 uses X2. The software
conducts the mid-p-value McNemar test to compare the accuracies.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

Examples of tests you can conduct include:

• Compare the accuracies of a simple classification model and a model that is more
complex by passing the same set of predictor data (i.e., X1 = X2).

22 Functions — Alphabetical List

22-720

• Compare the accuracies of two perhaps different models using two perhaps different
sets of predictors.

• Perform various types of feature selection. For example, you can compare the
accuracy of a model trained using a set of predictors to the accuracy of one trained
on a subset or different set of those predictors. You can arbitrarily choose the set
of predictors, or use a feature selection technique like PCA or sequential feature
selection (see pca and sequentialfs).

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, you can specify the type of alternative hypothesis, and the type
of test, or you can supply a cost matrix.

[h,p,e1,e2] = compareHoldout(___) returns the p-value for the hypothesis test
(p) and the respective classification losses of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

Tips

• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full, test-set predictor data and X2 as the reduced test-set

predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,'Alternative','less'). If

compareHoldout returns 1, then there is enough evidence to suggest that the
classification model that uses fewer predictors performs better than the model
that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','greater' specification in step 4. compareHoldout conducts a
two-sided test, and h = 0 indicates that there is not enough evidence to suggest a
difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data

 compareHoldout

22-721

sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-803.

Input Arguments
C1 — Trained error-correcting output codes classification model
ClassificationECOC model object | CompactClassificationECOC model object

Trained error-correcting output codes (ECOC) classification model, specified as a
ClassificationECOC or CompactClassificationECOC model object. That is, C1 is a
trained classification model returned by fitcecoc or compact.

C2 — Trained classification model
Trained classification model object | Trained, compact classification model object

Trained classification model, specified as any trained or compact classification model
object described in this table.

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of
classification models

ClassificationEnsemble fitensemble

Error-correcting
output codes (ECOC),
multiclass classification
model

ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

Support vector machine
(SVM)

ClassificationSVM fitcsvm

Compact discriminant
analysis

CompactClassificationDiscriminant compact

22 Functions — Alphabetical List

22-722

Trained Model Type Model Object Returned By

Compact ECOC CompactClassificationECOC compact

Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact naive Bayes CompactClassificationNaiveBayes compact

Compact SVM CompactClassificationSVM compact

Compact classification
tree

ClassificationTree compact

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric
matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric
matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

Data Types: double | single

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

 compareHoldout

22-723

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} twice as much as for misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of these values listed in the table.

Value Alternative hypothesis

'unequal'

(default)
For predicting Y, the set of predictions resulting from C1 applied
to X1 and C2 applied to X2 have unequal accuracies.

22 Functions — Alphabetical List

22-724

Value Alternative hypothesis

'greater' For predicting Y, the set of predictions resulting from C1 applied
to X1 is more accurate than C2 applied to X2.

'less' For predicting Y, the set of predictions resulting from C1 applied
to X1 is less accurate than C2 applied to X2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class

 compareHoldout

22-725

and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then CompactClassificationECOC.compareHoldout
cannot conduct one-sided, exact, or mid-p tests. You must also specify
'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest'
and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost
name-value pair argument, CompactClassificationECOC.compareHoldout ignores
CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.

22 Functions — Alphabetical List

22-726

Example: 'CostTest','chisquare'

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
CompactClassificationECOC.compareHoldout:

• Removes missing values in Y and the corresponding rows of X1 and X2

• Predicts classes whether X1 and X2 have missing observations.

Output Arguments

h — Hypothesis test result
1 | 0

 compareHoldout

22-727

Hypothesis test result, returned as a logical value.

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

CompactClassificationECOC.compareHoldout estimates p using the distribution
of the test statistic, which varies with the type of test. For details on test statistics
derived from the available variants of the McNemar test, see “McNemar Tests” on page
22-4799. For details on test statistics derived from cost-sensitive tests, see “Cost-
Sensitive Testing” on page 22-4797.

e1 — Classification loss
scalar

Classification loss, returned as a scalar. e1 summarizes the accuracy of the first set of
class labels predicting the true class labels (Y).

CompactClassificationECOC.compareHoldout applies the first test-set predictor
data (X1) to the first classification model (C1) to estimate the first set of class labels.
Then, the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss, returned as a scalar. e2 summarizes the accuracy
of the second set of class labels predicting the true class labels (Y).

22 Functions — Alphabetical List

22-728

CompactClassificationECOC.compareHoldout applies the second test-set predictor
data (X2) to the second classification model (C2) to estimate the second set of class labels.
Then the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second
classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

 compareHoldout

22-729

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification

22 Functions — Alphabetical List

22-730

model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

 compareHoldout

22-731

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

22 Functions — Alphabetical List

22-732

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

 compareHoldout

22-733

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

22 Functions — Alphabetical List

22-734

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

CompactClassificationECOC.compareHoldout returns the classification losses
(see e1 and e2) under the alternative hypothesis (i.e., the unrestricted classification
losses). nijk is the number of test-sample observations with true class k that the first
classification model assigns label i and the second classification model assigns label j,

and the corresponding estimated proportion is ˆ .pijk
ijk

test

n

n
= . The test-set sample size is

Â =
i j k

ijk testn n
, ,

. The indices are taken from 1 through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

 compareHoldout

22-735

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

22 Functions — Alphabetical List

22-736

 'Type','classification');

C1 is a trained ClassificationSVM model. C2 is a trained
ClassificationBaggedEnsemble model.

Test whether the two models have equal predictive accuracies. Use the same test-set
predictor data for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

 compareHoldout

22-737

C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar
test, and compare the results with the mid- p-value test (the cost-insensitive testing
default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...

 'Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject
the null hypothesis that the simpler model is less accurate than the more complex
model. No matter what test you specify, compareHoldout returns the same type of
misclassification measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced
false-positive and false-negative costs, you can statistically compare the predictive
performances of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

22 Functions — Alphabetical List

22-738

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate the predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

 compareHoldout

22-739

cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

t = templateTree('Surrogate','on');

numTrees = 50;

C1 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',cost);

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',cost);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood
ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return
p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...

 'Cost',cost)

h =

 0

p =

 0.0743

e1 =

 1.3581

e2 =

 1.6186

22 Functions — Alphabetical List

22-740

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the out-of-sample accuracy
between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C2);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2)

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

h =

 Axes with properties:

 XLim: [0 35]

 YLim: [0 0.0090]

 XScale: 'linear'

 YScale: 'linear'

 compareHoldout

22-741

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the
five predictors with the best importance.

22 Functions — Alphabetical List

22-742

C1 = fitensemble(X(idxTrain,idx5),Y(idxTrain),'AdaBoostM1',nTrees,...

 'Tree');

Test whether the two models have equal predictive accuracies. Specify the reduced test-
set predictor data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h =

 0

p =

 0.7744

e1 =

 0.0914

e2 =

 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble, C1.

Alternatives

To directly compare the accuracy of two sets of class labels in predicting a set of true
class labels, use testcholdout.

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

 compareHoldout

22-743

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
fitcecoc | predict | testcholdout | testckfold

More About
• “Hypothesis Tests”

Introduced in R2015a

22 Functions — Alphabetical List

22-744

compareHoldout
Class: CompactClassificationEnsemble

Compare accuracies of two classification models using new data

compareHoldout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. compareHoldout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = compareHoldout(___)

Description
h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the
null hypothesis that the trained classification models C1 and C2 have equal accuracy
for predicting the true class labels Y. The alternative hypothesis is that the labels have
unequal accuracy.

The first classification model C1 uses predictor data X1 and C2 uses X2. The software
conducts the mid-p-value McNemar test to compare the accuracies.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

Examples of tests you can conduct include:

• Compare the accuracies of a simple classification model and a model that is more
complex by passing the same set of predictor data (i.e., X1 = X2).

 compareHoldout

22-745

• Compare the accuracies of two perhaps different models using two perhaps different
sets of predictors.

• Perform various types of feature selection. For example, compare the accuracies of
a model trained using a set of predictors and one trained on a subset or different
set of those predictors. You can arbitrarily choose the set of predictors, or use a
feature selection technique like PCA or sequential feature selection (see pca and
sequentialfs).

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, specify the type of alternative hypothesis, specify the type of
test, or supply a cost matrix.

[h,p,e1,e2] = compareHoldout(___) returns the p-value for the hypothesis test
(p) and the respective classification losses of each set of predicted class labels (e1 and
e2).

Tips

• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full, test-set predictor data and X2 as the reduced test-set

predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,'Alternative','less'). If

compareHoldout returns 1, then there is enough evidence to suggest that the
classification model that uses fewer predictors performs better than the model
that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','greater' specification in step 4. compareHoldout conducts a
two-sided test, and h = 0 indicates that there is not enough evidence to suggest a
difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data

22 Functions — Alphabetical List

22-746

sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-803.

Input Arguments

C1 — Trained ensemble of classification models
ClassificationBaggedEnsemble model object | ClassificationEnsemble model
object | CompactClassificationEnsemble model object

Trained ensemble of classification models, specified as a
ClassificationBaggedEnsemble, ClassificationEnsemble, or
CompactClassificationEnsemble model object. That is, C1 is a trained classification
model returned by fitensemble or compact.

C2 — Trained classification model
Trained classification model object | Trained, compact classification model object

Trained classification model, specified as any trained or compact classification model
object described in this table.

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of
classification models

ClassificationEnsemble fitensemble

Error-correcting
output codes (ECOC),
multiclass classification
model

ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

 compareHoldout

22-747

Trained Model Type Model Object Returned By

Support vector machine
(SVM)

ClassificationSVM fitcsvm

Compact discriminant
analysis

CompactClassificationDiscriminant compact

Compact ECOC CompactClassificationECOC compact

Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact naive Bayes CompactClassificationNaiveBayes compact

Compact SVM CompactClassificationSVM compact

Compact classification
tree

ClassificationTree compact

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric
matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric
matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

22 Functions — Alphabetical List

22-748

Data Types: double | single

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} two times the penalty of misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of these values listed in the table.

 compareHoldout

22-749

Value Alternative hypothesis

'unequal'

(default)
For predicting Y, the set of predictions resulting from C1 applied
to X1 and C2 applied to X2 have unequal accuracies.

'greater' For predicting Y, the set of predictions resulting from C1 applied
to X1 is more accurate than C2 applied to X2.

'less' For predicting Y, the set of predictions resulting from C1 applied
to X1 is less accurate than C2 applied to X2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class

22 Functions — Alphabetical List

22-750

and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then CompactClassificationEnsemble.compareHoldout
cannot conduct one-sided, exact, or mid-p tests. You must also specify
'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest'
and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost
name-value pair argument, CompactClassificationEnsemble.compareHoldout
ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.
Example: 'CostTest','chisquare'

 compareHoldout

22-751

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
CompactClassificationEnsemble.compareHoldout:

• Removes missing values in Y and the corresponding rows of X1 and X2

• Predicts classes whether X1 and X2 have missing observations.

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

22 Functions — Alphabetical List

22-752

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

CompactClassificationEnsemble.compareHoldout estimates p using the
distribution of the test statistic, which varies with the type of test. For details on test
statistics derived from the available variants of the McNemar test, see “McNemar Tests”
on page 22-4799. For details on test statistics derived from cost-sensitive tests, see
“Cost-Sensitive Testing” on page 22-4797.

e1 — Classification loss
scalar

Classification loss, returned as a scalar. e1 summarizes the accuracy of the first set of
class labels predicting the true class labels (Y).

CompactClassificationEnsemble.compareHoldout applies the first test-set
predictor data (X1) to the first classification model (C1) to estimate the first set of class
labels. Then, the function compares the estimated labels to Y to obtain the classification
loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss, returned as a scalar. e2 summarizes the accuracy
of the second set of class labels predicting the true class labels (Y).
CompactClassificationEnsemble.compareHoldout applies the second test-set

 compareHoldout

22-753

predictor data (X2) to the second classification model (C2) to estimate the second set
of class labels. Then the function compares the estimated labels to Y to obtain the
classification loss.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second
classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

22 Functions — Alphabetical List

22-754

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification

 compareHoldout

22-755

model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

22 Functions — Alphabetical List

22-756

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

 compareHoldout

22-757

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

22 Functions — Alphabetical List

22-758

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

 compareHoldout

22-759

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

CompactClassificationEnsemble.compareHoldout returns the classification losses
(see e1 and e2) under the alternative hypothesis (i.e., the unrestricted classification
losses). nijk is the number of test-sample observations with true class k that the first
classification model assigns label i and the second classification model assigns label j,

and the corresponding estimated proportion is ˆ .pijk
ijk

test

n

n
= . The test-set sample size is

Â =
i j k

ijk testn n
, ,

. The indices are taken from 1 through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

22 Functions — Alphabetical List

22-760

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

 compareHoldout

22-761

 'Type','classification');

C1 is a trained ClassificationSVM model. C2 is a trained
ClassificationBaggedEnsemble model.

Test whether the two models have equal predictive accuracies. Use the same test-set
predictor data for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

22 Functions — Alphabetical List

22-762

C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar
test, and compare the results with the mid- p-value test (the cost-insensitive testing
default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...

 'Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject
the null hypothesis that the simpler model is less accurate than the more complex
model. No matter what test you specify, compareHoldout returns the same type of
misclassification measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced
false-positive and false-negative costs, you can statistically compare the predictive
performances of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

 compareHoldout

22-763

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate the predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

22 Functions — Alphabetical List

22-764

cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

t = templateTree('Surrogate','on');

numTrees = 50;

C1 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',cost);

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',cost);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood
ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return
p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...

 'Cost',cost)

h =

 0

p =

 0.0743

e1 =

 1.3581

e2 =

 1.6186

 compareHoldout

22-765

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the out-of-sample accuracy
between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C2);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2)

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

h =

 Axes with properties:

 XLim: [0 35]

 YLim: [0 0.0090]

 XScale: 'linear'

 YScale: 'linear'

22 Functions — Alphabetical List

22-766

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the
five predictors with the best importance.

 compareHoldout

22-767

C1 = fitensemble(X(idxTrain,idx5),Y(idxTrain),'AdaBoostM1',nTrees,...

 'Tree');

Test whether the two models have equal predictive accuracies. Specify the reduced test-
set predictor data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h =

 0

p =

 0.7744

e1 =

 0.0914

e2 =

 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble, C1.

Alternatives

To directly compare the accuracy of two sets of class labels in predicting a set of true
class labels, use testcholdout.

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

22 Functions — Alphabetical List

22-768

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
fitensemble | predict | testcholdout | testckfold

More About
• “Hypothesis Tests”

Introduced in R2015a

 compareHoldout

22-769

compareHoldout
Class: CompactClassificationNaiveBayes

Compare accuracies of two classification models using new data

compareHoldout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. compareHoldout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = compareHoldout(___)

Description
h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the
null hypothesis that the trained classification models C1 and C2 have equal accuracy
for predicting the true class labels Y. The alternative hypothesis is that the labels have
unequal accuracy.

The first classification model C1 uses predictor data X1 and C2 uses X2. The software
conducts the mid-p-value McNemar test to compare the accuracies.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

Examples of tests you can conduct include:

• Compare the accuracies of a simple classification model and a model that is more
complex by passing the same set of predictor data (i.e., X1 = X2).

22 Functions — Alphabetical List

22-770

• Compare the accuracies of two perhaps different models using two perhaps different
sets of predictors.

• Perform various types of feature selection. For example, you can compare the
accuracy of a model trained using a set of predictors to the accuracy of one trained
on a subset or different set of those predictors. You can arbitrarily choose the set
of predictors, or use a feature selection technique like PCA or sequential feature
selection (see pca and sequentialfs).

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, you can specify the type of alternative hypothesis, and the type
of test, or you can supply a cost matrix.

[h,p,e1,e2] = compareHoldout(___) returns the p-value for the hypothesis test
(p) and the respective classification losses of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

Tips

• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full, test-set predictor data and X2 as the reduced test-set

predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,'Alternative','less'). If

compareHoldout returns 1, then there is enough evidence to suggest that the
classification model that uses fewer predictors performs better than the model
that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','greater' specification in step 4. compareHoldout conducts a
two-sided test, and h = 0 indicates that there is not enough evidence to suggest a
difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data

 compareHoldout

22-771

sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-803.

Input Arguments

C1 — Trained naive Bayes classification model
ClassificationNaiveBayes model object | CompactClassificationNaiveBayes
model object

Trained naive Bayes classification model, specified as a ClassificationNaiveBayes
or CompactClassificationNaiveBayes model object. That is, C1 is a trained
classification model returned by fitcnb or compact.

C2 — Trained classification model
Trained classification model object | Trained, compact classification model object

Trained classification model, specified as any trained or compact classification model
object described in this table.

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of
classification models

ClassificationEnsemble fitensemble

Error-correcting
output codes (ECOC),
multiclass classification
model

ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

Support vector machine
(SVM)

ClassificationSVM fitcsvm

22 Functions — Alphabetical List

22-772

Trained Model Type Model Object Returned By

Compact discriminant
analysis

CompactClassificationDiscriminant compact

Compact ECOC CompactClassificationECOC compact

Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact naive Bayes CompactClassificationNaiveBayes compact

Compact SVM CompactClassificationSVM compact

Compact classification
tree

ClassificationTree compact

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric
matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric
matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

Data Types: double | single

 compareHoldout

22-773

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} twice as much as for misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of these values listed in the table.

22 Functions — Alphabetical List

22-774

Value Alternative hypothesis

'unequal'

(default)
For predicting Y, the set of predictions resulting from C1 applied
to X1 and C2 applied to X2 have unequal accuracies.

'greater' For predicting Y, the set of predictions resulting from C1 applied
to X1 is more accurate than C2 applied to X2.

'less' For predicting Y, the set of predictions resulting from C1 applied
to X1 is less accurate than C2 applied to X2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class

 compareHoldout

22-775

and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then CompactClassificationNaiveBayes.compareHoldout
cannot conduct one-sided, exact, or mid-p tests. You must also specify
'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest'
and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost
name-value pair argument, CompactClassificationNaiveBayes.compareHoldout
ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.
Example: 'CostTest','chisquare'

22 Functions — Alphabetical List

22-776

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
CompactClassificationNaiveBayes.compareHoldout:

• Removes missing values in Y and the corresponding rows of X1 and X2

• Predicts classes whether X1 and X2 have missing observations.

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

 compareHoldout

22-777

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

CompactClassificationNaiveBayes.compareHoldout estimates p using the
distribution of the test statistic, which varies with the type of test. For details on test
statistics derived from the available variants of the McNemar test, see “McNemar Tests”
on page 22-4799. For details on test statistics derived from cost-sensitive tests, see
“Cost-Sensitive Testing” on page 22-4797.

e1 — Classification loss
scalar

Classification loss, returned as a scalar. e1 summarizes the accuracy of the first set of
class labels predicting the true class labels (Y).

CompactClassificationNaiveBayes.compareHoldout applies the first test-set
predictor data (X1) to the first classification model (C1) to estimate the first set of class
labels. Then, the function compares the estimated labels to Y to obtain the classification
loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss, returned as a scalar. e2 summarizes the accuracy
of the second set of class labels predicting the true class labels (Y).
CompactClassificationNaiveBayes.compareHoldout applies the second test-

22 Functions — Alphabetical List

22-778

set predictor data (X2) to the second classification model (C2) to estimate the second
set of class labels. Then the function compares the estimated labels to Y to obtain the
classification loss.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second
classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

 compareHoldout

22-779

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification

22 Functions — Alphabetical List

22-780

model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

 compareHoldout

22-781

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

22 Functions — Alphabetical List

22-782

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

 compareHoldout

22-783

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

22 Functions — Alphabetical List

22-784

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

CompactClassificationNaiveBayes.compareHoldout returns the classification
losses (see e1 and e2) under the alternative hypothesis (i.e., the unrestricted
classification losses). nijk is the number of test-sample observations with true class k that
the first classification model assigns label i and the second classification model assigns

label j, and the corresponding estimated proportion is ˆ .pijk
ijk

test

n

n
= . The test-set sample

size is Â =
i j k

ijk testn n
, ,

. The indices are taken from 1 through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

 compareHoldout

22-785

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

22 Functions — Alphabetical List

22-786

 'Type','classification');

C1 is a trained ClassificationSVM model. C2 is a trained
ClassificationBaggedEnsemble model.

Test whether the two models have equal predictive accuracies. Use the same test-set
predictor data for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

 compareHoldout

22-787

C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar
test, and compare the results with the mid- p-value test (the cost-insensitive testing
default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...

 'Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject
the null hypothesis that the simpler model is less accurate than the more complex
model. No matter what test you specify, compareHoldout returns the same type of
misclassification measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced
false-positive and false-negative costs, you can statistically compare the predictive
performances of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

22 Functions — Alphabetical List

22-788

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate the predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

 compareHoldout

22-789

cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

t = templateTree('Surrogate','on');

numTrees = 50;

C1 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',cost);

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',cost);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood
ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return
p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...

 'Cost',cost)

h =

 0

p =

 0.0743

e1 =

 1.3581

e2 =

 1.6186

22 Functions — Alphabetical List

22-790

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the out-of-sample accuracy
between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C2);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2)

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

h =

 Axes with properties:

 XLim: [0 35]

 YLim: [0 0.0090]

 XScale: 'linear'

 YScale: 'linear'

 compareHoldout

22-791

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the
five predictors with the best importance.

22 Functions — Alphabetical List

22-792

C1 = fitensemble(X(idxTrain,idx5),Y(idxTrain),'AdaBoostM1',nTrees,...

 'Tree');

Test whether the two models have equal predictive accuracies. Specify the reduced test-
set predictor data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h =

 0

p =

 0.7744

e1 =

 0.0914

e2 =

 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble, C1.

Alternatives

To directly compare the accuracy of two sets of class labels in predicting a set of true
class labels, use testcholdout.

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

 compareHoldout

22-793

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
fitcnb | predict | testcholdout | testckfold

More About
• “Hypothesis Tests”

Introduced in R2015a

22 Functions — Alphabetical List

22-794

compareHoldout
Class: CompactClassificationSVM

Compare accuracies of two classification models using new data

compareHoldout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. compareHoldout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = compareHoldout(___)

Description
h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the
null hypothesis that the trained classification models C1 and C2 have equal accuracy
for predicting the true class labels Y. The alternative hypothesis is that the labels have
unequal accuracy.

The first classification model C1 uses predictor data X1 and C2 uses X2. The software
conducts the mid-p-value McNemar test to compare the accuracies.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

Examples of tests you can conduct include:

• Compare the accuracies of a simple classification model and a model that is more
complex by passing the same set of predictor data (i.e., X1 = X2).

 compareHoldout

22-795

• Compare the accuracies of two perhaps different models using two perhaps different
sets of predictors.

• Perform various types of feature selection. For example, you can compare the
accuracy of a model trained using a set of predictors to the accuracy of one trained
on a subset or different set of those predictors. You can arbitrarily choose the set
of predictors, or use a feature selection technique like PCA or sequential feature
selection (see pca and sequentialfs).

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, you can specify the type of alternative hypothesis, and the type
of test, or you can supply a cost matrix.

[h,p,e1,e2] = compareHoldout(___) returns the p-value for the hypothesis test
(p) and the respective classification losses of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

Tips

• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full, test-set predictor data and X2 as the reduced test-set

predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,'Alternative','less'). If

compareHoldout returns 1, then there is enough evidence to suggest that the
classification model that uses fewer predictors performs better than the model
that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','greater' specification in step 4. compareHoldout conducts a
two-sided test, and h = 0 indicates that there is not enough evidence to suggest a
difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data

22 Functions — Alphabetical List

22-796

sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-803.

Input Arguments
C1 — Trained support vector machine classification model
ClassificationSVM model object | CompactClassificationSVM model object

Trained support vector machine (SVM) classification model, specified as a
ClassificationSVM or CompactClassificationSVM model object. That is, C1 is a
trained classification model returned by fitcsvm or compact.

C2 — Trained classification model
Trained classification model object | Trained, compact classification model object

Trained classification model, specified as any trained or compact classification model
object described in this table.

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of
classification models

ClassificationEnsemble fitensemble

Error-correcting
output codes (ECOC),
multiclass classification
model

ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

Support vector machine
(SVM)

ClassificationSVM fitcsvm

Compact discriminant
analysis

CompactClassificationDiscriminant compact

 compareHoldout

22-797

Trained Model Type Model Object Returned By

Compact ECOC CompactClassificationECOC compact

Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact naive Bayes CompactClassificationNaiveBayes compact

Compact SVM CompactClassificationSVM compact

Compact classification
tree

ClassificationTree compact

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric
matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric
matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

Data Types: double | single

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

22 Functions — Alphabetical List

22-798

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} twice as much as for misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of these values listed in the table.

Value Alternative hypothesis

'unequal'

(default)
For predicting Y, the set of predictions resulting from C1 applied
to X1 and C2 applied to X2 have unequal accuracies.

 compareHoldout

22-799

Value Alternative hypothesis

'greater' For predicting Y, the set of predictions resulting from C1 applied
to X1 is more accurate than C2 applied to X2.

'less' For predicting Y, the set of predictions resulting from C1 applied
to X1 is less accurate than C2 applied to X2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class

22 Functions — Alphabetical List

22-800

and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then CompactClassificationSVM.compareHoldout
cannot conduct one-sided, exact, or mid-p tests. You must also specify
'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest'
and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost
name-value pair argument, CompactClassificationSVM.compareHoldout ignores
CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.

 compareHoldout

22-801

Example: 'CostTest','chisquare'

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
CompactClassificationSVM.compareHoldout:

• Removes missing values in Y and the corresponding rows of X1 and X2

• Predicts classes whether X1 and X2 have missing observations.

Output Arguments

h — Hypothesis test result
1 | 0

22 Functions — Alphabetical List

22-802

Hypothesis test result, returned as a logical value.

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

CompactClassificationSVM.compareHoldout estimates p using the distribution
of the test statistic, which varies with the type of test. For details on test statistics
derived from the available variants of the McNemar test, see “McNemar Tests” on page
22-4799. For details on test statistics derived from cost-sensitive tests, see “Cost-
Sensitive Testing” on page 22-4797.

e1 — Classification loss
scalar

Classification loss, returned as a scalar. e1 summarizes the accuracy of the first set of
class labels predicting the true class labels (Y).

CompactClassificationSVM.compareHoldout applies the first test-set predictor
data (X1) to the first classification model (C1) to estimate the first set of class labels.
Then, the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss, returned as a scalar. e2 summarizes the accuracy
of the second set of class labels predicting the true class labels (Y).

 compareHoldout

22-803

CompactClassificationSVM.compareHoldout applies the second test-set predictor
data (X2) to the second classification model (C2) to estimate the second set of class labels.
Then the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second
classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

22 Functions — Alphabetical List

22-804

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification

 compareHoldout

22-805

model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

22 Functions — Alphabetical List

22-806

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

 compareHoldout

22-807

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

22 Functions — Alphabetical List

22-808

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

 compareHoldout

22-809

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

CompactClassificationSVM.compareHoldout returns the classification losses
(see e1 and e2) under the alternative hypothesis (i.e., the unrestricted classification
losses). nijk is the number of test-sample observations with true class k that the first
classification model assigns label i and the second classification model assigns label j,

and the corresponding estimated proportion is ˆ .pijk
ijk

test

n

n
= . The test-set sample size is

Â =
i j k

ijk testn n
, ,

. The indices are taken from 1 through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

22 Functions — Alphabetical List

22-810

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

 compareHoldout

22-811

 'Type','classification');

C1 is a trained ClassificationSVM model. C2 is a trained
ClassificationBaggedEnsemble model.

Test whether the two models have equal predictive accuracies. Use the same test-set
predictor data for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

22 Functions — Alphabetical List

22-812

C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar
test, and compare the results with the mid- p-value test (the cost-insensitive testing
default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...

 'Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject
the null hypothesis that the simpler model is less accurate than the more complex
model. No matter what test you specify, compareHoldout returns the same type of
misclassification measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced
false-positive and false-negative costs, you can statistically compare the predictive
performances of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

 compareHoldout

22-813

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate the predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

22 Functions — Alphabetical List

22-814

cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

t = templateTree('Surrogate','on');

numTrees = 50;

C1 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',cost);

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',cost);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood
ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return
p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...

 'Cost',cost)

h =

 0

p =

 0.0743

e1 =

 1.3581

e2 =

 1.6186

 compareHoldout

22-815

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the out-of-sample accuracy
between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C2);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2)

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

h =

 Axes with properties:

 XLim: [0 35]

 YLim: [0 0.0090]

 XScale: 'linear'

 YScale: 'linear'

22 Functions — Alphabetical List

22-816

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the
five predictors with the best importance.

 compareHoldout

22-817

C1 = fitensemble(X(idxTrain,idx5),Y(idxTrain),'AdaBoostM1',nTrees,...

 'Tree');

Test whether the two models have equal predictive accuracies. Specify the reduced test-
set predictor data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h =

 0

p =

 0.7744

e1 =

 0.0914

e2 =

 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble, C1.

Alternatives

To directly compare the accuracy of two sets of class labels in predicting a set of true
class labels, use testcholdout.

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

22 Functions — Alphabetical List

22-818

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
fitcsvm | predict | testcholdout | testckfold

More About
• “Hypothesis Tests”

Introduced in R2015a

 compareHoldout

22-819

compareHoldout
Class: CompactClassificationTree

Compare accuracies of two classification models using new data

compareHoldout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. compareHoldout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = compareHoldout(___)

Description
h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the
null hypothesis that the trained classification models C1 and C2 have equal accuracy
for predicting the true class labels Y. The alternative hypothesis is that the labels have
unequal accuracy.

The first classification model C1 uses predictor data X1 and C2 uses X2. The software
conducts the mid-p-value McNemar test to compare the accuracies.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

Examples of tests you can conduct include:

• Compare the accuracies of a simple classification model and a model that is more
complex by passing the same set of predictor data (i.e., X1 = X2).

22 Functions — Alphabetical List

22-820

• Compare the accuracies of two perhaps different models using two perhaps different
sets of predictors.

• Perform various types of feature selection. For example, you can compare the
accuracy of a model trained using a set of predictors to the accuracy of one trained
on a subset or different set of those predictors. You can arbitrarily choose the set
of predictors, or use a feature selection technique like PCA or sequential feature
selection (see pca and sequentialfs).

h = compareHoldout(C1,C2,X1,X2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, you can specify the type of alternative hypothesis, and the type
of test, or you can supply a cost matrix.

[h,p,e1,e2] = compareHoldout(___) returns the p-value for the hypothesis test
(p) and the respective classification losses of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

Tips

• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full, test-set predictor data and X2 as the reduced test-set

predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,'Alternative','less'). If

compareHoldout returns 1, then there is enough evidence to suggest that the
classification model that uses fewer predictors performs better than the model
that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','greater' specification in step 4. compareHoldout conducts a
two-sided test, and h = 0 indicates that there is not enough evidence to suggest a
difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data

 compareHoldout

22-821

sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-803.

Input Arguments
C1 — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or
CompactClassificationTree model object. That is, C1 is a trained classification
model returned by fitctree or compact.

C2 — Trained classification model
Trained classification model object | Trained, compact classification model object

Trained classification model, specified as any trained or compact classification model
object described in this table.

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of
classification models

ClassificationEnsemble fitensemble

Error-correcting
output codes (ECOC),
multiclass classification
model

ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

Support vector machine
(SVM)

ClassificationSVM fitcsvm

Compact discriminant
analysis

CompactClassificationDiscriminant compact

22 Functions — Alphabetical List

22-822

Trained Model Type Model Object Returned By

Compact ECOC CompactClassificationECOC compact

Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact naive Bayes CompactClassificationNaiveBayes compact

Compact SVM CompactClassificationSVM compact

Compact classification
tree

ClassificationTree compact

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric
matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric
matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

Data Types: double | single

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

 compareHoldout

22-823

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} twice as much as for misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of these values listed in the table.

Value Alternative hypothesis

'unequal'

(default)
For predicting Y, the set of predictions resulting from C1 applied
to X1 and C2 applied to X2 have unequal accuracies.

22 Functions — Alphabetical List

22-824

Value Alternative hypothesis

'greater' For predicting Y, the set of predictions resulting from C1 applied
to X1 is more accurate than C2 applied to X2.

'less' For predicting Y, the set of predictions resulting from C1 applied
to X1 is less accurate than C2 applied to X2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class

 compareHoldout

22-825

and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then CompactClassificationTree.compareHoldout
cannot conduct one-sided, exact, or mid-p tests. You must also specify
'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest'
and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost
name-value pair argument, CompactClassificationTree.compareHoldout ignores
CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.

22 Functions — Alphabetical List

22-826

Example: 'CostTest','chisquare'

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
CompactClassificationTree.compareHoldout:

• Removes missing values in Y and the corresponding rows of X1 and X2

• Predicts classes whether X1 and X2 have missing observations.

Output Arguments

h — Hypothesis test result
1 | 0

 compareHoldout

22-827

Hypothesis test result, returned as a logical value.

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

CompactClassificationTree.compareHoldout estimates p using the distribution
of the test statistic, which varies with the type of test. For details on test statistics
derived from the available variants of the McNemar test, see “McNemar Tests” on page
22-4799. For details on test statistics derived from cost-sensitive tests, see “Cost-
Sensitive Testing” on page 22-4797.

e1 — Classification loss
scalar

Classification loss, returned as a scalar. e1 summarizes the accuracy of the first set of
class labels predicting the true class labels (Y).

CompactClassificationTree.compareHoldout applies the first test-set predictor
data (X1) to the first classification model (C1) to estimate the first set of class labels.
Then, the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss, returned as a scalar. e2 summarizes the accuracy
of the second set of class labels predicting the true class labels (Y).

22 Functions — Alphabetical List

22-828

CompactClassificationTree.compareHoldout applies the second test-set predictor
data (X2) to the second classification model (C2) to estimate the second set of class labels.
Then the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

Definitions

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second
classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

 compareHoldout

22-829

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification

22 Functions — Alphabetical List

22-830

model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

 compareHoldout

22-831

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

22 Functions — Alphabetical List

22-832

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

 compareHoldout

22-833

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

22 Functions — Alphabetical List

22-834

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

CompactClassificationTree.compareHoldout returns the classification losses
(see e1 and e2) under the alternative hypothesis (i.e., the unrestricted classification
losses). nijk is the number of test-sample observations with true class k that the first
classification model assigns label i and the second classification model assigns label j,

and the corresponding estimated proportion is ˆ .pijk
ijk

test

n

n
= . The test-set sample size is

Â =
i j k

ijk testn n
, ,

. The indices are taken from 1 through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

 compareHoldout

22-835

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

22 Functions — Alphabetical List

22-836

 'Type','classification');

C1 is a trained ClassificationSVM model. C2 is a trained
ClassificationBaggedEnsemble model.

Test whether the two models have equal predictive accuracies. Use the same test-set
predictor data for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

 compareHoldout

22-837

C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2). Because the test-set size is large, conduct the asymptotic McNemar
test, and compare the results with the mid- p-value test (the cost-insensitive testing
default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...

 'Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...

 X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject
the null hypothesis that the simpler model is less accurate than the more complex
model. No matter what test you specify, compareHoldout returns the same type of
misclassification measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced
false-positive and false-negative costs, you can statistically compare the predictive
performances of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

22 Functions — Alphabetical List

22-838

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate the predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

 compareHoldout

22-839

cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

t = templateTree('Surrogate','on');

numTrees = 50;

C1 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',cost);

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',cost);

C1 and C2 are trained ClassificationEnsemble models.

Test whether the AdaBoostM1 ensemble (C1) and the LogitBoost ensemble (C2) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood
ratio, cost-sensitive test (the default when you pass in a cost matrix). Request to return
p-values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...

 'Cost',cost)

h =

 0

p =

 0.0743

e1 =

 1.3581

e2 =

 1.6186

22 Functions — Alphabetical List

22-840

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the out-of-sample accuracy
between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C2 = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C2);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2)

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

h =

 Axes with properties:

 XLim: [0 35]

 YLim: [0 0.0090]

 XScale: 'linear'

 YScale: 'linear'

 compareHoldout

22-841

 GridLineStyle: '-'

 Position: [0.1300 0.1100 0.7750 0.8150]

 Units: 'normalized'

 Use GET to show all properties

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the
five predictors with the best importance.

22 Functions — Alphabetical List

22-842

C1 = fitensemble(X(idxTrain,idx5),Y(idxTrain),'AdaBoostM1',nTrees,...

 'Tree');

Test whether the two models have equal predictive accuracies. Specify the reduced test-
set predictor data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h =

 0

p =

 0.7744

e1 =

 0.0914

e2 =

 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble, C1.

Alternatives

To directly compare the accuracy of two sets of class labels in predicting a set of true
class labels, use testcholdout.

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

 compareHoldout

22-843

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
fitctree | predict | testcholdout | testckfold

More About
• “Hypothesis Tests”

Introduced in R2015a

22 Functions — Alphabetical List

22-844

ComputeOOBPrediction property
Class: TreeBagger

Flag to compute out-of-bag predictions

Description

The ComputeOOBPrediction property is a logical flag specifying whether out-of-bag
predictions for training observations should be computed. The default is false.

If this flag is true, the following properties are available:

• OOBIndices

• OOBInstanceWeight

If this flag is true, the following methods can be called:

• oobError

• oobMargin

• oobMeanMargin

See Also
OOBIndices | oobMargin | oobError | OOBInstanceWeight | oobMeanMargin

 ComputeOOBVarImp property

22-845

ComputeOOBVarImp property
Class: TreeBagger

Flag to compute out-of-bag variable importance

Description

The ComputeOOBVarImp property is a logical flag specifying whether TreeBagger
should compute out-of-bag estimates of variable importance. The default is false.

If this flag is true, the following properties are available:

• OOBPermutedVarDeltaError

• OOBPermutedVarDeltaMeanMargin

• OOBPermutedVarCountRaiseMargin

See Also
oobMeanMargin | ComputeOOBPrediction | OOBPermutedVarDeltaError |
OOBPermutedVarDeltaMeanMargin | OOBPermutedVarCountRaiseMargin |
TreeBagger

22 Functions — Alphabetical List

22-846

confusionmat
Confusion matrix

Syntax

C = confusionmat(group,grouphat)

C = confusionmat(group,grouphat,'order',grouporder)

[C,order] = confusionmat(...)

Description

C = confusionmat(group,grouphat) returns the confusion matrix C determined
by the known and predicted groups in group and grouphat, respectively. group and
grouphat are grouping variables with the same number of observations, as described in
“Grouping Variables” on page 2-52. Input vectors must be of the same type. C is a square
matrix with size equal to the total number of distinct elements in group and grouphat.
C(i,j) is a count of observations known to be in group i but predicted to be in group j.
Group indices and their order are the same for the rows and columns of C, computed by
grp2idx using grp2idx(group;grouphat). NaN, empty, or 'undefined' groups are
not counted.

C = confusionmat(group,grouphat,'order',grouporder) uses grouporder to
order the rows and columns of C. grouporder is a grouping variable containing all of the
distinct elements in group and grouphat. If grouporder contains elements that are
not in group or grouphat, the corresponding entries in C will be 0.

[C,order] = confusionmat(...) also returns the order of the rows and columns of C
in a variable order the same type as group and grouphat.

Examples

Example 1

Display the confusion matrix for data with two misclassifications and one missing
classification:

 confusionmat

22-847

g1 = [1 1 2 2 3 3]'; % Known groups

g2 = [1 1 2 3 4 NaN]'; % Predicted groups

[C,order] = confusionmat(g1,g2)

C =

 2 0 0 0

 0 1 1 0

 0 0 0 1

 0 0 0 0

order =

 1

 2

 3

 4

Example 2

Randomize the measurements and groups in Fisher's iris data:

load fisheriris

numObs = length(species);

p = randperm(numObs);

meas = meas(p,:);

species = species(p);

Use classify to classify measurements in the second half of the data, using the first
half of the data for training:

half = floor(numObs/2);

training = meas(1:half,:);

trainingSpecies = species(1:half);

sample = meas(half+1:end,:);

grouphat = classify(sample,training,trainingSpecies);

Display the confusion matrix for the resulting classification:

group = species(half+1:end);

[C,order] = confusionmat(group,grouphat)

C =

 22 0 0

 2 22 0

 0 0 29

order =

 'virginica'

22 Functions — Alphabetical List

22-848

 'versicolor'

 'setosa'

More About
• “Grouping Variables” on page 2-52

See Also
crosstab | grp2idx

 controlchart

22-849

controlchart

Shewhart control charts

Syntax

controlchart(X)

controlchart(x,group)

controlchart(X,group)

[stats,plotdata] = controlchart(x,[group])

controlchart(x,group,'name',value)

Description

controlchart(X) produces an xbar chart of the measurements in matrix X. Each row
of X is considered to be a subgroup of measurements containing replicate observations
taken at the same time. The rows should be in time order. If X is a time series object, the
time samples should contain replicate observations.

The chart plots the means of the subgroups in time order, a center line (CL) at the
average of the means, and upper and lower control limits (UCL, LCL) at three standard
errors from the center line. The standard error is the estimated process standard
deviation divided by the square root of the subgroup size. Process standard deviation
is estimated from the average of the subgroup standard deviations. Out of control
measurements are marked as violations and drawn with a red circle. Data cursor mode is
enabled, so clicking any data point displays information about that point.

controlchart(x,group) accepts a grouping variable group for a vector of
measurements x. group is a categorical variable, vector, string array, or cell array of
strings the same length as x. Consecutive measurements x(n) sharing the same value
of group(n) for 1 ≤ n ≤ length(x) are defined to be a subgroup. Subgroups can have
different numbers of observations.

controlchart(X,group) accepts a grouping variable group for a matrix of
measurements in X. In this case, group is only used to label the time axis; it does not
change the default grouping by rows.

22 Functions — Alphabetical List

22-850

[stats,plotdata] = controlchart(x,[group]) returns a structure stats of
subgroup statistics and parameter estimates, and a structure plotdata of plotted
values. plotdata contains one record for each chart.

The fields in stats and plotdata depend on the chart type.

The fields in stats are selected from the following:

• mean — Subgroup means
• std — Subgroup standard deviations
• range — Subgroup ranges
• n — Subgroup size, or total inspection size or area
• i — Individual data values
• ma — Moving averages
• mr — Moving ranges
• count — Count of defects or defective items
• mu — Estimated process mean
• sigma — Estimated process standard deviation
• p — Estimated proportion defective
• m — Estimated mean defects per unit

The fields in plotdata are the following:

• pts — Plotted point values
• cl — Center line
• lcl — Lower control limit
• ucl — Upper control limit
• se — Standard error of plotted point
• n — Subgroup size
• ooc — Logical that is true for points that are out of control

controlchart(x,group,'name',value) specifies one or more of the following
optional parameter name/value pairs, with name in single quotes:

• charttype — The name of a chart type chosen from among the following:

• 'xbar' — Xbar or mean

 controlchart

22-851

• 's' — Standard deviation
• 'r' — Range
• 'ewma' — Exponentially weighted moving average
• 'i' — Individual observation
• 'mr' — Moving range of individual observations
• 'ma' — Moving average of individual observations
• 'p' — Proportion defective
• 'np' — Number of defectives
• 'u' — Defects per unit
• 'c' — Count of defects

Alternatively, a parameter can be a cell array listing multiple compatible chart types.
There are four sets of compatible types:

• 'xbar', 's', 'r', and 'ewma'
• 'i', 'mr', and 'ma'
• 'p' and 'np'
• 'u' and 'c'

• display — Either 'on' (default) to display the control chart, or 'off' to omit the
display

• label — A string array or cell array of strings, one per subgroup. This label is
displayed as part of the data cursor for a point on the plot.

• lambda — A parameter between 0 and 1 controlling how much the current prediction
is influenced by past observations in an EWMA plot. Higher values of 'lambda' give
less weight to past observations and more weight to the current observation. The
default is 0.4.

• limits' — A three-element vector specifying the values of the lower control limit,
center line, and upper control limits. Default is to estimate the center line and to
compute control limits based on the estimated value of sigma. Not permitted if there
are multiple chart types.

• mean — Value for the process mean, or an empty value (default) to estimate the mean
from X. This is the p parameter for p and np charts, the mean defects per unit for u
and c charts, and the normal mu parameter for other charts.

22 Functions — Alphabetical List

22-852

• nsigma — The number of sigma multiples from the center line to a control limit.
Default is 3.

• parent — The handle of the axes to receive the control chart plot. Default is to create
axes in a new figure. Not permitted if there are multiple chart types.

• rules — The name of a control rule, or a cell array containing multiple control rule
names. These rules, together with the control limits, determine if a point is marked
as out of control. The default is to apply no control rules, and to use only the control
limits to decide if a point is out of control. See controlrules for more information.
Control rules are applied to charts that measure the process level (xbar, i, c, u, p,
and np) rather than the variability (r, s), and they are not applied to charts based on
moving statistics (ma, mr, ewma).

• sigma — Either a value for sigma, or a method of estimating sigma chosen from
among 'std' (the default) to use the average within-subgroup standard deviation,
'range' to use the average subgroup range, and 'variance' to use the square root
of the pooled variance. When creating i, mr, or ma charts for data not in subgroups,
the estimate is always based on a moving range.

• specs — A vector specifying specification limits. Typically this is a two-element
vector of lower and upper specification limits. Since specification limits typically apply
to individual measurements, this parameter is primarily suitable for i charts. These
limits are not plotted on r, s, or mr charts.

• unit — The total number of inspected items for p and np charts, and the size of the
inspected unit for u and c charts. In both cases X must be the count of the number of
defects or defectives found. Default is 1 for u and c charts. This argument is required
(no default) for p and np charts.

• width — The width of the window used for computing the moving ranges and
averages in mr and ma charts, and for computing the sigma estimate in i, mr, and ma
charts. Default is 5.

Examples
XBar and R Charts

Load the sample data.

load parts

Create xbar and r control charts for the data.

st = controlchart(runout,'chart',{'xbar' 'r'});

 controlchart

22-853

Display the process mean and standard deviation.

fprintf('Parameter estimates: mu = %g, sigma = %g\n',st.mu,st.sigma);

Parameter estimates: mu = -0.0863889, sigma = 0.130215

More About
• “Grouping Variables” on page 2-52

See Also
controlrules

22 Functions — Alphabetical List

22-854

controlrules
Western Electric and Nelson control rules

Syntax

R = controlrules('rules',x,cl,se)

[R,RULES] = controlrules('rules',x,cl,se)

Description

R = controlrules('rules',x,cl,se) determines which points in the vector x
violate the control rules in rules. cl is a vector of center-line values. se is a vector of
standard errors. (Typically, control limits on a control chart are at the values cl – 3*se
and cl + 3*se.) rules is the name of a control rule, or a cell array containing multiple
control rule names, from the list below. If x has n values and rules contains m rules,
then R is an n-by-m logical array, with R(i,j) assigned the value 1 if point i violates
rule j, 0 if it does not.

The following are accepted values for rules (specified inside single quotes):

• we1 — 1 point above cl + 3*se
• we2 — 2 of 3 above cl + 2*se
• we3 — 4 of 5 above cl + se
• we4 — 8 of 8 above cl
• we5 — 1 below cl – 3*se
• we6 — 2 of 3 below cl – 2*se
• we7 — 4 of 5 below cl – se
• we8 — 8 of 8 below cl
• we9 — 15 of 15 between cl – se and cl + se
• we10 — 8 of 8 below cl – se or above cl + se
• n1 — 1 point below cl – 3*se or above cl + 3*se
• n2 — 9 of 9 on the same side of cl

 controlrules

22-855

• n3 — 6 of 6 increasing or decreasing
• n4 — 14 alternating up/down
• n5 — 2 of 3 below cl – 2*se or above cl + 2*se, same side
• n6 — 4 of 5 below cl – se or above cl + se, same side
• n7 — 15 of 15 between cl – se and cl + se
• n8 — 8 of 8 below cl – se or above cl + se, either side
• we — All Western Electric rules
• n — All Nelson rules

For multi-point rules, a rule violation at point i indicates that the set of points ending at
point i triggered the rule. Point i is considered to have violated the rule only if it is one
of the points violating the rule's condition.

Any points with NaN as their x, cl, or se values are not considered to have violated rules,
and are not counted in the rules for other points.

Control rules can be specified in the controlchart function as values for the 'rules'
parameter.

[R,RULES] = controlrules('rules',x,cl,se) returns a cell array of text strings
RULES listing the rules applied.

Examples

Use Western Electric Control Rule

Load the sample data.

load parts;

Create an Xbar chart using the we2 rule to mark out of control measurements.

st = controlchart(runout,'rules','we2');

x = st.mean;

cl = st.mu;

se = st.sigma./sqrt(st.n);

hold on

plot(cl+2*se,'m')

22 Functions — Alphabetical List

22-856

You can see the out of control points marked with a red circle.

Use controlrules to identify the measurements that violate the control rule.

R = controlrules('we2',x,cl,se);

I = find(R)

I =

 21

 23

 24

 25

 controlrules

22-857

 26

 27

See Also
controlchart

22 Functions — Alphabetical List

22-858

Converged property
Class: gmdistribution

Determine if algorithm converged

Description

Logical true if the algorithm has converged; logical false if the algorithm has not
converged.

Note: This property applies only to gmdistribution objects constructed with
fitgmdist.

 cophenet

22-859

cophenet
Cophenetic correlation coefficient

Syntax

c = cophenet(Z,Y)

[c,d] = cophenet(Z,Y)

Description

c = cophenet(Z,Y) computes the cophenetic correlation coefficient for the hierarchical
cluster tree represented by Z. Z is the output of the linkage function. Y contains the
distances or dissimilarities used to construct Z, as output by the pdist function. Z is a
matrix of size (m–1)-by-3, with distance information in the third column. Y is a vector of
size m*(m–1)/2.

[c,d] = cophenet(Z,Y) returns the cophenetic distances d in the same lower
triangular distance vector format as Y.

The cophenetic correlation for a cluster tree is defined as the linear correlation coefficient
between the cophenetic distances obtained from the tree, and the original distances (or
dissimilarities) used to construct the tree. Thus, it is a measure of how faithfully the tree
represents the dissimilarities among observations.

The cophenetic distance between two observations is represented in a dendrogram by
the height of the link at which those two observations are first joined. That height is the
distance between the two subclusters that are merged by that link.

The output value, c, is the cophenetic correlation coefficient. The magnitude of this value
should be very close to 1 for a high-quality solution. This measure can be used to compare
alternative cluster solutions obtained using different algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

c
Y y Z z

Y y Z z

i j ij ij

i j ij i j ij

=
∑ − −

∑ − ∑ −

<

< <

()()

() ()
2 2

22 Functions — Alphabetical List

22-860

where:

• Yij is the distance between objects i and j in Y.
• Zij is the cophenetic distance between objects i and j, from Z(:,3).
• y and z are the average of Y and Z(:,3), respectively.

Examples
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];

Y = pdist(X);

Z = linkage(Y,'average');

% Compute Spearman's rank correlation between the

% dissimilarities and the cophenetic distances

[c,D] = cophenet(Z,Y);

r = corr(Y',D','type','spearman')

r =

 0.8279

See Also
cluster | dendrogram | linkage | pdist | inconsistent | squareform

 copulacdf

22-861

copulacdf
Copula cumulative distribution function

Syntax

y = copulacdf('Gaussian',u,rho)

y = copulacdf('t',u,rho,nu)

y = copulacdf(family,u,alpha)

Description

y = copulacdf('Gaussian',u,rho) returns the cumulative probability of the
Gaussian copula, with linear correlation parameters rho evaluated at the points in u.

y = copulacdf('t',u,rho,nu) returns the cumulative probability of the t copula,
with linear correlation parameters, rho, and degrees of freedom parameter nu evaluated
at the points in u.

y = copulacdf(family,u,alpha) returns the cumulative probability of the bivariate
Archimedean copula of the type specified by family, with scalar parameter alpha
evaluated at the points in u.

Examples

Compute the Clayton Copula cdf

Define two 10-by-10 matrices containing the values at which to compute the cdf.

u = linspace(0,1,10);

[u1,u2] = meshgrid(u,u);

Compute the cdf of a Clayton copula that has an alpha parameter equal to 1, at the
values in u.

y = copulacdf('Clayton',[u1(:),u2(:)],1);

22 Functions — Alphabetical List

22-862

Plot the cdf as a surface, and label the axes.

surf(u1,u2,reshape(y,10,10))

xlabel('u1')

ylabel('u2')

• “Generate Correlated Data Using Rank Correlation” on page 5-144

Input Arguments

u — Values at which to evaluate cdf
matrix of scalar values in the range [0,1]

 copulacdf

22-863

Values at which to evaluate the cdf, specified as a matrix of scalar values in the range
[0,1]. If u is an n-by-p matrix, then its values represent n points in the p-dimensional
unit hypercube. If u is an n-by-2 matrix, then its values represent n points in the unit
square.

If you specify a bivariate Archimedean copula type ('Clayton', 'Frank', or 'Gumbel'),
then u must be an n-by-2 matrix.
Data Types: single | double

rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of
scalar values.

• If u is an n-by-p matrix, then rho is a p-by-p correlation matrix.
• If u is an n-by-2 matrix, then rho can be a scalar correlation coefficient.

Data Types: single | double

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

Data Types: single | double

alpha — Bivariate Archimedian copula parameter
scalar value

22 Functions — Alphabetical List

22-864

Bivariate Archimedian copula parameter, specified as a scalar value. Permitted values
for alpha depend on the specified copula family.

Copula Family Permitted Alpha Values

'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Output Arguments

y — Cumulative distribution function
vector of scalar values

Cumulative distribution function of the copula, evaluated at the points in u, returned as
a vector of scalar values.

More About
• “Copulas: Generate Correlated Samples” on page 5-160

See Also
copulaparam | copulapdf | copularnd | copulastat

 copulafit

22-865

copulafit
Fit copula to data

Syntax

rhohat = copulafit('Gaussian',u)

[rhohat,nuhat] = copulafit('t',u)

[rhohat,nuhat,nuci] = copulafit('t',u)

paramhat = copulafit(family,u)

[paramhat,paramci] = copulafit(family,u)

___ = copulafit(___ ,Name,Value)

Description

rhohat = copulafit('Gaussian',u) returns an estimate, rhohat, of the matrix of
linear correlation parameters for a Gaussian copula, given the data in u.

[rhohat,nuhat] = copulafit('t',u) returns an estimate, rhohat, of the matrix of
linear correlation parameters for a t copula, and an estimate of the degrees of freedom
parameter, nuhat, given the data in u.

[rhohat,nuhat,nuci] = copulafit('t',u) also returns an approximate 95%
confidence interval, nuci, for the degrees of freedom estimated in nuhat.

paramhat = copulafit(family,u) returns an estimate, paramhat, of the copula
parameter for a bivariate Archimedean copula of the type specified by family, given the
data in u.

[paramhat,paramci] = copulafit(family,u) also returns an approximate 95%
confidence interval, paramci, for the copula parameter estimated in paramhat.

___ = copulafit(___ ,Name,Value) returns any of the previous syntaxes, with
additional options specified by one or more Name,Value pair arguments. For example,
you can specify the confidence interval to compute, or specify control parameters for the
iterative parameter estimation algorithm using a options structure.

22 Functions — Alphabetical List

22-866

Examples

Fit a t Copula to Data

Load and plot simulated stock return data.

load stockreturns

x = stocks(:,1);

y = stocks(:,2);

figure;

scatterhist(x,y)

 copulafit

22-867

Transform the data to the copula scale (unit square) using a kernel estimator of the
cumulative distribution function.

u = ksdensity(x,x,'function','cdf');

v = ksdensity(y,y,'function','cdf');

figure;

scatterhist(u,v)

xlabel('u')

ylabel('v')

Fit a t copula to the data.

rng default % For reproducibility

22 Functions — Alphabetical List

22-868

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')

Rho =

 1.0000 0.7220

 0.7220 1.0000

nu =

 2.6133e+06

Generate a random sample from the t copula.

r = copularnd('t',Rho,nu,1000);

u1 = r(:,1);

v1 = r(:,2);

figure;

scatterhist(u1,v1)

xlabel('u')

ylabel('v')

set(get(gca,'children'),'marker','.')

 copulafit

22-869

Transform the random sample back to the original scale of the data.

x1 = ksdensity(x,u1,'function','icdf');

y1 = ksdensity(y,v1,'function','icdf');

figure;

scatterhist(x1,y1)

set(get(gca,'children'),'marker','.')

22 Functions — Alphabetical List

22-870

• “Generate Correlated Data Using Rank Correlation” on page 5-144

Input Arguments

u — Copula values
matrix of scalar values in the range (0,1)

Copula values, specified as a matrix of scalar values in the range (0,1). If u is an n-by-p
matrix, then its values represent n points in the p-dimensional unit hypercube. If u is an
n-by-2 matrix, then its values represent n points in the unit square.

 copulafit

22-871

If you specify a bivariate Archimedean copula type ('Clayton', 'Frank', or 'Gumbel'),
then u must be an n-by-2 matrix.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'Method','ApproximateML' computes 99% confidence
intervals for the estimated copula parameter and uses an approximation method to fit
the copula.

'Alpha' — Significance level for confidence intervals
0.05 (default) | scalar value in the range (0,1)

Significance level for confidence intervals, specified as the comma-separated pair
consisting of 'Alpha' and a scalar value in the range (0,1). copulafit returns
approximate 100 × (1–Alpha)% confidence intervals.
Example: 'Alpha',0.01

Data Types: single | double

'Method' — Method for fitting t copula
'ML' (default) | 'ApproximateML'

Method for fitting t copula, specified as the comma-separated pair consisting of
'Method' and either 'ML' or 'ApproximateML'.

22 Functions — Alphabetical List

22-872

If you specify 'ApproximateML', then copulafit fits a t copula for large samples by
maximizing an objective function that approximates the profile log likelihood for the
degrees of freedom parameter [1]. This method can be significantly faster than maximum
likelihood ('ML'), but the estimates and confidence limits may not be accurate for small
to moderate sample sizes.
Example: 'Method','ApproximateML'

'Options' — Control parameter specifications
structure

Control parameter specifications, specified as the comma-separated pair consisting of
'Options' and an options structure created by statset. To see the fields and default
values used by copulafit, type statset('copulafit') at the command prompt.

This name-value pair is not applicable when you specify the copula type as 'Gaussian'.

Data Types: struct

Output Arguments

rhohat — Estimated correlation parameters for the fitted Gaussian copula
matrix of scalar values

Estimated correlation parameters for the fitted Gaussian copula, given the data in u,
returned as a matrix of scalar values.

nuhat — Estimated degrees of freedom parameter for the fitted t copula
scalar value

Estimated degrees of freedom parameter for the fitted t copula, returned as a scalar
value.

nuci — Approximate confidence interval for the degrees of freedom parameter
1-by-2 matrix of scalar values

Approximate confidence interval for the degrees of freedom parameter, returned as
a 1-by-2 matrix of scalar values. The first column contains the lower boundary, and
the second column contains the upper boundary. By default, copulafit returns the
approximate 95% confidence interval. You can specify a different confidence interval
using the 'Alpha' name-value pair.

 copulafit

22-873

paramhat — Estimated copula parameter for the fitted Archimedean copula
scalar value

Estimated copula parameter for the fitted Archimedean copula, returned as a scalar
value.

paramci — Approximate confidence interval for the copula parameter
1-by-2 matrix of scalar values

Approximate confidence interval for the copula parameter, returned as a 1-by-2 matrix
of scalar values. The first column contains the lower boundary, and the second column
contains the upper boundary. By default, copulafit returns the approximate 95%
confidence interval. You can specify a different confidence interval using the 'Alpha'
name-value pair.

More About

Algorithms

By default, copulafit uses maximum likelihood to fit a copula to u. When u contains
data transformed to the unit hypercube by parametric estimates of their marginal
cumulative distribution functions, this is known as the Inference Functions for Margins
(IFM) method. When u contains data transformed by the empirical cdf (see ecdf), this is
known as Canonical Maximum Likelihood (CML).
• “Copulas: Generate Correlated Samples” on page 5-160

References

[1] Bouyé, E., V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli. “Copulas for
Finance: A Reading Guide and Some Applications.” Working Paper. Groupe de
Recherche Opérationnelle, Crédit Lyonnais, Paris, 2000.

See Also
copulacdf | copulaparam | copulapdf | copularnd | copulastat

22 Functions — Alphabetical List

22-874

copulaparam
Copula parameters as function of rank correlation

Syntax

rho = copulaparam('Gaussian',r)

rho = copulaparam('t',r,nu)

alpha = copulaparam(family,r)

___ = copulaparam(___ ,Name,Value)

Description

rho = copulaparam('Gaussian',r) returns the linear correlation parameters, rho,
that correspond to a Gaussian copula with Kendall’s rank correlation, r.

rho = copulaparam('t',r,nu) returns the linear correlation parameters, rho, that
correspond to a t copula with Kendall’s rank correlation, r, and degrees of freedom, nu.

alpha = copulaparam(family,r) returns the copula parameter, alpha, that
corresponds to a bivariate Archimedean copula of the type specified by family, with
Kendall’s rank correlation, r.

___ = copulaparam(___ ,Name,Value) returns the correlation parameter using any
of the previous syntaxes, with additional options specified by one or more Name,Value
pair arguments. For example, you can specify whether the input rank correlation value is
Spearman’s rho or Kendell’s tau.

Examples

Generate Correlated Data Using the Inverse cdf

Generate correlated random data from a beta distribution using a bivariate Gaussian
copula with Kendall's tau rank correlation equal to -0.5.

 copulaparam

22-875

Compute the linear correlation parameter from the rank correlation value.

rng default % For reproducibility

tau = -0.5;

rho = copulaparam('Gaussian',tau)

rho =

 -0.7071

Use a Gaussian copula to generate a two-column matrix of dependent random values.

u = copularnd('gaussian',rho,100);

Each column contains 100 random values between 0 and 1, inclusive, sampled from a
continuous uniform distribution.

Create a scatterhist plot to visualize the random numbers generated using the
copula.

figure

scatterhist(u(:,1),u(:,2))

22 Functions — Alphabetical List

22-876

The histograms show that the data in each column of the copula has a marginal uniform
distribution. The scatterplot shows that the data in the two columns is negatively
correlated.

Use the inverse cdf function betainv to transform each column of the uniform marginal
distributions into random numbers from a beta distribution. In the first column, the first
shape parameter A is equal to 1, and a second shape parameter B is equal to 2. In the
second column, the first shape parameter A is equal to 1.5, and a second shape parameter
B is equal to 2.

b = [betainv(u(:,1),1,2), betainv(u(:,2),1.5,2)];

Create a scatterhist plot to visualize the correlated beta distribution data.

 copulaparam

22-877

figure

scatterhist(b(:,1),b(:,2))

The histograms show the marginal beta distributions for each variable. The scatterplot
shows the negative correlation.

Verify that the sample has a rank correlation approximately equal to the initial value for
Kendall's tau.

tau_sample = corr(b,'type','kendall')

tau_sample =

22 Functions — Alphabetical List

22-878

 1.0000 -0.5135

 -0.5135 1.0000

The sample rank correlation of -0.5135 is approximately equal to the -0.5 initial value for
tau.

• “Generate Correlated Data Using Rank Correlation” on page 5-144

Input Arguments

r — Copula rank correlation
scalar value | matrix of scalar values

Copula rank correlation, returned as a scalar value or matrix of scalar values.

• If r is a scalar correlation coefficient, then rho is a scalar correlation coefficient
corresponding to a bivariate copula.

• If r is a p-by-p correlation matrix, then rho is a p-by-p correlation matrix.

If the copula is specified as one of the bivariate Archimedean copula types ('Clayton',
'Frank', or 'Gumbel'), then r is a scalar value.

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

Data Types: single | double

 copulaparam

22-879

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Type','Spearman' computes Spearman’s rank correlation.

'Type' — Type of rank correlation
'Kendall' (default) | 'Spearman'

Type of rank correlation, specified as the comma-separated pair consisting of 'Type' and
one of the following.

• 'Kendall' — Indicates that the input value for r is a Kendall’s tau correlation value
• 'Spearman' — Indicates that the input value for r is a Spearman’s rho rank

correlation value

copulaparam uses an approximation to Spearman’s rank correlation for copula families
that do not have an existing analytic formula. The approximation is based on a smooth
fit to values computed at discrete values of the copula parameters. For a t copula, the
approximation is accurate for degrees of freedom larger than 0.05.
Example: 'Type','Spearman'

Output Arguments

rho — Linear correlation parameter
scalar value | matrix of scalar values

Linear correlation parameter, returned as a scalar value or matrix of scalar values.

• If r is a scalar correlation coefficient, then rho is a scalar correlation coefficient
corresponding to a bivariate copula.

• If r is a p-by-p correlation matrix, then rho is a p-by-p correlation matrix.

alpha — Bivariate Archimedian copula parameter
scalar value

22 Functions — Alphabetical List

22-880

Bivariate Archimedian copula parameter, returned as a scalar value. Permitted values
for alpha depend on the specified copula family.

Copula Family Permitted Alpha Values

'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

More About
• “Copulas: Generate Correlated Samples” on page 5-160

See Also
copulacdf | copulafit | copulapdf | copularnd | copulastat | ecdf

 copulapdf

22-881

copulapdf
Copula probability density function

Syntax

y = copulapdf('Gaussian',u,rho)

y = copulapdf('t',u,rho,nu)

y = copulapdf(family,u,alpha)

Description

y = copulapdf('Gaussian',u,rho) returns the probability density of the Gaussian
copula with linear correlation parameters, rho, evaluated at the points in u.

y = copulapdf('t',u,rho,nu) returns the probability density of the t copula with
linear correlation parameters, rho, and degrees of freedom parameter, nu, evaluated at
the points in u.

y = copulapdf(family,u,alpha) returns the probability density of the bivariate
Archimedean copula of the type specified by family, with scalar parameter, alpha,
evaluated at the points in u.

Examples

Compute the Clayton Copula pdf

Define two 10-by-10 matrices containing the values at which to compute the pdf.

u = linspace(0,1,10);

[u1,u2] = meshgrid(u,u);

Compute the pdf of a Clayton copula that has an alpha parameter equal to 1, at the
values in u.

y = copulapdf('Clayton',[u1(:),u2(:)],1);

22 Functions — Alphabetical List

22-882

Plot the pdf as a surface, and label the axes.

surf(u1,u2,reshape(y,10,10))

xlabel('u1')

ylabel('u2')

• “Generate Correlated Data Using Rank Correlation” on page 5-144

Input Arguments

u — Values at which to evaluate pdf
matrix of scalar values in the range [0,1]

 copulapdf

22-883

Values at which to evaluate the pdf, specified as a matrix of scalar values in the range
[0,1]. If u is an n-by-p matrix, then its values represent n points in the p-dimensional
unit hypercube. If u is an n-by-2 matrix, then its values represent n points in the unit
square.

If you specify a bivariate Archimedean copula type ('Clayton', 'Frank', or 'Gumbel'),
then u must be an n-by-2 matrix.
Data Types: single | double

rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of
scalar values.

• If u is an n-by-p matrix, then rho is a p-by-p correlation matrix.
• If u is an n-by-2 matrix, then rho can be a scalar correlation coefficient.

Data Types: single | double

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

Data Types: single | double

alpha — Bivariate Archimedian copula parameter
scalar value

22 Functions — Alphabetical List

22-884

Bivariate Archimedian copula parameter, specified as a scalar value. Permitted values
for alpha depend on the specified copula family.

Copula Family Permitted Alpha Values

'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Output Arguments

y — Probability density function
vector of scalar values

Probability density function, evaluated at the values in u, returned as a vector of scalar
values.

More About
• “Copulas: Generate Correlated Samples” on page 5-160

See Also
copulacdf | copulaparam | copularnd | copulastat

 copulastat

22-885

copulastat
Copula rank correlation

Syntax

r = copulastat('Gaussian',rho)

r = copulastat('t',rho,nu)

r = copulastat(family,alpha)

r = copulstat(___ ,Name,Value)

Description

r = copulastat('Gaussian',rho) returns the Kendall’s rank correlation, r, that
corresponds to a Gaussian copula with linear correlation parameters rho.

r = copulastat('t',rho,nu) returns the Kendall’s rank correlation, r, that
corresponds to a t copula with linear correlation parameters, rho, and degrees of freedom
parameter, nu.

r = copulastat(family,alpha) returns the Kendall’s rank correlation, r, that
corresponds to a bivariate Archimedean copula that has the type specified by family and
scalar parameter alpha.

r = copulstat(___ ,Name,Value) returns the copula rank correlation with
additional options specified by one or more Name,Value pair arguments, using any of the
previous syntaxes. For example, you can return Spearman’s rho rank correlation.

Examples

Compute the Gaussian Copula Rank Correlation

Compute the rank correlation for a Gaussian copula with the specified linear correlation
parameter rho.

22 Functions — Alphabetical List

22-886

rho = -.7071;

tau = copulastat('gaussian',rho)

tau =

 -0.5000

Use the copula to generate dependent random values from a beta distribution that has
parameters a and b equal to 2.

rng default % For reproducibility

u = copularnd('gaussian',rho,100);

b = betainv(u,2,2);

Verify that the sample has a rank correlation approximately equal to tau.

tau_sample = corr(b,'type','k')

tau_sample =

 1.0000 -0.5135

 -0.5135 1.0000

• “Generate Correlated Data Using Rank Correlation” on page 5-144

Input Arguments

rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of
scalar values.

• If rho is a scalar correlation coefficient, then r is a scalar correlation coefficient
corresponding to a bivariate copula.

• If rho is a p-by-p correlation matrix, then r is a p-by-p correlation matrix.

Data Types: single | double

 copulastat

22-887

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

Data Types: single | double

alpha — Bivariate Archimedian copula parameter
scalar value

Bivariate Archimedian copula parameter, specified as a scalar value. Permitted values
for alpha depend on the specified copula family.

Copula Family Permitted Alpha Values

'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Type','Spearman' computes Spearman’s rank correlation.

22 Functions — Alphabetical List

22-888

'Type' — Type of rank correlation
'Kendall' (default) | 'Spearman'

Type of rank correlation, specified as the comma-separated pair consisting of 'Type' and
one of the following.

• 'Kendall' — Compute Kendall’s tau.
• 'Spearman' — Compute Spearman’s rho (rank correlation).

copulastat uses an approximation to Spearman’s rank correlation for copula families
that do not have an existing analytic formula. The approximation is based on a smooth
fit to values computed at discrete values of the copula parameters. For a t copula, the
approximation is accurate for degrees of freedom larger than 0.05.
Example: 'Type','Spearman'

Output Arguments

r — Copula rank correlation
scalar value | matrix of scalar values

Copula rank correlation, returned as a scalar value or matrix of scalar values.

• If rho is a scalar correlation coefficient, then r is a scalar correlation coefficient
corresponding to a bivariate copula.

• If rho is a p-by-p correlation matrix, then r is a p-by-p correlation matrix.

More About
• “Copulas: Generate Correlated Samples” on page 5-160

See Also
copulacdf | copulaparam | copulapdf | copularnd

 copularnd

22-889

copularnd
Copula random numbers

Syntax
u = copularnd('Gaussian',rho,n)

u = copularnd('t',rho,nu,n)

u = copularnd(family,alpha,n)

Description
u = copularnd('Gaussian',rho,n) returns n random vectors generated from a
Gaussian copula with linear correlation parameters rho.

u = copularnd('t',rho,nu,n) returns n random vectors generated from a t copula
with linear correlation parameters rho and degrees of freedom nu.

u = copularnd(family,alpha,n) returns n random vectors generated from a
bivariate Archimedean copula that has the type specified by family and the scalar
parameter alpha.

Examples
Generate Correlated Data Using the Inverse cdf

Generate correlated random data from a beta distribution using a bivariate Gaussian
copula with Kendall's tau rank correlation equal to -0.5.

Compute the linear correlation parameter from the rank correlation value.

rng default % For reproducibility

tau = -0.5;

rho = copulaparam('Gaussian',tau)

rho =

22 Functions — Alphabetical List

22-890

 -0.7071

Use a Gaussian copula to generate a two-column matrix of dependent random values.

u = copularnd('gaussian',rho,100);

Each column contains 100 random values between 0 and 1, inclusive, sampled from a
continuous uniform distribution.

Create a scatterhist plot to visualize the random numbers generated using the
copula.

figure

scatterhist(u(:,1),u(:,2))

 copularnd

22-891

The histograms show that the data in each column of the copula has a marginal uniform
distribution. The scatterplot shows that the data in the two columns is negatively
correlated.

Use the inverse cdf function betainv to transform each column of the uniform marginal
distributions into random numbers from a beta distribution. In the first column, the first
shape parameter A is equal to 1, and a second shape parameter B is equal to 2. In the
second column, the first shape parameter A is equal to 1.5, and a second shape parameter
B is equal to 2.

b = [betainv(u(:,1),1,2), betainv(u(:,2),1.5,2)];

Create a scatterhist plot to visualize the correlated beta distribution data.

figure

scatterhist(b(:,1),b(:,2))

22 Functions — Alphabetical List

22-892

The histograms show the marginal beta distributions for each variable. The scatterplot
shows the negative correlation.

Verify that the sample has a rank correlation approximately equal to the initial value for
Kendall's tau.

tau_sample = corr(b,'type','kendall')

tau_sample =

 1.0000 -0.5135

 -0.5135 1.0000

 copularnd

22-893

The sample rank correlation of -0.5135 is approximately equal to the -0.5 initial value for
tau.

• “Generate Correlated Data Using Rank Correlation” on page 5-144

Input Arguments

rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of
scalar values.

• If rho is a p-by-p correlation matrix, then the output argument u is an n-by-p matrix.
• If rho is a scalar correlation coefficient, then the output argument u is an n-by-2

matrix.

Data Types: single | double

n — Number of random vectors to return
positive scalar value

Number of random vectors to return, specified as a positive scalar value.

• If you specify the copula type as 'Gaussian' or 't', and rho is a p-by-p correlation
matrix, then u is an n-by-p matrix.

• If you specify the copula type as 'Gaussian' or 't', and rho is a scalar correlation
coefficient, then u is an n-by-2 matrix.

• If you specify the copula type as 'Clayton', 'Frank', or 'Gumbel', then u is an n-
by-2 matrix.

Data Types: single | double

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

22 Functions — Alphabetical List

22-894

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

Data Types: single | double

alpha — Bivariate Archimedian copula parameter
scalar value

Bivariate Archimedian copula parameter, specified as a scalar value. Permitted values
for alpha depend on the specified copula family.

Copula Family Permitted Alpha Values

'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Output Arguments

u — Copula random numbers
matrix of scalar values

Copula random numbers, returned as a matrix of scalar values. Each column of u is a
sample from a Uniform(0,1) marginal distribution.

• If you specify the copula type as 'Gaussian' or 't', and rho is a p-by-p correlation
matrix, then u is an n-by-p matrix.

• If you specify the copula type as 'Gaussian' or 't', and rho is a scalar correlation
coefficient, then u is an n-by-2 matrix.

• If you specify the copula type as 'Clayton', 'Frank', or 'Gumbel', then u is an n-
by-2 matrix.

 copularnd

22-895

More About
• “Copulas: Generate Correlated Samples” on page 5-160

See Also
copulacdf | copulaparam | copulapdf | copulastat

22 Functions — Alphabetical List

22-896

cordexch

Coordinate exchange

Syntax

dCE = cordexch(nfactors,nruns)

[dCE,X] = cordexch(nfactors,nruns)

[dCE,X] = cordexch(nfactors,nruns,'model')

[dCE,X] = cordexch(...,'name',value)

Description

dCE = cordexch(nfactors,nruns) uses a coordinate-exchange algorithm to generate
a D-optimal design dCE with nruns runs (the rows of dCE) for a linear additive model
with nfactors factors (the columns of dCE). The model includes a constant term.

[dCE,X] = cordexch(nfactors,nruns) also returns the associated design matrix X,
whose columns are the model terms evaluated at each treatment (row) of dCE.

[dCE,X] = cordexch(nfactors,nruns,'model') uses the linear regression model
specified in model. model is one of the following strings, specified inside single quotes:

• linear — Constant and linear terms. This is the default.
• interaction — Constant, linear, and interaction terms
• quadratic — Constant, linear, interaction, and squared terms
• purequadratic — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)
4 The squared terms in order 1, 2, ..., n

 cordexch

22-897

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In
this case, model should have one column for each factor and one row for each term in
the model. The entries in any row of model are powers for the factors in the columns.
For example, if a model has factors X1, X2, and X3, then a row [0 1 2] in model
specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies
a constant term, which can be omitted.

[dCE,X] = cordexch(...,'name',value) specifies one or more optional name/value
pairs for the design. Valid parameters and their values are listed in the following table.
Specify name inside single quotes.

name Value

bounds Lower and upper bounds for each factor, specified as a 2-
by-nfactors matrix. Alternatively, this value can be a cell array
containing nfactors elements, each element specifying the vector
of allowable values for the corresponding factor.

categorical Indices of categorical predictors.
display Either 'on' or 'off' to control display of the iteration counter.

The default is 'on'.
excludefun Handle to a function that excludes undesirable runs. If the

function is f, it must support the syntax b = f(S), where S is a
matrix of treatments with nfactors columns and b is a vector of
Boolean values with the same number of rows as S. b(i) is true if
the method should exclude ith row S.

init Initial design as a nruns-by-nfactors matrix. The default is a
randomly selected set of points.

levels Vector of number of levels for each factor. Not used when bounds
is specified as a cell array.

maxiter Maximum number of iterations. The default is 10.
tries Number of times to try to generate a design from a new starting

point. The algorithm uses random points for each try, except
possibly the first. The default is 1.

options A structure that specifies whether to run in parallel, and specifies
the random stream or streams. Create the options structure with
statset. Option fields:

22 Functions — Alphabetical List

22-898

name Value

• UseParallel — Set to true to compute in parallel. Default is
false.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute
reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects.
If you do not specify Streams, cordexch uses the default
stream or streams. If you choose to specify Streams, use a
single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

Examples

Suppose you want a design to estimate the parameters in the following three-factor,
seven-term interaction model:

y x x x x x x x x x= + + + + + + +b b b b b b b e
0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

Use cordexch to generate a D-optimal design with seven runs:

nfactors = 3;

nruns = 7;

[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)

dCE =

 -1 1 1

 -1 -1 -1

 1 1 1

 -1 1 -1

 1 -1 1

 1 -1 -1

 -1 -1 1

 cordexch

22-899

X =

 1 -1 1 1 -1 -1 1

 1 -1 -1 -1 1 1 1

 1 1 1 1 1 1 1

 1 -1 1 -1 -1 1 -1

 1 1 -1 1 -1 1 -1

 1 1 -1 -1 -1 -1 1

 1 -1 -1 1 1 -1 -1

Columns of the design matrix X are the model terms evaluated at each row of the design
dCE. The terms appear in order from left to right: constant term, linear terms (1, 2, 3),
interaction terms (12, 13, 23). Use X to fit the model, as described in “Linear Regression”
on page 9-11, to response data measured at the design points in dCE.

More About

Algorithms

Both cordexch and rowexch use iterative search algorithms. They operate by
incrementally changing an initial design matrix X to increase D = |XTX| at each step.
In both algorithms, there is randomness built into the selection of the initial design
and into the choice of the incremental changes. As a result, both algorithms may return
locally, but not globally, D-optimal designs. Run each algorithm multiple times and select
the best result for your final design. Both functions have a 'tries' parameter that
automates this repetition and comparison.

Unlike the row-exchange algorithm used by rowexch, cordexch does not use a
candidate set. (Or rather, the candidate set is the entire design space.) At each step,
the coordinate-exchange algorithm exchanges a single element of X with a new element
evaluated at a neighboring point in design space. The absence of a candidate set reduces
demands on memory, but the smaller scale of the search means that the coordinate-
exchange algorithm is more likely to become trapped in a local minimum.

See Also
rowexch | daugment | dcovary

22 Functions — Alphabetical List

22-900

corr
Linear or rank correlation

Syntax

RHO = corr(X)

RHO = corr(X,Y)

[RHO,PVAL] = corr(X,Y)

[RHO,PVAL] = corr(X,Y,'name',value)

Description

RHO = corr(X) returns a p-by-p matrix containing the pairwise linear correlation
coefficient between each pair of columns in the n-by-p matrix X.

RHO = corr(X,Y) returns a p1-by-p2 matrix containing the pairwise correlation
coefficient between each pair of columns in the n-by-p1 and n-by-p2 matrices X and Y.

The difference between corr(X,Y) and the MATLAB function corrcoef(X,Y) is that
corrcoef(X,Y) returns a matrix of correlation coefficients for the two column vectors
X and Y. If X and Y are not column vectors, corrcoef(X,Y) converts them to column
vectors.

[RHO,PVAL] = corr(X,Y) also returns PVAL, a matrix of p-values for testing the
hypothesis of no correlation against the alternative that there is a nonzero correlation.
Each element of PVAL is the p value for the corresponding element of RHO. If PVAL(i,j)
is small, say less than 0.05, then the correlation RHO(i,j) is significantly different
from zero.

[RHO,PVAL] = corr(X,Y,'name',value) specifies one or more optional name/value
pairs. Specify name inside single quotes. The following table lists valid parameters and
their values.

Parameter Values

type • 'Pearson' (the default) computes Pearson's linear
correlation coefficient

 corr

22-901

Parameter Values

• 'Kendall' computes Kendall's tau
• 'Spearman' computes Spearman's rho

rows • 'all' (the default) uses all rows regardless of missing
values (NaNs)

• 'complete' uses only rows with no missing values
• 'pairwise'computes RHO(i,j) using rows with no

missing values in column i or j
tail

— The alternative
hypothesis against
which to compute
p-values for testing
the hypothesis of no
correlation

• 'both' — Correlation is not zero (the default)
• 'right' — Correlation is greater than zero
• 'left' — Correlation is less than zero

Using the 'pairwise' option for the rows parameter may return a matrix that is not
positive definite. The 'complete' option always returns a positive definite matrix, but
in general the estimates are based on fewer observations.

corr computes p-values for Pearson's correlation using a Student's t distribution for a
transformation of the correlation. This correlation is exact when X and Y are normal.
corr computes p-values for Kendall's tau and Spearman's rho using either the exact
permutation distributions (for small sample sizes), or large-sample approximations.

corr computes p-values for the two-tailed test by doubling the more significant of the
two one-tailed p-values.

Examples

Find Correlation Between Two Matrices

Find the correlation between two matrices and compare to the correlation between two
column vectors.

Generate sample data.

22 Functions — Alphabetical List

22-902

rng('default')

x = randn(30,4);

y = randn(30,4);

y(:,4) = sum(x,2); % introduce correlation

Calculate the correlation between columns of X and Y.

[r,p] = corr(x,y)

r =

 -0.1686 -0.0363 0.2278 0.6901

 0.3022 0.0332 -0.0866 0.2617

 -0.3632 -0.0987 -0.0200 0.3504

 -0.1365 -0.1804 0.0853 0.4908

p =

 0.3731 0.8489 0.2260 0.0000

 0.1045 0.8619 0.6491 0.1624

 0.0485 0.6039 0.9166 0.0577

 0.4721 0.3400 0.6539 0.0059

Calculate the correlation between X and Y using corrcoef.

[r,p] = corrcoef(x,y)

r =

 1.0000 0.1252

 0.1252 1.0000

p =

 1.0000 0.1729

 0.1729 1.0000

MATLAB function corrcoef converts X and Y into column vectors before computing the
correlation between them.

References

[1] Gibbons, J.D. (1985) Nonparametric Statistical Inference, 2nd ed., M. Dekker.

 corr

22-903

[2] Hollander, M. and D.A. Wolfe (1973) Nonparametric Statistical Methods, Wiley.

[3] Kendall, M.G. (1970) Rank Correlation Methods, Griffin.

[4] Best, D.J. and D.E. Roberts (1975) "Algorithm AS 89: The Upper Tail Probabilities of
Spearman's rho", Applied Statistics, 24:377-379.

See Also
corrcoef | corrcov | tiedrank | partialcorr

22 Functions — Alphabetical List

22-904

corrcov
Convert covariance matrix to correlation matrix

Syntax

R = corrcov(C)

[R,sigma] = corrcov(C)

Description

R = corrcov(C) computes the correlation matrix R corresponding to the covariance
matrix C. C must be square, symmetric, and positive semi-definite.

[R,sigma] = corrcov(C) also computes the vector of standard deviations sigma.

Examples

Use cov and corrcoef to compute covariances and correlations, respectively, for sample
data on weight and blood pressure (systolic, diastolic) in hospital.mat:

load hospital

X = [hospital.Weight hospital.BloodPressure];

C = cov(X)

C =

 706.0404 27.7879 41.0202

 27.7879 45.0622 23.8194

 41.0202 23.8194 48.0590

R = corrcoef(X)

R =

 1.0000 0.1558 0.2227

 0.1558 1.0000 0.5118

 0.2227 0.5118 1.0000

Compare R with the correlation matrix computed from C by corrcov:

corrcov(C)

ans =

 corrcov

22-905

 1.0000 0.1558 0.2227

 0.1558 1.0000 0.5118

 0.2227 0.5118 1.0000

See Also
cov | corrcoef | corr | cholcov

22 Functions — Alphabetical List

22-906

Cost property
Class: TreeBagger

Misclassification costs

Description

The Cost property is a matrix with misclassification costs. This property is empty for
ensembles of regression trees.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

 covarianceParameters

22-907

covarianceParameters
Class: GeneralizedLinearMixedModel

Extract covariance parameters of generalized linear mixed-effects model

Syntax

psi = covarianceParameters(glme)

[psi,dispersion] = covarianceParameters(glme)

[psi,dispersion,stats] = covarianceParameters(glme)

[___] = covarianceParameters(glme,Name,Value)

Description

psi = covarianceParameters(glme) returns the estimated prior covariance
parameters of random-effects predictors in the generalized linear mixed-effects model
glme.

[psi,dispersion] = covarianceParameters(glme) also returns an estimate of
the dispersion parameter.

[psi,dispersion,stats] = covarianceParameters(glme) also returns a cell
array stats containing the covariance parameter estimates and related statistics.

[___] = covarianceParameters(glme,Name,Value) returns any of the above
output arguments using additional options specified by one or more Name,Value pair
arguments. For example, you can specify the confidence level for the confidence limits of
covariance parameters.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

22 Functions — Alphabetical List

22-908

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

Output Arguments

psi — Estimated prior covariance parameters
cell array

Estimated prior covariance parameters for the random-effects predictors, returned as a
cell array of length R, where R is the number of grouping variables used in the model.
psi{r} contains the covariance matrix of random effects associated with grouping
variable gr, where r = 1, 2, ..., R, The order of grouping variables in psi is the same as the
order entered when fitting the model. For more information on grouping variables, see
“Grouping Variables” on page 2-52.

dispersion — Dispersion parameter
scalar value

Dispersion parameter, returned as a scalar value.

stats — Covariance parameter estimates and related statistics
cell array

Covariance parameter estimates and related statistics, returned as a cell array of length
(R + 1), where R is the number of grouping variables used in the model. The first R cells
of stats each contain a dataset array with the following columns.

 covarianceParameters

22-909

Group Grouping variable name
Name1 Name of the first predictor variable
Name2 Name of the second predictor variable
Type If Name1 and Name2 are the same, then

Type is std (standard deviation).

If Name1 and Name2 are different, then
Type is corr (correlation).

Estimate If Name1 and Name2 are the same, then
Estimate is the standard deviation of the
random effect associated with predictor
Name1 or Name2.

If Name1 and Name2 are different, then
Estimate is the correlation between the
random effects associated with predictors
Name1 and Name2.

Lower Lower limit of the confidence interval for
the covariance parameter

Upper Upper limit of the confidence interval for
the covariance parameter

Cell R + 1 contains related statistics for the dispersion parameter.

It is recommended that the presence or absence of covariance parameters in glme be
tested using the compare method, which uses a likelihood ratio test.

When fitting a GLME model using fitglme and one of the maximum likelihood fit
methods ('Laplace' or 'ApproximateLaplace'), covarianceParameters derives
the confidence intervals in stats based on a Laplace approximation to the log likelihood of
the generalized linear mixed-effects model.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods
('MPL' or 'REMPL'), covarianceParameters derives the confidence intervals in stats
based on the fitted linear mixed-effects model from the final pseudo likelihood iteration.

22 Functions — Alphabetical List

22-910

Examples

Obtain Estimated Covariance Parameters

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

 covarianceParameters

22-911

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compute and display the estimate of the prior covariance parameter for the random-
effects predictor.

[psi,dispersion,stats] = covarianceParameters(glme);

psi{1}

ans =

 0.0985

psi{1} is an estimate of the prior covariance matrix of the first grouping variable. In
this example, there is only one grouping variable (factory), so psi{1} is an estimate of
σb

2.

Display the dispersion parameter.

22 Functions — Alphabetical List

22-912

dispersion

dispersion =

 1

Display the estimated standard deviation of the random effect associated with the
predictor. The first cell of stats contains statistics for factory, while the second cell
contains statistics for the dispersion parameter.

stats{1}

ans =

 Covariance Type: Isotropic

 Group Name1 Name2 Type Estimate

 factory '(Intercept)' '(Intercept)' 'std' 0.31381

 Lower Upper

 0.19253 0.51148

The estimated standard deviation of the random effect associated with the predictor
is 0.31381. The 95% confidence interval is [0.19253 , 0.51148]. Because the confidence
interval does not contain 0, the random intercept is significant at the 5% significance
level.

See Also
GeneralizedLinearMixedModel | compare | fitglme | fixedEffects |
randomEffects

 covarianceParameters

22-913

covarianceParameters

Class: LinearMixedModel

Extract covariance parameters of linear mixed-effects model

Syntax

psi = covarianceParameters(lme)

[psi,mse] = covarianceParameters(lme)

[psi,mse,stats] = covarianceParameters(lme)

[psi,mse,stats] = covarianceParameters(lme,Name,Value)

Description

psi = covarianceParameters(lme) returns the estimated covariance parameters
that parameterize the prior covariance of random effects.

[psi,mse] = covarianceParameters(lme) also returns an estimate of the residual
variance.

[psi,mse,stats] = covarianceParameters(lme) also returns a cell array, stats,
containing the covariance parameters and related statistics.

[psi,mse,stats] = covarianceParameters(lme,Name,Value) returns the
covariance parameters and related statistics in stats with additional options specified
by one or more Name,Value pair arguments.

For example, you can specify the confidence level for the confidence limits of covariance
parameters.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

22 Functions — Alphabetical List

22-914

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

Output Arguments

psi — Estimate of covariance parameters
cell array

Estimate of covariance parameters that parameterize the prior covariance of the random
effects, returned as a cell array of length R, such that psi{r} contains the covariance
matrix of random effects associated with grouping variable gr, r = 1, 2, ..., R. The order of
grouping variables is the same order you enter when you fit the model.

mse — Residual variance estimate
scalar value

Residual variance estimate, returned as a scalar value.

stats — Covariance parameter estimates and related statistics
cell array

 covarianceParameters

22-915

Covariance parameter estimates and related statistics, returned as a cell array of length
(R + 1) containing dataset arrays with the following columns.

Group Grouping variable name
Name1 Name of the first predictor variable
Name2 Name of the second predictor variable
Type std (standard deviation), if Name1 and

Name2 are the same

corr (correlation), if Name1 and Name2 are
different

Estimate Standard deviation of the random effect
associated with predictor Name1 or Name2,
if Name1 and Name2 are the same

Correlation between the random effects
associated with predictors Name1 and
Name2, if Name1 and Name2 are different

Lower Lower limit of a 95% confidence interval for
the covariance parameter

Upper Upper limit of a 95% confidence interval for
the covariance parameter

stats{r} is a dataset array containing statistics on covariance parameters for the
rth grouping variable, r = 1, 2, ..., R. stats{R+1} contains statistics on the residual
standard deviation. The dataset array for the residual error has the fields Group, Name,
Estimate, Lower, and Upper.

Examples

Two Random-Effects Terms for Intercept

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

22 Functions — Alphabetical List

22-916

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer is the fixed-effects variable, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types
within soil types) independently. This model corresponds to

y I T b S b S Tijk j ij
j

k k jk jk ijk= + [] + + +
=
Âb b e0 2

2

5

0 0 (*) ,

where i = 1, 2, ..., 60 corresponds to the observations, j = 2, ..., 5 corresponds to the
tomato types, and k = 1, 2, 3 corresponds to the blocks (soil). Sk represents the k th soil
type, and (S*T)jk represents the j th tomato type nested in the k th soil type. I[T]ij is the
dummy variable representing the level j of the tomato type.

The random effects and observation error have the following prior distributions:
b0k~N(0,σ2

S), b0jk~N(0,σ2
S*T), and εijk ~ N(0,σ2).

lme = fitlme(ds,'Yield ~ Fertilizer + (1|Soil) + (1|Soil:Tomato)');

Compute the covariance parameter estimates (estimates of σ2
S and σ2

S*T) of the random-
effects terms.

psi = covarianceParameters(lme)

psi =

 covarianceParameters

22-917

 [4.4026e-17]

 [352.8481]

Compute the residual variance (σ2).

[~,mse] = covarianceParameters(lme)

mse =

 151.9007

Potentially Correlated Random-Effects Terms

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Store the data in a dataset array. Define Subject and Program as categorical variables.

ds = dataset(InitialWeight,Program,Subject,Week,y);

ds.Subject = nominal(ds.Subject);

ds.Program = nominal(ds.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

For 'reference' dummy variable coding, fitlme uses Program A as reference and
creates the necessary dummy variables I[.]. This model corresponds to

y IW Week I PB I PC I PD

b b Wee

im i i i i i

m m

= + + + [] + [] + []
+ +

b b b b b b0 1 2 3 4 5

0 1 kkim im+ e ,

22 Functions — Alphabetical List

22-918

where i corresponds to the observation number, i = 1, 2, ...,120, and m corresponds to
the subject number, m = 1, 2, ..., 20. βj are the fixed-effects coefficients, j = 0, 1, ..., 8, and
b0m and b1m are random effects. IW stands for initial weight and I[.] is a dummy variable
representing a type of program. For example, I[PB]i is the dummy variable representing
Program B.

The random effects and observation error have the following prior

distributions:

b

b m
N

m0

1

0
2

0 1

0 1 1
2

0
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜~ ,

,

,

s s

s s and εim ~ N(0,σ2).

lme = fitlme(ds,'y ~ InitialWeight + Program + (Week|Subject)');

Compute the estimates of covariance parameters for the random effects.

[psi,mse,stats] = covarianceParameters(lme)

psi =

 [2x2 double]

mse =

 0.0105

stats =

 [3x7 classreg.regr.lmeutils.titleddataset]

 [1x5 dataset

mse is the estimated residual variance. It is the estimate for σ2.

To see the covariance parameters estimates for the random-effects terms (σ2
0, σ2

1, and
σ2

0,1), index into psi.

psi{1}

ans =

 0.0572 0.0490

 0.0490 0.0624

 covarianceParameters

22-919

The estimate of the variance of the random effects term for the intercept, σ2
0, is 0.0572.

The estimate of the variance of the random effects term for week, σ2
1, is 0.0624. The

estimate for the covariance of the random effects terms for the intercept and week, σ0,1, is
0.0490.

stats is a 2-by-1 cell array. The first cell of stats contains the confidence intervals for
the standard deviation of the random effects and the correlation between the random
effects for intercept and week. To display them, index into stats.

stats{1}

ans =

 Covariance Type: FullCholesky

 Group Name1 Name2 Type Estimate Lower Upper

 Subject '(Intercept)' '(Intercept)' 'std' 0.23927 0.14364 0.39854

 Subject 'Week' '(Intercept)' 'corr' 0.81971 0.38662 0.95658

 Subject 'Week' 'Week' 'std' 0.2497 0.18303 0.34067

The display shows the name of the grouping parameter (Group), the random-effects
variables (Name1, Name2), the type of the covariance parameters (Type), the estimate
(Estimate) for each parameter, and the 95% confidence intervals for the parameters
(Lower, Upper). The estimates in this table are related to the estimates in psi as
follows.

The standard deviation of the random-effects term for intercept is 0.23927 = sqrt(0.0527).
Likewise, the standard deviation of the random effects term for week is 0.2497 =
sqrt(0.0624). Finally, the correlation between the random-effects terms of intercept and
week is 0.81971 = 0.0490/(0.23927*0.2497).

Note that this display also shows which covariance pattern you use when fitting the
model. In this case, the covariance pattern is FullCholesky. To change the covariance
pattern for the random-effects terms, you must use the 'CovariancePattern' name-
value pair argument when fitting the model.

The second cell of stats includes similar statistics for the residual standard deviation.
Display the contents of the second cell.

stats{2}

ans =

22 Functions — Alphabetical List

22-920

 Group Name Estimate Lower Upper

 Error 'Res Std' 0.10261 0.087882 0.11981

The estimate for residual standard deviation is the square root of mse, 0.10261 =
sqrt(0.0105).

Two Grouping Variables

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration and weight, a potentially correlated random effect for intercept and
acceleration grouped by model year, and an independent random effect for weight,
grouped by the origin of the car. This model corresponds to

MPG Acc Weight b b Acc b Weightimk i i m m i k i imk= + + + + + +b b b e0 1 2 10 11 21 ,

mm k= =1 2 13 1 2 8, ,..., , , , ..., ,

where m represents the levels for the variable Model_Year, and k represents the levels
for the variable Origin. MPGimk is the miles per gallon for the i th observation, m th
model year, and k th origin that correspond to the i th observation. The random-effects
terms and the observation error have the following prior distributions:

b
b

b
Nm

m

m
1

10

11

10
2

10 11

10 11 11
2

0=
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜~ ,

,

,

s s

s s
,,

~ , ,

~ , .

b N

N

k

imk

2 2
2

2

0

0

s

e s

()
()

Here, the random-effects term b1m represents the first random effect at level m of the
first grouping variable. The random-effects term b10m corresponds to the first random
effects term (1), for the intercept (0), at the m th level (m) of the first grouping variable.
Likewise b11m is the level m for the first predictor (1) in the first random-effects term (1).

Similarly, b2k stands for the second random effects-term at level k of the second grouping
variable.

 covarianceParameters

22-921

σ2
10 is the variance of the random-effects term for the intercept, σ2

11 is the variance of
the random effects term for the predictor acceleration, and σ10,11 is the covariance of the
random-effects terms for the intercept and the predictor acceleration. σ2

2 is the variance
of the second random-effects term, and σ2 is the residual variance.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Weight];

Z = {[ones(406,1) Acceleration],[Weight]};

Model_Year = nominal(Model_Year);

Origin = nominal(Origin);

G = {Model_Year,Origin};

Fit the model using the design matrices.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Weight'},'RandomEffectPredictors',...

{{'Intercept','Acceleration'},{'Weight'}},'RandomEffectGroups',{'Model_Year','Origin'});

Compute the estimates of covariance parameters for the random effects.

[psi,mse,stats] = covarianceParameters(lme)

psi =

 [2x2 double]

 [6.7989e-08]

mse =

 9.0755

stats =

 [3x7 classreg.regr.lmeutils.titleddataset]

 [1x7 classreg.regr.lmeutils.titleddataset]

 [1x5 dataset]

The residual variance mse is 9.0755. psi is a 2-by-1 cell array, and stats is a 3-by-1 cell
array. To see the contents, you must index into these cell arrays.

First, index into the first cell of psi.

22 Functions — Alphabetical List

22-922

psi{1}

ans =

 8.5160 -0.8387

 -0.8387 0.1087

The first cell of psi contains the covariance parameters for the correlated random effects
for intercept σ2

10 as 8.5160, and for acceleration σ2
11 as 0.1087. The estimate for the

covariance of the random-effects terms for the intercept and acceleration σ10,11 is –0.8387.

Now, index into the second cell of psi.

psi{2}

ans =

 6.7989e-08

The second cell of psi contains the estimate for the variance of the random-effects term
for weight σ2

2.

Index into the first cell of stats.

stats{1}

ans =

 Covariance Type: FullCholesky

 Group Name1 Name2 Type Estimate Lower Upper

 Model_Year 'Intercept' 'Intercept' 'std' 2.9182 1.1552 7.3716

 Model_Year 'Acceleration' 'Intercept' 'corr' -0.87172 -0.98267 -0.30082

 Model_Year 'Acceleration' 'Acceleration' 'std' 0.32968 0.18863 0.57619

This table shows the standard deviation estimates for the random-effects terms for
intercept and acceleration. Note that the standard deviations estimates are the square
roots of the diagonal elements in the first cell of psi. Specifically, 2.9182 = sqrt(8.5160)
and 0.32968 = sqrt(0.1087). The correlation is a function of the covariance of intercept
and acceleration, and the standard deviations of intercept and acceleration. The
covariance of intercept and acceleration is the off-diagonal value in the first cell of psi, –
0.8387. So, the correlation is –.8387/(0.32968*2.92182) = –0.87.

 covarianceParameters

22-923

The grouping variable for intercept and acceleration is Model_Year.

Index into the second cell of stats.

stats{2}

ans =

 Covariance Type: FullCholesky

 Group Name1 Name2 Type Estimate Lower Upper

 Origin 'Weight' 'Weight' 'std' 0.00026075 9.2158e-05 0.00073775

The second cell of stats has the standard deviation estimate and the 95% confidence
limits for the standard deviation of the random-effects term for Weight. The grouping
variable is Origin.

Index into the third cell of stats.

stats{3}

ans =

 Group Name Estimate Lower Upper

 Error 'Res Std' 3.0126 2.8028 3.238

The third cell of stats contains the estimate for residual standard deviation and the
95% confidence limits. The estimate for residual standard deviation is the square root of
mse, sqrt(9.0755) = 3.0126.

Construct 99% confidence intervals for the covariance parameters.

[~,~,stats] = covarianceParameters(lme,'Alpha',0.01);

stats{1}

ans =

 Covariance Type: FullCholesky

 Group Name1 Name2 Type Estimate Lower Upper

 Model_Year 'Intercept' 'Intercept' 'std' 2.9182 0.86341 9.8633

 Model_Year 'Acceleration' 'Intercept' 'corr' -0.87172 -0.99089 0.013164

 Model_Year 'Acceleration' 'Acceleration' 'std' 0.32968 0.15828 0.68669

22 Functions — Alphabetical List

22-924

stats{2}

ans =

 Covariance Type: FullCholesky

 Group Name1 Name2 Type Estimate Lower Upper

 Origin 'Weight' 'Weight' 'std' 0.00026075 6.6466e-05 0.0010229

stats{3}

ans =

 Group Name Estimate Lower Upper

 Error 'Res Std' 3.0126 2.74 3.3123

See Also
compare | fixedEffects | LinearMixedModel | randomEffects

 CovarianceType property

22-925

CovarianceType property
Class: gmdistribution

Type of covariance matrices

Description

The string 'diagonal' if the covariance matrices are restricted to be diagonal; the
string 'full' otherwise.

22 Functions — Alphabetical List

22-926

coxphfit
Cox proportional hazards regression

Syntax

b = coxphfit(X,T)

b = coxphfit(X,T,Name,Value)

[b,logl,H,stats] = coxphfit(___)

Description

b = coxphfit(X,T) returns a p-by-1 vector, b, of coefficient estimates for a Cox
proportional hazards regression of the observed responses in an n-by-1 vector, T, on the
predictors in an n-by-p matrix X.

The model does not include a constant term, and X cannot contain a column of 1s.

b = coxphfit(X,T,Name,Value) returns a vector of coefficient estimates, with
additional options specified by one or more Name,Value pair arguments.

[b,logl,H,stats] = coxphfit(___) also returns the loglikelihood, logl, a
structure, stats, that contains additional statistics, and a two-column matrix, H, that
contains the T values in the first column and the estimated baseline cumulative hazard,
in the second column. You can use any of the input arguments in the previous syntaxes.

Examples

Lifetime of Light Bulbs

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load lightbulb

 coxphfit

22-927

The first column of the light bulb data has the lifetime (in hours) of two different types
of bulbs. The second column has the binary variable indicating whether the bulb is
fluorescent or incandescent. 0 indicates that the bulb is incandescent, and 1 indicates
that it is fluorescent. The third column contains the censorship information, where 0
indicates the bulb was observed until failure, and 1 indicates the bulb was censored.

Fit a Cox proportional hazards model for the lifetime of the light bulbs, also accounting
for censoring. The predictor variable is the type of bulb.

b = coxphfit(lightbulb(:,2),lightbulb(:,1),...

'censoring',lightbulb(:,3))

b =

 4.7262

The estimate of the hazard ratio is exp(b) = 112.8646. This means that the hazard for the
incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs.

Change the Algorithm Parameters

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load lightbulb

The first column of the data has the lifetime (in hours) of two types of bulbs. The
second column has the binary variable indicating whether the bulb is fluorescent
or incandescent. 1 indicates that the bulb is fluorescent and 0 indicates that it is
incandescent. The third column contains the censorship information, where 0 indicates
the bulb is observed until failure, and 1 indicates the item (bulb) is censored.

Fit a Cox proportional hazards model, also accounting for censoring. The predictor
variable is the type of bulb.

b = coxphfit(lightbulb(:,2),lightbulb(:,1),...

'censoring',lightbulb(:,3))

b =

22 Functions — Alphabetical List

22-928

 4.7262

Display the default control parameters for the algorithm coxphfit uses to estimate the
coefficients.

statset('coxphfit')

ans =

 Display: 'off'

 MaxFunEvals: 200

 MaxIter: 100

 TolBnd: 1.0000e-06

 TolFun: 1.0000e-08

 TolTypeFun: []

 TolX: 1.0000e-08

 TolTypeX: []

 GradObj: []

 Jacobian: []

 DerivStep: []

 FunValCheck: []

 Robust: []

 RobustWgtFun: []

 WgtFun: []

 Tune: []

 UseParallel: []

 UseSubstreams: []

 Streams: {}

 OutputFcn: []

Save the options under a different name and change how the results will be displayed
and the maximum number of iterations, Display and MaxIter.

coxphopt = statset('coxphfit');

coxphopt.Display = 'final';

coxphopt.MaxIter = 50;

Run coxphfit with the new algorithm parameters.

b = coxphfit(lightbulb(:,2),lightbulb(:,1),...

'censoring',lightbulb(:,3),'options',coxphopt)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

b =

 coxphfit

22-929

 4.7262

coxphfit displays a report on the final iteration. Changing the maximum number of
iterations did not affect the coefficient estimate.

Fit and Compare Cox and Weibull Survivor Functions

Generate Weibull data depending on predictor X.

rng('default') % for reproducibility

X = 4*rand(100,1);

A = 50*exp(-0.5*X);

B = 2;

y = wblrnd(A,B);

The response values are generated from a Weibull distribution with a shape parameter
depending on the predictor variable X and a scale parameter of 2.

Fit a Cox proportional hazards model.

[b,logL,H,stats] = coxphfit(X,y);

[b logL]

ans =

 0.9409 -331.1479

The coefficient estimate is 0.9409 and the log likelihood value is –331.1479.

Request the model statistics.

stats

stats =

 covb: 0.0158

 beta: 0.9409

 se: 0.1256

 z: 7.4889

 p: 6.9462e-14

The covariance matrix of the coefficient estimates, covb, contains only one value, which
is equal to the variance of the coefficient estimate in this example. The coefficient
estimate, beta, is the same as b and is equal to 0.9409. The standard error of the
coefficient estimate, se, is 0.1256, which is the square root of the variance 0.0158. The z-

22 Functions — Alphabetical List

22-930

statistic, z, is beta/se = 0.9409/0.1256 = 7.4880. The p-value, p, indicates that the effect
of X is significant.

Plot the Cox estimate of the baseline survivor function together with the known Weibull
function.

stairs(H(:,1),exp(-H(:,2)),'LineWidth',2)

xx = linspace(0,100);

line(xx,1-wblcdf(xx,50*exp(-0.5*mean(X)),B),'color','r','LineWidth',2)

xlim([0,50])

legend('Estimated Survivor Function','Weibull Survivor Function')

The fitted model gives a close estimate to the survivor function of the actual distribution.

• “Hazard and Survivor Functions for Different Groups” on page 12-18
• “Survivor Functions for Two Groups” on page 12-25

 coxphfit

22-931

• “Cox Proportional Hazards Model for Censored Data” on page 12-33

Input Arguments

X — Observations on predictor variables
matrix

Observations on predictor variables, specified as an n-by-p matrix of p predictors for each
of n observations.

The model does not include a constant term, thus X cannot contain a column of 1s.

Data Types: single | double

T — Time-to-event data
vector

Time-to-event data, specified as an n-by-1 vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'baseline',0,'censoring',censoreddata,'frequency',freq
specifies that coxphfit calculates the baseline hazard rate relative to 0, considering the
censoring information in the vector censoreddata, and the frequency of observations on
T and X given in the vector freq.

'baseline' — X values at which to compute the baseline hazard
mean(X) (default) | scalar value

X values at which to compute the baseline hazard, specified as the comma-separated pair
consisting of 'baseline' and a scalar value.

The default is mean(X), so the hazard rate at X is h(t)*exp((X-mean(X))*b). Enter
0 to compute the baseline relative to 0, so the hazard rate at X is h(t)*exp(X*b).

22 Functions — Alphabetical List

22-932

Changing the baseline does not affect the coefficient estimates, but the hazard ratio
changes.
Example: 'baseline',0

Data Types: single | double

'censoring' — Indicator for censoring
array of 0s (default) | array of 0s and 1s

Indicator for censoring, specified as the comma-separated pair consisting of
'censoring' and a Boolean array of the same size as T. Use 1 for observations that
are right censored and 0 for observations that are fully observed. The default is all
observations are fully observed.
Example: 'censoring',cens

Data Types: logical

'frequency' — Frequency of observations
array of 1s (default) | vector of nonnegative integer counts

Frequency of observations, specified as the comma-separated pair consisting of
'frequency' and an array that is the same size as T containing nonnegative integer
counts.

The jth element of this vector gives the number of times the method observes the jth

element of T and the jth row of X. The default is one observation per row of X and T.

Example: 'frequency',freq

Data Types: single | double

'init' — Initial values for estimated coefficients
vector

Initial values for estimated coefficients, specified as the comma-separated pair consisting
of 'init' and a vector containing the coefficient initial values.

Example: 'init',initcoef

Data Types: single | double

'options' — Algorithm control parameters
structure

 coxphfit

22-933

Algorithm control parameters for the iterative algorithm used to estimate b, specified
as the comma-separated pair consisting of 'options' and a structure. A call to
statset creates this argument. For parameter names and default values, type
statset('coxphfit'). You can set the options under a new name and use that in the
name-value pair argument.
Example: 'options',statset('coxphfit')

Data Types: char

Output Arguments

b — Coefficient estimates
vector

Coefficient estimates for a Cox proportional hazards regression, returned as a p-by-1
vector.

logl — Loglikelihood
scalar

Loglikelihood of the fitted model, returned as a scalar.

You can use log likelihood values to compare different models and assess the significance
of effects of terms in the model.

H — Estimated baseline cumulative hazard
two-column matrix

Estimated baseline cumulative hazard rate evaluated at T values, returned as a two-
column matrix. The first column of the matrix contains T values, and the second column
contains cumulative hazard rate estimates.

stats — Coefficient statistics
structure

Coefficient statistics, returned as a structure that contains the following fields.

beta Coefficient estimates (same as b)
se Standard errors of coefficient estimates, b

22 Functions — Alphabetical List

22-934

z z-statistics for b (that is, b divided by standard error)
p p-values for b
covb Estimated covariance matrix for b

More About

Cox Proportional Hazards Regression

Cox proportional hazards regression is a semiparametric method for adjusting survival
rate estimates to remove the effect of confounding variables and to quantify the effect of
predictor variables. The method represents the effects of explanatory and confounding
variables as a multiplier of a common baseline hazard function, h0(t).

For a baseline relative to 0, this model corresponds to

h t h t eX

X b
i i

i() () ,=
Â

0

where hX(t) is the hazard rate at X and h0(t) is the baseline hazard rate function. The
baseline hazard function is the nonparametric part of the Cox proportional hazards
regression function, whereas the impact of the predictor variables is a loglinear
regression. The assumption is that the baseline hazard function depends on time, t, but
the predictor variables do not depend on time.

References

[1] Cox, D.R., and D. Oakes. Analysis of Survival Data. London: Chapman & Hall, 1984.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-
Interscience, 2002.

[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health.
2nd edition. Springer, 2005.

• “What Is Survival Analysis?” on page 12-2
• “Kaplan-Meier Method” on page 12-11
• “Cox Proportional Hazards Regression” on page 12-30

 coxphfit

22-935

See Also
ecdf | statset | wblfit

22 Functions — Alphabetical List

22-936

Prior property
Class: NaiveBayes

Class priors

Description

The Prior property is a vector of length NClasses containing the class priors. The
priors for empty classes are zero.

 createns

22-937

createns
Create object to use in k-nearest neighbors search

Syntax

NS = createns(X)

NS = createns(X,'Name',Value)

Description

NS = createns(X) uses the data observations in an mx-by-n matrix X to create an
object NS. Rows of X correspond to observations and columns correspond to variables.
NS is either an ExhaustiveSearcher or a KDTreeSearcher model object which
you can use to find nearest neighbors in X for desired query points. If NS is an
ExhaustiveSearcher model, knnsearch and rangesearch use the exhaustive search
algorithm to find nearest neighbors. If NS is a KDTreeSearcher model, createns grows
and saves a Kd-tree based on X in NS. knnsearch and rangesearch use the Kd-tree
to find nearest neighbors. For information on these search methods, see “k-Nearest
Neighbor Search and Radius Search” on page 16-11.

NS = createns(X,'Name',Value) accepts one or more optional name/value pairs.
Specify Name inside single quotes. Specify NSMethod to determine which type of object to
create. The object's properties save the information when you specify other arguments.
For more information on the objects' properties, see Using ExhaustiveSearcher Objects or
a Using KDTreeSearcher Objects.

Input Arguments

Name-Value Pair Arguments

'NSMethod'

Nearest neighbors search method, used to define the type of object created. Value is
either:

22 Functions — Alphabetical List

22-938

• 'kdtree' — Create a KDTreeSearcher model. If you do not specify NSMethod, this
is the default value when the number of columns of X is less than 10, X is not sparse,
and the distance measure is one of the following measures:

• 'euclidean' (default)
• 'cityblock'

• 'minkowski'

• 'chebychev'

• 'exhaustive' — Create an ExhaustiveSearcher model. If you do not specify
NSMethod, this is the default value when the default criteria for 'kdtree' do not
apply.

'Distance'

A string or a function handle specifying the default distance metric used when you call
knnsearch or rangesearch to find nearest neighbors for future query points. If you
specify a distance metric but not an NSMethod, this input determines the type of object
createns creates, according to the default values described in NSMethod.

For both KDTreeSearcher and ExhaustiveSearcher models, the following options
apply:

• 'euclidean' (default) — Euclidean distance.
• 'cityblock' — City block distance.
• 'chebychev' — Chebychev distance (maximum coordinate difference).
• 'minkowski' — Minkowski distance.

The following options apply to ExhaustiveSearcher models:

• 'seuclidean' — Standardized Euclidean distance. Each coordinate difference
between rows in X and the query matrix is scaled by dividing by the corresponding
element of the standard deviation computed from X, S=nanstd(X). To specify another
value for S, use the Scale argument.

• 'mahalanobis' — Mahalanobis distance, which is computed using a positive
definite covariance matrix C. The default value of C is the sample covariance matrix of
X, as computed by nancov(X). To change the value of C, use the Cov parameter.

• 'cosine' — One minus the cosine of the included angle between observations
(treated as vectors).

 createns

22-939

• 'correlation' — One minus the sample linear correlation between observations
(treated as sequences of values).

• 'spearman' — One minus the sample Spearman's rank correlation between
observations (treated as sequences of values).

• 'hamming' — Hamming distance, which is percentage of coordinates that differ.
• 'jaccard' — One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ.
• custom distance function — A distance function specified using @ (for example,

@distfun). A distance function must be of the form function D2 = distfun(ZI,
ZJ), taking as arguments a 1-by-n vector ZI containing a single row from X or from
the query points Y, and an m2-by-n matrix ZJ containing multiple rows of X or Y,
and returning an m2-by-1 vector of distances d2, whose jth element is the distance
between the observations ZI and ZJ(j,:).

'P'

A positive scalar, p, indicating the exponent of the Minkowski distance. This parameter
is only valid when Distance is 'minkowski'. Default is 2.

'Cov'

A positive definite matrix indicating the covariance matrix when computing the
Mahalanobis distance. This parameter is only valid when Distance is 'mahalanobis'.
Default is nancov(X).

'Scale'

A vector S with the length equal to the number of columns in X. Each coordinate of
X and each query point is scaled by the corresponding element of S when computing
the standardized Euclidean distance. This parameter is only valid when Distance is
'seuclidean'. Default is nanstd(X).

'BucketSize'

A positive integer, indicating the maximum number of data points in each leaf node of
the Kd-tree. This argument is only meaningful when using the Kd-tree search method.
Default is 50.

22 Functions — Alphabetical List

22-940

Examples

Grow a K d-tree Using the Minkowski Distance Metric

Grow a K d-tree that uses the Minkowski distance with an exponent of five.

Load Fisher's iris data set. Create a variable for the petal dimensions.

load fisheriris

x = meas(:,3:4);

Grow a K d-tree. Specify the Minkowski distance with an exponent of five.

Mdl = createns(x,'Distance','minkowski','P',5)

Mdl =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'minkowski'

 DistParameter: 5

 X: [150x2 double]

Since x has two columns and the distance metric is Minkowski, createns creates a
KDTreeSearcher model by default.

More About
• Using ExhaustiveSearcher Objects
• Using KDTreeSearcher Objects
• “k-Nearest Neighbor Search and Radius Search” on page 16-11

See Also
ExhaustiveSearcher | KDTreeSearcher | knnsearch | rangesearch

 crosstab

22-941

crosstab
Cross-tabulation

Syntax

tbl = crosstab(x1,x2)

tbl = crosstab(x1,...,xn)

[tbl,chi2,p] = crosstab(___)

[tbl,chi2,p,labels] = crosstab(___)

Description

tbl = crosstab(x1,x2) returns a cross-tabulation, tbl, of two vectors of the same
length, x1 and x2.

tbl = crosstab(x1,...,xn) returns a multi-dimensional cross-tabulation, tbl, of
data for multiple input vectors, x1, x2, ..., xn.

[tbl,chi2,p] = crosstab(___) also returns the chi-square statistic, chi2, and its
p-value, p, for a test that tbl is independent in each dimension. You can use any of the
previous syntaxes.

[tbl,chi2,p,labels] = crosstab(___) also returns a cell array, labels, which
contains one column of labels for each input argument, x1 ... xn.

Examples

Cross-Tabulate Two Data Vectors

Create two sample data vectors, containing three and four distinct values, respectively.

x = [1 1 2 3 1];

y = [1 2 5 3 1];

Cross-tabulate x and y.

22 Functions — Alphabetical List

22-942

table = crosstab(x,y)

table =

 2 1 0 0

 0 0 0 1

 0 0 1 0

The rows in table correspond to the three distinct values in x, and the columns
correspond to the four distinct values in y.

Cross-Tabulate Independent Data Vectors

Generate two independent vectors, x1 and x2, each containing 50 discrete uniform
random numbers in the range 1:3.

rng default; % for reproducibility

x1 = unidrnd(3,50,1);

x2 = unidrnd(3,50,1);

Cross-tabulate x1 and x2.

[table,chi2,p] = crosstab(x1,x2)

table =

 1 6 7

 5 5 2

 11 7 6

chi2 =

 7.5449

p =

 0.1097

 crosstab

22-943

The returned p value of 0.1097 indicates that, at the 5% significance level, crosstab
fails to reject the null hypothesis that table is independent in each dimension.

Cross-Tabulate Grouped Data

Load the sample data, which contains measurements of large model cars during the
years 1970-1982.

load carbig

Cross-tabulate the data of four-cylinder cars (cyl4) based on model year (when) and
country of origin (org).

[table,chi2,p,labels] = crosstab(cyl4,when,org);

Use labels to determine the index location in table for the number of four-cylinder
cars made in the USA during the late period of the data.

labels

labels =

 'Other' 'Early' 'USA'

 'Four' 'Mid' 'Europe'

 [] 'Late' 'Japan'

The first column of labels corresponds to the data in cyl4, and indicates that row
2 of table contains data on cars with four cylinders. The second column of labels
corresponds to the data in when, and indicates that column 3 of table contains data on
cars made during the late period. The third column of labels corresponds to the data in
org, and indicates that location 1 of the third dimension of table contains data on cars
made in the USA.

Therefore, table(2,3,1) contains the number of four-cylinder cars made in the USA
during the late period.

table(2,3,1)

ans =

 38

22 Functions — Alphabetical List

22-944

The data contains 38 four-cylinder cars made in the USA during the late period.

Generate Contingency Table Using crosstab

Load the hospital data.

load hospital

The hospital dataset array contains data on 100 hospital patients, including last
name, gender, age, weight, smoking status, and systolic and diastolic blood pressure
measurements.

To determine whether smoking status is independent of gender, use crosstab to create
a 2-by-2 contingency table of smokers and nonsmokers, grouped by gender.

[tbl,chi2,p,labels] = crosstab(hospital.Sex, hospital.Smoker)

tbl =

 40 13

 26 21

chi2 =

 4.5083

p =

 0.0337

labels =

 'Female' '0'

 'Male' '1'

The rows of the resulting contingency table tbl correspond to the patient’s gender,
with row 1 containing data for females and row 2 containing data for males. The
columns correspond to the patient’s smoking status, with column 1 containing data for
nonsmokers and column 2 containing data for smokers. The returned result chi2 =

 crosstab

22-945

4.5083 is the value of the chi-squared test statistic for a Pearson’s chi-squared test of
independence. The returned value p = 0.0337 is an approximate p-value based on the
chi-squared distribution.

Input Arguments

x1 — Input vector
vector of grouping variables

Input vector, specified as a vector of grouping variables. All input vectors, including x1,
x2, ..., xn, must be the same length.

Data Types: single | double | char | logical

x2 — Input vector
vector of grouping variables

Input vector, specified as a vector of grouping variables. All input vectors, including x1,
x2, ..., xn, must be the same length.

Data Types: single | double | char | logical

x1,...,xn — Input vectors
vectors of grouping variables

Input vectors, specified as vectors of grouping variables. If you use this syntax to specify
more than two input vectors, then crosstab generates a multi-dimensional cross-
tabulation table. All input vectors, including x1, x2, ..., xn, must be the same length.

Data Types: single | double | char | logical

Output Arguments

tbl — Cross-tabulation table
matrix of integer values

Cross-tabulation table, returned as a matrix of integer values.

If you specify two input vectors, x1 and x2, then tbl is an m-by-n matrix, where m is the
number of distinct values in x1 and n is the number of distinct values in x2.

22 Functions — Alphabetical List

22-946

If you specify three or more input vectors, then tbl(i,j,...,n) is a count of indices
where grp2idx(x1) is i, grp2idx(x2) is j, grp2idx(x3) is k, and so on.

chi2 — Chi-square statistic
positive scalar value

Chi-square statistic, returned as a positive scalar value. The null hypothesis is that the
proportion in any entry of tbl is the product of the proportions in each dimension.

p — p-Value
scalar value in the range [0,1]

p-value for the chi-square test statistic, returned as a scalar value in the range [0,1].
crosstab tests that tbl is independent in each dimension.

labels — Data labels
cell array

Data labels, returned as a cell array. The entries in the first column are labels for the
rows of tbl, the entries in the second column are labels for the columns, and so on, for a
multi-dimensional tbl.

More About

Algorithms

crosstab uses grp2idx to assign a positive integer to each distinct value. tbl(i,j) is
a count of indices where grp2idx(x1) is i and grp2idx(x2) is j. The numerical order
of grp2idx(x1) and grp2idx(x2) order rows and columns of tbl, respectively.

In this case, the returned value of tbl(i,j,...,n) is a count of indices where
grp2idx(x1) is i, grp2idx(x2) is j, grp2idx(x3) is k, and so on.
• “Grouping Variables” on page 2-52

See Also
grp2idx | tabulate

 crossval

22-947

crossval
Loss estimate using cross validation

Syntax
vals = crossval(fun,X)

vals = crossval(fun,X,Y,...)

mse = crossval('mse',X,y,'Predfun',predfun)

mcr = crossval('mcr',X,y,'Predfun',predfun)

val = crossval(criterion,X1,X2,...,y,'Predfun',predfun)

vals = crossval(...,'name',value)

Description
vals = crossval(fun,X) performs 10-fold cross validation for the function fun,
applied to the data in X.

fun is a function handle to a function with two inputs, the training subset of X, XTRAIN,
and the test subset of X, XTEST, as follows:

testval = fun(XTRAIN,XTEST)

Each time it is called, fun should use XTRAIN to fit a model, then return some criterion
testval computed on XTEST using that fitted model.

X can be a column vector or a matrix. Rows of X correspond to observations; columns
correspond to variables or features. Each row of vals contains the result of applying fun
to one test set. If testval is a non-scalar value, crossval converts it to a row vector
using linear indexing and stored in one row of vals.

vals = crossval(fun,X,Y,...) is used when data are stored in separate variables
X, Y, All variables (column vectors, matrices, or arrays) must have the same number
of rows. fun is called with the training subsets of X, Y, ... , followed by the test subsets of
X, Y, ... , as follows:

testvals = fun(XTRAIN,YTRAIN,...,XTEST,YTEST,...)

mse = crossval('mse',X,y,'Predfun',predfun) returns mse, a scalar containing
a 10-fold cross validation estimate of mean-squared error for the function predfun. X can

22 Functions — Alphabetical List

22-948

be a column vector, matrix, or array of predictors. y is a column vector of response values.
X and y must have the same number of rows.

predfun is a function handle called with the training subset of X, the training subset of
y, and the test subset of X as follows:

yfit = predfun(XTRAIN,ytrain,XTEST)

Each time it is called, predfun should use XTRAIN and ytrain to fit a regression model
and then return fitted values in a column vector yfit. Each row of yfit contains the
predicted values for the corresponding row of XTEST. crossval computes the squared
errors between yfit and the corresponding response test set, and returns the overall
mean across all test sets.

mcr = crossval('mcr',X,y,'Predfun',predfun) returns mcr, a scalar
containing a 10-fold cross validation estimate of misclassification rate (the proportion of
misclassified samples) for the function predfun. The matrix X contains predictor values
and the vector y contains class labels. predfun should use XTRAIN and YTRAIN to fit a
classification model and return yfit as the predicted class labels for XTEST. crossval
computes the number of misclassifications between yfit and the corresponding response
test set, and returns the overall misclassification rate across all test sets.

val = crossval(criterion,X1,X2,...,y,'Predfun',predfun), where
criterion is 'mse' or 'mcr', returns a cross validation estimate of mean-squared
error (for a regression model) or misclassification rate (for a classification model) with
predictor values in X1, X2, ... and, respectively, response values or class labels in y. X1,
X2, ... and y must have the same number of rows. predfun is a function handle called
with the training subsets of X1, X2, ..., the training subset of y, and the test subsets of X1,
X2, ..., as follows:

yfit=predfun(X1TRAIN,X2TRAIN,...,ytrain,X1TEST,X2TEST,...)

yfit should be a column vector containing the fitted values.

vals = crossval(...,'name',value) specifies one or more optional parameter
name/value pairs from the following table. Specify name inside single quotes.

Name Value

holdout A scalar specifying the ratio or the number of observations p
for holdout cross validation. When 0 < p < 1, approximately
p*n observations for the test set are randomly selected. When

 crossval

22-949

Name Value

p is an integer, p observations for the test set are randomly
selected.

kfold A scalar specifying the number of folds k for k-fold cross
validation.

leaveout Specifies leave-one-out cross validation. The value must be 1.
mcreps A positive integer specifying the number of Monte-Carlo

repetitions for validation. Ifthe first input of crossval is
'mse' or 'mcr', crossval returns the mean of mean-squared
error or misclassification rate across all of the Monte-Carlo
repetitions. Otherwise, crossval concatenates the values
vals from all of the Monte-Carlo repetitions along the first
dimension.

partition An object c of the cvpartition class, specifying the cross
validation type and partition.

stratify A column vector group specifying groups for stratification.
Both training and test sets have roughly the same class
proportions as in group. NaNs or empty strings in group are
treated as missing values, and the corresponding rows of the
data are ignored.

options A structure that specifies whether to run in parallel, and
specifies the random stream or streams. Create the options
structure with statset. Option fields:

• UseParallel — Set to true to compute in parallel.
Default is false.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute
reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array consisting of
one such object. If you do not specify Streams, crossval
uses the default stream.

Only one of kfold, holdout, leaveout, or partition can be specified, and partition
cannot be specified with stratify. If both partition and mcreps are specified,

22 Functions — Alphabetical List

22-950

the first Monte-Carlo repetition uses the partition information in the cvpartition
object, and the repartition method is called to generate new partitions for each of the
remaining repetitions. If no cross validation type is specified, the default is 10-fold cross
validation.

Note: When using cross validation with classification algorithms, stratification is
preferred. Otherwise, some test sets may not include observations from all classes.

Examples

Example 1

Compute mean-squared error for regression using 10-fold cross validation:

load('fisheriris');

y = meas(:,1);

X = [ones(size(y,1),1),meas(:,2:4)];

regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'predfun',regf)

cvMse =

 0.1015

Example 2

Compute misclassification rate using stratified 10-fold cross validation:

load('fisheriris');

y = species;

X = meas;

cp = cvpartition(y,'k',10); % Stratified cross-validation

classf = @(XTRAIN, ytrain,XTEST)(classify(XTEST,XTRAIN,...

ytrain));

cvMCR = crossval('mcr',X,y,'predfun',classf,'partition',cp)

cvMCR =

 0.0200

 crossval

22-951

Example 3

Compute the confusion matrix using stratified 10-fold cross validation:

load('fisheriris');

y = species;

X = meas;

order = unique(y); % Order of the group labels

cp = cvpartition(y,'k',10); % Stratified cross-validation

f = @(xtr,ytr,xte,yte)confusionmat(yte,...

classify(xte,xtr,ytr),'order',order);

cfMat = crossval(f,X,y,'partition',cp);

cfMat = reshape(sum(cfMat),3,3)

cfMat =

 50 0 0

 0 48 2

 0 1 49

cfMat is the summation of 10 confusion matrices from 10 test sets.

More About
• “Grouping Variables” on page 2-52

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New
York: Springer, 2001.

See Also
cvpartition

22 Functions — Alphabetical List

22-952

crossval
Class: ClassificationDiscriminant

Cross-validated discriminant analysis classifier

Syntax

cvmodel = crossval(obj)

cvmodel = crossval(obj,Name,Value)

Description

cvmodel = crossval(obj) creates a partitioned model from obj, a fitted discriminant
analysis classifier. By default, crossval uses 10-fold cross validation on the training
data to create cvmodel.

cvmodel = crossval(obj,Name,Value) creates a partitioned model with additional
options specified by one or more Name,Value pair arguments.

Tips

• Assess the predictive performance of obj on cross-validated data using the “kfold”
methods and properties of cvmodel, such as kfoldLoss.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 crossval

22-953

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CVPartition'

Object of class cvpartition, created by the cvpartition function. crossval splits
the data into subsets with cvpartition.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.

Default: []

'Holdout'

Holdout validation tests the specified fraction of the data, and uses the rest of the data
for training. Specify a numeric scalar from 0 to 1. Use only one of these options at a time:
'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

'KFold'

Number of folds to use in a cross-validated classifier, a positive integer.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.

Default: 10

'Leaveout'

Set to 'on' for leave-one-out cross validation.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.

Examples

Create a classification model for the Fisher iris data, and then create a cross-validation
model. Evaluate the quality the model using kfoldLoss.

load fisheriris

22 Functions — Alphabetical List

22-954

obj = fitcdiscr(meas,species);

cvmodel = crossval(obj);

L = kfoldLoss(cvmodel)

L =

 0.0200

Alternatives

You can create a cross-validation classifier directly from the data, instead of creating
a discriminant analysis classifier followed by a cross-validation classifier. To do so,
include one of these options in fitcdiscr: 'CrossVal', 'CVPartition', 'Holdout',
'KFold', or 'Leaveout'.

See Also
kfoldEdge | kfoldfun | kfoldLoss | kfoldMargin | fitcdiscr | crossval |
kfoldPredict

How To
• “Discriminant Analysis” on page 15-3

 crossval

22-955

crossval
Class: ClassificationECOC

Cross-validated, error-correcting output code multiclass model

Syntax

CVMdl = crossval(Mdl)

CVMdl = crossval(Mdl,Name,Value)

Description

CVMdl = crossval(Mdl) returns a cross-validated (partitioned), error-correcting
output codes (ECOC) multiclass model (CVMdl) from a trained ECOC model (Mdl).

By default, crossval uses 10-fold cross validation on the training data to create CVMdl.

CVMdl = crossval(Mdl,Name,Value) returns a partitioned ECOC model with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify the number of folds or a holdout sample proportion.

Tips

Assess the predictive performance of Mdl on cross-validated data using the kfold
functions and properties of CVMdl, such as kfoldLoss.

Input Arguments

Mdl — ECOC multiclass model
ClassificationECOC model

ECOC multiclass model, specified as a ClassificationECOC model returned by
fitcecoc.

22 Functions — Alphabetical List

22-956

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CVPartition' — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of
'CVPartition' and a cvpartition partition object as created by cvpartition. The
partition object specifies the type of cross-validation, and also the indexing for training
and validation sets.

If you specify CVPartition, then you cannot specify any of Holdout, KFold, or Leaveout.

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify
'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model
using the rest of the data

2 Stores the compact, trained model in CVMdl.Trained

If you specify Holdout, then you cannot specify any of CVPartition, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated classifier, specified as the comma-separated
pair consisting of 'KFold' and a positive integer value. If you specify, e.g., 'KFold',k,
then the software:

1 Randomly partitions the data into k sets

 crossval

22-957

2 For each set, reserves the set as validation data, and trains the model using the
other k – 1 sets

3 Stores the k compact, trained models in the cells of a k-by-1 cell vector in
CVMdl.Trained

If you specify KFold, then you cannot specify any of CVPartition, Holdout, or Leaveout.

Example: 'KFold',8

Data Types: double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the
n observations, where n is size(Mdl.X,1), the software:

1 Reserves the observation as validation data, and trains the model using the other n –
1 observations

2 Stores the n compact, trained models in CVMdl.Trained

If you specify Leaveout, then you cannot specify CVPartition, Holdout, or KFold.
Example: 'Leaveout','on'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

Output Arguments
CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

22 Functions — Alphabetical List

22-958

Cross-validated ECOC model, returned as a ClassificationPartitionedECOC model.

Examples

Cross Validate an ECOC Classifier

Train a one-versus-one ECOC classifier using binary SVM learners.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

rng(1); % For reproducibility

Create an SVM template. It is good practice to standardize the predictors.

t = templateSVM('Standardize',1)

t =

Fit template for classification SVM.

 Alpha: [0x1 double]

 BoxConstraint: []

 CacheSize: []

 CachingMethod: ''

 DeltaGradientTolerance: []

 GapTolerance: []

 KKTTolerance: []

 IterationLimit: []

 KernelFunction: ''

 KernelScale: []

 KernelOffset: []

 KernelPolynomialOrder: []

 NumPrint: []

 Nu: []

 OutlierFraction: []

 ShrinkagePeriod: []

 Solver: ''

 StandardizeData: 1

 SaveSupportVectors: []

 crossval

22-959

 VerbosityLevel: []

 Method: 'SVM'

 Type: 'classification'

t is an SVM template. All of its properties are empty, except for StandardizeData,
Method, and Type. When the software trains the ECOC classifier, it sets the applicable
properties to their default values.

Train the ECOC classifier. It is good practice to specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot
notation.

Cross validate Mdl using 10-fold cross validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalization error.

oosLoss = kfoldLoss(CVMdl)

oosLoss =

 0.0400

The out-of-sample classification error is 4%, which indicates that the ECOC classifier
generalizes fairly well.

Cross Validate an ECOC Classifier Using Parallel Computing

Consider the arrhythmia data set. There are 16 classes in the study, 13 of which
are represented in the data. The first class indicates that the subject did not have
arrhythmia, and the last class indicates that the subject's arrhythmia state was not
recorded. Suppose that the other classes are ordinal levels indicating the severity of
arrhythmia.

22 Functions — Alphabetical List

22-960

Train an ECOC classifier with a custom coding design specified by the description of the
classes.

Load the arrhythmia data set.

load arrhythmia

Y = categorical(Y);

K = unique(Y); % Number of distinct classes

Construct a coding matrix that describes the nature of the classes.

OrdMat = designecoc(11,'ordinal');

nOM = size(OrdMat);

class1VSOrd = [1; -ones(11,1); 0];

class1VSClass16 = [1; zeros(11,1); -1];

OrdVSClass16 = [0; ones(11,1); -1];

Coding = [class1VSOrd class1VSClass16 OrdVSClass16,...

 [zeros(1,nOM(2)); OrdMat; zeros(1,nOM(2))]];

Train an ECOC classifier using the custom coding design (Coding) and parallel
computing. Specify to use an ensemble of 50 classification trees boosted using
GentleBoost.

t = templateEnsemble('GentleBoost',50,'Tree');

options = statset('UseParallel',1);

Mdl = fitcecoc(X,Y,'Coding',Coding,'Learners',t,'Options',options);

Mdl is a ClassificationECOC model. You can access its properties using dot notation.

Cross validate Mdl using 8-fold cross validation and parallel computing.

rng(1); % For reproducibility

CVMdl = crossval(Mdl,'Options',options,'KFold',8);

Warning: One or more folds do not contain points from all the groups.

Since some of the classes have low relative frequency, some of the folds do not train using
observations from those classes. CVMdl is a ClassificationPartitionedECOC cross-
validated ECOC model.

Estimate the generalization error using parallel computing.

oosLoss = kfoldLoss(CVMdl,'Options',options)

oosLoss =

 crossval

22-961

 0.3208

The out-of-sample classification error is 32%, which indicates that this model does not
generalize well. To improve the model, try training using a different boosting method,
such as RobustBoost, or a different algorithm altogether, such as SVM.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Alternatives

Instead of training an ECOC model and then cross validating it, you can create a cross-
validated ECOC model directly using fitcecoc and by specifying any of these name-
value pair arguments: CrossVal, CVPartition, Holdout, Leaveout, or KFold.

See Also
ClassificationECOC | ClassificationPartitionedECOC |
CompactClassificationECOC | cvpartition | fitcecoc | statset

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

22 Functions — Alphabetical List

22-962

crossval
Class: ClassificationEnsemble

Cross validate ensemble

Syntax

cvens = crossval(ens)

cvens = crossval(ens,Name,Value)

Description

cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification
ensemble. Default is 10-fold cross validation.

cvens = crossval(ens,Name,Value) creates a cross-validated ensemble with
additional options specified by one or more Name,Value pair arguments. You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'cvpartition'

A partition of class cvpartition. Sets the partition for cross validation.

 crossval

22-963

Use no more than one of the name-value pairs cvpartition, holdout, kfold, or
leaveout.

'holdout'

Holdout validation tests the specified fraction of the data, and uses the rest of the data
for training. Specify a numeric scalar from 0 to 1. You can only use one of these four
options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout',
or 'cvpartition'.

'kfold'

Number of folds for cross validation, a numeric positive scalar.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

'leaveout'

If 'on', use leave-one-out cross validation.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

'nprint'

Printout frequency, a positive integer scalar. Use this parameter to observe the training
of cross-validation folds.

Default: 'off', meaning no printout

Output Arguments
cvens

A cross-validated classification ensemble of class
ClassificationPartitionedEnsemble.

Alternatives
You can create a cross-validation ensemble directly from the data, instead of creating
an ensemble followed by a cross-validation ensemble. To do so, include one of these

22 Functions — Alphabetical List

22-964

five options in fitensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

Examples

Create a cross-validated classification model for the Fisher iris data, and assess its
quality using the kfoldLoss method.

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

cvens = crossval(ens);

L = kfoldLoss(cvens)

L =

 0.0467

See Also
ClassificationPartitionedEnsemble | cvpartition

 crossval

22-965

crossval
Class: ClassificationKNN

Cross-validated k-nearest neighbor classifier

Syntax

cvmodel = crossval(mdl)

cvmodel = crossval(mdl,Name,Value)

Description

cvmodel = crossval(mdl) creates a partitioned model from mdl, a fitted KNN
classification model. By default, crossval uses 10-fold cross validation on the training
data to create cvmodel.

cvmodel = crossval(mdl,Name,Value) creates a partitioned model with additional
options specified by one or more Name,Value pair arguments.

Tips

• Assess the predictive performance of mdl on cross-validated data using the “kfold”
methods and properties of cvmodel, such as kfoldLoss.

Input Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class

22 Functions — Alphabetical List

22-966

ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CVPartition'

Object of class cvpartition, created by the cvpartition function. crossval splits
the data into subsets with cvpartition.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

'Holdout'

Holdout validation tests the specified fraction of the data, and uses the remaining data
for training. Specify a numeric scalar from 0 to 1. Use only one of these four options at a
time: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

'KFold'

Number of folds to use in a cross-validated tree, a positive integer.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Default: 10

'Leaveout'

Set to 'on' for leave-one-out cross validation.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

 crossval

22-967

Output Arguments

cvmodel

Partitioned model of class ClassificationPartitionedModel.

Examples

Cross-Validated K-Nearest Neighbor Model

Construct a cross-validated k-nearest neighbor model, and assess classification
performance using the model.

Load the data.

load fisheriris

X = meas;

Y = species;

Construct a classifier for nearest neighbors.

mdl = fitcknn(X,Y);

Construct a cross-validated classifier.

cvmdl = crossval(mdl)

cvmdl =

classreg.learning.partition.ClassificationPartitionedModel:

 CrossValidatedModel: 'KNN'

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 CategoricalPredictors: []

 ResponseName: 'Y'

 NumObservations: 150

 KFold: 10

 Partition: [1x1 cvpartition]

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

Find the cross-validated loss of the classifier.

cvmdlloss = kfoldLoss(cvmdl)

22 Functions — Alphabetical List

22-968

cvmdlloss =

 0.0400

The cross-validated loss is less than 5%. You can expect mdl to have a similar error rate.

• “Examine the Quality of a KNN Classifier” on page 16-29
• “Modify a KNN Classifier” on page 16-30

Alternatives

You can create a cross-validated model directly from the data, instead of creating a model
followed by a cross-validated model. To do so, include one of these options in fitcknn:
'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

See Also
ClassificationKNN | ClassificationPartitionedModel | crossval | fitcknn
| kfoldEdge | kfoldfun | kfoldLoss | kfoldMargin | kfoldPredict

More About
• “Classification Using Nearest Neighbors” on page 16-8

 crossval

22-969

crossval
Class: ClassificationNaiveBayes

Cross-validated naive Bayes classifier

Syntax

CVMdl = crossval(Mdl)

CVMdl = crossval(Mdl,Name,Value)

Description

CVMdl = crossval(Mdl) returns a partitioned naive Bayes classifier (CVSMdl) from a
trained naive Bayes classifier (Mdl).

By default, crossval uses 10-fold cross validation on the training data to create CVMdl.

CVMdl = crossval(Mdl,Name,Value) returns a partitioned naive Bayes classifier
with additional options specified by one or more Name,Value pair arguments.

For example, you can specify a holdout sample proportion.

Tips

Assess the predictive performance of Mdl on cross-validated data using the “kfold”
function and properties of CVMdl, such as kfoldLoss.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes
model trained by fitcnb.

22 Functions — Alphabetical List

22-970

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CVPartition' — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of
'CVPartition' and a cvpartition partition object as created by cvpartition. The
partition object specifies the type of cross-validation, and also the indexing for training
and validation sets.

If you specify CVPartition, then you cannot specify any of Holdout, KFold, or Leaveout.

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify
'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model
using the rest of the data

2 Stores the compact, trained model in CVMdl.Trained

If you specify Holdout, then you cannot specify any of CVPartition, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated classifier, specified as the comma-separated
pair consisting of 'KFold' and a positive integer value. If you specify, e.g., 'KFold',k,
then the software:

1 Randomly partitions the data into k sets

 crossval

22-971

2 For each set, reserves the set as validation data, and trains the model using the
other k – 1 sets

3 Stores the k compact, trained models in the cells of a k-by-1 cell vector in
CVMdl.Trained

If you specify KFold, then you cannot specify any of CVPartition, Holdout, or Leaveout.

Example: 'KFold',8

Data Types: double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the
n observations, where n is size(Mdl.X,1), the software:

1 Reserves the observation as validation data, and trains the model using the other n –
1 observations

2 Stores the n compact, trained models in CVMdl.Trained

If you specify Leaveout, then you cannot specify CVPartition, Holdout, or KFold.
Example: 'Leaveout','on'

Data Types: char

Output Arguments

CVMdl — Cross-validated naive Bayes classifier
ClassificationPartitionedModel model

Cross-validated naive Bayes classifier, returned as a
ClassificationPartitionedModel model.

Examples

Cross Validate a Naive Bayes Classifier Using crossval

Load the ionosphere data set.

22 Functions — Alphabetical List

22-972

load ionosphere

X = X(:,3:end); % Remove first two predictors for stability

rng(1); % For reproducibility

Train a naive Bayes classifier. It is good practice to define the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,'ClassNames',{'b','g'});

Mdl is a trained ClassificationNaiveBayes classifier. 'b' is the negative class and
'g' is the positive class.

Cross validate the classifier using 10-fold cross validation.

CVMdl = crossval(Mdl)

FirstModel = CVMdl.Trained{1}

CVMdl =

 classreg.learning.partition.ClassificationPartitionedModel

 CrossValidatedModel: 'NaiveBayes'

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 NumObservations: 351

 KFold: 10

 Partition: [1x1 cvpartition]

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

FirstModel =

 classreg.learning.classif.CompactClassificationNaiveBayes

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 DistributionNames: {1x32 cell}

 DistributionParameters: {2x32 cell}

 crossval

22-973

CVMdl is a ClassificationPartitionedModel cross-validated classifier. The
software:

1 Randomly partitions the data into 10, equally sized sets.
2 Trains a naive Bayes classifier on nine of the sets.
3 Repeats steps 1 and 2 k = 10 times. It excludes one partition each time, and trains on

the other nine partitions.
4 Combines generalization statistics for each fold.

FirstModel is the first of the 10 trained classifiers. It is a
CompactClassificationNaiveBayes model.

You can estimate the generalization error by passing CVMdl to kfoldLoss.

Specify a Holdout-Sample Proportion for Naive Bayes Cross Validation

By default, crossval uses 10-fold cross validation to cross validate a naive Bayes
classifier. You have several other options, such as specifying a different number of folds
or holdout-sample proportion. This example shows how to specify a holdout-sample
proportion.

Load the ionosphere data set.

load ionosphere

X = X(:,3:end); % Remove first two predictors for stability

rng(1); % For reproducibility

Train a naive Bayes classifier. Assume that each predictor is conditionally, normally
distributed given its label. It is good practice to define the class order.

Mdl = fitcnb(X,Y,'ClassNames',{'b','g'});

Mdl is a trained ClassificationNaiveBayes classifier. 'b' is the negative class and
'g' is the positive class.

Cross validate the classifier by specifying a 30% holdout sample.

CVMdl = crossval(Mdl,'Holdout',0.30)

TrainedModel = CVMdl.Trained{1}

CVMdl =

22 Functions — Alphabetical List

22-974

 classreg.learning.partition.ClassificationPartitionedModel

 CrossValidatedModel: 'NaiveBayes'

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 NumObservations: 351

 KFold: 1

 Partition: [1x1 cvpartition]

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

TrainedModel =

 classreg.learning.classif.CompactClassificationNaiveBayes

 PredictorNames: {1x32 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 DistributionNames: {1x32 cell}

 DistributionParameters: {2x32 cell}

CVMdl is a ClassificationPartitionedModel. TrainedModel is a
CompactClassificationNaiveBayes classifier trained using 70% of the data.

Estimate the generalization error.

kfoldLoss(CVMdl)

ans =

 0.2571

The out-of-sample misclassification error is approximately 2.6%.

Alternatives

Instead of creating a naive Bayes classifier followed by a cross-validation classifier,
create a cross-validated classifier directly using fitcnb and by specifying any of these

 crossval

22-975

name-value pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'Leaveout',
or 'KFold'.

See Also
ClassificationNaiveBayes | ClassificationPartitionedModel |
CompactClassificationNaiveBayes | fitcnb | kfoldLoss

22 Functions — Alphabetical List

22-976

crossval
Class: ClassificationSVM

Cross-validated support vector machine classifier

Syntax

CVSVMModel = crossval(SVMModel)

CVSVMModel = crossval(SVMModel,Name,Value)

Description

CVSVMModel = crossval(SVMModel) returns a cross-validated (partitioned) support
vector machine classifier (CVSVMModel) from a trained SVM classifier (SVMModel).

By default, crossval uses 10-fold cross validation on the training data to create
CVSVMModel.

CVSVMModel = crossval(SVMModel,Name,Value) returns a partitioned SVM
classifier with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the number of folds or holdout sample proportion.

Tips

Assess the predictive performance of SVMModel on cross-validated data using the “kfold”
methods and properties of CVSVMModel, such as kfoldLoss.

Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained using
fitcsvm.

 crossval

22-977

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CVPartition' — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of
'CVPartition' and a cvpartition partition object as created by cvpartition. The
partition object specifies the type of cross-validation, and also the indexing for training
and validation sets.

If you specify CVPartition, then you cannot specify any of Holdout, KFold, or Leaveout.

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify
'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model
using the rest of the data

2 Stores the compact, trained model in CVMdl.Trained

If you specify Holdout, then you cannot specify any of CVPartition, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated classifier, specified as the comma-separated
pair consisting of 'KFold' and a positive integer value. If you specify, e.g., 'KFold',k,
then the software:

1 Randomly partitions the data into k sets

22 Functions — Alphabetical List

22-978

2 For each set, reserves the set as validation data, and trains the model using the
other k – 1 sets

3 Stores the k compact, trained models in the cells of a k-by-1 cell vector in
CVMdl.Trained

If you specify KFold, then you cannot specify any of CVPartition, Holdout, or Leaveout.

Example: 'KFold',8

Data Types: double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout' and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the
n observations, where n is size(Mdl.X,1), the software:

1 Reserves the observation as validation data, and trains the model using the other n –
1 observations

2 Stores the n compact, trained models in CVMdl.Trained

If you specify Leaveout, then you cannot specify CVPartition, Holdout, or KFold.
Example: 'Leaveout','on'

Data Types: char

Output Arguments

CVSVMModel — Cross-validated SVM classifier
ClassificationPartitionedModel classifier

Cross-validated SVM classifier, returned as a ClassificationPartitionedModel
classifier.

Examples

Cross Validate an SVM Classifier Using crossval

Load the ionosphere data set.

 crossval

22-979

load ionosphere

rng(1); % For reproducibility

Train an SVM classifier. It is good practice to standardize the predictors and define the
class order.

SVMModel = fitcsvm(X,Y,'Standardize',true,'ClassNames',{'b','g'});

SVMModel is a trained ClassificationSVM classifier. 'b' is the negative class and 'g'
is the positive class.

Cross validate the classifier using 10-fold cross validation.

CVSVMModel = crossval(SVMModel)

FirstModel = CVSVMModel.Trained{1}

CVSVMModel =

 classreg.learning.partition.ClassificationPartitionedModel

 CrossValidatedModel: 'SVM'

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 NumObservations: 351

 KFold: 10

 Partition: [1x1 cvpartition]

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

FirstModel =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 Alpha: [78x1 double]

 Bias: -0.2209

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 SupportVectors: [78x34 double]

22 Functions — Alphabetical List

22-980

 SupportVectorLabels: [78x1 double]

CVSVMModel is a ClassificationPartitionedModel cross-validated classifier. The
software:

1 Randomly partitions the data into 10, equally sized sets.
2 Trains an SVM classifier on nine of the sets.
3 Repeats steps 1 and 2 k = 10 times. It leaves out one of the partitions each time, and

trains on the other nine partitions.
4 Combines generalization statistics for each fold.

FirstModel is the first of the 10 trained classifiers. It is a
CompactClassificationSVM classifier.

You can estimate the generalization error by passing CVSVMModel to kfoldLoss.

Specify a Holdout-Sample Proportion for SVM Cross Validation

By default, crossval uses 10-fold cross validation to cross validate an SVM classifier.
You have several other options, such as specifying a different number of folds or holdout
sample proportion. This example shows how to specify a holdout-sample proportion.

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Train an SVM classifier. It is good practice to standardize the predictors and define the
class order.

SVMModel = fitcsvm(X,Y,'Standardize',true,'ClassNames',{'b','g'});

SVMModel is a trained ClassificationSVM classifier. 'b' is the negative class and 'g'
is the positive class.

Cross validate the classifier by specifying a 15% holdout sample.

CVSVMModel = crossval(SVMModel,'Holdout',0.15)

TrainedModel = CVSVMModel.Trained{1}

 crossval

22-981

CVSVMModel =

 classreg.learning.partition.ClassificationPartitionedModel

 CrossValidatedModel: 'SVM'

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 NumObservations: 351

 KFold: 1

 Partition: [1x1 cvpartition]

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

TrainedModel =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 Alpha: [74x1 double]

 Bias: -0.2952

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 SupportVectors: [74x34 double]

 SupportVectorLabels: [74x1 double]

CVSVMModel is a ClassificationPartitionedModel. TrainedModel is a
CompactClassificationSVM classifier trained using 85% of the data.

Estimate the generalization error.

kfoldLoss(CVSVMModel)

ans =

 0.0769

22 Functions — Alphabetical List

22-982

The out-of-sample misclassification error is approximately 8%.

Alternatives

Instead of training an SVM classifier and then cross-validating it, you can create a cross-
validated classifier directly using fitcsvm and by specifying any of these name-value
pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'Leaveout', or 'KFold'.

See Also
ClassificationPartitionedModel | ClassificationSVM |
CompactClassificationSVM | cvpartition | fitcsvm

 crossval

22-983

crossval
Class: ClassificationTree

Cross-validated decision tree

Syntax
cvmodel = crossval(model)

cvmodel = crossval(model,Name,Value)

Description
cvmodel = crossval(model) creates a partitioned model from model, a fitted
classification tree. By default, crossval uses 10-fold cross validation on the training
data to create cvmodel.

cvmodel = crossval(model,Name,Value) creates a partitioned model with
additional options specified by one or more Name,Value pair arguments.

Tips
• Assess the predictive performance of model on cross-validated data using the “kfold”

methods and properties of cvmodel, such as kfoldLoss.

Input Arguments
model

A classification model, produced using fitctree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-984

'CVPartition'

Object of class cvpartition, created by the cvpartition function. crossval splits
the data into subsets with cvpartition.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

'Holdout'

Holdout validation tests the specified fraction of the data, and uses the remaining data
for training. Specify a numeric scalar from 0 to 1. Use only one of these four options at a
time: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

'KFold'

Number of folds to use in a cross-validated tree, a positive integer.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Default: 10

'Leaveout'

Set to 'on' for leave-one-out cross validation.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Output Arguments
cvmodel

Partitioned model of class ClassificationPartitionedModel.

Examples
Create a Cross-Validation Model

Create a classification model for the ionosphere data, then create a cross-validation
model. Evaluate the quality the model using kfoldLoss.

 crossval

22-985

load ionosphere

tree = fitctree(X,Y);

cvmodel = crossval(tree);

L = kfoldLoss(cvmodel)

L =

 0.1168

Alternatives

You can create a cross-validation tree directly from the data, instead of creating a
decision tree followed by a cross-validation tree. To do so, include one of these five options
in fitctree: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

See Also
fitctree | crossval

22 Functions — Alphabetical List

22-986

crossval
Class: RegressionEnsemble

Cross validate ensemble

Syntax

cvens = crossval(ens)

cvens = crossval(ens,Name,Value)

Description

cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression
ensemble. Default is 10-fold cross validation.

cvens = crossval(ens,Name,Value) creates a cross-validated ensemble with
additional options specified by one or more Name,Value pair arguments. You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A regression ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'cvpartition'

A partition of class cvpartition. Sets the partition for cross validation.

 crossval

22-987

Use no more than one of the name-value pairs cvpartition, holdout, kfold, and
leaveout.

'holdout'

Holdout validation tests the specified fraction of the data, and uses the rest of the data
for training. Specify a numeric scalar from 0 to 1. You can only use one of these four
options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout',
or 'cvpartition'.

'kfold'

Number of folds for cross validation, a numeric positive scalar.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

'leaveout'

If 'on', use leave-one-out cross-validation.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

'nprint'

Printout frequency, a positive integer scalar. Use this parameter to observe the training
of cross-validation folds.

Default: 'off', meaning no printout

Output Arguments

cvens

A cross-validated classification ensemble of class RegressionPartitionedEnsemble.

Alternatives

You can create a cross-validation ensemble directly from the data, instead of creating
an ensemble followed by a cross-validation ensemble. To do so, include one of these

22 Functions — Alphabetical List

22-988

five options in fitensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

Examples

Create a cross-validated classification model for the carsmall data, and assess its
quality using the kfoldLoss method:

X = [Acceleration Displacement Horsepower Weight];

rens = fitensemble(X,MPG,'LSBoost',100,'Tree');

cvens = crossval(rens);

L = kfoldLoss(cvens)

L =

 21.9868

See Also
RegressionPartitionedEnsemble | cvpartition

 crossval

22-989

crossval
Class: RegressionTree

Cross-validated decision tree

Syntax
cvmodel = crossval(model)

cvmodel = crossval(model,Name,Value)

Description
cvmodel = crossval(model) creates a partitioned model from model, a fitted
regression tree. By default, crossval uses 10-fold cross validation on the training data
to create cvmodel.

cvmodel = crossval(model,Name,Value) creates a partitioned model with
additional options specified by one or more Name,Value pair arguments.

Tips
• Assess the predictive performance of model on cross-validated data using the “kfold”

methods and properties of cvmodel, such as kfoldLoss.

Input Arguments
model

A regression model, produced using fitrtree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-990

'CVPartition'

Object of class cvpartition, created by the cvpartition function. crossval splits
the data into subsets with cvpartition.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Default: []

'Holdout'

Holdout validation tests the specified fraction of the data, and uses the rest of the data
for training. Specify a numeric scalar from 0 to 1. You can only use one of these four
options at a time for creating a cross-validated tree: 'KFold', 'Holdout', 'Leaveout',
or 'CVPartition'.

'KFold'

Number of folds to use in a cross-validated tree, a positive integer.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Default: 10

'Leaveout'

Set to 'on' for leave-one-out cross-validation.

Output Arguments

cvmodel

A partitioned model of class RegressionPartitionedModel.

Examples

Create a regression model of the carsmall data, and assess its accuracy with
kfoldLoss:

 crossval

22-991

load carsmall

X = [Acceleration Displacement Horsepower Weight];

tree = fitrtree(X,MPG);

cvtree = crossval(tree);

L = kfoldLoss(cvtree)

L =

 25.2432

Alternatives

You can create a cross-validation tree directly from the data, instead of creating a
decision tree followed by a cross-validation tree. To do so, include one of these five options
in fitrtree: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

See Also
fitrtree | crossval

22 Functions — Alphabetical List

22-992

cutcategories
Class: classregtree

Cut categories

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

C = cutcategories(t)

C = cutcategories(t,nodes)

Description

C = cutcategories(t) returns an n-by-2 cell array C of the categories used at
branches in the decision tree t, where n is the number of nodes. For each branch node
i based on a categorical predictor variable x, the left child is chosen if x is among the
categories listed in C{i,1}, and the right child is chosen if x is among those listed in
C{i,2}. Both columns of C are empty for branch nodes based on continuous predictors
and for leaf nodes.

C = cutcategories(t,nodes) takes a vector nodes of node numbers and returns the
categories for the specified nodes.

Examples

Create a classification tree for car data:
load carsmall

t = classregtree([MPG Cylinders],Origin,...

 'names',{'MPG' 'Cyl'},'cat',2)

 cutcategories

22-993

t =

Decision tree for classification

 1 if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA

 2 if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA

 3 if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA

 4 if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA

 5 if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan

 6 if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA

 7 class = USA

 8 class = France

 9 class = USA

10 class = Japan

11 class = Germany

12 class = Germany

13 class = USA

view(t)

C = cutcategories(t)

C =

 [4] [1x2 double]

22 Functions — Alphabetical List

22-994

 [] []

 [6] [8]

 [] []

 [] []

 [] []

 [] []

 [] []

 [] []

 [] []

 [] []

 [] []

 [] []

C{1,2}

ans =

 6 8

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | cuttype | cutpoint | cutvar

 cutpoint

22-995

cutpoint
Class: classregtree

Decision tree cut point values

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

v = cutpoint(t)

v = cutpoint(t,nodes)

Description

v = cutpoint(t) returns an n-element vector v of the values used as cut points in
the decision tree t, where n is the number of nodes. For each branch node i based on a
continuous predictor variable x, the left child is chosen if x < v(i) and the right child
is chosen if x >= v(i). v is NaN for branch nodes based on categorical predictors and for
leaf nodes.

v = cutpoint(t,nodes) takes a vector nodes of node numbers and returns the cut
points for the specified nodes.

Examples

Create a classification tree for car data:
load carsmall

t = classregtree([MPG Cylinders],Origin,...

 'names',{'MPG' 'Cyl'},'cat',2)

t =

22 Functions — Alphabetical List

22-996

Decision tree for classification

 1 if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA

 2 if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA

 3 if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA

 4 if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA

 5 if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan

 6 if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA

 7 class = USA

 8 class = France

 9 class = USA

10 class = Japan

11 class = Germany

12 class = Germany

13 class = USA

view(t)

v = cutpoint(t)

v =

 NaN

 31.5000

 NaN

 cutpoint

22-997

 21.5000

 41.0000

 17.0000

 NaN

 NaN

 NaN

 NaN

 NaN

 NaN

 NaN

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | cuttype | cutcategories | cutvar

22 Functions — Alphabetical List

22-998

cuttype
Class: classregtree

Cut types

Compatibility
classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax
c = cuttype(t)

c = cuttype(t,nodes)

Description
c = cuttype(t) returns an n-element cell array c indicating the type of cut at each
node in the tree t, where n is the number of nodes. For each node i, c{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut
point v.

• 'categorical' — If the cut is defined by whether a variable x takes a value in a set
of categories.

• '' — If i is a leaf node.

cutvar returns the cut points for 'continuous' cuts, and cutcategories returns the
set of categories.

c = cuttype(t,nodes) takes a vector nodes of node numbers and returns the cut
types for the specified nodes.

Examples
Create a classification tree for car data:

 cuttype

22-999

load carsmall

t = classregtree([MPG Cylinders],Origin,...

 'names',{'MPG' 'Cyl'},'cat',2)

t =

Decision tree for classification

 1 if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA

 2 if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA

 3 if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA

 4 if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA

 5 if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan

 6 if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA

 7 class = USA

 8 class = France

 9 class = USA

10 class = Japan

11 class = Germany

12 class = Germany

13 class = USA

view(t)

c = cuttype(t)

22 Functions — Alphabetical List

22-1000

c =

 'categorical'

 'continuous'

 'categorical'

 'continuous'

 'continuous'

 'continuous'

 ''

 ''

 ''

 ''

 ''

 ''

 ''

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | cutvar | numnodes | cutcategories

 cutvar

22-1001

cutvar
Class: classregtree

Cut variable names

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

v = cutvar(t)

v = cutvar(t,nodes)

[v,num] = cutvar(...)

Description

v = cutvar(t) returns an n-element cell array v of the names of the variables used for
branching in each node of the tree t, where n is the number of nodes. These variables are
sometimes known as cut variables. For leaf nodes, v contains an empty string.

v = cutvar(t,nodes) takes a vector nodes of node numbers and returns the cut
variables for the specified nodes.

[v,num] = cutvar(...) also returns a vector num containing the number of each
variable.

Examples

Create a classification tree for car data:
load carsmall

t = classregtree([MPG Cylinders],Origin,...

22 Functions — Alphabetical List

22-1002

 'names',{'MPG' 'Cyl'},'cat',2)

t =

Decision tree for classification

 1 if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA

 2 if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA

 3 if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA

 4 if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA

 5 if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan

 6 if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA

 7 class = USA

 8 class = France

 9 class = USA

10 class = Japan

11 class = Germany

12 class = Germany

13 class = USA

view(t)

[v,num] = cutvar(t)

v =

 'Cyl'

 cutvar

22-1003

 'MPG'

 'Cyl'

 'MPG'

 'MPG'

 'MPG'

 ''

 ''

 ''

 ''

 ''

 ''

 ''

num =

 2

 1

 2

 1

 1

 1

 0

 0

 0

 0

 0

 0

 0

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | children | numnodes

22 Functions — Alphabetical List

22-1004

cvloss

Class: ClassificationTree

Classification error by cross validation

Syntax

E = cvloss(tree)

[E,SE] = cvloss(tree)

[E,SE,Nleaf] = cvloss(tree)

[E,SE,Nleaf,BestLevel] = cvloss(tree)

[E,...] = cvloss(tree,Name,Value)

Description

E = cvloss(tree) returns the cross-validated classification error (loss) for tree, a
classification tree.

[E,SE] = cvloss(tree) returns the standard error of E.

[E,SE,Nleaf] = cvloss(tree) returns the number of leaves of tree.

[E,SE,Nleaf,BestLevel] = cvloss(tree) returns the optimal pruning level for
tree.

[E,...] = cvloss(tree,Name,Value) cross validates with additional options
specified by one or more Name,Value pair arguments. You can specify several name-
value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

tree

A classification tree produced by fitctree.

 cvloss

22-1005

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then ClassificationTree.cvloss operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

ClassificationTree.cvloss prunes tree to each level indicated in Subtrees, and
then estimates the corresponding output arguments. The size of Subtrees determines
the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

'TreeSize'

One of the following strings:

• 'se' — cvloss uses the smallest tree whose cost is within one standard error of the
minimum cost.

• 'min' — cvloss uses the minimal cost tree.

Default: 'se'

'KFold'

Number of cross-validation samples, a positive integer.

22 Functions — Alphabetical List

22-1006

Default: 10

Output Arguments

E

The cross-validation classification error (loss). A vector or scalar depending on the setting
of the Subtrees name-value pair.

SE

The standard error of E. A vector or scalar depending on the setting of the Subtrees
name-value pair.

Nleaf

Number of leaf nodes in tree. Leaf nodes are terminal nodes, which give classifications,
not splits. A vector or scalar depending on the setting of the Subtrees name-value pair.

BestLevel

By default, a scalar representing the largest pruning level that achieves a value of E
within SE of the minimum error. If you set TreeSize to 'min', BestLevel is the
smallest value in Subtrees.

Examples

Compute the Cross-Validation Error

Compute the cross-validation error for a default classification tree.

Load the ionosphere data set.

load ionosphere

Grow a classification tree using the entire data set.

Mdl = fitctree(X,Y);

 cvloss

22-1007

Compute the cross-validation error.

rng(1); % For reproducibility

E = cvloss(Mdl)

E =

 0.1111

E is the 10-fold misclassification error.

Find the Best Pruning Level Using Cross Validation

Apply k-fold cross validation to find the best level to prune a classification tree for all of
its subtrees.

Load the ionosphere data set.

load ionosphere

Grow a classification tree using the entire data set. View the resulting tree.

Mdl = fitctree(X,Y);

view(Mdl,'Mode','graph')

22 Functions — Alphabetical List

22-1008

Compute the 5-fold cross-validation error for each subtree except for the highest pruning
level. Specify to return the best pruning level over all subtrees.

rng(1); % For reproducibility

m = max(Mdl.PruneList) - 1

[E,~,~,bestLevel] = cvloss(Mdl,'SubTrees',0:m,'KFold',5)

m =

 7

 cvloss

22-1009

E =

 0.1368

 0.1339

 0.1311

 0.1339

 0.1339

 0.1254

 0.0997

 0.1738

bestLevel =

 6

Of the 7 pruning levels, the best pruning level is 6.

Prune the tree to the best level. View the resulting tree.

MdlPrune = prune(Mdl,'Level',bestLevel);

view(MdlPrune,'Mode','graph')

22 Functions — Alphabetical List

22-1010

Alternatives

You can construct a cross-validated tree model with crossval, and call kfoldLoss
instead of cvloss. If you are going to examine the cross-validated tree more than once,
then the alternative can save time.

However, unlike cvloss, kfoldLoss does not return SE,Nleaf, or BestLevel.
kfoldLoss also does not allow you to examine any error other than the classification
error.

 cvloss

22-1011

See Also
fitctree | crossval | kfoldLoss | loss

22 Functions — Alphabetical List

22-1012

cvloss
Class: RegressionTree

Regression error by cross validation

Syntax

E = cvloss(tree)

[E,SE] = cvloss(tree)

[E,SE,Nleaf] = cvloss(tree)

[E,SE,Nleaf,BestLevel] = cvloss(tree)

[E,...] = cvloss(tree,Name,Value)

Description

E = cvloss(tree) returns the cross-validated regression error (loss) for tree, a
regression tree.

[E,SE] = cvloss(tree) returns the standard error of E.

[E,SE,Nleaf] = cvloss(tree) returns the number of leaves (terminal nodes) in
tree.

[E,SE,Nleaf,BestLevel] = cvloss(tree) returns the optimal pruning level for
tree.

[E,...] = cvloss(tree,Name,Value) cross validates with additional options
specified by one or more Name,Value pair arguments. You can specify several name-
value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

tree

A regression tree produced by fitrtree.

 cvloss

22-1013

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then RegressionTree.cvloss operates on all subtrees
(i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

RegressionTree.cvloss prunes tree to each level indicated in Subtrees, and then
estimates the corresponding output arguments. The size of Subtrees determines the
size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

'TreeSize'

One of the following strings:

• 'se' — cvloss uses the smallest tree whose cost is within one standard error of the
minimum cost.

• 'min' — cvloss uses the minimal cost tree.

Default: 'se'

'KFold'

Number of cross-validation samples, a positive integer.

22 Functions — Alphabetical List

22-1014

Default: 10

Output Arguments

E

The cross-validation mean squared error (loss). A vector or scalar depending on the
setting of the Subtrees name-value pair.

SE

The standard error of E. A vector or scalar depending on the setting of the Subtrees
name-value pair.

Nleaf

Number of leaf nodes in tree. Leaf nodes are terminal nodes, which give responses, not
splits. A vector or scalar depending on the setting of the Subtrees name-value pair.

BestLevel

By default, a scalar representing the largest pruning level that achieves a value of E
within SE of the minimum error. If you set TreeSize to 'min', BestLevel is the
smallest value in Subtrees.

Examples

Compute the Cross-Validation Error

Compute the cross-validation error for a default regression tree.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

 cvloss

22-1015

Mdl = fitrtree(X,MPG);

Compute the cross-validation error.

rng(1); % For reproducibility

E = cvloss(Mdl)

E =

 25.7383

E is the 10-fold weighted, averge MSE (weighted by number of test observations in the
folds).

Find the Best Pruning Level Using Cross Validation

Apply k-fold cross validation to find the best level to prune a regression tree for all of its
subtrees.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set. View the resulting tree.

Mdl = fitrtree(X,MPG);

view(Mdl,'Mode','graph')

22 Functions — Alphabetical List

22-1016

Compute the 5-fold cross-validation error for each subtree except for the first two lowest
and highest pruning level. Specify to return the best pruning level over all subtrees.

rng(1); % For reproducibility

m = max(Mdl.PruneList) - 1

[~,~,~,bestLevel] = cvloss(Mdl,'SubTrees',2:m,'KFold',5)

m =

 15

 cvloss

22-1017

bestLevel =

 14

Of the 15 pruning levels, the best pruning level is 14.

Prune the tree to the best level. View the resulting tree.

MdlPrune = prune(Mdl,'Level',bestLevel);

view(MdlPrune,'Mode','graph')

22 Functions — Alphabetical List

22-1018

Alternatives

You can construct a cross-validated tree model with crossval, and call kfoldLoss
instead of cvloss. If you are going to examine the cross-validated tree more than once,
then the alternative can save time.

However, unlike cvloss, kfoldLoss does not return SE, Nleaf, or BestLevel.

 cvloss

22-1019

See Also
crossval | loss | kfoldLoss | fitrtree

22 Functions — Alphabetical List

22-1020

cvpartition class

Data partitions for cross validation

Description
An object of the cvpartition class defines a random partition on a set of data of
a specified size. Use this partition to define test and training sets for validating a
statistical model using cross validation.

Construction
.cvpartition

Create cross validation partition for data

Methods
disp

Display cvpartition object
display

Display cvpartition object
repartition

Repartition data for cross-validation
test

Test indices for cross-validation
training

Training indices for cross-validation

Properties
NumObservations

Number of observations (including
observations with missing group values)

 cvpartition class

22-1021

NumTestSets
Number of test sets

TestSize
Size of each test set

TrainSize
Size of each training set

Type
Type of partition

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

Examples

Use a 10-fold stratified cross validation to compute the misclassification error for
classify on iris data.

load('fisheriris');

CVO = cvpartition(species,'k',10);

err = zeros(CVO.NumTestSets,1);

for i = 1:CVO.NumTestSets

 trIdx = CVO.training(i);

 teIdx = CVO.test(i);

 ytest = classify(meas(teIdx,:),meas(trIdx,:),...

 species(trIdx,:));

 err(i) = sum(~strcmp(ytest,species(teIdx)));

end

cvErr = sum(err)/sum(CVO.TestSize);

See Also
crossval

How To
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-1022

cvpartition
Class: cvpartition

Create cross validation partition for data

Syntax

c = cvpartition(n,'KFold',k)

c = cvpartition(group,'KFold',k)

c = cvpartition(n,'HoldOut',p)

c = cvpartition(group,'HoldOut',p)

c = cvpartition(n,'LeaveOut')

c = cvpartition(n,'resubstitution')

Description

c = cvpartition(n,'KFold',k) constructs an object c of the cvpartition class
defining a random partition for k-fold cross validation on n observations. The partition
divides the observations into k disjoint subsamples (or folds), chosen randomly but with
roughly equal size. The default value of k is 10.

c = cvpartition(group,'KFold',k) creates a random partition for a stratified k-
fold cross validation. group is a numeric vector, categorical array, string array, or cell
array of strings indicating the class of each observation. Each subsample has roughly
equal size and roughly the same class proportions as in group. cvpartition treats
NaNs or empty strings in group as missing values.

c = cvpartition(n,'HoldOut',p) creates a random partition for holdout validation
on n observations. This partition divides the observations into a training set and a test
(or holdout) set. The parameter p must be a scalar. When 0 < p < 1, cvpartition
randomly selects approximately p*n observations for the test set. When p is an integer,
cvpartition randomly selects p observations for the test set. The default value of p is
1/10.

c = cvpartition(group,'HoldOut',p) randomly partitions observations into a
training set and a test set with stratification, using the class information in group; that
is, both training and test sets have roughly the same class proportions as in group.

 cvpartition

22-1023

c = cvpartition(n,'LeaveOut') creates a random partition for leave-one-out cross
validation on n observations. Leave-one-out is a special case of 'KFold', in which the
number of folds equals the number of observations.

c = cvpartition(n,'resubstitution') creates an object c that does not partition
the data. Both the training set and the test set contain all of the original n observations.

Examples

Use stratified 10-fold cross validation to compute misclassification rate:

load fisheriris;

y = species;

c = cvpartition(y,'k',10);

fun = @(xT,yT,xt,yt)(sum(~strcmp(yt,classify(xt,xT,yT))));

rate = sum(crossval(fun,meas,y,'partition',c))...

 /sum(c.TestSize)

rate =

 0.0200

See Also
crossval | repartition

How To
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-1024

cvshrink
Class: ClassificationDiscriminant

Cross-validate regularization of linear discriminant

Syntax

err = cvshrink(obj)

[err,gamma] = cvshrink(obj)

[err,gamma,delta] = cvshrink(obj)

[err,gamma,delta,numpred] = cvshrink(obj)

[err,...] = cvshrink(obj,Name,Value)

Description

err = cvshrink(obj) returns a vector of cross-validated classification error values for
differing values of the regularization parameter Gamma.

[err,gamma] = cvshrink(obj) also returns the vector of Gamma values.

[err,gamma,delta] = cvshrink(obj) also returns the vector of Delta values.

[err,gamma,delta,numpred] = cvshrink(obj) returns the vector of number of
nonzero predictors for each setting of the parameters Gamma and Delta.

[err,...] = cvshrink(obj,Name,Value) cross validates with additional options
specified by one or more Name,Value pair arguments.

Tips

• Examine the err and numpred outputs to see the tradeoff between cross-validated
error and number of predictors. When you find a satisfactory point, set the
corresponding gamma and delta properties in the model using dot notation. For
example, if (i,j) is the location of the satisfactory point, set

obj.Gamma = gamma(i);

 cvshrink

22-1025

obj.Delta = delta(i,j);

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'delta'

• Scalar delta — cvshrink uses this value of delta with every value of gamma for
regularization.

• Row vector delta — For each i and j, cvshrink uses delta(j) with gamma(i) for
regularization.

• Matrix delta — The number of rows of delta must equal the number of elements
in gamma. For each i and j, cvshrink uses delta(i,j) with gamma(i) for
regularization.

Default: 0

'gamma'

Vector of Gamma values for cross-validation.

Default: 0:0.1:1

'NumDelta'

Number of Delta intervals for cross-validation. For every value of Gamma, cvshrink
cross-validates the discriminant using NumDelta + 1 values of Delta, uniformly spaced
from zero to the maximal Delta at which all predictors are eliminated for this value of
Gamma. If you set delta, cvshrink ignores NumDelta.

22 Functions — Alphabetical List

22-1026

Default: 0

'NumGamma'

Number of Gamma intervals for cross-validation. cvshrink cross-validates the
discriminant using NumGamma + 1 values of Gamma, uniformly spaced from MinGamma
to 1. If you set gamma, cvshrink ignores NumGamma.

Default: 10

'verbose'

Verbosity level, an integer from 0 to 2. Higher values give more progress messages.

Default: 0

Output Arguments

err

Numeric vector or matrix of errors. err is the misclassification error rate, meaning the
average fraction of misclassified data over all folds.

• If delta is a scalar (default), err(i) is the misclassification error rate for obj
regularized with gamma(i).

• If delta is a vector, err(i,j) is the misclassification error rate for obj regularized
with gamma(i) and delta(j).

• If delta is a matrix, err(i,j) is the misclassification error rate for obj regularized
with gamma(i) and delta(i,j).

gamma

Vector of Gamma values used for regularization. See “Gamma and Delta” on page
22-1027.

delta

Vector or matrix of Delta values used for regularization. See “Gamma and Delta” on page
22-1027.

 cvshrink

22-1027

• If you give a scalar for the delta name-value pair, the output delta is a row vector
the same size as gamma, with entries equal to the input scalar.

• If you give a row vector for the delta name-value pair, the output delta is a matrix
with the same number of columns as the row vector, and with the number of rows
equal to the number of elements of gamma. The output delta(i,j) is equal to the
input delta(j).

• If you give a matrix for the delta name-value pair, the output delta is the same as
the input matrix. The number of rows of delta must equal the number of elements in
gamma.

numpred

Numeric vector or matrix containing the number of predictors in the model at various
regularizations. numpred has the same size as err.

• If delta is a scalar (default), numpred(i) is the number of predictors for obj
regularized with gamma(i) and delta.

• If delta is a vector, numpred(i,j) is the number of predictors for obj regularized
with gamma(i) and delta(j).

• If delta is a matrix, numpred(i,j) is the number of predictors for obj regularized
with gamma(i) and delta(i,j).

Definitions

Gamma and Delta

Regularization is the process of finding a small set of predictors that yield an effective
predictive model. For linear discriminant analysis, there are two parameters, γ and δ,
that control regularization as follows. cvshrink helps you select appropriate values of
the parameters.

Let Σ represent the covariance matrix of the data X, and let X̂ be the centered data (the
data X minus the mean by class). Define

D X X
T

= ()diag ˆ * ˆ .

The regularized covariance matrix %S is

22 Functions — Alphabetical List

22-1028

%S S= -() +1 g g D.

Whenever γ ≥ MinGamma, %S is nonsingular.

Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean
vector (the mean of the rows of X). Let C be the correlation matrix of the data X, and let
%C be the regularized correlation matrix:

%C C I= -() +1 g g ,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

x x D C D
T

k

T

k-() -() = -()È
Î

˘
˚ -()È

Î
˘
˚

- - - -m m m m m m0
1

0 0
1 2 1 1 2

0
% %S / /

.

The parameter δ enters into this equation as a threshold on the final term in square

brackets. Each component of the vector %C D k
- - -()È

Î
˘
˚

1 1 2
0

/ m m is set to zero if it is smaller
in magnitude than the threshold δ. Therefore, for class k, if component j is thresholded to
zero, component j of x does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

%C D k
- - -() £1 1 2

0
/

.m m d

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use
predictor i.

Examples

Regularize Data with Many Predictors

Regularize a discriminant analysis classifier, and view the tradeoff between the number
of predictors in the model and the classification accuracy.

 cvshrink

22-1029

Create a linear discriminant analysis classifier for the ovariancancer data. Set the
SaveMemory and FillCoeffs options to keep the resulting model reasonably small.

load ovariancancer

obj = fitcdiscr(obs,grp,...

 'SaveMemory','on','FillCoeffs','off');

Use 10 levels of Gamma and 10 levels of Delta to search for good parameters. This search
is time-consuming. Set Verbose to 1 to view the progress.

rng('default') % for reproducibility

[err,gamma,delta,numpred] = cvshrink(obj,...

 'NumGamma',9,'NumDelta',9,'Verbose',1);

Done building cross-validated model.

Processing Gamma step 1 out of 10.

Processing Gamma step 2 out of 10.

Processing Gamma step 3 out of 10.

Processing Gamma step 4 out of 10.

Processing Gamma step 5 out of 10.

Processing Gamma step 6 out of 10.

Processing Gamma step 7 out of 10.

Processing Gamma step 8 out of 10.

Processing Gamma step 9 out of 10.

Processing Gamma step 10 out of 10.

Plot the classification error rate against the number of predictors.

plot(err,numpred,'k.')

xlabel('Error rate');

ylabel('Number of predictors');

22 Functions — Alphabetical List

22-1030

• “Regularize a Discriminant Analysis Classifier” on page 15-21

See Also
ClassificationDiscriminant | fitcdiscr

More About
• “Discriminant Analysis” on page 15-3

 cvshrink

22-1031

cvshrink
Class: RegressionEnsemble

Cross validate shrinking (pruning) ensemble

Syntax

vals = cvshrink(ens)

[vals,nlearn] = cvshrink(ens)

[vals,nlearn] = cvshrink(ens,Name,Value)

Description

vals = cvshrink(ens) returns an L-by-T matrix with cross-validated values of the
mean squared error. L is the number of lambda values in the ens.Regularization
structure. T is the number of threshold values on weak learner weights. If ens does not
have a Regularization property filled in by the regularize method, pass a lambda
name-value pair.

[vals,nlearn] = cvshrink(ens) returns an L-by-T matrix of the mean number of
learners in the cross-validated ensemble.

[vals,nlearn] = cvshrink(ens,Name,Value) cross validates with additional
options specified by one or more Name,Value pair arguments. You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A regression ensemble, created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-1032

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'cvpartition'

A partition created with cvpartition to use in a cross-validated tree. You can
only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

'holdout'

Holdout validation tests the specified fraction of the data, and uses the rest of the data
for training. Specify a numeric scalar from 0 to 1. You can only use one of these four
options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout',
or 'cvpartition'.

'kfold'

Number of folds to use in a cross-validated tree, a positive integer. If you do not supply a
cross-validation method, cvshrink uses 10-fold cross validation. You can only use one of
these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

'lambda'

Vector of nonnegative regularization parameter values for lasso. If empty, cvshrink
does not perform cross validation.

Default: []

'leaveout'

Use leave-one-out cross validation by setting to 'on'. You can only use one of these four
options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

'threshold'

Numeric vector with lower cutoffs on weights for weak learners. cvshrink discards
learners with weights below threshold in its cross-validation calculation.

Default: 0

 cvshrink

22-1033

Output Arguments

vals

L-by-T matrix with cross-validated values of the mean squared error. L is the number of
values of the regularization parameter 'lambda', and T is the number of 'threshold'
values on weak learner weights.

nlearn

L-by-T matrix with cross-validated values of the mean number of learners in the cross-
validated ensemble.L is the number of values of the regularization parameter 'lambda',
and T is the number of 'threshold' values on weak learner weights.

Examples

Create a regression ensemble for predicting mileage from the carsmall data. Cross
validate the ensemble for three values each of lambda and threshold.

load carsmall

X = [Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'bag',100,'Tree',...

 'type','regression');

[vals nlearn] = cvshrink(ens,'lambda',[.01 .1 1],...

 'threshold',[0 .01 .1])

vals =

 20.0949 19.9007 131.6316

 20.0924 19.8431 128.0989

 19.9759 19.7987 119.5574

nlearn =

 13.3000 11.6000 3.5000

 13.2000 11.5000 3.6000

 13.4000 11.4000 3.9000

Clearly, setting a threshold of 0.1 leads to unacceptable errors, while a threshold of
0.01 gives similar errors to a threshold of 0. The mean number of learners with a
threshold of 0.1 is about 11.5, whereas the mean number is about 13.2 when the
threshold is 0.

22 Functions — Alphabetical List

22-1034

See Also
regularize | shrink

 datasample

22-1035

datasample
Randomly sample from data, with or without replacement

Syntax

y = datasample(data,k)

y = datasample(data,k,dim)

[y,idx] = datasample(data,k,...)

[y,...] = datasample(s,data,k,...)

[y,...] = datasample(data,k,Name,Value)

[y,...] = datasample(data,k,dim,Name,Value)

Description

y = datasample(data,k) returns k observations sampled uniformly at random, with
replacement, from the data in data.

y = datasample(data,k,dim) returns a sample taken along dimension dim of data.

[y,idx] = datasample(data,k,...) returns an index vector indicating which
values datasample sampled from data.

[y,...] = datasample(s,data,k,...) uses the random number stream s to
generate random numbers.

[y,...] = datasample(data,k,Name,Value) or [y,...] = datasample(
data,k,dim,Name,Value) samples with additional options specified by one or more
Name,Value pair arguments.

Input Arguments

data

Vector, matrix, N-dimensional array, table, or dataset array representing the data from
which to sample. By default, datasample regards the rows of a data matrix, or the first

22 Functions — Alphabetical List

22-1036

nonsingleton dimension of a data array, as data elements. Change this behavior with the
dim argument.

k

Positive integer, the number of samples.

dim

Integer specifying the dimension on which to take samples. For example, if data is a
matrix and dim is 2, y contains a selection of columns in data. If data is a table or
dataset array and dim is 2, y contains a selection of variables in data. Use dim to ensure
sampling along a specific dimension regardless of whether data is a vector, matrix or N-
dimensional array.

Default: 1

s

Random number stream. Create s using rng or RandStream.

Default: The global random number stream

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Replace'

Select the sample with replacement if Replace is true, or without replacement if
Replace is false. If Replace is false, k must not be larger than the number of data
elements in data.

Default: true

'Weights'

Vector with the same number of elements as data elements in data, and with
nonnegative elements. Sample with probability proportional to the elements of Weights.

 datasample

22-1037

Default: ones(datasize,1), where datasize is the number of data elements in data

Output Arguments

y

• If data is a vector, y is a vector containing k elements selected from data.
• If data is a matrix, y is a matrix containing k rows selected from data. Or, if dim = 2,

y is a matrix containing k columns selected from data
• If data is an N-dimensional array, datasample samples along its first non-singleton

dimension. Or, if you give a dim name-value pair, datasample samples along the
dimension dim.

When the sample is taken with replacement (default), y can contain repeated
observations from data. Set the Replace name-value pair to false to sample without
replacement.

idx

Vector of indices indicating which elements datasample chose from data to create y. For
example:

• If data is a vector, y = data(idx).
• If data is a matrix, y = data(idx,:).

Examples

Draw five unique values from the integers 1:10.

y = datasample(1:10,5,'Replace',false)

y =

 6 3 7 8 5

Generate a random sequence of the characters ACGT, with replacement, according to
specified probabilities.

seq = datasample('ACGT',48,'Weights',[0.15 0.35 0.35 0.15])

seq =

22 Functions — Alphabetical List

22-1038

CTTCGACTGTGAGTGGGCGCGACAAGGCTACCGGCCCGGGCGGCACTC

Select a random subset of columns from a data matrix.

X = randn(10,1000);

Y = datasample(X,5,2,'Replace',false)

Y =

 0.7007 0.3382 2.1298 -0.1891 0.5026

 0.6520 -0.6693 -0.1961 -0.9915 1.9107

 0.1785 0.6640 2.3247 -1.1735 -1.0020

 1.6760 2.6102 -0.8902 -0.7735 1.8676

 -0.3251 -0.6415 -0.2572 -0.1629 -1.0523

 0.1011 0.9323 -1.3088 -0.4477 0.8036

 -0.5767 -0.5778 -0.8556 0.8672 -0.0727

 -0.0615 -0.9084 0.9020 -0.4185 -1.9520

 0.7256 -1.1228 0.7558 1.2691 2.4997

 -1.2273 0.5754 -0.8755 -0.8224 -1.2066

Resample observations from a dataset array to create a bootstrap replicate dataset.

load hospital

y = datasample(hospital,size(hospital,1));

Use the second output to sample “in parallel" from two data vectors.

x1 = randn(100,1);

x2 = randn(100,1);

[y1,idx] = datasample(x1,10);

y2 = x2(idx);

Alternatives

You can use randi or randperm to generate indices for random sampling with or
without replacement, respectively. However, datasample can be more convenient
because it samples directly from your data. datasample also allows weighted sampling.

More About

Tips

• To sample random integers with replacement from a range, use randi.

 datasample

22-1039

• To sample random integers without replacement, use randperm or datasample.
• To randomly sample from data, with or without replacement, use datasample.

Algorithms

datasample uses randperm, rand, or randi to generate random values. Therefore,
datasample changes the state of the MATLAB global random number generator.
Control the random number generator using rng.

For selecting weighted samples without replacement, datasample uses the algorithm of
Wong and Easton [1].

References

[1] Wong, C. K. and M. C. Easton. An Efficient Method for Weighted Sampling Without
Replacement. SIAM Journal of Computing 9(1), pp. 111–113, 1980.

See Also
rand | randi | randperm | RandStream | rng

22 Functions — Alphabetical List

22-1040

dataset class

Arrays for statistical data

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

Dataset arrays are used to collect heterogeneous data and metadata including variable
and observation names into a single container variable. Dataset arrays are suitable for
storing column-oriented or tabular data that are often stored as columns in a text file or
in a spreadsheet, and can accommodate variables of different types, sizes, units, etc.

Dataset arrays can contain different kinds of variables, including numeric, logical,
character, categorical, and cell. However, a dataset array is a different class than the
variables that it contains. For example, even a dataset array that contains only variables
that are double arrays cannot be operated on as if it were itself a double array. However,
using dot subscripting, you can operate on variable in a dataset array as if it were a
workspace variable.

You can subscript dataset arrays using parentheses much like ordinary numeric arrays,
but in addition to numeric and logical indices, you can use variable and observation
names as indices.

Construction

Use the dataset constructor to create a dataset array from variables in the MATLAB
workspace. You can also create a dataset array by reading data from a text or
spreadsheet file. You can access each variable in a dataset array much like fields in
a structure, using dot subscripting. See the following section for a list of operations
available for dataset arrays.

 dataset class

22-1041

.dataset
Construct dataset array

Methods

cat
Concatenate dataset arrays

cellstr
Create cell array of strings from dataset
array

dataset2cell
Convert dataset array to cell array

dataset2struct
Convert dataset array to structure

datasetfun
Apply function to dataset array variables

disp
Display dataset array

display
Display dataset array

double
Convert dataset variables to double array

end
Last index in indexing expression for
dataset array

export
Write dataset array to file

get
Access dataset array properties

horzcat
Horizontal concatenation for dataset arrays

intersect
Set intersection for dataset array
observations

22 Functions — Alphabetical List

22-1042

isempty
True for empty dataset array

ismember
Dataset array elements that are members
of set

ismissing
Find dataset array elements with missing
values

join
Merge observations

length
Length of dataset array

ndims
Number of dimensions of dataset array

numel
Number of elements in dataset array

replacedata
Replace dataset variables

replaceWithMissing
Insert missing data indicators into a
dataset array

set
Set and display properties

setdiff
Set difference for dataset array
observations

setxor
Set exclusive or for dataset array
observations

single
Convert dataset variables to single array

size
Size of dataset array

sortrows
Sort rows of dataset array

 dataset class

22-1043

stack
Stack data from multiple variables into
single variable

subsasgn
Subscripted assignment to dataset array

subsref
Subscripted reference for dataset array

summary
Print summary of dataset array

union
Set union for dataset array observations

unique
Unique observations in dataset array

unstack
Unstack data from single variable into
multiple variables

vertcat
Vertical concatenation for dataset arrays

Properties

A dataset array D has properties that store metadata (information about your
data). Access or assign to a property using P = D.Properties.PropName or
D.Properties.PropName = P, where PropName is one of the following:

Description
String describing data set

DimNames
Two-element cell array of strings giving
names of dimensions of data set

ObsNames
Cell array of nonempty, distinct strings
giving names of observations in data set

Units
Units of variables in data set

22 Functions — Alphabetical List

22-1044

UserData
Variable containing additional information
associated with data set

VarDescription
Cell array of strings giving descriptions of
variables in data set

VarNames
Cell array giving names of variables in data
set

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

Examples

Load a dataset array from a .mat file and create some simple subsets:

load hospital

h1 = hospital(1:10,:)

h2 = hospital(:,{'LastName' 'Age' 'Sex' 'Smoker'})

% Access and modify metadata

hospital.Properties.Description

hospital.Properties.VarNames{4} = 'Wgt'

% Create a new dataset variable from an existing one

hospital.AtRisk = hospital.Smoker | (hospital.Age > 40)

% Use individual variables to explore the data

boxplot(hospital.Age,hospital.Sex)

h3 = hospital(hospital.Age<30,...

 {'LastName' 'Age' 'Sex' 'Smoker'})

% Sort the observations based on two variables

h4 = sortrows(hospital,{'Sex','Age'})

 dataset class

22-1045

See Also
tdfread | textscan | xlsread

How To
• “Dataset Arrays” on page 2-132

22 Functions — Alphabetical List

22-1046

dataset
Class: dataset

Construct dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

A = dataset(varspec,'ParamName',Value)

A = dataset('File',filename,'ParamName',Value)

A = dataset('XLSFile',filename,'ParamName',Value)

A = dataset('XPTFile',xptfilename,'ParamName',Value)

Description

A = dataset(varspec,'ParamName',Value) creates dataset array A using the
workspace variable input method varspec and one or more optional name/value pairs
(see Parameter Name/Value Pairs).

The input method varspec can be one or more of the following:

• VAR — a workspace variable. dataset uses the workspace name for the variable
name in A. To include multiple variables, specify VAR_1,VAR_2,...,VAR_N. Variables
can be arrays of any size, but all variables must have the same number of rows.
VAR can also be an expression. In this case, dataset creates a default name
automatically.

• {VAR,name} — a workspace variable, VAR and a variable name, name . dataset
uses name as the variable name. To include multiple variables and names, specify
{VAR_1,name_1}, {VAR_2,name_2},..., {VAR_N,name_N}.

 dataset

22-1047

• {VAR,name_1,...,name_m} — an m-columned workspace variable, VAR. dataset uses
the names name_1, ..., name_m as variable names. You must include a name for
every column in VAR. Each column becomes a separate variable in A.

You can combine these input methods to include as many variables and names as
needed. Names must be valid, unique MATLAB identifier strings. For example input
combinations, see Examples. For optional name/value pairs see Inputs.

To convert numeric arrays, cell arrays, structure arrays, or tables to dataset arrays, you
can also use (respectively):

• mat2dataset

• cell2dataset

• struct2dataset

• table2dataset

Note: Dataset arrays may contain built-in types or array objects as variables. Array
objects must implement each of the following:

• Standard MATLAB parenthesis indexing of the form var(i,...), where i is a
numeric or logical vector corresponding to rows of the variable

• A size method with a dim argument
• A vertcat method

A = dataset('File',filename,'ParamName',Value) creates dataset array A from
column-oriented data in the text file specified by the string filename. Variables in A
are of type double if data in the corresponding column of the file, following the column
header, are entirely numeric; otherwise the variables in A are cell arrays of strings.
dataset converts empty fields to either NaN (for a numeric variable) or the empty string
(for a string-valued variable). dataset ignores insignificant white space in the file. You
cannot specify both a file and workspace variables as input. See Name/Value Pairs for
more information.

A = dataset('XLSFile',filename,'ParamName',Value) creates dataset array A
from column-oriented data in the Excel spreadsheet specified by the string filename.
Variables in A are of type double if data in the corresponding column of the spreadsheet,
following the column header, are entirely numeric; otherwise the variables in A are cell
arrays of strings. See Name/Value Pairs for more information.

22 Functions — Alphabetical List

22-1048

A = dataset('XPTFile',xptfilename,'ParamName',Value) creates a dataset
array from a SAS® XPORT format file. Variable names from the XPORT format file are
preserved. Numeric data types in the XPORT format file are preserved but all other data
types are converted to cell arrays of strings. The XPORT format allows for 28 missing
data types. dataset represents these in the file by an upper case letter, '.' or '_'.
dataset converts all missing data to NaN values in A. See Name/Value Pairs for more
information.

Parameter Name/Value Pairs

Specify one or more of the following name/value pairs when constructing a dataset:

'VarNames'

A cell array {name_1,...,name_m} naming the m variables in A with the specified
variable names. Names must be valid, unique MATLAB identifier strings. The number
of names must equal the number of variables in A. You cannot use the VarNames
parameter if you provide names for individual variables using {VAR,name} pairs. To
specify VarNames when using a file as input, set ReadVarNames to false.

'ObsNames'

A cell array {name_1,...,name_n} naming the n observations in A with the specified
observation names. The names need not be valid MATLAB identifier strings, but must
be unique. The number of names must equal the number of observations (rows) in A. To
specify ObsNames when using a file as input, set ReadObsNames to false.

Name/value pairs available when using text files as inputs:

'Delimiter'

A string indicating the character separating columns in the file. Values are

• '\t' (tab, the default when no format is specified)
• ' ' (space, the default when a format is specified)
• ',' (comma)
• ';' (semicolon)
• '|' (bar)

 dataset

22-1049

'Format'

A format string, as accepted by textscan. dataset reads the file using textscan,
and creates variables in A according to the conversion specifiers in the format string.
You may also provide any name/value pairs accepted by textscan. Using the Format
parameter is much faster for large files. If ReadObsNames is true, the format string
should include a format specifier for the first column of the file.

'HeaderLines'

Numeric value indicating the number of lines to skip at the beginning of a file.

Default: 0

'TreatAsEmpty'

Specifies strings to treat as the empty string in a numeric column. Values may be a
character string or a cell array of strings. The parameter applies only to numeric columns
in the file; dataset does not accept numeric literals such as '-99'.

Name/value pairs available when using text files or Excel spreadsheets as
inputs:

'ReadVarNames'

A logical value indicating whether (true) or not (false) to read variable names from the
first row of the file. The default is true. If ReadVarNames is true, variable names in the
column headers of the file or range (if using an Excel spreadsheet) cannot be empty.

'ReadObsNames'

A logical value indicating whether (true) or not (false) to read observation names
from the first column of the file or range (if using an Excel spreadsheet). The default
is false. If ReadObsNames and ReadVarNames are both true, dataset saves the
header of the first column in the file or range as the name of the first dimension in
A.Properties.DimNames.

When reading from an XPT format file, the ReadObsNames parameter name/value pair
determines whether or not to try to use the first variable in the file as observation names.
Specify as a logical value (default false). If the contents of the first variable are not
valid observation names then dataset reads the variable into a variable of the dataset
array and does not set the observation names.

22 Functions — Alphabetical List

22-1050

Name/value pairs available when using Excel spreadsheets as input:

'Sheet'

A positive scalar value of type double indicating the sheet number, or a quoted string
indicating the sheet name.

'Range'

A string of the form 'C1:C2' where C1 and C2 are the names of cells at opposing corners
of a rectangular region to be read, as for xlsread. By default, the rectangular region
extends to the right-most column containing data. If the spreadsheet contains empty
columns between columns of data, or if the spreadsheet contains figures or other non-
tabular information, specify a range that contains only data.

Examples

Create a dataset array from workspace variables, including observation names:

load cereal

cereal = dataset(Calories,Protein,Fat,Sodium,Fiber,Carbo,...

 Sugars,'ObsNames',Name)

cereal.Properties.VarDescription = Variables(4:10,2);

Create a dataset array from a single, multi-columned workspace variable, designating
variable names for each column:

load cities

categories = cellstr(categories);

cities = dataset({ratings,categories{:}},...

 'ObsNames',cellstr(names))

Load data from a text or spreadsheet file

patients = dataset('File','hospital.dat',...

 'Delimiter',',','ReadObsNames',true)

patients2 = dataset('XLSFile','hospital.xls',...

 'ReadObsNames',true)

1 Load patient data from the CSV file hospital.dat and store the information in a
dataset array with observation names given by the first column in the data (patient
identification):

 dataset

22-1051

patients = dataset('file','hospital.dat', ...

 'format','%s%s%s%f%f%f%f%f%f%f%f%f', ...

 'Delimiter',',','ReadObsNames',true);

You can also load the data without specifying a format string. dataset will
automatically create dataset variables that are either double arrays or cell arrays
of strings, depending on the contents of the file:

patients = dataset('file','hospital.dat',...

 'delimiter',',',...

 'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels to 'No' and
'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});

3 Add new levels to smoke as placeholders for more detailed histories of smokers:

patients.smoke = addlevels(patients.smoke,...

 {'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that

were present in A, caused some array elements to have

undefined levels.

Note that smokers now have an undefined level.
6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also
cell2dataset | mat2dataset | struct2dataset | tdfread | textscan | xlsread

More About
• “Dataset Arrays” on page 2-132

22 Functions — Alphabetical List

22-1052

dataset2cell
Class: dataset

Convert dataset array to cell array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

C = dataset2cell(D)

Description

C = dataset2cell(D) converts the dataset array D to a cell array C. Each variable of
D becomes a column in C. If D is an M-by-N array, then C is (M+1)-by-N, with the variable
names of D in the first row. If D contains observation names, then C is (M+1)-by-(N+1),
with the observation names in the first column.

See Also
dataset | cell2dataset | dataset.export

More About
• “Dataset Arrays” on page 2-132

 dataset2struct

22-1053

dataset2struct
Class: dataset

Convert dataset array to structure

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

S = dataset2struct(D)

S = dataset2struct(D,'AsScalar',true)

Description

S = dataset2struct(D) converts a dataset array to a structure array. Each variable
of D becomes a field in S. If D is an M-by-N dataset array, then S is M-by-1 and has N
fields. If D contains observation names, then S contains those names in the additional
field ObsNames.

S = dataset2struct(D,'AsScalar',true) converts a dataset array to a scalar
structure. Each variable of D becomes a field in S. If D is an M-by-N dataset array, then
S has N fields, each of which as M rows. If D contains observation names, then S contains
those names in the additional field ObsNames.

Input Arguments

D

M-by-N dataset array.

22 Functions — Alphabetical List

22-1054

Output Arguments

S

M-by-1 structure array, with N fields. If the input dataset array contains observation
names, then S has an additional field ObsNames.

If you specify 'AsScalar',true, then S is a scalar structure, with N fields, each with M
rows.

Examples

Convert Dataset Array to Structure Array

Load sample dataset array.

load('hospital')

Create a dataset array, D, that has only a subset of the observations and variables.

D = hospital(1:8,{'LastName','Sex','Age'});

size(D)

ans =

 8 3

The dataset array D has 8 observations and 3 variables.

Convert D to a structure array.

S = dataset2struct(D)

S =

8x1 struct array with fields:

 ObsNames

 LastName

 Sex

 Age

The structure is 8x1, corresponding to the 8 observations in the dataset array. S also has
the field ObsNames, since D had observation names.

 dataset2struct

22-1055

Display the field data for the first element of S.

S(1)

ans =

 ObsNames: 'YPL-320'

 LastName: 'SMITH'

 Sex: [1x1 nominal]

 Age: 38

This information corresponds to the first observation (row) of the dataset array.

Convert Dataset Array to Scalar Structure

Load sample dataset array.

load('hospital')

Create a dataset array, D, that has only a subset of the observations and variables.

D = hospital(1:8,{'LastName','Sex','Age'});

size(D)

ans =

 8 3

The dataset array D has 8 observations and 3 variables.

Convert D to a scalar structure array.

S = dataset2struct(D,'AsScalar',true)

S =

 ObsNames: {8x1 cell}

 LastName: {8x1 cell}

 Sex: [8x1 nominal]

 Age: [8x1 double]

The data in the fields of the scalar structure is 8x1, corresponding to the 8 observations
in the dataset array. S also has the field ObsNames, since D had observation names.

Display the data for the field LastName.

22 Functions — Alphabetical List

22-1056

S.LastName

ans =

 'SMITH'

 'JOHNSON'

 'WILLIAMS'

 'JONES'

 'BROWN'

 'DAVIS'

 'MILLER'

 'WILSON'

The structure field LastName contains all of the data that was in the original dataset
array variable, LastName.

See Also
dataset | dataset2cell | struct2dataset

More About
• “Dataset Arrays” on page 2-132

 dataset2table

22-1057

dataset2table
Convert dataset array to table

Syntax

t = dataset2table(ds)

Description

t = dataset2table(ds) converts a dataset array to a table.

Examples

Convert a Dataset Array to a Table

Load the sample data, which contains nutritional information for 77 cereals.

load cereal;

Create a dataset array containing the calorie, protein, fat, and name data for the first
five cereals. Label the variables.

Calories = Calories(1:5);

Protein = Protein(1:5);

Fat = Fat(1:5);

Name = Name(1:5);

cereal = dataset(Calories,Protein,Fat,'ObsNames',Name)

cereal.Properties.VarDescription = Variables(4:6,2);

cereal =

 Calories Protein Fat

 100% Bran 70 4 1

 100% Natural Bran 120 3 5

 All-Bran 70 4 1

 All-Bran with Extra Fiber 50 4 0

 Almond Delight 110 2 2

22 Functions — Alphabetical List

22-1058

Convert the dataset array to a table.

t = dataset2table(cereal)

t =

 Calories Protein Fat

 -------- ------- ---

 100% Bran 70 4 1

 100% Natural Bran 120 3 5

 All-Bran 70 4 1

 All-Bran with Extra Fiber 50 4 0

 Almond Delight 110 2 2

Input Arguments

ds — Input dataset array
dataset array

Input dataset array to convert to a table, specified as a dataset array. Each variable in ds
becomes a variable in the output table t.

Output Arguments

t — Output table
table

Output table, returned as a table. The table can store metadata such as descriptions,
variable units, variable names, and row names. For more information, see Table
Properties.

More About
• “Array Dimensions”
• “Dataset Arrays” on page 2-132

See Also
dataset | table

 datasetfun

22-1059

datasetfun

Class: dataset

Apply function to dataset array variables

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

b = datasetfun(fun,A)

[b,c,...] = datasetfun(fun,A)

[b,...] = datasetfun(fun,A,...,'UniformOutput',false)

[b,...] = datasetfun(fun,A,...,'DatasetOutput',true)

[b,...] = datasetfun(fun,A,...,'DataVars',vars)

[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames)

[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun)

Description

b = datasetfun(fun,A) applies the function specified by fun to each variable of the
dataset array A, and returns the results in the vector b. The ith element of b is equal to
fun applied to the ith dataset variable of A. fun is a function handle to a function that
takes one input argument and returns a scalar value. fun must return values of the
same class each time it is called, and datasetfun concatenates them into the vector b.
The outputs from fun must be one of the following types: numeric, logical, character,
structure, or cell.

To apply functions that return results that are nonscalar or of different sizes and types,
use the 'UniformOutput' or 'DatasetOutput' parameters described below.

22 Functions — Alphabetical List

22-1060

Do not rely on the order in which datasetfun computes the elements of b, which is
unspecified.

If fun is bound to more than one built-in function or file, (that is, if it represents a set
of overloaded functions), datasetfun follows MATLAB dispatching rules in calling the
function. (See “Function Precedence Order”.)

[b,c,...] = datasetfun(fun,A), where fun is a function handle to a function that
returns multiple outputs, returns vectors b, c, ..., each corresponding to one of the output
arguments of fun. datasetfun calls fun each time with as many outputs as there are in
the call to datasetfun. fun may return output arguments having different classes, but
the class of each output must be the same each time fun is called.

[b,...] = datasetfun(fun,A,...,'UniformOutput',false) allows you to
specify a function fun that returns values of different sizes or types. datasetfun
returns a cell array (or multiple cell arrays), where the ith cell contains the value of fun
applied to the ith dataset variable of A. Setting 'UniformOutput' to true is equivalent
to the default behavior.

[b,...] = datasetfun(fun,A,...,'DatasetOutput',true) specifies that the
output(s) of fun are returned as variables in a dataset array (or multiple dataset arrays).
fun must return values with the same number of rows each time it is called, but it
may return values of any type. The variables in the output dataset array(s) have the
same names as the variables in the input. Setting 'DatasetOutput' to false (the
default) specifies that the type of the output(s) from datasetfun is determined by
'UniformOutput'.

[b,...] = datasetfun(fun,A,...,'DataVars',vars) allows you to apply fun
only to the dataset variables in A specified by vars. vars is a positive integer, a vector of
positive integers, a variable name, a cell array containing one or more variable names, or
a logical vector.

[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames) specifies observation
names for the dataset output when 'DatasetOutput' is true.

[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun), where efun is a
function handle, specifies the MATLAB function to call if the call to fun fails. The error-
handling function is called with the following input arguments:

• A structure with the fields identifier, message, and index, respectively
containing the identifier of the error that occurred, the text of the error message, and
the linear index into the input array(s) at which the error occurred

 datasetfun

22-1061

• The set of input arguments at which the call to the function failed

The error-handling function should either re-throw an error, or return the same number
of outputs as fun. These outputs are then returned as the outputs of datasetfun. If
'UniformOutput' is true, the outputs of the error handler must also be scalars of the
same type as the outputs of fun. For example, the following code could be saved in a file
as the error-handling function:

function [A,B] = errorFunc(S,varargin)

warning(S.identifier,S.message);

A = NaN;

B = NaN;

If an error-handling function is not specified, the error from the call to fun is rethrown.

Examples

Work With Datasets Using Function Handles

Use function handles to compute the mean and plot a histogram of selected variables in a
dataset array.

Load the sample data.

load hospital

Use datasetfun to compute the means of the Weight and BloodPressure variables,
and store the results in a dataset array.

stats = datasetfun(@mean,hospital,...

 'DataVars',{'Weight','BloodPressure'},...

 'UniformOutput',false)

stats =

 [154] [1x2 double]

The variable BloodPressure contains two columns: One for the systolic measurement,
and one for the diastolic measurement.

22 Functions — Alphabetical List

22-1062

Display the mean of the blood pressure variable.

stats{2}

ans =

 122.7800 82.9600

Plot a histogram of the blood pressure variable.

datasetfun(@hist,hospital,...

 'DataVars','BloodPressure',...

 'UniformOutput',false);

title('{\bf Blood Pressure}')

legend('Systolic','Diastolic','Location','N')

 datasetfun

22-1063

See Also
grpstats

22 Functions — Alphabetical List

22-1064

daugment
D-optimal augmentation

Syntax
dCE2 = daugment(dCE,mruns)

[dCE2,X] = daugment(dCE,mruns)

[dCE2,X] = daugment(dCE,mruns,model)

[dCE2,X] = daugment(...,param1,val1,param2,val2,...)

Description
dCE2 = daugment(dCE,mruns) uses a coordinate-exchange algorithm to D-optimally
add mruns runs to an existing experimental design dCE for a linear additive model.

[dCE2,X] = daugment(dCE,mruns) also returns the design matrix X associated with
the augmented design.

[dCE2,X] = daugment(dCE,mruns,model) uses the linear regression model specified
in model. model is one of the following strings:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In
this case, model should have one column for each factor and one row for each term in

 daugment

22-1065

the model. The entries in any row of model are powers for the factors in the columns.
For example, if a model has factors X1, X2, and X3, then a row [0 1 2] in model
specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies
a constant term, which can be omitted.

[dCE2,X] = daugment(...,param1,val1,param2,val2,...) specifies additional
parameter/value pairs for the design. Valid parameters and their values are listed in the
following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified as a 2-
by-nfactors matrix, where nfactors is the number of factors.
Alternatively, this value can be a cell array containing nfactors
elements, each element specifying the vector of allowable values
for the corresponding factor.

'categorical' Indices of categorical predictors.
'display' Either 'on' or 'off' to control display of the iteration counter.

The default is 'on'.
'excludefun' Handle to a function that excludes undesirable runs. If the

function is f, it must support the syntax b = f(S), where S is a
matrix of treatments with nfactors columns, where nfactors
is the number of factors, and b is a vector of Boolean values with
the same number of rows as S. b(i) is true if the ith row S should
be excluded.

'init' Initial design as an mruns-by-nfactors matrix, where nfactors
is the number of factors. The default is a randomly selected set of
points.

'levels' Vector of number of levels for each factor.
'maxiter' Maximum number of iterations. The default is 10.
'options' The value is a structure that contains options specifying whether

to compute multiple tries in parallel, and specifying how to use
random numbers when generating the starting points for the tries.
Create the options structure with statset. Applicable statset
parameters are:

• 'UseParallel' — If true and if a parpool of the Parallel
Computing Toolbox is open, compute in parallel. If the Parallel

22 Functions — Alphabetical List

22-1066

Parameter Value

Computing Toolbox is not installed, or a parpool is not open,
computation occurs in serial mode. Default is false, meaning
serial computation.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute
reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects.
If you do not specify Streams, daugment uses the default
stream or streams. If you choose to specify Streams, use a
single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.
'tries' Number of times to try to generate a design from a new starting

point. The algorithm uses random points for each try, except
possibly the first. The default is 1.

Note: The daugment function augments an existing design using a coordinate-exchange
algorithm; the 'start' parameter of the candexch function provides the same
functionality using a row-exchange algorithm.

Examples

The following eight-run design is adequate for estimating main effects in a four-factor
model:

dCEmain = cordexch(4,8)

dCEmain =

 1 -1 -1 1

 -1 -1 1 1

 -1 1 -1 1

 1 1 1 -1

 daugment

22-1067

 1 1 1 1

 -1 1 -1 -1

 1 -1 -1 -1

 -1 -1 1 -1

To estimate the six interaction terms in the model, augment the design with eight
additional runs:

dCEinteraction = daugment(dCEmain,8,'interaction')

dCEinteraction =

 1 -1 -1 1

 -1 -1 1 1

 -1 1 -1 1

 1 1 1 -1

 1 1 1 1

 -1 1 -1 -1

 1 -1 -1 -1

 -1 -1 1 -1

 -1 1 1 1

 -1 -1 -1 -1

 1 -1 1 -1

 1 1 -1 1

 -1 1 1 -1

 1 1 -1 -1

 1 -1 1 1

 1 1 1 -1

The augmented design is full factorial, with the original eight runs in the first eight rows.

See Also
dcovary | cordexch | candexch

22 Functions — Alphabetical List

22-1068

dcovary

D-optimal design with fixed covariates

Syntax

dCV = dcovary(nfactors,fixed)

[dCV,X] = dcovary(nfactors,fixed)

[dCV,X] = dcovary(nfactors,fixed,model)

[dCV,X] = daugment(...,param1,val1,param2,val2,...)

Description

dCV = dcovary(nfactors,fixed) uses a coordinate-exchange algorithm to generate
a D-optimal design for a linear additive model with nfactors factors, subject to the
constraint that the model include the fixed covariate factors in fixed. The number of
runs in the design is the number of rows in fixed. The design dCV augments fixed with
initial columns for treatments of the model terms.

[dCV,X] = dcovary(nfactors,fixed) also returns the design matrix X associated
with the design.

[dCV,X] = dcovary(nfactors,fixed,model) uses the linear regression model
specified in model. model is one of the following strings:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)

 dcovary

22-1069

4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In
this case, model should have one column for each factor and one row for each term in
the model. The entries in any row of model are powers for the factors in the columns.
For example, if a model has factors X1, X2, and X3, then a row [0 1 2] in model
specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies
a constant term, which can be omitted.

[dCV,X] = daugment(...,param1,val1,param2,val2,...) specifies additional
parameter/value pairs for the design. Valid parameters and their values are listed in the
following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified as a 2-
by-nfactors matrix. Alternatively, this value can be a cell array
containing nfactors elements, each element specifying the vector
of allowable values for the corresponding factor.

'categorical' Indices of categorical predictors.
'display' Either 'on' or 'off' to control display of the iteration counter.

The default is 'on'.
'excludefun' Handle to a function that excludes undesirable runs. If the

function is f, it must support the syntax b = f(S), where S is a
matrix of treatments with nfactors columns and b is a vector of
Boolean values with the same number of rows as S. b(i) is true if
the ith row S should be excluded.

'init' Initial design as an mruns-by-nfactors matrix. The default is a
randomly selected set of points.

'levels' Vector of number of levels for each factor.
'maxiter' Maximum number of iterations. The default is 10.
'options' The value is a structure that contains options specifying whether

to compute multiple tries in parallel, and specifying how to use
random numbers when generating the starting points for the tries.
Create the options structure with statset. Applicable statset
parameters are:

22 Functions — Alphabetical List

22-1070

Parameter Value

• 'UseParallel' — If true and if a parpool of the Parallel
Computing Toolbox is open, compute in parallel. If the Parallel
Computing Toolbox is not installed, or a parpool is not open,
computation occurs in serial mode. Default is false, meaning
serial computation.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute
reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects.
If you do not specify Streams, dcovary uses the default
stream or streams. If you choose to specify Streams, use a
single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.
'tries' Number of times to try to generate a design from a new starting

point. The algorithm uses random points for each try, except
possibly the first. The default is 1.

Examples

Example 1

Suppose you want a design to estimate the parameters in a three-factor linear
additive model, with eight runs that necessarily occur at different times. If the process
experiences temporal linear drift, you may want to include the run time as a variable in
the model. Produce the design as follows:

time = linspace(-1,1,8)';

[dCV1,X] = dcovary(3,time,'linear')

dCV1 =

 -1.0000 1.0000 1.0000 -1.0000

 dcovary

22-1071

 1.0000 -1.0000 -1.0000 -0.7143

 -1.0000 -1.0000 -1.0000 -0.4286

 1.0000 -1.0000 1.0000 -0.1429

 1.0000 1.0000 -1.0000 0.1429

 -1.0000 1.0000 -1.0000 0.4286

 1.0000 1.0000 1.0000 0.7143

 -1.0000 -1.0000 1.0000 1.0000

X =

 1.0000 -1.0000 1.0000 1.0000 -1.0000

 1.0000 1.0000 -1.0000 -1.0000 -0.7143

 1.0000 -1.0000 -1.0000 -1.0000 -0.4286

 1.0000 1.0000 -1.0000 1.0000 -0.1429

 1.0000 1.0000 1.0000 -1.0000 0.1429

 1.0000 -1.0000 1.0000 -1.0000 0.4286

 1.0000 1.0000 1.0000 1.0000 0.7143

 1.0000 -1.0000 -1.0000 1.0000 1.0000

The column vector time is a fixed factor, normalized to values between ±1. The number
of rows in the fixed factor specifies the number of runs in the design. The resulting
design dCV gives factor settings for the three controlled model factors at each time.

Example 2

The following example uses the dummyvar function to block an eight-run experiment into
4 blocks of size 2 for estimating a linear additive model with two factors:

fixed = dummyvar([1 1 2 2 3 3 4 4]);

dCV2 = dcovary(2,fixed(:,1:3),'linear')

dCV2 =

 1 1 1 0 0

 -1 -1 1 0 0

 -1 1 0 1 0

 1 -1 0 1 0

 1 1 0 0 1

 -1 -1 0 0 1

 -1 1 0 0 0

 1 -1 0 0 0

The first two columns of dCV2 contain the settings for the two factors; the last three
columns are dummy variable codings for the four blocks.

See Also
daugment | cordexch | dummyvar

22 Functions — Alphabetical List

22-1072

DefaultYfit property
Class: TreeBagger

Default value returned by predict and oobPredict

Description

The DefaultYfit property controls what predicted value TreeBagger returns when no
prediction is possible, for example when the oobPredict method needs to predict for an
observation that is in-bag for all trees in the ensemble.

For classification, you can set this property to either '' or 'MostPopular'. If you
choose 'MostPopular' (default), the property value becomes the name of the most
probable class in the training data.

For regression, you can set this property to any numeric scalar. The default is the mean
of the response for the training data.

If you set this property to '' for classification or NaN for regression, TreeBagger
excludes the in-bag observations from computation of the out-of-bagerror and margin.

See Also
Predict | oobPredict | OOBIndices

 delete

22-1073

delete
Class: qrandstream

Delete handle object

Syntax

delete(h)

Description

delete(h) deletes the handle object h, where h is a scalar handle. The delete method
deletes a handle object but does not clear the handle from the workspace. A deleted
handle is no longer valid.

See Also
clear | isvalid | qrandstream

22 Functions — Alphabetical List

22-1074

DeltaCritDecisionSplit property
Class: TreeBagger

Split criterion contributions for each predictor

Description

The DeltaCritDecisionSplit property is a numeric array of size 1-by-Nvars of
changes in the split criterion summed over splits on each variable, averaged across the
entire ensemble of grown trees.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

 dendrogram

22-1075

dendrogram
Dendrogram plot

Syntax

dendrogram(tree)

dendrogram(tree,Name,Value)

dendrogram(tree,P)

dendrogram(tree,P,Name,Value)

H = dendrogram(___)

[H,T,outperm] = dendrogram(___)

Description

dendrogram(tree) generates a dendrogram plot of the hierarchical binary cluster tree.
A dendrogram consists of many U-shaped lines that connect data points in a hierarchical
tree. The height of each U represents the distance between the two data points being
connected.

• If there are 30 or fewer data points in the original data set, then each leaf in the
dendrogram corresponds to one data point.

• If there are more than 30 data points, then dendrogram collapses lower branches so
that there are 30 leaf nodes. As a result, some leaves in the plot correspond to more
than one data point.

dendrogram(tree,Name,Value) uses additional options specified by one or more
name-value pair arguments.

dendrogram(tree,P) generates a dendrogram plot with no more than P leaf nodes. If
there are more than P data points in the original data set, then dendrogram collapses
the lower branches of the tree. As a result, some leaves in the plot correspond to more
than one data point.

dendrogram(tree,P,Name,Value) uses additional options specified by one or more
name-value pair arguments.

22 Functions — Alphabetical List

22-1076

H = dendrogram(___) generates a dendrogram plot and returns a vector of line
handles. You can use any of the input arguments from the previous syntaxes.

[H,T,outperm] = dendrogram(___) also returns a vector containing the leaf node
number for each object in the original data set, T, and a vector giving the order of the
node labels of the leaves as shown in the dendrogram, outperm.

• It is useful to return T when the number of leaf nodes, P, is less than the total number
of data points, so that some leaf nodes in the display correspond to multiple data
points.

• The order of the node labels given in outperm is from left to right for a horizontal
dendrogram, and from bottom to top for a vertical dendrogram.

Examples

Plot Dendrogram

Generate sample data.

rng('default') % For reproducibility

X = rand(10,3);

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram
using the default options.

tree = linkage(X,'average');

figure()

dendrogram(tree)

 dendrogram

22-1077

Specify Dendrogram Leaf Node Order

Generate sample data.

rng('default') % For reproducibility

X = rand(10,3);

Create a hierarchical binary cluster tree using linkage.

tree = linkage(X,'average');

D = pdist(X);

leafOrder = optimalleaforder(tree,D)

leafOrder =

 3 7 6 1 4 9 5 8 10 2

Plot the dendrogram using an optimal leaf order.

figure()

22 Functions — Alphabetical List

22-1078

dendrogram(tree,'Reorder',leafOrder)

The order of the leaf nodes in the dendrogram plot corresponds—from left to right—to
the permutation in leafOrder.

Specify Number of Nodes in Dendrogram Plot

Generate sample data.

rng('default') % For reproducibility

X = rand(100,2);

There are 100 data points in the original data set, X.

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram for
the complete tree (100 leaf nodes) by setting the input argument P equal to 0.

tree = linkage(X,'average');

 dendrogram

22-1079

figure()

dendrogram(tree,0)

Now, plot the dendrogram with only 25 leaf nodes. Return the mapping of the original
data points to the leaf nodes shown in the plot.

figure()

[~,T] = dendrogram(tree,25);

22 Functions — Alphabetical List

22-1080

List the original data points that are in leaf node 7 of the dendrogram plot.

find(T==7)

ans =

 7

 33

 60

 70

 74

 76

 86

Change Dendrogram Orientation and Line Width

Generate sample data.

rng('default') % For reproducibility

X = rand(10,3);

 dendrogram

22-1081

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram with
a vertical orientation, using the default color threshold. Return handles to the lines so
you can change the dendrogram line widths.

tree = linkage(X,'average');

figure()

H = dendrogram(tree,'Orientation','left','ColorThreshold','default');

set(H,'LineWidth',2)

Input Arguments

tree — Hierarchical binary cluster tree
matrix returned by linkage

Hierarchical binary cluster tree, specified as an (M – 1)-by-3 matrix that you generate
using linkage, where M is the number of data points in the original data set.

22 Functions — Alphabetical List

22-1082

P — Maximum number of leaf nodes
30 (default) | positive integer value

Maximum number of leaf nodes to include in the dendrogram plot, specified as a positive
integer value.

• If there are P or fewer data points in the original data set, then each leaf in the
dendrogram corresponds to one data point.

• If there are more than P data points, then dendrogram collapses lower branches so
that there are P leaf nodes. As a result, some leaves in the plot correspond to more
than one data point.

If you do not specify P, then dendrogram uses 30 as the maximum number of leaf
nodes. To display the complete tree, set P equal to 0.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Orientation','left','Reorder',myOrder specifies a vertical
dendrogram with leaves in the order specified by myOrder.

'Reorder' — Order of leaf nodes
vector

Order of leaf nodes in the dendrogram plot, specified as the comma-separated pair
consisting of 'Reorder' and a vector giving the order of nodes in the complete tree.
The order vector must be a permutation of the vector 1:M, where M is the number of
data points in the original data set. Specify the order from left to right for horizontal
dendrograms, and from bottom to top for vertical dendrograms.

If M is greater than the number of leaf nodes in the dendrogram plot, P (by default, P is
30), then you can only specify a permutation vector that does not separate the groups of
leaves that correspond to collapsed nodes.
Example:

 dendrogram

22-1083

Data Types: single | double

'CheckCrossing' — Indicator for whether to check for crossing branches
true (default) | false

Indicator for whether to check for crossing branches in the dendrogram plot, specified as
the comma-separated pair consisting of 'CheckCrossing' and either true or false.
This option is only useful when you specify a value for Reorder.

When CheckCrossing has the value true, dendrogram issues a warning if the order of
the leaf nodes causes crossing branches in the plot. If the dendrogram plot does not show
a complete tree (because the number of data points in the original data set is greater
than P), dendrogram only issues a warning when the order of the leaf nodes causes
branch to cross in the dendrogram as shown in the plot. That is, there is no warning if
the order causes crossing branches in the complete tree but not in the dendrogram as
shown in the plot.
Data Types: logical

'ColorThreshold' — Threshold for unique colors
'default' | scalar value in the range (0,max(tree(:,3)))

Threshold for unique colors in the dendrogram plot, specified as the comma-separated
pair consisting of 'ColorThreshold' and either the string 'default' or a scalar
value in the range (0,max(tree(:,3))). If ColorThreshold has the value T, then
dendrogram assigns a unique color to each group of nodes in the dendrogram whose
linkage is less than T.

• If ColorThreshold has the value 'default', then the threshold, T, is 70% of the
maximum linkage, 0.7*max(tree(:,3)).

• If you do not specify a value for ColorThreshold, or if you specify a threshold
outside the range (0,max(tree(:,3))), then dendrogram uses only one color for
the dendrogram plot.

'Orientation' — Orientation of dendrogram
'top' (default) | 'bottom' | 'left' | 'right'

Orientation of the dendrogram in the figure window, specified as the comma-separated
pair consisting of 'Orientation' and one of these strings:

'top' Top to bottom

22 Functions — Alphabetical List

22-1084

'bottom' Bottom to top
'left' Left to right
'right' Right to left

Data Types: char

'Labels' — Label for each data point
character array | cell array of strings

Label for each data point in the original data set, specified as the comma-separated pair
consisting of 'Labels' and a character array or cell array of strings. dendrogram labels
any leaves in the dendrogram plot containing a single data point with that data point’s
label.
Data Types: char | cell

Output Arguments

H — Handles to lines
vector

Handles to lines in the dendrogram plot, returned as a vector.

T — Leaf node numbers
column vector

Leaf node numbers for each data point in the original data set, returned as a column
vector of length M, where M is the number of data points in the original data set.

When there are fewer than P data points in the original data (P is 30, by default), all data
points are displayed in the dendrogram, with each node containing a single data point. In
this case, T is the identity map, T = (1:M)'.

T is useful when P is less than the total number of data points. That is, when some
leaf nodes in the dendrogram display correspond to multiple data points. For example,
to find out which data points are contained in leaf node k of the dendrogram plot, use
find(T==k).

outperm — Permutation of node labels
vector

 dendrogram

22-1085

Permutation of the node labels of the leaves of the dendrogram as shown in the plot,
returned as a row vector. outperm gives the order from left to right for a horizontal
dendrogram, and from bottom to top for a vertical dendrogram. If there are P leaves in
the dendrogram plot, outperm is a permutation of the vector 1:P.

See Also
cluster | clusterdata | cophenet | inconsistent | linkage | pdist |
silhouette

22 Functions — Alphabetical List

22-1086

Description property
Class: dataset

String describing data set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

Description is a string describing the data set. The default is an empty string.

 designecoc

22-1087

designecoc

Coding matrix for reducing error-correcting output code to binary

Syntax

M = designecoc(K,name)

M = designecoc(K,name,Name,Value)

Description

M = designecoc(K,name) returns the coding matrix M that reduces the error-
correcting output code (ECOC) design specified by name and K classes to a binary
problem. M has K rows and L columns, with each row corresponding to a class and each
column corresponding to a binary learner. name and K determine the value of L.

You can view or customize M, and then specify it as the coding matrix for training an
ECOC multiclass classifier using fitcecoc.

M = designecoc(K,name,Name,Value) returns the coding matrix with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify the number of trials when generating a dense or sparse,
random coding matrix.

Examples

Train ECOC Classifiers Using a Custom Coding Design

Consider the arrhythmia data set. There are 16 classes in the study, 13 of which
are represented in the data. The first class indicates that the subject did not have
arrhythmia, and the last class indicates that the subject's arrhythmia state was not
recorded. Suppose that the other classes are ordinal levels indicating the severity of
arrhythmia. Train an ECOC classifier using a custom coding design specified by the
description of the classes.

22 Functions — Alphabetical List

22-1088

Load the arrhythmia data set.

load arrhythmia

K = 13; % Number of distinct classes

Construct a coding matrix that describes the nature of the classes.

OrdMat = designecoc(11,'ordinal');

nOM = size(OrdMat);

class1VSOrd = [1; -ones(11,1); 0];

class1VSClass16 = [1; zeros(11,1); -1];

OrdVSClass16 = [0; ones(11,1); -1];

Coding = [class1VSOrd class1VSClass16 OrdVSClass16,...

 [zeros(1,nOM(2)); OrdMat; zeros(1,nOM(2))]]

Coding =

 1 1 0 0 0 0 0 0 0 0 0 0 0

 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 0 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 0 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 0 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

 -1 0 1 1 1 1 1 -1 -1 -1 -1 -1 -1

 -1 0 1 1 1 1 1 1 -1 -1 -1 -1 -1

 -1 0 1 1 1 1 1 1 1 -1 -1 -1 -1

 -1 0 1 1 1 1 1 1 1 1 -1 -1 -1

 -1 0 1 1 1 1 1 1 1 1 1 -1 -1

 -1 0 1 1 1 1 1 1 1 1 1 1 -1

 -1 0 1 1 1 1 1 1 1 1 1 1 1

 0 -1 -1 0 0 0 0 0 0 0 0 0 0

Train an ECOC classifier using the custom coding design Coding and specify that the
binary learners are decision trees.

Mdl = fitcecoc(X,Y,'Coding',Coding,'Learner','Tree');

Estimate the in-sample classification error.

genErr = resubLoss(Mdl)

genErr =

 0.1460

 designecoc

22-1089

Choose Among Several Random Coding Designs

If you request a random coding matrix by specifying sparserandom or denserandom,
then, by default, designecoc generates 10,000 random matrices. Then, it chooses
the matrix with the largest, minimal, pair-wise row distances based on the Hamming
measure. You can specify to generate more matrices to increase the chance of obtaining
a better one, or you can generate several coding matrices, and then see which performs
best.

Load the arrhythmia data set. Reserve the observations classified into class 16 (i.e.,
those that do not have an arrhythmia classification) as new data.

load arrhythmia

oosIdx = Y == 16;

isIdx = ~oosIdx;

Y = categorical(Y(isIdx));

tabulate(Y)

K = numel(unique(Y));

 Value Count Percent

 1 245 56.98%

 2 44 10.23%

 3 15 3.49%

 4 15 3.49%

 5 13 3.02%

 6 25 5.81%

 7 3 0.70%

 8 2 0.47%

 9 9 2.09%

 10 50 11.63%

 14 4 0.93%

 15 5 1.16%

Generate four random coding design matrices such that the first two are dense and the
second two are sparse. Specify to find the best out of 20,000 variates.

rng(1); % For reproducibility

Coding = cell(4,1); % Preallocate for coding matrices

CodingTypes = {'denserandom','denserandom','sparserandom','sparserandom'};

for j = 1:4;

 Coding{j} = designecoc(K,CodingTypes{j},'NumTrials',2e4);

22 Functions — Alphabetical List

22-1090

end

Coding is a 4-by-1 cell array, where each cell is a coding design matrix. The matrices
have K rows, but the number of columns (i.e., binary learners) might vary.

Train and cross validate ECOC classifiers using the 15-fold cross validation. Specify that
each ECOC classifier be trained using a classification tree, and the random coding matrix
stored in Coding.

Mdl = cell(4,1); % Preallocate for the ECOC classifiers

for j = 1:4;

 Mdl{j} = fitcecoc(X(isIdx,:),Y,'Learners','tree',...

 'Coding',Coding{j},'KFold',15);

end

Warning: One or more folds do not contain points from all the groups.

Warning: One or more folds do not contain points from all the groups.

Warning: One or more folds do not contain points from all the groups.

Warning: One or more folds do not contain points from all the groups.

Mdl is a 4-by-1 cell array of ClassificationPartitionedECOC models. Several classes
have low relative frequency in the data, and so there is a chance that, during cross
validation, some in-sample folds will not train using observations from those classes.

Estimate the 15-fold classification error for each classifier.

genErr = nan(4,1);

for j = 1:4;

 genErr(j) = kfoldLoss(Mdl{j});

end

genErr

genErr =

 0.2279

 0.2163

 0.2116

 0.2256

Though the generalization error is still high, the best performing model, based solely
on the out-of-sample classification error, is the model that used the coding design
Coding{3}.

 designecoc

22-1091

You can try to improve the generalization error by tuning some parameters of the binary
learners. For example, you can specify to use the twoing rule or deviance for the split
criterion, rather than the default Gini's diversity index. You might also specify to use
surrogate splits since there are missing values in the data.

Input Arguments

K — Number of classes
positive integer

Number of classes, specified as a positive integer.

K specifies the number of rows of the coding matrix M.

Data Types: single | double

name — Coding design name
'binarycomplete' | 'denserandom' | 'onevsall' | 'onevsone' |
'sparserandom' | ...

Coding design name, specified as a string. This table summarizes the available coding
schemes.

Value Number of Binary Learners Description

'allpairs' and
'onevsone'

K(K – 1)/2 For each binary learner, one
class is positive, another is
negative, and the software
ignores the rest. This design
exhausts all combinations of
class pair assignments.

'binarycomplete'
2 1

1()K-

-

This design partitions
the classes into all binary
combinations, and does not
ignore any classes. For each
binary learner, all class
assignments are -1 and 1
with at least one positive
and negative class in the
assignment.

22 Functions — Alphabetical List

22-1092

Value Number of Binary Learners Description

'denserandom' Random, but approximately
10 log2K

For each binary learner,
the software randomly
assigns classes into positive
or negative classes, with at
least one of each type. For
more details, see “Random
Coding Design Matrices” on
page 22-1542.

'onevsall' K For each binary learner, one
class is positive and the rest
are negative. This design
exhausts all combinations of
positive class assignments.

'ordinal' K – 1 For the first binary learner,
the first class is negative,
and the rest positive. For
the second binary learner,
the first two classes are
negative, the rest positive,
and so on.

'sparserandom' Random, but approximately
15 log2K

For each binary learner,
the software randomly
assigns classes as positive
or negative with probability
0.25 for each, and ignores
classes with probability
0.5. For more details, see
“Random Coding Design
Matrices” on page 22-1542.

'ternarycomplete'
3 22 1

1K K
- +()+() This design partitions the

classes into all ternary
combinations. All class
assignments are 0, -1, and
1 with at least one positive
and one negative class in the
assignment.

 designecoc

22-1093

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NumTrials',1000 specifies to generate 1000 random matrices.

'NumTrials' — Number of random coding matrices to generate
10000 (default) | positive integer

Number of random coding matrices to generate, specified as the comma-separated pair
consisting of 'NumTrials' and a positive integer.

The software:

• Generates NumTrials matrices, and selects the one with the maximal, pair-wise row
distance.

• Ignores NumTrials for all values of name except 'denserandom' and
'sparserandom'.

Example: 'NumTrials',1000

Data Types: single | double

Output Arguments

M — Coding matrix
numeric matrix

Coding matrix that reduces an ECOC scheme to binary, returned as a numeric matrix.
M has K rows and L columns, where L is the number of binary learners. Each row
corresponds to a class and each column corresponds to a binary learner.

The elements of M are -1, 0, or 1, and the value corresponds to a dichotomous class
assignment. This table describes the meaning of M(i,j), that is, the class that learner j
assigns to observations in class i.

22 Functions — Alphabetical List

22-1094

Value Dichotomous Class Assignment

-1 Negative class
0 Before training, learner j removes

observations in class i from the data set.
1 Positive class

The binary learners for designs denserandom, binarycomplete, and onevsall do not
assign 0 to observations in any class.

More About

Tips

• The number of binary learners grows with the number of classes. For a problem with
many classes, the binarycomplete and ternarycomplete coding designs are not
efficient. However:

• If K ≤ 4, then use ternarycomplete coding design rather than sparserandom.
• If K ≤ 5, then use binarycomplete coding design rather than denserandom.

You can display the coding design matrix of a trained ECOC classifier by entering
Mdl.CodingMatrix into the Command Window.

• You should form a coding matrix using intimate knowledge of the application, and
taking into account computational constraints. If you have sufficient computational
power and time, then try several coding matrices and choose the one with the best
performance (e.g., check the confusion matrices for each model using confusionmat).

Algorithms

Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates custom coding
matrices by ensuring:

• Every element is -1, 0, or 1.
• Every column contains as least one -1 and one 1.
• For all distinct column vectors u and v, u ≠ v and u ≠ -v.

 designecoc

22-1095

• All rows vectors are unique.
• The matrix can separate any two classes. That is, you can travel from any row to any

other row following these rules:

• You can move vertically from 1 to -1 or -1 to 1.
• You can move horizontally from a nonzero element to another nonzero element.
• You can use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j
cannot be separated by the design. For example, in the coding design

1 0

1 0

0 1

0 1

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move
horizontally from the -1 in row 2 to column 2 since there is a 0 in that position).
Therefore, the software rejects this coding design.

Random Coding Design Matrices

For a given number of classes, e.g., K, the software generates random coding design
matrices as follows.

1 The software generates one of the following:

a Dense random — The software sets each element of the K-by-Ld coding design
matrix with a 1 or a -1 with equal probability, where L K

d
ª ÈÍ ˘̇10 2log .

b Sparse random — The software sets each element of the K-by-Ls coding design
matrix with a 1, with probability 0.25, a -1 with probability 0.25, and a 0 with
probability 0.5, where L K

s
ª ÈÍ ˘̇15 2log .

2 If a column does not contain at least one 1 and at least one -1, then the software
removes that column.

3 For distinct columns u and v, if u = v or u ≠ -v, then the software removes v from the
coding design matrix.

22 Functions — Alphabetical List

22-1096

The software randomly generates 10,000 matrices by default, and retains the matrix
with the largest, minimal pair-wise row distance based on the Hamming measure ([4])
given by

D(,) . ,k k m m m m

l

L

k l k l k l k l1 2

1

0 5
1 2 1 2

= -

=

Â

where mkjl is an element of coding design matrix j.

References

[1] Fürnkranz, Johannes. “Round Robin Classification.” J. Mach. Learn. Res., Vol. 2,
2002, pp. 721–747.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp.
285–297.

See Also
ClassificationECOC | fitcecoc

 devianceTest

22-1097

devianceTest
Class: GeneralizedLinearModel

Analysis of deviance

Syntax

tbl = devianceTest(mdl)

Description

tbl = devianceTest(mdl) returns an analysis of deviance table for the mdl
generalized linear model. tbl gives the result of a test of whether the fitted model fits
significantly better than a constant model.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

Output Arguments

tbl

Table containing two rows and four columns.

• The first row relates to a constant model.
• The second row relates to the full model in mdl.
• The columns are:

Deviance Deviance is twice the difference between
the log likelihoods of the corresponding

22 Functions — Alphabetical List

22-1098

model (mdl or constant) and the saturated
model. The test statistic for the deviance
test is twice the difference between
the log likelihoods of the tested model
mdl and the constant model. For more
information, see Deviance.

DFE Error degrees of freedom. It is the number
of observations minus the number of
parameters in the corresponding model.

chi2Stat F statistic or Chi-squared statistic,
depending on whether the dispersion is
estimated (F statistic) or not (Chi-squared
statistic)

• Chi-squared statistic is the difference
between the deviance of the constant
model and the deviance of the full
model.

• F statistic is the difference between
the deviance of the constant model and
the deviance of the full model, divided
by the estimated dispersion.

pValue p-value associated with the test. It is
the Chi-squared statistic with (number
of coefficients in the model minus one)
degrees of freedom, or F statistic with
(number of coefficients in the model
minus one) numerator degrees of freedom,
and DFE denominator degrees of freedom.

Definitions

Deviance

Deviance of a model M1 is twice the difference between the loglikelihood of that model
and the saturated model, MS. The saturated model is the model with the maximum
number of parameters that can be estimated. For example, if there are n observations yi,

 devianceTest

22-1099

i = 1, 2, ..., n, with potentially different values for Xi
Tβ, then you can define a saturated

model with n parameters. Let L(b,y) denote the maximum value of the likelihood function
for a model. Then the deviance of model M1 is

- () - ()()2 1log , log , ,L b y L b yS

where b1 are the estimated parameters for model M1 and bS are the estimated
parameters for the saturated model. The deviance has a chi-square distribution with n –
p degrees of freedom, where n is the number of parameters in the saturated model and p
is the number of parameters in model M1.

If M1 and M2 are two different generalized linear models, then the fit of the models can
be assessed by comparing the deviances D1 and D2 of these models. The difference of the
deviances is

D D D L b y L b y L b y L b yS S= - = - () - ()() + () - ()()2 1 2 12 2log , log , log , log ,

== - () - ()()2 2 1log , log , .L b y L b y

Asymptotically, this difference has a chi-square distribution with degrees of freedom v
equal to the number of parameters that are estimated in one model but fixed (typically
at 0) in the other. That is, it is equal to the difference in the number of parameters
estimated in M1 and M2. You can get the p-value for this test using 1 - chi2cdf(D,V),
where D = D2 – D1.

Examples

Deviance Test

Perform a deviance test on a generalized linear model.

Construct a generalized linear model.

rng('default') % for reproducibility

X = randn(100,5);

mu = exp(X(:,[1 4 5])*[.4;.2;.3]);

y = poissrnd(mu);

mdl = fitglm(X,y,'linear','Distribution','poisson');

22 Functions — Alphabetical List

22-1100

Test whether the model differs from a constant in a statistically significant way.

tbl = devianceTest(mdl)

tbl =

 Deviance DFE

 ________ ___

 log(y) ~ 1 128.58 99

 log(y) ~ 1 + x1 + x2 + x3 + x4 + x5 83.726 94

 chi2Stat

 log(y) ~ 1

 log(y) ~ 1 + x1 + x2 + x3 + x4 + x5 44.858

 pValue

 log(y) ~ 1

 log(y) ~ 1 + x1 + x2 + x3 + x4 + x5 1.5502e-08

The p-value is very small, indicating that the model significantly differs from a constant.

See Also
GeneralizedLinearModel

More About
• “Generalized Linear Models” on page 10-12

 designMatrix

22-1101

designMatrix
Class: GeneralizedLinearMixedModel

Fixed- and random-effects design matrices

Syntax

D = designMatrix(glme)

D = designMatrix(glme,'Fixed')

D = designMatrix(glme,'Random')

Dsub = designMatrix(glme,'Random',gnumbers)

[Dsub,gnames] = designMatrix(glme,'Random',gnumbers)

Description

D = designMatrix(glme) or D = designMatrix(glme,'Fixed') returns the fixed-
effects design matrix for the generalized linear mixed-effects model glme.

D = designMatrix(glme,'Random') returns the random-effects design matrix for the
generalized linear mixed-effects model glme.

Dsub = designMatrix(glme,'Random',gnumbers) returns a subset of the
random-effects design matrix for the generalized linear mixed-effects model glme that
corresponds to the grouping variables indicated by gnumbers.

[Dsub,gnames] = designMatrix(glme,'Random',gnumbers) also returns the
grouping variable names that correspond to gnumbers.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

22 Functions — Alphabetical List

22-1102

gnumbers — Grouping variable numbers
array of integer values

Grouping variable numbers, specified as an array of integer values containing elements
in the range [1,R], where R is the length of the cell array that contains the grouping
variables for the generalized linear mixed-effects model glme.

For example, you can specify the grouping variables g1, g3, and gr as [1,3,r].

Data Types: single | double

Output Arguments

D — Design matrix
matrix

Design matrix of a generalized linear mixed-effects model glme returned as one of the
following:

• Fixed-effects design matrix — n-by-p matrix consisting of the fixed-effects design
matrix of glme, where n is the number of observations and p is the number of fixed-
effects terms.

• Random-effects design matrix — n-by-k matrix, consisting of the random-effects
design matrix of glme. Here, k is equal to length(B), where B is the random-effects
coefficients vector of generalized linear mixed-effects model glme. The random-effects
design matrix is returned as a sparse matrix. For more information about sparse
matrices, see “Full and Sparse Matrices”.

If glme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR, respectively,
and if q1, q2, ..., qR are the lengths of the random-effects vectors that are associated
with g1, g2, ..., gR, respectively, then B is a column vector of length q1*m1 + q2*m2 + ...
+ qR*mR.

B is made by concatenating the empirical Bayes predictors of random effects
vectors corresponding to each level of each grouping variable as [g1level1;
g1level2; ...; g1levelm1; g2level1; g2level2; ...; g2levelm2; ...;

gRlevel1; gRlevel2; ...; gRlevelmR]'.

Data Types: single | double

 designMatrix

22-1103

Dsub — Submatrix of random-effects design matrix
matrix

Submatrix of random-effects design matrix that corresponds to the grouping variables
specified by gnumbers, returned as an n-by-k matrix, where k is length of the column
vector Bsub.

Bsub contains the concatenated empirical Bayes predictors of random-effects vectors,
corresponding to each level of the grouping variables, specified by gnumbers.

If, for example, gnumbers is [1,3,r], this corresponds to the grouping variables g1, g3,
and gr. Then, Bsub contains the empirical Bayes predictors of random-effects vectors
corresponding to each level of the grouping variables g1, g3, and gr, such as

[g1level1; g1level2; ...; g1levelm1; g3level1; g3level2; ...; g3levelm3;

grlevel1; grlevel2; ...; grlevelmr]'.

Thus, Dsub*Bsub represents the contribution of all random effects corresponding to
grouping variables g1, g3, and gr to the response of glme.

If gnumbers is empty, then Dsub is the full random-effects design matrix.

Data Types: single | double

gnames — Names of grouping variables
k-by-1 cell array

Names of grouping variables corresponding to the integers in gnumbers if the design type
is 'Random', returned as a k-by-1 cell array. If the design type is 'Fixed', then gnames
is an empty matrix [].

Data Types: cell

Examples

Obtain Fixed- and Random-Effects Design Matrices

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

22 Functions — Alphabetical List

22-1104

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

 designMatrix

22-1105

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Extract the fixed-effects design matrix and display rows 1 through 10.

Dfe = designMatrix(glme,'Fixed');

disp(Dfe(1:10,:))

 1.0000 0 0.1834 0.2259 1.0000 0

 1.0000 0 0.3035 0.0725 0 1.0000

 1.0000 0 0.0717 0.1630 1.0000 0

 1.0000 0 0.1069 0.0809 -1.0000 -1.0000

 1.0000 0 0.0241 0.0319 1.0000 0

 1.0000 0 0.1214 0.1114 0 1.0000

 1.0000 0 0.0033 0.0553 1.0000 0

 1.0000 0 0.2350 0.0616 1.0000 0

 1.0000 0 0.0488 0.0177 0 1.0000

 1.0000 0 0.1148 0.0105 1.0000 0

Column 1 of the fixed-effects design matrix Dfe contains the constant term. Column 2, 3,
and 4 contain the newprocess, time_dev, and temp_dev terms, respectively. Columns
5 and 6 contain dummy variables for supplier_C and supplier_B, respectively.

Extract the random-effects design matrix and display rows 1 through 10.

Dre = designMatrix(glme,'Random');

disp(Dre(1:10,:))

 (1,1) 1

 (2,1) 1

 (3,1) 1

22 Functions — Alphabetical List

22-1106

 (4,1) 1

 (5,1) 1

 (6,2) 1

 (7,2) 1

 (8,2) 1

 (9,2) 1

 (10,2) 1

Convert the sparse matrix Dre to a full matrix and display rows 1 through 10.

>> full(Dre(1:10,:))

ans =

 Columns 1 through 10

 1 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0

 Columns 11 through 20

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

Each column corresponds to a level of the grouping variable factory.

See Also
fitglme | fitted | GeneralizedLinearMixedModel | residuals | response

 designMatrix

22-1107

designMatrix
Class: LinearMixedModel

Fixed- and random-effects design matrices

Syntax

D = designMatrix(lme)

D = designMatrix(lme,'Fixed')

D = designMatrix(lme,'Random')

Dsub = designMatrix(lme,'Random',gnumbers)

[Dsub,gnames] = designMatrix(lme,'Random',gnumbers)

Description

D = designMatrix(lme) or D = designMatrix(lme,'Fixed') returns the fixed-
effects design matrix for the linear mixed-effects model lme.

D = designMatrix(lme,'Random') returns the random-effects design matrix for the
linear mixed-effects model lme.

Dsub = designMatrix(lme,'Random',gnumbers) returns a subset of the random-
effects design matrix for the linear mixed-effects model lmecorresponding to the grouping
variables indicated by the integers in gnumbers.

[Dsub,gnames] = designMatrix(lme,'Random',gnumbers) also returns the
grouping variable names corresponding to the integers in gnumbers.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

22 Functions — Alphabetical List

22-1108

For properties and methods of this object, see LinearMixedModel.

gnumbers — Grouping variable numbers
integer array

Grouping variable numbers, specified as an integer array, where R is the length of the
cell array that contains the grouping variables for the linear mixed-effects model lme.

For example, you can specify the grouping variables g1, g3, and gr as follows.

Example: [1,3,r]

Data Types: double | single

Output Arguments

D — Design matrix
matrix

Design matrix of a linear mixed-effects model lme returned as one of the following:

• Fixed-effects design matrix — n-by-p matrix consisting of the fixed-effects design of
lme, where n is the number of observations and p is the number of fixed-effects terms.

• Random-effects design matrix — n-by-k matrix, consisting of the random-effects
design matrix of lme. Here, k is equal to length(B), where B is the random-effects
coefficients vector of linear mixed-effects model lme.

If lme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR, respectively,
and if q1, q2, ..., qR are the lengths of the random-effects vectors that are associated
with g1, g2, ..., gR, respectively, then B is a column vector of length q1*m1 + q2*m2 + ...
+ qR*mR.

B is made by concatenating the best linear unbiased predictors of random-effects
vectors corresponding to each level of each grouping variable as [g1level1;
g1level2; ...; g1levelm1; g2level1; g2level2; ...; g2levelm2; ...;

gRlevel1; gRlevel2; ...; gRlevelmR]'.

Data Types: single | double

Dsub — Submatrix of random-effects design matrix
matrix

 designMatrix

22-1109

Submatrix of random-effects design matrix corresponding to the grouping variables
indicated by the integers in gnumbers, returned as an n-by-k matrix, where k is length of
the column vector Bsub.

Bsub contains the concatenated best linear unbiased predictors (BLUPs) of random-
effects vectors, corresponding to each level of the grouping variables, specified by
gnumbers.

If, for example, gnumbers is [1,3,r], this corresponds to the grouping variables g1,
g3, and gr. Then, Bsub contains the concatenated BLUPs of random-effects vectors
corresponding to each level of the grouping variables g1, g3, and gr, such as

[g1level1; g1level2; ...; g1levelm1; g3level1; g3level2; ...; g3levelm3;

grlevel1; grlevel2; ...; grlevelmr]'.

Thus, Dsub*Bsub represents the contribution of all random effects corresponding to
grouping variables g1, g3, and gr to the response of lme.

If gnumbers is empty, then Dsub is the full random-effects design matrix.

Data Types: single | double

gnames — Names of grouping variables
k-by-1 cell array

Names of grouping variables corresponding to the integers in gnumbers if the design type
is 'Random', returned as a k-by-1 cell array. If the design type is 'Fixed', then gnames
is an empty matrix [].

Data Types: cell

Examples

Display Fixed- and Random-Effects Design Matrices

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

22 Functions — Alphabetical List

22-1110

load shift

The data shows the deviations from the target quality characteristic measured from the
products that 5 operators manufacture during three different shifts, morning, evening,
and night. This is a randomized block design, where the operators are the blocks. The
experiment is designed to study the impact of the time of shift on the performance. The
performance measure is the deviation of the quality characteristics from the target value.
This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);

shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Display the fixed-effects design matrix.

designMatrix(lme)

ans =

 1 1 0

 1 0 0

 1 0 1

 1 1 0

 1 0 0

 1 0 1

 1 1 0

 1 0 0

 1 0 1

 1 1 0

 1 0 0

 1 0 1

 1 1 0

 1 0 0

 1 0 1

The column of 1s represents the constant term in the model. fitlme takes the evening
shift as the reference group and creates two dummy variables to represent the morning
and night shifts, respectively.

 designMatrix

22-1111

Display the random-effects design matrix.

designMatrix(lme,'random')

ans =

 (1,1) 1

 (2,1) 1

 (3,1) 1

 (4,2) 1

 (5,2) 1

 (6,2) 1

 (7,3) 1

 (8,3) 1

 (9,3) 1

 (10,4) 1

 (11,4) 1

 (12,4) 1

 (13,5) 1

 (14,5) 1

 (15,5) 1

The first number, i, in the (i,j) indices corresponds to the observation number, and j
corresponds to the level of the grouping variable, Operator, i.e., the operator number.

Show the full display of the random-effects design matrix.

full(designMatrix(lme,'random'))

ans =

 1 0 0 0 0

 1 0 0 0 0

 1 0 0 0 0

 0 1 0 0 0

 0 1 0 0 0

 0 1 0 0 0

 0 0 1 0 0

 0 0 1 0 0

 0 0 1 0 0

 0 0 0 1 0

 0 0 0 1 0

 0 0 0 1 0

 0 0 0 0 1

 0 0 0 0 1

22 Functions — Alphabetical List

22-1112

 0 0 0 0 1

Each column corresponds to a level of the grouping variable, Operator.

Random-Effects Design Matrix of Multiple Grouping Variables

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Store and examine the full random-effects design matrix.

D = full(designMatrix(lme,'random'));

The first three columns of matrix D contain the indicator variables fitlme creates for
the three levels (Loamy, Silty, Sandy, respectively) of the first grouping variable,
Soil. The next 15 columns contain the indicator variables created for the second
grouping variable, Tomato nested under Soil. These are basically the elementwise

 designMatrix

22-1113

products of the dummy variables representing the levels of Soil (Loamy, Silty, and
Sandy, respectively) and the levels of Tomato (Cherry, Grape, Heirloom, Plum, Vine,
respectively).

Subset of the Random-Effects Design Matrix

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Compute the random-effects design matrix for the second grouping variable, and display
the first 12 rows.

[Dsub,gname] = designMatrix(lme,'random',2);

full(Dsub(1:12,:))

ans =

22 Functions — Alphabetical List

22-1114

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Dsub contains the dummy variables created for the second grouping variable, that is,
tomato nested under soil. These are the elementwise products of the dummy variables
representing the levels of Soil (Loamy, Silty, Sandy, respectively) and the levels of
Tomato (Cherry, Grape, Heirloom, Plum, Vine, respectively).

Display the name of the grouping variable.

gname

gname =

 'Soil:Tomato'

See Also
fitlmematrix | fitted | LinearMixedModel

 dfittool

22-1115

dfittool
Open Distribution Fitting app

This page contains programmatic syntax information for the Distribution Fitting app.
For general usage information, see Distribution Fitting.

Syntax

dfittool

dfittool(y)

dfittool(y,cens)

dfittool(y,cens,freq)

dfittool(y,cens,freq,dsname)

Description

dfittool opens the Distribution Fitting app, or brings focus to the app if it is already
open.

dfittool(y) opens the Distribution Fitting app populated with the data specified by
the vector y.

dfittool(y,cens) uses the vector cens to specify whether each observation in y is
censored.

dfittool(y,cens,freq) uses the vector freq to specify the frequency of each element
of y.

dfittool(y,cens,freq,dsname) creates a data set with the name dsname, using the
data vector, y, censoring indicator, cens, and frequency vector, freq.

Examples

Open Distribution Fitting App with Existing Data

Load the carsmall sample data.

22 Functions — Alphabetical List

22-1116

load carsmall

Open the Distribution Fitting app using the MPG miles per gallon data.

dfittool(MPG)

 dfittool

22-1117

The Distribution Fitting app opens, populated with the MPG data, and displays the
density (PDF) plot. You can use the app to display different plots and fit distributions to
this data.

Open Distribution Fitting App with Censoring Data

Load the sample data.

load(fullfile(matlabroot,'examples','stats','lightbulb.mat'))

The first column of the data contains the lifetime (in hours) of two types of light bulbs.
The second column contains information about the type of light bulb. 1 indicates
fluorescent bulbs, and 0 indicates the incandescent bulb. The third column contains
censoring information. 1 indicates censored data, and 0 indicates the exact failure time.
This is simulated data.

Open the Distribution Fitting app using the first column of lightbulb as the input data,
and the third column as the censoring data. Name the data lifetime.

dfittool(lightbulb(:,1),lightbulb(:,3),[],'lifetime')

To open the Data dialog box, click Data. In the Manage data sets pane, click to
highlight the lifetime data set row. Finally, to open the View Data Set dialog, click
View. The lifetime data appears in the second column and the corresponding censoring
indicator appears in the third column.

22 Functions — Alphabetical List

22-1118

• “Fit a Distribution Using the Distribution Fitting App” on page 5-101

Input Arguments
y — Input data
array of scalar values | variable representing an array of scalar values

Input data, specified as an array of scalar values or a variable representing an array of
such values.
Data Types: single | double

cens — Censoring indicator
zeros(n) (default) | vector of 0 and 1 values

Censoring indicator, specified as a vector of 0 and 1 values. The length of cens must
be equal to the length of y. If y(j) is censored, then (cens(j)==1). If y(j) is not

 dfittool

22-1119

censored, then (cens(j)==0). If cens is omitted or empty, then no y values are
censored.

If you have frequency data (freq) but not censoring data (cens), then you must specify
empty brackets ([]) for cens.

Data Types: single | double

freq — Frequency data
ones(n) (default) | vector of scalar values

Frequency data, specified as a vector of scalar values. The length of freq must be equal to
the length of y. If freq is omitted or empty, then all y values have a frequency of 1.

If you have frequency data (freq) but not censoring data (cens), then you must specify
empty brackets ([]) for cens.

Data Types: single | double

dsname — Data set name
string

Data set name, specified as a string enclosed in single quotes.

If you want to specify a data set name, but do not have censoring data (cens) or frequency
data (freq), then you must specify empty brackets ([]) for both freq and cens.

Example: 'MyData'

Data Types: char

More About
• “Model Data Using the Distribution Fitting App” on page 5-74
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

See Also
fitdist | makedist

22 Functions — Alphabetical List

22-1120

Dimensions property
Class: qrandset

Number of dimensions

Description

Number of dimensions in the point set. The Dimensions property of a point set contains
a positive integer that indicates the number of dimensions for which the points have
values. For example, a point set with Dimensions=5 produces points that each have five
values.

Set this property by specifying the number of dimensions when constructing a new point
set. After construction, you cannot change the value. The default number of dimensions
is 2.

 DimNames property

22-1121

DimNames property
Class: dataset

Two-element cell array of strings giving names of dimensions of data set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

A two-element cell array of strings giving the names of the two dimensions of the data
set. The default is {'Observations' 'Variables'}.

22 Functions — Alphabetical List

22-1122

discardSupportVectors
Class: CompactClassificationECOC

Discard support vectors of linear support vector machine binary learners

Syntax

Mdl = discardSupportVectors(MdlSV)

Description

Mdl = discardSupportVectors(MdlSV) returns a trained error-correcting output
codes (ECOC) model (Mdl) containing at least one linear, support vector machine (SVM)
binary learner. Mdl is similar to the trained ECOC model MdlSV, except:

• The Alpha, SupportVectors, and SupportVectorLabels properties of all linear
SVM binary learners are empty ([]).

• If you display any linear SVM binary learners stored in the cell array of trained
models Mdl.BinaryLearners, the software lists the Beta property instead of
Alpha.

Tip

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties
Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather
than Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM
template that specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors','on')

Mdl = fitcecoc(X,Y,'Learners',t);

You can subsequently remove the support vectors and related values by passing the
resulting ClassificationECOC model to discardSupportVectors.

 discardSupportVectors

22-1123

Input Arguments

MdlSV — Trained ECOC model
ClassificationECOC model | CompactClassificationECOC model

Trained ECOC model containing at least one linear, SVM binary learner, specified as a
ClassificationECOC or CompactClassificationECOC model.

Output Arguments

Mdl — Trained ECOC model
ClassificationECOC model | CompactClassificationECOC model

Trained ECOC model, returned as a ClassificationECOC or
CompactClassificationECOC model. Mdl is the same type as MdlSV.

The properties Alpha, SupportVectorLabels, and SupportVectors of all linear,
SVM binary learners in the cell array Mdl.BinaryLearners are empty. The software
lists the property Beta when you display any linear, SVM binary learner, and does not
list Alpha.

Examples

Retain and Discard Support Vectors of SVM Binary Learners

By default, fitcecoc empties the Alpha, SupportVectorLabels, and
SupportVectors properties of the linear, SVM binary learners stored in the
BinaryLearners property of the trained ECOC model. You can retain the support
vectors and related values, and then discard them from the model.

Load Fisher's iris data set.

load fisheriris

rng(1); % For reproducibility

Train an ECOC model using the entire data set. Specify retaining the support vectors by
passing in the appropriate SVM template.

t = templateSVM('SaveSupportVectors',true);

22 Functions — Alphabetical List

22-1124

MdlSV = fitcecoc(meas,species,'Learners',t);

Mdl is a trained ClassificationECOC model. By default, fitcecoc uses linear, SVM
binary learners. It implements a one-versus-one coding design, which requires three
binary learners for three-class learning.

Access the estimated values using dot notation.

alpha = cell(3,1);

alpha{1} = MdlSV.BinaryLearners{1}.Alpha;

alpha{2} = MdlSV.BinaryLearners{2}.Alpha;

alpha{3} = MdlSV.BinaryLearners{3}.Alpha;

alpha

alpha =

 [3x1 double]

 [3x1 double]

 [23x1 double]

alpha is a 3-by-1 cell array that stores the estimated values of .

Discard the support vectors and related values from the ECOC model.

Mdl = discardSupportVectors(MdlSV);

Mdl is similar to MdlSV, except that the Alpha, SupportVectorLabels, and
SupportVectors of all linear SVM binary learners are empty ([]).

areAllEmpty = @(x)isempty([x.Alpha x.SupportVectors x.SupportVectorLabels]);

cellfun(areAllEmpty,Mdl.BinaryLearners)

ans =

 1

 1

 1

Compare the sizes of the two ECOC models.

vars = whos('MdlSV','Mdl');

 discardSupportVectors

22-1125

100*(1 - vars(1).bytes/vars(2).bytes)

ans =

 5.3485

Mdl is about 5% smaller than MdlSV.

Reduce your memory footprint by compacting Mdl, and then clearing MdlSV and Mdl
from the workspace.

CMdl = compact(Mdl);

clear MdlSV Mdl;

Predict the label for a random row of the training data using the more efficient SVM
model.

idx = randsample(size(meas,1),1)

predictedLabel = predict(CMdl,meas(idx,:))

trueLabel = species(idx)

idx =

 63

predictedLabel =

 'versicolor'

trueLabel =

 'versicolor'

Algorithms

For each linear, SVM binary learner in an ECOC model, predict and resubPredict
estimate SVM scores [f(x)] using

22 Functions — Alphabetical List

22-1126

f x x() ,= ¢ +b b0

β is the Beta property and β0 is the Bias property of the binary learners. You
can access these properties for each linear, SVM binary learner in the cell array
Mdl.BinaryLearners. For more details on the SVM score calculation, see “Support
Vector Machines for Binary Classification” on page 22-1613.

See Also
ClassificationECOC | ClassificationSVM | CompactClassificationECOC |
discardSupportVectors | fitcecoc | fitcsvm | templateSVM

Introduced in R2015a

 discardSupportVectors

22-1127

discardSupportVectors

Class: CompactClassificationSVM

Discard support vectors for linear support vector machine models

Syntax

Mdl = discardSupportVectors(MdlSV)

Description

Mdl = discardSupportVectors(MdlSV) returns the trained, linear support vector
machine (SVM) model Mdl, which is similar to the trained, linear SVM model MdlSV,
except:

• The Alpha, SupportVectors, and SupportVectorLabels properties are empty
([]).

• If you display Mdl, the software lists the Beta property instead of Alpha.

Tips

For a trained, linear SVM model, the SupportVectors property is an nsv-by-p matrix.
nsv is the number of support vectors (at most the training sample size) and p is the
number of predictors or features. The Alpha and SupportVectorLabels properties are
vectors with nsv elements. These properties can be large for complex data sets containing
many observations or examples. However, the Beta property is a vector with p elements.

If the trained SVM model has many support vectors, use discardSupportVectors
to reduce the amount of disk space that the trained, linear SVM model
consumes. You can display the size of the support vector matrix by entering
size(MdlSV.SupportVectors).

22 Functions — Alphabetical List

22-1128

Input Arguments

MdlSV — Trained, linear SVM model
ClassificationSVM model | CompactClassificationSVM model

Trained, linear SVM model, specified as a ClassificationSVM or
CompactClassificationSVM model.

If the field MdlSV.KernelParameters.Function is not 'linear' (i.e., MdlSV is not a
linear SVM model), the software returns an error.

Output Arguments

Mdl — Trained, linear SVM model
ClassificationSVM model | CompactClassificationSVM model

Trained, linear SVM model, returned as a ClassificationSVM or
CompactClassificationSVM model. Mdl is the same type as MdlSV.

The properties Alpha, SupportVectorLabels, and SupportVectors of Mdl are
empty. The software lists the property Beta in its display, and does not list Alpha.

Examples

Discard Support Vectors

To use less disk space, you can discard the support vectors and other related parameters
from a trained, linear SVM.

Load the ionosphere data set.

load ionosphere

Train a linear SVM model using the entire data set.

MdlSV = fitcsvm(X,Y)

numSV = size(MdlSV.SupportVectors,1)

p = size(X,2)

 discardSupportVectors

22-1129

MdlSV =

 ClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 Alpha: [103x1 double]

 Bias: -3.8828

 KernelParameters: [1x1 struct]

 BoxConstraints: [351x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [351x1 logical]

 Solver: 'SMO'

numSV =

 103

p =

 34

By default, fitcsvm trains a linear SVM model for two-class learning. The software lists
Alpha in the display. There are 103 support vectors and 34 predictors. If you discard the
support vectors, the resulting model consumes less memory.

Discard the support vectors and other related parameters.

Mdl = discardSupportVectors(MdlSV)

Mdl.Alpha

Mdl.SupportVectors

Mdl.SupportVectorLabels

Mdl =

 ClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

22 Functions — Alphabetical List

22-1130

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 Beta: [34x1 double]

 Bias: -3.8828

 KernelParameters: [1x1 struct]

 BoxConstraints: [351x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [351x1 logical]

 Solver: 'SMO'

ans =

 []

ans =

 []

ans =

 []

The software lists Beta in the display instead of Alpha. The Alpha, SupportVectors,
and SupportVectorLabels properties are empty.

Compare the sizes of the models.

vars = whos('MdlSV','Mdl');

100*(1 - vars(1).bytes/vars(2).bytes)

ans =

 20.5535

Mdl is about 20% smaller than MdlSV.

Remove MdlSV from the workspace.

 discardSupportVectors

22-1131

clear MdlSV

Reduce Memory Consumption of SVM Models

predict accepts compacted SVM models, and, for linear SVM models, does not require
the Alpha, SupportVectors, and SupportVectorLabels properties to predict labels
for new observations. If your training set is large, consider compacting the SVM model,
and then discarding the stored support vectors and other related estimates.

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Train an SVM model using default options.

MdlSV = fitcsvm(X,Y);

MdlSV is a ClassificationSVM model containing nonempty values for its Alpha,
SupportVectors, and SupportVectorLabels properties.

Reduce the size of the SVM model by discarding the training data, support vectors, and
related estimates.

CMdlSV = compact(MdlSV); % Discard training data

CMdl = discardSupportVectors(CMdlSV); % Discard support vectors

CMdl is a CompactClassificationSVM model.

Compare the sizes of the SVM models MdlSV and CMdl.

vars = whos('MdlSV','CMdl');

100*(1 - vars(1).bytes/vars(2).bytes)

ans =

 97.4447

The compacted model consumes much less memory than the full model.

Predict the label for a random row of the training data using the more efficient SVM
model.

22 Functions — Alphabetical List

22-1132

idx = randsample(size(X,1),1)

predictedLabel = predict(CMdl,X(idx,:))

trueLabel = Y(idx)

idx =

 147

predictedLabel =

 'b'

trueLabel =

 'b'

Algorithms

predict and resubPredict estimate SVM scores [f(x)], and subsequently labels and
estimates posterior probabilities using

f x x() ,= ¢ +b b0

β is Mdl.Beta and β0 is Mdl.Bias. For more details, see “Support Vector Machines for
Binary Classification” on page 22-1613.

See Also
ClassificationECOC | ClassificationSVM | CompactClassificationSVM |
discardSupportVectors | fitcsvm | templateSVM

Introduced in R2015a

 disp

22-1133

disp
Class: classregtree

Display classregtree object

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

display(t)

Description

display(t) prints the classregtree object t.

See Also
classregtree | view

22 Functions — Alphabetical List

22-1134

disp
Class: cvpartition

Display cvpartition object

Syntax

disp(c)

Description

disp(c) prints the cvpartition object c.

See Also
cvpartition

 disp

22-1135

disp
Class: dataset

Display dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

disp(ds)

Description

disp(ds) prints the dataset array ds, including variable names and observation names
(if present), without printing the dataset name. In all other ways it's the same as leaving
the semicolon off an expression.

For numeric or categorical variables that are 2-D and have three or fewer columns, disp
prints the actual data using either short g, long g, or bank format, depending on the
current command line setting. Otherwise, disp prints the size and type of each dataset
element.

For character variables that are 2-D and 10 or fewer characters wide, disp prints quoted
strings. Otherwise, disp prints the size and type of each dataset element.

For cell variables that are 2-D and have three or fewer columns, disp prints the contents
of each cell (or its size and type if too large). Otherwise, disp prints the size of each
dataset element.

For time series variables, disp prints columns for both the time and the data. If the
variable is 2-D and has three or fewer columns, disp prints the actual data Otherwise,
disp prints the size and type of each dataset element.

22 Functions — Alphabetical List

22-1136

For other types of variables, disp prints the size and type of each dataset element.

See Also
dataset | display | format

 disp

22-1137

disp
Class: GeneralizedLinearModel

Display generalized linear regression model

Syntax

disp(mdl)

Description

disp(mdl) displays the mdl linear model.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

Examples

Display a Generalized Linear Regression Model

Create and display a generalized linear regression model.

Create a generalized linear regression model of Poisson data.

X = 2 + randn(100,1);

mu = exp(1 + X/2);

y = poissrnd(mu);

mdl = fitglm(X,y,...

 'y ~ x1','distr','poisson');

Display the model.

disp(mdl)

22 Functions — Alphabetical List

22-1138

Generalized Linear regression model:

 log(y) ~ 1 + x1

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 0.9581 0.090294 10.611 2.6519e-26

 x1 0.51027 0.033738 15.124 1.1179e-51

100 observations, 98 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 221, p-value = 5.77e-50

Alternatives

Enter mdl at the command line to obtain a display, where mdl is the name of your model.

See Also
GeneralizedLinearModel

More About
• “Generalized Linear Models” on page 10-12

 disp

22-1139

disp
Class: GeneralizedLinearMixedModel

Display generalized linear mixed-effects model

Syntax
disp(glme)

Description
disp(glme) displays fitted generalized linear mixed-effects model glme.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Definitions

Akaike and Bayesian Information Criteria

The Akaike information criterion (AIC) is AIC = –2logLM + 2(param).

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log
likelihood.

• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from
the final pseudo likelihood iteration.

• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the
pseudo data from the final pseudo likelihood iteration.

22 Functions — Alphabetical List

22-1140

param is the total number of parameters estimated in the model. For most GLME
models, param is equal to nc + p + 1, where nc is the total number of parameters in the
random-effects covariance, excluding the residual variance, and p is the number of fixed-
effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or
Poisson distributions, then param is equal to (nc + p).

The Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)(param).

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log
likelihood.

• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from
the final pseudo likelihood iteration.

• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the
pseudo data from the final pseudo likelihood iteration.

neff is the effective number of observations.

• If you use 'MPL', 'Laplace', or 'ApproximateLaplace', then neff = n, where n is
the number of observations.

• If you use 'REMPL', then neff = n – p.

param is the total number of parameters estimated in the model. For most GLME
models, param is equal to nc + p + 1, where nc is the total number of parameters in the
random-effects covariance, excluding the residual variance, and p is the number of fixed-
effects coefficients. However, if the dispersion parameter is fixed at 1.0 for binomial or
Poisson distributions, then param is equal to (nc + p).

A lower value of deviance indicates a better fit. As the value of deviance decreases, both
AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on
the number of parameters estimated, p. So, when the number of parameters increase, the
values of AIC and BIC tend to increase as well. When comparing different models, the
model with the lowest AIC or BIC value is considered as the best fitting model.

For models fitted using 'MPL' and 'REMPL', AIC and BIC are based on the log likelihood
(or restricted log likelihood) of pseudo data from the final pseudo likelihood iteration.
Therefore, a direct comparison of AIC and BIC values between models fitted using 'MPL'
and 'REMPL' is not appropriate.

 disp

22-1141

Examples

Display a Generalized Linear Mixed-Effects Model

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

22 Functions — Alphabetical List

22-1142

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Display the model.

disp(glme)

glme =

Generalized linear mixed-effects model fit by ML

Model information:

 Number of observations 100

 Fixed effects coefficients 6

 Random effects coefficients 20

 Covariance parameters 1

 disp

22-1143

 Distribution Poisson

 Link Log

 FitMethod Laplace

Formula:

 defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue

 '(Intercept)' 1.4689 0.15988 9.1875 94 9.8194e-15

 'newprocess' -0.36766 0.17755 -2.0708 94 0.041122

 'time_dev' -0.094521 0.82849 -0.11409 94 0.90941

 'temp_dev' -0.28317 0.9617 -0.29444 94 0.76907

 'supplier_C' -0.071868 0.078024 -0.9211 94 0.35936

 'supplier_B' 0.071072 0.07739 0.91836 94 0.36078

 Lower Upper

 1.1515 1.7864

 -0.72019 -0.015134

 -1.7395 1.5505

 -2.1926 1.6263

 -0.22679 0.083051

 -0.082588 0.22473

Random effects covariance parameters:

Group: factory (20 Levels)

 Name1 Name2 Type Estimate

 '(Intercept)' '(Intercept)' 'std' 0.31381

Group: Error

 Name Estimate

 'sqrt(Dispersion)' 1

The Model information table displays the total number of observations in the sample
data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively),
and the number of covariance parameters (1). It also indicates that the response variable
has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

22 Functions — Alphabetical List

22-1144

The Model fit statistics table displays statistics used to assess the goodness of fit
of the model. This includes the Akaike information criterion (AIC), Bayesian information
criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95%
confidence intervals. It contains one row for each fixed-effects predictor, and each column
contains statistics corresponding to that predictor. Column 1 (Name) contains the name
of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and
column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains
the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and
column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-
statistic, respectively. The last two columns (Lower and Upper) display the lower and
upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping
variable (here, only factory), including its total number of levels (20), and the type and
estimate of the covariance parameter. Here, std indicates that fitglme returns the
standard deviation of the random effect associated with the factory predictor, which has
an estimated value of 0.31381. It also displays a table containing the error parameter
type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals
for the random-effects parameters. To compute and display these values, use
covarianceParameters.

See Also
covarianceParameters | fitglme | GeneralizedLinearMixedModel

 disp

22-1145

disp
Class: gmdistribution

Display Gaussian mixture distribution object

Syntax

disp(obj)

Description

disp(obj) prints a text representation of the gmdistribution object, obj, without
printing the object name. In all other ways it's the same as leaving the semicolon off an
expression.

See Also
gmdistribution | display

22 Functions — Alphabetical List

22-1146

disp
Class: LinearModel

Display linear regression model

Syntax

display(mdl)

Description

display(mdl) displays the mdl linear model.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

Examples

Display a Linear Regression Model

Create and display a linear regression model.

Create a linear regression model.

X = randn(100,5);

y = X*[1;2;3;4;5] + 6 + randn(100,1);

mdl = fitlm(X,y);

Display the model.

disp(mdl)

Linear regression model:

 disp

22-1147

 y ~ 1 + x1 + x2 + x3 + x4 + x5

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 6.0806 0.11393 53.371 4.2509e-72

 x1 1.1181 0.1154 9.6894 8.4046e-16

 x2 2.0903 0.11378 18.372 7.2209e-33

 x3 3.0926 0.10725 28.836 1.7967e-48

 x4 3.9343 0.11489 34.244 6.9609e-55

 x5 4.9538 0.10799 45.873 3.8195e-66

Number of observations: 100, Error degrees of freedom: 94

Root Mean Squared Error: 1.08

R-squared: 0.979, Adjusted R-Squared 0.978

F-statistic vs. constant model: 891, p-value = 1.59e-77

Alternatives

Enter mdl at the command line to obtain a display, where mdl is the name of your model.

See Also
LinearModel

How To
• “Linear Regression” on page 9-11
• “Stepwise Regression” on page 9-124
• “Robust Regression — Reduce Outlier Effects” on page 9-128

22 Functions — Alphabetical List

22-1148

disp
Class: LinearMixedModel

Display linear mixed-effects model

Syntax

display(lme)

Description

display(lme) displays the fitted linear mixed-effects model lme.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Examples

Randomized Block Design

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

 disp

22-1149

The dataset array shows the absolute deviations from the target quality characteristic
measured from the products that five operators manufacture during three shifts,
morning, evening, and night. This is a randomized block design, where the operators
are the blocks. The experiment is designed to study the impact of the time of shift on
the performance. The performance measure is the absolute deviation of the quality
characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);

shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Display the model.

disp(lme)

Linear mixed-effects model fit by ML

Model information:

 Number of observations 15

 Fixed effects coefficients 3

 Random effects coefficients 5

 Covariance parameters 2

Formula:

 QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 59.012 62.552 -24.506 49.012

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 3.1196 0.88681 3.5178 12 0.0042407 1.1874 5.0518

 'Shift_Morning' -0.3868 0.48344 -0.80009 12 0.43921 -1.4401 0.66653

 'Shift_Night' 1.9856 0.48344 4.1072 12 0.0014535 0.93227 3.0389

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

22 Functions — Alphabetical List

22-1150

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 1.8297 0.94915 3.5272

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.76439 0.49315 1.1848

This display includes the model performance statistics, Akaike information criterion
(AIC), Bayesian information criterion (BIC), loglikelihood, and deviance.

The fixed-effects coefficients table includes the names and estimates of the coefficients in
the first two columns. The third column SE shows the standard errors of the coefficients.
The column tStat includes the t-statistic values that correspond to each coefficient. DF
is the residual degrees of freedom, and the pValue is the p-value that corresponds to the
corresponding t-statistic value. The columns Lower and Upper display the lower and
upper limits of a 95% confidence interval for each fixed-effects coefficient.

The first table for the random effects shows the types and the estimates of the random
effects covariance parameters, with the lower and upper limits of a 95% confidence
interval for each parameter. The display also shows the name of the grouping variable,
operator, and the total number of levels, 5.

The second table for the random effects shows the estimate of the observation error, with
the lower and upper limits of a 95% confidence interval.

Definitions

Akaike and Bayesian Information Criteria

Akaike information criterion (AIC) is AIC = –2*logLM + 2*(nc + p + 1), where logLM is the
maximized log likelihood (or maximized restricted log likelihood) of the model, and nc + p
+ 1 is the number of parameters estimated in the model. p is the number of fixed-effects
coefficients, and nc is the total number of parameters in the random-effects covariance
excluding the residual variance.

Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)*(nc + p + 1), where
logLM is the maximized log likelihood (or maximized restricted log likelihood) of the
model, neff is the effective number of observations, and (nc + p + 1) is the number of
parameters estimated in the model.

 disp

22-1151

• If the fitting method is maximum likelihood (ML), then neff = n, where n is the number
of observations.

• If the fitting method is restricted maximum likelihood (REML), then neff = n – p.

A lower value of deviance indicates a better fit. As the value of deviance decreases, both
AIC and BIC tend to decrease. Both AIC and BIC also include penalty terms based on
the number of parameters estimated, p. So, when the number of parameters increase, the
values of AIC and BIC tend to increase as well. When comparing different models, the
model with the lowest AIC or BIC value is considered as the best fitting model.

Deviance

LinearMixedModel computes the deviance of model M as minus two times the
loglikelihood of that model. Let LM denote the maximum value of the likelihood function
for model M. Then, the deviance of model M is

-2* log .L
M

A lower value of deviance indicates a better fit. Suppose M1 and M2 are two different
models, where M1 is nested in M2. Then, the fit of the models can be assessed by
comparing the deviances Dev1 and Dev2 of these models. The difference of the deviances
is

Dev Dev Dev LM LM= - = -()1 2 2 12 log log .

Usually, the asymptotic distribution of this difference has a chi-square distribution with
degrees of freedom v equal to the number of parameters that are estimated in one model
but fixed (typically at 0) in the other. That is, it is equal to the difference in the number
of parameters estimated in M1 and M2. You can get the p-value for this test using 1 –
chi2cdf(Dev,V), where Dev = Dev2 – Dev1.

However, in mixed-effects models, when some variance components fall on the boundary
of the parameter space, the asymptotic distribution of this difference is more complicated.
For example, consider the hypotheses

H0: D
D

=
Ê

Ë
Á

ˆ

¯
˜

11 0

0 0
, D is a q-by-q symmetric positive semidefinite matrix.

22 Functions — Alphabetical List

22-1152

H1: D is a (q+1)-by-(q+1) symmetric positive semidefinite matrix.

That is, H1 states that the last row and column of D are different from zero. Here, the
bigger model M2 has q + 1 parameters and the smaller model M1 has q parameters. And
Dev has a 50:50 mixture of χ2

q and χ2
(q + 1) distributions (Stram and Lee, 1994).

References

[1] Hox, J. Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum
Associates, Inc., 2002.

[2] Stram D. O. and J. W. Lee. “Variance components testing in the longitudinal mixed-
effects model”. Biometrics, Vol. 50, 4, 1994, pp. 1171–1177.

See Also
fitlme | fitlmematrix | LinearMixedModel

 disp

22-1153

disp
Class: NaiveBayes

Display NaiveBayes classifier object

Syntax

disp(nb)

Description

disp(nb) prints a text representation of the NaiveBayes object nb, without printing
the object name. In all other ways it's the same as leaving the semicolon off an
expression.

See Also
NaiveBayes | display

22 Functions — Alphabetical List

22-1154

disp
Class: NonLinearModel

Display nonlinear regression model

Syntax

disp(mdl)

Description

disp(mdl) displays the mdl nonlinear model at the command line.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

Examples

Display a Nonlinear Regression Model

Create and display a nonlinear regression model.

Load the reaction data, and specify both a model function and starting values for the
iterations.

load reaction

modelfun = 'rate~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';

beta0 = [1 .05 .02 .1 2];

Create a model of the data.

mdl = fitnlm(reactants,rate,modelfun,beta0);

 disp

22-1155

Display the model.

disp(mdl)

Nonlinear regression model:

 rate ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.2526 0.86701 1.4447 0.18654

 b2 0.062776 0.043561 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075157 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.193

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. constant model: 1.81e+03, p-value = 7.36e-12

Alternatives

Enter mdl at the command line to obtain a display, where mdl is the name of your model.

See Also
NonLinearModel

More About
• “Nonlinear Regression” on page 11-2

22 Functions — Alphabetical List

22-1156

disp
Class: piecewisedistribution

Display piecewisedistribution object

Syntax

disp(A)

Description

disp(A) prints a text representation of the piecewisedistribution object A, without
printing the object name. In all other ways it's the same as leaving the semicolon off an
expression.

See Also
piecewisedistribution

 disp

22-1157

disp
Class: qrandset

Display qrandset object

Syntax

disp(p)

Description

disp(p) displays the properties of the quasi-random point set s, without printing the
variable name. disp prints out the number of dimensions and points in the point-set,
and follows this with the list of all property values for the object.

See Also
qrandset

22 Functions — Alphabetical List

22-1158

disp
Class: qrandstream

Display qrandstream object

Syntax

disp(q)

Description

disp(q) displays the quasi-random stream q, without printing the variable name. disp
prints the type and number of dimensions in the stream, and follows it with the list of
point set properties.

See Also
qrandstream

 display

22-1159

display
Class: classregtree

Display classregtree object

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

display(t)

display(A)

Description

display(t) prints the classregtree object t. classregtree callsdisplay when a
you do not use a semicolon to terminate a statement.

display(A) prints the categorical array A. categorical callsdisplay when a you do
not use a semicolon to terminate a statement.

See Also
classregtree | prune | test | eval

22 Functions — Alphabetical List

22-1160

display
Class: cvpartition

Display cvpartition object

Syntax

display(c)

Description

display(c) prints the cvpartition object c. cvpartition callsdisplay when a you
do not use a semicolon to terminate a statement.

See Also
cvpartition

 display

22-1161

display
Class: dataset

Display dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

display(ds)

Description

display(ds) prints the dataset array ds, including variable names and observation
names (if present). dataset callsdisplay when a you do not use a semicolon to
terminate a statement

For numeric or categorical variables that are 2-D and have three or fewer columns,
display prints the actual data. Otherwise, display prints the size and type of each
dataset element.

For character variables that are 2-D and 10 or fewer characters wide, display prints
quoted strings. Otherwise, display prints the size and type of each dataset element.

For cell variables that are 2-D and have three or fewer columns, display prints the
contents of each cell (or its size and type if too large). Otherwise, display prints the size
of each dataset element.

For time series variables, display prints columns for both the time and the data. If
the variable is 2-D and has three or fewer columns, display prints the actual data.
Otherwise, display prints the size and type of each dataset element.

22 Functions — Alphabetical List

22-1162

For other types of variables, display prints the size and type of each dataset element.

See Also
dataset | display | format

 display

22-1163

display
Class: gmdistribution

Display Gaussian mixture distribution object

Syntax

display(obj)

Description

display(obj) prints a text representation of the gmdistribution object obj.
gmdistribution callsdisplay when a you do not use a semicolon to terminate a
statement.

See Also
gmdistribution | disp

22 Functions — Alphabetical List

22-1164

display
Class: NaiveBayes

Display NaiveBayes classifier object

Syntax

display(nb)

Description

display(nb) prints a text representation of the NaiveBayes object nb. NaiveBayes
callsdisplay when a you do not use a semicolon to terminate a statement.

See Also
NaiveBayes | display

 display

22-1165

display
Class: piecewisedistribution

Display piecewisedistribution object

Syntax

display(A)

Description

display(A) prints a text representation of the piecewisedistribution object A, without
printing the object name. piecewisedistribution callsdisplay when a you do not
use a semicolon to terminate a statement.

See Also
piecewisedistribution

22 Functions — Alphabetical List

22-1166

DistName property
Class: ProbDist

Read-only string containing probability distribution name of ProbDist object

Description

DistName is a read-only property of the ProbDist class. DistName is a string
containing the type of distribution used to create the object.

Values

Possible values are:

• 'kernel'

• 'beta'

• 'binomial'

• 'birnbaumsaunders'

• 'exponential'

• 'extreme value'

• 'gamma'

• 'generalized extreme value'

• 'generalized pareto'

• 'inversegaussian'

• 'logistic'

• 'loglogistic'

• 'lognormal'

• 'nakagami'

• 'negative binomial'

• 'normal'

• 'poisson'

 DistName property

22-1167

• 'rayleigh'

• 'rician'

• 'tlocationscale'

• 'weibull'

Use this information to view and compare the type of distribution used to create
distribution objects.

22 Functions — Alphabetical List

22-1168

Dist property
Class: NaiveBayes

Distribution names

Description

The Dist property is a string or a 1-by-NDims cell array of strings indicating the types
of distributions for all the features. If all the features use the same type of distribution,
Dist is a single string. Otherwise Dist(j) indicates the distribution type used for the
jth feature.

The valid strings for this property are the following:

'normal' Normal distribution.
'kernel' Kernel smoothing density estimate.
'mvmn' Multivariate multinomial distribution.
'mn' Multinomial bag-of-tokens model.

 DistributionName property

22-1169

DistributionName property
Class: gmdistribution

Type of distribution

Description

The string 'gaussian mixture distribution'.

22 Functions — Alphabetical List

22-1170

disttool
Interactive density and distribution plots

Syntax

disttool

Description

disttool is a graphical interface for exploring the effects of changing parameters on the
plot of a cdf or pdf.

See Also
randtool | dfittool

 double

22-1171

double
Class: dataset

Convert dataset variables to double array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

b = double(A)

b = double(a,vars)

Description

b = double(A) returns the contents of the dataset A, converted to one double array.
The classes of the variables in the dataset must support the conversion.

b = double(a,vars) returns the contents of the dataset variables specified by vars.
vars is a positive integer, a vector of positive integers, a variable name, a cell array
containing one or more variable names, or a logical vector.

See Also
dataset | single | replacedata

22 Functions — Alphabetical List

22-1172

droplevels
Drop levels from a nominal or ordinal array

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

B = droplevels(A)

B = droplevels(A,oldlevels)

Description

B = droplevels(A) drops unused levels from the nominal or ordinal array A. The
array B has the same size, type, and values as A, but has a list of potential levels that
includes only those present in some element of A.

B = droplevels(A,oldlevels) removes the specified levels oldlevels from A.

droplevels removes levels, but does not remove elements. Elements of B that
correspond to elements of A having levels in oldlevels all have an undefined level.

Examples

Drop Levels From an Ordinal Array

Bin patient ages into ordinal levels corresponding to 10-year intervals.

load hospital

edges = 0:10:100;

labels = strcat(num2str((0:10:90)','%d'),{'s'});

 droplevels

22-1173

A = ordinal(hospital.Age,labels,[],edges);

getlabels(A)

ans =

 Columns 1 through 8

 '0s' '10s' '20s' '30s' '40s' '50s' '60s' '70s'

 Columns 9 through 10

 '80s' '90s'

Drop any levels that have no patients in them.

A = droplevels(A);

getlabels(A)

ans =

 '20s' '30s' '40s' '50s'

• “Add and Drop Category Levels” on page 2-21

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

oldlevels — Levels to remove
cell array of strings | 2-D character matrix

Levels to remove from the nominal or ordinal array, specified as a cell array of strings
or 2-D character matrix.
Data Types: char | cell

22 Functions — Alphabetical List

22-1174

Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

More About
• Using nominal Objects
• Using ordinal Objects

See Also
addlevels | mergelevels | nominal | ordinal | reorderlevels

 dummyvar

22-1175

dummyvar

Create dummy variables

Syntax

D = dummyvar(group)

Description

D = dummyvar(group) returns a matrix D containing zeros and ones, whose columns
are dummy variables for the grouping variable group. Columns of group represent
categorical predictor variables, with values indicating categorical levels. Rows of group
represent observations across variables.

group can be a numeric vector or categorical column vector representing levels within
a single variable, a cell array containing one or more grouping variables, or a numeric
matrix or cell array of categorical column vectors representing levels within multiple
variables. If group is a numeric vector or matrix, values in any column must be positive
integers in the range from 1 to the number of levels for the corresponding variable. In
this case, dummyvars treats each column as a separate numeric grouping variable. With
multiple grouping variables, the sets of dummy variable columns are in the same order
as the grouping variables in group.

The order of the dummy variable columns in D matches the order of the groups defined
by group. When group is a categorical vector, the groups and their order match the
output of the getlabels(group) method. When group is a numeric vector, dummyvar
assumes that the groups and their order are 1:max(group). In this respect, dummyvars
treats a numeric grouping variable differently than grp2idx.

If group is n-by-p, D is n-by-S, where S is the sum of the number of levels in each of
the columns of group. The number of levels s in any column of group is the maximum
positive integer in the column or the number of categorical levels. Levels are considered
distinct if they appear in different columns of group, even if they have the same value.
Columns of D are, from left to right, dummy variables created from the first column of
group, followed by dummy variables created from the second column of group, etc.

22 Functions — Alphabetical List

22-1176

dummyvar treats NaN values or undefined categorical levels in group as missing data
and returns NaN values in D.

Dummy variables are used in regression analysis and ANOVA to indicate values of
categorical predictors.

Note: If a column of 1s is introduced in the matrix D, the resulting matrix X =
[ones(size(D,1),1) D] will be rank deficient. The matrix D itself will be rank
deficient if group has multiple columns. This is because dummy variables produced from
any column of group always sum to a column of 1s. Regression and ANOVA calculations
often address this issue by eliminating one dummy variable (implicitly setting the
coefficients for dropped columns to zero) from each group of dummy variables produced
by a column of group.

Examples

Suppose you are studying the effects of two machines and three operators on a process.
Use group to organize predictor data on machine-operator combinations:

machine = [1 1 1 1 2 2 2 2]';

operator = [1 2 3 1 2 3 1 2]';

group = [machine operator]

group =

 1 1

 1 2

 1 3

 1 1

 2 2

 2 3

 2 1

 2 2

Use dummyvar to create dummy variables for a regression or ANOVA calculation:

D = dummyvar(group)

D =

 1 0 1 0 0

 1 0 0 1 0

 1 0 0 0 1

 1 0 1 0 0

 0 1 0 1 0

 dummyvar

22-1177

 0 1 0 0 1

 0 1 1 0 0

 0 1 0 1 0

The first two columns of D represent observations of machine 1 and machine 2,
respectively; the remaining columns represent observations of the three operators.

More About
• “Grouping Variables” on page 2-52
• “Dummy Indicator Variables” on page 2-55
• “Regression with Categorical Covariates” on page 2-58

See Also
regress | anova1

22 Functions — Alphabetical List

22-1178

dwtest
Durbin-Watson test

Syntax

p = dwtest(r,x)

p = dwtest(r,x,Name,Value)

[p,d] = dwtest(___)

Description

p = dwtest(r,x) returns the p-value for the Durbin-Watson test of the null hypothesis
that the residuals from a linear regression are uncorrelated. The alternative hypothesis
is that there is autocorrelation among the residuals.

p = dwtest(r,x,Name,Value) returns the p-value for the Durbin-Watson test with
additional options specified by one or more name-value pair arguments. For example, you
can conduct a one-sided test or calculate the p-value using a normal approximation.

[p,d] = dwtest(___) also returns the Durbin-Watson test statistic, d, using any of
the input arguments from the previous syntaxes.

Examples

Test Residuals For Correlation

Load the sample census data.

load census

Create a design matrix using the census date (cdate) as the predictor. Add a column of 1
values to include a constant term.

n = length(cdate);

x = [ones(n,1),cdate];

Fit a linear regression to the data.

 dwtest

22-1179

[b,bint,r] = regress(pop,x);

Test the null hypothesis that there is no autocorrelation among the residuals, r.

[p,d] = dwtest(r,x)

p =

 0

d =

 0.1308

The returned value p = 0 indicates rejection of the null hypothesis at the 5%
significance level.

One-Sided Hypothesis Test

Load the sample census data.

load census

Create a design matrix using the census date (cdate) as the predictor. Add a column of 1
values to include a constant term.

n = length(cdate);

x = [ones(n,1),cdate];

Fit a linear regression to the data.

[b,bint,r] = regress(pop,x);

Test the null hypothesis that there is no autocorrelation among regression residuals,
against the alternative hypothesis that the autocorrelation is greater than zero.

[p,d] = dwtest(r,x,'Tail','right')

p =

 0

22 Functions — Alphabetical List

22-1180

d =

 0.1308

The returned value p = 0 indicates rejection of the null hypothesis at the 5%
significance level, in favor of the alternative hypothesis that the autocorrelation among
residuals is greater than zero.

Input Arguments

x — Design matrix
matrix

Design matrix for a linear regression, specified as a matrix. Include a column of 1 values
in the design matrix so the model contains a constant term.
Data Types: single | double

r — Regression residuals
vector

Regression residuals, specified as a vector. Obtain r by performing a linear regression
using a function such as regress, or by using the backslash operator.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Method','approximate' specifies a right-tailed
hypothesis test and calculates the p-value using a normal approximation.

'Method' — Computation method for p-value
'exact' | 'approximate'

 dwtest

22-1181

Computation method for the p-value, specified as the comma-separated pair consisting of
'Method' and one of the following.

'exact' Calculate an exact p-value using the Pan algorithm. This is the
default if the sample size is less than 400.

'approximate' Calculate the p-value using a normal approximation. This is the
default if the sample size is 400 or larger.

Example: 'Method','exact'

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'both' Test the alternate hypothesis that autocorrelation among the
residuals is not zero.

'right' Test the alternative hypothesis that autocorrelation among the
residuals is greater than zero.

'left' Test the alternative hypothesis that autocorrelation among the
residuals is less than zero.

Example: 'Tail','right'

Output Arguments

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

d — Test statistic
nonnegative scalar value

Test statistic of the hypothesis test, returned as a nonnegative scalar value.

22 Functions — Alphabetical List

22-1182

More About

Durbin-Watson Test

The Durbin-Watson test is used to test the null hypothesis that linear regression
residuals are uncorrelated, against the alternative that autocorrelation exists.

The test statistic for the Durbin-Watson test is

d

e e

e

t t

t

T

t

t

T
=

-()-
=

=

Â

Â

1
2

2

2

1

,

where T is the number of observations, and et is the residual at time t.

The p-value of the Durbin-Watson test is the probability of observing a test statistic
as extreme as, or more extreme than, the observed value under the null hypothesis.
A significantly small p-value casts doubt on the validity of the null hypothesis and
indicates correlation among residuals. The p-value can be calculated exactly using
the Pan algorithm. Alternatively, the p-value can be estimated using a normal
approximation.

See Also
regress

 dwtest

22-1183

dwtest
Class: LinearModel

Durbin-Watson test of linear model

Syntax
P = dwtest(mdl)

[P,DW] = dwtest(mdl)

[P,DW] = dwtest(mdl,method)

[P,DW] = dwtest(mdl,method,tail)

Description
P = dwtest(mdl) returns the p-value of the Durbin-Watson test on the mdl linear
model.

[P,DW] = dwtest(mdl) returns the Durbin-Watson statistic.

[P,DW] = dwtest(mdl,method) specifies the method dwtest uses to compute the p-
value.

[P,DW] = dwtest(mdl,method,tail) specifies the alternative hypothesis.

Input Arguments
mdl

Linear model, as constructed by fitlm or stepwiselm.

method

Algorithm for computing the p-value:

• 'exact' — Calculates an exact p-value using Pan’s algorithm.
• 'approximate' — Calculates the p-value using a normal approximation.

Default: 'exact' when the sample size is less than 400, 'approximate' otherwise

22 Functions — Alphabetical List

22-1184

tail

dwtest tests whether mdl has no serial correlation against one of these alternative
hypotheses:

Tail Alternative Hypothesis

'both' Serial correlation is not 0.
'right' Serial correlation is greater than 0 (right-tailed test).
'left' Serial correlation is less than 0 (left-tailed test).

Default: 'both'

Output Arguments

P

p-value of the test, a scalar. dwtest tests if the residuals are uncorrelated, against the
alternative that there is autocorrelation among them. Small values of P indicate that the
residuals are correlated.

DW

Value of the Durbin-Watson statistic, a scalar.

Definitions

Durbin-Watson Statistic

Let r be the vector of residuals (in mdl.residuals.response). The Durbin-Watson
statistic is

DW

r r

r

i i

i

n

i

i

n
=

-()+
=

-

=

Â

Â

1

2

1

1

2

1

.

 dwtest

22-1185

Examples

Test Residuals for Autocorrelation

Examine whether the residuals from a fitted model of census data over time have
autocorrelated residuals.

Load the census data and create a linear model.

load census

mdl = fitlm(cdate,pop);

Find the p-value of the Durbin-Watson autocorrelation test.

P = dwtest(mdl)

P =

 0

There is significant autocorrelation in the residuals.

Algorithms

Approximate calculation of the p-value uses a normal approximation [1]. Exact
calculation uses Pan’s algorithm [2].

References

[1] Durbin, J., and G. S. Watson. Testing for Serial Correlation in Least Squares
Regression I. Biometrika 37, pp. 409–428, 1950.

[2] Farebrother, R. W. Pan's Procedure for the Tail Probabilities of the Durbin-Watson
Statistic. Applied Statistics 29, pp. 224–227, 1980.

See Also
LinearModel

22 Functions — Alphabetical List

22-1186

How To
• “Linear Regression” on page 9-11

 ecdf

22-1187

ecdf
Empirical cumulative distribution function

Syntax

[f,x] = ecdf(y)

[f,x] = ecdf(y,Name,Value)

[f,x,flo,fup] = ecdf(___)

ecdf(___)

ecdf(ax, ___)

Description

[f,x] = ecdf(y) returns the empirical cumulative distribution function (cdf), f,
evaluated at the points in x, using the data in the vector y.

In survival and reliability analysis, this empirical cdf is called the Kaplan-Meier
estimate. And the data might correspond to survival or failure times.

[f,x] = ecdf(y,Name,Value) returns the empirical function values, f, evaluated
at the points in x, with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the type of function to evaluate or which data is censored.

[f,x,flo,fup] = ecdf(___) also returns the 95% lower and upper confidence
bounds for the evaluated function values. You can use any of the input arguments in the
previous syntaxes.

ecdf computes the confidence bounds using Greenwood's formula. They are not
simultaneous confidence bounds.

ecdf(___) plots the evaluated function.

ecdf(ax, ___) plots the evaluated function using axes with the handle, ax, instead of
the current axes returned by gca.

22 Functions — Alphabetical List

22-1188

Examples

Compute Empirical Cumulative Distribution Function

Compute the Kaplan-Meier estimate of the cumulative distribution function (cdf) for
simulated survival data.

Generate survival data from a Weibull distribution with parameters 3 and 1.

rng default; % for reproducibility

failuretime = random('wbl',3,1,15,1);

Compute the Kaplan-Meier estimate of the cdf for survival data.

[f,x] = ecdf(failuretime);

[f,x]

ans =

 0 0.0895

 0.0667 0.0895

 0.1333 0.1072

 0.2000 0.1303

 0.2667 0.1313

 0.3333 0.2718

 0.4000 0.2968

 0.4667 0.6147

 0.5333 0.6684

 0.6000 1.3749

 0.6667 1.8106

 0.7333 2.1685

 0.8000 3.8350

 0.8667 5.5428

 0.9333 6.1910

 1.0000 6.9825

Plot the estimated cdf.

figure()

plot(x,f)

 ecdf

22-1189

Empirical Hazard Function of Right-Censored Data

Compute and plot the hazard function of simulated right-censored survival data.

Generate failure times from a Birnbaum-Saunders distribution.

rng default % for reproducibility

failuretime = random('birnbaumsaunders',0.3,1,100,1);

Assuming that the end of the study is at time 0.9, generate a logical array that indicates
simulated failure times that are larger than 0.9 as censored data, and store this
information in a vector.

T = 0.9;

cens = (failuretime>T);

22 Functions — Alphabetical List

22-1190

Plot the empirical hazard function for the data.

ecdf(failuretime,'function','cumulative hazard',...

'censoring',cens,'bounds','on');

Compare Empirical Cumulative Distribution Function (CDF) with Known CDF

Generate right-censored survival data and compare the empirical cumulative
distribution function (cdf) with the known cdf.

Generate failure times from an exponential distribution with mean failure time of 15.

rng default % for reproducibility

y = exprnd(15,75,1);

 ecdf

22-1191

Generate drop-out times from an exponential distribution with mean failure time of 30.

d = exprnd(30,75,1);

Generate the observed failure times. They are the minimum of the generated failure
times and the drop-out times.

t = min(y,d);

Create a logical array that indicates generated failure times that are larger than the
drop-out times. The data for which this is true are censored.

censored = (y>d);

Compute the empirical cdf and confidence bounds.

[f,x,flo,fup] = ecdf(t,'censoring',censored);

Plot the cdf and confidence bounds.

figure()

ecdf(t,'censoring',censored,'bounds','on');

hold on

22 Functions — Alphabetical List

22-1192

Superimpose a plot of the known population cdf.

xx = 0:.1:max(t);

yy = 1-exp(-xx/15);

plot(xx,yy,'g-','LineWidth',2)

axis([0 50 0 1])

legend('Empirical','LCB','UCB','Population',...

 'Location','SE')

hold off

 ecdf

22-1193

Empirical Survivor Function with 99% Confidence Bounds

Generate survival data and plot the empirical survivor function with 99% confidence
bounds.

Generate lifetime data from a Weibull distribution with parameters 100 and 2.

rng default % for reproducibility

R = wblrnd(100,2,100,1);

Plot the survivor function for the data with 99% confidence bounds.

ecdf(R,'function','survivor','alpha',0.01,'bounds','on')

hold on

22 Functions — Alphabetical List

22-1194

Fit the Weibull survivor function.

x = 1:1:250;

wblsurv = 1-cdf('weibull',x,100,2);

plot(x,wblsurv,'g-','LineWidth',2)

legend('Empirical','LCB','UCB','Population',...

'Location','NE')

 ecdf

22-1195

The survivor function based on the actual distribution is within the confidence bounds.

Input Arguments

y — Input data
column vector

Input data, specified as a column vector. For example, in survival or reliability analysis,
data might be survival or failure times for each item or individual.
Data Types: single | double

22 Functions — Alphabetical List

22-1196

ax — Axes handle
handle

Axes handle for the figure ecdf plots to, specified as a handle.

For instance, if h is a handle for a figure, then ecdf can plot to that figure as follows.

Example: ecdf(h,x)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'censoring',c,'function','cumulative
hazard','alpha',0.025,'bounds','on' specifies that ecdf returns the cumulative
hazard function and plots the 97.5% confidence bounds, accounting for the censored data
specified by vector c.

'censoring' — Indicator of censored data
array of 0s (default) | vector of 0s and 1s

Indicator of censored data, specified as the comma-separated pair including
'censoring' and a Boolean array of the same size as x. Enter 1 for observations
that are right-censored and 0 for observations that are fully observed. Default is all
observations are fully observed.

For instance, if vector cdatastores the censored data information, you can enter the
censoring information as follows.
Example: 'censoring',cdata

Data Types: logical

'frequency' — Frequency of observations
array of 1s (default) | vector of nonnegative scalars

Frequency of observations, specified as the comma-separated pair consisting of
'frequency' and a vector containing nonnegative integer counts. This vector is the
same size as the vector x. The jth element of this vector gives the number of times the
jth element of x was observed. Default is one observation per element of x.

 ecdf

22-1197

For instance, if failurefreq is a vector of frequencies, then you can enter it as follows.

Example: 'frequency',failurefreq

Data Types: single | double

'alpha' — Confidence level
0.05 (default) | scalar value in the range (0,1)

Confidence level for the confidence interval of the evaluated function, specified as the
comma-separated pair consisting of 'alpha' and a scalar value between in the range
(0,1). Default is 0.05 for 95% confidence. For a given value alpha, the confidence level is
100(1-alpha)%.

For instance, for a 99% confidence interval, you can specify the alpha value as follows.
Example: 'alpha',0.01

Data Types: single | double

'function' — Type of function returned
'cdf' (default) | 'survivor' | 'cumulative hazard'

Type of function that ecdf evaluates and returns, specified as the comma-separated pair
consisting of 'function' and one of the following.

'cdf' Default. Cumulative distribution function.
'survivor' Survivor function.
'cumulative hazard' Cumulative hazard function.

Example: 'function','cumulative hazard'

Data Types: char

'bounds' — Indicator for including bounds
'off' (default) | 'on'

Indicator for including bounds, specified as the comma-separated pair consisting of
'bounds' and one of the following.

'off' Default. Specify to omit bounds.
'on' Specify to include bounds.

22 Functions — Alphabetical List

22-1198

Note: This name-value argument is used only for plotting.

Example: 'bounds','on'

Data Types: char

Output Arguments

f — Function values
column vector

Function values evaluated at the points in x, returned as a column vector.

x — Distinct observed points
column vector

Distinct observed points in data vector y, returned as a column vector.

flo — Lower confidence bound
column vector

Lower confidence bound for the evaluated function, returned as a column vector. ecdf
computes the confidence bounds using Greenwood's formula. They are not simultaneous
confidence bounds.

fup — Upper confidence bound
column vector

Upper confidence bound for the evaluated function, returned as a column vector. ecdf
computes the confidence bounds using Greenwood's formula. They are not simultaneous
confidence bounds.

More About

Greenwood’s Formula

Approximation for the variance of Kaplan-Meier estimator.

 ecdf

22-1199

The variance estimate is given by

V S t S t
d

r r d

i

i i it Ti

()() = ()
-()<

Â2
,

where ri is the number at risk at time ti, and di is the number of failures at time ti.

References

[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman & Hall, 1984.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 2003.

See Also
cdfplot | ecdfhist

22 Functions — Alphabetical List

22-1200

ecdfhist
Histogram based on empirical cumulative distribution function

Syntax

[n,c] = ecdfhist(f,x)

[n,c] = ecdfhist(f,x,m)

n = ecdfhist(f,x,centers)

ecdfhist(___)

Description

[n,c] = ecdfhist(f,x) returns the heights, n, of histogram bars for 10 equally
spaced bins and the position of the bin centers, c.

ecdfhist computes the bar heights from the increases in the empirical cumulative
distribution function, f, at evaluation points, x. It normalizes the bar heights so that the
area of the histogram is equal to 1. In contrast, histogram produces bars with heights
representing bin counts.

[n,c] = ecdfhist(f,x,m) returns the histogram bars using m bins.

n = ecdfhist(f,x,centers) returns the heights of the histogram bars with bin
centers specified by centers.

ecdfhist(___) plots the histogram bars.

Examples

Return Histogram Bar Heights and Bin Centers

Compute the histogram bar heights based on the empirical cumulative distribution
function.

 ecdfhist

22-1201

Generate failure times from a Birnbaum-Saunders distribution.

rng('default') % for reproducibility

failuretime = random('birnbaumsaunders',0.3,1,100,1);

Assuming that the end of the study is at time 0.9, mark the generated failure times that
are larger than 0.9 as censored data and store that information in a vector.

T = 0.9;

cens = (failuretime>T);

Compute the empirical cumulative distribution function for the data.

[f,x] = ecdf(failuretime,'censoring',cens);

Now, find the bar heights of the histogram using the cumulative distribution function
estimate.

[n,c] = ecdfhist(f,x);

[n' c']

ans =

 2.3529 0.0715

 1.7647 0.1565

 1.4117 0.2415

 1.5294 0.3265

 1.0588 0.4115

 0.4706 0.4965

 0.4706 0.5815

 0.9412 0.6665

 0.2353 0.7515

 0.2353 0.8365

Return Bar Heights and Bin Centers for a Given Number of Bins

Compute the bar heights for six bins using the empirical cumulative distribution function
and also return the bin centers.

Generate failure times from a Birnbaum-Saunders distribution.

rng('default') % for reproducibility

failuretime = random('birnbaumsaunders',0.3,1,100,1);

22 Functions — Alphabetical List

22-1202

Assuming that the end of the study is at time 0.9, mark the generated failure times that
are larger than 0.9 as censored data and store that information in a vector.

T = 0.9;

cens = (failuretime>T);

First, compute the empirical cumulative distribution function for the data.

[f,x] = ecdf(failuretime,'censoring',cens);

Now, estimate the histogram with six bins using the cumulative distribution function
estimate.

[n,c] = ecdfhist(f,x,6);

[n' c']

ans =

 1.9764 0.0998

 1.7647 0.2415

 1.1294 0.3831

 0.4235 0.5248

 0.7764 0.6665

 0.2118 0.8081

Draw Histogram for Given Bin Centers

Draw the histogram of the empirical cumulative distribution histogram for specified bin
centers.

Generate failure times from a Birnbaum-Saunders distribution.

rng default; % For reproducibility

failuretime = random('birnbaumsaunders',0.3,1,100,1);

Assuming that the end of the study is at time 0.9, mark the generated failure times that
are larger than 0.9 as censored data and store that information in a vector.

T = 0.9;

cens = (failuretime>T);

Define bin centers.

 ecdfhist

22-1203

centers = 0.1:0.1:1;

Compute the empirical cumulative distribution function for the data and draw the
histogram for specified bin centers.

[f,x] = ecdf(failuretime,'censoring',cens);

ecdfhist(f,x,centers)

axis([0 1 0 2.5])

Compare Histogram with Known Probability Distribution Function

Generate right-censored survival data and compare the histogram from cumulative
distribution function with the known probability distribution function.

22 Functions — Alphabetical List

22-1204

Generate failure times from an exponential distribution with mean failure time of 15.

rng default; % For reproducibility

y = exprnd(15,75,1);

Generate drop-out times from an exponential distribution with mean failure time of 30.

d = exprnd(30,75,1);

Record the minimum of these times as the observed failure times.

t = min(y,d);

Generate censoring by finding the generated failure times that are greater than the drop-
out times.

censored = (y>d);

Calculate the empirical cdf and plot a histogram using the empirical cumulative
distribution function.

[f,x] = ecdf(t,'censoring',censored);

ecdfhist(f,x)

h = findobj(gca,'Type','patch');

h.FaceColor = [.8 .8 1];

hold on

 ecdfhist

22-1205

Superimpose a plot of the known population pdf.

xx = 0:.1:max(t);

yy = exp(-xx/15)/15;

plot(xx,yy,'r-','LineWidth',2)

hold off

22 Functions — Alphabetical List

22-1206

Input Arguments

f — Empirical cdf values
vector

Empirical cdf values at given evaluation points, x, specified as a vector.

For instance, you can use ecdf to obtain the empirical cdf values and enter them in
ecdfhist as follows.

Example: [f,x] = ecdf(failure); ecdfhist(f,x);

Data Types: single | double

 ecdfhist

22-1207

x — Evaluation points
vector

Evaluation points at which empirical cdf values, f, are calculated, specified as a vector.

For instance, you can use ecdf to obtain the empirical cdf values and enter them in
ecdfhist as follows.

Example: [f,x] = ecdf(failure); ecdfhist(f,x);

Data Types: single | double

m — Number of bins
scalar

Number of bins, specified as a scalar.

For instance, you can draw a histogram with 8 bins as follows.
Example: ecdfhist(f,x,8)

Data Types: single | double

centers — Center points of bins
vector

Center points of bins, specified as a vector.
Example: centers = 2:2:10; ecdfhist(f,x,centers);

Data Types: single | double

Output Arguments

n — Heights of histogram bars
row vector

Heights of histogram bars ecdfhist calculates based on the empirical cdf values,
returned as a row vector.

c — Position of bin centers
row vector

Position of bin centers, returned as a row vector.

22 Functions — Alphabetical List

22-1208

More About
• “Nonparametric and Empirical Probability Distributions” on page 5-40

See Also
ecdf | histc | histogram

 edge

22-1209

edge
Class: ClassificationKNN

Edge of k-nearest neighbor classifier

Syntax

E = edge(mdl,X,Y)

E = edge(mdl,X,Y,Name,Value)

Description

E = edge(mdl,X,Y) returns the classification edge for mdl with data X and
classification Y.

E = edge(mdl,X,Y,Name,Value) computes the edge with additional options specified
by one or more Name,Value pair arguments.

Input Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

X — Matrix of predictor values
matrix

22 Functions — Alphabetical List

22-1210

Matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y — Categorical variables
categorical array | cell array of strings | character array | logical vector | numeric
vector

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of Y represents the classification of
the corresponding row of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'weights'

Observation weights, a numeric vector of length size(X,1). If you supply weights,
edge computes weighted classification edge.

Default: ones(size(X,1))

Output Arguments

E

Classification edge, a scalar that is the mean classification margin (see “Margin” on page
22-1211).

Definitions

Edge

The edge is the mean value of the classification margin.

 edge

22-1211

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

Margin is a column vector with the same number of rows as X.

Score

The score of a classification is the posterior probability of the classification. The posterior
probability is the number of neighbors that have that classification, divided by the
number of neighbors. For a more detailed definition that includes weights and prior
probabilities, see “Posterior Probability” on page 22-3654.

Examples

Edge Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the data.

load fisheriris

X = meas;

Y = species;

Construct a classifier for five-nearest neighbors.

mdl = fitcknn(X,Y,'NumNeighbors',5);

Examine the edge of the classifier for minimum, mean, and maximum observations
classified 'setosa', 'versicolor', and 'virginica' respectively.

NewX = [min(X);mean(X);max(X)];

Y = {'setosa';'versicolor';'virginica'};

E = edge(mdl,NewX,Y)

E =

 1

22 Functions — Alphabetical List

22-1212

The classifier has no doubt that the Y entries are correct classifications (all five nearest
neighbors of each NewX point classify as the corresponding Y entry).

See Also
ClassificationKNN | fitcknn | loss | margin

More About
• “Classification Using Nearest Neighbors” on page 16-8

 edge

22-1213

edge

Class: CompactClassificationDiscriminant

Classification edge

Syntax

E = edge(obj,X,Y)

E = edge(obj,X,Y,Name,Value)

Description

E = edge(obj,X,Y) returns the classification edge for obj with data X and
classification Y.

E = edge(obj,X,Y,Name,Value) computes the edge with additional options specified
by one or more Name,Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in obj.

Y

Class labels, with the same data type as exists in obj. The number of elements of Y must
equal the number of rows of X.

22 Functions — Alphabetical List

22-1214

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'weights'

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge
computes the weighted classification edge.

Default: ones(size(X,1))

Output Arguments

E

Edge, a scalar representing the weighted average value of the margin.

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are class
prior probabilities. If you supply additional weights, those weights are normalized to
sum to the prior probabilities in the respective classes, and are then used to compute the
weighted average.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the
matrix X. A high value of margin indicates a more reliable prediction than a low value.

 edge

22-1215

Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the
classification. For the definition of posterior probability in discriminant analysis, see
“Posterior Probability” on page 15-7.

Examples

Compute the classification edge and margin for the Fisher iris data, trained on its first
two columns of data, and view the last 10 entries:

load fisheriris

X = meas(:,1:2);

obj = fitcdiscr(X,species);

E = edge(obj,X,species)

E =

 0.4980

M = margin(obj,X,species);

M(end-10:end)

ans =

 0.6551

 0.4838

 0.6551

 -0.5127

 0.5659

 0.4611

 0.4949

 0.1024

 0.2787

 -0.1439

 -0.4444

The classifier trained on all the data is better:

obj = fitcdiscr(meas,species);

E = edge(obj,meas,species)

E =

 0.9454

22 Functions — Alphabetical List

22-1216

M = margin(obj,meas,species);

M(end-10:end)

ans =

 0.9983

 1.0000

 0.9991

 0.9978

 1.0000

 1.0000

 0.9999

 0.9882

 0.9937

 1.0000

 0.9649

See Also
predict | ClassificationDiscriminant | fitcdiscr | loss | margin

How To
• “Discriminant Analysis” on page 15-3

 edge

22-1217

edge
Class: CompactClassificationECOC

Classification edge for error-correcting output code mutliclass classifiers

Syntax

e = edge(Mdl,X,Y)

e = edge(Mdl,X,Y,Name,Value)

Description

e = edge(Mdl,X,Y) returns the classification edge (e) for the error-correcting output
code (ECOC) multiclass classifier Mdl using predictor data X and class labels Y. Each row
of X and Y is an observation.

e = edge(Mdl,X,Y,Name,Value) computes the classification edge with additional
options specified by one or more Name,Value pair arguments.

For example, specify a decoding scheme, binary learner loss function, or verbosity level.

Input Arguments

Mdl — ECOC multiclass classifier
ClassificationECOC model | CompactClassificationECOC model

ECOC multiclass classifier, specified as a ClassificationECOC or
CompactClassificationECOC model. You can create a:

• ClassificationECOC model by training the ECOC classifier using fitcecoc
• CompactClassificationECOC model by passing a ClassificationECOC classifier

to compact

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

22 Functions — Alphabetical List

22-1218

Each row of X corresponds to one observation (also called an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
composing the columns of X should be the same as the variables that trained the Mdl
classifier.

The length of Y and the number of rows of X must be equal.

If you trained Mdl specifying to standardize the predictor data, then the software
standardizes the columns of X using the corresponding means and standard
deviations that the software stored in Mdl.BinaryLearner{j}.Mu and
Mdl.BinaryLearner{j}.Sigma for learner j.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of Mdl.ClassNames.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

 edge

22-1219

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.
• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

22 Functions — Alphabetical List

22-1220

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

 edge

22-1221

'Weights' — Observation weights
ones(size(X,1)) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector. Weights need the same length as the number of rows of X, i.e.,
size(X,1). The software normalizes Weights to sum up to the value of the prior
probability in the respective class.

If you supply weights, edge computes the weighted classification edge.

Output Arguments

e — Classification edge
scalar

Classification edge, returned as a scalar. e represents the (weighted) mean of the
classification margins.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margin

The classification margins are, for each observation, the difference between the negative
loss for the positive class and maximal negative loss among the negative classes. If the
margins are on the same scale, then they serve as a classification confidence measure,
i.e., among multiple classifiers, those that yield larger margins are better [4].

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

22 Functions — Alphabetical List

22-1222

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2

 edge

22-1223

Value Description Score Domain g(yj,sj)

'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Estimate the Test-Sample Edge of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample.
It is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

Estimate the test-sample edge.

e = edge(CMdl,XTest,YTest)

22 Functions — Alphabetical List

22-1224

e =

 0.4573

The estimated test sample margin average is approximately 0.45.

Estimate the Test-Sample Weighted Margin Mean of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Suppose that the observations were measured sequentially, and that the last 75
observations were better quality due to a technology upgrade. One way to incorporate
this advancement is to weigh the better quality observations more than the other
observations.

Define a weight vector that weighs the better quality observations two times the other
observations.

n = size(X,1);

weights = [ones(n-75,1);2*ones(75,1)];

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample
and the weighting scheme. It is good practice to standardize the predictors and define the
class order. Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,...

 'Weights',weights,'ClassNames',classOrder);

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

wTest = weights(testInds,:);

CVMdl is a trained ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC
classifier that the software trained using the training set.

 edge

22-1225

Estimate the test-sample weighted edge using the weighting scheme.

e = edge(CMdl,XTest,YTest,'Weights',wTest)

e =

 0.4798

The test sample weighted average margin is approximately 0.48.

Select ECOC Model Features by Comparing Test-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform
feature selection is to compare test-sample edges from multiple models. Based solely on
this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 30% holdout sample for
testing.

Partition = cvpartition(Y,'Holdout',0.30);

testInds = test(Partition); % Indices for the test set

XTest = X(testInds,:);

YTest = Y(testInds,:);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all predictors.
• partX contains the petal dimensions.

fullX = X;

partX = X(:,3:4);

22 Functions — Alphabetical List

22-1226

Train an ECOC model using SVM binary classifiers for each predictor set, and specify the
partition definition. It is good practice to standardize the predictors and define the class
order. Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,...

 'ClassNames',classOrder);

PCVMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,...

 'ClassNames',classOrder);

CMdl = CVMdl.Trained{1};

PCMdl = PCVMdl.Trained{1};

CVMdl and PCVMdl are ClassificationPartitionedECOC models. They contain the
property Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC
model that the software trained using the training set.

Estimate the test sample edge for each classifier.

fullEdge = edge(CMdl,XTest,YTest)

partEdge = edge(PCMdl,XTest(:,3:4),YTest)

fullEdge =

 0.4573

partEdge =

 0.4839

PCMdl achieves an edge that resembles the more complex model CMdl.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Tip

To compare margins or edges of several classifiers, use template objects to specify a
common score transform function among the classifiers when you train them using
fitcecoc.

 edge

22-1227

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | CompactClassificationECOC | fitcecoc | margin |
predict | resubEdge

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

22 Functions — Alphabetical List

22-1228

edge

Class: CompactClassificationEnsemble

Classification edge

Syntax

E = edge(ens,X,Y)

E = edge(ens,X,Y,Name,Value)

Description

E = edge(ens,X,Y) returns the classification edge for ens with data X and
classification Y.

E = edge(ens,X,Y,Name,Value) computes the edge with additional options specified
by one or more Name,Value pair arguments.

Input Arguments

ens

A classification ensemble constructed with fitensemble, or a compact classification
ensemble constructed with compact.

X

A matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in ens.

Y

Class labels, with the same data type as exists in ens. The number of elements of Y must
equal the number of rows of X.

 edge

22-1229

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. edge uses
only these learners for calculating loss.

Default: 1:NumTrained

'mode'

String representing the meaning of the output E:

• 'ensemble' — E is a scalar value, the edge for the entire ensemble.
• 'individual' — E is a vector with one element per trained learner.
• 'cumulative' — E is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

'UseObsForLearner'

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row
i of X.

Default: true(N,T)

'weights'

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge
computes weighted classification edge.

Default: ones(size(X,1))

22 Functions — Alphabetical List

22-1230

Output Arguments

E

The classification edge, a vector or scalar depending on the setting of the mode name-
value pair. Classification edge is weighted average classification margin.

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix X.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Edge

The edge is the weighted mean value of the classification margin. The weights are the
class probabilities in ens.Prior. If you supply weights in the weights name-value pair,
those weights are used instead of class probabilities.

Examples

Make a boosted ensemble classifier for the ionosphere data, and find the classification
edge for the last few rows:

 edge

22-1231

load ionosphere

ens = fitensemble(X,Y,'AdaboostM1',100,'Tree');

E = edge(ens,X(end-10:end,:),Y(end-10:end))

E =

 8.3310

See Also
margin | edge

22 Functions — Alphabetical List

22-1232

edge
Class: CompactClassificationNaiveBayes

Classification edge for naive Bayes classifiers

Syntax

e = edge(Mdl,X,Y)

e = edge(Mdl,X,Y,Name,Value)

Description

e = edge(Mdl,X,Y) returns the classification edge (e) for the naive Bayes classifier
Mdl using predictor data X and class labels Y.

e = edge(Mdl,X,Y,Name,Value) computes the classification edge with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or
CompactClassificationNaiveBayes model returned by fitcnb or compact,
respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained Mdl.

 edge

22-1233

The length of Y and the number of rows of X must be equal.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of Mdl.ClassNames.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Weights' — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector.

The size of Weights must be equal to the number of rows of X. The software weighs the
observations in each row of X with the corresponding weight in Weights.

If you do not specify your own loss function, then the software normalizes Weights to
add up to 1.

Data Types: double

Output Arguments

e — Classification edge
scalar

Classification edge, returned as a scalar. If you supply Weights, then e is the weighted
classification edge.

22 Functions — Alphabetical List

22-1234

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability
of their respective class. The software uses the normalized weights to compute the
weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margins

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

 edge

22-1235

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Score

The naive Bayes score is the class posterior probability given the observation.

Examples
Estimate the Test Sample Edge of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1); % For reproducibility

Train a naive Bayes classifier. Specify a 30% holdout sample for testing. It is good
practice to specify the class order. Assume that each predictor is conditionally, normally
distributed given its label.

CVMdl = fitcnb(X,Y,'Holdout',0.30,...

 'ClassNames',{'setosa','versicolor','virginica'});

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes
classifier that the software trained using the training set.

Estimate the test sample edge.

22 Functions — Alphabetical List

22-1236

e = edge(CMdl,XTest,YTest)

e =

 0.8244

The estimated test sample margin average is approximately 0.82. This indicates that,
on average, the test sample difference between the estimated posterior probability for the
predicted class and the posterior probability for the class with the next lowest posterior
probability is approximately 0.82. This indicates that the classifier labels with high
confidence.

Estimate the Test Sample Weighted Margin Mean of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1);

Suppose that the setosa iris measurements are lower quality because they were
measured with an older technology. One way to incorporate this is to weigh the setosa
iris measurements less than the other observations.

Define a weight vector that weighs the better quality observations twice the other
observations.

n = size(X,1);

idx = strcmp(Y,'setosa');

weights = ones(size(X,1),1);

weights(idx) = 0.5;

Train a naive Bayes classifier. Specify the weighting scheme and a 30% holdout sample
for testing. It is good practice to specify the class order. Assume that each predictor is
conditionally, normally distributed given its label.

CVMdl = fitcnb(X,Y,'Weights',weights,'Holdout',0.30,...

 'ClassNames',{'setosa','versicolor','virginica'});

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

 edge

22-1237

YTest = Y(testInds);

wTest = weights(testInds);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes
classifier that the software trained using the training set.

Estimate the test sample weighted edge using the weighting scheme.

e = edge(CMdl,XTest,YTest,'Weights',wTest)

e =

 0.7893

The test sample weighted average margin is approximately 0.79. This indicates that, on
average, the test sample difference between the estimated posterior probability for the
predicted class and the posterior probability for the class with the next lowest posterior
probability is approximately 0.79. This indicates that the classifier labels with high
confidence.

Select Naive Bayes Classifier Features by Comparing Test Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform
feature selection is to compare test sample edges from multiple models. Based solely on
this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1);

Partition the data set into training and test sets. Specify a 30% holdout sample for
testing.

Partition = cvpartition(Y,'Holdout',0.30);

testInds = test(Partition); % Indices for the test set

XTest = X(testInds,:);

YTest = Y(testInds,:);

Partition defines the data set partition.

22 Functions — Alphabetical List

22-1238

Define these two data sets:

• fullX contains all predictors.
• partX contains the last two predictors.

fullX = X;

partX = X(:,3:4);

Train naive Bayes classifiers for each predictor set. Specify the partition definition.

FCVMdl = fitcnb(fullX,Y,'CVPartition',Partition);

PCVMdl = fitcnb(partX,Y,'CVPartition',Partition);

FCMdl = FCVMdl.Trained{1};

PCMdl = PCVMdl.Trained{1};

FCVMdl and PCVMdl are ClassificationPartitionedModel classifiers.
They contain the property Trained, which is a 1-by-1 cell array holding a
CompactClassificationNaiveBayes classifier that the software trained using the
training set.

Estimate the test sample edge for each classifier.

fullEdge = edge(FCMdl,XTest,YTest)

partEdge = edge(PCMdl,XTest(:,3:4),YTest)

fullEdge =

 0.8244

partEdge =

 0.8420

The test-sample edges of the classifiers are nearly the same. However, the model trained
using two predictors (PCMdl) is less complex.

References

[1] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

 edge

22-1239

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb |
loss | margin | predict | resubEdge | resubLoss

More About
• “Naive Bayes Classification” on page 15-31

22 Functions — Alphabetical List

22-1240

edge
Class: CompactClassificationSVM

Classification edge for support vector machine classifiers

Syntax

e = edge(SVMModel,X,Y)

e = edge(SVMModel,X,Y,Name,Value)

Description

e = edge(SVMModel,X,Y) returns the classification edge (e) for the support vector
machine (SVM) classifier SVMModel using predictor data X and class labels Y.

e = edge(SVMModel,X,Y,Name,Value) computes the classification edge with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

SVMModel — SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier

SVM classifier, specified as a ClassificationSVM classifier or
CompactClassificationSVM classifier returned by fitcsvm or compact, respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained the
SVMModel classifier.

 edge

22-1241

The length of Y and the number of rows of X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software
standardizes the columns of X using the corresponding means in SVMModel.Mu and
standard deviations in SVMModel.Sigma.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of SVMModel.ClassNames.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Weights' — Observation weights
ones(size(X,1)) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector. Weights must have the same length as the number of rows of X,
i.e., size(X,1).

If you supply weights, edge computes the weighted classification edge.

Output Arguments

e — Classification edge
scalar

Classification edge, returned as a scalar. e represents the (weighted) mean of the
classification margins.

22 Functions — Alphabetical List

22-1242

Definitions

Classification Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software
normalizes them to sum to the prior probabilities in the respective classes. The software
uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margins

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

 edge

22-1243

f x x s b() = () ¢ +/ .b

s is the kernel scale and β is the vector of fitted linear coefficients.

Examples

Estimate the Test Sample Edge of SVM Classifiers

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing. It is good practice to
specify the class order and standardize the data.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...

 'Standardize',true);

CompactSVMModel = CVSVMModel.Trained{1}; % Extract trained, compact classifier

testInds = test(CVSVMModel.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the
property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM
classifier that the software trained using the training set.

Estimate the test sample edge.

e = edge(CompactSVMModel,XTest,YTest)

e =

 5.0765

The estimated test sample margin average is approximately 5.

Estimate the Test Sample Weighted Margin Mean of SVM Classifiers

Load the ionosphere data set.

load ionosphere

22 Functions — Alphabetical List

22-1244

rng(1); % For reproducibility

Suppose that the observations were measured sequentially, and that the last 150
observations were better quality due to a technology upgrade. One way to incorporate
this advancement is to weigh the better quality observations more than the other
observations.

Define a weight vector that weighs the better quality observations two times the other
observations.

n = size(X,1);

weights = [ones(n-150,1);2*ones(150,1)];

Train an SVM classifier. Specify the weighting scheme and a 15% holdout sample for
testing. It is good practice to specify the class order and standardize the data.

CVSVMModel = fitcsvm(X,Y,'Weights',weights,'Holdout',0.15,...

 'ClassNames',{'b','g'},'Standardize',true);

CompactSVMModel = CVSVMModel.Trained{1};

testInds = test(CVSVMModel.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

wTest = weights(testInds,:);

CVSVMModel is a trained ClassificationPartitionedModel classifier.
It contains the property Trained, which is a 1-by-1 cell array holding a
CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample weighted edge using the weighting scheme.

e = edge(CompactSVMModel,XTest,YTest,'Weights',wTest)

e =

 4.8341

The test sample weighted average margin is approximately 5.

Select SVM Classifier Features by Comparing Test Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform
feature selection is to compare test sample edges from multiple models. Based solely on
this criterion, the classifier with the highest edge is the best classifier.

 edge

22-1245

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 15% holdout sample for
testing.

Partition = cvpartition(Y,'Holdout',0.15);

testInds = test(Partition); % Indices for the test set

XTest = X(testInds,:);

YTest = Y(testInds,:);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

fullX = X;

partX = X(:,end-20:end);

Train SVM classifiers for each predictor set. Specify the partition definition.

FullCVSVMModel = fitcsvm(fullX,Y,'CVPartition',Partition);

PartCVSVMModel = fitcsvm(partX,Y,'CVPartition',Partition);

FCSVMModel = FullCVSVMModel.Trained{1};

PCSVMModel = PartCVSVMModel.Trained{1};

FullCVSVMModel and PartCVSVMModel are ClassificationPartitionedModel
classifiers. They contain the property Trained, which is a 1-by-1 cell array holding a
CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample edge for each classifier.

fullEdge = edge(FCSVMModel,XTest,YTest)

partEdge = edge(PCSVMModel,XTest(:,end-20:end),YTest)

fullEdge =

 2.8319

22 Functions — Alphabetical List

22-1246

partEdge =

 1.5540

The edge for the classifier trained on the complete data set is greater, suggesting that the
classifier trained using all of the predictors is better.

Algorithms

For binary classification, the software defines the margin for observation j, mj, as

m y f xj j j= 2 (),

where yj ∊ {-1,1}, and f(xj) is the predicted score of observation j for the positive class.
However, the literature commonly uses mj = yjf(xj) to define the margin.

References

[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

[2] Hu, Q, X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | loss | margin |
predict | resubEdge

 edge

22-1247

edge

Class: CompactClassificationTree

Classification edge

Syntax

E = edge(tree,X,Y)

E = edge(tree,X,Y,Name,Value)

Description

E = edge(tree,X,Y) returns the classification edge for tree with data X and
classification Y.

E = edge(tree,X,Y,Name,Value) computes the edge with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

tree

A classification tree created by fitctree, or a compact classification tree created by
compact.

X

A matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in tree.

Y

Class labels, with the same data type as exists in tree. The number of elements of Y
must equal the number of rows of X.

22 Functions — Alphabetical List

22-1248

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'weights'

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge
computes weighted classification edge.

Default: ones(size(X,1))

Output Arguments

E

The edge, a scalar representing the weighted average value of the margin.

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as the matrix X.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

 edge

22-1249

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

22 Functions — Alphabetical List

22-1250

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

 edge

22-1251

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Edge

The edge is the weighted mean value of the classification margin. The weights are the
class probabilities in tree.Prior. If you supply weights in the weights name-value pair,
those weights are normalized to sum to the prior probabilities in the respective classes,
and are then used to compute the weighted average.

Examples

Compute the classification margin and edge for the Fisher iris data, trained on its first
two columns of data, and view the last 10 entries:

load fisheriris

X = meas(:,1:2);

tree = fitctree(X,species);

E = edge(tree,X,species)

E =

 0.6299

M = margin(tree,X,species);

22 Functions — Alphabetical List

22-1252

M(end-10:end)

ans =

 0.1111

 0.1111

 0.1111

 -0.2857

 0.6364

 0.6364

 0.1111

 0.7500

 1.0000

 0.6364

 0.2000

The classification tree trained on all the data is better.

tree = fitctree(meas,species);

E = edge(tree,meas,species)

E =

 0.9384

M = margin(tree,meas,species);

M(end-10:end)

ans =

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

See Also
margin | predict | fitctree | loss

 end

22-1253

end
Class: dataset

Last index in indexing expression for dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

end(A,k,n)

Description

end(A,k,n) is called for indexing expressions involving the dataset A when end is part
of the k-th index out of n indices. For example, the expression A(end-1,:) calls A's end
method with end(A,1,2).

See Also
size

22 Functions — Alphabetical List

22-1254

end
Class: qrandset

Last index in indexing expression for point set

Syntax

end(p,k,n)

Description

end(p,k,n) is called for indexing expressions involving the point set p when end is part
of the k-th index out of n indices. For example, the expression p(end-1,:) calls p's end
method with end(p,1,2).

See Also
qrandset

 epsilon

22-1255

epsilon
Class: RepeatedMeasuresModel

Epsilon adjustment for repeated measures anova

Syntax

tbl = epsilon(rm)

tbl = epsilon(rm,C)

Description

tbl = epsilon(rm) returns the epsilon adjustment factors for repeated measures
model rm.

tbl = epsilon(rm,C) returns the epsilon adjustment factors for the test based on the
contrast matrix C.

Tips
• The mauchly method tests for sphericity.

• The ranova method contains p-values based on each epsilon value.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

C — Contrasts
matrix

22 Functions — Alphabetical List

22-1256

Contrasts, specified as a matrix. The default value of C is the Q factor in a QR
decomposition of the matrix M, where M is defined so that Y*M is the difference between
all successive pairs of columns of the repeated measures matrix Y.
Data Types: single | double

Output Arguments

tbl — Epsilon adjustment factors
table

Epsilon adjustment factors for the repeated measures model rm, returned as a table. tbl
contains four different adjustments for epsilon.

Correction Definition

Uncorrected No adjustments, epsilon = 1
Greenhouse-Geiser Greenhouse-Geiser approximation
Huynh-Feldt Huynh-Feldt approximation
Lower bound Lower bound on the p-value

For details, see “Compound Symmetry Assumption and Epsilon Corrections” on page
8-79.
Data Types: table

Examples

Epsilon Corrections for Repeated Measures ANOVA

Load the sample data.

load fisheriris

The column vector, species consists of iris flowers of three different species: setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

 epsilon

22-1257

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl =

 SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

 ______ ___ ________ ______ ___________ ________ ________ ________

 Measurements 1656.3 3 552.09 6873.3 0 0 0 0

 species:Measurements 282.47 6 47.078 586.1 1.4271e-206 0 0 0

 Error 35.423 441 0.080324

ranova computes the last three p-values using Greenhouse-Geisser, Huynh-Feldt, and
lower bound corrections, respectively.

Display the epsilon correction values.

epsilon(rm)

ans =

 epsilon

 Uncorrected 1

 Greenhouse-Geisser 0.75179

 Huynh-Feldt 0.77448

 Lower bound 0.33333

You can check the compound symmetry (sphericity) assumption using the mauchly
method.

Algorithms
ranova computes the regular p-value (in the pValue column of the rmanova table) using
the F-statistic cumulative distribution function:

22 Functions — Alphabetical List

22-1258

p-value = 1 – fcdf(F,v1,v2).

When the compound symmetry assumption is not satisfied, ranova uses a correction
factor epsilon, ε, to compute the corrected p-values as follows:
p-value_corrected = 1 – fcdf(F,ε*v1,ε*v2).

The epsilon method returns the epsilon adjustment values.

See Also
fitrm | mauchly | ranova

More About
• “Compound Symmetry Assumption and Epsilon Corrections” on page 8-79
• “Mauchly’s Test of Sphericity” on page 8-81

 evcdf

22-1259

evcdf
Extreme value cumulative distribution function

Syntax

p = evcdf(x,mu,sigma)

[p,plo,pup] = evcdf(x,mu,sigma,pcov,alpha)

[p,plo,pup] = evcdf(___ ,'upper')

Description

p = evcdf(x,mu,sigma) returns the cumulative distribution function (cdf) for the type
1 extreme value distribution, with location parameter mu and scale parameter sigma, at
each of the values in x. x, mu, and sigma can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input is expanded to a constant array of
the same size as the other inputs. The default values for mu and sigma are 0 and 1,
respectively.

[p,plo,pup] = evcdf(x,mu,sigma,pcov,alpha) returns confidence bounds for
p when the input parameters mu and sigma are estimates. pcov is a 2-by-2 covariance
matrix of the estimated parameters. alpha has a default value of 0.05, and specifies
100(1 - alpha)% confidence bounds. plo and pup are arrays of the same size as p,
containing the lower and upper confidence bounds.

[p,plo,pup] = evcdf(___ ,'upper') returns the complement of the type 1 extreme
value distribution cdf at each value in x, using an algorithm that more accurately
computes the extreme upper tail probabilities. You can use the 'upper' argument with
any of the previous syntaxes.

The function evcdf computes confidence bounds for P using a normal approximation to
the distribution of the estimate

X − ˆ

ˆ

m

s

and then transforming those bounds to the scale of the output P. The computed bounds
give approximately the desired confidence level when you estimate mu, sigma, and pcov

22 Functions — Alphabetical List

22-1260

from large samples, but in smaller samples other methods of computing the confidence
bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating X and subtracting the resulting distribution
values from 1. See “Extreme Value Distribution” on page B-39 for more details. If x
has a Weibull distribution, then X = log(x) has the type 1 extreme value distribution.

More About
• “Extreme Value Distribution” on page B-39

See Also
cdf | evpdf | evinv | evstat | evfit | evlike | evrnd

 evfit

22-1261

evfit
Extreme value parameter estimates

Syntax

parmhat = evfit(data)

[parmhat,parmci] = evfit(data)

[parmhat,parmci] = evfit(data,alpha)

[...] = evfit(data,alpha,censoring)

[...] = evfit(data,alpha,censoring,freq)

[...] = evfit(data,alpha,censoring,freq,options)

Description

parmhat = evfit(data) returns maximum likelihood estimates of the parameters of
the type 1 extreme value distribution given the data in the vector data. parmhat(1) is
the location parameter, µ, and parmhat(2) is the scale parameter, σ.

[parmhat,parmci] = evfit(data) returns 95% confidence intervals for the
parameter estimates on the µ and σ parameters in the 2-by-2 matrix parmci. The first
column of the matrix of the extreme value fit contains the lower and upper confidence
bounds for the parameter µ, and the second column contains the confidence bounds for
the parameter σ.

[parmhat,parmci] = evfit(data,alpha) returns 100(1 - alpha)% confidence
intervals for the parameter estimates, where alpha is a value in the range [0 1]
specifying the width of the confidence intervals. By default, alpha is 0.05, which
corresponds to 95% confidence intervals.

[...] = evfit(data,alpha,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = evfit(data,alpha,censoring,freq) accepts a frequency vector, freq of
the same size as data. Typically, freq contains integer frequencies for the corresponding
elements in data, but can contain any nonnegative values. Pass in [] for alpha,
censoring, or freq to use their default values.

22 Functions — Alphabetical List

22-1262

[...] = evfit(data,alpha,censoring,freq,options) accepts a structure,
options, that specifies control parameters for the iterative algorithm the function
uses to compute maximum likelihood estimates. You can create options using the
function statset. Enter statset('evfit') to see the names and default values of
the parameters that evfit accepts in the options structure. See the reference page for
statset for more information about these options.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating X. See “Extreme Value Distribution” on page
B-39 for more details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

More About
• “Extreme Value Distribution” on page B-39

See Also
mle | evlike | evpdf | evcdf | evinv | evstat | evrnd

 evinv

22-1263

evinv
Extreme value inverse cumulative distribution function

Syntax

X = evinv(P,mu,sigma)

[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha)

Description

X = evinv(P,mu,sigma) returns the inverse cumulative distribution function (cdf)
for a type 1 extreme value distribution with location parameter mu and scale parameter
sigma, evaluated at the values in P. P, mu, and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a
constant array of the same size as the other inputs. The default values for mu and sigma
are 0 and 1, respectively.

[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha) produces confidence bounds for X
when the input parameters mu and sigma are estimates. pcov is the covariance matrix
of the estimated parameters. alpha is a scalar that specifies 100(1 – alpha)% confidence
bounds for the estimated parameters, and has a default value of 0.05. XLO and XUP are
arrays of the same size as X containing the lower and upper confidence bounds.

The function evinv computes confidence bounds for P using a normal approximation to
the distribution of the estimate

ˆ ˆm s+ q

where q is the Pth quantile from an extreme value distribution with parameters μ = 0
and σ = 1. The computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller samples other
methods of computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating X. See “Extreme Value Distribution” on page

22 Functions — Alphabetical List

22-1264

B-39 for more details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

See Also
icdf | evcdf | evpdf | evstat | evfit | evlike | evrnd

 eq

22-1265

eq
Class: qrandstream

Test handle equality

Syntax

h1 == h2

tf = eq(h1, h2)

Description

h1 == h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and
h2 must be of the same dimensions unless one is a scalar. The result is a logical array of
the same dimensions, where each element is an element-wise equality result. If one of h1
or h2 is scalar, scalar expansion is performed and the result will match the dimensions of
the array that is not scalar.

tf = eq(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | gt | le | ne | ge | lt

22 Functions — Alphabetical List

22-1266

error
Class: CompactTreeBagger

Error (misclassification probability or MSE)

Syntax

err = error(B,X,Y)

err = error(B,X,Y,'param1',val1,'param2',val2,...)

Description

err = error(B,X,Y) computes the misclassification probability (for classification
trees) or mean squared error (MSE, for regression trees) for each tree, for predictors
X given true response Y. For classification, Y can be either a numeric vector, character
matrix, cell array of strings, categorical vector or logical vector. For regression, Y must be
a numeric vector. err is a vector with one error measure for each of the NTrees trees in
the ensemble B.

err = error(B,X,Y,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how the method computes errors. If set to
'cumulative' (default), error computes cumulative errors and
err is a vector of length NTrees, where the first element gives error
from trees(1), second element gives error fromtrees(1:2) etc,
up to trees(1:NTrees). If set to 'individual', err is a vector
of length NTrees, where each element is an error from each tree
in the ensemble. If set to 'ensemble', err is a scalar showing the
cumulative error for the entire ensemble.

'trees' Vector of indices indicating what trees to include in this calculation.
By default, this argument is set to 'all' and the method uses all
trees. If 'trees' is a numeric vector, the method returns a vector
of length NTrees for 'cumulative' and 'individual' modes,
where NTrees is the number of elements in the input vector, and a
scalar for 'ensemble' mode. For example, in the 'cumulative'

 error

22-1267

mode, the first element gives error from trees(1), the second
element gives error from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the same length as the
'trees' vector. The method uses these weights to combine output
from the specified trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use this argument in
the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees should
be used to make predictions for each observation. By default the
method uses all trees for all observations.

See Also
TreeBagger.error

22 Functions — Alphabetical List

22-1268

error
Class: TreeBagger

Error (misclassification probability or MSE)

Syntax

err = error(B,X,Y)

err = error(B,X,Y,'param1',val1,'param2',val2,...)

Description

err = error(B,X,Y) computes the misclassification probability for classification
trees or mean squared error (MSE) for regression trees for each tree, for predictors X
given true response Y. For classification, Y can be either a numeric vector, character
matrix, cell array of strings, categorical vector or logical vector. For regression, Y must be
a numeric vector. err is a vector with one error measure for each of the NTrees trees in
the ensemble B.

err = error(B,X,Y,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how the method computes errors. If set to
'cumulative' (default), error computes cumulative errors and
err is a vector of length NTrees, where the first element gives error
from trees(1), second element gives error fromtrees(1:2) etc,
up to trees(1:NTrees). If set to 'individual', err is a vector
of length NTrees, where each element is an error from each tree
in the ensemble. If set to 'ensemble', err is a scalar showing the
cumulative error for the entire ensemble.

'trees' Vector of indices indicating what trees to include in this calculation.
By default, this argument is set to 'all' and the method uses all
trees. If 'trees' is a numeric vector, the method returns a vector
of length NTrees for 'cumulative' and 'individual' modes,
where NTrees is the number of elements in the input vector, and a
scalar for 'ensemble' mode. For example, in the 'cumulative'

 error

22-1269

mode, the first element gives error from trees(1), the second
element gives error from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the same length as the
'trees' vector. The method uses these weights to combine output
from the specified trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use this argument in
the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees should
be used to make predictions for each observation. By default the
method uses all trees for all observations.

See Also
CompactTreeBagger.error

22 Functions — Alphabetical List

22-1270

eval
Class: classregtree

Predicted responses

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

yfit = eval(t,X)

yfit = eval(t,X,s)

[yfit,nodes] = eval(...)

[yfit,nodes,cnums] = eval(...)

[...] = t(X)

[...] = t(X,s)

Description

yfit = eval(t,X) takes a classification or regression tree t and a matrix X of
predictors, and produces a vector yfit of predicted response values. For a regression
tree, yfit(i) is the fitted response value for a point having the predictor values
X(i,:). For a classification tree, yfit(i) is the class into which the tree assigns the
point with data X(i,:).

yfit = eval(t,X,s) takes an additional vector s of pruning levels, with 0
representing the full, unpruned tree. t must include a pruning sequence as created by
classregtree or by prune. If s has k elements and X has n rows, the output yfit is
an n-by-k matrix, with the jth column containing the fitted values produced by the s(j)
subtree. s must be sorted in ascending order.

To compute fitted values for a tree that is not part of the optimal pruning sequence, first
use prune to prune the tree.

 eval

22-1271

[yfit,nodes] = eval(...) also returns a vector nodes the same size as yfit
containing the node number assigned to each row of X. Use view to display the node
numbers for any node you select.

[yfit,nodes,cnums] = eval(...) is valid only for classification trees. It returns a
vector cnum containing the predicted class numbers.

NaN values in X are treated as missing. If eval encounters a missing value when it
attempts to evaluate the split rule at a branch node, it cannot determine whether to
proceed to the left or right child node. Instead, it sets the corresponding fitted value
equal to the fitted value assigned to the branch node.

[...] = t(X) or [...] = t(X,s) also invoke eval.

Examples

Create a classification tree for Fisher's iris data:

load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

22 Functions — Alphabetical List

22-1272

Find assigned class names:

sfit = eval(t,meas);

Compute that proportion is correctly classified:

pct = mean(strcmp(sfit,species))

pct =

 0.9800

 eval

22-1273

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | test | view | prune

22 Functions — Alphabetical List

22-1274

evalclusters
Evaluate clustering solutions

Syntax

eva = evalclusters(x,clust,criterion)

eva = evalclusters(x,clust,criterion,Name,Value)

Description

eva = evalclusters(x,clust,criterion) creates a clustering evaluation object
containing data used to evaluate the optimal number of data clusters.

eva = evalclusters(x,clust,criterion,Name,Value) creates a clustering
evaluation object using additional options specified by one or more name-value pair
arguments.

Examples

Evaluate the Clustering Solution Using Calinski-Harabasz Criterion

Evaluate the optimal number of clusters using the Calinski-Harabasz clustering
evaluation criterion.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion. Cluster
the data using kmeans.

rng('default'); % For reproducibility

eva = evalclusters(meas,'kmeans','CalinskiHarabasz','KList',[1:6])

 evalclusters

22-1275

eva =

 CalinskiHarabaszEvaluation with properties:

 NumObservations: 150

 InspectecedK: [1 2 3 4 5 6]

 CriterionValues: [1x6 double]

 OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the
optimal number of clusters is three.

Evaluate a Matrix of Clustering Solutions

Use an input matrix of proposed clustering solutions to evaluate the optimal number of
clusters.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Use kmeans to create an input matrix of proposed clustering solutions for the sepal
length measurements, using 1, 2, 3, 4, 5, and 6 clusters.

clust = zeros(size(meas,1),6);

for i=1:6

clust(:,i) = kmeans(meas,i,'emptyaction','singleton',...

 'replicate',5);

end

Each row of clust corresponds to one sepal length measurement. Each of the six
columns corresponds to a clustering solution containing 1 to 6 clusters.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion.

eva = evalclusters(meas,clust,'CalinskiHarabasz')

eva =

 CalinskiHarabaszEvaluation with properties:

22 Functions — Alphabetical List

22-1276

 NumObservations: 150

 InspectedK: [1 2 3 4 5 6]

 CriterionValues: [NaN 513.9245 561.6278 530.7658 459.5058 473.6577]

 OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the
optimal number of clusters is three.

Specify Clustering Algorithm with a Function Handle

Use a function handle to specify the clustering algorithm, then evaluate the optimal
number of clusters.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Use a function handle to specify the clustering algorithm.

myfunc = @(X,K)(kmeans(X, K, 'emptyaction','singleton',...

 'replicate',5));

Evaluate the optimal number of clusters for the sepal length data using the Calinski-
Harabasz criterion.

eva = evalclusters(meas,myfunc,'CalinskiHarabasz',...

 'klist',[1:6])

eva =

 CalinskiHarabaszEvaluation with properties:

 NumObservations: 150

 InspectedK: [1 2 3 4 5 6]

 CriterionValues: [NaN 513.9245 561.6278 530.7658 459.5058 473.6577]

 OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the
optimal number of clusters is three.

• “Clustering Using Gaussian Mixture Models” on page 14-29

 evalclusters

22-1277

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the
number of variables.
Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions |
function handle

Clustering algorithm, specified as one of the following.

'kmeans' Cluster the data in x using the kmeans clustering
algorithm, with 'EmptyAction' set to 'singleton' and
'Replicates' set to 5.

'linkage' Cluster the data in x using the clusterdata
agglomerative clustering algorithm, with 'Linkage' set
to 'ward'.

'gmdistribution' Cluster the data in x using the gmdistribution
Gaussian mixture distribution algorithm, with
'SharedCov' set to true and 'Replicates' set to 5.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you can
specify a clustering algorithm using the function_handle (@) operator. The function
must be of the form C = clustfun(DATA,K), where DATA is the data to be clustered,
and K is the number of clusters. The output of clustfun must be one of the following:

• A vector of integers representing the cluster index for each observation in DATA. There
must be K unique values in this vector.

• A numeric n-by-K matrix of score for n observations and K classes. In this case, the
cluster index for each observation is determined by taking the largest score value in
each row.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you
can also specify clust as a n-by-K matrix containing the proposed clustering solutions.
n is the number of observations in the sample data, and K is the number of proposed

22 Functions — Alphabetical List

22-1278

clustering solutions. Column j contains the cluster indices for each of the N points in the
jth clustering solution.

criterion — Clustering evaluation criterion
'CalinskiHarabasz' | 'DaviesBouldin' | 'gap' | 'silhouette'

Clustering evaluation criterion, specified as one of the following.

'CalinskiHarabasz' Create a CalinskiHarabaszEvaluation
clustering evaluation object containing
Calinski-Harabasz index values.

'DaviesBouldin' Create a DaviesBouldinEvaluation
cluster evaluation object containing Davies-
Bouldin index values.

'gap' Create a GapEvaluation cluster
evaluation object containing gap criterion
values.

'silhouette' Create a SilhouetteEvaluation cluster
evaluation object containing silhouette
values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'KList',[1:5],'Distance','cityblock' specifies to test 1, 2, 3, 4, and 5
clusters using the sum of absolute differences distance measure.

For All Criteria

'KList' — List of number of clusters to evaluate
vector

List of number of clusters to evaluate, specified as the comma-separated pair consisting
of 'KList' and a vector of positive integer values. You must specify KList when clust is

 evalclusters

22-1279

a clustering algorithm name string or a function handle. When criterion is 'gap', clust
must be a string or a function handle, and you must specify KList.
Example: 'KList',[1:6]

For Silhouette and Gap

'Distance' — Distance metric
'sqEuclidean' (default) | 'Euclidean' | 'cityblock' | vector | function | ...

Distance metric used for computing the criterion values, specified as the comma-
separated pair consisting of 'Distance' and one of the following.

'sqEuclidean' Squared Euclidean distance
'Euclidean' Euclidean distance
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle between points

(treated as vectors)
'correlation' One minus the sample correlation between points (treated

as sequences of values)
'Hamming' Percentage of coordinates that differ
'Jaccard' Percentage of nonzero coordinates that differ

For detailed information about each distance metric, see pdist.

You can also specify a function for the distance metric by using the function_handle
(@) operator. The distance function must be of the form d2 = distfun(XI,XJ), where
XI is a 1-by-n vector corresponding to a single row of the input matrix X, and XJ is an m2-
by-n matrix corresponding to multiple rows of X. distfun must return an m2-by-1 vector
of distances d2, whose kth element is the distance between XI and XJ(k,:).

If Criterion is 'silhouette', you can also specify Distance as the output vector
output created by the function pdist.

When Clust a string representing a built-in clustering algorithm, evalclusters uses
the distance metric specified for Distance to cluster the data, except for the following:

• If Clust is 'linkage', and Distance is either 'sqEuclidean' or 'Euclidean',
then the clustering algorithm uses Euclidean distance and Ward linkage.

22 Functions — Alphabetical List

22-1280

• If Clust is 'linkage' and Distance is any other metric, then the clustering
algorithm uses the specified distance metric and average linkage.

In all other cases, the distance metric specified for Distance must match the distance
metric used in the clustering algorithm to obtain meaningful results.
Example: 'Distance','Euclidean'

For Silhouette Only

'ClusterPriors' — Prior probabilities for each cluster
'empirical' (default) | 'equal'

Prior probabilities for each cluster, specified as the comma-separated pair consisting of
'ClusterPriors' and one of the following.

'empirical' Compute the overall silhouette value for the clustering
solution by averaging the silhouette values for all points.
Each cluster contributes to the overall silhouette value
proportionally to its size.

'equal' Compute the overall silhouette value for the clustering
solution by averaging the silhouette values for all points
within each cluster, and then averaging those values
across all clusters. Each cluster contributes equally to the
overall silhouette value, regardless of its size.

Example: 'ClusterPriors','empirical'

For Gap Only

'B' — Number of reference data sets
100 (default) | positive integer value

Number of reference data sets generated from the reference distribution
ReferenceDistribution, specified as the comma-separated pair consisting of 'B' and a
positive integer value.
Example: 'B',150

 evalclusters

22-1281

'ReferenceDistribution' — Reference data generation method
'PCA' (default) | 'uniform'

Reference data generation method, specified as the comma-separated pair consisting of
'ReferenceDistributions' and one of the following.

'PCA' Generate reference data from a uniform distribution over
a box aligned with the principal components of the data
matrix x.

'uniform' Generate reference data uniformly over the range of each
feature in the data matrix x.

Example: 'ReferenceDistribution','uniform'

'SearchMethod' — Method for selecting optimal number of clusters
'globalMaxSE' (default) | 'firstMaxSE'

Method for selecting the optimal number of clusters, specified as the comma-separated
pair consisting of 'SearchMethod' and one of the following.

'globalMaxSE' Evaluate each proposed number of clusters in KList and
select the smallest number of clusters satisfying

Gap SEK GAPMAX GAPMAX() ≥ - (),

where K is the number of clusters, Gap(K) is the gap value
for the clustering solution with K clusters, GAPMAX is the
largest gap value, and SE(GAPMAX) is the standard error
corresponding to the largest gap value.

'firstMaxSE' Evaluate each proposed number of clusters in KList and
select the smallest number of clusters satisfying

Gap Gap SE() () (),K K K≥ + - +1 1

where K is the number of clusters, Gap(K) is the gap value
for the clustering solution with K clusters, and SE(K + 1)
is the standard error of the clustering solution with K + 1
clusters.

22 Functions — Alphabetical List

22-1282

Example: 'SearchMethod','globalMaxSE'

Output Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, returned as a clustering evaluation object.

More About
• “k-Means Clustering” on page 14-21
• “Hierarchical Clustering” on page 14-3
• “Gaussian Mixture Models” on page 5-150

See Also
clustering.evaluation.CalinskiHarabaszEvaluation

| clustering.evaluation.DaviesBouldinEvaluation
| clustering.evaluation.GapEvaluation |
clustering.evaluation.SilhouetteEvaluation

 evlike

22-1283

evlike

Extreme value negative log-likelihood

Syntax

nlogL = evlike(params,data)

[nlogL,AVAR] = evlike(params,data)

[...] = evlike(params,data,censoring)

[...] = evlike(params,data,censoring,freq)

Description

nlogL = evlike(params,data) returns the negative of the log-likelihood for the
type 1 extreme value distribution. params(1) is the tail location parameter, mu, and
params(2) is the scale parameter, sigma. nlogL is a scalar.

[nlogL,AVAR] = evlike(params,data) returns the inverse of Fisher's information
matrix, AVAR. If the input parameter values in params are the maximum likelihood
estimates, the diagonal elements of AVAR are their asymptotic variances. AVAR is based
on the observed Fisher's information, not the expected information.

[...] = evlike(params,data,censoring) accepts a Boolean vector of the same
size as data, which is 1 for observations that are right-censored and 0 for observations
that are observed exactly.

[...] = evlike(params,data,censoring,freq) accepts a frequency vector of the
same size as data. freq typically contains integer frequencies for the corresponding
elements in data, but can contain any nonnegative values. Pass in [] for censoring to
use its default value.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating data. See “Extreme Value Distribution” on
page B-39 for more details. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

22 Functions — Alphabetical List

22-1284

More About
• “Extreme Value Distribution” on page B-39

See Also
evfit | evpdf | evcdf | evinv | evstat | evrnd

 evpdf

22-1285

evpdf
Extreme value probability density function

Syntax

Y = evpdf(X,mu,sigma)

Description

Y = evpdf(X,mu,sigma) returns the pdf of the type 1 extreme value distribution with
location parameter mu and scale parameter sigma, evaluated at the values in X. X, mu,
and sigma can be vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array of the same size as the other inputs.
The default values for mu and sigma are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating X. See “Extreme Value Distribution” on page
B-39 for more details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

More About
• “Extreme Value Distribution” on page B-39

See Also
pdf | evcdf | evinv | evstat | evfit | evlike | evrnd

22 Functions — Alphabetical List

22-1286

evrnd
Extreme value random numbers

Syntax

R = evrnd(mu,sigma)

R = evrnd(mu,sigma,m,n,...)

R = evrnd(mu,sigma,[m,n,...])

Description

R = evrnd(mu,sigma) generates random numbers from the extreme value distribution
with parameters specified by location parameter mu and scale parameter sigma. mu and
sigma can be vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of R. A scalar input for mu or sigma is expanded to a constant array
with the same dimensions as the other input.

R = evrnd(mu,sigma,m,n,...) or R = evrnd(mu,sigma,[m,n,...]) generates
an m-by-n-by-... array containing random numbers from the extreme value distribution
with parameters mu and sigma. mu and sigma can each be scalars or arrays of the same
size as R.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima by negating R. See “Extreme Value Distribution” on page
B-39 for more details. If x has a Weibull distribution, then X = log(x) has the type 1
extreme value distribution.

More About
• “Extreme Value Distribution” on page B-39

See Also
random | evpdf | evcdf | evinv | evstat | evfit | evlike

 evstat

22-1287

evstat
Extreme value mean and variance

Syntax

[M,V] = evstat(mu,sigma)

Description

[M,V] = evstat(mu,sigma) returns the mean of and variance for the type 1 extreme
value distribution with location parameter mu and scale parameter sigma. mu and sigma
can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array of the same size as the other input. The default
values for mu and sigma are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel distribution. The
version used here is suitable for modeling minima; the mirror image of this distribution
can be used to model maxima. See “Extreme Value Distribution” on page B-39 for
more details. If x has a Weibull distribution, then X = log(x) has the type 1 extreme value
distribution.

More About
• “Extreme Value Distribution” on page B-39

See Also
evpdf | evcdf | evinv | evfit | evlike | evrnd

22 Functions — Alphabetical List

22-1288

prob.ExponentialDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Exponential probability distribution object

Description

prob.ExponentialDistribution is an object consisting of parameters, a model
description, and sample data for an exponential probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Exponential') creates an exponential probability distribution
object using the default parameter values.

pd = makedist('Exponential','mu',mu) creates an exponential probability
distribution object using the specified parameter value.

Input Arguments

mu — Mean
1 (default) | positive scalar value

Mean of the exponential distribution, specified as a positive scalar value.
Data Types: single | double

Properties

mu — Mean
positive scalar value

Mean of the exponential distribution, stored as a positive scalar value.

 prob.ExponentialDistribution class

22-1289

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between

22 Functions — Alphabetical List

22-1290

the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.

 prob.ExponentialDistribution class

22-1291

Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

22 Functions — Alphabetical List

22-1292

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Exponential Distribution

The exponential distribution is used to model events that occur randomly over time,
and its main application area is studies of lifetimes. It is a special case of the gamma
distribution with the shape parameter a = 1.

The exponential distribution uses the following parameters.

Parameter Description Support

mu Mean m > 0

The probability density function (pdf) is

f x e x

x

| ; .m
m

m() = ≥

-

1
0

Examples

Create an Exponential Distribution Object Using Default Parameters

Create an exponential distribution object using the default parameter values.

pd = makedist('Exponential')

 prob.ExponentialDistribution class

22-1293

pd =

 ExponentialDistribution

 Exponential distribution

 mu = 1

Create an Exponential Distribution Object Using Specified Parameters

Create an exponential distribution object by specifying the parameter values.

pd = makedist('Exponential','mu',2)

pd =

 ExponentialDistribution

 Exponential distribution

 mu = 2

Compute the variance of the distribution.

v = var(pd)

v =

 4

See Also
dfittool | fitdist | makedist

More About
• “Exponential Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-1294

expcdf
Exponential cumulative distribution function

Syntax

p = expcdf(x,mu)

[p,plo,pup] = expcdf(x,mu,pcov,alpha)

[p,plo,pup] = expcdf(___ ,'upper')

Description

p = expcdf(x,mu) computes the exponential cdf at each of the values in x using
the corresponding mean parameter mu. x and mu can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other input. The parameters in mu must
be positive.

[p,plo,pup] = expcdf(x,mu,pcov,alpha) produces confidence bounds for Pp when
the input mean parameter mu is an estimate. pcov is the variance of the estimated mu.
alpha specifies 100(1 - alpha)% confidence bounds. The default value of alpha is 0.05.
plo and pup are arrays of the same size as p containing the lower and upper confidence
bounds. The bounds are based on a normal approximation for the distribution of the log
of the estimate of mu. If you estimate mu from a set of data, you can get a more accurate
set of bounds by applying expfit to the data to get a confidence interval for mu, and then
evaluating expinv at the lower and upper endpoints of that interval.

[p,plo,pup] = expcdf(___ ,'upper') returns the complement of the exponential
cdf at each value in x, using an algorithm that more accurately computes the extreme
upper tail probabilities. You can use the 'upper' argument with any of the prior
syntaxes.

The exponential cdf is

p F x u e dt e

x t x

= = = −∫
− −

(|)
1

1

0
m

m m

 expcdf

22-1295

The result, p, is the probability that a single observation from an exponential distribution
will fall in the interval [0 x].

Examples

Compute the Exponential CDF

The following code shows that the median of the exponential distribution is µ*log(2).

mu = 10:10:60;

p = expcdf(log(2)*mu,mu)

p =

 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

What is the probability that an exponential random variable is less than or equal to the
mean, µ?

mu = 1:6;

x = mu;

p = expcdf(x,mu)

p =

 0.6321 0.6321 0.6321 0.6321 0.6321 0.6321

More About
• “Exponential Distribution” on page B-35

See Also
cdf | exppdf | expinv | expstat | expfit | explike | exprnd

22 Functions — Alphabetical List

22-1296

expfit

Exponential parameter estimates

Syntax

muhat = expfit(data)

[muhat,muci] = expfit(data)

[muhat,muci] = expfit(data,alpha)

[...] = expfit(data,alpha,censoring)

[...] = expfit(data,alpha,censoring,freq)

Description

muhat = expfit(data) estimates the mean of an exponentially distributed sample
data. Each entry of muhat corresponds to the data in a column of data.

[muhat,muci] = expfit(data) returns 95% confidence intervals for the mean
parameter estimates in matrix muci. The first row of muci contains the lower bounds of
the confidence intervals, and the second row contains the upper bounds.

[muhat,muci] = expfit(data,alpha) returns 100(1 - alpha)% confidence intervals
for the parameter estimates, where alpha is a value in the range [0 1] specifying the
width of the confidence intervals. By default, alpha is 0.05, which corresponds to 95%
confidence intervals.

[...] = expfit(data,alpha,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly. data must be a vector in order to pass in the
argument censoring.

[...] = expfit(data,alpha,censoring,freq) accepts a frequency vector, freq of
the same size as data. Typically, freq contains integer frequencies for the corresponding
elements in data, but can contain any nonnegative values. Pass in [] for alpha,
censoring, or freq to use their default values.

 expfit

22-1297

Examples

The following estimates the mean mu of exponentially distributed data, and returns a
95% confidence interval for the estimate:

mu = 3;

data = exprnd(mu,100,1); % Simulated data

[muhat,muci] = expfit(data)

muhat =

 2.7511

muci =

 2.2826

 3.3813

See Also
mle | explike | exppdf | expcdf | expinv | expstat | exprnd

22 Functions — Alphabetical List

22-1298

ExhaustiveSearcher
Prepare exhaustive nearest neighbors searcher

Syntax

Mdl = ExhaustiveSearcher(X)

Mdl = ExhaustiveSearcher(X,Name,Value)

Description

Mdl = ExhaustiveSearcher(X) prepares an exhaustive nearest neighbors searcher
(Mdl) to find the nearest neighbors of query data using the n-by-K numeric matrix of
training data (X). Mdl is an ExhaustiveSearcher model object that stores the statistics
and options required for an exhaustive nearest neighbors search. You can use Mdl to
search the training data (X) for the nearest neighbors to the query data.

Mdl = ExhaustiveSearcher(X,Name,Value) prepares an exhaustive nearest
neighbors searcher with additional options specified by one or more Name,Value pair
arguments. For example, you can specify a distance metric or distance metric parameters
values.

Examples

Train Default Exhaustive Nearest Neighbors Searcher

Load Fisher's iris data set.

load fisheriris

X = meas;

[n,k] = size(X)

n =

 150

 ExhaustiveSearcher

22-1299

k =

 4

X has 150 observations and 4 predictors.

Prepare an exhaustive nearest neighbors searcher using the entire data set as training
data.

Mdl = ExhaustiveSearcher(X)

Mdl =

 ExhaustiveSearcher with properties:

 Distance: 'euclidean'

 DistParameter: []

 X: [150x4 double]

Mdl is an ExhaustiveSearcher model object, and its properties appear in the
Command Window. It contains information about the trained algorithm, such as the
distance metric. You can alter property values using dot notation.

To search X for the nearest neighbors to a batch of query data, pass Mdl and the query
data to knnsearch or rangesearch.

Specify the Mahalanobis Distance for Nearest Neighbor Search

Load Fisher's iris data. Focus on the petal dimensions.

load fisheriris

X = meas(:,[3 4]); % Predictors

Prepare an exhaustive, nearest neighbors searcher. Specify to use the Mahalanobis
distance metric.

Mdl = createns(X,'NSMethod','exhaustive','Distance','mahalanobis')

22 Functions — Alphabetical List

22-1300

Mdl =

 ExhaustiveSearcher with properties:

 Distance: 'mahalanobis'

 DistParameter: [2x2 double]

 X: [150x2 double]

Mdl is an ExhaustiveSearcher model object. Access properties of Mdl using dot
notation. For example, use Mdl.DistParameter to access the Mahalanobis covariance
parameter.

Mdl.DistParameter

ans =

 3.1163 1.2956

 1.2956 0.5810

You can pass query data and Mdl to:

• searcher.knnsearch to find indices and distances of nearest neighbors.
• searcher.rangesearch to find indices of all nearest neighbors within a distance that

you specify.

Search for Nearest Neighbors of Query Data Using the Mahalanobis Distance

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

X = meas(~ismember(1:n,qIdx),:);

Y = meas(qIdx,:);

Prepare an exhaustive nearest neighbors searcher using the training data. Specify to use
the Mahalanobis distance for finding nearest neighbors later.

 ExhaustiveSearcher

22-1301

Mdl = createns(X,'NSMethod','exhaustive','Distance','mahalanobis')

Mdl =

 ExhaustiveSearcher with properties:

 Distance: 'mahalanobis'

 DistParameter: [4x4 double]

 X: [145x4 double]

Mdl is an ExhaustiveSearcher model object. By default, the Mahalanobis metric
parameter value is the estimated covariance matrix of the predictors (columns) in the
training data. To display this value,use Mdl.DistPatameter.

Mdl.DistParameter

ans =

 0.6819 -0.0332 1.2526 0.5103

 -0.0332 0.1859 -0.3152 -0.1183

 1.2526 -0.3152 3.0638 1.2816

 0.5103 -0.1183 1.2816 0.5786

Find the indices of the training data (Mdl.X) that are the two nearest neighbors of each
point in the query data (Q).

IdxNN = knnsearch(Mdl,Y,'K',2)

IdxNN =

 26 38

 6 21

 1 34

 84 76

 69 129

22 Functions — Alphabetical List

22-1302

Each row of NN corresponds to a query data observation. The column order corresponds to
the order of the nearest neighbors with respect to ascending distance. For example, using
the Mahalanobis metric, the second nearest neighbor of Q(3,:) is X(34,:).

Input Arguments
X — Training data
numeric matrix

Training data for an exhaustive nearest neighbor search, specified as a numeric matrix.
X has n rows, each corresponding to an observation (i.e. an instance or example), and K
columns, each corresponding to a predictor or feature.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Distance','mahalanobis','Cov',eye(3) specifies to use the
Mahalanobis distance when searching for nearest neighbors, and a 3-by-3 identity matrix
for the covariance matrix in the Mahalanobis distance metric.

'Cov' — Covariance matrix for Mahalanobis distance metric
nancov(X) (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-
separated pair consisting of 'Cov' and a positive definite matrix. Cov is a K-by-K
matrix, where K is the number of columns of X. If you specify Cov and do not specify
'Distance','mahalanobis', then ExhaustiveSearcher throws an error.

Example: 'Cov',eye(3)

Data Types: double | single

'Distance' — Distance metric
'euclidean' (default) | 'chebychev' | 'cityblock' | 'correlation' | 'cosine'
| 'hamming' | 'jaccard' | 'mahalanobis' | 'minkowski' | 'seuclidean' |
'spearman' | custom distance function

 ExhaustiveSearcher

22-1303

Distance metric used to find nearest neighbors of query points, specified as a comma-
separated pair consisting of 'Distance' and a string or function handle.

This table describes the supported distance metrics specified by strings.

Value Description

'chebychev' Chebychev distance (maximum coordinate
difference).

'cityblock' City block distance
'correlation' One minus the sample linear correlation

between observations (treated as sequences
of values)

'cosine' One minus the cosine of the included angle
between observations (row vectors)

'euclidean' Euclidean distance
'hamming' Hamming distance, which is the percentage

of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is

the percentage of nonzero coordinates that
differ

'minkowski' Minkowski distance
'mahalanobis' Mahalanobis distance
'seuclidean' Standardized Euclidean distance
'spearman' One minus the sample Spearman's rank

correlation between observations (treated
as sequences of values)

For more details, see “Distance Metrics”.

You can specify a function handle for a custom distance metric using @ (for example,
@distfun). The custom distance function must:

• Have the form function D2 = distfun(ZI, ZJ)
• Take as arguments:

• A 1-by-K vector ZI containing a single row from X or from the query points Y

22 Functions — Alphabetical List

22-1304

• An m-by-K matrix ZJ containing multiple rows of X or Y
• Return an m-by-1 vector of distances D2, whose jth element is the distance between

the observations ZI and ZJ(j,:)

The software does not use the distance metric for training the exhaustive searcher
algorithm. Therefore, you can alter it after training by specifying a supported string or
function handle for a custom function using dot notation.
Example: 'Distance','mahalanobis'

Data Types: char | function_handle

'P' — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated
pair consisting of 'P' and a positive scalar. If you specify P and do not specify
'Distance','minkowski', then the software throws an error.

Example: 'P',3

Data Types: double | single

'Scale' — Scale parameter value for standard Euclidean distance metric
nanstd(X) (default) | nonnegative numeric vector

Scale parameter value for the standard Euclidean distance metric, specified as the
comma-separated pair consisting of 'Scale' and a nonnegative numeric vector. Scale
has length K, where K is the number of columns of X.

The software scales each difference between the training and query data using
the corresponding element of Scale. If you specify Scale and do not specify
'Distance','seuclidean', then ExhaustiveSearcher throws an error.

Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)

Data Types: double | single

Output Arguments

Mdl — Prepared exhaustive nearest neighbors searcher
ExhaustiveSearcher model object

 ExhaustiveSearcher

22-1305

Prepared exhaustive nearest neighbors searcher, returned as an ExhaustiveSearcher
model object. To search the training data for the nearest neighbors of the query data,
pass the query data and Mdl to knnsearch or rangesearch.

More About
• Using ExhaustiveSearcher Objects
• “k-Nearest Neighbor Search and Radius Search” on page 16-11
• “Distance Metrics”

See Also
createns | knnsearch | rangesearch

Introduced in R2010a

22 Functions — Alphabetical List

22-1306

Using ExhaustiveSearcher Objects
Exhaustive nearest neighbors searcher

ExhustiveSearcher model objects store statistics and options for an exhaustive,
nearest neighbors search. Statistics and options that you can store include the training
data, the distance metric, and the parameter values of the distance metric. The
exhaustive search algorithm finds the distance from each query observation to all n
observations in the training data, which is an n-by-K numeric matrix.

Once you create an ExhaustiveSearcher model object, find neighboring points in
the training data to the query data by performing a nearest neighbors search using
knnsearch or a radius search using rangesearch. The exhaustive search algorithm
is more efficient than the Kd-tree algorithm when K is large (i.e., K ≥ 10), and it is more
flexible than the Kd-tree algorithm with respect to distance metric choices. The algorithm
also supports sparse data.

Examples

Train Default Exhaustive Nearest Neighbors Searcher

Load Fisher's iris data set.

load fisheriris

X = meas;

[n,k] = size(X)

n =

 150

k =

 4

X has 150 observations and 4 predictors.

Prepare an exhaustive nearest neighbors searcher using the entire data set as training
data.

 Using ExhaustiveSearcher Objects

22-1307

Mdl = ExhaustiveSearcher(X)

Mdl =

 ExhaustiveSearcher with properties:

 Distance: 'euclidean'

 DistParameter: []

 X: [150x4 double]

Mdl is an ExhaustiveSearcher model object, and its properties appear in the
Command Window. It contains information about the trained algorithm, such as the
distance metric. You can alter property values using dot notation.

To search X for the nearest neighbors to a batch of query data, pass Mdl and the query
data to knnsearch or rangesearch.

Alter Properties of ExhaustiveSearcher Model

Load Fisher's iris data set.

load fisheriris

X = meas;

Train a default exhaustive searcher algorithm using the entire data set as training data.

Mdl = ExhaustiveSearcher(X)

Mdl =

 ExhaustiveSearcher with properties:

 Distance: 'euclidean'

 DistParameter: []

 X: [150x4 double]

Specify that the neighbor searcher use the Mahalanobis metric to compute the distances
between the training and query data.

Mdl.Distance = 'mahalanobis'

Mdl =

22 Functions — Alphabetical List

22-1308

 ExhaustiveSearcher with properties:

 Distance: 'mahalanobis'

 DistParameter: [4x4 double]

 X: [150x4 double]

Pass Mdl and the query data to either knnsearch or rangesearch to find the nearest
neighbors to the points in the query data using the Mahalanobis distance.

Search for Nearest Neighbors of Query Data Using the Mahalanobis Distance

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

X = meas(~ismember(1:n,qIdx),:);

Y = meas(qIdx,:);

Prepare an exhaustive nearest neighbors searcher using the training data. Specify to use
the Mahalanobis distance for finding nearest neighbors later.

Mdl = createns(X,'NSMethod','exhaustive','Distance','mahalanobis')

Mdl =

 ExhaustiveSearcher with properties:

 Distance: 'mahalanobis'

 DistParameter: [4x4 double]

 X: [145x4 double]

Mdl is an ExhaustiveSearcher model object. By default, the Mahalanobis metric
parameter value is the estimated covariance matrix of the predictors (columns) in the
training data. To display this value,use Mdl.DistPatameter.

Mdl.DistParameter

 Using ExhaustiveSearcher Objects

22-1309

ans =

 0.6819 -0.0332 1.2526 0.5103

 -0.0332 0.1859 -0.3152 -0.1183

 1.2526 -0.3152 3.0638 1.2816

 0.5103 -0.1183 1.2816 0.5786

Find the indices of the training data (Mdl.X) that are the two nearest neighbors of each
point in the query data (Q).

IdxNN = knnsearch(Mdl,Y,'K',2)

IdxNN =

 26 38

 6 21

 1 34

 84 76

 69 129

Each row of NN corresponds to a query data observation. The column order corresponds to
the order of the nearest neighbors with respect to ascending distance. For example, using
the Mahalanobis metric, the second nearest neighbor of Q(3,:) is X(34,:).

Properties

Distance — Distance metric
'cityblock' | 'euclidean' | 'mahalanobis' | 'minkowski' | 'seuclidean' |
custom distance function | ...

Distance metric used to find nearest neighbors of query points, specified as a string or
function handle.

This table describes the supported distance metrics specified by strings.

Value Description

'chebychev' Chebychev distance (maximum coordinate
difference)

'cityblock' City block distance

22 Functions — Alphabetical List

22-1310

Value Description

'correlation' One minus the sample linear correlation
between observations (treated as sequences
of values)

'cosine' One minus the cosine of the included angle
between observations (row vectors)

'euclidean' Euclidean distance
'hamming' Hamming distance, which is the percentage

of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is

the percentage of nonzero coordinates that
differ

'minkowski' Minkowski distance
'mahalanobis' Mahalanobis distance
'seuclidean' Standardized Euclidean distance
'spearman' One minus the sample Spearman's rank

correlation between observations (treated
as sequences of values)

For more details, see “Distance Metrics”.

You can specify a function handle for a custom distance metric using @ (for example,
@distfun). A custom distance function must:

• Have the form function D2 = distfun(ZI, ZJ)
• Take as arguments:

• A 1-by-n vector ZI containing a single row from X or from the query points Y
• An m-by-n matrix ZJ containing multiple rows of X or Y

• Return an m-by-1 vector of distances D2, whose jth element is the distance between
the observations ZI and ZJ(j,:)

The software does not use the distance metric for training the exhaustive searcher
algorithm. Therefore, you can alter it after training by specifying a supported string or
function handle for a custom function using dot notation. For example, to specify the
Mahalanobis distance, enter Mdl.Distance = 'mahalanobis'.

 Using ExhaustiveSearcher Objects

22-1311

Data Types: char | function_handle

DistParameter — Distance metric parameter values
[] | positive scalar

Distance metric parameter values, specified as empty ([]) or as a positive scalar.

This table describes the distance parameters of the supported distance metrics.

Distance Metric Parameter Description

'mahalanobis' A positive definite matrix representing
the covariance matrix used for computing
the Mahalanobis distances. By default,
the software sets the covariance using
nancov(Mdl.X). You can alter the
scale parameter using dot notation, e.g.,
Mdl.DistParameter = CovNew, where
CovNew is a K-by-K positive definite
numeric matrix.

'minkowski' A positive scalar indicating the exponent of
the Minkowski distances. By default, the
exponent is 2.

'seuclidean' A positive, numeric vector indicating
the values that the software uses to
scale the predictors when computing the
standardized Euclidean distances. By
default, the software:

1 Estimates the standard deviation of
each predictor (column) of X using
scale = nanstd(Mdl.X).

2 Scales each coordinate difference
between the rows in X and the
query matrix by dividing by the
corresponding element of scale.

You can alter the scale parameter using
dot notation, e.g., Mdl.DistParameter
= sNew, where sNew is a K-dimensional
positive numeric vector.

22 Functions — Alphabetical List

22-1312

If Mdl.Distance is not one of the parameters listed in this table, then
Mdl.DistParameter is [], which means that the specified distance metric formula has
no parameters.
Data Types: single | double

X — Training data
numeric matrix

Training data that prepares the exhaustive searcher algorithm, specified as a numeric
matrix. X has n rows, each corresponding to an observation (i.e., instance or example),
and K columns, each corresponding to a predictor or feature.
Data Types: single | double

Object Functions
knnsearchrangesearch

Create Object

Create an ExhaustiveSearcher model object using ExhaustiveSearcher or
createns.

See Also
KDTreeSearcher

More About
• “k-Nearest Neighbor Search and Radius Search” on page 16-11
• “Distance Metrics”

 expinv

22-1313

expinv
Exponential inverse cumulative distribution function

Syntax
X = expinv(P,mu)

[X,XLO,XUP] = expinv(X,mu,pcov,alpha)

Description
X = expinv(P,mu) computes the inverse of the exponential cdf with parameters
specified by mean parameter mu for the corresponding probabilities in P. P and mu can
be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other input. The
parameters in mu must be positive and the values in P must lie on the interval [0 1].

[X,XLO,XUP] = expinv(X,mu,pcov,alpha) produces confidence bounds for X when
the input mean parameter mu is an estimate. pcov is the variance of the estimated mu.
alpha specifies 100(1 - alpha)% confidence bounds. The default value of alpha is 0.05.
XLO and XUP are arrays of the same size as X containing the lower and upper confidence
bounds. The bounds are based on a normal approximation for the distribution of the log
of the estimate of mu. If you estimate mu from a set of data, you can get a more accurate
set of bounds by applying expfit to the data to get a confidence interval for mu, and then
evaluating expinv at the lower and upper end points of that interval.

The inverse of the exponential cdf is

x F p p= = − −−1 1(|) ln()m m

The result, x, is the value such that an observation from an exponential distribution with
parameter µ will fall in the range [0 x] with probability p.

Examples
Let the lifetime of light bulbs be exponentially distributed with µ = 700 hours. What is
the median lifetime of a bulb?

22 Functions — Alphabetical List

22-1314

expinv(0.50,700)

ans =

 485.2030

Suppose you buy a box of “700 hour” light bulbs. If 700 hours is the mean life of the
bulbs, half of them will burn out in less than 500 hours.

More About
• “Exponential Distribution” on page B-35

See Also
icdf | expcdf | exppdf | expstat | expfit | explike | exprnd

 explike

22-1315

explike
Exponential negative log-likelihood

Syntax

nlogL = explike(param,data)

[nlogL,avar] = explike(param,data)

[...] = explike(param,data,censoring)

[...] = explike(param,data,censoring,freq)

Description

nlogL = explike(param,data) returns the negative of the log-likelihood for the
exponential distribution. param is the mean parameter, mu. nlogL is a scalar.

[nlogL,avar] = explike(param,data) returns the inverse of Fisher's information,
avar, a scalar. If the input parameter value in param is the maximum likelihood
estimate, avar is its asymptotic variance. avar is based on the observed Fisher's
information, not the expected information.

[...] = explike(param,data,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = explike(param,data,censoring,freq) accepts a frequency vector, freq,
of the same size as data. The vector freq typically contains integer frequencies for the
corresponding elements in data, but can contain any nonnegative values. Pass in [] for
censoring to use its default value.

More About
• “Exponential Distribution” on page B-35

See Also
expcdf | exppdf | expstat | expfit | expinv | exprnd

22 Functions — Alphabetical List

22-1316

export
Class: dataset

Write dataset array to file

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

export(DS,'file',filename)

export(DS)

export(DS,'file',filename,'Delimiter',delim)

export(DS,'XLSfile',filename)

export(DS,'XPTFile',filename)

export(DS,...,'WriteVarNames',false)

export(DS,...,'WriteObsNames',false)

Description

export(DS,'file',filename) writes the dataset array DS to a tab-delimited text file,
including variable names and observation names, if present. If the observation names
exist, the name in the first column of the first line of the file is the first dimension name
for the dataset (by default, 'Observations'). export overwrites any existing file
named filename.

export(DS) writes to a text file whose default name is the name of the dataset array DS
appended by '.txt'. If export cannot construct the file name from the dataset array
input, it writes to the file 'dataset.txt'. export overwrites any existing file.

export(DS,'file',filename,'Delimiter',delim) writes the dataset array DS to
a text file using the delimiter delim. delim must be one of the following:

 export

22-1317

• ' ' or 'space'
• '\t' or 'tab'
• ',' or 'comma'
• ';' or 'semi'
• '|' or 'bar'

export(DS,'XLSfile',filename) writes the dataset array DS to a Microsoft® Excel
spreadsheet file, including variable names and observation names (if present). You
can specify the 'Sheet' and 'Range' parameter name/value pairs, with parameter
values as accepted by the xlsread function. Since export uses the xlswrite function
internally, this syntax is only compatible with Microsoft Excel for Windows®, and does
not work on a Mac. For more information, see xlswrite.

export(DS,'XPTFile',filename) writes the dataset array DS to a SAS XPORT
format file. When writing to an XPORT format file, variables must be scalar valued.
export saves observation names to a variable called obsnames, unless the
WriteObsNames parameter described below is false. The XPORT format restricts the
length of variable names to eight characters; longer variable names are truncated.

export(DS,...,'WriteVarNames',false) does not write the variable names to the
text file. export(DS,...,'WriteVarNames',true) is the default, writing the names
as column headings in the first line of the file.

export(DS,...,'WriteObsNames',false) does not write the observation names
to the text file. export(DS,...,'WriteObsNames',true) is the default, writing the
names as the first column of the file.

In some cases, export creates a text file that does not represent A exactly, as described
below. If you use dataset to read the file back into MATLAB, the new dataset array
may not have exactly the same contents as the original dataset array. Save A as a MAT-
file if you need to import it again as a dataset array.

export writes out numeric variables using long g format, and categorical or character
variables as unquoted strings.

For non-character variables with more than one column, export writes out multiple
delimiter-separated fields on each line, and constructs suitable column headings for the
first line of the file.

export writes out variables that have more than two dimensions as a single empty field
in each line of the file.

22 Functions — Alphabetical List

22-1318

For cell-valued variables, export writes out the contents of each cell only when the cell
contains a single row, and writes out a single empty field otherwise.

In some cases, export creates a file that cannot be read back into MATLAB using
dataset. Writing a dataset array that contains a cell-valued variable whose cell contents
are not scalars results in a mismatch in the file between the number of fields on each
line and the number of column headings on the first line. Writing a dataset array that
contains a cell-valued variable whose cell contents are not all the same length results in a
different number of fields on each line in the file. Therefore, if you might need to import a
dataset array again, save it as a .mat file.

Examples

Move data between external text files and dataset arrays in the MATLAB workspace:

A = dataset('file','sat2.dat','delimiter',',')

A =

 Test Gender Score

 'Verbal' 'Male' 470

 'Verbal' 'Female' 530

 'Quantitative' 'Male' 520

 'Quantitative' 'Female' 480

export(A(A.Score > 500,:),'file','HighScores.txt')

B = dataset('file','HighScores.txt','delimiter','\t')

B =

 Test Gender Score

 'Verbal' 'Female' 530

 'Quantitative' 'Male' 520

See Also
dataset

 exppdf

22-1319

exppdf
Exponential probability density function

Syntax

Y = exppdf(X,mu)

Description

Y = exppdf(X,mu) returns the pdf of the exponential distribution with mean
parameter mu, evaluated at the values in X. X and mu can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other input. The parameters in mu must
be positive.

The exponential pdf is

y f x e

x

= =
−

(|)m
m

m1

The exponential pdf is the gamma pdf with its first parameter equal to 1.

The exponential distribution is appropriate for modeling waiting times when the
probability of waiting an additional period of time is independent of how long you have
already waited. For example, the probability that a light bulb will burn out in its next
minute of use is relatively independent of how many minutes it has already burned.

Examples
y = exppdf(5,1:5)

y =

 0.0067 0.0410 0.0630 0.0716 0.0736

y = exppdf(1:5,1:5)

22 Functions — Alphabetical List

22-1320

y =

 0.3679 0.1839 0.1226 0.0920 0.0736

More About
• “Exponential Distribution” on page B-35

See Also
pdf | expcdf | expinv | expstat | expfit | explike | exprnd

 exprnd

22-1321

exprnd
Exponential random numbers

Syntax
R = exprnd(mu)

R = exprnd(mu,m,n,...)

R = exprnd(mu,[m,n,...])

Description
R = exprnd(mu) generates random numbers from the exponential distribution with
mean parameter mu. mu can be a vector, a matrix, or a multidimensional array. The size
of R is the size of mu.

R = exprnd(mu,m,n,...) or R = exprnd(mu,[m,n,...]) generates an m-by-n-
by-... array containing random numbers from the exponential distribution with mean
parameter mu. mu can be a scalar or an array of the same size as R.

Examples
n1 = exprnd(5:10)

n1 =

 7.5943 18.3400 2.7113 3.0936 0.6078 9.5841

n2 = exprnd(5:10,[1 6])

n2 =

 3.2752 1.1110 23.5530 23.4303 5.7190 3.9876

n3 = exprnd(5,2,3)

n3 =

 24.3339 13.5271 1.8788

 4.7932 4.3675 2.6468

More About
• “Exponential Distribution” on page B-35

22 Functions — Alphabetical List

22-1322

See Also
random | expcdf | exppdf | expstat | expfit | explike | expinv

 expstat

22-1323

expstat
Exponential mean and variance

Syntax

[m,v] = expstat(mu)

Description

[m,v] = expstat(mu) returns the mean of and variance for the exponential
distribution with parameters mu. mu can be a vectors, matrix, or multidimensional array.
The mean of the exponential distribution is µ, and the variance is µ2.

Examples
[m,v] = expstat([1 10 100 1000])

m =

 1 10 100 1000

v =

 1 100 10000 1000000

More About
• “Exponential Distribution” on page B-35

See Also
expinv | expcdf | exppdf | expstat | expfit | explike | exprnd

22 Functions — Alphabetical List

22-1324

prob.ExtremeValueDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Extreme value probability distribution object

Description

prob.ExtremeValueDistribution is an object consisting of parameters, a model
description, and sample data for an extreme value probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('ExtremeValue') creates an extreme value probability distribution
object using the default parameter values.

pd = makedist('ExtremeValue','mu',mu,'sigma',sigma) creates an extreme
value probability distribution object using the specified parameter values.

Input Arguments

mu — Location parameter
0 (default) | scalar value

Location parameter of the extreme value distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of the extreme value distribution, specified as a nonnegative scalar
value.

 prob.ExtremeValueDistribution class

22-1325

Data Types: single | double

Properties

mu — Location parameter
scalar value

Location parameter of the extreme value distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the extreme value distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

22 Functions — Alphabetical List

22-1326

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

 prob.ExtremeValueDistribution class

22-1327

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

22 Functions — Alphabetical List

22-1328

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Extreme Value Distribution

The extreme value distribution is appropriate for modeling the smallest value from a
distribution whose tails decay exponentially fast, for example, the normal distribution. It
can also model the largest value from a distribution, such as the normal or exponential
distributions, by using the negative of the original values.

The extreme value distribution uses the following parameters.

 prob.ExtremeValueDistribution class

22-1329

Parameter Description Support

mu Location parameter -• < < •m

sigma Scale parameter s ≥ 0

The probability density function (pdf) is

f x
x x

x| , exp exp exp ; .m s s
m

s
m

s
() =

-Ê
ËÁ

ˆ
¯̃

-
-Ê

ËÁ
ˆ
¯̃

Ê

Ë
Á

ˆ

¯
˜ - • < < •-1

This form of the probability density function is suitable for modeling the minimum value.
To model the maximum value, use the negative of the original values.

Examples

Create an Extreme Value Distribution Object Using Default Parameters

Create an extreme value distribution object using the default parameter values.

pd = makedist('ExtremeValue')

pd =

 ExtremeValueDistribution

 Extreme Value distribution

 mu = 0

 sigma = 1

Create an Extreme Value Distribution Object Using Specified Parameters

Create an extreme value distribution object by specifying the parameter values.

pd = makedist('ExtremeValue', 'mu',-1,'sigma',2)

pd =

 ExtremeValueDistribution

 Extreme Value distribution

 mu = -1

22 Functions — Alphabetical List

22-1330

 sigma = 2

Compute the standard deviation for the distribution.

s = std(pd)

s =

 2.5651

See Also
dfittool | fitdist | makedist

More About
• “Extreme Value Distribution”
• Class Attributes
• Property Attributes

 factoran

22-1331

factoran
Factor analysis

Syntax

lambda = factoran(X,m)

[lambda,psi] = factoran(X,m)

[lambda,psi,T] = factoran(X,m)

[lambda,psi,T,stats] = factoran(X,m)

[lambda,psi,T,stats,F] = factoran(X,m)

[...] = factoran(...,param1,val1,param2,val2,...)

Definitions

factoran computes the maximum likelihood estimate (MLE) of the factor loadings
matrix Λ in the factor analysis model

x f e= + +m Λ

where x is a vector of observed variables, μ is a constant vector of means, Λ is a constant
d-by-m matrix of factor loadings, f is a vector of independent, standardized common
factors, and e is a vector of independent specific factors. x, μ, and e are of length d. f is of
length m.

Alternatively, the factor analysis model can be specified as

cov()x
T= +ΛΛ Ψ

where Ψ = cov()e is a d-by-d diagonal matrix of specific variances.

Description

lambda = factoran(X,m) returns the maximum likelihood estimate, lambda, of
the factor loadings matrix, in a common factor analysis model with m common factors.
X is an n-by-d matrix where each row is an observation of d variables. The (i,j)th

22 Functions — Alphabetical List

22-1332

element of the d-by-m matrix lambda is the coefficient, or loading, of the jth factor for
the ith variable. By default, factoran calls the function rotatefactors to rotate the
estimated factor loadings using the 'varimax' option.

[lambda,psi] = factoran(X,m) also returns maximum likelihood estimates of the
specific variances as a column vector psi of length d.

[lambda,psi,T] = factoran(X,m) also returns the m-by-m factor loadings rotation
matrix T.

[lambda,psi,T,stats] = factoran(X,m) also returns a structure stats containing
information relating to the null hypothesis, H0, that the number of common factors is m.
stats includes the following fields:

Field Description

loglike Maximized log-likelihood value
dfe Error degrees of freedom = ((d-m)^2 - (d+m))/2
chisq Approximate chi-squared statistic for the null hypothesis
p Right-tail significance level for the null hypothesis

factoran does not compute the chisq and p fields unless dfe is positive and all the
specific variance estimates in psi are positive (see “Heywood Case” on page 22-1342
below). If X is a covariance matrix, then you must also specify the 'nobs' parameter if
you want factoran to compute the chisq and p fields.

[lambda,psi,T,stats,F] = factoran(X,m) also returns, in F, predictions of the
common factors, known as factor scores. F is an n-by-m matrix where each row is a
prediction of m common factors. If X is a covariance matrix, factoran cannot compute F.
factoran rotates F using the same criterion as for lambda.

[...] = factoran(...,param1,val1,param2,val2,...) enables you to specify
optional parameter name/value pairs to control the model fit and the outputs. The
following are the valid parameter/value pairs.

Parameter Value

Type of input in the matrix X. 'xtype' can be one of:
'data' Raw data (default)

'xtype'

'covariance' Positive definite covariance or correlation
matrix

 factoran

22-1333

Parameter Value

Method for predicting factor scores. 'scores' is ignored if X is
not raw data.
'wls'

'Bartlett'

Synonyms for a weighted least-squares
estimate that treats F as fixed (default)

'scores'

'regression'

'Thomson'

Synonyms for a minimum mean squared
error prediction that is equivalent to a ridge
regression

Starting point for the specific variances psi in the maximum
likelihood optimization. Can be specified as:
'random' Chooses d uniformly distributed values on the

interval [0,1].
'Rsquared' Chooses the starting vector as a scale factor

times diag(inv(corrcoef(X))) (default).
For examples, see Jöreskog [2].

Positive integer Performs the given number of maximum
likelihood fits, each initialized as with
'random'. factoran returns the fit with the
highest likelihood.

'start'

Matrix Performs one maximum likelihood fit for
each column of the specified matrix. The ith
optimization is initialized with the values from
the ith column. The matrix must have d rows.

'rotate' Method used to rotate factor loadings and scores. 'rotate'
can have the same values as the 'Method' parameter of
rotatefactors. See the reference page for rotatefactors for
a full description of the available methods.

 'none' Performs no rotation.
 'equamax' Special case of the orthomax rotation. Use

the 'normalize', 'reltol', and 'maxit'
parameters to control the details of the
rotation.

22 Functions — Alphabetical List

22-1334

Parameter Value

 'orthomax' Orthogonal rotation that maximizes a criterion
based on the variance of the loadings.

Use the 'coeff', 'normalize', 'reltol',
and 'maxit' parameters to control the details
of the rotation.

 'parsimax' Special case of the orthomax rotation (default).
Use the 'normalize', 'reltol', and
'maxit' parameters to control the details of the
rotation.

 'pattern' Performs either an oblique rotation (the
default) or an orthogonal rotation to best
match a specified pattern matrix. Use the
'type' parameter to choose the type of
rotation. Use the 'target' parameter to
specify the pattern matrix.

 'procrustes' Performs either an oblique (the default) or an
orthogonal rotation to best match a specified
target matrix in the least squares sense.

Use the 'type' parameter to choose the type
of rotation. Use 'target' to specify the target
matrix.

 'promax' Performs an oblique procrustes rotation to a
target matrix determined by factoran as a
function of an orthomax solution.

Use the 'power' parameter to specify the
exponent for creating the target matrix.
Because 'promax' uses 'orthomax'
internally, you can also specify the parameters
that apply to 'orthomax'.

 'quartimax' Special case of the orthomax rotation (default).
Use the 'normalize', 'reltol', and
'maxit' parameters to control the details of the
rotation.

 factoran

22-1335

Parameter Value

 'varimax' Special case of the orthomax rotation (default).
Use the 'normalize', 'reltol', and
'maxit' parameters to control the details of
the rotation.

 Function Function handle to rotation function of the
form

[B,T] =

myrotation(A,...)

where A is a d-by-m matrix of unrotated factor
loadings, B is a d-by-m matrix of rotated
loadings, and T is the corresponding m-by-m
rotation matrix.

Use the factoran parameter 'userargs'
to pass additional arguments to this rotation
function. See “User-Defined Rotation Function”
on page 22-1341.

'coeff' Coefficient, often denoted as γ, defining the specific 'orthomax'
criterion. Must be from 0 to 1. The value 0 corresponds to
quartimax, and 1 corresponds to varimax. Default is 1.

'normalize' Flag indicating whether the loading matrix should be row-
normalized (1) or left unnormalized (0) for 'orthomax' or
'varimax' rotation. Default is 1.

'reltol' Relative convergence tolerance for 'orthomax' or 'varimax'
rotation. Default is sqrt(eps).

'maxit' Iteration limit for 'orthomax' or 'varimax' rotation. Default
is 250.

'target' Target factor loading matrix for 'procrustes' rotation.
Required for 'procrustes' rotation. No default value.

'type' Type of 'procrustes' rotation. Can be 'oblique' (default) or
'orthogonal'.

'power' Exponent for creating the target matrix in the 'promax'
rotation. Must be ≥ 1. Default is 4.

22 Functions — Alphabetical List

22-1336

Parameter Value

'userargs' Denotes the beginning of additional input values for a user-
defined rotation function. factoran appends all subsequent
values, in order and without processing, to the rotation function
argument list, following the unrotated factor loadings matrix A.
See “User-Defined Rotation Function” on page 22-1341.

'nobs' If X is a covariance or correlation matrix, indicates the number
of observations that were used in its estimation. This allows
calculation of significance for the null hypothesis even when the
original data are not available. There is no default. 'nobs' is
ignored if X is raw data.

'delta' Lower bound for the specific variances psi during the maximum
likelihood optimization. Default is 0.005.

'optimopts' Structure that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood
estimates. Create this structure with the function statset.
Enter statset('factoran') to see the names and default
values of the parameters that factoran accepts in the options
structure. See the reference page for statset for more
information about these options.

Examples

Estimate and Plot Factor Loadings

Load the sample data.

load carbig

Define the variable matrix.

X = [Acceleration Displacement Horsepower MPG Weight];

X = X(all(~isnan(X),2),:);

Estimate the factor loadings using a minimum mean squared error prediction for a factor
analysis with two common factors.

[Lambda,Psi,T,stats,F] = factoran(X,2,'scores','regression');

 factoran

22-1337

inv(T'*T); % Estimated correlation matrix of F, == eye(2)

Lambda*Lambda' + diag(Psi); % Estimated correlation matrix

Lambda*inv(T); % Unrotate the loadings

F*T'; % Unrotate the factor scores

Create biplot of two factors.

biplot(Lambda,'LineWidth',2,'MarkerSize',20)

Estimate the factor loadings using the covariance (or correlation) matrix.

[Lambda,Psi,T] = factoran(cov(X),2,'xtype','cov')

% [Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

22 Functions — Alphabetical List

22-1338

Lambda =

 -0.2432 -0.8500

 0.8773 0.3871

 0.7618 0.5930

 -0.7978 -0.2786

 0.9692 0.2129

Psi =

 0.2184

 0.0804

 0.0680

 0.2859

 0.0152

T =

 0.9476 0.3195

 0.3195 -0.9476

Although the estimates are the same, the use of a covariance matrix rather than raw
data doesn't let you request scores or significance level.

Use promax rotation.

[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',...

 'powerpm',4);

inv(T'*T) % Estimated correlation of F,

 % no longer eye(2)

Lambda*inv(T'*T)*Lambda'+diag(Psi) % Estimated correlation of X

ans =

 1.0000 -0.6391

 -0.6391 1.0000

ans =

 factoran

22-1339

 1.0000 -0.5424 -0.6893 0.4309 -0.4167

 -0.5424 1.0000 0.8979 -0.8078 0.9328

 -0.6893 0.8979 1.0000 -0.7730 0.8647

 0.4309 -0.8078 -0.7730 1.0000 -0.8326

 -0.4167 0.9328 0.8647 -0.8326 1.0000

Plot the unrotated variables with oblique axes superimposed.

invT = inv(T);

Lambda0 = Lambda*invT;

figure()

line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...

 [-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...

 'Color','r','linewidth',2)

grid on

hold on

biplot(Lambda0,'LineWidth',2,'MarkerSize',20)

xlabel('Loadings for unrotated Factor 1')

ylabel('Loadings for unrotated Factor 2')

22 Functions — Alphabetical List

22-1340

Plot the rotated variables against the oblique axes.

figure()

biplot(Lambda,'LineWidth',2,'MarkerSize',20)

 factoran

22-1341

User-Defined Rotation Function

Syntax for passing additional arguments to a user-defined rotation function:

[Lambda,Psi,T] = ...

22 Functions — Alphabetical List

22-1342

 factoran(X,2,'rotate',@myrotation,'userargs',1,'two');

More About

Tips

Observed Data Variables

The variables in the observed data matrix X must be linearly independent, i.e., cov(X)
must have full rank, for maximum likelihood estimation to succeed. factoran reduces
both raw data and a covariance matrix to a correlation matrix before performing the fit.

factoran standardizes the observed data X to zero mean and unit variance before
estimating the loadings lambda. This does not affect the model fit, because MLEs in
this model are invariant to scale. However, lambda and psi are returned in terms of
the standardized variables, i.e., lambda*lambda'+diag(psi) is an estimate of the
correlation matrix of the original data X (although not after an oblique rotation). See
“Estimate and Plot Factor Loadings” on page 22-1336 and “User-Defined Rotation
Function” on page 22-1341.

Heywood Case

If elements of psi are equal to the value of the 'delta' parameter (i.e., they are
essentially zero), the fit is known as a Heywood case, and interpretation of the resulting
estimates is problematic. In particular, there can be multiple local maxima of the
likelihood, each with different estimates of the loadings and the specific variances.
Heywood cases can indicate overfitting (i.e., m is too large), but can also be the result of
underfitting.

Rotation of Factor Loadings and Scores

Unless you explicitly specify no rotation using the 'rotate' parameter, factoran
rotates the estimated factor loadings, lambda, and the factor scores, F. The output
matrix T is used to rotate the loadings, i.e., lambda = lambda0*T, where lambda0 is
the initial (unrotated) MLE of the loadings. T is an orthogonal matrix for orthogonal
rotations, and the identity matrix for no rotation. The inverse of T is known as the
primary axis rotation matrix, while T itself is related to the reference axis rotation
matrix. For orthogonal rotations, the two are identical.

 factoran

22-1343

factoran computes factor scores that have been rotated by inv(T'), i.e.,
F = F0 * inv(T'), where F0 contains the unrotated predictions. The estimated
covariance of F is inv(T'*T), which, for orthogonal or no rotation, is the identity matrix.
Rotation of factor loadings and scores is an attempt to create a more easily interpretable
structure in the loadings matrix after maximum likelihood estimation.

References

[1] Harman, H. H. Modern Factor Analysis. 3rd Ed. Chicago: University of Chicago Press,
1976.

[2] Jöreskog, K. G. “Some Contributions to Maximum Likelihood Factor Analysis.”
Psychometrika. Vol. 32, Issue 4, 1967, pp. 443–482.

[3] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical Method. 2nd Ed.
New York: American Elsevier Publishing Co., 1971.

See Also
biplot | pca | procrustes | statset | pcacov | rotatefactors

22 Functions — Alphabetical List

22-1344

FBoot property
Class: TreeBagger

Fraction of in-bag observations

Description

The FBoot property is the fraction of observations to be randomly selected with
replacement for each bootstrap replica. The size of each replica is given by n*FBoot,
where n is the number of observations in the training set. The default value is 1.

 fcdf

22-1345

fcdf
F cumulative distribution function

Syntax

p = fcdf(x,v1,v2)

p = fcdf(x,v1,Vv2,'upper')

Description

p = fcdf(x,v1,v2) computes the F cdf at each of the values in x using the
corresponding numerator degrees of freedom v1 and denominator degrees of freedom v2.
x, v1, and v2 can be vectors, matrices, or multidimensional arrays that are all the same
size. A scalar input is expanded to a constant matrix with the same dimensions as the
other inputs. v1 and v2 parameters must contain real positive values.

p = fcdf(x,v1,Vv2,'upper') returns the complement of the F cdf at each value in x,
using an algorithm that more accurately computes the extreme upper tail probabilities.

The F cdf is

p F x= =

+

























(| ,)

()

n n

n n

n n

n

n
1 2

1 2

1 2

1

2

2

2 2

Γ

Γ Γ

nn n

n n

n

n

1 1

1 2

2

2

2

1

2

2
0

1

t

t

dt
x

−

+

+




















∫

The result, p, is the probability that a single observation from an F distribution with
parameters ν1 and ν2 will fall in the interval [0 x].

Examples

Compute F Distribution CDF

The following illustrates a useful mathematical identity for the F distribution.

22 Functions — Alphabetical List

22-1346

nu1 = 1:5;

nu2 = 6:10;

x = 2:6;

F1 = fcdf(x,nu1,nu2)

F1 =

 0.7930 0.8854 0.9481 0.9788 0.9919

F2 = 1 - fcdf(1./x,nu2,nu1)

F2 =

 0.7930 0.8854 0.9481 0.9788 0.9919

More About
• “F Distribution” on page B-45

See Also
cdf | fpdf | finv | fstat | frnd

 feval

22-1347

feval
Class: GeneralizedLinearModel

Evaluate generalized linear regression model prediction

Syntax

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of
mdl to the input [Xnew1,Xnew_2,...,Xnewn].

Tips

• feval allows you to easily evaluate predictions of a model when the model was fitted
using a table or dataset array. predict requires a table or dataset array with the
same predictor names, but you can use simple arrays of scalars with feval.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

Xnew1,Xnew2,...,Xnewn

Predictor components. Xnewi can be one of:

• Scalar
• Vector
• Array

22 Functions — Alphabetical List

22-1348

Each nonscalar component must have the same size (number of elements in each
dimension).

If you pass just one Xnew array, Xnew can be a table, dataset array, or an array of
doubles, where each column of the array represents one predictor.

Output Arguments

ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

For binomial models, feval uses 1 as the BinomialSize parameter, so ypred is
predicted probabilities.

For models with an offset, feval uses 0 as the offset value.

Examples

Predict Responses Using feval

Generate a generalized linear model, and plot its responses to a range of input data.

Generate artificial data for the model, Poisson random numbers with two underlying
predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');

Generate a range of values for X(1) and X(2), and plot the model predictions at those
values.

[Xtest1 Xtest2] = meshgrid(-1:.5:3,-2:.5:2);

 feval

22-1349

Z = feval(mdl,Xtest1,Xtest2);

surf(Xtest1,Xtest2,Z)

• “feval” on page 10-35

Alternatives

predict gives the same predictions, but uses a single input array with one observation
in each row, rather than one component in each input argument.

random predicts with added noise.

See Also
GeneralizedLinearModel | predict | random

22 Functions — Alphabetical List

22-1350

More About
• “Generalized Linear Models” on page 10-12

 feval

22-1351

feval

Class: LinearModel

Evaluate linear regression model prediction

Syntax

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of
mdl to the input [Xnew1,Xnew2,...,Xnewn].

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

Xnew1,Xnew2,...,Xnewn

Predictor components. Xnewi can be one of:

• Scalar
• Vector
• Array

Each nonscalar component must have the same size (number of elements in each
dimension).

If you pass just one Xnew array, Xnew can be a table, dataset array, or an array of
doubles, where each column of the array represents one predictor.

22 Functions — Alphabetical List

22-1352

Output Arguments

ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

For models with an offset, feval uses 0 as the offset value.

Examples

Plot Different Categorical Levels

Fit a mileage model to the smallcar data, including the Year categorical predictor.
Superimpose fitted curves on a scatter plot of the data.

Load the data and fit a model.

load carsmall

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create a scatter plot of the mileage versus weight.

gscatter(tbl.Weight,tbl.MPG,tbl.Year);

 feval

22-1353

Use feval to plot curves of the model predictions for the various years and weights.

w = linspace(min(tbl.Weight),max(tbl.Weight))';

line(w,feval(mdl,w,'70'),'Color','r')

line(w,feval(mdl,w,'76'),'Color','g')

line(w,feval(mdl,w,'82'),'Color','b')

22 Functions — Alphabetical List

22-1354

• “feval” on page 9-38
• “Linear Regression Workflow” on page 9-41

Alternatives

predict gives the same predictions, but uses a single input array with one observation
in each row, rather than one component in each input argument. predict also gives
confidence intervals on its predictions.

random predicts with added noise.

See Also
predict | LinearModel | random

 feval

22-1355

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-1356

feval

Class: NonLinearModel

Evaluate nonlinear regression model prediction

Syntax

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description

ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of
mdl to the input [Xnew1,Xnew2,...,Xnewn].

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

Xnew1,Xnew2,...,Xnewn

Predictor components. Xnewi can be one of:

• Scalar
• Vector
• Array

Each nonscalar component must have the same size (number of elements in each
dimension).

If you pass just one Xnew array, Xnew can be a table, dataset array, or an array of
doubles, where each column of the array represents one predictor.

 feval

22-1357

Output Arguments

ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

Examples

Predict a Nonlinear Model from a Table

Create a nonlinear model for auto mileage based on the carbig data. Predict the mileage
of an average automobile.

Load the data and create a nonlinear model.

load carbig

tbl = table(Horsepower,Weight,MPG);

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

mdl = fitnlm(tbl,modelfun,beta0);

Find the predicted mileage of an average auto. The data contain some observations with
NaN, so compute the mean using nanmean.

Xnew = nanmean([Horsepower Weight]);

MPGnew = feval(mdl,Xnew)

MPGnew =

 21.8073

• “Predict or Simulate Responses Using a Nonlinear Model” on page 11-10

Alternatives

predict gives the same predictions, but uses a single input array with one observation
in each row, rather than one component in each input argument. predict also gives
confidence intervals on its predictions.

22 Functions — Alphabetical List

22-1358

random predicts with added noise.

See Also
NonLinearModel | predict | random

More About
• “Nonlinear Regression” on page 11-2

 ff2n

22-1359

ff2n
Two-level full factorial design

Syntax

dFF2 = ff2n(n)

Description

dFF2 = ff2n(n) gives factor settings dFF2 for a two-level full factorial design with n
factors. dFF2 is m-by-n, where m is the number of treatments in the full-factorial design.
Each row of dFF2 corresponds to a single treatment. Each column contains the settings
for a single factor, with values of 0 and 1 for the two levels.

Examples
dFF2 = ff2n(3)

dFF2 =

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

See Also
fullfact

22 Functions — Alphabetical List

22-1360

fillProximities
Class: TreeBagger

Proximity matrix for training data

Syntax

B = fillProximities(B)

B = fillProximities(B,'param1',val1,'param2',val2,...)

Description

B = fillProximities(B) computes a proximity matrix for the training data and
stores it in the Properties field of B.

B = fillProximities(B,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'trees' Either 'all' or a vector of indices of the trees in the ensemble to be
used in computing the proximity matrix. Default is 'all'.

'nprint' Number of training cycles (grown trees) after which TreeBagger
displays a diagnostic message showing training progress. Default is
no diagnostic messages.

See Also
CompactTreeBagger.outlierMeasure | CompactTreeBagger.proximity

 findobj

22-1361

findobj
Class: qrandstream

Find objects matching specified conditions

Syntax

hm = findobj(h, 'conditions')

Description

The findobj method of the handle class follows the same syntax as the MATLAB
findobj command, except that the first argument must be an array of handles to
objects.

hm = findobj(h, 'conditions') searches the handle object array h and returns an
array of handle objects matching the specified conditions. Only the public members of the
objects of h are considered when evaluating the conditions.

See Also
findobj | qrandstream

22 Functions — Alphabetical List

22-1362

findprop
Class: qrandstream

Find property of MATLAB handle object

Syntax

p = findprop(h,'propname')

Description

p = findprop(h,'propname') finds and returns the meta.property object
associated with property name propname of scalar handle object h. propname must be
a string. It can be the name of a property defined by the class of h or a dynamic property
added to scalar object h.

If no property named propname exists for object h, an empty meta.property array is
returned.

See Also
dynamicprops | findobj | meta.property | qrandstream

 finv

22-1363

finv
F inverse cumulative distribution function

Syntax

X = finv(P,V1,V2)

Description

X = finv(P,V1,V2) computes the inverse of the F cdf with numerator degrees of
freedom V1 and denominator degrees of freedom V2 for the corresponding probabilities
in P. P, V1, and V2 can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input is expanded to a constant array with the same dimensions as
the other inputs.

V1 and V2 parameters must contain real positive values, and the values in P must lie on
the interval [0 1].

The F inverse function is defined in terms of the F cdf as

x F p x F x p= () = () ={ }−1
1 2 1 2| , : | ,n n n n

where

p F x

x

= =

+




















∫(| ,)

()

n n

n n

n n

n

n
1 2

1 2

1 20

1

2

2

2 2

Γ

Γ Γ






+




















−

+

n n

n n

n

n

1 1

1 2

2

2

2

1

2

2
1

t

t

dt

Examples

Find a value that should exceed 95% of the samples from an F distribution with 5
degrees of freedom in the numerator and 10 degrees of freedom in the denominator.

22 Functions — Alphabetical List

22-1364

x = finv(0.95,5,10)

x =

 3.3258

You would observe values greater than 3.3258 only 5% of the time by chance.

More About
• “F Distribution” on page B-45

See Also
icdf | fcdf | fpdf | fstat | frnd

 fishertest

22-1365

fishertest
Fisher’s exact test

Syntax

h = fishertest(x)

[h,p,stats] = fishertest(x)

[___] = fishertest(x,Name,Value)

Description

h = fishertest(x) returns a test decision for Fisher’s exact test of the null hypothesis
that there are no nonrandom associations between the two categorical variables in x,
against the alternative that there is a nonrandom association. The result h is 1 if the test
rejects the null hypothesis at the 5% significance level, or 0 otherwise.

[h,p,stats] = fishertest(x) also returns the significance level p of the test and
a structure stats containing additional test results, including the odds ratio and its
asymptotic confidence interval.

[___] = fishertest(x,Name,Value) returns a test decision using additional
options specified by one or more name-value pair arguments. For example, you can
change the significance level of the test or conduct a one-sided test.

Examples

Conduct Fisher’s Exact Test

In a small survey, a researcher asked 17 individuals if they received a flu shot this year,
and whether they caught the flu this winter. The results indicate that, of the nine people
who did not receive a flu shot, three got the flu and six did not. Of the eight people who
received a flu shot, one got the flu and seven did not.

Create a 2-by-2 contingency table containing the survey data. Row 1 contains data for
the individuals who did not receive a flu shot, and row 2 contains data for the individuals

22 Functions — Alphabetical List

22-1366

who received a flu shot. Column 1 contains the number of individuals who got the flu,
and column 2 contains the number of individuals who did not.

x = table([3;1],[6;7],'VariableNames',{'Flu','NoFlu'},'RowNames',{'NoShot','Shot'})

x =

 Flu NoFlu

 ___ _____

 NoShot 3 6

 Shot 1 7

Use Fisher’s exact test to determine if there is a nonrandom association between
receiving a flu shot and getting the flu.

h = fishertest(x)

h =

 0

The returned test decision h = 0 indicates that fishertest does not reject the null
hypothesis of no nonrandom association between the categorical variables at the default
5% significance level. Therefore, based on the test results, individuals who do not get a
flu shot do not have different odds of getting the flu than those who got the flu shot.

Conduct a One-Sided Fisher’s Exact Test

In a small survey, a researcher asked 17 individuals if they received a flu shot this year,
and whether they caught the flu. The results indicate that, of the nine people who did not
receive a flu shot, three got the flu and six did not. Of the eight people who received a flu
shot, one got the flu and seven did not.

x = [3,6;1,7];

Use a right-tailed Fisher’s exact test to determine if the odds of getting the flu is higher
for individuals who did not receive a flu shot than for individuals who did. Conduct the
test at the 1% significance level.

[h,p,stats] = fishertest(x,'Tail','right','Alpha',0.01)

h =

 0

 fishertest

22-1367

p =

 0.3353

stats =

 OddsRatio: 3.5000

 ConfidenceInterval: [0.1289 95.0408]

The returned test decision h = 0 indicates that fishertest does not reject the null
hypothesis of no nonrandom association between the categorical variables at the 1%
significance level. Since this is a right-tailed hypothesis test, the conclusion is that
individuals who do not get a flu shot do not have greater odds of getting the flu than
those who got the flu shot.

Generate a Contingency Table Using crosstab

Load the hospital data.

load hospital

The hospital dataset array contains data on 100 hospital patients, including last
name, gender, age, weight, smoking status, and systolic and diastolic blood pressure
measurements.

To determine if smoking status is independent of gender, use crosstab to create a 2-
by-2 contingency table of smokers and nonsmokers, grouped by gender.

[tbl,chi2,p,labels] = crosstab(hospital.Sex,hospital.Smoker)

tbl =

 40 13

 26 21

chi2 =

 4.5083

p =

22 Functions — Alphabetical List

22-1368

 0.0337

labels =

 'Female' '0'

 'Male' '1'

The rows of the resulting contingency table tbl correspond to the patient’s gender,
with row 1 containing data for females and row 2 containing data for males. The
columns correspond to the patient’s smoking status, with column 1 containing data
for nonsmokers and column 2 containing data for smokers. The returned result
chi2 = 4.5083 is the value of the chi-squared test statistic for a chi-squared test of
independence. The returned value p = 0.0337 is an approximate p-value based on the
chi-squared distribution.

Use the contingency table generated by crosstab to perform Fisher’s exact test on the
data.

[h,p,stats] = fishertest(tbl)

h =

 1

p =

 0.0375

stats =

 OddsRatio: 2.4852

 ConfidenceInterval: [1.0624 5.8135]

The result h = 1 indicates that fishertest rejects the null hypothesis of
nonassociation between smoking status and gender at the 5% significance level. In
other words, there is an association between gender and smoking status. The odds ratio
indicates that the male patients have about 2.5 times greater odds of being smokers than
the female patients.

The returned p-value of the test, p = 0.0375, is close to, but not exactly the same as,
the result obtained by crosstab. This is because fishertest computes an exact p-

 fishertest

22-1369

value using the sample data, while crosstab uses a chi-squared approximation to
compute the p-value.

Input Arguments

x — Contingency table
2-by-2 matrix of nonnegative integer values | 2-by-2 table of nonnegative integer values

Contingency table, specified as a 2-by-2 matrix or table containing nonnegative integer
values. A contingency table contains the frequency distribution of the variables in the
sample data. You can use crosstab to generate a contingency table from sample data.

Example: [4,0;0,4]

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'Tail','right' specifies a right-tailed hypothesis test at
the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis, specified as the comma-separated pair consisting of
'Tail' and one of the following.

22 Functions — Alphabetical List

22-1370

'both' Two-tailed test. The alternative hypothesis
is that there is a nonrandom association
between the two variables in x, and the
odds ratio is not equal to 1.

'right' Right-tailed test. The alternative
hypothesis is that the odds ratio is greater
than 1.

'left' Left-tailed test. The alternative hypothesis
is that the odds ratio is less than 1.

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h is 1, then fishertest rejects the null hypothesis at the Alpha significance level.
• If h is 0, then fishertest fails to reject the null hypothesis at the Alpha significance

level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

stats — Test data
structure

Test data, returned as a structure with the following fields:

• OddsRatio — A measure of association between the two variables.
• ConfidenceInterval — Asymptotic confidence interval for the odds ratio. If any

of the cell frequencies in x are 0, then fishertest does not compute a confidence
interval and instead displays [-Inf Inf].

 fishertest

22-1371

More About

Fisher’s Exact Test

Fisher’s exact test is a nonparametric statistical test used to test the null hypothesis
that no nonrandom associations exist between two categorical variables, against the
alternative that there is a nonrandom association between the variables.

Fisher’s exact test provides an alternative to the chi-squared test for small samples, or
samples with very uneven marginal distributions. Unlike the chi-squared test, Fisher’s
exact test does not depend on large-sample distribution assumptions, and instead
calculates an exact p-value based on the sample data. Although Fisher’s exact test
is valid for samples of any size, it is not recommended for large samples because it is
computationally intensive. If all of the frequency counts in the contingency table are
greater than or equal to 1e7, then fishertest errors. For contingency tables that
contain large count values or are well-balanced, use crosstab or chi2gof instead.

fishertest accepts a 2-by-2 contingency table as input, and computes the p-value of the
test as follows:

1 Calculate the sums for each row, column, and total number of observations in the
contingency table.

2 Using a multivariate generalization of the hypergeometric probability function,
calculate the conditional probability of observing the exact result in the contingency
table if the null hypothesis were true, given its row and column sums. The
conditional probability is

P
R R C C

N n
cutoff

iji j

=
()()

’
1 2 1 2! ! ! !

! !
,

,

where R1 and R2 are the row sums, C1 and C2 are the column sums, N is the total
number of observations in the contingency table, and nij is the value in the ith row
and jth column of the table.

3 Find all possible matrices of nonnegative integers consistent with the row and
column sums. For each matrix, calculate the associated conditional probability using
the equation for Pcutoff.

4 Use these values to calculate the p-value of the test, based on the alternative
hypothesis of interest.

22 Functions — Alphabetical List

22-1372

• For a two-sided test, sum all of the conditional probabilities less than or equal
to Pcutoff for the observed contingency table. This represents the probability of
observing a result as extreme as, or more extreme than, the actual outcome if
the null hypothesis were true. Small p-values cast doubt on the validity of the
null hypothesis, in favor of the alternative hypothesis of association between the
variables.

• For a left-sided test, sum the conditional probabilities of all the matrices with a
(1,1) cell frequency less than or equal to n11.

• For a right-sided test, sum the conditional probabilities of all the matrices with a
(1,1) cell frequency greater than or equal to n11 in the observed contingency table.

The odds ratio is

OR
n n

n n
=

11 22

21 12

.

The null hypothesis of conditional independence is equivalent to the hypothesis that the
odds ratio equals 1. The left-sided alternative is equivalent to an odds ratio less than 1,
and the right-sided alternative is equivalent to an odds ratio greater than 1.

The asymptotic 100(1 – α)% confidence interval for the odds ratio is

CI L SE L SE= - -Ê
Ë
Á

ˆ
¯
˜

Ê

Ë
Á

ˆ

¯
˜ + -Ê

Ë
Á

ˆ
¯
˜

Ê

Ë
Á

ˆ

¯
˜

È

Î

- -exp ,expF F1 11

2

1

2

a a
ÍÍ

˘

˚
˙ ,

where L is the log odds ratio, Φ-1(•) is the inverse of the normal inverse cumulative
distribution function, and SE is the standard error for the log odds ratio. If the 100(1 –
α)% confidence interval does not contain the value 1, then the association is significant at
the α significance level. If any of the four cell frequencies are 0, then fishertest does
not compute the confidence interval and instead displays [-Inf Inf].

fishertest only accepts 2-by-2 contingency tables as input. To test the independence
of categorical variables with more than two levels, use the chi-squared test provided by
crosstab.

See Also
chi2gof | crosstab

 ClassificationDiscriminant.fit

22-1373

ClassificationDiscriminant.fit
Class: ClassificationDiscriminant

Fit discriminant analysis classifier (to be removed)

Compatibility

ClassificationDiscriminant.fit will be removed in a future release. Use
fitcdiscr instead.

Syntax

obj = ClassificationDiscriminant.fit(x,y)

obj = ClassificationDiscriminant.fit(x,y,Name,Value)

Description

obj = ClassificationDiscriminant.fit(x,y) returns a discriminant analysis
classifier based on the input variables (also known as predictors, features, or attributes)
x and output (response) y.

obj = ClassificationDiscriminant.fit(x,y,Name,Value) fits a classifier
with additional options specified by one or more Name,Value pair arguments. If you use
one of the following five options, obj is of class ClassificationPartitionedModel:
'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. Otherwise, obj
is of class ClassificationDiscriminant.

Input Arguments

x — Predictor values
matrix of numeric values

Predictor values, specified as a matrix of numeric values. Each column of x represents
one variable, and each row represents one observation.

22 Functions — Alphabetical List

22-1374

ClassificationDiscriminant.fit considers NaN values in x as missing values.
ClassificationDiscriminant.fit does not use observations with missing values for
x in the fit.
Example:
Data Types: single | double

y — Classification values
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Classification values, specified as a numeric vector, categorical vector (nominal or
ordinal), logical vector, character array, or cell array of strings. Each row of y represents
the classification of the corresponding row of x.

ClassificationDiscriminant.fit considers NaN values in y to be missing values.
ClassificationDiscriminant.fit does not use observations with missing values for
y in the fit.
Data Types: single | double | logical | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ClassNames' — Class names
array

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array. Use the data type that exists in y. The default is the class names that exist in y.
Use ClassNames to order the classes or to select a subset of classes for training.

Data Types: single | double | logical | char

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification, specified as the comma-separated pair consisting of 'Cost'
and a square matrix, where Cost(i,j) is the cost of classifying a point into class

 ClassificationDiscriminant.fit

22-1375

j if its true class is i. Alternatively, Cost can be a structure S having two fields:
S.ClassNames containing the group names as a variable of the same type as y, and
S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'CrossVal' — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair
consisting of 'CrossVal' and either 'on' or 'off'.

If you specify 'on', then ClassificationDiscriminant.fit creates a cross-
validated classifier with 10 folds.

You can override this cross-validation setting using one of the 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' name-value pair arguments.

You can only use one of these four options at a time to create a cross-validated
model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Alternatively, cross validate obj later using the crossval method.

Example: 'CrossVal','on'

'CVPartition' — Cross-validated model partition
cvpartition object

Cross-validated model partition, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition. You can only use one option
at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

'Delta' — Linear coefficient threshold
0 (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of
'Delta' and a nonnegative scalar value. If a coefficient of obj has magnitude smaller
than Delta, obj sets this coefficient to 0, and you can eliminate the corresponding
predictor from the model. Set Delta to a higher value to eliminate more predictors.

22 Functions — Alphabetical List

22-1376

Delta must be 0 for quadratic discriminant models.

Data Types: single | double

'DiscrimType' — Discriminant type
'linear' (default) | 'quadratic' | 'diagLinear' | 'diagQuadratic' |
'pseudoLinear' | 'pseudoQuadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType'
and one of the following:

• 'linear'

• 'quadratic'

• 'diagLinear'

• 'diagQuadratic'

• 'pseudoLinear'

• 'pseudoQuadratic'

Example: 'DiscrimType','quadratic'

'FillCoeffs' — Coeffs property flag
'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of
'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coeffs
property in the classifier object. This can be computationally intensive, especially when
cross validating. The default is 'on', unless you specify a cross validation name-value
pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

'Gamma' — Regularization parameter
scalar value in the range [0,1]

Parameter for regularizing the correlation matrix of predictors, specified as the comma-
separated pair consisting of 'Gamma' and a scalar value in the range [0,1].

• Linear discriminant — Scalar value in the range [0,1].

• If you pass a value strictly between 0 and 1, fitcdiscr sets the discriminant type
to 'Linear'.

 ClassificationDiscriminant.fit

22-1377

• If you pass 0 for Gamma and 'Linear' for DiscrimType, and if the correlation
matrix is singular, fitcdiscr sets Gamma to the minimal value required for
inverting the covariance matrix.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to 'DiagLinear'.
• Quadratic discriminant — Either 0 or 1.

• If you pass 0 for Gamma and 'Quadratic' for DiscrimType, and if one of the
classes has a singular covariance matrix, fitcdiscr errors.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to
'DiagQuadratic'.

• If you set Gamma to a value between 0 and 1 for a quadratic discriminant,
fitcdiscr errors.

Example: 'Gamma',1

Data Types: single | double

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify
'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model
using the rest of the data

2 Stores the compact, trained model in CVMdl.Trained

If you specify Holdout, then you cannot specify any of CVPartition, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated classifier, specified as the comma-separated
pair consisting of 'KFold' and a positive integer value.

You can only use one of these four options at a time to create a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

22 Functions — Alphabetical List

22-1378

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off'. If you specify 'on', then the software
implements leave-one-out cross validation.

If you use 'Leaveout', you cannot use these 'CVPartition', 'Holdout', or 'KFold'
name-value pair arguments.
Example: 'Leaveout','on'

Data Types: char

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.
Data Types: cell

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• A string:

• 'empirical' determines class probabilities from class frequencies in y. If you
pass observation weights, they are used to compute the class probabilities.

• 'uniform' sets all class probabilities equal.
• A vector containing one scalar value for each class.
• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as y
• S.ClassProbs containing a vector of corresponding probabilities

 ClassificationDiscriminant.fit

22-1379

Example: 'Prior','uniform'

Data Types: single | double | struct

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char

'SaveMemory' — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of
'SaveMemory' and either 'on' or 'off'. If you specify 'on', then fitcdiscr does
not store the full covariance matrix, but instead stores enough information to compute
the matrix. The predict method computes the full covariance matrix for prediction, and
does not store the matrix. If you specify 'off', then fitcdiscr computes and stores the
full covariance matrix in obj.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory','on'

'ScoreTransform' — Score transform function
'none' (default) | valid score transform string | function handle

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and one of the following.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest score

to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)

22 Functions — Alphabetical List

22-1380

String Formula

'sign' –1 for x < 0
0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest score

to 1, and scores for all other classes to -1.

Alternatively, you can use your own function handle for transforming scores. Your
function should accept a matrix (the original scores) and return a matrix of the same size
(the transformed scores).
Example: 'ScoreTransform','logit'

Data Types: function_handle

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in x.
fitcdiscr normalizes the weights to sum to 1.

Data Types: single | double

Output Arguments

obj — Discriminant analysis classifier
classifier object

Discriminant analysis classifier, returned as a classifier object.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' options results in a tree of class ClassificationPartitionedModel.
You cannot use a partitioned tree for prediction, so this kind of tree does not have a
predict method.

Otherwise, obj is of class ClassificationDiscriminant, and you can use the
predict method to predict the response of new data.

 ClassificationDiscriminant.fit

22-1381

Definitions

Discriminant Classification

The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. That is,
the model assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for
each class, only the means vary.

• For quadratic discriminant analysis, both means and covariances of each class
vary.

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

• ŷ is the predicted classification.

• K is the number of classes.
• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

For details, see “How the predict Method Classifies” on page 15-6.

Examples

Construct a Discriminant Analysis Classifier

Load the sample data.

load fisheriris

22 Functions — Alphabetical List

22-1382

Construct a discriminant analysis classifier using the sample data.

obj = ClassificationDiscriminant.fit(meas,species)

obj =

 ClassificationDiscriminant

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 DiscrimType: 'linear'

 Mu: [3x4 double]

 Coeffs: [3x3 struct]

 Properties, Methods

Alternatives

The classify function also performs discriminant analysis. classify is usually more
awkward to use:

• classify requires you to fit the classifier every time you make a new prediction.
• classify does not perform cross validation.
• classify requires you to fit the classifier when changing prior probabilities.

See Also
fitctree | ClassificationDiscriminant

How To
• “Discriminant Analysis” on page 15-3

 ClassificationKNN.fit

22-1383

ClassificationKNN.fit
Class: ClassificationKNN

Fit k-nearest neighbor classifier (to be removed)

Compatibility

ClassificationKNN.fit will be removed in a future release. Use fitcknn instead.

Syntax

mdl = ClassificationKNN.fit(X,y)

mdl = ClassificationKNN.fit(X,y,Name,Value)

Description

mdl = ClassificationKNN.fit(X,y) returns a classification model based on
the input variables (also known as predictors, features, or attributes) X and output
(response) y.

mdl = ClassificationKNN.fit(X,y,Name,Value) fits a model with additional
options specified by one or more Name,Value pair arguments.

If you use one of these options, mdl is of class ClassificationPartitionedModel:
'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. Otherwise, mdl
is of class ClassificationKNN.

Input Arguments

X — Predictor values
numeric matrix

Predictor values, specified as a numeric matrix. Each column of X represents one
variable, and each row represents one observation.

22 Functions — Alphabetical List

22-1384

Data Types: single | double

y — Classification values
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Classification values, specified as a numeric vector, categorical vector, logical vector,
character array, or cell array of strings, with the same number of rows as X. Each row of
y represents the classification of the corresponding row of X.
Data Types: single | double | cell | logical | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BreakTies' — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by the predict method if multiple classes have the same
smallest cost, specified as the comma-separated pair consisting of 'BreakTies' and one
of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points
among the K nearest neighbors.

Example: 'BreakTies','nearest'

'BucketSize' — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the kd-tree, specified as the comma-
separated pair consisting of 'BucketSize' and a positive integer value. This argument
is meaningful only when NSMethod is 'kdtree'.

 ClassificationKNN.fit

22-1385

Example: 'BucketSize',40

Data Types: single | double

'CategoricalPredictors' — Categorical predictor flag
[] (default) | 'all'

Categorical predictor flag, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

• 'all' — All predictors are categorical.
• [] — No predictors are categorical.

When you set CategoricalPredictors to 'all', the default Distance is 'hamming'.

Example: 'CategoricalPredictors','all'

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array representing the class names. Use the same data type as the values that exist in y.

Use ClassNames to order the classes or to select a subset of classes for training. The
default is the class names in y.
Data Types: single | double | char | logical | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of
'Cost' and one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its
true class is i (i.e., the rows correspond to the true class and the columns correspond
to the predicted class). To specify the class order for the corresponding rows and
columns of Cost, additionally specify the ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a
variable of the same type as y, and S.ClassificationCosts containing the cost
matrix.

22 Functions — Alphabetical List

22-1386

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'Cov' — Covariance matrix
nancov(X) (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and
a positive definite matrix of scalar values representing the covariance matrix when
computing the Mahalanobis distance. This argument is only valid when 'Distance' is
'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

'CrossVal' — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal'
and either 'on' or 'off'. If 'on', fitcknn creates a cross-validated model with 10
folds. Use the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' parameters to
override this cross-validation setting. You can only use one parameter at a time to create
a cross-validated model.

Alternatively, cross validate mdl later using the crossval method.

Example: 'Crossval','on'

'CVPartition' — Cross-validated model partition
cvpartition object

Cross-validated model partition, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition. You can only use one of
these four options at a time to create a cross-validated model: 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'.

'Distance' — Distance metric
valid distance metric string | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance'
and a valid distance metric string or function handle. The allowable strings depend
on the NSMethod parameter, which you set in fitcknn, and which exists as a field in

 ClassificationKNN.fit

22-1387

ModelParameters. If you specify CategoricalPredictors as 'all', then the default
distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

NSMethod Distance Metric Names

exhaustive Any distance metric of ExhaustiveSearcher
kdtree 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

For definitions, see “Distance Metrics”.

This table includes valid distance metrics of ExhaustiveSearcher.

Value Description

'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'cosine' One minus the cosine of the included angle between

observations (treated as vectors).
'euclidean' Euclidean distance.
'hamming' Hamming distance, percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of

nonzero coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample
covariance matrix of X, as computed by nancov(X). To
specify a different value for C, use the 'Cov' name-value
pair argument.

'minkowski' Minkowski distance. The default exponent is 2. To specify
a different exponent, use the 'Exponent' name-value pair
argument.

'seuclidean' Standardized Euclidean distance. Each coordinate
difference between X and a query point is scaled, meaning
divided by a scale value S. The default value of S is the
standard deviation computed from X, S = nanstd(X). To
specify another value for S, use the Scale name-value pair
argument.

22 Functions — Alphabetical List

22-1388

Value Description

'spearman' One minus the sample Spearman's rank correlation
between observations (treated as sequences of values).

@distfun Distance function handle. distfun has the form

function D2 = DISTFUN(ZI,ZJ)

% calculation of distance

...

where

• ZI is a 1-by-N vector containing one row of X or y.
• ZJ is an M2-by-N matrix containing multiple rows of X or

y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the

distance between observations ZI and ZJ(J,:).

Example: 'Distance','minkowski'

Data Types: function_handle

'DistanceWeight' — Distance weighting function
'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of
'DistanceWeight' and either a function handle or one of the following strings
specifying the distance weighting function.

DistanceWeight Meaning

'equal' No weighting
'inverse' Weight is 1/distance
'squaredinverse' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative
distances, and returns a matrix the same size
containing nonnegative distance weights. For example,
'squaredinverse' is equivalent to @(d)d.^(-2).

Example: 'DistanceWeight','inverse'

 ClassificationKNN.fit

22-1389

Data Types: function_handle

'Exponent' — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of
'Exponent' and a positive scalar value. This argument is only valid when 'Distance'
is 'minkowski'.

Example: 'Exponent',3

Data Types: single | double

'Holdout' — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the remaining data for training.

If you use Holdout, you cannot use any of the 'CVPartition', 'KFold', or
'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

'IncludeTies' — Tie inclusion flag
false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies'
and a logical value indicating whether predict includes all the neighbors whose
distance values are equal to the Kth smallest distance. If IncludeTies is true,
predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Example: 'IncludeTies',true

Data Types: logical

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated model, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

22 Functions — Alphabetical List

22-1390

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or
'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off'. Specify 'on' to use leave-one-out cross
validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or
'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'NSMethod' — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of
'NSMethod' and 'kdtree' or 'exhaustive'.

• 'kdtree' — Create and use a kd-tree to find nearest neighbors. 'kdtree' is valid
when the distance metric is one of the following:

• 'euclidean'

• 'cityblock'

• 'minkowski'

• 'chebyshev'

• 'exhaustive' — Use the exhaustive search algorithm. The distance values from all
points in X to each point in y are computed to find nearest neighbors.

The default is 'kdtree' when X has 10 or fewer columns, X is not sparse, and the
distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

'NumNeighbors' — Number of nearest neighbors to find
1 (default) | positive integer value

 ClassificationKNN.fit

22-1391

Number of nearest neighbors in X to find for classifying each point when predicting,
specified as the comma-separated pair consisting of 'NumNeighbors' and a positive
integer value.
Example: 'NumNeighbors',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in X.
Data Types: cell

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• A string:

• 'empirical' determines class probabilities from class frequencies in y. If you
pass observation weights, they are used to compute the class probabilities.

• 'uniform' sets all class probabilities equal.
• A vector (one scalar value for each class). To specify the class order for the

corresponding elements of Prior, additionally specify the ClassNames name-value
pair argument.

• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as y
• S.ClassProbs containing a vector of corresponding probabilities

If you set values for both Weights and Prior, the weights are renormalized to add up to
the value of the prior probability in the respective class.
Example: 'Prior','uniform'

Data Types: single | double | struct

22 Functions — Alphabetical List

22-1392

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char

'Scale' — Distance scale
nanstd(X) (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector
containing nonnegative scalar values with length equal to the number of columns in X.
Each coordinate difference between X and a query point is scaled by the corresponding
element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in X.

The software normalizes the weights in each class to add up to the value of the prior
probability of the class.
Data Types: single | double

Output Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class

 ClassificationKNN.fit

22-1393

ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

Definitions

Prediction

ClassificationKNN predicts the classification of a point Xnew using a procedure
equivalent to this:

1 Find the NumNeighbors points in the training set X that are nearest to Xnew.
2 Find the NumNeighbors response values Y to those nearest points.
3 Assign the classification label Ynew that has the largest posterior probability among

the values in Y.

For details, see “Posterior Probability” on page 22-3654 in the predict documentation.

Examples

Train a k-Nearest Neighbor Classifier

Construct a k-nearest neighbor classifier for Fisher's iris data, where k, the number of
nearest neighbors in the predictors, is 5.

Load Fisher's iris data.

load fisheriris

X = meas;

Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell
array of strings that contains the corresponding iris species.

Train a 5-nearest neighbors classifier. It is good practice to standardize noncategorical
predictor data.

22 Functions — Alphabetical List

22-1394

Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)

Mdl =

 ClassificationKNN

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 Distance: 'euclidean'

 NumNeighbors: 5

Mdl is a trained ClassificationKNN classifier, and some of its properties display in the
Command Window.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames

Mdl.Prior

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 0.3333 0.3333 0.3333

Mdl.Prior contains the class prior probabilities, which are settable using the name-
value pair argument 'Prior' in fitcknn. The order of the class prior probabilities
corresponds to the order of the classes in Mdl.ClassNames. By default, the prior
probabilities are the respective relative frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior
probabilities to 0.5, 0.2, and 0.3 respectively.

 ClassificationKNN.fit

22-1395

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to, for example, predict (ClassificationKNN) to label new
measurements, or crossval (ClassificationKNN) to cross validate the classifier.

Train a k-Nearest Neighbor Classifier Using the Minkowski Metric

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell
array of strings that contains the corresponding iris species.

Train a 3-nearest neighbors classifier using the Minkowski metric. To use the Minkowski
metric, you must use an exhaustive searcher. It is good practice to standardize
noncategorical predictor data.

Mdl = fitcknn(X,Y,'NumNeighbors',3,...

 'NSMethod','exhaustive','Distance','minkowski',...

 'Standardize',1);

Mdl is a ClassificationKNN classifier.

You can examine the properties of Mdl by double-clicking Mdl in the Workspace window.
This opens the Variable Editor.

22 Functions — Alphabetical List

22-1396

• “Construct a KNN Classifier” on page 16-28
• “Modify a KNN Classifier” on page 16-30

See Also
ClassificationKNN | fitcknn | predict

More About
• “Classification Using Nearest Neighbors” on page 16-8

 ClassificationTree.fit

22-1397

ClassificationTree.fit

Class: ClassificationTree

Fit classification tree (to be removed)

Compatibility

ClassificationTree.fit will be removed in a future release. Use fitctree instead.

Syntax

tree = ClassificationTree.fit(x,y)

tree = ClassificationTree.fit(x,y,Name,Value)

Description

tree = ClassificationTree.fit(x,y) returns a classification tree based on the
input variables (also known as predictors, features, or attributes) x and output (response)
y. tree is a binary tree, where each branching node is split based on the values of a
column of x.

tree = ClassificationTree.fit(x,y,Name,Value) fits a tree with additional
options specified by one or more Name,Value pair arguments. You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' options results in a tree of class ClassificationPartitionedModel.
You cannot use a partitioned tree for prediction, so this kind of tree does not have a
predict method.

Otherwise, tree is of class ClassificationTree, and you can use the predict
method to make predictions.

22 Functions — Alphabetical List

22-1398

Input Arguments
x — Predictor values
matrix of floating point values

Predictor values, specified as a matrix of floating point values.

ClassificationTree.fit considers NaN values in x as missing values.
ClassificationTree.fit does not use observations with all missing values for x in
the fit. ClassificationTree.fit uses observations with some missing values for x to
find splits on variables for which these observations have valid values.
Data Types: single | double

y — predictor values
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Predictor values, specified as a numeric vector, categorical vector, logical vector,
character array, or cell array of strings.

Each row of y represents the classification of the corresponding row of x. For numeric y,
consider using fitrtree instead. ClassificationTree.fit considers NaN values in y
to be missing values.

ClassificationTree.fit does not use observations with missing values for y in the
fit.
Data Types: single | double | char | logical | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'AlgorithmForCategorical' — Algorithm for best split on categorical predictor
'Exact' | 'PullLeft' | 'PCA' | 'OVAbyClass'

Algorithm to find the best split on a categorical predictor with L levels for
data with K ≥ 3 classes, specified as the comma-separated pair consisting of
'AlgorithmForCategorical' and one of the following.

 ClassificationTree.fit

22-1399

'Exact' Consider all 2L–1 – 1 combinations
'PullLeft' Pull left by purity
'PCA' Principal component-based partition
'OVAbyClass' One versus all by class

ClassificationTree.fit selects the optimal subset of algorithms for each split using
the known number of classes and levels of a categorical predictor. For K = 2 classes,
ClassificationTree.fit always performs the exact search.

Example: 'AlgorithmForCategorical','PCA'

'CategoricalPredictors' — Categorical predictors list
numeric or logical vector | cell array of strings | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following.

• A numeric vector with indices from 1 to p, where p is the number of columns of x.
• A logical vector of length p, where a true entry means that the corresponding column

of x is a categorical variable.
• A cell array of strings, where each element in the array is the name of a predictor

variable. The names must match entries in PredictorNames values.
• A character matrix, where each row of the matrix is a name of a predictor variable.

The names must match entries in PredictorNames values. Pad the names with
extra blanks so each row of the character matrix has the same length.

• 'all', meaning all predictors are categorical.

Example: 'CategoricalPredictors','all'

Data Types: single | double | char

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array representing the class names. Use the same data type as the values that exist in y.

Use ClassNames to order the classes or to select a subset of classes for training. The
default is the class names that exist in y.

22 Functions — Alphabetical List

22-1400

Data Types: single | double | char | logical | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification a point, specified as the comma-separated pair consisting of
'Cost' and one of the following.

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its
true class is i.

• Structure S having two fields: S.ClassNames containing the group names as a
variable of the same type as y, and S.ClassificationCosts containing the cost
matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j

Data Types: single | double | struct

'CrossVal' — Flag to grow cross-validated tree
'off' (default) | 'on'

Flag to grow a cross-validated decision tree, specified as the comma-separated pair
consisting of 'CrossVal' and either 'on' or 'off'.

If 'on', ClassificationTree.fit grows a cross-validated decision tree with 10 folds.
You can override this cross-validation setting using one of the 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' name-value pair arguments. Note that you can only
use one of these four options ('KFold', 'Holdout', 'Leaveout', or 'CVPartition')
at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the crossval method.

Example: 'CrossVal','on'

'CVPartition' — Partition for cross-validation tree
cvpartition object

Partition to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'CVPartition' and an object of the cvpartition class created using
cvpartition.

Note that if you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout',
or 'Leaveout' name-value pair arguments.

 ClassificationTree.fit

22-1401

'Holdout' — Fraction of data for holdout validation
1 (default) | scalar value in the range (0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the rest of the data for training.

Note that if you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold',
or 'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

Note that if you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout',
or 'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross validation flag
'off' (default) | 'on'

Leave-one-out cross validation flag, specified as the comma-separated pair consisting of
'Leaveout' and either 'on' or 'off'. Use leave-one-out cross validation by setting to
'on'.

Note that if you use 'Leaveout', you cannot use any of the 'CVPartition',
'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'MaxCat' — Maximum category levels
10 (default) | nonnegative scalar value

Maximum category levels, specified as the comma-separated pair consisting of 'MaxCat'
and a nonnegative scalar value. ClassificationTree.fit splits a categorical
predictor using the exact search algorithm if the predictor has at most MaxCat levels in

22 Functions — Alphabetical List

22-1402

the split node. Otherwise, ClassificationTree.fit finds the best categorical split
using one of the inexact algorithms.

Note that passing a small value can lead to loss of accuracy and passing a large value can
lead to long computation time and memory overload.
Example: 'MaxCat',8

'MergeLeaves' — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves'
and either 'on' or 'off'. When 'on', ClassificationTree.fit merges leaves that
originate from the same parent node, and that give a sum of risk values greater or equal
to the risk associated with the parent node. When 'off', ClassificationTree.fit
does not merge leaves.
Example: 'MergeLeaves','off'

'MinLeaf' — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated
pair consisting of 'MinLeaf' and a positive integer value. Each leaf has at
least MinLeaf observations per tree leaf. If you supply both MinParent and
MinLeaf, ClassificationTree.fit uses the setting that gives larger leaves:
MinParent=max(MinParent,2*MinLeaf).

Example: 'MinLeaf',3

Data Types: single | double

'MinParent' — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated
pair consisting of 'MinParent' and a positive integer value. Each branch node in
the tree has at least MinParent observations. If you supply both MinParent and
MinLeaf, ClassificationTree.fit uses the setting that gives larger leaves:
MinParent=max(MinParent,2*MinLeaf).

Example: 'MinParent',8

Data Types: single | double

 ClassificationTree.fit

22-1403

'NVarToSample' — Number of predictors for split
'all' | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated
pair consisting of 'NVarToSample' and a positive integer value. You can also specify
'all' to use all available predictors.

Example: 'NVarToSample',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior'and one of the following.

• A string:

• 'empirical' determines class probabilities from class frequencies in y. If you
pass observation weights, they are used to compute the class probabilities.

• 'uniform' sets all class probabilities equal.
• A vector (one scalar value for each class)
• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as y
• S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to
the value of the prior probability in the respective class.
Example: 'Prior','uniform'

'Prune' — Pruning flag
'on' (default) | 'off'

22 Functions — Alphabetical List

22-1404

Pruning flag, specified as the comma-separated pair consisting of 'Prune'
and either 'on' or 'off'. When 'on', ClassificationTree.fit grows the
classification tree, and computes the optimal sequence of pruned subtrees. When 'off'
ClassificationTree.fit grows the classification tree without pruning.

Example: 'Prune','off'

'PruneCriterion' — Pruning criterion
'error' (default) | 'impurity'

Pruning criterion, specified as the comma-separated pair consisting of
'PruneCriterion' and either 'error' or 'impurity'.

Example: 'PruneCriterion','impurity'

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string representing the name of the response variable y.

Example: 'ResponseName','Response'

'ScoreTransform' — Score transform function
'none' | 'symmetric' | 'invlogit' | 'ismax' | function handle | ...

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and a function handle for transforming scores. Your function
should accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Alternatively, you can specify one of the following strings representing a built-in
transformation function.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest score

to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)

 ClassificationTree.fit

22-1405

String Formula

'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest score

to 1, and scores for all other classes to -1.

Example: 'ScoreTransform','logit'

'SplitCriterion' — Split criterion
'gdi' (default) | 'twoing' | 'deviance'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion'
and 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for
maximum deviance reduction (also known as cross entropy).
Example: 'SplitCriterion','deviance'

'Surrogate' — Surrogate decision splits flag
'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of
'Surrogate' and 'on', 'off', 'all', or a positive integer value.

• When set to 'on', ClassificationTree.fit finds at most 10 surrogate splits at
each branch node.

• When set to a positive integer value, ClassificationTree.fit finds at most the
specified number of surrogate splits at each branch node.

• When set to 'all', ClassificationTree.fit finds all surrogate splits at each
branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also enables you to compute measures of predictive association between
predictors.
Example: 'Surrogate','on'

22 Functions — Alphabetical List

22-1406

'Weights' — Observation weights
ones(size(x,1),1) (default) | vector of scalar values

Vector of observation weights, specified as the comma-separated pair consisting of
'Weights' and a vector of scalar values. The length of Weights is equal to the number
of rows in x. ClassificationTree.fit normalizes the weights in each class to add up
to the value of the prior probability of the class.
Data Types: single | double

Output Arguments

tree — Classification tree
classification tree object

Classification tree object, returned as a classification tree object.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' options results in a tree of class ClassificationPartitionedModel.
You cannot use a partitioned tree for prediction, so this kind of tree does not have a
predict method. Instead, use kfoldpredict to predict responses for observations not
used for training.

Otherwise, tree is of class ClassificationTree, and you can use the predict
method to make predictions.

Definitions

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion
name-value pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1 2
- Â p i

i

(),

 ClassificationTree.fit

22-1407

where the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node. A node with just one class (a pure node) has
Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of
node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the
deviance of a node is

-Â p i p i

i

() log ().

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a

different measure for deciding how to split a node. Let L(i) denote the fraction of
members of class i in the left child node after a split, and R(i) denote the fraction of
members of class i in the right child node after a split. Choose the split criterion to
maximize

P L P R L i R i

i

() () () () ,-
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

2

where P(L) and P(R) are the fractions of observations that split to the left and
right respectively. If the expression is large, the split made each child node purer.
Similarly, if the expression is small, the split made each child node similar to each
other, and hence similar to the parent node, and so the split did not increase node
purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is
the class with the largest number of training samples at a node, the node error is
1 – p(j).

Examples

Construct a Classification Tree

Construct a classification tree for the data in ionosphere.mat.

load ionosphere

22 Functions — Alphabetical List

22-1408

tc = ClassificationTree.fit(X,Y)

tc =

 ClassificationTree

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 CategoricalPredictors: []

 NumObservations: 351

 Properties, Methods

References

[1] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. “Partitioning Nominal Attributes
in Decision Trees.” Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197–
217.

[2] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
kfoldpredict | predict | ClassificationTree | fitctree

 GeneralizedLinearModel.fit

22-1409

GeneralizedLinearModel.fit

Class: GeneralizedLinearModel

Create generalized linear regression model

Compatibility

GeneralizedLinearModel.fit will be removed in a future release. Use fitglm
instead.

Syntax

mdl = GeneralizedLinearModel.fit(tbl)

mdl = GeneralizedLinearModel.fit(X,y)

mdl = GeneralizedLinearModel.fit(...,modelspec)

mdl = GeneralizedLinearModel.fit(...,Name,Value)

mdl = GeneralizedLinearModel.fit(...,modelspec,Name,Value)

Description

mdl = GeneralizedLinearModel.fit(tbl) creates a generalized linear model of a
table or dataset array tbl.

mdl = GeneralizedLinearModel.fit(X,y) creates a generalized linear model of the
responses y to a data matrix X.

mdl = GeneralizedLinearModel.fit(...,modelspec) creates a generalized linear
model as specified by modelspec.

mdl = GeneralizedLinearModel.fit(...,Name,Value) or mdl =
GeneralizedLinearModel.fit(...,modelspec,Name,Value) creates a generalized
linear model with additional options specified by one or more Name,Value pair
arguments.

22 Functions — Alphabetical List

22-1410

Tips

• The generalized linear model mdl is a standard linear model unless you specify
otherwise with the Distribution name-value pair.

• For other methods such as devianceTest, or properties of the
GeneralizedLinearModel object, see GeneralizedLinearModel.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables and response variables can be numeric, or any grouping variable
type, such as logical or categorical (see “Grouping Variables” on page 2-52).

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

 GeneralizedLinearModel.fit

22-1411

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

modelspec — Model specification
string specifying the model | t-by-(p+1) terms matrix | string of the form 'Y ~ terms'

Model specification, which is the starting model for stepwiseglm, specified as one of the
following:

• String specifying the type of model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

• t-by-(p+1) matrix, namely terms matrix, specifying terms to include in model, where t
is the number of terms and p is the number of predictor variables, and plus one is for
the response variable.

• String representing a formula in the form
'Y ~ terms',
where the terms are in “Wilkinson Notation” on page 22-1421.

Example: 'quadratic'

22 Functions — Alphabetical List

22-1412

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinomialSize' — Number of trials for binomial distribution
1 (default) | scalar value | vector

Number of trials for binomial distribution, that is the sample size, specified as the
comma-separated pair consisting of a scalar value or a vector of the same length as the
response. This is the parameter n for the fitted binomial distribution. BinomialSize
applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of
trials.

As an alternative to BinomialSize, you can specify the response as a two-column vector
with counts in column 1 and BinomialSize in column 2.

Data Types: single | double

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical
variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

 GeneralizedLinearModel.fit

22-1413

'DispersionFlag' — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson'
distributions, specified as the comma-separated pair consisting of 'DispersionFlag'
and one of the following.

true Estimate a dispersion parameter when computing standard
errors

false Default. Use the theoretical value when computing standard
errors

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

'Distribution' — Distribution of the response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'normal' Normal distribution
'binomial' Binomial distribution
'poisson' Poisson distribution
'gamma' Gamma distribution
'inverse gaussian' Inverse Gaussian distribution

Example: 'Distribution','gamma'

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

22 Functions — Alphabetical List

22-1414

Data Types: single | double | logical

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'Link' — Link function
The canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-
separated pair consisting of 'Link' and one of the following.

Link Function Name Link Function Mean (Inverse) Function

'identity' f(μ) = μ μ = Xb
'log' f(μ) = log(μ) μ = exp(Xb)
'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'probit' f(μ) = Φ–1(μ) μ = Φ(Xb)

'comploglog' f(μ) = log(–log(1 – μ)) μ = 1 – exp(–exp(Xb))
'reciprocal' f(μ) = 1/μ μ = 1/(Xb)
p (a number) f(μ) = μp μ = Xb1/p

S (a structure)
with three fields. Each field
holds a function handle
that accepts a vector of
inputs and returns a vector
of the same size:

• S.Link — The link
function

• S.Inverse — The
inverse link function

f(μ) = S.Link(μ) μ = S.Inverse(Xb)

 GeneralizedLinearModel.fit

22-1415

Link Function Name Link Function Mean (Inverse) Function

• S.Derivative — The
derivative of the link
function

The link function defines the relationship f(μ) = X*b between the mean response μ and
the linear combination of predictors X*b.

For more information on the canonical link functions, see Definitions.

Example: 'Link','probit'

'Offset' — Offset variable
[] (default) | vector | string

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset'
and a vector or name of a variable with the same length as the response.

fitglm and stepwiseglm use Offset as an additional predictor, with a coefficient
value fixed at 1.0. In other words, the formula for fitting is
μ ~ Offset + (terms involving real predictors)

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is
known for theoretical reasons to be proportional to a predictor A. By using the log link
function and by specifying log(A) as an offset, you can force the model to satisfy this
theoretical constraint.
Data Types: single | double | char

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

22 Functions — Alphabetical List

22-1416

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

 GeneralizedLinearModel.fit

22-1417

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments
mdl — Generalized linear model
GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to
the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the
GeneralizedLinearModel class page.

Definitions

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

22 Functions — Alphabetical List

22-1418

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

 GeneralizedLinearModel.fit

22-1419

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

22 Functions — Alphabetical List

22-1420

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

• Y is the response name.
• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

 GeneralizedLinearModel.fit

22-1421

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

22 Functions — Alphabetical List

22-1422

Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models

Distribution Link Function Name Link Function Mean (Inverse) Function

'normal' 'identity' f(μ) = μ μ = Xb
'binomial' 'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)
'inverse

gaussian'

-2 f(μ) = 1/μ2 μ = (Xb)–1/2

Examples

Fit a Generalized Linear Model

Make a logistic binomial model of the probability of smoking as a function of age, weight,
and sex, using a two-way interactions model.

Load the hospital dataset array.

load hospital

ds = hospital; % just to use the ds name

Specify the model using a formula that allows up to two-way interactions.

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

Create the generalized linear model.

mdl = fitglm(ds,modelspec,'Distribution','binomial')

mdl =

Generalized Linear regression model:

 logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight

 Distribution = Binomial

Estimated Coefficients:

 GeneralizedLinearModel.fit

22-1423

 Estimate SE tStat pValue

 (Intercept) -6.0492 19.749 -0.3063 0.75938

 Sex_Male -2.2859 12.424 -0.18399 0.85402

 Age 0.11691 0.50977 0.22934 0.81861

 Weight 0.031109 0.15208 0.20455 0.83792

 Sex_Male:Age 0.020734 0.20681 0.10025 0.92014

 Sex_Male:Weight 0.01216 0.053168 0.22871 0.8191

 Age:Weight -0.00071959 0.0038964 -0.18468 0.85348

100 observations, 93 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

The large p-value indicates the model might not differ statistically from a constant.

• “Generalized Linear Model Workflow” on page 10-39

Alternatives

You can also construct a generalized linear model using fitglm.

Use stepwiseglm to select a model specification automatically. Use step, addTerms, or
removeTerms to adjust a fitted model.

References

[1] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

See Also
GeneralizedLinearModel | stepwiseglm

More About
• “Generalized Linear Models” on page 10-12

22 Functions — Alphabetical List

22-1424

gmdistribution.fit

Class: gmdistribution

Gaussian mixture parameter estimates

Note: fit will be removed in a future release. Use fitgmdist instead.

Syntax

obj = gmdistribution.fit(X,k)

obj = gmdistribution.fit(...,param1,val1,param2,val2,...)

Description

obj = gmdistribution.fit(X,k) uses an Expectation Maximization (EM) algorithm
to construct an object obj of the gmdistribution class containing maximum likelihood
estimates of the parameters in a Gaussian mixture model with k components for data in
the n-by-d matrix X, where n is the number of observations and d is the dimension of the
data.

gmdistribution treats NaN values as missing data. Rows of X with NaN values are
excluded from the fit.

obj = gmdistribution.fit(...,param1,val1,param2,val2,...) provides
control over the iterative EM algorithm. Parameters and values are listed below.

Parameter Value

'Start' Method used to choose initial component parameters. One of the
following:

• 'randSample' — To select k observations from X at random as
initial component means. The mixing proportions are uniform.

 gmdistribution.fit

22-1425

Parameter Value

The initial covariance matrices for all components are diagonal,
where the element j on the diagonal is the variance of X(:,j).
This is the default.

• 'plus' — The software selects k observations from X using the
kmeans++ algorithm. The initial mixing proportions are uniform.
The initial covariance matrices for all components are diagonal,
where the element j on the diagonal is the variance of X(:,j).

• S — A structure array with fields mu, Sigma, and PComponents.
See gmdistribution for descriptions of values.

• s — A vector of length n containing an initial guess of the
component index for each point.

'Replicates' A positive integer giving the number of times to repeat the EM
algorithm, each time with a new set of parameters. The solution
with the largest likelihood is returned. A value larger than 1
requires the 'randSample' start method. The default is 1.

'CovType' 'diagonal' if the covariance matrices are restricted to be diagonal;
'full' otherwise. The default is 'full'.

'SharedCov' Logical true if all the covariance matrices are restricted to be the
same (pooled estimate); logical false otherwise.

'Regularize' A nonnegative regularization number added to the diagonal of
covariance matrices to make them positive-definite. The default is 0.

'Options' Options structure for the iterative EM algorithm, as created by
statset. gmdistribution.fit uses the parameters 'Display'
with a default value of 'off', 'MaxIter' with a default value of
100, and 'TolFun' with a default value of 1e-6.

In some cases, gmdistribution may converge to a solution where one or more of the
components has an ill-conditioned or singular covariance matrix.

The following issues may result in an ill-conditioned covariance matrix:

• The number of dimension of your data is relatively high and there are not enough
observations.

• Some of the features (variables) of your data are highly correlated.
• Some or all the features are discrete.

22 Functions — Alphabetical List

22-1426

• You tried to fit the data to too many components.

In general, you can avoid getting ill-conditioned covariance matrices by using one of the
following precautions:

• Pre-process your data to remove correlated features.
• Set 'SharedCov' to true to use an equal covariance matrix for every component.
• Set 'CovType' to 'diagonal'.
• Use 'Regularize' to add a very small positive number to the diagonal of every

covariance matrix.
• Try another set of initial values.

In other cases gmdistribution may pass through an intermediate step where one or
more of the components has an ill-conditioned covariance matrix. Trying another set of
initial values may avoid this issue without altering your data or model.

Examples

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd
function:

MU1 = [1 2];

SIGMA1 = [2 0; 0 .5];

MU2 = [-3 -5];

SIGMA2 = [1 0; 0 1];

X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')

hold on

 gmdistribution.fit

22-1427

Next, fit a two-component Gaussian mixture model:

options = statset('Display','final');

obj = gmdistribution.fit(X,2,'Options',options);

10 iterations, log-likelihood = -7046.78

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

22 Functions — Alphabetical List

22-1428

Among the properties of the fit are the parameter estimates:

ComponentMeans = obj.mu

ComponentMeans =

 0.9391 2.0322

 -2.9823 -4.9737

ComponentCovariances = obj.Sigma

ComponentCovariances(:,:,1) =

 1.7786 -0.0528

 -0.0528 0.5312

ComponentCovariances(:,:,2) =

 1.0491 -0.0150

 -0.0150 0.9816

 gmdistribution.fit

22-1429

MixtureProportions = obj.PComponents

MixtureProportions =

 0.5000 0.5000

The Akaike information is minimized by the two-component model:

AIC = zeros(1,4);

obj = cell(1,4);

for k = 1:4

 obj{k} = gmdistribution.fit(X,k);

 AIC(k)= obj{k}.AIC;

end

[minAIC,numComponents] = min(AIC);

numComponents

numComponents =

 2

model = obj{2}

model =

Gaussian mixture distribution

with 2 components in 2 dimensions

Component 1:

Mixing proportion: 0.500000

Mean: 0.9391 2.0322

Component 2:

Mixing proportion: 0.500000

Mean: -2.9823 -4.9737

Both the Akaike and Bayes information are negative log-likelihoods for the data with
penalty terms for the number of estimated parameters. They are often used to determine
an appropriate number of components for a model when the number of components is
unspecified.

References

[1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons,
Inc., 2000.

See Also
gmdistribution | cluster

22 Functions — Alphabetical List

22-1430

LinearModel.fit
Class: LinearModel

Create linear regression model

Compatibility

LinearModel.fit will be removed in a future release. Use fitlm instead.

Syntax

mdl = LinearModel.fit(tbl)

mdl = LinearModel.fit(X,y)

mdl = LinearModel.fit(...,modelspec)

mdl = LinearModel.fit(...,Name,Value)

mdl = LinearModel.fit(...,modelspec,Name,Value)

Description

mdl = LinearModel.fit(tbl) creates a linear model of a table or dataset array tbl.

mdl = LinearModel.fit(X,y) creates a linear model of the responses y to a data
matrix X.

mdl = LinearModel.fit(...,modelspec) creates a linear model of the specified
type.

mdl = LinearModel.fit(...,Name,Value) or mdl = LinearModel.fit(...,
modelspec,Name,Value) creates a linear model with additional options specified by
one or more Name,Value pair arguments.

Tips
• Use robust fitting (RobustOpts name-value pair) to reduce the effect of outliers

automatically.

 LinearModel.fit

22-1431

• Do not use robust fitting when you want to subsequently adjust a model using step.
• For other methods or properties of the LinearModel object, see LinearModel.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

22 Functions — Alphabetical List

22-1432

Data Types: single | double

modelspec — Model specification
string naming the model | t-by-(p + 1) terms matrix | string of the form 'Y ~ terms'

Model specification, specified as one of the following. The choice is the starting model for
stepwiselm.

• A string naming the model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

• t-by-(p + 1) matrix, namely terms matrix, specifying terms to include in the model,
where t is the number of terms and p is the number of predictor variables, and plus 1
is for the response variable.

• A string representing a formulain the form
'Y ~ terms',
where the terms are in “Wilkinson Notation” on page 22-1441.

Example: 'quadratic'

Example: 'y ~ X1 + X2^2 + X1:X2'

 LinearModel.fit

22-1433

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical
variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

22 Functions — Alphabetical List

22-1434

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.

 LinearModel.fit

22-1435

Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

'RobustOpts' — Indicator of robust fitting type
'off' (default) | 'on' | string | structure with string or function handle

Indicator of the robust fitting type to use, specified as the comma-separated pair
consisting of 'RobustOpts' and one of the following.

• 'off' — No robust fitting. fitlm uses ordinary least squares.
• 'on' — Robust fitting. When you use robust fitting, 'bisquare' weight function is

the default.
• String — Name of the robust fitting weight function from the following table. fitlm

uses the corresponding default tuning constant in the table.
• Structure with the string RobustWgtFun containing the name of the robust fitting

weight function from the following table and optional scalar Tune fields — fitlm
uses the RobustWgtFun weight function and Tune tuning constant from the
structure. You can choose the name of the robust fitting weight function from this
table. If you do not supply a Tune field, the fitting function uses the corresponding
default tuning constant.

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'

(default)
w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'ols' Ordinary least squares (no weighting

function)
None

'talwar' w = 1 * (abs(r)<1) 2.795

22 Functions — Alphabetical List

22-1436

Weight Function Equation Default Tuning
Constant

'welsch' w = exp(-(r.^2)) 2.985

The value r in the weight functions is

r = resid/(tune*s*sqrt(1-h)),

where resid is the vector of residuals from the previous iteration, h is the vector
of leverage values from a least-squares fit, and s is an estimate of the standard
deviation of the error term given by

s = MAD/0.6745.

MAD is the median absolute deviation of the residuals from their median. The
constant 0.6745 makes the estimate unbiased for the normal distribution. If there are
p columns in X, the smallest p absolute deviations are excluded when computing the
median.

Default tuning constants give coefficient estimates that are approximately 95% as
statistically efficient as the ordinary least-squares estimates, provided the response
has a normal distribution with no outliers. Decreasing the tuning constant increases
the downweight assigned to large residuals; increasing the tuning constant decreases
the downweight assigned to large residuals.

• Structure with the function handle RobustWgtFun and optional scalar Tune fields
— You can specify a custom weight function. fitlm uses the RobustWgtFun weight
function and Tune tuning constant from the structure. Specify RobustWgtFun as a
function handle that accepts a vector of residuals, and returns a vector of weights the
same size. The fitting function scales the residuals, dividing by the tuning constant
(default 1) and by an estimate of the error standard deviation before it calls the
weight function.

Example: 'RobustOpts','andrews'

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

 LinearModel.fit

22-1437

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments

mdl — Linear model
LinearModel object

Linear model representing a least-squares fit of the response to the data, returned as a
LinearModel object.

If the value of the 'RobustOpts' name-value pair is not [] or 'ols', the model is not a
least-squares fit, but uses the robust fitting function.

For properties and methods of the linear model object, mdl, see the LinearModel class
page.

Definitions

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

22 Functions — Alphabetical List

22-1438

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

 LinearModel.fit

22-1439

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

22 Functions — Alphabetical List

22-1440

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

 LinearModel.fit

22-1441

• Y is the response name.
• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term

22 Functions — Alphabetical List

22-1442

Wilkinson Notation Factors in Standard Notation

A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

Examples

Linear Regression Model of Matrix Data

Fit a linear model of the Hald data.

Load the data.

load hald

X = ingredients; % Predictor variables

y = heat; % Response

Fit a default linear model to the data.

mdl = fitlm(X,y)

mdl =

Linear regression model:

 y ~ 1 + x1 + x2 + x3 + x4

 LinearModel.fit

22-1443

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ________ ________

 (Intercept) 62.405 70.071 0.8906 0.39913

 x1 1.5511 0.74477 2.0827 0.070822

 x2 0.51017 0.72379 0.70486 0.5009

 x3 0.10191 0.75471 0.13503 0.89592

 x4 -0.14406 0.70905 -0.20317 0.84407

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 2.45

R-squared: 0.982, Adjusted R-Squared 0.974

F-statistic vs. constant model: 111, p-value = 4.76e-07

Linear Regression with Categorical Predictor and Nonlinear Model

Fit a model of a table that contains a categorical predictor. Use a nonlinear response
formula.

Load the carsmall data.

load carsmall

Construct a table containing continuous predictor variable Weight, nominal predictor
variable Year, and response variable MPG.

tbl = table(MPG,Weight);

tbl.Year = nominal(Model_Year);

Create a fitted model of MPG as a function of Year, Weight, and Weight2. (You don’t have
to include Weight explicitly in your formula because it is a lower-order term of Weight2.

mdl = fitlm(tbl,'MPG ~ Year + Weight^2')

mdl =

Linear regression model:

 MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 54.206 4.7117 11.505 2.6648e-19

 Weight -0.016404 0.0031249 -5.2493 1.0283e-06

 Year_76 2.0887 0.71491 2.9215 0.0044137

 Year_82 8.1864 0.81531 10.041 2.6364e-16

 Weight^2 1.5573e-06 4.9454e-07 3.149 0.0022303

22 Functions — Alphabetical List

22-1444

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 2.78

R-squared: 0.885, Adjusted R-Squared 0.88

F-statistic vs. constant model: 172, p-value = 5.52e-41

fitlm creates two dummy (indicator) variables for the nominal variate, Year. The
dummy variable Year_76 takes the value 1 if model year is 1976 and takes the value 0 if
it is not. The dummy variable Year_82 takes the value 1 if model year is 1982 and takes
the value 0 if it is not. And the year 1970 is the reference year. The corresponding model
is

MPG Weight Year Yearˆ . . . (_) . (_)= - () + +54 206 0 0164 2 0887 76 8 1864 82 ++ -() ()1 557 06
2

. e Weight

Simultaneously Specify the Variables and Use Formula

Simultaneously identify response and predictor variables and specify the model using
formula in linear regression.

Load sample data.

load hospital

Fit a linear model with interaction terms to the data.

mdl = fitlm(hospital,'Weight~1+Age*Sex*Smoker-Age:Sex:Smoker','ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},'CategoricalVar',{'Sex','Smoker'})

mdl =

Linear regression model:

 Weight ~ 1 + Sex*Age + Sex*Smoker + Age*Smoker

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ________ __________

 (Intercept) 118.7 7.0718 16.785 6.821e-30

 Sex_Male 68.336 9.7153 7.0339 3.3386e-10

 Age 0.31068 0.18531 1.6765 0.096991

 Smoker_1 3.0425 10.446 0.29127 0.77149

 Sex_Male:Age -0.49094 0.24764 -1.9825 0.050377

 Sex_Male:Smoker_1 0.9509 3.8031 0.25003 0.80312

 Age:Smoker_1 -0.07288 0.26275 -0.27737 0.78211

 LinearModel.fit

22-1445

Number of observations: 100, Error degrees of freedom: 93

Root Mean Squared Error: 8.75

R-squared: 0.898, Adjusted R-Squared 0.892

F-statistic vs. constant model: 137, p-value = 6.91e-44

The weight of the patients do not seem to differ significantly according to age, or the
status of smoking, or interaction of these factors with gender at the 5% significance level.

Robust Linear Regression Model

Fit a linear regression model of the Hald data using robust fitting.

Load the data.

load hald

X = ingredients; % predictor variables

y = heat; % response

Fit a robust linear model to the data.

mdl = fitlm(X,y,'linear','RobustOpts','on')

mdl =

Linear regression model (robust fit):

 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 60.09 75.818 0.79256 0.4509

 x1 1.5753 0.80585 1.9548 0.086346

 x2 0.5322 0.78315 0.67957 0.51596

 x3 0.13346 0.8166 0.16343 0.87424

 x4 -0.12052 0.7672 -0.15709 0.87906

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 2.65

R-squared: 0.979, Adjusted R-Squared 0.969

F-statistic vs. constant model: 94.6, p-value = 9.03e-07

• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Predict or Simulate Responses to New Data” on page 9-37

22 Functions — Alphabetical List

22-1446

• “Linear Regression Workflow” on page 9-41
• “Regression with Categorical Covariates” on page 2-58

Algorithms

The main fitting algorithm is QR decomposition. For robust fitting, the algorithm is
robustfit.

Alternatives

You can also construct a linear model using fitlm.

You can construct a model in a range of possible models using stepwiselm. However,
you cannot use robust regression and stepwise regression together.

See Also
predict | stepwiselm | LinearModel

How To
• “Linear Regression” on page 9-11

 LinearMixedModel.fit

22-1447

LinearMixedModel.fit
Class: LinearMixedModel

Fit linear mixed-effects model using tables

Compatibility
LinearMixedModel.fit will be removed in a future release. Use fitlme instead.

Syntax
lme = LinearMixedModel.fit(tbl,formula)

lme = LinearMixedModel.fit(tbl,formula,Name,Value)

Description
lme = LinearMixedModel.fit(tbl,formula) returns a linear mixed-effects model,
specified by formula, fitted to the variables in the table or dataset array tbl.

lme = LinearMixedModel.fit(tbl,formula,Name,Value) returns a linear
mixed-effects model with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the covariance pattern of the random-effects terms, the
method to use in estimating the parameters, or options for the optimization algorithm.

Tips
• If your model is not easily described using a formula, you can create matrices to define

the fixed and random effects, and fit the model using fitlmematrix.

Input Arguments
tbl — Input data
table | dataset array

22 Functions — Alphabetical List

22-1448

Input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be
continuous or grouping variables (see “Grouping Variables” on page 2-52). You must
specify the model for the variables using formula.
Data Types: single | double | char | cell

formula — Formula for model specification
string of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|
groupingR)'

Formula for model specification, specified as a string of the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)'. For full description, see
“Formula” on page 22-1465.
Example: 'y ~ treatment +(1|block)'

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CovariancePattern' — Pattern of covariance matrix
'FullCholesky' (default) | string | square symmetric logical matrix | cell array of
strings or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated
pair consisting of 'CovariancePattern' and a string, a square symmetric logical
matrix, or a cell array of strings or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be
a cell array of length R, where each element r of this cell array specifies the pattern of
the covariance matrix of the random-effects vector associated with the rth random-effects
term. The options for each element follow.

'FullCholesky' Default. Full covariance matrix using
the Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

 LinearMixedModel.fit

22-1449

'Full' Full covariance matrix, using the log-
Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

'Diagonal' Diagonal covariance matrix. That is, off-
diagonal elements of the covariance matrix
are constrained to be 0.

s

s

s

b

b

b

1

2

2

2

3

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

'Isotropic' Diagonal covariance matrix with equal
variances. That is, off-diagonal elements
of the covariance matrix are constrained
to be 0, and the diagonal elements are
constrained to be equal. For example, if
there are three random-effects terms with
an isotropic covariance structure, this
covariance matrix looks like

s

s

s

b

b

b

2

2

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

where σ2
b is the common variance of the

random-effects terms.

22 Functions — Alphabetical List

22-1450

'CompSymm' Compound symmetry structure. That is,
common variance along diagonals and
equal correlation between all random
effects. For example, if there are three
random-effects terms with a covariance
matrix having a compound symmetry
structure, this covariance matrix looks like

s s s

s s s

s s s

b b b b b

b b b b b

b b b b b

1
2

1 2 1 2

1 2 1
2

1 2

1 2 1 2 1
2

, ,

, ,

, ,

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜̃
˜
˜̃

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the
common covariance between any two
random-effects term .

PAT Square symmetric logical matrix. If
'CovariancePattern' is defined
by the matrix PAT, and if PAT(a,b)
= false, then the (a,b) element of
the corresponding covariance matrix is
constrained to be 0.

Example: 'CovariancePattern','Diagonal'

Example: 'CovariancePattern',{'Full','Diagonal'}

'FitMethod' — Method for estimating parameters
'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the
comma-separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'

 LinearMixedModel.fit

22-1451

'Weights' — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of length n, where n is the number of observations.
Data Types: single | double

'Exclude' — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as
the comma-separated pair consisting of 'Exclude' and a vector of integer or logical
values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]

Data Types: single | double | logical

'DummyVarCoding' — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as
the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

'reference' Default. Coefficient for first category set to
0.

'effects' Coefficients sum to 0.
'full' One dummy variable for each category.

Example: 'DummyVarCoding','effects'

'Optimizer' — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of
'Optimizer' and either of the following.

'quasinewton' Default. Uses a trust region based
quasi-Newton optimizer. Change

22 Functions — Alphabetical List

22-1452

the options of the algorithm using
statset('LinearMixedModel').
If you don’t specify the options,
then LinearMixedModel
uses the default options of
statset('LinearMixedModel').

'fminunc' You must have Optimization Toolbox
to specify this option. Change the
options of the algorithm using
optimoptions('fminunc'). If
you don’t specify the options, then
LinearMixedModel uses the default
options of optimoptions('fminunc')
with 'Algorithm' set to 'quasi-
newton'.

Example: 'Optimizer','fminunc'

'OptimizerOptions' — Options for optimization algorithm
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-
separated pair consisting of 'OptimizerOptions' and a structure
returned by statset('LinearMixedModel') or an object returned by
optimoptions('fminunc').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the
options of the optimization algorithm. See optimoptions for the options 'fminunc'
uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions',
then the default for LinearMixedModel is the default options created by
optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

• If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel')
to change the optimization parameters. If you don’t change the optimization
parameters, then LinearMixedModel uses the default options created by
statset('LinearMixedModel'):

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('LinearMixedModel').

'TolFun' — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

 LinearMixedModel.fit

22-1453

Relative tolerance on the gradient of the objective function, specified as a positive scalar
value.

'TolX' — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

'MaxIter' — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

'Display' — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

'StartMethod' — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting
of 'StartMethod' and either of the following.

'default' Default. An internally defined default
value.

'random' A random initial value.

Example: 'StartMethod','random'

'Verbose' — Indicator to display optimization process on screen
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated
pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true

'CheckHessian' — Indicator to check positive definiteness of Hessian
false (default) | true

22 Functions — Alphabetical List

22-1454

Indicator to check the positive definiteness of the Hessian of the objective function with
respect to unconstrained parameters at convergence, specified as the comma-separated
pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if
the model is overparameterized in the number of covariance parameters.
Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Examples

Random-Intercept Model

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated
influenza rates (in 9 different regions, estimated from Google searches, plus a nationwide
estimate from the CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset
array. To fit a linear mixed-effects model with the influenza rates as the responses,
combine the nine columns corresponding to the regions into a tall array. The new dataset
array, flu2, must have the response variable FluRate, the nominal variable Region
that shows which region each estimate is from, the nationwide estimate WtdILI, and the
grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

 LinearMixedModel.fit

22-1455

Fit a linear mixed-effects model with the nationwide a random intercept that varies by
Date. The model corresponds to

y WtdILI b i mim im m im= + + + = =b b e0 1 0 1 2 468 1 2 52, , ,..., , , , ..., ,

where yim is the observation i for level m of grouping variable Date. b0m is the random
effect for level m of the grouping variable Date and εim is the observation error for
observation i. The random effect has the prior distribution, b ~ N(0,σ2

b) and the error
term has the distribution, ε ~ N(0,σ2).

lme = LinearMixedModel.fit(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 468

 Fixed effects coefficients 2

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 286.24 302.83 -139.12 278.24

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.16385 0.057525 2.8484 466 0.0045885 0.050813 0.27689

 'WtdILI' 0.7236 0.032219 22.459 466 3.0502e-76 0.66028 0.78691

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.17146 0.13227 0.22226

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.30201 0.28217 0.32324

22 Functions — Alphabetical List

22-1456

The confidence limits for the standard deviation of the random-effects term, σ2
b, do not

include 0 (0.13227, 0.22226), which indicates that the random-effects term is significant.
You can also test the significance of the random-effects terms using the compare method.

The estimated value of an observation is the sum of the fixed effects and the random-
effect value at the grouping variable level corresponding to that observation. For
example, the estimated flu rate for observation 28 is

ˆ ˆ ˆ ˆ

. . *(.) .

/ /y WtdILI b28 0 1 28 10 30 2005

0 1639 0 7236 1 343 0

= + +

= + +

b b

33318

1 46749= . ,

where ˆb is the BLUP of the random effects for the intercept. You can compute this value
in the following way.

beta = fixedEffects(lme);

[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)

STATS.Level = nominal(STATS.Level);

y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')

y_hat =

 1.4674

You can display the fitted value using the fitted method.

F = fitted(lme);

F(28)

ans =

 1.4674

Randomized-Block Design

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

 LinearMixedModel.fit

22-1457

The dataset array shows the absolute deviations from the target quality characteristic
measured from the products each of five operators manufacture over three different
shifts, morning, evening, and night. This is a randomized block design, where the
operators are the blocks. The experiment is designed to study the impact of the time of
shift on the performance. The performance measure is the absolute deviations of the
quality characteristics from the target value. This is simulated data.

Fit a linear mixed-effects model with a random intercept grouped by operator, to assess
if there is significant difference in the performance according to the time of the shift. Use
the restricted maximum likelihood method and 'effects' contrasts.

'effects' contrasts mean that the coefficients sum to 0, and LinearMixedModel.fit
creates a matrix called a 'fixed effects design matrix' to describe the effect of Shift. This
matrix has two columns, Shift_Evening and Shift_Morning, where

Shift Evening

if Morning

if Evening

if Night

and Shif_ =

-

Ï

Ì
Ô

Ó
Ô

0

1

1

,

,

,

tt Morning

if Morning

if Evening

if Night

_ =

-

Ï

Ì
Ô

Ó
Ô

1

0

1

,

,

,

.

The model corresponds to

Morning Shift: _QCDev Shift Morning b mim i m im= + + + =b b e0 2 0 1 2, , ,...., ,

,

5

0 1 0Evening Shift:

N

_QCDev Shift Evening bim i m im= + + +b b e

iight Shift: _ _QCDev Shift Evening Shift Morniim i= - -b b b0 1 2 nng bi m im+ +0 e ,

where b ~ N(0,σ2
b) and ε ~ N(0,σ2).

lme = LinearMixedModel.fit(shift,'QCDev ~ Shift + (1|Operator)',...

'FitMethod','REML','DummyVarCoding','effects')

lme =

Linear mixed-effects model fit by REML

Model information:

 Number of observations 15

 Fixed effects coefficients 3

 Random effects coefficients 5

 Covariance parameters 2

Formula:

22 Functions — Alphabetical List

22-1458

 QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 58.913 61.337 -24.456 48.913

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 3.6525 0.94109 3.8812 12 0.0021832 1.6021 5.703

 'Shift_Evening' -0.53293 0.31206 -1.7078 12 0.11339 -1.2129 0.14699

 'Shift_Morning' -0.91973 0.31206 -2.9473 12 0.012206 -1.5997 -0.23981

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 2.0457 0.98207 4.2612

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.85462 0.52357 1.395

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

B = randomEffects(lme)

B =

 0.5775

 1.1757

 -2.1715

 2.3655

 -1.9472

The estimated absolute deviation from the target quality characteristics for the third
operator working in the evening shift is

ˆ ˆ ˆ ˆ

. .

,y Shift Evening bEvening Operator3 0 1 03

3 6525 0 532

= + +

= -

b b _

993 2 1715

0 94807

-

=

.

. .

You can also display this value as follows.

F = fitted(lme);

F(shift.Shift=='Evening' & shift.Operator=='3')

 LinearMixedModel.fit

22-1459

ans =

 0.9481

Similarly, you can calculate the estimated absolute deviation from the target quality
characteristics for the third operator working in the morning shift is

ˆ ˆ ˆ ˆ

. .

,y Shift Morning bMorning Operator3 0 2 03

3 6525 0 919

= + +

= -

b b _

773 2 1715

0 56127

-

=

.

. .

You can also display this value in the following way.

F(shift.Shift=='Morning' & shift.Operator=='3')

ans =

 0.5613

The operator tends to make a smaller magnitude of error in the morning shift.

Split-Plot Experiment

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five types of tomato plants, (cherry, heirloom, grape, vine, and plum) are
randomly assigned to these plots. Then, the tomato plants in the plots are divided into
subplots, where each subplot is treated by one of the four fertilizers. This is simulated
data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

22 Functions — Alphabetical List

22-1460

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type) and the plots within blocks
(tomato types within soil types) independently.

This model corresponds to

y I F I T I F I Timjk m im
m

j ij
j

mj im ij
m

= + [] + [] + [] []
= = =

Â Âb b b b0 1
2

4

2
2

5

3
2

44

2

5

0 0

ÂÂ
=

+ + +

j

k k jk jk imjkb S b S T(*) ,e

where i = 1, 2, ..., 60, the index m corresponds to the fertilizer types, j corresponds to
the tomato types, and k = 1, 2, 3 corresponds to the blocks (soil). Sk represents the kth
soil type, and (S*T)jk represents the jth tomato type nested in the kth soil type. I[F]im is
the dummy variable representing level m of the fertilizer. Similarly, I[T]ij is the dummy
variable representing the level j of the tomato type.

The random effects and observation error have the following prior distributions:
b0k~N(0,σ2

S), b0jk~N(0,σ2
S*T), and εimjk ~ N(0,σ2).

lme = LinearMixedModel.fit(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 60

 Fixed effects coefficients 20

 Random effects coefficients 18

 Covariance parameters 3

Formula:

 Yield ~ 1 + Tomato*Fertilizer + (1 | Soil) + (1 | Soil:Tomato)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 522.57 570.74 -238.29 476.57

Fixed effects coefficients (95% CIs):

 LinearMixedModel.fit

22-1461

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 77 8.5836 8.9706 40 4.0206e-11 59.652 94.348

 'Tomato_Grape' -16 11.966 -1.3371 40 0.18873 -40.184 8.1837

 'Tomato_Heirloom' -6.6667 11.966 -0.55714 40 0.58053 -30.85 17.517

 'Tomato_Plum' 32.333 11.966 2.7022 40 0.010059 8.1496 56.517

 'Tomato_Vine' -13 11.966 -1.0864 40 0.28379 -37.184 11.184

 'Fertilizer_2' 34.667 8.572 4.0442 40 0.00023272 17.342 51.991

 'Fertilizer_3' 33.667 8.572 3.9275 40 0.00033057 16.342 50.991

 'Fertilizer_4' 47.667 8.572 5.5607 40 1.9567e-06 30.342 64.991

 'Tomato_Grape:Fertilizer_2' -2.6667 12.123 -0.21997 40 0.82701 -27.167 21.834

 'Tomato_Heirloom:Fertilizer_2' -8 12.123 -0.65992 40 0.51309 -32.501 16.501

 'Tomato_Plum:Fertilizer_2' -15 12.123 -1.2374 40 0.22317 -39.501 9.5007

 'Tomato_Vine:Fertilizer_2' -16 12.123 -1.3198 40 0.19439 -40.501 8.5007

 'Tomato_Grape:Fertilizer_3' 16.667 12.123 1.3748 40 0.17683 -7.8341 41.167

 'Tomato_Heirloom:Fertilizer_3' 3.3333 12.123 0.27497 40 0.78476 -21.167 27.834

 'Tomato_Plum:Fertilizer_3' 3.6667 12.123 0.30246 40 0.76387 -20.834 28.167

 'Tomato_Vine:Fertilizer_3' 3 12.123 0.24747 40 0.80581 -21.501 27.501

 'Tomato_Grape:Fertilizer_4' 13.333 12.123 1.0999 40 0.27796 -11.167 37.834

 'Tomato_Heirloom:Fertilizer_4' -19 12.123 -1.5673 40 0.12492 -43.501 5.5007

 'Tomato_Plum:Fertilizer_4' -2.6667 12.123 -0.21997 40 0.82701 -27.167 21.834

 'Tomato_Vine:Fertilizer_4' 8.6667 12.123 0.71492 40 0.47881 -15.834 33.167

Random effects covariance parameters (95% CIs):

Group: Soil (3 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 2.5028 0.02771 226.05

Group: Soil:Tomato (15 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 10.225 6.1497 17.001

Group: Error

 Name Estimate Lower Upper

 'Res Std' 10.499 8.5389 12.908

The p-values corresponding to the last 12 rows in the fixed-effects coefficients display
(0.82701 to 0.47881) indicate that interaction coefficients between the tomato and
fertilizer types are not significant. To test for the overall interaction between tomato and
fertilizer, use the anova method after refitting the model using 'effects' contrasts.

The confidence interval for the standard deviations of the random-effects terms
(σ2

S), where the intercept is grouped by soil is very large. This term does not appear
significant.

22 Functions — Alphabetical List

22-1462

Refit the model after removing the interaction term Tomato:Fertilizer and the
random-effects term (1 | Soil).

lme = LinearMixedModel.fit(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 60

 Fixed effects coefficients 8

 Random effects coefficients 15

 Covariance parameters 2

Formula:

 Yield ~ 1 + Tomato + Fertilizer + (1 | Soil:Tomato)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 511.06 532 -245.53 491.06

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 77.733 7.3293 10.606 52 1.3108e-14 63.026 92.441

 'Tomato_Grape' -9.1667 9.6045 -0.95441 52 0.34429 -28.439 10.106

 'Tomato_Heirloom' -12.583 9.6045 -1.3102 52 0.1959 -31.856 6.6895

 'Tomato_Plum' 28.833 9.6045 3.0021 52 0.0041138 9.5605 48.106

 'Tomato_Vine' -14.083 9.6045 -1.4663 52 0.14858 -33.356 5.1895

 'Fertilizer_2' 26.333 4.5004 5.8514 52 3.3024e-07 17.303 35.364

 'Fertilizer_3' 39 4.5004 8.6659 52 1.1459e-11 29.969 48.031

 'Fertilizer_4' 47.733 4.5004 10.607 52 1.308e-14 38.703 56.764

Random effects covariance parameters (95% CIs):

Group: Soil:Tomato (15 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 10.02 6.0812 16.509

Group: Error

 Name Estimate Lower Upper

 'Res Std' 12.325 10.024 15.153

 LinearMixedModel.fit

22-1463

You can compare the two models using the compare method with the simulated
likelihood ratio test since both a fixed-effect and a random-effect term will be tested.

Longitudinal Study with a Covariate

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs (A, B, C, D), and their weight loss is recorded over six
two-week time periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

LinearMixedModel.fit uses Program A as a reference and creates the
necessary dummy variables I[.]. Since the model already has an intercept,
LinearMixedModel.fit only creates dummy variables for program types B, C, D.
This is also known as the 'reference' method of coding dummy variables. This model
corresponds to

y IW Week I PB I PC I PD

Week I P

im i i i i i

i

= + + + [] + [] + []

+

b b b b b b

b

0 1 2 3 4 5

6 * BB Week I PC Week I PD

b b Week

i i i i i

m m im i

[]() + []() + []()
+ + +

b b

e

7 8

0 1

* *

mm ,

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20. βj are the fixed-effects coefficients, j = 0,
1, ...,8, and b1m and b1m are random effects. IW stands for initial weight and I[.] is a

22 Functions — Alphabetical List

22-1464

dummy variable representing a type of program. For example, I[PB]i is the dummy
variable representing program type B. The random effects and observation error have the
following prior distributions: b0m~N(0,σ2

0), b1m~N(0,σ2
1), and εim ~ N(0,σ2).

lme = LinearMixedModel.fit(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 9

 Random effects coefficients 40

 Covariance parameters 4

Formula:

 Linear Mixed Formula with 4 predictors.

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -22.981 13.257 24.49 -48.981

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat

 '(Intercept)' 0.66105 0.25892 2.5531

 'InitialWeight' 0.0031879 0.0013814 2.3078

 'Program_B' 0.36079 0.13139 2.746

 'Program_C' -0.033263 0.13117 -0.25358

 'Program_D' 0.11317 0.13132 0.86175

 'Week' 0.1732 0.067454 2.5677

 'Program_B:Week' 0.038771 0.095394 0.40644

 'Program_C:Week' 0.030543 0.095394 0.32018

 'Program_D:Week' 0.033114 0.095394 0.34713

 DF pValue Lower Upper

 111 0.012034 0.14798 1.1741

 111 0.022863 0.00045067 0.0059252

 111 0.0070394 0.10044 0.62113

 111 0.80029 -0.29319 0.22666

 111 0.39068 -0.14706 0.3734

 111 0.011567 0.039536 0.30686

 LinearMixedModel.fit

22-1465

 111 0.68521 -0.15026 0.2278

 111 0.74944 -0.15849 0.21957

 111 0.72915 -0.15592 0.22214

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type

 '(Intercept)' '(Intercept)' 'std'

 'Week' '(Intercept)' 'corr'

 'Week' 'Week' 'std'

 Estimate Lower Upper

 0.18407 0.12281 0.27587

 0.66841 0.21076 0.88573

 0.15033 0.11004 0.20537

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10261 0.087882 0.11981

The p-values 0.022863 and 0.011567 indicate significant effects of subject initial weights
and time in the amount of weight lost. The weight loss of subjects who are in Program B
is significantly different relative to the weight loss of subjects who are in Program A. The
lower and upper limits of the covariance parameters for the random effects do not include
0, thus they are significant. You can also test the significance of the random effects using
the compare method.

Definitions

Formula

In general, a formula for model specification is a string of the form 'y ~ terms'. For
the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed and random contain
the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables

22 Functions — Alphabetical List

22-1466

• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, or
cell arrays of strings.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|
gR)', the term fixed corresponds to a specification of the fixed-effects design matrix
X, random1 is a specification of the random-effects design matrix Z1 corresponding to
grouping variable g1, and similarly randomR is a specification of the random-effects
design matrix ZR corresponding to grouping variable gR. You can express the fixed and
random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)

X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1. Here are some examples for linear
mixed-effects model specification.

Examples:

Formula Description

'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2.
This is equivalent to 'y ~ 1 + X1 + X2'.

 LinearMixedModel.fit

22-1467

Formula Description

'y ~ -1 + X1 + X2' No intercept and fixed effects for X1
and X2. The implicit intercept term is
suppressed by including -1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random
effect for the intercept for each level of the
grouping variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with

possible correlation between them. This is
equivalent to 'y ~ 1 + X1 + (1 + X1|
g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 |

g1)'

Independent random effects terms for
intercept and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1

| g1:g2)'

Random intercept model with independent
main effects for g1 and g2, plus an
independent interaction effect.

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the
following prior distribution.

b N D~ , ,0
2s q()()

where D is a q-by-q symmetric and positive semidefinite matrix, parameterized by
a variance component vector θ, q is the number of variables in the random-effects
term, and σ2 is the observation error variance. Since the covariance matrix of the
random effects, D, is symmetric, it has q(q+1)/2 free parameters. Suppose L is the lower
triangular Cholesky factor of D(θ) such that

D L L
T

q q q() = () () ,

then the q*(q+1)/2-by-1 unconstrained parameter vector θ is formed from elements in the
lower triangular part of L.

22 Functions — Alphabetical List

22-1468

For example, if

L

L

L L

L L L

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11

21 22

31 32 33

0 0

0 ,

then

q =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

L

L

L

L

L

L

11

21

31

22

32

33

.

Log-Cholesky Parameterization

When the diagonal elements of L in Cholesky parameterization are constrained to be
positive, then the solution for L is unique. Log-Cholesky parameterization is the same as
Cholesky parameterization except that the logarithm of the diagonal elements of L are
used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing Lii ≥ 0,

q =

()

()

()

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

log

log

log

.

L

L

L

L

L

L

11

21

31

22

32

33

Alternatives

You can also construct a linear mixed-effects model using fitlme. If your data is in
matrix format, then use fitlmematrix.

 LinearMixedModel.fit

22-1469

See Also
LinearMixedModel | anova | compare | fitlme | fitlmematrix

22 Functions — Alphabetical List

22-1470

fit
Class: NaiveBayes

Create Naive Bayes classifier object by fitting training data

Syntax
nb = NaiveBayes.fit(training, class)

nb = NaiveBayes.fit(..., 'param1',val1, 'param2',val2, ...)

Note: fit will be removed in a future release. Use fitNaiveBayes instead.

Description
nb = NaiveBayes.fit(training, class) builds a NaiveBayes classifier object nb.
training is an N-by-D numeric matrix of training data. Rows of training correspond to
observations; columns correspond to features. class is a classing variable for training
taking K distinct levels. Each element of class defines which class the corresponding
row of training belongs to. training and class must have the same number of rows.

nb = NaiveBayes.fit(..., 'param1',val1, 'param2',val2, ...) specifies
one or more of the following name/value pairs:

• 'Distribution' – a string or a 1-by-D cell vector of strings, specifying which
distributions fit uses to model the data. If the value is a string, fit models all the
features using one type of distribution. fit can also model different features using
different types of distributions. If the value is a cell vector, its jth element specifies
the distribution fit uses for the jth feature. The available types of distributions are:

'normal' (default) Normal (Gaussian) distribution.
'kernel' Kernel smoothing density estimate.
'mvmn' Multivariate multinomial distribution for discrete data.

fit assumes each individual feature follows a multinomial
model within a class. The parameters for a feature include

 fit

22-1471

the probabilities of all possible values that the corresponding
feature can take.

'mn' Multinomial distribution for classifying the count-based data
such as the bag-of-tokens model. In the bag-of-tokens model,
the value of the jth feature is the number of occurrences of
the jth token in this observation, so it must be a nonnegative
integer. When 'mn' is used, fit considers each observation
as multiple trials of a multinomial distribution, and considers
each occurrence of a token as one trial. The number of
categories (bins) in this multinomial model is the number of
distinct tokens, i.e., the number of columns of training.

If you specify mn, then all features are components of a
multinomial distribution. Therefore, you cannot include 'mn'
as an element of a cell array of strings.

• 'Prior' – The prior probabilities for the classes, specified as one of the following:

'empirical'

(default)
fit estimates the prior probabilities from the relative
frequencies of the classes in training.

'uniform' The prior probabilities are equal for all classes.
vector A numeric vector of length K specifying the prior

probabilities in the class order of class.
structure A structure S containing class levels and their prior

probabilities. S must have two fields:

• S.prob: A numeric vector of prior probabilities.
• S.class: A vector of the same type as class, containing

unique class levels indicating the class for the
corresponding element of prob. S.class must contain all
the K levels in class. It can also contain classes that do
not appear in class. This can be useful if training is
a subset of a larger training set. fit ignores any classes
that appear in S.class but not in class.

If the prior probabilities don't sum to one, fit will normalize them.
• 'KSWidth' – The bandwidth of the kernel smoothing window. The default is to select

a default bandwidth automatically for each combination of feature and class, using a

22 Functions — Alphabetical List

22-1472

value that is optimal for a Gaussian distribution. You can specify the value as one of
the following:

scalar Width for all features in all classes.
row vector 1-by-D vector where the jth element is the bandwidth for the jth

feature in all classes.
column
vector

K-by-1 vector where the ith element specifies the bandwidth for all
features in the ith class. K represents the number of class levels.

matrix K-by-D matrix M where M(i,j) specifies the bandwidth for the jth
feature in the ith class.

structure A structure S containing class levels and their bandwidths. S must have
two fields:

• S.width – A numeric array of bandwidths specified as a row vector,
or a matrix with D columns.

• S.class – A vector of the same type as class, containing unique
class levels indicating the class for the corresponding row of width.

• 'KSSupport' – The regions where the density can be applied. It can be a string, a
two-element vector as shown below, or a 1-by-D cell array of these values:

'unbounded' (default) The density can extend over the whole real line.
'positive' The density is restricted to positive values.
[L,U] A two-element vector specifying the finite lower bound L

and upper bound U for the support of the density.

• 'KSType' – The type of kernel smoother to use. It can be a string or a 1-by-D cell
array of strings. Each string can be 'normal' (default), 'box', 'triangle', or
'epanechnikov'.

How To
• “Naive Bayes Classification” on page 15-31
• “Grouping Variables” on page 2-52

 NonLinearModel.fit

22-1473

NonLinearModel.fit
Class: NonLinearModel

Fit nonlinear regression model

Compatibility

NonLinearModel.fit will be removed in a future release. Use fitnlm instead.

Syntax

mdl = NonLinearModel.fit(tbl,modelfun,beta0)

mdl = NonLinearModel.fit(X,y,modelfun,beta0)

mdl = NonLinearModel.fit(...,modelfun,beta0,Name,Value)

Description

mdl = NonLinearModel.fit(tbl,modelfun,beta0) fits the model specified by
modelfun to variables in the table or dataset array tbl, and returns the nonlinear
model mdl. NonLinearModel.fit estimates model coefficients using an iterative
procedure starting from the initial values in beta0.

mdl = NonLinearModel.fit(X,y,modelfun,beta0) fits a nonlinear regression
model using the column vector y as a response variable and the columns of the matrix X
as predictor variables.

mdl = NonLinearModel.fit(...,modelfun,beta0,Name,Value) fits a nonlinear
regression model with additional options specified by one or more Name,Value pair
arguments.

Input Arguments

tbl — Input data
table | dataset array

22 Functions — Alphabetical List

22-1474

Input data, specified as a table or dataset array. If you do not specify the predictor and
response variables, the last variable is the response variable and the others are the
predictor variables by default.

Predictor variables and response variable must be numeric.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

modelfun — Functional form of the model
function handle | string of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)'

Functional form of the model, specified as either of the following.

• Function handle @modelfun or @(b,x)modelfun, where

• b is a coefficient vector with the same number of elements as beta0.
• x is a matrix with the same number of columns as X or the number of predictor

variable columns of tbl.

 NonLinearModel.fit

22-1475

modelfun(b,x) returns a column vector that contains the same number of rows as
x. Each row of the vector is the result of evaluating modelfun on the corresponding
row of x. In other words, modelfun is a vectorized function, one that operates on all
data rows and returns all evaluations in one function call. modelfun should return
real numbers to obtain meaningful coefficients.

• String of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)', where f represents
a scalar function of the scalar coefficient variables b1,...,bj and the scalar data
variables x1,...,xk.

beta0 — Coefficients
numeric vector

Coefficients for the nonlinear model, specified as a numeric vector. NonLinearModel
starts its search for optimal coefficients from beta0.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoefficientNames' — Names of the model coefficients
{'b1','b2',...,'bk'} (default) | cell array of strings

Names of the model coefficients, specified as a cell array of strings.
Data Types: char

'ErrorModel' — Form of the error variance model
'constant' (default) | 'proportional' | 'combined'

Form of the error variance model, specified as one of the following. Each model defines
the error using a standard mean-zero and unit-variance variable e in combination with
independent components: the function value f, and one or two parameters a and b

'constant' (default) y f ae= +

22 Functions — Alphabetical List

22-1476

'proportional' y f bfe= +

'combined'
y f a b f e= + +()

The only allowed error model when using Weights is 'constant'.

Note: options.RobustWgtFun must have value [] when using an error model other
than 'constant'.

Example: 'ErrorModel','proportional'

'ErrorParameters' — Initial estimates of the error model parameters
numeric array

Initial estimates of the error model parameters for the chosen ErrorModel, specified as a
numeric array.

Error Model Parameters Default Values

'constant' a 1

'proportional' b 1

'combined' a, b [1,1]

You can only use the 'constant' error model when using Weights.

Note: options.RobustWgtFun must have value [] when using an error model other
than 'constant'.

For example, if 'ErrorModel' has the value 'combined', you can specify the starting
value 1 for a and the starting value 2 for b as follows.
Example: 'ErrorParameters',[1,2]

Data Types: char

'Exclude' — Observations to exclude
logical or numeric index vector

 NonLinearModel.fit

22-1477

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Options' — Options for controlling the iterative fitting procedure
[] (default) | structure

Options for controlling the iterative fitting procedure, specified as a structure created by
statset. The relevant fields are the nonempty fields in the structure returned by the
call statset('nlinfit').

Option Meaning Default

DerivStep Relative difference used in finite difference
derivative calculations. A positive scalar, or a
vector of positive scalars the same size as the
vector of parameters estimated by the Statistics
and Machine Learning Toolbox function using the
options structure.

eps^(1/3)

Display Amount of information displayed by the fitting
algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.
• 'iter' — Displays iterative output to the

Command Window.

'off'

FunValCheck String indicating to check for invalid values, such
as NaN or Inf, from the model function.

'on'

MaxIter Maximum number of iterations allowed. Positive
integer.

200

RobustWgtFun Weight function for robust fitting. Can also be a
function handle that accepts a normalized residual

[]

22 Functions — Alphabetical List

22-1478

Option Meaning Default

as input and returns the robust weights as output.
If you use a function handle, give a Tune constant.
See “Robust Options” on page 22-1820

Tune Tuning constant used in robust fitting to
normalize the residuals before applying the weight
function. A positive scalar. Required if the weight
function is specified as a function handle.

See “Robust Options”
on page 22-1820
for the default,
which depends on
RobustWgtFun.

TolFun Termination tolerance for the objective function
value. Positive scalar.

1e-8

TolX Termination tolerance for the parameters. Positive
scalar.

1e-8

Data Types: struct

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

 NonLinearModel.fit

22-1479

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Weights' — Observation weights
ones(n,1) (default) | vector of nonnegative scalar values | function handle

Observation weights, specified as a vector of nonnegative scalar values or function
handle.

• If you specify a vector, then it must have n elements, where n is the number of rows in
tbl or y.

• If you specify a function handle, then the function must accept a vector of predicted
response values as input, and return a vector of real positive weights as output.

22 Functions — Alphabetical List

22-1480

Given weights, W, NonLinearModel estimates the error variance at observation i by
MSE*(1/W(i)), where MSE is the mean squared error.

Data Types: single | double | function_handle

Output Arguments

mdl — Nonlinear model
NonLinearModel object

Nonlinear model representing a least-squares fit of the response to the data, returned as
a NonLinearModel object.

If the Options structure contains a nonempty RobustWgtFun field, the model is not a
least-squares fit, but uses the RobustWgtFun robust fitting function.

For properties and methods of the nonlinear model object, mdl, see the NonLinearModel
class page.

Definitions

Robust Options

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'

(default)
w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'talwar' w = 1 * (abs(r)<1) 2.795
'welsch' w = exp(-(r.^2)) 2.985
[] No robust fitting —

 NonLinearModel.fit

22-1481

Examples

Nonlinear Model from a Table

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig

tbl = table(Horsepower,Weight,MPG);

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

mdl = NonLinearModel.fit(tbl,modelfun,beta0)

mdl =

Nonlinear regression model:

 MPG ~ b1 + b2*Horsepower^b3 + b4*Weight^b5

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ________ ________

 b1 -49.383 119.97 -0.41164 0.68083

 b2 376.43 567.05 0.66384 0.50719

 b3 -0.78193 0.47168 -1.6578 0.098177

 b4 422.37 776.02 0.54428 0.58656

 b5 -0.24127 0.48325 -0.49926 0.61788

Number of observations: 392, Error degrees of freedom: 387

Root Mean Squared Error: 3.96

R-Squared: 0.745, Adjusted R-Squared 0.743

F-statistic vs. constant model: 283, p-value = 1.79e-113

Nonlinear Model from Matrix Data

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig

X = [Horsepower,Weight];

22 Functions — Alphabetical List

22-1482

y = MPG;

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

mdl = NonLinearModel.fit(X,y,modelfun,beta0)

mdl =

Nonlinear regression model:

 y ~ b1 + b2*x1^b3 + b4*x2^b5

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 -49.383 119.97 -0.41164 0.68083

 b2 376.43 567.05 0.66384 0.50719

 b3 -0.78193 0.47168 -1.6578 0.098177

 b4 422.37 776.02 0.54428 0.58656

 b5 -0.24127 0.48325 -0.49926 0.61788

Number of observations: 392, Error degrees of freedom: 387

Root Mean Squared Error: 3.96

R-Squared: 0.745, Adjusted R-Squared 0.743

F-statistic vs. constant model: 283, p-value = 1.79e-113

Adjust Fitting Options in the Nonlinear Model

Create a nonlinear model for auto mileage based on the carbig data. Strive for more
accuracy by lowering the TolFun option, and observe the iterations by setting the
Display option.

Load the data and create a nonlinear model.

load carbig

X = [Horsepower,Weight];

y = MPG;

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

Create options to lower TolFun and to report iterative display, and create a model using
the options.

opts = statset('Display','iter','TolFun',1e-10);

 NonLinearModel.fit

22-1483

mdl = NonLinearModel.fit(X,y,modelfun,beta0,'Options',opts);

 Norm of Norm of

 Iteration SSE Gradient Step

 0 1.82248e+06

 1 678600 788810 1691.07

 2 616716 6.12739e+06 45.4738

%%% Many iterations deleted %%%

 122 6068.48 1.56393 0.629325

 123 6068.48 1.13809 0.432543

 124 6068.48 0.295962 0.297511

Iterations terminated: relative change in SSE less than OPTIONS.TolFun

Specify Nonlinear Regression Using Model String Syntax

Specify a nonlinear regression model for estimation using a function handle or model
string syntax.

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Use a function handle to specify the Hougen-Watson model for the rate data.

mdl = NonLinearModel.fit(X,y,@hougen,beta0)

mdl =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.2526 0.86701 1.4447 0.18654

 b2 0.062776 0.043561 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075157 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.193

22 Functions — Alphabetical List

22-1484

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Alternatively, you can use a string expression to specify the Hougen-Watson model for
the rate data.

myfun = 'y~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';

mdl2 = NonLinearModel.fit(X,y,myfun,beta0)

mdl2 =

Nonlinear regression model:

 y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.2526 0.86701 1.4447 0.18654

 b2 0.062776 0.043561 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075157 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.193

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Estimate Nonlinear Regression Using Robust Fitting Options

Generate sample data from the nonlinear regression model

y b b b x= + -{ } +1 2 3exp ,e

where b1, b2, and b3 are coefficients, and the error term is normally distributed with
mean 0 and standard deviation 0.5.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility

b = [1;3;2];

x = exprnd(2,100,1);

y = modelfun(b,x) + normrnd(0,0.5,100,1);

 NonLinearModel.fit

22-1485

Set robust fitting options.

opts = statset('nlinfit');

opts.RobustWgtFun = 'bisquare';

Fit the nonlinear model using the robust fitting options. Here, use a string expression to
specify the model.

b0 = [2;2;2];

modelstr = 'y ~ b1 + b2*exp(-b3*x)';

mdl = NonLinearModel.fit(x,y,modelstr,b0,'Options',opts)

mdl =

Nonlinear regression model (robust fit):

 y ~ b1 + b2*exp(- b3*x)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.0218 0.07202 14.188 2.1344e-25

 b2 3.6619 0.25429 14.401 7.974e-26

 b3 2.9732 0.38496 7.7232 1.0346e-11

Number of observations: 100, Error degrees of freedom: 97

Root Mean Squared Error: 0.501

R-Squared: 0.807, Adjusted R-Squared 0.803

F-statistic vs. constant model: 203, p-value = 2.34e-35

Fit Nonlinear Regression Model Using Weights Function Handle

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Specify a function handle for observation weights. The function accepts the model fitted
values as input, and returns a vector of weights.

 a = 1; b = 1;

 weights = @(yhat) 1./((a + b*abs(yhat)).^2);

22 Functions — Alphabetical List

22-1486

Fit the Hougen-Watson model to the rate data using the specified observation weights
function.

mdl = NonLinearModel.fit(X,y,@hougen,beta0,'Weights',weights)

mdl =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 0.83085 0.58224 1.427 0.19142

 b2 0.04095 0.029663 1.3805 0.20477

 b3 0.025063 0.019673 1.274 0.23842

 b4 0.080053 0.057812 1.3847 0.20353

 b5 1.8261 1.281 1.4256 0.19183

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.037

R-Squared: 0.998, Adjusted R-Squared 0.998

F-statistic vs. zero model: 1.14e+03, p-value = 3.49e-11

Nonlinear Regression Model Using Nonconstant Error Model

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error variance model.

mdl = NonLinearModel.fit(X,y,@hougen,beta0,'ErrorModel','combined')

mdl =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 NonLinearModel.fit

22-1487

 Estimate SE tStat pValue

 b1 1.2526 0.86702 1.4447 0.18654

 b2 0.062776 0.043561 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075158 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 1.27

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

• “Examine Quality and Adjust the Fitted Nonlinear Model” on page 11-7
• “Predict or Simulate Responses Using a Nonlinear Model” on page 11-10
• “Nonlinear Regression Workflow” on page 11-14

Algorithms

NonLinearModel.fit uses the same fitting algorithm as nlinfit.

Alternatives

You can also construct a nonlinear model using fitnlm.

References

[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-
Interscience, 2003.

[2] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple
Regression Computing Environment.” Computer Science and Statistics:
Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American
Statistical Association, 1989.

[3] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted
Least-Squares.” Communications in Statistics: Theory and Methods, A6, 1977, pp.
813–827.

22 Functions — Alphabetical List

22-1488

See Also
nlinfit | NonLinearModel

More About
• “Nonlinear Regression” on page 11-2

 RegressionTree.fit

22-1489

RegressionTree.fit

Class: RegressionTree

Binary decision tree for regression (to be removed)

Compatibility

RegressionTree.fit will be removed in a future release. Use fitrtree instead.

Syntax

tree = RegressionTree.fit(x,y)

tree = RegressionTree.fit(x,y,Name,Value)

Description

tree = RegressionTree.fit(x,y) returns a regression tree based on the input
variables (also known as predictors, features, or attributes) x and output (response) y.
tree is a binary tree where each branching node is split based on the values of a column
of x.

tree = RegressionTree.fit(x,y,Name,Value) fits a tree with additional options
specified by one or more Name,Value pair arguments. You can specify several name-
value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' options results in a tree of class RegressionPartitionedModel. You
cannot use a partitioned tree for prediction, so this kind of tree does not have a predict
method.

Otherwise, tree is of class RegressionTree, and you can use the predict method to
make predictions.

22 Functions — Alphabetical List

22-1490

Input Arguments

x — Predictor values
matrix of scalar values

Predictor values, specified as a matrix of scalar values. Each column of x represents one
variable, and each row represents one observation.

RegressionTree.fit considers NaN values in x as missing values.
RegressionTree.fit does not use observations with all missing values for x the fit.
RegressionTree.fit uses observations with some missing values for x to find splits on
variables for which these observations have valid values.
Data Types: single | double

y — Response values
vector of scalar values

Response values, specified as a vector of scalar values with the same number of rows as
x. Each entry in y is the response to the data in the corresponding row of x.

RegressionTree.fit considers NaN values in y to be missing values.
RegressionTree.fit does not use observations with missing values for y in the fit.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CategoricalPredictors' — Categorical predictors list
numeric or logical vector | cell array of strings | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following.

• A numeric vector with indices from 1 to p, where p is the number of columns of x.

 RegressionTree.fit

22-1491

• A logical vector of length p, where a true entry means that the corresponding column
of x is a categorical variable.

• A cell array of strings, where each element in the array is the name of a predictor
variable. The names must match entries in the PredictorNames property.

• A character matrix, where each row of the matrix is a name of a predictor variable.
Pad the names with extra blanks so each row of the character matrix has the same
length.

• 'all', meaning all predictors are categorical.

Example:
Data Types: single | double | logical | char | struct | cell

'CrossVal' — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal'
and either 'on' or 'off'.

If 'on', RegressionTree.fit grows a cross-validated decision tree with 10 folds.
You can override this cross-validation setting using one of the 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' name-value pair arguments. Note that you can only
use one of these four options ('KFold', 'Holdout', 'Leaveout', or 'CVPartition')
at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the crossval method.

Example: 'CrossVal','on'

'CVPartition' — Partition for cross-validation tree
cvpartition object

Partition for cross-validated tree, specified as the comma-separated pair consisting of
'CVPartition' and an object of the cvpartition class created using cvpartition.

Note that if you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout',
or 'Leaveout' name-value pair arguments.

Example:

'Holdout' — Fraction of data for holdout validation
scalar value in the range [0,1]

22 Functions — Alphabetical List

22-1492

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the rest of the data for training.

Note that if you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold',
or 'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

Note that if you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout',
or 'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout' and either 'on' or 'off. Use leave-one-out cross validation by setting to
'on'.

Note that if you use 'Leaveout', you cannot use any of the 'CVPartition',
'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'MergeLeaves' — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves'
and either 'on' or 'off'. When 'on', RegressionTree.fit merges leaves that
originate from the same parent node, and that give a sum of risk values greater or equal
to the risk associated with the parent node. When 'off', RegressionTree.fit does
not merge leaves.

 RegressionTree.fit

22-1493

Example: 'MergeLeaves','off'

'MinLeaf' — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated
pair consisting of 'MinLeaf' and a positive integer value. Each leaf has at
least MinLeaf observations per tree leaf. If you supply both MinParent and
MinLeaf, RegressionTree.fit uses the setting that gives larger leaves:
MinParent=max(MinParent,2*MinLeaf).

Example: 'MinLeaf',3

Data Types: single | double

'MinParent' — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated
pair consisting of 'MinParent' and a positive integer value. Each branch node
in the tree has at least MinParent observations. If you supply both MinParent
and MinLeaf, RegressionTree.fit uses the setting that gives larger leaves:
MinParent=max(MinParent,2*MinLeaf).

Example: 'MinParent',8

Data Types: single | double

'NVarToSample' — Number of predictors for split
'all' (default) | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated
pair consisting of 'NVarToSample' and a positive integer value. You can also specify
'all'to use all available predictors.

Example: 'NVarToSample',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.

22 Functions — Alphabetical List

22-1494

Example:
Data Types: cell

'Prune' — Pruning flag
'on' (default) | 'off'

Pruning flag, specified as the comma-separated pair consisting of 'Prune' and either
'on' or 'off'. When 'on', RegressionTree.fit computes the full tree and the
optimal sequence of pruned subtrees. When 'off', RegressionTree.fit computes the
full tree without pruning.
Example: 'Prune','off'

'PruneCriterion' — Pruning criterion
'mse' (default)

Pruning criterion, specified as the comma-separated pair consisting of
'PruneCriterion' and 'mse'.

Example: 'PruneCriterion','mse'

'QEToler' — Quadratic error tolerance
1e-6 (default) | positive scalar value

Quadratic error tolerance per node, specified as the comma-separated pair consisting of
'QEToler' and a positive scalar value. Splitting nodes stops when quadratic error per
node drops below QEToler*QED, where QED is the quadratic error for the entire data
computed before the decision tree is grown.
Example: 'QEToler',1e4

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable in y.

Example: 'ResponseName','Response'

Data Types: char

'ResponseTransform' — Response transform function
'none' (default) | function handle

 RegressionTree.fit

22-1495

Response transform function for transforming the raw response values, specified as
the comma-separated pair consisting of 'ResponseTransform' and either a function
handle or 'none'. The function handle should accept a matrix of response values
and return a matrix of the same size. The default string 'none' means @(x)x, or no
transformation.

Add or change a ResponseTransform function using dot notation:

tree.ResponseTransform = @function

Example:
Data Types: function_handle

'SplitCriterion' — Split criterion
'MSE' (default)

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion'
and 'MSE', meaning mean squared error.

Example: 'SplitCriterion','MSE'

'Surrogate' — Surrogate decision splits flag
'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of
'Surrogate' and 'on', 'off', 'all', or a positive integer value.

• When 'on', RegressionTree.fit finds at most 10 surrogate splits at each branch
node.

• When set to a positive integer value, RegressionTree.fit finds at most the
specified number of surrogate splits at each branch node.

• When set to 'all', RegressionTree.fit finds all surrogate splits at each branch
node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also enables you to compute measures of predictive association between
predictors.
Example: 'Surrogate','on'

Data Types: single | double

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

22 Functions — Alphabetical List

22-1496

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in x.

Example:
Data Types: single | double

Output Arguments

tree — Regression tree
regression tree object

Regression tree, returned as a regression tree object. Note that using the 'Crossval',
'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class
RegressionPartitionedModel. You cannot use a partitioned tree for prediction, so
this kind of tree does not have a predict method.

Otherwise, tree is of class RegressionTree, and you can use the predict method to
make predictions.

Examples

Predict Values Using a Regression Tree

Load the sample data.

load carsmall

Construct a regression tree to predict the mileage of cars based on their weights and
numbers of cylinders.

tree = RegressionTree.fit([Weight, Cylinders],MPG,...

 'MinParent',20,...

 'PredictorNames',{'W','C'})

tree =

 RegressionTree

 PredictorNames: {'W' 'C'}

 ResponseName: 'Y'

 ResponseTransform: 'none'

 RegressionTree.fit

22-1497

 CategoricalPredictors: []

 NumObservations: 94

Predict the mileage of a car that weighs 2200 lbs and has four cylinders.

predict(tree,[2200,4])

ans =

 29.6111

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
predict | view | fitrtree

How To
• “Splitting Categorical Predictors” on page 16-65

22 Functions — Alphabetical List

22-1498

fitcdiscr
Fit discriminant analysis classifier

Syntax

obj = fitcdiscr(x,y)

obj = fitcdiscr(x,y,Name,Value)

Description

obj = fitcdiscr(x,y) returns a discriminant analysis classifier based on the input
variables (also known as predictors, features, or attributes) x and output (response) y.

obj = fitcdiscr(x,y,Name,Value) fits a classifier with additional options specified
by one or more name-value pair arguments. For example, you can specify the cost of
misclassification, prior probabilities for each class, or observation weights.

Examples

Construct a Discriminant Analysis Classifier

Construct a discriminant analysis classifier for the Fisher iris data.

load fisheriris

obj = fitcdiscr(meas,species)

obj =

 ClassificationDiscriminant

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 DiscrimType: 'linear'

 Mu: [3x4 double]

 fitcdiscr

22-1499

 Coeffs: [3x3 struct]

 Properties, Methods

Input Arguments

x — Predictor values
matrix of numeric values

Predictor values, specified as a matrix of numeric values. Each column of x represents
one variable, and each row represents one observation.

fitcdiscr considers NaN values in x as missing values. fitcdiscr does not use
observations with missing values for x in the fit.
Data Types: single | double

y — Classification values
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Classification values, specified as a categorical or character array, logical or numeric
vector, or cell array of strings. Each row of y represents the classification of the
corresponding row of x.

fitcdiscr considers NaN values in y to be missing values. fitcdiscr does not use
observations with missing values for y in the fit.
Data Types: single | double | logical | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'DiscrimType','quadratic','SaveMemory','on' specifies a quadratic
discriminant classifier and does not store the covariance matrix in the output object.

22 Functions — Alphabetical List

22-1500

'ClassNames' — Class names
array

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array. Use the data type that exists in y. The default is the class names that exist in y.
Use ClassNames to order the classes or to select a subset of classes for training.

Data Types: single | double | logical | char

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of
'Cost' and one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its
true class is i (i.e., the rows correspond to the true class and the columns correspond
to the predicted class). To specify the class order for the corresponding rows and
columns of Cost, additionally specify the ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a
variable of the same type as y, and S.ClassificationCosts containing the cost
matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'CrossVal' — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair
consisting of 'CrossVal' and either 'on' or 'off'.

If you specify 'on', then fitcdiscr creates a cross-validated classifier with 10 folds.

You can override this cross-validation setting using one of the 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' name-value pair arguments.

You can only use one of these four options at a time to create a cross-validated
model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Alternatively, cross validate obj later using the crossval method.

 fitcdiscr

22-1501

Example: 'CrossVal','on'

'CVPartition' — Cross-validated model partition
cvpartition object

Cross-validated model partition, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition. You can only use one option
at a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

'Delta' — Linear coefficient threshold
0 (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of
'Delta' and a nonnegative scalar value. If a coefficient of obj has magnitude smaller
than Delta, obj sets this coefficient to 0, and you can eliminate the corresponding
predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Data Types: single | double

'DiscrimType' — Discriminant type
'linear' (default) | 'quadratic' | 'diagLinear' | 'diagQuadratic' |
'pseudoLinear' | 'pseudoQuadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType'
and one of the following:

• 'linear'

• 'quadratic'

• 'diagLinear'

• 'diagQuadratic'

• 'pseudoLinear'

• 'pseudoQuadratic'

Example: 'DiscrimType','quadratic'

'FillCoeffs' — Coeffs property flag
'on' | 'off'

22 Functions — Alphabetical List

22-1502

Coeffs property flag, specified as the comma-separated pair consisting of
'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coeffs
property in the classifier object. This can be computationally intensive, especially when
cross validating. The default is 'on', unless you specify a cross validation name-value
pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

'Gamma' — Regularization parameter
scalar value in the range [0,1]

Parameter for regularizing the correlation matrix of predictors, specified as the comma-
separated pair consisting of 'Gamma' and a scalar value in the range [0,1].

• Linear discriminant — Scalar value in the range [0,1].

• If you pass a value strictly between 0 and 1, fitcdiscr sets the discriminant type
to 'Linear'.

• If you pass 0 for Gamma and 'Linear' for DiscrimType, and if the correlation
matrix is singular, fitcdiscr sets Gamma to the minimal value required for
inverting the covariance matrix.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to 'DiagLinear'.
• Quadratic discriminant — Either 0 or 1.

• If you pass 0 for Gamma and 'Quadratic' for DiscrimType, and if one of the
classes has a singular covariance matrix, fitcdiscr errors.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to
'DiagQuadratic'.

• If you set Gamma to a value between 0 and 1 for a quadratic discriminant,
fitcdiscr errors.

Example: 'Gamma',1

Data Types: single | double

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify
'Holdout',p, then the software:

 fitcdiscr

22-1503

1 Randomly reserves p*100% of the data as validation data, and trains the model
using the rest of the data

2 Stores the compact, trained model in CVMdl.Trained

If you specify Holdout, then you cannot specify any of CVPartition, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated classifier, specified as the comma-separated
pair consisting of 'KFold' and a positive integer value.

You can only use one of these four options at a time to create a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off'. If you specify 'on', then the software
implements leave-one-out cross validation.

If you use 'Leaveout', you cannot use these 'CVPartition', 'Holdout', or 'KFold'
name-value pair arguments.
Example: 'Leaveout','on'

Data Types: char

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.
Data Types: cell

22 Functions — Alphabetical List

22-1504

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• A string:

• 'empirical' determines class probabilities from class frequencies in y. If you
pass observation weights, they are used to compute the class probabilities.

• 'uniform' sets all class probabilities equal.
• A vector (one scalar value for each class). To specify the class order for the

corresponding elements of Prior, additionally specify the ClassNames name-value
pair argument.

• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as y
• S.ClassProbs containing a vector of corresponding probabilities

If you set values for both Weights and Prior, the weights are renormalized to add up to
the value of the prior probability in the respective class.
Example: 'Prior','uniform'

Data Types: single | double | struct

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char

'SaveMemory' — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of
'SaveMemory' and either 'on' or 'off'. If you specify 'on', then fitcdiscr does
not store the full covariance matrix, but instead stores enough information to compute
the matrix. The predict method computes the full covariance matrix for prediction, and

 fitcdiscr

22-1505

does not store the matrix. If you specify 'off', then fitcdiscr computes and stores the
full covariance matrix in obj.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory','on'

'ScoreTransform' — Score transform function
'none' (default) | valid score transform string | function handle

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and one of the following.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest score

to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest score

to 1, and scores for all other classes to -1.

Alternatively, you can use your own function handle for transforming scores. Your
function should accept a matrix (the original scores) and return a matrix of the same size
(the transformed scores).
Example: 'ScoreTransform','logit'

Data Types: function_handle

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

22 Functions — Alphabetical List

22-1506

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in x.
fitcdiscr normalizes the weights to sum to 1.

Data Types: single | double

Output Arguments

obj — Discriminant analysis classifier
classifier object

Discriminant analysis classifier, returned as a classifier object.

Note that using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' options results in a tree of class ClassificationPartitionedModel.
You cannot use a partitioned tree for prediction, so this kind of tree does not have a
predict method.

Otherwise, obj is of class ClassificationDiscriminant, and you can use the
predict method to predict the response of new data.

Alternative Functionality

Functions

The classify function also performs discriminant analysis. classify is usually more
awkward to use.

• classify requires you to fit the classifier every time you make a new prediction.
• classify does not perform cross validation.
• classify requires you to fit the classifier when changing prior probabilities.

More About

Discriminant Classification

The model for discriminant analysis is:

 fitcdiscr

22-1507

• Each class (Y) generates data (X) using a multivariate normal distribution. That is,
the model assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for
each class, only the means vary.

• For quadratic discriminant analysis, both means and covariances of each class
vary.

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

• ŷ is the predicted classification.

• K is the number of classes.
• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

For details, see “How the predict Method Classifies” on page 15-6.
• “Discriminant Analysis” on page 15-3

See Also
ClassificationDiscriminant | ClassificationPartitionedModel | classify
| crossval | predict

22 Functions — Alphabetical List

22-1508

fitcecoc
Fit multiclass models for support vector machines or other classifiers

Syntax

Mdl = fitcecoc(X,Y)

Mdl = fitcecoc(X,Y,Name,Value)

Description

Mdl = fitcecoc(X,Y) returns a full, trained error-correcting output codes (ECOC)
multiclass model using the predictors X and the class labels Y. By default, fitcecoc
uses K(K – 1)/2 binary support vector machine (SVM) models using the one-versus-
one coding design, where K is the number of unique class labels (levels). Mdl is a
ClassificationECOC model.

Mdl = fitcecoc(X,Y,Name,Value) returns an ECOC model with additional options
specified by one or more Name,Value pair arguments.

For example, specify different binary learners, a different coding design, or to cross
validate. It is good practice to cross validate using the Kfold Name,Value pair
argument. The cross-validation results determine how well the ECOC classifier
generalizes.

Examples

Train a Multiclass Model Using SVM Learners

Train an error-correcting output codes (ECOC) multiclass model using support vector
machine (SVM) binary learners.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

 fitcecoc

22-1509

Train an ECOC multiclass model using the default options.

Mdl = fitcecoc(X,Y)

Mdl =

 ClassificationECOC

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 BinaryLearners: {3x1 cell}

 CodingName: 'onevsone'

Mdl is a ClassificationECOC model. By default, fitcecoc uses SVM binary learners,
and uses a one-versus-one coding design. You can access Mdl properties using dot
notation.

Display the coding design matrix.

Mdl.ClassNames

CodingMat = Mdl.CodingMatrix

ans =

 'setosa'

 'versicolor'

 'virginica'

CodingMat =

 1 1 0

 -1 0 1

 0 -1 -1

A one-versus-one coding design on three classes yields three binary learners. Columns
of CodingMat correspond to learners and rows correspond to classes. The class order
corresponds to the order in Mdl.ClassNames. For example, CodingMat(:,1) is [1;
-1; 0], and indicates that the software trains the first SVM binary learner using all

22 Functions — Alphabetical List

22-1510

observations classified as 'setosa' and 'versicolor'. Since 'setosa' corresponds
to 1, it is the positive class, and since 'versicolor' corresponds to -1, it is the negative
class.

You can access each binary learner using cell indexing and dot notation.

Mdl.BinaryLearners{1} % The first binary learner

Mdl.BinaryLearners{1}.SupportVectors % Support vector indices

ans =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: [-1 1]

 ScoreTransform: 'none'

 Beta: [4x1 double]

 Bias: 1.4505

 KernelParameters: [1x1 struct]

ans =

 []

Compute the in-sample classification error.

isLoss = resubLoss(Mdl)

isLoss =

 0.0067

The classification error is small, but the classifier might have been overfit. You can cross
validate the classifier using crossval.

Cross Validate an ECOC Classifier

Train a one-versus-one ECOC classifier using binary SVM learners.

Load Fisher's iris data set.

 fitcecoc

22-1511

load fisheriris

X = meas;

Y = species;

rng(1); % For reproducibility

Create an SVM template. It is good practice to standardize the predictors.

t = templateSVM('Standardize',1)

t =

Fit template for classification SVM.

 Alpha: [0x1 double]

 BoxConstraint: []

 CacheSize: []

 CachingMethod: ''

 DeltaGradientTolerance: []

 GapTolerance: []

 KKTTolerance: []

 IterationLimit: []

 KernelFunction: ''

 KernelScale: []

 KernelOffset: []

 KernelPolynomialOrder: []

 NumPrint: []

 Nu: []

 OutlierFraction: []

 ShrinkagePeriod: []

 Solver: ''

 StandardizeData: 1

 SaveSupportVectors: []

 VerbosityLevel: []

 Method: 'SVM'

 Type: 'classification'

t is an SVM template. All of its properties are empty, except for StandardizeData,
Method, and Type. When the software trains the ECOC classifier, it sets the applicable
properties to their default values.

Train the ECOC classifier. It is good practice to specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...

22 Functions — Alphabetical List

22-1512

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot
notation.

Cross validate Mdl using 10-fold cross validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalization error.

oosLoss = kfoldLoss(CVMdl)

oosLoss =

 0.0400

The out-of-sample classification error is 4%, which indicates that the ECOC classifier
generalizes fairly well.

Estimate Posterior Probabilities Using ECOC Classifiers

Load Fisher's iris data set. Train the classifier using the petal dimensions as predictors.

load fisheriris

X = meas(:,3:4);

Y = species;

rng(1); % For reproducibility

Create an SVM template, and specify the Gaussian kernel. It is good practice to
standardize the predictors.

t = templateSVM('Standardize',1,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the
ECOC classifier, it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to
class posterior probabilities (which are returned by predict or resubPredict) using
the 'FitPosterior' name-value pair argument. Display diagnostic messages during
the training using the 'Verbose' name-value pair argument. It is good practice to
specify the class order.

 fitcecoc

22-1513

Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',1,...

 'ClassNames',{'setosa','versicolor','virginica'},...

 'Verbose',2);

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 2

Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).

Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 3

Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).

Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 3

Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary
learner, but you can adjust options for each binary learner by passing in a cell vector of
templates.

Predict the in-sample labels and class posterior probabilities. Display diagnostic
messages during the computation of labels and class posterior probabilities using the
'Verbose' name-value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);

Mdl.BinaryLoss

Predictions from all learners have been computed.

Loss for all observations has been computed.

Computing posterior probabilities...

ans =

quadratic

The software assigns an observation to the class that yields the smallest average binary
loss. Since all binary learners are computing posterior probabilities, the binary loss
function is quadratic.

Display a random set of results.

22 Functions — Alphabetical List

22-1514

idx = randsample(size(X,1),10,1);

Mdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),...

 'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 TrueLabel PredLabel Posterior

 ____________ ____________ ______________________________________

 'virginica' 'virginica' 0.0039321 0.0039869 0.99208

 'virginica' 'virginica' 0.017067 0.018263 0.96467

 'virginica' 'virginica' 0.014948 0.015856 0.9692

 'versicolor' 'versicolor' 2.2197e-14 0.87317 0.12683

 'setosa' 'setosa' 0.999 0.00025091 0.00074639

 'versicolor' 'virginica' 2.2195e-14 0.059429 0.94057

 'versicolor' 'versicolor' 2.2194e-14 0.97001 0.029986

 'setosa' 'setosa' 0.999 0.0002499 0.00074741

 'versicolor' 'versicolor' 0.0085646 0.98259 0.008849

 'setosa' 'setosa' 0.999 0.00025013 0.00074718

The columns of Posterior correspond to the class order of Mdl.ClassNames.

Define a grid of values in the observed predictor space. Predict the posterior probabilities
for each instance in the grid.

xMax = max(X);

xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));

x2Pts = linspace(xMin(2),xMax(2));

[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);

[~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

 fitcecoc

22-1515

For each coordinate on the grid, plot the maximum class posterior probability among all
classes.

figure;

contourf(x1Grid,x2Grid,...

 reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));

h = colorbar;

h.YLabel.String = 'Maximum posterior';

h.YLabel.FontSize = 15;

hold on

gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);

gh(2).LineWidth = 2;

gh(3).LineWidth = 2;

title 'Iris Petal Measurements and Maximum Posterior';

xlabel 'Petal length (cm)';

ylabel 'Petal width (cm)';

axis tight

legend(gh,'Location','NorthWest')

hold off

22 Functions — Alphabetical List

22-1516

Train ECOC Classifiers Using Ensembles and Parallel Computing

Train a one-versus-all ECOC classifier using a GentleBoost ensemble of decision trees
with surrogate splits. Estimate the classification error using 10-fold cross validation.

Load and inspect the arrhythmia data set.

load arrhythmia

[n,p] = size(X)

isLabels = unique(Y);

nLabels = numel(isLabels)

tabulate(categorical(Y))

n =

 fitcecoc

22-1517

 452

p =

 279

nLabels =

 13

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 279 predictors, and a relatively small sample size of 452. There are 16 distinct
labels, but only 13 are represented in the response (Y), and each label describes various
degrees of arrhythmia. 54.20% of the observations are in class 1.

Create an ensemble template. You must specify at least three arguments: a method, a
number of learners, and the type of learner. For this example, specify 'GentleBoost'
for the method, 100 for the number of learners, and a decision tree template that uses
surrogate splits since there are missing observations.

tTree = templateTree('surrogate','on');

tEnsemble = templateEnsemble('GentleBoost',100,tTree);

tEnsemble is a template object. Most of its properties are empty, but the software fills
them with their default values during training.

Train a one-versus-all ECOC classifier using the ensembles of decision trees as binary
learners. If you have a Parallel Computing Toolbox license, then you can speed up the

22 Functions — Alphabetical List

22-1518

computation by specifying to use parallel computing. This sends each binary learner to a
worker in the pool (the number of workers depends on your system configuration). Also,
specify that the prior probabilities are 1/K, where K = 13, which is the number of distinct
classes.

pool = parpool; % Invoke workers

options = statset('UseParallel',1);

Mdl = fitcecoc(X,Y,'Coding','onevsall','Learners',tEnsemble,...

 'Prior','uniform','Options',options);

Starting parallel pool (parpool) using the 'local' profile ... connected to 2 workers.

Mdl is a ClassificationECOC model.

Cross validate the ECOC classifier using 10-fold cross validation.

CVMdl = crossval(Mdl,'Options',options);

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. The warning indicates that
some classes are not represented while the software trains at least one fold. Therefore,
those folds cannot predict labels for the missing classes. You can inspect the results of
a fold using cell indexing and dot notation, e.g., access the results of the first fold by
entering CVMdl.Trained{1}. Your results might vary.

Use the cross-validated ECOC classifier to predict out-of-fold labels. You can compute the
confusion matrix using confusionmat. However, if you have a Neural Network Toolbox
license, you can plot the confusion matrix using plotconfusion. The input arguments
of plotconfusion are not vectors of the true and predicted labels like confusionmat,
but indicator matrices of the true and predicted labels. Both start as K-by-n matrices
of 0s. If observation j has label index k (or has predicted label k), then element (k,j)
of the true label indicator matrix (or predicted label indicator matrix) is 1. You can
convert label indices returned by predict, resubPredict, or kfoldPredict to label
indicator matrices using linear indexing. For details on linear indexing, see sub2ind and
ind2sub.

oofLabel = kfoldPredict(CVMdl,'Options',options);

ConfMat = confusionmat(Y,oofLabel);

% Convert the integer label vector to a class-identifier matrix.

[~,grp] = ismember(oofLabel,isLabels);

oofLabelMat = zeros(nLabels,n);

idxLinear = sub2ind([nLabels n],grp,(1:n)');

 fitcecoc

22-1519

oofLabelMat(idxLinear) = 1; % Flags the row corresponding to the class

YMat = zeros(nLabels,n);

idxLinearY = sub2ind([nLabels n],grp,(1:n)');

YMat(idxLinearY) = 1;

figure;

plotconfusion(YMat,oofLabelMat);

h = gca;

h.XTickLabel = [num2cell(isLabels); {''}];

h.YTickLabel = [num2cell(isLabels); {''}];

22 Functions — Alphabetical List

22-1520

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

 fitcecoc

22-1521

Input Arguments

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equal.

It is good practice to standardize the continuous predictor variables. For kNN and SVM
binary classifiers, set 'Standardize',1 in the template functions templateKNN or
templateSVM, respectively.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels to which the ECOC model is trained, specified as a categorical or character
array, logical or numeric vector, or cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The length of Y and the number of rows of X must be equal.

It is good practice to specify the class order using the ClassNames name-value pair
argument.

Note: The software treats NaN, empty string (''), and <undefined> elements as missing
data. The software removes rows of X corresponding to missing values in Y. However,
the treatment of missing values in X varies among binary learners. For details, see the
training functions for your binary learners: fitcdiscr, fitcknn, fitcnb, fitcsvm,
fitctree, or fitensemble. Removing observations decreases the effective training or
cross-validation sample size.

22 Functions — Alphabetical List

22-1522

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Learners','tree','Coding','onevsone','CrossVal','on' specifies
to use decision trees for all binary learners, a one-versus-one coding design, and to
implement 10-fold cross validation.

ECOC Classifier Options

'Coding' — Coding design
'onevsall' (default) | 'allpairs' | 'binarycomplete' | 'denserandom' |
'onevsone' | 'ordinal' | 'sparserandom' | 'ternarycomplete' | numeric
matrix

Coding design name, specified as the comma-separated pair consisting of 'Coding' and
a numeric matrix or string.

This table summarizes the available, built-in coding designs.

Value Number of Binary Learners Description

'allpairs' and
'onevsone'

K(K – 1)/2 For each binary learner, one
class is positive, another is
negative, and the software
ignores the rest. This design
exhausts all combinations of
class pair assignments.

'binarycomplete'
2 1

1()K-

-

This design partitions
the classes into all binary
combinations, and does not
ignore any classes. For each
binary learner, all class
assignments are -1 and 1
with at least one positive
and negative class in the
assignment.

 fitcecoc

22-1523

Value Number of Binary Learners Description

'denserandom' Random, but approximately
10 log2K

For each binary learner,
the software randomly
assigns classes into positive
or negative classes, with at
least one of each type. For
more details, see “Random
Coding Design Matrices” on
page 22-1542.

'onevsall' K For each binary learner, one
class is positive and the rest
are negative. This design
exhausts all combinations of
positive class assignments.

'ordinal' K – 1 For the first binary learner,
the first class is negative,
and the rest positive. For
the second binary learner,
the first two classes are
negative, the rest positive,
and so on.

'sparserandom' Random, but approximately
15 log2K

For each binary learner,
the software randomly
assigns classes as positive
or negative with probability
0.25 for each, and ignores
classes with probability
0.5. For more details, see
“Random Coding Design
Matrices” on page 22-1542.

'ternarycomplete'
3 22 1

1K K
- +()+() This design partitions the

classes into all ternary
combinations. All class
assignments are 0, -1, and
1 with at least one positive
and one negative class in the
assignment.

22 Functions — Alphabetical List

22-1524

You can also specify a coding design using a custom coding matrix. The custom coding
matrix is a K-by-L matrix. Each row corresponds to a class and each column corresponds
to a binary learner. The class order (rows) corresponds to the order in ClassNames.
Compose the matrix by following these guidelines:

• Every element of the custom coding matrix must be -1, 0, or 1, and the value must
correspond to a dichotomous class assignment. This table describes the meaning of
Coding(i,j), that is, the class that learner j assigns to observations in class i.

Value Dichotomous Class Assignment

-1 Negative class
0 Before training, learner j removes

observations in class i from the data set.
1 Positive class

• Every column must contain at least one -1 or 1.
• For all column indices i,j such that i ≠ j, Coding(:,i) cannot equal Coding(:,j)

and Coding(:,i) cannot equal -Coding(:,j).
• All rows of the custom coding matrix must be different.

For more details on the form of custom coding design matrices, see “Custom Coding
Design Matrices” on page 22-1540.
Example: 'Coding','ternarycomplete'

Data Types: char | double | single | int16 | int32 | int64 | int8

'FitPosterior' — Flag indicating whether to transform scores to posterior probabilities
false or 0 (default) | true or 1

Flag indicating whether to transform scores to posterior probabilities, specified as the
comma-separated pair consisting of 'FitPosterior' and a true (1) or false (0).

If FitPosterior is true, then the software transforms binary-learner classification
scores to posterior probabilities. You can obtain posterior probabilities by using
kfoldPredict, predict, or resubPredict.

Ensemble methods that do not fit posterior probabilities are AdaBoostM2, LPBoost,
RUSBoost, RobustBoost, and TotalBoost. Therefore, if any binary learner is an
ensemble that uses any of these methods, then the software generates an error.

 fitcecoc

22-1525

Example: 'FitPosterior',true

Data Types: logical

'Learners' — Binary learner templates
'svm' (default) | 'discriminant' | 'knn' | 'tree' | template object | cell vector of
template objects

Binary learner templates, specified as the comma-separated pair consisting of
'Learners' and a string, template object, or cell vector of template objects.
Specifically, you can specify binary classifiers such as SVM, and the ensembles that use
GentleBoost, LogitBoost, and RobustBoost, to solve multiclass problems. However,
fitcecoc also supports multiclass models as binary classifiers.

• If Learners is a string, then the software trains each binary learner using the
default values of the algorithm corresponding to the string. This table summarizes the
available strings.

Value Description

'discriminant' Discriminant analysis. For default
options, see templateDiscriminant.

'knn' k-nearest neighbors. For default options,
see templateKNN.

'naivebayes' Naive Bayes. For default options, see
templateNaiveBayes.

'svm' SVM. For default options, see
templateSVM.

'tree' Classification trees. For default options,
see templateTree.

• If Learners is a template object, then each binary learner trains according to the
stored options. You can create a template object using:

• templateDiscriminant, for discriminant analysis.
• templateEnsemble, for ensemble learning. You must at least specify the learning

method (Method), the number of learners (NLearn), and the type of learner
(Learners). You cannot use the AdaBoostM2 ensemble method for binary
learning.

• templateKNN, for k-nearest neighbors.

22 Functions — Alphabetical List

22-1526

• templateNaiveBayes, for naive Bayes.
• templateSVM, for SVM.
• templateTree, for classification trees.

• If Learners is cell vector of template objects, then:

• Cell j corresponds to binary learner j (in other words, column j of the coding design
matrix), and the cell vector must have length L. L is the number of columns in the
coding design matrix. For details, see Coding.

• To use one of the built-in loss functions for prediction, then all binary learners
must return a score in the same range. For example, you cannot include default
SVM binary learners with default naive Bayes binary learners. The former returns
a score in the range (-∞,∞), and the latter returns a posterior probability as a score.
Otherwise, you must provide a custom loss as a function handle to functions such
as predict and loss.

By default, the software trains learners using default SVM templates.
Example: 'Learners','tree'

Cross-Validation Options

'CrossVal' — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair
consisting of 'Crossval' and 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using one of the 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' name-value pair arguments.

You can only use one of these four options at a time to create a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Alternatively, cross-validate Mdl later by passing it to crossval.

Example: 'Crossval','on'

Data Types: char

 fitcecoc

22-1527

'CVPartition' — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of
'CVPartition' and a cvpartition partition object as created by cvpartition. The
partition object specifies the type of cross-validation, and also the indexing for training
and validation sets.

If you specify CVPartition, then you cannot specify any of Holdout, KFold, or Leaveout.

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify
'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model
using the rest of the data

2 Stores the compact, trained model in CVMdl.Trained

If you specify Holdout, then you cannot specify any of CVPartition, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated classifier, specified as the comma-separated
pair consisting of 'KFold' and a positive integer value.

You can only use one of these four options at a time to create a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

22 Functions — Alphabetical List

22-1528

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off'. If you specify 'on', then the software
implements leave-one-out cross validation.

If you use 'Leaveout', you cannot use these 'CVPartition', 'Holdout', or 'KFold'
name-value pair arguments.
Example: 'Leaveout','on'

Data Types: char

Other Classification Options
'CategoricalPredictors' — Categorical predictors list
character array | logical vector | numeric vector | cell array of strings | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

• A numeric vector with indices from 1 through p, where p is the number of columns of
X.

• A logical vector of length p, where a true entry means that the corresponding column
of X is a categorical variable.

• A cell array of strings, where each element in the array is the name of a predictor
variable. The names must match the entries in PredictorNames.

• A character matrix, where each row of the matrix is a name of a predictor variable.
The names must match the entries in PredictorNames. Pad the names with extra
blanks so each row of the character matrix has the same length.

• 'all', meaning all predictors are categorical.

Specification of CategoricalPredictors is appropriate if:

• At least one predictor is categorical and all binary learners are classification trees,
naive Bayes learners, or ensembles of classification trees.

• All predictors are categorical and at least one binary learner is kNN.

If you specify CategoricalPredictors for any other case, then the software warns
that it cannot train that binary learner. For example, the software cannot train SVM
learners using categorical predictors.

The default is [], which indicates that there are no categorical predictors.

 fitcecoc

22-1529

Example: 'CategoricalPredictors','all'

Data Types: single | double | char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

The default is the distinct class names in Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for training.

Example: 'ClassNames',{'setosa','virginica','versicolor'}

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure. If you specify:

• The square matrix Cost, then Cost(i,j) is the cost of classifying a point into class
j if its true class is i (i.e., the rows correspond to the true class and the columns
correspond to the predicted class). To specify the class order for the corresponding
rows and columns of Cost, additionally specify the ClassNames name-value pair
argument.

• The structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y

• S.ClassificationCosts, which contains the cost matrix with rows and columns
ordered as in S.ClassNames

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

22 Functions — Alphabetical List

22-1530

'Options' — Parallel computing options
[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of
'Options' and a structure array returned by statset. These options require
Parallel Computing Toolbox. fitcecoc uses 'Streams', 'UseParallel', and
'UseSubtreams' fields.

This table summarizes the available options.

Option Description

'Streams' A RandStream object or cell array of such
objects. If you do not specify Streams,
the software uses the default stream or
streams. If you specify Streams, use a
single object except when the following are
true:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

In that case, use a cell array of the same
size as the parallel pool. If a parallel pool
is not open, then the software tries to open
one (depending on your preferences), and
Streams must supply a single random
number stream.

'UseParallel' If you have Parallel Computing Toolbox,
then you can invoke a pool of workers by
setting 'UseParallel',1.

'UseSubstreams' Set to true to compute in parallel using
the stream specified by 'Streams'.
Default is false. For example, set
Streams to a type allowing substreams,
such as'mlfg6331_64' or 'mrg32k3a'.

A best practice to ensure more predictable results is to use parpool and explicitly create
a parallel pool before you invoke parallel computing using fitcecoc.

 fitcecoc

22-1531

Example: 'Options',statset('UseParallel',1)

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in X.
Example: 'PredictorNames',{'PedalWidth','PedalLength'}

Data Types: cell

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and a string, numeric vector, or a structure.

This table summarizes the available options for setting prior probabilities.

Value Description

'empirical' The class prior probabilities are the class
relative frequencies in Y.

'uniform' All class prior probabilities are equal to
1/K, where K is the number of classes.

numeric vector Each element is a class prior probability.
Order the elements according to
Mdl.ClassNames or specify the order
using the ClassNames name-value pair
argument. The software normalizes the
elements such that they sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class
names as a variable of the same type as
Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such
that they sum to 1.

22 Functions — Alphabetical List

22-1532

For more details on how the software incorporates class prior probabilities, see “Prior
Probabilities and Cost” on page 22-1541.
Example: 'Prior',struct('ClassNames',
{{'setosa','versicolor'}},'ClassProbs',[1,2])

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable Y.

Example: 'ResponseName','IrisType'

Data Types: char

'Verbose' — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1,
or 2. Verbose controls the amount of diagnostic information per binary learner that the
software displays in the Command Window.

This table summarizes the available verbosity level options.

Value Description

0 The software does not display diagnostic
information.

1 The software displays diagnostic messages
every time it trains a new binary learner.

2 The software displays extra diagnostic
messages every time it trains a new binary
learner.

Example: 'Verbose',1

Data Types: double | single

'Weights' — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector.

 fitcecoc

22-1533

The size of Weights must equal the number of rows of X. The software weighs the
observations in each row of X with the corresponding weight in Weights.

The software normalizes Weights to sum up to the value of the prior probability in the
respective class.
Data Types: double | single

Output Arguments

Mdl — Trained ECOC model
ClassificationECOC model | ClassificationPartitionedECOC cross-validated
model

Trained ECOC classifier, returned as a ClassificationECOC model or
ClassificationPartitionedECOC cross-validated model.

If you set any of the name-value pair arguments KFold, Holdout, Leaveout, CrossVal, or
CVPartition, then Mdl is a ClassificationPartitionedECOC cross-validated model.
Otherwise, Mdl is a ClassificationECOC model.

To reference properties of Mdl, use dot notation. For example, enter
Mdl.BinaryLearners in the Command Window to display a cell vector of trained
binary learner models.

More About

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

22 Functions — Alphabetical List

22-1534

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

 fitcecoc

22-1535

Coding Design

A coding design is a matrix where elements direct which classes are trained by each
binary learner, that is, how the multiclass problem is reduced to a series of binary
problems.

Each row of the coding design corresponds to a distinct class, and each column
corresponds to a binary learner. In a ternary coding design (adopted by the software), for
a particular column (or binary learner):

• Rows containing a 1 indicate to the binary learner to group all observations in the
corresponding classes into a positive class.

• Rows containing a -1 indicate to the binary learner to group all observations in the
corresponding classes into a negative class.

• Rows containing a 0 indicate to the binary learner to ignore all observations in the
corresponding classes.

Coding matrices with large, minimal, pair-wise row distances based on the Hamming
measure are desirable. For details on the pair-wise row distance measure, see “Random
Coding Design Matrices” on page 22-1542 and [4].

This table describes popular coding designs. For the example, suppose K (the number of
distinct classes) is 3.

Coding Design Description Number of Learners Minimal Pair-Wise
Row Distance

one-versus-all (OVA) For each binary
learner, one class
is positive and the
rest are negative.
This design exhausts
all combinations
of positive class
assignments.

K 2

one-versus-one
(OVO)

For each binary
learner, one class
is positive, another
is negative, and the
rest are ignored.
This design exhausts

K(K – 1)/2 1

22 Functions — Alphabetical List

22-1536

Coding Design Description Number of Learners Minimal Pair-Wise
Row Distance

all combinations
of class pair
assignments.

binary complete This design
partitions the classes
into all binary
combinations, and
does not ignore any
classes. That is, all
class assignments
are -1 and 1 with
at least one positive
and negative class in
the assignment for
each binary learner.

2K – 1 – 1 2K – 2

ternary complete This design
partitions the classes
into all ternary
combinations.
That is, all class
assignments are 0,
-1, and 1 with at
least one positive
and negative class in
the assignment for
each binary learner.

(3K – 2K + 1 + 1)/2 3K – 2

ordinal For the first binary
learner, the first
class is negative, and
the rest positive. For
the second binary
learner, the first two
classes are negative,
and the rest positive,
and so on.

K – 1 1

 fitcecoc

22-1537

Coding Design Description Number of Learners Minimal Pair-Wise
Row Distance

dense random For each binary
learner, the software
randomly assigns
classes into positive
or negative classes,
with at least one
of each type. For
more details, see
“Random Coding
Design Matrices” on
page 22-1542.

Random, but
approximately 10
log2K

Variable

sparse random For each binary
learner, the software
randomly assigns
classes as positive
or negative with
probability 0.25
for each, and
ignores classes with
probability 0.5. For
more details, see
“Random Coding
Design Matrices” on
page 22-1542.

Random, but
approximately 15
log2K

Variable

This plot compares the number of binary learners for the coding designs with increasing
K.

22 Functions — Alphabetical List

22-1538

Error-Correcting Output Code Multiclass Model

An error-correcting output code multiclass model (ECOC) reduces the problem of
classification with three or more classes to a set of binary classifiers.

ECOC classification requires a coding design, which determines the classes that the
binary learners train on, and a decoding scheme, which determines how the results
(predictions) of the binary classifiers are aggregated. Suppose that there are three
classes, the coding design is one-versus-one, the decoding scheme uses loss g, and the
learners are SVMs. To build this classification model, ECOC follows these steps.

1

A one-versus-one coding design is

 fitcecoc

22-1539

Learner 1 Learner 2 Learner 3

Class 1

Class 2

Class 3

1 1 0

1 0 1

0 1

-

- --1

Learner 1 trains on observations having Class 1 and Class 2, and treats Class
1 as the positive class and Class 2 as the negative class. The other learners are
trained similarly. Let M be the coding design matrix with elements mkl, and sl be the
predicted classification score for the positive class of learner l.

2 A new observation is assigned to the class (ˆk) that minimizes the aggregation of the
losses for the L binary learners. That is,

ˆ

,

.k

sm g m

m
k

l

L

kl kl l

l

L

kl

=

()
=

=

Â

Â

argmin 1

1

ECOC models can improve classification accuracy, even compared to other multiclass
models [2].

Tips

• The number of binary learners grows with the number of classes. For a problem with
many classes, the binarycomplete and ternarycomplete coding designs are not
efficient. However:

• If K ≤ 4, then use ternarycomplete coding design rather than sparserandom.
• If K ≤ 5, then use binarycomplete coding design rather than denserandom.

You can display the coding design matrix of a trained ECOC classifier by entering
Mdl.CodingMatrix into the Command Window.

• You should form a coding matrix using intimate knowledge of the application, and
taking into account computational constraints. If you have sufficient computational
power and time, then try several coding matrices and choose the one with the best
performance (e.g., check the confusion matrices for each model using confusionmat).

22 Functions — Alphabetical List

22-1540

Algorithms

Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates custom coding
matrices by ensuring:

• Every element is -1, 0, or 1.
• Every column contains as least one -1 and one 1.
• For all distinct column vectors u and v, u ≠ v and u ≠ -v.
• All rows vectors are unique.
• The matrix can separate any two classes. That is, you can travel from any row to any

other row following these rules:

• You can move vertically from 1 to -1 or -1 to 1.
• You can move horizontally from a nonzero element to another nonzero element.
• You can use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j
cannot be separated by the design. For example, in the coding design

1 0

1 0

0 1

0 1

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move
horizontally from the -1 in row 2 to column 2 since there is a 0 in that position).
Therefore, the software rejects this coding design.

Parallel Computing

If you use parallel computing (see Options), then fitcecoc trains binary learners in
parallel.

 fitcecoc

22-1541

Prior Probabilities and Cost

• Prior probabilities — The software normalizes the specified class prior probabilities
(Prior) for each binary learner. Let M be the coding design matrix and I(A,c) be
an indicator matrix. The indicator matrix has the same dimensions as A, and has
elements equaling one if the corresponding element of A is c, and zero otherwise. Let
M+1 and M-1 be K-by-L matrices such that:

• M+1 = M○I(M,1), where ○ is element-wise multiplication (that is, Mplus = M.*(M

== 1)). Also, let m
l

()+1 be column vector l of M+1.

• M-1 = -M○I(M,-1) (that is, Mminus = -M.*(M == -1)). Also, let m
l

()-1 be column
vector l of M-1.

Let p pl l
m

+ +
= ∞

1 1() and p pl l
m

- -
= ∞

1 1() , where π is the vector of specified, class prior
probabilities (Prior).

Then, the positive and negative, scalar class prior probabilities for binary learner l are

ˆ ,()

()

() ()
p

p

p p
l

l
j

l l

j
=

+
+ -

1

1

1

1

1

where j = {-1,1} and a
1

 is the one-norm of a.

• Cost — The software normalizes the K-by-K cost matrix C (Cost) for each binary
learner. For binary learner l, the cost of classifying a negative-class observation into
the positive class is

c Cl l l

-+ - +
= ()p p

() ()
.

1 1
�

Similarly, the cost of classifying a positive-class observation into the negative class is

c Cl l l

+- + -
= ()p p

() ()
.

1 1
�

22 Functions — Alphabetical List

22-1542

The cost matrix for binary learner l is

C
c

c
l

l

l

=
È

Î

Í
Í

˘

˚

˙
˙

-+

+-

0

0

.

ECOC models accommodate misclassification costs by incorporating them with class
prior probabilities. If you specify Prior and Cost, then the software adjusts the class
prior probabilities as follows:

p
p

p p

p
p

p

l
l l

l l l

l
l l

l l

c

c c

c

c c

-

-+ -

-+ - +- +

+

+- +

-+ - +

=

+

=

+

1
1

1 1

1
1

1

ˆ

ˆ ˆ

ˆ

ˆ
-- +

ˆ

.

p
l

1

Random Coding Design Matrices

For a given number of classes, e.g., K, the software generates random coding design
matrices as follows.

1 The software generates one of the following:

a Dense random — The software sets each element of the K-by-Ld coding design
matrix with a 1 or a -1 with equal probability, where L K

d
ª ÈÍ ˘̇10 2log .

b Sparse random — The software sets each element of the K-by-Ls coding design
matrix with a 1, with probability 0.25, a -1 with probability 0.25, and a 0 with
probability 0.5, where L K

s
ª ÈÍ ˘̇15 2log .

2 If a column does not contain at least one 1 and at least one -1, then the software
removes that column.

3 For distinct columns u and v, if u = v or u ≠ -v, then the software removes v from the
coding design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix
with the largest, minimal pair-wise row distance based on the Hamming measure ([4])
given by

 fitcecoc

22-1543

D(,) . ,k k m m m m

l

L

k l k l k l k l1 2

1

0 5
1 2 1 2

= -

=

Â

where mkjl is an element of coding design matrix j.

Support Vector Storage

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties
Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather
than Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM
template that specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors','on')

Mdl = fitcecoc(X,Y,'Learners',t);

You can subsequently remove the support vectors and related values by passing the
resulting ClassificationECOC model to discardSupportVectors.
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Fürnkranz, Johannes, “Round Robin Classification.” J. Mach. Learn. Res., Vol. 2,
2002, pp. 721–747.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[4] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp.
285–297.

22 Functions — Alphabetical List

22-1544

See Also
ClassificationECOC | ClassificationPartitionedECOC |
CompactClassificationECOC | designecoc | loss | predict | statset |
templateDiscriminant | templateEnsemble | templateKNN | templateSVM |
templateTree

Introduced in R2014b

 fitcknn

22-1545

fitcknn
Fit k-nearest neighbor classifier

Syntax

mdl = fitcknn(X,y)

mdl = fitcknn(X,y,Name,Value)

Description

mdl = fitcknn(X,y) returns a classification model based on the input variables (also
known as predictors, features, or attributes) X and output (response) y.

mdl = fitcknn(X,y,Name,Value) fits a model with additional options specified by
one or more name-value pair arguments. For example, you can specify the tie-breaking
algorithm, distance metric, or observation weights.

Examples

Train a k-Nearest Neighbor Classifier

Construct a k-nearest neighbor classifier for Fisher's iris data, where k, the number of
nearest neighbors in the predictors, is 5.

Load Fisher's iris data.

load fisheriris

X = meas;

Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell
array of strings that contains the corresponding iris species.

Train a 5-nearest neighbors classifier. It is good practice to standardize noncategorical
predictor data.

Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)

22 Functions — Alphabetical List

22-1546

Mdl =

 ClassificationKNN

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 Distance: 'euclidean'

 NumNeighbors: 5

Mdl is a trained ClassificationKNN classifier, and some of its properties display in the
Command Window.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames

Mdl.Prior

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 0.3333 0.3333 0.3333

Mdl.Prior contains the class prior probabilities, which are settable using the name-
value pair argument 'Prior' in fitcknn. The order of the class prior probabilities
corresponds to the order of the classes in Mdl.ClassNames. By default, the prior
probabilities are the respective relative frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior
probabilities to 0.5, 0.2, and 0.3 respectively.

Mdl.Prior = [0.5 0.2 0.3];

 fitcknn

22-1547

You can pass Mdl to, for example, predict (ClassificationKNN) to label new
measurements, or crossval (ClassificationKNN) to cross validate the classifier.

Train a k-Nearest Neighbor Classifier Using the Minkowski Metric

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell
array of strings that contains the corresponding iris species.

Train a 3-nearest neighbors classifier using the Minkowski metric. To use the Minkowski
metric, you must use an exhaustive searcher. It is good practice to standardize
noncategorical predictor data.

Mdl = fitcknn(X,Y,'NumNeighbors',3,...

 'NSMethod','exhaustive','Distance','minkowski',...

 'Standardize',1);

Mdl is a ClassificationKNN classifier.

You can examine the properties of Mdl by double-clicking Mdl in the Workspace window.
This opens the Variable Editor.

22 Functions — Alphabetical List

22-1548

Train a k-Nearest Neighbor Classifier Using a Custom Distance Metric

Train a k-nearest neighbor classifier using the chi-square distance.

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

The chi-square distance between j-dimensional points x and z is

where is a weight associated with dimension j.

Specify the chi-square distance function. The distance function must:

 fitcknn

22-1549

• Take one row of X, e.g., x, and the matrix Z.
• Compare x to each row of Z.
• Return a vector D of length , where is the number of rows of Z. Each element of

D is the distance between the observation corresponding to x and the observations
corresponding to each row of Z.

chiSqrDist = @(x,Z,wt)sqrt((bsxfun(@minus,x,Z).^2)*wt);

This example uses arbitrtary weights for illustration.

Train a 3-nearest neighbor classifier. It is good practoce to standardize noncategorical
predictor data.

k = 3;

w = [0.3; 0.3; 0.2; 0.2];

KNNMdl = fitcknn(X,Y,'Distance',@(x,Z)chiSqrDist(x,Z,w),...

 'NumNeighbors',k,'Standardize',1);

KNNMdl is a ClassificationKNN class classifier.

Cross validate the KNN classifier using the default 10-fold cross validation. Examine the
classification error.

rng(1); % For reproducibility

CVKNNMdl = crossval(KNNMdl);

classError = kfoldLoss(CVKNNMdl)

classError =

 0.0600

CVKNNMdl is a ClassificationPartitionedModel class classifier. The 10-fold classification
error is 4%.

Compare the classifier with one that uses a different weighting scheme.

w2 = [0.2; 0.2; 0.3; 0.3];

CVKNNMdl2 = fitcknn(X,Y,'Distance',@(x,Z)chiSqrDist(x,Z,w2),...

 'NumNeighbors',k,'KFold',10,'Standardize',1);

classError2 = kfoldLoss(CVKNNMdl2)

classError2 =

22 Functions — Alphabetical List

22-1550

 0.0400

The second weighting scheme yields a classifier that has better out-of-sample
performance.

• “Construct a KNN Classifier” on page 16-28
• “Modify a KNN Classifier” on page 16-30

Input Arguments

X — Predictor values
numeric matrix

Predictor values, specified as a numeric matrix. Each column of X represents one
variable, and each row represents one observation.
Data Types: single | double

y — Classification values
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Classification values, specified as a numeric vector, categorical vector, logical vector,
character array, or cell array of strings, with the same number of rows as X. Each row of
y represents the classification of the corresponding row of X.
Data Types: single | double | cell | logical | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'NumNeighbors',3,'NSMethod','exhaustive','Distance','minkowski'

specifies a classifier for three-nearest neighbors using the nearest neighbor search
method and the Minkowski metric.

 fitcknn

22-1551

'BreakTies' — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by the predict method if multiple classes have the same
smallest cost, specified as the comma-separated pair consisting of 'BreakTies' and one
of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points
among the K nearest neighbors.

Example: 'BreakTies','nearest'

'BucketSize' — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the kd-tree, specified as the comma-
separated pair consisting of 'BucketSize' and a positive integer value. This argument
is meaningful only when NSMethod is 'kdtree'.

Example: 'BucketSize',40

Data Types: single | double

'CategoricalPredictors' — Categorical predictor flag
[] (default) | 'all'

Categorical predictor flag, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

• 'all' — All predictors are categorical.
• [] — No predictors are categorical.

When you set CategoricalPredictors to 'all', the default Distance is 'hamming'.

Example: 'CategoricalPredictors','all'

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

22 Functions — Alphabetical List

22-1552

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array representing the class names. Use the same data type as the values that exist in y.

Use ClassNames to order the classes or to select a subset of classes for training. The
default is the class names in y.
Data Types: single | double | char | logical | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of
'Cost' and one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its
true class is i (i.e., the rows correspond to the true class and the columns correspond
to the predicted class). To specify the class order for the corresponding rows and
columns of Cost, additionally specify the ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a
variable of the same type as y, and S.ClassificationCosts containing the cost
matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'Cov' — Covariance matrix
nancov(X) (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and
a positive definite matrix of scalar values representing the covariance matrix when
computing the Mahalanobis distance. This argument is only valid when 'Distance' is
'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

'CrossVal' — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal'
and either 'on' or 'off'. If 'on', fitcknn creates a cross-validated model with 10

 fitcknn

22-1553

folds. Use the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' parameters to
override this cross-validation setting. You can only use one parameter at a time to create
a cross-validated model.

Alternatively, cross validate mdl later using the crossval method.

Example: 'Crossval','on'

'CVPartition' — Cross-validated model partition
cvpartition object

Cross-validated model partition, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition. You can only use one of
these four options at a time to create a cross-validated model: 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'.

'Distance' — Distance metric
valid distance metric string | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance'
and a valid distance metric string or function handle. The allowable strings depend
on the NSMethod parameter, which you set in fitcknn, and which exists as a field in
ModelParameters. If you specify CategoricalPredictors as 'all', then the default
distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

NSMethod Distance Metric Names

exhaustive Any distance metric of ExhaustiveSearcher
kdtree 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

For definitions, see “Distance Metrics”.

This table includes valid distance metrics of ExhaustiveSearcher.

Value Description

'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'cosine' One minus the cosine of the included angle between

observations (treated as vectors).

22 Functions — Alphabetical List

22-1554

Value Description

'euclidean' Euclidean distance.
'hamming' Hamming distance, percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of

nonzero coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample
covariance matrix of X, as computed by nancov(X). To
specify a different value for C, use the 'Cov' name-value
pair argument.

'minkowski' Minkowski distance. The default exponent is 2. To specify
a different exponent, use the 'Exponent' name-value pair
argument.

'seuclidean' Standardized Euclidean distance. Each coordinate
difference between X and a query point is scaled, meaning
divided by a scale value S. The default value of S is the
standard deviation computed from X, S = nanstd(X). To
specify another value for S, use the Scale name-value pair
argument.

'spearman' One minus the sample Spearman's rank correlation
between observations (treated as sequences of values).

@distfun Distance function handle. distfun has the form

function D2 = DISTFUN(ZI,ZJ)

% calculation of distance

...

where

• ZI is a 1-by-N vector containing one row of X or y.
• ZJ is an M2-by-N matrix containing multiple rows of X or

y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the

distance between observations ZI and ZJ(J,:).

Example: 'Distance','minkowski'

Data Types: function_handle

 fitcknn

22-1555

'DistanceWeight' — Distance weighting function
'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of
'DistanceWeight' and either a function handle or one of the following strings
specifying the distance weighting function.

DistanceWeight Meaning

'equal' No weighting
'inverse' Weight is 1/distance
'squaredinverse' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative
distances, and returns a matrix the same size
containing nonnegative distance weights. For example,
'squaredinverse' is equivalent to @(d)d.^(-2).

Example: 'DistanceWeight','inverse'

Data Types: function_handle

'Exponent' — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of
'Exponent' and a positive scalar value. This argument is only valid when 'Distance'
is 'minkowski'.

Example: 'Exponent',3

Data Types: single | double

'Holdout' — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the remaining data for training.

If you use Holdout, you cannot use any of the 'CVPartition', 'KFold', or
'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

22 Functions — Alphabetical List

22-1556

Data Types: single | double

'IncludeTies' — Tie inclusion flag
false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies'
and a logical value indicating whether predict includes all the neighbors whose
distance values are equal to the Kth smallest distance. If IncludeTies is true,
predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Example: 'IncludeTies',true

Data Types: logical

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated model, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or
'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off'. Specify 'on' to use leave-one-out cross
validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or
'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'NSMethod' — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of
'NSMethod' and 'kdtree' or 'exhaustive'.

 fitcknn

22-1557

• 'kdtree' — Create and use a kd-tree to find nearest neighbors. 'kdtree' is valid
when the distance metric is one of the following:

• 'euclidean'

• 'cityblock'

• 'minkowski'

• 'chebyshev'

• 'exhaustive' — Use the exhaustive search algorithm. The distance values from all
points in X to each point in y are computed to find nearest neighbors.

The default is 'kdtree' when X has 10 or fewer columns, X is not sparse, and the
distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

'NumNeighbors' — Number of nearest neighbors to find
1 (default) | positive integer value

Number of nearest neighbors in X to find for classifying each point when predicting,
specified as the comma-separated pair consisting of 'NumNeighbors' and a positive
integer value.
Example: 'NumNeighbors',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in X.
Data Types: cell

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• A string:

22 Functions — Alphabetical List

22-1558

• 'empirical' determines class probabilities from class frequencies in y. If you
pass observation weights, they are used to compute the class probabilities.

• 'uniform' sets all class probabilities equal.
• A vector (one scalar value for each class). To specify the class order for the

corresponding elements of Prior, additionally specify the ClassNames name-value
pair argument.

• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as y
• S.ClassProbs containing a vector of corresponding probabilities

If you set values for both Weights and Prior, the weights are renormalized to add up to
the value of the prior probability in the respective class.
Example: 'Prior','uniform'

Data Types: single | double | struct

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char

'Scale' — Distance scale
nanstd(X) (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector
containing nonnegative scalar values with length equal to the number of columns in X.
Each coordinate difference between X and a query point is scaled by the corresponding
element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

'ScoreTransform' — Score transform function
'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'sign' |
'symmetric' | 'symmetriclogit' | 'symmetricismax' | function handle

 fitcknn

22-1559

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and a string or function handle.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the available, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Example: 'ScoreTransform','sign'

Data Types: char | function_handle

'Standardize' — Flag to standardize predictors
false (default) | true

Flag to standardize the predictors, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

22 Functions — Alphabetical List

22-1560

If you set 'Standardize',true, then the software centers and scales each column of
the predictor data (X) by the column mean and standard deviation, respectively.

The software does not standardize categorical predictors, and throws an error if all
predictors are categorical.

You cannot simultaneously specify 'Standardize',1 and either of 'Scale' or 'Cov'.

It is good practice to standardize the predictor data.
Example: 'Standardize',true

Data Types: logical

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in X.

The software normalizes the weights in each class to add up to the value of the prior
probability of the class.
Data Types: single | double

Output Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

 fitcknn

22-1561

Alternatives

Although fitcknn can train a multiclass KNN classifier, you can reduce a multiclass
learning problem to a series of KNN binary learners using fitcecoc.

More About

Prediction

ClassificationKNN predicts the classification of a point Xnew using a procedure
equivalent to this:

1 Find the NumNeighbors points in the training set X that are nearest to Xnew.
2 Find the NumNeighbors response values Y to those nearest points.
3 Assign the classification label Ynew that has the largest posterior probability among

the values in Y.

For details, see “Posterior Probability” on page 22-3654 in the predict documentation.

Algorithms

• NaNs or <undefined>s indicate missing observations. The following describes the
behavior of fitcknn when the data set or weights contain missing observations.

• If any value of y or any weight is missing, then fitcknn removes those values
from y, the weights, and the corresponding rows of X from the data. The software
renormalizes the weights to sum to 1.

• If you specify to standardize predictors ('Standardize',1) or the standardized
Euclidean distance ('Distance','seuclidean') without a scale, then fitcknn
removes missing observations from individual predictors before computing the
mean and standard deviation. In other words, the software implements nanmean
and nanstd on each predictor.

• If you specify the Mahalanobis distance ('Distance','mahalanbois') without
its covariance matrix, then fitcknn removes rows of X that contain at least one
missing value. In other words, the software implements nancov on the predictor
matrix X.

• Suppose that you set 'Standardize',1.

22 Functions — Alphabetical List

22-1562

• If you also specify Prior or Weights, then the software takes the observation
weights into account. Specifically, the weighted mean of predictor j is

x xwj k jk

Bj

= Â

and the weighted standard deviation is

s w x xj k

Bj

jk j= -Â (),

where Bj is the set of indices k for which xjk and wk are not missing.
• If you also set 'Distance','mahalanobis' or 'Distance','seuclidean',

then you cannot specify Scale or Cov. Instead, the software:

1 Computes the means and standard deviations of each predictor
2 Standardizes the data using the results of step 1
3 Computes the distance parameter values using their respective default.

• If you specify Scale and either of Prior or Weights, then the software scales
observed distances by the weighted standard deviations.

• If you specify Cov and either of Prior or Weights, then the software applies the
weighted covariance matrix to the distances. In other words,

Cov =
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

- -() ()
Â

Â Â
Â

¢
w

w w

w x xx x

j

j j

B

B B

B

j j j2

2

,

where B is the set of indices j for which the observation xj does not have any missing
values and wj is not missing.

• “Classification Using Nearest Neighbors” on page 16-8

 fitcknn

22-1563

See Also
ClassificationKNN | ClassificationPartitionedModel | fitcecoc |
fitensemble | predict | templateKNN

22 Functions — Alphabetical List

22-1564

fitcnb
Train multiclass naive Bayes model

Syntax

Mdl = fitcnb(X,Y)

Mdl = fitcnb(X,Y,Name,Value)

Description

Mdl = fitcnb(X,Y) returns a multiclass naive Bayes model (Mdl), trained by
predictors X and class labels Y.

Predict labels for new data by passing the data and Mdl to predict.

Mdl = fitcnb(X,Y,Name,Value) returns a naive Bayes classifier with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify a distribution to model the data, prior probabilities for the
classes, or the kernel smoothing window bandwidth.

Examples

Train a Naive Bayes Classifier

Load Fisher's iris data set.

load fisheriris

X = meas(:,3:4);

Y = species;

tabulate(Y)

 Value Count Percent

 setosa 50 33.33%

 versicolor 50 33.33%

 virginica 50 33.33%

The software can classify data with more than two classes using naive Bayes methods.

 fitcnb

22-1565

Train a naive Bayes classifier. It is good practice to specify the class order.

Mdl = fitcnb(X,Y,...

 'ClassNames',{'setosa','versicolor','virginica'})

Mdl =

 ClassificationNaiveBayes

 PredictorNames: {'x1' 'x2'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 DistributionNames: {'normal' 'normal'}

 DistributionParameters: {3x2 cell}

Mdl is a trained ClassificationNaiveBayes classifier.

By default, the software models the predictor distribution within each class using a
Gaussian distribution having some mean and standard deviation. Use dot notation
to display the parameters of a particular Gaussian fit, e.g., display the fit for the first
feature within setosa.

setosaIndex = strcmp(Mdl.ClassNames,'setosa');

estimates = Mdl.DistributionParameters{setosaIndex,1}

estimates =

 1.4620

 0.1737

The mean is 1.4620 and the standard deviation is 0.1737.

Plot the Gaussian contours.

figure

gscatter(X(:,1),X(:,2),Y);

h = gca;

xylim = [h.XLim h.YLim]; % Get current axis limits

22 Functions — Alphabetical List

22-1566

hold on

Params = cell2mat(Mdl.DistributionParameters);

Mu = Params(2*(1:3)-1,1:2); % Extract the means

Sigma = zeros(2,2,3);

for j = 1:3

 Sigma(:,:,j) = diag(Params(2*j,:)); % Extract the standard deviations

 ezcontour(@(x1,x2)mvnpdf([x1,x2],Mu(j,:),Sigma(:,:,j)),...

 xylim+0.5*[-1,1,-1,1]) ...

 % Draw contours for the multivariate normal distributions

end

title('Naive Bayes Classifier -- Fisher''s Iris Data')

xlabel('Petal Length (cm)')

ylabel('Petal Width (cm)')

hold off

 fitcnb

22-1567

You can change the default distribution using the name-value pair argument
'DistributionNames'. For example, if some predictors are categorical, then
you can specify that they are multivariate, multinomial random variables using
'DistributionNames','mvmn'.

Specify Prior Probabilites When Training Naive Bayes Classifiers

Construct a naive Bayes classifier for Fisher's iris data set. Also, specify prior
probabilities during training.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

classNames = {'setosa','versicolor','virginica'}; % Class order

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell
array of strings that contains the corresponding iris species.

By default, the prior class probability distribution is the relative frequency distribution of
the classes in the data set, which in this case is 33% for each species. However, suppose
you know that in the population 50% of the irises are setosa, 20% are versicolor, and 30%
are virginica. You can incorporate this information by specifying this distribution as a
prior probability during training.

Train a naive Bayes classifier. Specify the class order and prior class probability
distribution.

prior = [0.5 0.2 0.3];

Mdl = fitcnb(X,Y,'ClassNames',classNames,'Prior',prior)

Mdl =

 ClassificationNaiveBayes

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 DistributionNames: {'normal' 'normal' 'normal' 'normal'}

 DistributionParameters: {3x4 cell}

22 Functions — Alphabetical List

22-1568

Mdl is a trained ClassificationNaiveBayes classifier, and some of its properties
appear in the Command Window. The software treats the predictors as independent
given a class, and, by default, fits them using normal distributions.

The naive Bayes algorithm does not use the prior class probabilities during training.
Therefore, you can specify prior class probabilities after training using dot notation. For
example, suppose that you want to see the difference in performance between a model
that uses the default prior class probabilities and a model that uses prior.

Create a new naive Bayes model based on Mdl, and specify that the prior class
probability distribution is an empirical class distribution.

defaultPriorMdl = Mdl;

FreqDist = cell2table(tabulate(Y));

defaultPriorMdl.Prior = FreqDist{:,3};

The software normalizes the prior class probabilities to sum to 1.

Estimate the cross-validation error for both models using 10-fold cross validation.

rng(1); % For reproducibility

defaultCVMdl = crossval(defaultPriorMdl);

defaultLoss = kfoldLoss(defaultCVMdl)

CVMdl = crossval(Mdl);

Loss = kfoldLoss(CVMdl)

defaultLoss =

 0.0533

Loss =

 0.0340

Mdl performs better than defaultPriorMdl.

Specify Predictor Distributions for Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas;

 fitcnb

22-1569

Y = species;

Train a naive Bayes classifier using every predictor. It is good practice to specify the class
order.

Mdl1 = fitcnb(X,Y,...

 'ClassNames',{'setosa','versicolor','virginica'})

Mdl1.DistributionParameters

Mdl1.DistributionParameters{1,2}

Mdl1 =

 ClassificationNaiveBayes

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 DistributionNames: {'normal' 'normal' 'normal' 'normal'}

 DistributionParameters: {3x4 cell}

ans =

 [2x1 double] [2x1 double] [2x1 double] [2x1 double]

 [2x1 double] [2x1 double] [2x1 double] [2x1 double]

 [2x1 double] [2x1 double] [2x1 double] [2x1 double]

ans =

 3.4280

 0.3791

By default, the software models the predictor distribution within each class as a
Gaussian with some mean and standard deviation. There are four predictors and three
class levels. Each cell in Mdl1.DistributionParameters corresponds to a numeric
vector containing the mean and standard deviation of each distribution, e.g., the mean
and standard deviation for setosa iris sepal widths are 3.4280 and 0.3791, respectively.

Estimate the confusion matrix for Mdl1.

22 Functions — Alphabetical List

22-1570

isLabels1 = resubPredict(Mdl1);

ConfusionMat1 = confusionmat(Y,isLabels1)

ConfusionMat1 =

 50 0 0

 0 47 3

 0 3 47

Element (j, k) of ConfusionMat1 represents the number of observations that the
software classifies as k, but are truly in class j according to the data.

Retrain the classifier using the Gaussian distribution for predictors 1 and 2 (the sepal
lengths and widths), and the default normal kernel density for predictors 3 and 4 (the
petal lengths and widths).

Mdl2 = fitcnb(X,Y,...

 'Distribution',{'normal','normal','kernel','kernel'},...

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl2.DistributionParameters{1,2}

ans =

 3.4280

 0.3791

The software does not train parameters to the kernel density. Rather, the software
chooses an optimal width. However, you can specify a width using the 'Width' name-
value pair argument.

Estimate the confusion matrix for Mdl2.

isLabels2 = resubPredict(Mdl2);

ConfusionMat2 = confusionmat(Y,isLabels2)

ConfusionMat2 =

 50 0 0

 0 47 3

 0 3 47

 fitcnb

22-1571

Based on the confusion matrices, the two classifiers perform similarly in the training
sample.

Compare Classifiers Using Cross Validation

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

rng(1); % For reproducibility

Train and cross validate a naive Bayes classifier using the default options and k-fold
cross validation. It is good practice to specify the class order.

CVMdl1 = fitcnb(X,Y,...

 'ClassNames',{'setosa','versicolor','virginica'},...

 'CrossVal','on');

By default, the software models the predictor distribution within each
class as a Gaussian with some mean and standard deviation. CVMdl1 is a
ClassificationPartitionedModel model.

Create a default naive Bayes binary classifier template, and train an error-correcting,
output codes multiclass model.

t = templateNaiveBayes();

CVMdl2 = fitcecoc(X,Y,'CrossVal','on','Learners',t);

CVMdl2 is a ClassificationPartitionedECOC model. You can specify options for the
naive Bayes binary learners using the same name-value pair arguments as for fitcnb.

Compare the out-of-sample k-fold classification error (proportion of misclassified
observartions).

classErr1 = kfoldLoss(CVMdl1,'LossFun','ClassifErr')

classErr2 = kfoldLoss(CVMdl2,'LossFun','ClassifErr')

classErr1 =

 0.0533

classErr2 =

22 Functions — Alphabetical List

22-1572

 0.0467

Mdl2 has a lower generalization error.

Train Naive Bayes Classifiers Using Multinomial Predictors

Some spam filters classify an incoming email as spam based on how many times a word
or punctuation (called tokens) occurs in an email. The predictors are the frequencies
of particular words or punctuations in an email. Therefore, the predictors compose
multinomial random variables.

This example illustrates classification using naive Bayes and multinomial predictors.

Create Training Data

Suppose you observed 1000 emails and classified them as spam or not spam. Do this by
randomly assigning -1 or 1 to y for each email.

n = 1000; % Sample size

rng(1); % For reproducibility

Y = randsample([-1 1],n,true); % Random labels

To build the predictor data, suppose that there are five tokens in the vocabulary, and
20 observed tokens per email. Generate predictor data from the five tokens by drawing
random, multinomial deviates. The relative frequencies for tokens corresponding to spam
emails should differ from emails that are not spam.

tokenProbs = [0.2 0.3 0.1 0.15 0.25;...

 0.4 0.1 0.3 0.05 0.15]; % Token relative frequencies

tokensPerEmail = 20; % Fixed for convenience

X = zeros(n,5);

X(Y == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),sum(Y == 1));

X(Y == -1,:) = mnrnd(tokensPerEmail,tokenProbs(2,:),sum(Y == -1));

Train the Classifier

Train a naive Bayes classifier. Specify that the predictors are multinomial.

Mdl = fitcnb(X,Y,'Distribution','mn');

Mdl is a trained ClassificationNaiveBayes classifier.

Assess the in-sample performance of Mdl by estimating the misclassification error.

isGenRate = resubLoss(Mdl,'LossFun','ClassifErr')

 fitcnb

22-1573

isGenRate =

 0.0200

The in-sample misclassification rate is 2%.

Create New Data

Randomly generate deviates that represent a new batch of emails.

newN = 500;

newY = randsample([-1 1],newN,true);

newX = zeros(newN,5);

newX(newY == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),...

 sum(newY == 1));

newX(newY == -1,:) = mnrnd(tokensPerEmail,tokenProbs(2,:),...

 sum(newY == -1));

Assess Classifier Performance

Classify the new emails using the trained naive Bayes classifier Mdl, and determine
whether the algorithm generalizes.

oosGenRate = loss(Mdl,newX,newY)

oosGenRate =

 0.0261

The out-of-sample misclassification rate is 2.6% indicating that the classifier generalizes
fairly well.

Input Arguments

X — Predictor data
matrix of numeric values

Predictor data to which the naive Bayes classifier is trained, specified as a matrix of
numeric values.

22 Functions — Alphabetical List

22-1574

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equivalent.

Data Types: double

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels to which the naive Bayes classifier is trained, specified as a categorical or
character array, logical or numeric vector, or cell array of strings. Each element of Y
defines the class membership of the corresponding row of X. Y supports K class levels.

If Y is a character array, then each row must correspond to one class label.

The length of Y and the number of rows of X must be equivalent.

Data Types: cell | char | double | logical

Note: The software treats NaN, empty string (''), and <undefined> elements as missing
values.

• If Y contains missing values, then the software removes them and the corresponding
rows of X.

• If X contains any rows composed entirely of missing values, then the software removes
those rows and the corresponding elements of Y.

• If X contains missing values and you set 'Distribution','mn', then the software
removes those rows of X and the corresponding elements of Y.

• If a predictor is not represented in a class, that is, if all of its values are NaN within a
class, then the software returns an error.

Removing rows of X and corresponding elements of Y decreases the effective training or
cross-validation sample size.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 fitcnb

22-1575

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Distribution','mn','Prior','uniform','KSWidth',0.5 specifies
that the data distribution is multinomial, the prior probabilities for all classes are equal,
and the kernel smoothing window bandwidth for all classes is 0.5 units.

Naive Bayes Options

'DistributionNames' — Data distributions
'kernel' | 'mn' | 'mvmn' | 'normal' | cell array of strings

Data distributions fitcnb uses to model the data, specified as the comma-separated pair
consisting of 'DistributionNames' and a string or cell array of strings.

This table summarizes the available distributions.

Value Description

'kernel' Kernel smoothing density estimate.
'mn' Multinomial distribution. If you specify

mn, then all features are components of
a multinomial distribution. Therefore,
you cannot include 'mn' as an element
of a cell array of strings. For details, see
“Algorithms”.

'mvmn' Multivariate multinomial distribution. For
details, see “Algorithms”.

'normal' Normal (Gaussian) distribution.

If you specify a string, then the software models all the features using that distribution.
If you specify a 1-by-P cell array of strings, then the software models feature j using the
distribution in element j of the cell array.

By default, the software sets all predictors specified as categorical predictors (using the
CategoricalPredictors name-value pair argument) to 'mvmn'. Otherwise, the default
distribution is 'normal'.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.

22 Functions — Alphabetical List

22-1576

Example: 'Distribution','mn'

Data Types: cell | char

'Kernel' — Kernel smoother type
'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | cell array of strings

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and
a string or cell array of strings.

This table summarizes the available options for setting the kernel smoothing density
region. Let I{u} denote the indictor function.

Value Kernel Formula

'box' Box (uniform)
f x I x() .= { }£0 5 1

'epanechnikov'Epanechnikov
f x x I x() .= -() { }£0 75 1 1

2

'normal' Gaussian
f x x() exp .= -()1

2
0 5 2

p

'triangle'Triangular
f x x I x() = -() { }£1 1

If you specify a 1-by-P cell array, with each cell containing any value in the table, then
the software trains the classifier using the kernel smoother type in cell j for feature
j in X. The software ignores cells of Kernel not corresponding to a predictor whose
distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.
Example: 'Kernel',{'epanechnikov','normal'}

Data Types: cell | char

'Support' — Kernel smoothing density support
'unbounded' (default) | 'positive' | cell array | numeric row vector

Kernel smoothing density support, specified as the comma-separated pair consisting of
'Support' and 'positive', 'unbounded', a cell array, or a numeric row vector. The
software applies the kernel smoothing density to the specified region.

 fitcnb

22-1577

This table summarizes the available options for setting the kernel smoothing density
region.

Value Description

1-by-2 numeric row
vector

For example, [L,U], where L and U are the finite lower and
upper bounds, respectively, for the density support.

'positive' The density support is all positive real values.
'unbounded' The density support is all real values.

If you specify a 1-by-P cell array, with each cell containing any value in the table, then
the software trains the classifier using the kernel support in cell j for feature j in X. The
software ignores cells of Kernel not corresponding to a predictor whose distribution is
'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.
Example: 'KSSupport',{[-10,20],'unbounded'}

Data Types: cell | char | double

'Width' — Kernel smoothing window width
matrix of numeric values | numeric column vector | numeric row vector | scalar

Kernel smoothing window width, specified as the comma-separated pair consisting of
'Width' and a matrix of numeric values, numeric column vector, numeric row vector, or
scalar.

Suppose there are K class levels and P predictors. This table summarizes the available
options for setting the kernel smoothing window width.

Value Description

K-by-P matrix of numeric values Element (k,j) specifies the width for predictor j in
class k.

K-by-1 numeric column vector Element k specifies the width for all predictors in
class k.

1-by-P numeric row vector Element j specifies the width in all class levels for
predictor j.

22 Functions — Alphabetical List

22-1578

Value Description

scalar Specifies the bandwidth for all features in all
classes.

By default, the software selects a default width automatically for each combination of
predictor and class by using a value that is optimal for a Gaussian distribution. If you
specify Width and it contains NaNs, then the software selects widths for the elements
containing NaNs.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.
Example: 'Width',[NaN NaN]

Data Types: double | struct

Cross-Validation Options

'CrossVal' — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal'
and either 'on' or 'off'. If 'on', fitcknn creates a cross-validated model with 10
folds. Use the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' parameters to
override this cross-validation setting. You can only use one parameter at a time to create
a cross-validated model.

Alternatively, cross validate Mdl after training using the crossval method.

Example: 'Crossval','on'

'CVPartition' — Cross-validated model partition
cvpartition object

Cross-validated model partition, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition. You can only use one of
these four options at a time to create a cross-validated model: 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'.

'Holdout' — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

 fitcnb

22-1579

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the remaining data for training.

If you use Holdout, you cannot use any of the 'CVPartition', 'KFold', or
'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated model, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or
'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off'. Specify 'on' to use leave-one-out cross
validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or
'KFold' name-value pair arguments.

Example: 'Leaveout','on'

Other Classification Options
'CategoricalPredictors' — Categorical predictors list
[] (default) | 'all' | cell array of strings | character array | logical vector | numeric
vector

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

22 Functions — Alphabetical List

22-1580

• A numeric vector with indices from 1 through p, where p is the number of columns of
X.

• A logical vector of length p, where a true entry means that the corresponding column
of X is a categorical variable.

• A cell array of strings, where each element in the array is the name of a predictor
variable. The names must match entries in PredictorNames values.

• A character matrix, where each row of the matrix is a name of a predictor variable.
The names must match entries in PredictorNames values. Pad the names with
extra blanks so each row of the character matrix has the same length.

• 'all', meaning all predictors are categorical.

By default, no predictors are categorical.
Example: 'CategoricalPredictors','all'

Data Types: single | double | char | cell

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array representing the class names. Use the same data type as the values that exist in Y.

Use ClassNames to order the classes or to select a subset of classes for training.

The default is the class names in Y.
Example: 'ClassNames',{'b','g'}

Data Types: single | double | char | logical | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of
'Cost' and one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its
true class is i (i.e., the rows correspond to the true class and the columns correspond
to the predicted class). To specify the class order for the corresponding rows and
columns of Cost, additionally specify the ClassNames name-value pair argument.

 fitcnb

22-1581

• Structure S having two fields: S.ClassNames containing the group names as a
variable of the same type as Y, and S.ClassificationCosts containing the cost
matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Example: 'Cost',struct('ClassNames',{{'b','g'}},'ClassificationCosts',
[0 0.5; 1 0])

Data Types: single | double | struct

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in X.
Data Types: cell

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• A string:

• 'empirical' determines class probabilities from class frequencies in Y.
• 'uniform' sets all class probabilities equal.

• A vector (one scalar value for each class). To specify the class order for the
corresponding elements of Prior, additionally specify the ClassNames name-value
pair argument.

• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as Y
• S.ClassProbs containing a vector of corresponding probabilities

The software normalizes the values of Prior so that they sum to 1. If you set values for
both Weights and Prior, the weights are renormalized to sum to the value of the prior
probability in their respective class.
Example: 'Prior','uniform'

22 Functions — Alphabetical List

22-1582

Data Types: single | double | struct

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable Y.

Example: 'ResponseName','Response'

Data Types: char

'ScoreTransform' — Score transform function
'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'sign' |
'symmetric' | 'symmetriclogit' | 'symmetricismax' | function handle

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and a string or function handle.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the available, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

 fitcnb

22-1583

Mdl.ScoreTransform = @function;

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Example: 'ScoreTransform','sign'

Data Types: char | function_handle

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in X.

The software normalizes the weights in each class to add up to the value of the prior
probability of the class.
Data Types: single | double

Output Arguments

Mdl — Trained naive Bayes classifier
ClassificationNaiveBayes classifier

Trained naive Bayes classifier, returned as a ClassificationNaiveBayes classifier.

More About

Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of
occurrences of token j in this observation. The number of categories (bins) in this
multinomial model is the number of distinct tokens, that is, the number of predictors.

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are
conditionally independent, given the class. Though the assumption is usually violated

22 Functions — Alphabetical List

22-1584

in practice, naive Bayes classifiers tend to yield posterior distributions that are robust
to biased class density estimates, particularly where the posterior is 0.5 (the decision
boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words,
the maximum a posteriori decision rule). Explicitly, the algorithm:

1 Estimates the densities of the predictors within each class.
2 Models posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

ˆ ,..,

|

|

|

P X

Y k P Y k

Y k P

Y k X

X

X Y

P
j

j

k

K

j

j

P

P
=() =

() ()

()

= =

=

=

= =

’

Â ’
1

1

1 1

p

p ==()k

,

where:

• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• p Y k=() is the prior probability that a class index is k.

3 Classifies an observation by estimating the posterior probability for each class, and
then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior
probability ˆ ,.., , ..., || ,P X Y k X Y kY k X P XP Pmn=() () ()µ = =1 1p where

P X X Y kmn P1,..., | =() is the probability mass function of a multinomial distribution.

Tips

For classifying count-based data, such as the bag-of-tokens model, use the multinomial
distribution (e.g., set 'Distribution','mn').

Algorithms

• If you specify 'Distribution','mn' when training Mdl using fitcnb, then
the software fits a multinomial distribution using the bag-of-tokens model. The

 fitcnb

22-1585

software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. Using additive smoothing [2], the estimated
probability is

P
c

P c
j k

j k

k

()| ,
|

token class =

+

+

1

where:

•

c

w

n

x w

j k k

ij

i y k

i

i
i y k

i

i

|
:

:

;=
Œ

Œ

Â

Â

class

class

 which is the weighted number of occurrences of token j in

class k.
• nk is the number of observations in class k.
•

w
i is the weight for observation i. The software normalizes weights within a class

such that they sum to the prior probability for that class.
•

c ck j k

j

P

=

=

Â | ;
1

 which is the total weighted number of occurrences of all tokens in

class k.
• If you specify 'Distribution','mvmn' when training Mdl using fitcnb, then:

1 For each predictor, the software collects a list of the unique levels, stores
the sorted list in CategoricalLevels, and considers each level a bin. Each
predictor/class combination is a separate, independent multinomial random
variable.

2 For predictor j in class k, the software counts instances of each categorical level
using the list stored in CategoricalLevels{j}.

3 The software stores the probability that predictor j, in class k, has level
L in the property DistributionParameters{k,j}, for all levels in
CategoricalLevels{j}. Using additive smoothing [2], the estimated probability
is

22 Functions — Alphabetical List

22-1586

P
m

m
j L k

L

m

j k

j k

predictor class =
+

() =
+

|
()

,
|1

where:

•

m L n

I x L w

w

j k k

ij i

i y k

i
i y k

i

i

|
:

:

()

{ }

;=

=

Œ

Œ

Â

Â

 class

 class

 which is the weighted number of

observations for which predictor j equals L in class k.
• nk is the number of observations in class k.
•

I x Lij ={ } = 1 if xij = L, 0 otherwise.

•
w

i is the weight for observation i. The software normalizes weights within a
class such that they sum to the prior probability for that class.

• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

• “Naive Bayes Classification” on page 15-31
• “Grouping Variables” on page 2-52

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[2] Manning, C. D., P. Raghavan, and M. Schütze. Introduction to Information Retrieval,
NY: Cambridge University Press, 2008.

See Also
ClassificationNaiveBayes | ClassificationPartitionedModel | predict |
templateNaiveBayes

 fitcsvm

22-1587

fitcsvm

Train binary support vector machine classifier

Syntax

SVMModel = fitcsvm(X,Y)

SVMModel = fitcsvm(X,Y,Name,Value)

Description

SVMModel = fitcsvm(X,Y) returns a support vector machine classifier SVMModel,
trained by predictors X and class labels Y for one- or two-class classification.

SVMModel = fitcsvm(X,Y,Name,Value) returns a support vector machine classifier
with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the type of cross validation, the cost for misclassification, or
the type of score transformation function.

Examples

Train a Support Vector Machine Classifier

Load Fisher's iris data set. Remove the sepal lengths and widths, and all observed setosa
irises.

load fisheriris

inds = ~strcmp(species,'setosa');

X = meas(inds,3:4);

y = species(inds);

Train an SVM classifier using the processed data set.

SVMModel = fitcsvm(X,y)

22 Functions — Alphabetical List

22-1588

SVMModel =

 ClassificationSVM

 PredictorNames: {'x1' 'x2'}

 ResponseName: 'Y'

 ClassNames: {'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 100

 Alpha: [24x1 double]

 Bias: -14.4149

 KernelParameters: [1x1 struct]

 BoxConstraints: [100x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [100x1 logical]

 Solver: 'SMO'

The Command Window shows that SVMModel is a trained ClassificationSVM
classifier and a property list. Display the properties of SVMModel, for example, to
determine the class order, by using dot notation.

classOrder = SVMModel.ClassNames

classOrder =

 'versicolor'

 'virginica'

The first class ('versicolor') is the negative class, and the second ('virginica')
is the positive class. You can change the class order during training by using the
'ClassNames' name-value pair argument.

Plot a scatter diagram of the data and circle the support vectors.

sv = SVMModel.SupportVectors;

figure

gscatter(X(:,1),X(:,2),y)

hold on

plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)

legend('versicolor','virginica','Support Vector')

 fitcsvm

22-1589

hold off

The support vectors are observations that occur on or beyond their estimated class
boundaries.

You can adjust the boundaries (and therefore the number of support vectors) by setting a
box constraint during training using the 'BoxConstraint' name-value pair argument.

Train and Cross Validate an SVM Classifier

Load the ionosphere data set.

load ionosphere

22 Functions — Alphabetical List

22-1590

rng(1); % For reproducibility

Train an SVM classifier using the radial basis kernel. Let the software find a scale value
for the kernel function. It is good practice to standardize the predictors.

SVMModel = fitcsvm(X,Y,'Standardize',true,'KernelFunction','RBF',...

 'KernelScale','auto');

SVMModel is a trained ClassificationSVM classifier.

Cross validate the SVM classifier. By default, the software uses 10-fold cross validation.

CVSVMModel = crossval(SVMModel);

CVSVMModel is a ClassificationPartitionedModel cross-validated classifier.

Estimate the out-of-sample misclassification rate.

classLoss = kfoldLoss(CVSVMModel)

classLoss =

 0.0484

The generalization rate is approximately 5%.

Detect Outliers Using SVM and One-Class Learning

Load Fisher's iris data set. Remove the petal lengths and widths. Treat all irises as
coming from the same class.

load fisheriris

X = meas(:,1:2);

y = ones(size(X,1),1);

Train an SVM classifier using the processed data set. Assume that 5% of the observations
are outliers. It is good practice to standardize the predictors.

rng(1);

SVMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,...

 'OutlierFraction',0.05);

 fitcsvm

22-1591

SVMModel is a trained ClassificationSVM classifier. By default, the software uses the
Gaussian kernel for one-class learning.

Plot the observations and the decision boundary. Flag the support vectors and potential
outliers.

svInd = SVMModel.IsSupportVector;

h = 0.02; % Mesh grid step size

[X1,X2] = meshgrid(min(X(:,1)):h:max(X(:,1)),...

 min(X(:,2)):h:max(X(:,2)));

[~,score] = predict(SVMModel,[X1(:),X2(:)]);

scoreGrid = reshape(score,size(X1,1),size(X2,2));

figure

plot(X(:,1),X(:,2),'k.')

hold on

plot(X(svInd,1),X(svInd,2),'ro','MarkerSize',10)

contour(X1,X2,scoreGrid)

colorbar;

title('{\bf Iris Outlier Detection via One-Class SVM}')

xlabel('Sepal Length (cm)')

ylabel('Sepal Width (cm)')

legend('Observation','Support Vector')

hold off

22 Functions — Alphabetical List

22-1592

The boundary separating the outliers from the rest of the data occurs where the contour
value is 0.

Verify that the fraction of observations with negative scores in the cross-validated data is
close to 5%.

CVSVMModel = crossval(SVMModel);

[~,scorePred] = kfoldPredict(CVSVMModel);

outlierRate = mean(scorePred<0)

outlierRate =

 0.0467

 fitcsvm

22-1593

Find Multiple Class Boundaries Using Binary SVM

Load Fisher's iris data set. Use the petal lengths and widths.

load fisheriris

X = meas(:,3:4);

Y = species;

Examine a scatter plot of the data.

figure

gscatter(X(:,1),X(:,2),Y);

h = gca;

lims = [h.XLim h.YLim]; % Extract the x and y axis limits

title('{\bf Scatter Diagram of Iris Measurements}');

xlabel('Petal Length (cm)');

ylabel('Petal Width (cm)');

legend('Location','Northwest');

22 Functions — Alphabetical List

22-1594

There are three classes, one of which is linearly separable from the others.

For each class:

1 Create a logical vector (indx) indicating whether an observation is a member of the
class.

2 Train an SVM classifier using the predictor data and indx.
3 Store the classifier in a cell of a cell array.

% It is good practice to define the class order and standardize the

% predictors.

SVMModels = cell(3,1);

classes = unique(Y);

 fitcsvm

22-1595

rng(1); % For reproducibility

for j = 1:numel(classes);

 indx = strcmp(Y,classes(j)); % Create binary classes for each classifier

 SVMModels{j} = fitcsvm(X,indx,'ClassNames',[false true],'Standardize',true,...

 'KernelFunction','rbf','BoxConstraint',1);

end

SVMModels is a 3-by-1 cell array, with each cell containing a ClassificationSVM
classifier. For each cell, the positive class is setosa, versicolor, and virginica, respectively.

Define a fine grid within the plot, and treat the coordinates as new observations from the
distribution of the training data. Estimate the score of the new observations using each
classifier.

d = 0.02;

[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...

 min(X(:,2)):d:max(X(:,2)));

xGrid = [x1Grid(:),x2Grid(:)];

N = size(xGrid,1);

Scores = zeros(N,numel(classes));

for j = 1:numel(classes);

 [~,score] = predict(SVMModels{j},xGrid);

 Scores(:,j) = score(:,2); % Second column contains positive-class scores

end

Each row of Scores contains three scores. The index of the element with the largest
score is the index of the class to which the new class observation most likely belongs.

Associate each new observation with the classifier that gives it the maximum score.

[~,maxScore] = max(Scores,[],2);

Color in the regions of the plot based on which class the corresponding new observation
belongs.

figure

h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...

 [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);

hold on

h(4:6) = gscatter(X(:,1),X(:,2),Y);

title('{\bf Iris Classification Regions}');

22 Functions — Alphabetical List

22-1596

xlabel('Petal Length (cm)');

ylabel('Petal Width (cm)');

legend(h,{'setosa region','versicolor region','virginica region',...

 'observed setosa','observed versicolor','observed virginica'},...

 'Location','Northwest');

axis tight

hold off

• “Train SVM Classifiers Using a Gaussian Kernel” on page 16-178
• “Train SVM Classifiers Using a Custom Kernel” on page 16-183
• “Train and Cross Validate SVM Classifiers” on page 16-189

 fitcsvm

22-1597

Input Arguments

X — Predictor data
matrix of numeric values

Predictor data to which the SVM classifier is trained, specified as a matrix of numeric
values.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one predictor.

The length of Y and the number of rows of X must be equal.

It is good practice to:

• Cross validate using the KFold name-value pair argument. The cross-validation
results determine how well the SVM classifier generalizes.

• Standardize the predictor variables using the Standardize name-value pair
argument.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels to which the SVM classifier is trained, specified as a categorical or character
array, logical or numeric vector, or cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The length of Y and the number of rows of X must be equal.

It is good practice to specify the order of the classes using the ClassNames name-value
pair argument.

To specify the response variable name, use the ResponseName name-value pair
argument.

22 Functions — Alphabetical List

22-1598

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'KFold',10,'Cost',[0 2;1 0],'ScoreTransform','sign' specifies to
perform 10-fold cross validation, apply double the penalty to false positives compared to
false negatives, and transform the scores using the sign function.

'Alpha' — Initial estimates of alpha coefficients
vector of nonnegative real values

Initial estimates of alpha coefficients, specified as the comma-separated pair consisting of
'Alpha' and a vector of nonnegative real values. The length of Alpha must be equal to
the number of rows of X.

• Each element of Alpha corresponds to an observation in X.
• Alpha cannot contain any NaNs.
• If you specify Alpha and any of the cross-validation name-value pair arguments

('CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'), then the
software returns an error.

The defaults are:

• 0.5*ones(size(X,1),1) for one-class learning
• zeros(size(X,1),1) for two-class learning

Example: 'Alpha',0.1*ones(size(X,1),1)

Data Types: double | single

'BoxConstraint' — Box constraint
1 (default) | positive scalar

Box constraint, specified as the comma-separated pair consisting of 'BoxConstraint'
and a positive scalar.

For one-class learning, the software always sets the box constraint to 1.

Example: 'BoxConstraint',100

 fitcsvm

22-1599

Data Types: double | single

'CacheSize' — Cache size
1000 (default) | 'maximal' | positive scalar

Cache size, specified as the comma-separated pair consisting of 'CacheSize' and
'maximal' or a positive scalar.

If CacheSize is 'maximal', then the software reserves enough disk space to hold the
entire n-by-n Gram matrix.

If CacheSize is a positive scalar, then the software reserves CacheSize megabytes of
disk space for training the classifier.
Example: 'CacheSize','maximal'

Data Types: double | char | single

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

The default is the distinct class names of Y.

If Y is a character array, then each element must correspond to one row of the array.

Use ClassNames to order the classes or to select a subset of classes for training.

Example: 'ClassNames',logical([0,1])

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure. If you specify:

• The square matrix Cost, then Cost(i,j) is the cost of classifying a point into class
j if its true class is i (i.e., the rows correspond to the true class and the columns
correspond to the predicted class). To specify the class order for the corresponding

22 Functions — Alphabetical List

22-1600

rows and columns of Cost, additionally specify the ClassNames name-value pair
argument.

• The structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y

• S.ClassificationCosts, which contains the cost matrix with rows and columns
ordered as in S.ClassNames

For two-class learning, if you specify a cost matrix, then the software updates the prior
probabilities by incorporating the penalties described in the cost matrix. Subsequently,
the cost matrix resets to the default. For more details, see “Algorithms” on page
22-1616.

The defaults are:

• For one-class learning, Cost = 0.
• For two-class learning, Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0,1;2,0]

Data Types: double | single | struct

'CrossVal' — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair
consisting of 'Crossval' and a string.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using one of the 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' name-value pair arguments.

You can only use one of these four options at a time for creating a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Alternatively, cross-validate SVMModel later by passing it to crossval.

Example: 'Crossval','on'

Data Types: char

 fitcsvm

22-1601

'CVPartition' — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of
'CVPartition' and a cvpartition partition object as created by cvpartition. The
partition object specifies the type of cross-validation, and also the indexing for training
and validation sets.

If you specify CVPartition, then you cannot specify any of Holdout, KFold, or Leaveout.

'DeltaGradientTolerance' — Tolerance for gradient difference
nonnegative scalar

Tolerance for the gradient difference between upper and lower violators obtained by
Sequential Minimal Optimization (SMO) or Iterative Single Data Algorithm (ISDA),
specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a
nonnegative scalar.

If DeltaGradientTolerance is 0, then the software does not use the tolerance for the
gradient difference to check for optimization convergence.

The defaults are:

• 1e-3 if the solver is SMO (for example, you set 'Solver','SMO')
• 0 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'DeltaGapTolerance',1e-2

Data Types: double | single

'GapTolerance' — Feasibility gap tolerance
0 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated
pair consisting of 'GapTolerance' and a nonnegative scalar.

If GapTolerance is 0, then the software does not use the feasibility gap tolerance to
check for optimization convergence.
Example: 'GapTolerance',1e-2

Data Types: double | single

22 Functions — Alphabetical List

22-1602

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1). If you specify
'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model
using the rest of the data

2 Stores the compact, trained model in CVMdl.Trained

If you specify Holdout, then you cannot specify any of CVPartition, KFold, or Leaveout.

Example: 'Holdout',0.1

Data Types: double | single

'IterationLimit' — Maximal number of numerical optimization iterations
1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated
pair consisting of 'IterationLimit' and a positive integer.

The software returns a trained classifier regardless of whether the optimization routine
successfully converges.
Example: 'IterationLimit',1e8

Data Types: double | single

'KernelFunction' — Kernel function
string

Kernel function used to compute the Gram matrix, specified as the comma-separated pair
consisting of 'KernelFunction' and a string.

This table summarizes the available options for setting a kernel function.

Value Description Formula

'gaussian' or 'rbf' Gaussian or Radial Basis
Function (RBF) kernel,
default for one-class
learning

G x x x x1 2 1 2
2

, exp() = -()-

 fitcsvm

22-1603

Value Description Formula

'linear' Linear kernel, default for
two-class learning

G x xx x(),1 2 1 2= ¢

'polynomial' Polynomial kernel. Use
'PolynomialOrder',polyOrder

to specify a polynomial
kernel of order polyOrder.

G x x x x p(,) ()1 2 1 21= + ¢

You can set your own kernel function, for example, kernel, by setting
'KernelFunction','kernel'. kernel must have the following form:

function G = kernel(U,V)

where:

• U is an m-by-p matrix.
• V is an n-by-p matrix.
• G is an m-by-n Gram matrix of the rows of U and V.

And kernel.m must be on the MATLAB path.

It is good practice to avoid using generic names for kernel functions. For example, call a
sigmoid kernel function 'mysigmoid' rather than 'sigmoid'.

Example: 'KernelFunction','gaussian'

Data Types: char

'KernelOffset' — Kernel offset parameter
nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of
'KernelOffset' and a nonnegative scalar.

The software adds KernelOffset to each element of the Gram matrix.

The defaults are:

• 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 0.1 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'KernelOffset',0

22 Functions — Alphabetical List

22-1604

Data Types: double | single

'KernelScale' — Kernel scale parameter
1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of
'KernelScale' and 'auto' or a positive scalar.

• If KernelFunction is 'gaussian' ('rbf'), 'linear', or 'polymonial', then the
software divides all elements of the predictor matrix X by the value of KernelScale.
Then, the software applies the appropriate kernel norm to compute the Gram matrix.

• If you specify 'auto', then the software uses a heuristic procedure to select the scale
value. The heuristic procedure uses subsampling. Therefore, to reproduce results, set
a random number seed using rng before training the classifier.

• If you specify KernelScale and your own kernel function, for example, kernel,
using 'KernelFunction','kernel', then the software displays an error. You must
apply scaling within kernel.

Example: 'KernelScale',''auto'

Data Types: double | single | char

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated classifier, specified as the comma-separated
pair consisting of 'KFold' and a positive integer value.

You can only use one of these four options at a time to create a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'KFold',8

Data Types: single | double

'KKTTolerance' — Karush-Kuhn-Tucker complementarity conditions violation tolerance
nonnegative scalar

Karush-Kuhn-Tucker (KKT) complementarity conditions violation tolerance, specified as
the comma-separated pair consisting of 'KKTTolerance' and a nonnegative scalar.

If KKTTolerance is 0, then the software does not use the KKT complementarity
conditions violation tolerance to check for optimization convergence.

 fitcsvm

22-1605

The defaults are:

• 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 1e-3 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'KKTTolerance',1e-2

Data Types: double | single

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off'. If you specify 'on', then the software
implements leave-one-out cross validation.

If you use 'Leaveout', you cannot use these 'CVPartition', 'Holdout', or 'KFold'
name-value pair arguments.
Example: 'Leaveout','on'

Data Types: char

'Nu' — ν parameter for one-class learning
0.5 (default) | positive scalar

ν parameter for one-class learning, specified as the comma-separated pair consisting of
'Nu' and a positive scalar. Nu must be greater than 0 and at most 1.

Set Nu to control the tradeoff between ensuring most training examples are in the
positive class and minimizing the weights in the score function.
Example: 'Nu',0.25

Data Types: double | single

'NumPrint' — Number of iterations between optimization diagnostic message output
1000 (default) | nonnegative integer

Number of iterations between optimization diagnostic message output, specified as the
comma-separated pair consisting of 'NumPrint' and a nonnegative integer.

If you use 'Verbose',1 and 'NumPrint',numprint, then the software displays all
optimization diagnostic messages from SMO and ISDA every numprint iterations in the
Command Window.

22 Functions — Alphabetical List

22-1606

Example: 'NumPrint',500

Data Types: double | single

'OutlierFraction' — Expected proportion of outliers in training data
0 (default) | nonnegative scalar

Expected proportion of outliers in the training data, specified as the comma-separated
pair consisting of 'OutlierFraction' and a nonnegative scalar. OutlierFraction
must be at least 0 and less than 1.

If you set 'OutlierFraction',outlierfraction, where outlierfraction is a
value greater than 0, then:

• For two-class learning, the software implements robust learning. In other words, the
software attempts to remove 100*outlierfraction% of the observations when the
optimization algorithm converges. The removed observations correspond to gradients
that are large in magnitude.

• For one-class learning, the software finds an appropriate bias term such that
outlierfraction of the observations in the training set have negative scores.

Example: 'OutlierFraction',0.01

Data Types: double | single

'PolynomialOrder' — Polynomial kernel function order
3 (default) | positive integer

Polynomial kernel function order, specified as the comma-separated pair consisting of
'PolynomialOrder' and a positive integer.

If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the
software displays an error.
Example: 'PolynomialOrder',2

Data Types: double | single

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in X.

 fitcsvm

22-1607

Example: 'PredictorNames',{'PedalWidth','PedalLength'}

Data Types: cell

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and a string, numeric vector, or a structure.

This table summarizes the available options for setting prior probabilities.

Value Description

'empirical' The class prior probabilities are the class
relative frequencies in Y.

'uniform' All class prior probabilities are equal to
1/K, where K is the number of classes.

numeric vector Each element is a class prior probability.
Order the elements according to
SVMModel.ClassNames or specify the
order using the ClassNames name-value
pair argument. The software normalizes
the elements such that they sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class
names as a variable of the same type as
Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such
that they sum to 1.

For two-class learning, if you specify a cost matrix, then the software updates the prior
probabilities by incorporating the penalties described in the cost matrix. For more
details, see “Algorithms” on page 22-1616.
Example: struct('ClassNames',{{'setosa','versicolor'}},'ClassProbs',
[1,2])

Data Types: char | double | single | struct

22 Functions — Alphabetical List

22-1608

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable Y.

Example: 'ResponseName','IrisType'

Data Types: char

'ScoreTransform' — Score transform function
'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'sign' |
'symmetric' | 'symmetriclogit' | 'symmetricismax' | function handle

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and a string or function handle.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the available, built-in functions.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest

score to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest

score to 1, and scores for all other classes to
-1.

• For a MATLAB function, or a function that you define, enter its function handle.

SVMModel.ScoreTransform = @function;

 fitcsvm

22-1609

function should accept a matrix (the original scores) and return a matrix of the
same size (the transformed scores).

Example: 'ScoreTransform','sign'

Data Types: char | function_handle

'ShrinkagePeriod' — Number of iterations between movement of observations from
active to inactive set
0 (default) | nonnegative integer

Number of iterations between the movement of observations from the active to inactive
set, specified as the comma-separated pair consisting of 'ShrinkagePeriod' and a
nonnegative integer.

If you set 'ShrinkagePeriod',0, then the software does not shrink the active set.

Example: 'ShrinkagePeriod',1000

Data Types: double | single

'Solver' — Optimization routine
'ISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as a string.

This table summarizes the available optimization routine options.

Value Description

'ISDA' Iterative Single Data Algorithm (see [4])
'L1QP' Uses quadprog to implement L1 soft-

margin minimization by quadratic
programming. This option requires an
Optimization Toolbox license. For more
details, see “Quadratic Programming
Definition”.

'SMO' Sequential Minimal Optimization (see [2])

The defaults are:

• 'ISDA' if you set 'OutlierFraction' to a positive value and for two-class learning

22 Functions — Alphabetical List

22-1610

• 'SMO' otherwise

Example: 'Solver','ISDA'

Data Types: char

'Standardize' — Flag to standardize predictors
false (default) | true

Flag to standardize the predictors, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true, then the software centers and scales each column of
the predictor data (X) by the column mean and standard deviation, respectively. It is
good practice to standardize the predictor data.
Example: 'Standardize',true

Data Types: logical

'Verbose' — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose'
and either 0, 1, or 2. Verbose controls the amount of optimization information
that the software displays in the Command Window and saves as a structure to
SVMModel.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

Value Description

0 The software does not display or save
convergence information.

1 The software displays diagnostic messages
and saves convergence criteria every
numprint iterations, where numprint is
the value of the name-value pair argument
'NumPrint'.

2 The software displays diagnostic messages
and saves convergence criteria at every
iteration.

 fitcsvm

22-1611

Example: 'Verbose',1

Data Types: double | single

'Weights' — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector.

The size of Weights must equal the number of rows of X. The software weighs the
observations in each row of X with the corresponding weight in Weights.

The software normalizes Weights to sum up to the value of the prior probability in the
respective class.
Data Types: double | single

Output Arguments

SVMModel — Trained SVM classifier
ClassificationSVM classifier | ClassificationPartitionedModel cross-validated
classifier

Trained SVM classifier, returned as a ClassificationSVM classifier or
ClassificationPartitionedModel cross-validated classifier.

If you set any of the name-value pair arguments KFold, Holdout, Leaveout, CrossVal, or
CVPartition, then SVMModel is a ClassificationPartitionedModel cross-validated
classifier. Otherwise, SVMModel is a ClassificationSVM classifier.

To reference properties of SVMModel, use dot notation. For example, enter
SVMModel.Alpha in the Command Window to display the trained Lagrange multipliers.

Limitations

• fitcsvm trains SVM classifiers for one- or two-class learning applications. To train
SVM classifiers using data with more than two classes, use fitcecoc.

22 Functions — Alphabetical List

22-1612

More About

Box Constraint

A parameter that controls the maximum penalty imposed on margin-violating
observations, and aids in preventing overfitting (regularization).

If you increase the box constraint, then the SVM classifier assigns fewer support vectors.
However, increasing the box constraint can lead to longer training times.

Gram Matrix

The Gram matrix of a set of n vectors {x1,..,xn; xj ∊ Rp} is an n-by-n matrix with element
(j,k) defined as G(xj,xk) = <ϕ(xj),ϕ(xk)>, an inner product of the transformed predictors
using the kernel function ϕ.

For nonlinear SVM, the algorithm forms a Gram matrix using the predictor matrix
columns. The dual formalization replaces the inner product of the predictors with
corresponding elements of the resulting Gram matrix (called the “kernel trick”).
Subsequently, nonlinear SVM operates in the transformed predictor space to find a
separating hyperplane.

Karush-Kuhn-Tucker Complementarity Conditions

KKT complementarity conditions are optimization constraints required for optimal
nonlinear programming solutions.

In SVM, the KKT complementarity conditions are

a f x

x a

j j j j

j j

y

C

w x b¢ +()() - +È
Î

˘
˚

=

-() =

Ï

Ì
Ô

Ó
Ô

1 0

0

for all j = 1,...,n, where wj is a weight, ϕ is a kernel function (see Gram matrix), and ξj is a
slack variable. If the classes are perfectly separable, then ξj = 0 for all j = 1,...,n.

One-Class Learning

One-class learning, or unsupervised SVM, aims at separating data from the origin in the
high-dimensional, predictor space (not the original predictor space), and is an algorithm
used for outlier detection.

 fitcsvm

22-1613

The algorithm resembles that of SVM for binary classification. The objective is to
minimize dual expression

0 5. (,)a aj
jk

k j kG x xÂ

with respect to a a1,...,
n

, subject to

a nj nÂ =

and 0 1£ £a j for all j = 1,...,n. G(xj,xk,) is element (j,k) of the Gram matrix.

A small value of ν leads to fewer support vectors, and, therefore, a smooth, crude decision
boundary. A large value of ν leads to more support vectors, and therefore, a curvy,
flexible decision boundary. The optimal value of ν should be large enough to capture the
data complexity and small enough to avoid overtraining. Also, 0 < ν ≤ 1.

For more details, see [5].

Support Vector

Support vectors are observations corresponding to strictly positive estimates of α1,...,αn.

SVM classifiers that yield fewer support vectors for a given training set are more
desirable.

Support Vector Machines for Binary Classification

The SVM binary classification algorithm searches for an optimal hyperplane that
separates the data into two classes. For separable classes, the optimal hyperplane
maximizes a margin (space that does not contain any observations) surrounding itself,
which creates boundaries for the positive and negative classes. For inseparable classes,
the objective is the same, but the algorithm imposes a penalty on the length of the
margin for every observation that is on the wrong side of its class boundary.

The linear SVM score function is

f x x() ,= ¢ +b b0

22 Functions — Alphabetical List

22-1614

where:

• x is an observation (corresponding to a row of X).
• The vector β contains the coefficients that define an orthogonal vector to the

hyperplane (corresponding to SVMModel.Beta). For separable data, the optimal

margin length is 2 / .b

• β0 is the bias term (corresponding to SVMModel.Bias).

The root of f(x) for particular coefficients defines a hyperplane. For a particular
hyperplane, f(z) is the distance from point z to the hyperplane.

An SVM classifier searches for the maximum margin length, while keeping observations
in the positive (y = 1) and negative (y = –1) classes separate. Therefore:

•
For separable classes, the objective is to minimize b with respect to the β and β0
subject to yjf(xj) ≥ 1, for all j = 1,..,n. This is the primal formalization for separable
classes.

• For inseparable classes, SVM uses slack variables (ξj) to penalize the objective
function for observations that cross the margin boundary for their class. ξj = 0 for
observations that do not cross the margin boundary for their class, otherwise ξj ≥ 0.

The objective is to minimize 0 5
2

. b x+ ÂC j with respect to the β, β0, and ξj subject to
y f xj j j() ≥ -1 x and x j ≥ 0 for all j = 1,..,n, and for a positive scalar box constraint C.

This is the primal formalization for inseparable classes.

SVM uses the Lagrange multipliers method to optimize the objective. This introduces
n coefficients α1,...,αn (corresponding to SVMModel.Alpha). The dual formalizations for
linear SVM are:

• For separable classes, minimize

0 5

11 1

.

k

n

j

n

j k j k j k

j

n

jy y x x

== =

ÂÂ Â¢ -a a a

with respect to α1,...,αn, subject to a j jyÂ = 0 , αj ≥ 0 for all j = 1,...,n, and Karush-
Kuhn-Tucker (KKT) complementarity conditions.

 fitcsvm

22-1615

• For inseparable classes, the objective is the same as for separable classes, except for

the additional condition 0 £ £a j C for all j = 1,..,n.

The resulting score function is

f x y x x bj

j

n

j j() � � .= ¢ +

=

Â a

1

The score function is free of the estimate of β as a result of the primal formalization.

In some cases, there is a nonlinear boundary separating the classes. Nonlinear SVM
works in a transformed predictor space to find an optimal, separating hyperplane.

The dual formalization for nonlinear SVM is

0 5

11 1

. (,)a a aj

k

n

j

n

k j k j k j

j

n

y y G x x

== =

ÂÂ Â-

with respect to α1,...,αn, subject to a j jyÂ = 0 , 0 £ £a j C for all j = 1,..,n, and the KKT
complementarity conditions.G(xk,xj) are elements of the Gram matrix. The resulting score
function is

f x y G x x bj

j

n

j j() (,) .= +

=

Â a

1

For more details, see Understanding Support Vector Machines, [1], and [3].

Tips

• For one-class learning:

• The default setting for the name-value pair argument 'Alpha' can lead to long
training times. To speed up training, set Alpha to a vector mostly composed of 0s.

• Set the name-value pair argument Nu to a value closer to 0 to yield fewer support
vectors, and, therefore, a smoother, but crude decision boundary

22 Functions — Alphabetical List

22-1616

• Sparsity in support vectors is a desirable property of an SVM classifier. To decrease
the number of support vectors, set BoxConstraint to a large value. This also
increases the training time.

• For large data sets, try optimizing the cache size. This can have a significant impact
on the training speed.

• If the support vector set is much less than the number of observations in the training
set, then you might significantly speed up convergence by shrinking the active-set
using the name-value pair argument 'ShrinkagePeriod'. It is good practice to use
'ShrinkagePeriod',1000.

Algorithms

• All solvers implement L1 soft-margin minimization.
• fitcsvm and svmtrain use, among other algorithms, SMO for optimization. The

software implements SMO differently between the two functions, but numerical
studies show that there is sensible agreement in the results.

• For one-class learning, the software estimates the Lagrange multipliers, α1,...,αn, such
that

a nj

j

n

n

=

Â =

1

.

• For two-class learning, if you specify a cost matrix C, then the software updates the
class prior probabilities (p) to pc by incorporating the penalties described in C. The
formula for the updated prior probability vector is

p
p

p

C

C
c =

¢

¢Â
.

Subsequently, the software resets the cost matrix to the default:

C =
È

Î
Í

˘

˚
˙

0 1

1 0
.

• If you set 'Standardize',true when you train the SVM classifier using fitcsvm,
then the software trains the classifier using the standardized predictor matrix,
but stores the unstandardized data in the classifier property X. However, if you
standardize the data, then the data size in memory doubles until optimization ends.

 fitcsvm

22-1617

• If you set 'Standardize',true and any of 'Cost', 'Prior', or 'Weights', then
the software standardizes the predictors using their corresponding weighted means
and weighted standard deviations.

• Let p be the proportion of outliers you expect in the training data. If you use
'OutlierFraction',p when you train the SVM classifier using fitcsvm, then:

• For one-class learning, the software trains the bias term such that 100p% of the
observations in the training data have negative scores.

• The software implements robust learning for two-class learning. In other words,
the software attempts to remove 100p% of the observations when the optimization
algorithm converges. The removed observations correspond to gradients that are
large in magnitude.

• “Understanding Support Vector Machines” on page 16-170

References

[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

[2] Fan, R.-E., P.-H. Chen, and C.-J. Lin. “Working set selection using second order
information for training support vector machines.” Journal of Machine Learning
Research, Vol 6, 2005, pp. 1889–1918.

[3] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[4] Kecman V., T. -M. Huang, and M. Vogt. “Iterative Single Data Algorithm for Training
Kernel Machines from Huge Data Sets: Theory and Performance.” In Support
Vector Machines: Theory and Applications. Edited by Lipo Wang, 255–274.
Berlin: Springer-Verlag, 2005.

[5] Scholkopf, B., J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
“Estimating the Support of a High-Dimensional Distribution.” Neural Comput.,
Vol. 13, Number 7, 2001, pp. 1443–1471.

[6] Scholkopf, B., and A. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond, Adaptive Computation and Machine
Learning. Cambridge, MA: The MIT Press, 2002.

22 Functions — Alphabetical List

22-1618

See Also
ClassificationPartitionedModel | ClassificationSVM |
CompactClassificationSVM | fitcecoc | fitSVMPosterior | predict |
quadprog | rng

 fitctree

22-1619

fitctree

Fit classification tree

Syntax

tree = fitctree(X,Y)

tree = fitctree(X,Y,Name,Value)

Description

tree = fitctree(X,Y) returns a classification tree based on the input variables (also
known as predictors, features, or attributes) X and output (response or labels) Y. The
returned tree is a binary tree, where each branching node is split based on the values of a
column of X.

tree = fitctree(X,Y,Name,Value) fits a tree with additional options specified by
one or more name-value pair arguments. For example, you can specify the algorithm
used to find the best split on a categorical predictor, grow a cross-validated tree, or hold
out a fraction of the input data for validation.

Examples

Grow a Classification Tree

Grow a classification tree using the ionosphere data set.

load ionosphere

tc = fitctree(X,Y)

tc =

 ClassificationTree

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

22 Functions — Alphabetical List

22-1620

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 CategoricalPredictors: []

 NumObservations: 351

Control Tree Depth

You can control the depth of the trees using the MaxNumSplits, MinLeafSize, or
MinParentSize name-value pair parameters. fitctree grows deep decision trees by
default. You can grow shallower trees to reduce model complexity or computation time.

Load the ionosphere data set.

load ionosphere

The default values of the tree depth controllers for growing classification trees are:

• n - 1 for MaxNumSplits. n is the training sample size.
• 1 for MinLeafSize.
• 10 for MinParentSize.

These default values tend to grow deep trees for large training sample sizes.

Train a classification tree using the default values for tree depth control. Cross validate
the model using 10-fold cross validation.

rng(1); % For reproducibility

MdlDefault = fitctree(X,Y,'CrossVal','on');

Draw a histogram of the number of imposed on the trees. Also, view one of the trees.

numBranches = @(x)sum(x.IsBranch);

mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);

figure;

histogram(mdlDefaultNumSplits)

view(MdlDefault.Trained{1},'Mode','graph')

 fitctree

22-1621

22 Functions — Alphabetical List

22-1622

The average number of splits is around 15.

Suppose that you want a classification tree that is not as complex (deep) as the ones
trained using the default number of splits. Train another classification tree, but set the
maximum number of splits at 7, which is about half the mean number of splits from the
default classification tree. Cross validate the model using 10-fold cross validation.

Mdl7 = fitctree(X,Y,'MaxNumSplits',7,'CrossVal','on');

view(Mdl7.Trained{1},'Mode','graph')

 fitctree

22-1623

Compare the cross validation classification errors of the models.

classErrorDefault = kfoldLoss(MdlDefault)

classError7 = kfoldLoss(Mdl7)

classErrorDefault =

 0.1140

classError7 =

22 Functions — Alphabetical List

22-1624

 0.1254

Mdl7 is much less complex and performs only slightly worse than MdlDefault.

Input Arguments

X — Predictor values
matrix of floating-point values

Predictor values, specified as a matrix of floating-point values.

fitctree considers NaN values in X as missing values. fitctree does not use
observations with all missing values for X in the fit. fitctree uses observations with
some missing values for X to find splits on variables for which these observations have
valid values.
Data Types: single | double

Y — Class labels
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class labels, specified as a numeric vector, categorical vector, logical vector, character
array, or cell array of strings.

Each row of X represents the classification of the corresponding row of X. For numeric
Y, consider using fitrtree instead. fitctree considers NaN, '' (empty string), and
<undefined> values in Y to be missing values.

fitctree does not use observations with missing values for Y in the fit.

Data Types: single | double | char | logical | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 fitctree

22-1625

Example: 'CrossVal','on','MinLeafSize',40 specifies a cross-validated
classification tree with a minimum of 40 observations per leaf.

'AlgorithmForCategorical' — Algorithm for best categorical predictor split
'Exact' | 'PullLeft' | 'PCA' | 'OVAbyClass'

Algorithm to find the best split on a categorical predictor with C categories
for data and K ≥ 3 classes, specified as the comma-separated pair consisting of
'AlgorithmForCategorical' and one of the following.

'Exact' Consider all 2C–1 – 1 combinations.
'PullLeft' Start with all C categories on the right

branch. Consider moving each category to
the left branch as it achieves the minimum
impurity for the K classes among the
remaining categories. From this sequence,
choose the split that has the lowest
impurity.

'PCA' Compute a score for each category
using the inner product between the
first principal component of a weighted
covariance matrix (of the centered class
probability matrix) and the vector of class
probabilities for that category. Sort the
scores in ascending order, and consider all
C – 1 splits.

'OVAbyClass' Start with all C categories on the right
branch. For each class, order the categories
based on their probability for that class.
For the first class, consider moving each
category to the left branch in order,
recording the impurity criterion at each
move. Repeat for the remaining classes.
From this sequence, choose the split that
has the minimum impurity.

fitctree automatically selects the optimal subset of algorithms for each split using
the known number of classes and levels of a categorical predictor. For K = 2 classes,
fitctree always performs the exact search. Use the 'AlgorithmForCategorical'
name-value pair argument to specify a particular algorithm.

22 Functions — Alphabetical List

22-1626

Example: 'AlgorithmForCategorical','PCA'

'CategoricalPredictors' — Categorical predictors list
numeric or logical vector | cell array of strings | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

• A numeric vector with indices from 1 through p, where p is the number of columns of
X.

• A logical vector of length p, where a true entry means that the corresponding column
of X is a categorical variable.

• A cell array of strings, where each element in the array is the name of a predictor
variable. The names must match entries in PredictorNames values.

• A character matrix, where each row of the matrix is a name of a predictor variable.
The names must match entries in PredictorNames values. Pad the names with
extra blanks so each row of the character matrix has the same length.

• 'all', meaning all predictors are categorical.

Example: 'CategoricalPredictors','all'

Data Types: single | double | char

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and an
array representing the class names. Use the same data type as the values that exist in Y.

Use ClassNames to order the classes or to select a subset of classes for training. The
default is the class names that exist in Y.
Data Types: single | double | char | logical | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of
'Cost' and one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its
true class is i (i.e., the rows correspond to the true class and the columns correspond

 fitctree

22-1627

to the predicted class). To specify the class order for the corresponding rows and
columns of Cost, additionally specify the ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a
variable of the same data type as Y, and S.ClassificationCosts containing the
cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'CrossVal' — Flag to grow cross-validated decision tree
'off' (default) | 'on'

Flag to grow a cross-validated decision tree, specified as the comma-separated pair
consisting of 'CrossVal' and 'on' or 'off'.

If 'on', fitctree grows a cross-validated decision tree with 10 folds. You can override
this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' name-value pair arguments. Note that you can only use one of these
four arguments at a time when creating a cross-validated tree.

Alternatively, cross validate tree later using the crossval method.

Example: 'CrossVal','on'

'CVPartition' — Partition for cross-validated tree
cvpartition object

Partition to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'CVPartition' and an object created using cvpartition.

If you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or
'Leaveout' name-value pair arguments.

'Holdout' — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the rest of the data for training.

If you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or
'Leaveout' name-value pair arguments.

22 Functions — Alphabetical List

22-1628

Example: 'Holdout',0.1

Data Types: single | double

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or
'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout' and 'on' or 'off'. Specify 'on' to use leave-one-out cross-validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or
'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'MaxNumCategories' — Maximum category levels
10 (default) | nonnegative scalar value

Maximum category levels, specified as the comma-separated pair consisting
of 'MaxNumCategories' and a nonnegative scalar value. fitctree splits a
categorical predictor using the exact search algorithm if the predictor has at most
MaxNumCategories levels in the split node. Otherwise, fitctree finds the best
categorical split using one of the inexact algorithms.

Passing a small value can lead to loss of accuracy and passing a large value can increase
computation time and memory overload.
Example: 'MaxNumCategories',8

'MaxNumSplits' — Maximal number of decision splits
size(X,1) - 1 (default) | positive integer

 fitctree

22-1629

Maximal number of decision splits (or branch nodes), specified as the comma-
separated pair consisting of 'MaxNumSplits' and a positive integer. fitctree splits
MaxNumSplits or fewer branch nodes. For more details on splitting behavior, see
Algorithms.
Example: 'MaxNumSplits',5

Data Types: single | double

'MergeLeaves' — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves'
and 'on' or 'off'.

If MergeLeaves is 'on', then fitctree:

• Merges leaves that originate from the same parent node, and that yields a sum of risk
values greater or equal to the risk associated with the parent node

• Estimates the optimal sequence of pruned subtrees, but does not prune the
classification tree

Otherwise, fitctree does not merge leaves.

Example: 'MergeLeaves','off'

'MinLeafSize' — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair
consisting of 'MinLeafSize' and a positive integer value. Each leaf has at least
MinLeafSize observations per tree leaf. If you supply both MinParentSize and
MinLeafSize, fitctree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

Example: 'MinLeafSize',3

Data Types: single | double

'MinParentSize' — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair
consisting of 'MinParentSize' and a positive integer value. Each branch node in the

22 Functions — Alphabetical List

22-1630

tree has at least MinParentSize observations. If you supply both MinParentSize and
MinLeafSize, fitctree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

Example: 'MinParentSize',8

Data Types: single | double

'NumVariablesToSample' — Number of predictors to select at random for each split
'all' | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated
pair consisting of 'NumVariablesToSample' and a positive integer value. You can also
specify 'all' to use all available predictors.

Example: 'NumVariablesToSample',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in X.

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• A string:

• 'empirical' determines class probabilities from class frequencies in Y. If
you pass observation weights, fitctree uses the weights to compute the class
probabilities.

• 'uniform' sets all class probabilities equal.
• A vector (one scalar value for each class). To specify the class order for the

corresponding elements of Prior, additionally specify the ClassNames name-value
pair argument.

• A structure S with two fields:

 fitctree

22-1631

• S.ClassNames containing the class names as a variable of the same type as Y
• S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to
the value of the prior probability in the respective class.
Example: 'Prior','uniform'

'Prune' — Flag to estimate optimal sequence of pruned subtrees
'on' (default) | 'off'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-
separated pair consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then fitctree grows the classification tree without pruning it, but
estimates the optimal sequence of pruned subtrees. Otherwise, fitctree grows the
classification tree without estimating the optimal sequence of pruned subtrees.

To prune a trained ClassificationTree model, pass it to prune.

Example: 'Prune','off'

'PruneCriterion' — Pruning criterion
'error' (default) | 'impurity'

Pruning criterion, specified as the comma-separated pair consisting of
'PruneCriterion' and 'error' or 'impurity'.

Example: 'PruneCriterion','impurity'

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string representing the name of the response variable Y.

Example: 'ResponseName','Response'

'ScoreTransform' — Score transform function
'none' | 'symmetric' | 'invlogit' | 'ismax' | function handle | ...

Score transform function, specified as the comma-separated pair consisting of
'ScoreTransform' and a function handle for transforming scores. Your function

22 Functions — Alphabetical List

22-1632

should accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Alternatively, you can specify one of the following strings representing a built-in
transformation function.

String Formula

'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1–x))
'ismax' Set the score for the class with the largest score

to 1, and scores for all other classes to 0.
'logit' 1/(1 + e–x)
'none' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetriclogit' 2/(1 + e–x) – 1
'symmetricismax' Set the score for the class with the largest score

to 1, and scores for all other classes to -1.

Example: 'ScoreTransform','logit'

'SplitCriterion' — Split criterion
'gdi' (default) | 'twoing' | 'deviance'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion'
and 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for
maximum deviance reduction (also known as cross entropy).
Example: 'SplitCriterion','deviance'

'Surrogate' — Surrogate decision splits flag
'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of
'Surrogate' and 'on', 'off', 'all', or a positive integer value.

• When set to 'on', fitctree finds at most 10 surrogate splits at each branch node.

 fitctree

22-1633

• When set to 'all', fitctree finds all surrogate splits at each branch node. The
'all' setting can use considerable time and memory.

• When set to a positive integer value, fitctree finds at most the specified number of
surrogate splits at each branch node.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also lets you compute measures of predictive association between predictors.
Example: 'Surrogate','on'

'Weights' — Observation weights
ones(size(x,1),1) (default) | vector of scalar values

Vector of observation weights, specified as the comma-separated pair consisting of
'Weights' and a vector of scalar values. The length of Weights equals the number of
rows in X. fitctree normalizes the weights in each class to add up to the value of the
prior probability of the class.
Data Types: single | double

Output Arguments

tree — Classification tree
classification tree object

Classification tree, returned as a classification tree object.

Using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'
options results in a tree of class ClassificationPartitionedModel. You cannot use
a partitioned tree for prediction, so this kind of tree does not have a predict method.
Instead, use kfoldpredict to predict responses for observations not used for training.

Otherwise, tree is of class ClassificationTree, and you can use the predict
method to make predictions.

More About

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

22 Functions — Alphabetical List

22-1634

Impurity means one of several things, depending on your choice of the SplitCriterion
name-value pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1 2
- Â p i

i

(),

where the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node. A node with just one class (a pure node) has
Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of
node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the
deviance of a node is

-Â p i p i

i

() log ().

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a

different measure for deciding how to split a node. Let L(i) denote the fraction of
members of class i in the left child node after a split, and R(i) denote the fraction of
members of class i in the right child node after a split. Choose the split criterion to
maximize

P L P R L i R i

i

() () () () ,-
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

2

where P(L) and P(R) are the fractions of observations that split to the left and
right respectively. If the expression is large, the split made each child node purer.
Similarly, if the expression is small, the split made each child node similar to each
other, and hence similar to the parent node, and so the split did not increase node
purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is
the class with the largest number of training samples at a node, the node error is
1 – p(j).

 fitctree

22-1635

Tips

By default, Prune is 'on'. However, this specification does not prune the classification
tree. To prune a trained classification tree, pass the classification tree to prune.

Algorithms

• If MergeLeaves is 'on' and PruneCriterion is 'error' (which are the default values
for these name-value pair arguments), then the software applies pruning only to the
leaves and by using classification error. This specification amounts to merging leaves
that share the most popular class per leaf.

• To accommodate MaxNumSplits, fitctree splits all nodes in the current
layer, and then counts the number of branch nodes. A layer is the set of nodes
that are equidistant from the root node. If the number of branch nodes exceeds
MaxNumSplits, fitctree follows this procedure:

1 Determine how many branch nodes in the current layer must be unsplit so that
there are at most MaxNumSplits branch nodes.

2 Sort the branch nodes by their impurity gains.
3 Unsplit the number of least successful branches.
4 Return the decision tree grown so far.

This procedure produces maximally balanced trees.
• The software splits branch nodes layer by layer until at least one of these events

occurs:

• There are MaxNumSplits branch nodes.
• A proposed split causes the number of observations in at least one branch node to

be fewer than MinParentSize.
• A proposed split causes the number of observations in at least one leaf node to be

fewer than MinLeafSize.
• The algorithm cannot find a good split within a layer (i.e., the pruning criterion

(see PruneCriterion), does not improve for all proposed splits in a layer). A special
case is when all nodes are pure (i.e., all observations in the node have the same
class).

MaxNumSplits and MinLeafSize do not affect splitting at their default values.
Therefore, if you set 'MaxNumSplits', splitting might stop due to the value of
MinParentSize, before MaxNumSplits splits occur.

22 Functions — Alphabetical List

22-1636

• For dual-core systems and above, fitctree parallelizes training decision trees
using Intel Threading Building Blocks (TBB). For details on Intel TBB, see https://
software.intel.com/en-us/intel-tbb.

• “Splitting Categorical Predictors” on page 16-65

References

[1] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. “Partitioning Nominal Attributes
in Decision Trees.” Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197–
217.

[2] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
ClassificationPartitionedModel | ClassificationTree | kfoldpredict |
predict | prune

https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb

 fitglm

22-1637

fitglm
Create generalized linear regression model

Syntax

mdl = fitglm(tbl)

mdl = fitglm(X,y)

mdl = fitglm(___ ,modelspec)

mdl = fitglm(___ ,Name,Value)

Description

mdl = fitglm(tbl) returns a generalized linear model fit to variables in the table or
dataset array tbl. By default, fitglm takes the last variable as the response variable.

mdl = fitglm(X,y) returns a generalized linear model of the responses y, fit to the
data matrix X.

mdl = fitglm(___ ,modelspec) returns a generalized linear model of the type you
specify in modelspec.

mdl = fitglm(___ ,Name,Value) returns a generalized linear model with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify which variables are categorical, the distribution of the
response variable, and the link function to use.

Examples

Fit a Logistic Regression Model

Make a logistic binomial model of the probability of smoking as a function of age, weight,
and sex, using a two-way interactions model.

Load the hospital dataset array.

load hospital

22 Functions — Alphabetical List

22-1638

ds = hospital; % just to use the ds name

Specify the model using a formula that allows up to two-way interactions between the
variables age, weight, and sex. Smoker is the response variable.

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

Fit a logistic binomial model.

mdl = fitglm(ds,modelspec,'Distribution','binomial')

mdl =

Generalized Linear regression model:

 logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight

 Distribution = Binomial

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) -6.0492 19.749 -0.3063 0.75938

 Sex_Male -2.2859 12.424 -0.18399 0.85402

 Age 0.11691 0.50977 0.22934 0.81861

 Weight 0.031109 0.15208 0.20455 0.83792

 Sex_Male:Age 0.020734 0.20681 0.10025 0.92014

 Sex_Male:Weight 0.01216 0.053168 0.22871 0.8191

 Age:Weight -0.00071959 0.0038964 -0.18468 0.85348

100 observations, 93 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

All of the p-values (under pValue) are large. This means none of the coefficients are
significant. The large p-value for the test of the model, 0.535, indicates that this model
might not differ statistically from a constant model.

GLM for Poisson Response

Create sample data with 20 predictors, and Poisson response using just three of the
predictors, plus a constant.

rng('default') % for reproducibility

X = randn(100,7);

mu = exp(X(:,[1 3 6])*[.4;.2;.3] + 1);

y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl = fitglm(X,y,'linear','Distribution','poisson')

mdl =

 fitglm

22-1639

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 0.88723 0.070969 12.502 7.3149e-36

 x1 0.44413 0.052337 8.4858 2.1416e-17

 x2 0.0083388 0.056527 0.14752 0.88272

 x3 0.21518 0.063416 3.3932 0.00069087

 x4 -0.058386 0.065503 -0.89135 0.37274

 x5 -0.060824 0.073441 -0.8282 0.40756

 x6 0.34267 0.056778 6.0352 1.5878e-09

 x7 0.04316 0.06146 0.70225 0.48252

100 observations, 92 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 119, p-value = 1.55e-22

The p-values of 2.14e-17, 0.00069, and 1.58e-09 indicate that the coefficients of the
variables x1, x3, and x6 are statistically significant.

• “Generalized Linear Model Workflow” on page 10-39

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables and response variables can be numeric, or any grouping variable
type, such as logical or categorical (see “Grouping Variables” on page 2-52).

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

22 Functions — Alphabetical List

22-1640

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

modelspec — Model specification
string specifying the model | t-by-(p+1) terms matrix | string of the form 'Y ~ terms'

Model specification, which is the starting model for stepwiseglm, specified as one of the
following:

• String specifying the type of model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

 fitglm

22-1641

• t-by-(p+1) matrix, namely “Terms Matrix” on page 22-1647, specifying terms to
include in model, where t is the number of terms and p is the number of predictor
variables, and plus one is for the response variable.

• String representing a “Formula” on page 22-1650 in the form
'Y ~ terms',
where the terms are in “Wilkinson Notation” on page 22-1651.

Example: 'quadratic'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Distribution','normal','link','probit','Exclude',[23,59]
specifies that the distribution of the response is normal, and instructs fitglm to use the
probit link function and exclude the 23rd and 59th observations from the fit.

'BinomialSize' — Number of trials for binomial distribution
1 (default) | scalar value | vector

Number of trials for binomial distribution, that is the sample size, specified as the
comma-separated pair consisting of a scalar value or a vector of the same length as the
response. This is the parameter n for the fitted binomial distribution. BinomialSize
applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of
trials.

As an alternative to BinomialSize, you can specify the response as a two-column vector
with counts in column 1 and BinomialSize in column 2.

Data Types: single | double

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical

22 Functions — Alphabetical List

22-1642

variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'DispersionFlag' — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson'
distributions, specified as the comma-separated pair consisting of 'DispersionFlag'
and one of the following.

true Estimate a dispersion parameter when computing standard
errors

false Default. Use the theoretical value when computing standard
errors

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

'Distribution' — Distribution of the response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'normal' Normal distribution
'binomial' Binomial distribution

 fitglm

22-1643

'poisson' Poisson distribution
'gamma' Gamma distribution
'inverse gaussian' Inverse Gaussian distribution

Example: 'Distribution','gamma'

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'Link' — Link function
The canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-
separated pair consisting of 'Link' and one of the following.

Link Function Name Link Function Mean (Inverse) Function

'identity' f(μ) = μ μ = Xb

22 Functions — Alphabetical List

22-1644

Link Function Name Link Function Mean (Inverse) Function

'log' f(μ) = log(μ) μ = exp(Xb)
'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'probit' f(μ) = Φ–1(μ) μ = Φ(Xb)

'comploglog' f(μ) = log(–log(1 – μ)) μ = 1 – exp(–exp(Xb))
'reciprocal' f(μ) = 1/μ μ = 1/(Xb)
p (a number) f(μ) = μp μ = Xb1/p

S (a structure)
with three fields. Each field
holds a function handle
that accepts a vector of
inputs and returns a vector
of the same size:

• S.Link — The link
function

• S.Inverse — The
inverse link function

• S.Derivative — The
derivative of the link
function

f(μ) = S.Link(μ) μ = S.Inverse(Xb)

The link function defines the relationship f(μ) = X*b between the mean response μ and
the linear combination of predictors X*b.

For more information on the canonical link functions, see Definitions.

Example: 'Link','probit'

'Offset' — Offset variable
[] (default) | vector | string

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset'
and a vector or name of a variable with the same length as the response.

fitglm and stepwiseglm use Offset as an additional predictor, with a coefficient
value fixed at 1.0. In other words, the formula for fitting is
μ ~ Offset + (terms involving real predictors)

 fitglm

22-1645

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is
known for theoretical reasons to be proportional to a predictor A. By using the log link
function and by specifying log(A) as an offset, you can force the model to satisfy this
theoretical constraint.
Data Types: single | double | char

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

22 Functions — Alphabetical List

22-1646

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments

mdl — Generalized linear model
GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to
the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the
GeneralizedLinearModel class page.

 fitglm

22-1647

Alternative Functionality

Use stepwiseglm to select a model specification automatically. Use step, addTerms, or
removeTerms to adjust a fitted model.

More About

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

22 Functions — Alphabetical List

22-1648

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 fitglm

22-1649

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

22 Functions — Alphabetical List

22-1650

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

• Y is the response name.
• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.

 fitglm

22-1651

'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models

Distribution Link Function Name Link Function Mean (Inverse) Function

'normal' 'identity' f(μ) = μ μ = Xb
'binomial' 'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)

22 Functions — Alphabetical List

22-1652

Distribution Link Function Name Link Function Mean (Inverse) Function

'inverse

gaussian'

-2 f(μ) = 1/μ2 μ = (Xb)–1/2

Tips

• The generalized linear model mdl is a standard linear model unless you specify
otherwise with the Distribution name-value pair.

• For methods such as plotResiduals or devianceTest, or properties of the
GeneralizedLinearModel object, see GeneralizedLinearModel.

• “Generalized Linear Models” on page 10-12

References

[1] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

See Also
GeneralizedLinearModel | stepwiseglm

 fitglme

22-1653

fitglme
Fit generalized linear mixed-effects model

Syntax

glme = fitglme(tbl,formula)

glme = fitglme(tbl,formula,Name,Value)

Description

glme = fitglme(tbl,formula) returns a generalized linear mixed-effects model,
glme. The model is specified by formula and fitted to the predictor variables in the table
or dataset array, tbl.

glme = fitglme(tbl,formula,Name,Value) returns a generalized linear mixed-
effects model using additional options specified by one or more Name,Value pair
arguments. For example, you can specify the distribution of the response, the link
function, or the covariance pattern of the random-effects terms.

Examples

Fit a Generalized Linear Mixed-Effects Model

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the

22 Functions — Alphabetical List

22-1654

20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

 fitglme

22-1655

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Display the model.

disp(glme)

glme =

Generalized linear mixed-effects model fit by ML

Model information:

 Number of observations 100

 Fixed effects coefficients 6

 Random effects coefficients 20

 Covariance parameters 1

 Distribution Poisson

 Link Log

 FitMethod Laplace

Formula:

 defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue

 '(Intercept)' 1.4689 0.15988 9.1875 94 9.8194e-15

 'newprocess' -0.36766 0.17755 -2.0708 94 0.041122

 'time_dev' -0.094521 0.82849 -0.11409 94 0.90941

 'temp_dev' -0.28317 0.9617 -0.29444 94 0.76907

 'supplier_C' -0.071868 0.078024 -0.9211 94 0.35936

 'supplier_B' 0.071072 0.07739 0.91836 94 0.36078

 Lower Upper

22 Functions — Alphabetical List

22-1656

 1.1515 1.7864

 -0.72019 -0.015134

 -1.7395 1.5505

 -2.1926 1.6263

 -0.22679 0.083051

 -0.082588 0.22473

Random effects covariance parameters:

Group: factory (20 Levels)

 Name1 Name2 Type Estimate

 '(Intercept)' '(Intercept)' 'std' 0.31381

Group: Error

 Name Estimate

 'sqrt(Dispersion)' 1

The Model information table displays the total number of observations in the sample
data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively),
and the number of covariance parameters (1). It also indicates that the response variable
has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit
of the model. This includes the Akaike information criterion (AIC), Bayesian information
criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95%
confidence intervals. It contains one row for each fixed-effects predictor, and each column
contains statistics corresponding to that predictor. Column 1 (Name) contains the name
of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and
column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains
the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and
column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-
statistic, respectively. The last two columns (Lower and Upper) display the lower and
upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping
variable (here, only factory), including its total number of levels (20), and the type and
estimate of the covariance parameter. Here, std indicates that fitglme returns the
standard deviation of the random effect associated with the factory predictor, which has
an estimated value of 0.31381. It also displays a table containing the error parameter
type (here, the square root of the dispersion parameter), and its estimated value of 1.

 fitglme

22-1657

The standard display generated by fitglme does not provide confidence intervals
for the random-effects parameters. To compute and display these values, use
covarianceParameters.

• “Fit a Generalized Linear Mixed-Effects Model” on page 10-79

Input Arguments
tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be continuous
or grouping variables (see “Grouping Variables” on page 2-52). You must specify the
model for the variables using formula.
Data Types: single | double | char | cell

formula — Formula for model specification
string of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|
groupingR)'

Formula for model specification, specified as a string of the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)'. The string is case
sensitive. For a full description, see “Formula” on page 22-1669.
Example: 'y ~ treatment + (1|block)'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects'

specifies the response variable distribution as Poisson, the link function as log, the fit
method as Laplace, and dummy variable coding where the coefficients sum to 0.

'BinomialSize' — Number of trials for binomial distribution
1 (default) | scalar value | vector | variable name

22 Functions — Alphabetical List

22-1658

Number of trials for binomial distribution, that is the sample size, specified as the
comma-separated pair consisting of a scalar value, a vector of the same length as the
response, or the name of a variable in the input table. If you specify the name of a
variable, then the variable must be of the same length as the response. BinomialSize
applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of
trials.
Data Types: single | double

'CheckHessian' — Indicator to check positive definiteness of Hessian
false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with
respect to unconstrained parameters at convergence, specified as the comma-separated
pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if
the model is overparameterized in the number of covariance parameters.

If you specify 'FitMethod' as 'MPL' or 'REMPL', then the covariance of the fixed
effects and the covariance parameters is based on the fitted linear mixed-effects model
from the final pseudo likelihood iteration.
Example: 'CheckHessian',true

'CovarianceMethod' — Method to compute covariance of estimated parameters
'conditional' (default) | 'JointHessian'

Method to compute covariance of estimated parameters, specified as the comma-
separated pair consisting of 'CovarianceMethod' and either 'conditional'
or 'JointHessian'. If you specify 'conditional', then fitglme computes a
fast approximation to the covariance of fixed effects given the estimated covariance
parameters. It does not compute the covariance of covariance parameters. If you
specify 'JointHessian', then fitglme computes the joint covariance of fixed effects
and covariance parameters via the observed information matrix using the Laplacian
loglikelihood.

If you specify 'FitMethod' as 'MPL' or 'REMPL', then the covariance of the fixed
effects and the covariance parameters is based on the fitted linear mixed-effects model
from the final pseudo likelihood iteration.
Example: 'CovarianceMethod','JointHessian'

 fitglme

22-1659

'CovariancePattern' — Pattern of covariance matrix
'FullCholesky' | 'Isotropic' | 'Full' | 'Diagonal' | 'CompSymm' | square
symmetric logical matrix | cell array of strings or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated
pair consisting of 'CovariancePattern' and a string, a square symmetric logical
matrix, or a cell array containing strings or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be
a cell array of length R, where each element r of this cell array specifies the pattern of
the covariance matrix of the random-effects vector associated with the rth random-effects
term. The options for each element follow.

'FullCholesky' Full covariance matrix using the Cholesky
parameterization. fitglme estimates all
elements of the covariance matrix.

'Isotropic' Diagonal covariance matrix with equal
variances. That is, off-diagonal elements
of the covariance matrix are constrained
to be 0, and the diagonal elements are
constrained to be equal. For example, if
there are three random-effects terms with
an isotropic covariance structure, this
covariance matrix looks like

s

s

s

b

b

b

2

2

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

where σ2
1 is the common variance of the

random-effects terms.
'Full' Full covariance matrix, using the log-

Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

'Diagonal' Diagonal covariance matrix. That is, off-
diagonal elements of the covariance matrix
are constrained to be 0.

22 Functions — Alphabetical List

22-1660

s

s

s

b

b

b

1

2

2

2

3

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

'CompSymm' Compound symmetry structure. That is,
common variance along diagonals and
equal correlation between all random
effects. For example, if there are three
random-effects terms with a covariance
matrix having a compound symmetry
structure, this covariance matrix looks like

s s s

s s s

s s s

b b b b b

b b b b b

b b b b b

1
2

1 2 1 2

1 2 1
2

1 2

1 2 1 2 1
2

, ,

, ,

, ,

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜̃
˜
˜̃

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the
common covariance between any two
random-effects term .

PAT Square symmetric logical matrix. If
'CovariancePattern' is defined
by the matrix PAT, and if PAT(a,b)
= false, then the (a,b) element of
the corresponding covariance matrix is
constrained to be 0.

For scalar random-effects terms, the default is 'Isotropic'. Otherwise, the default is
'FullCholesky'.

Example: 'CovariancePattern','Diagonal'

Example: 'CovariancePattern',{'Full','Diagonal'}

'DispersionFlag' — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

 fitglme

22-1661

Indicator to compute dispersion parameter for 'binomial' and 'poisson'
distributions, specified as the comma-separated pair consisting of 'DispersionFlag'
and one of the following.

true Estimate a dispersion parameter when computing standard
errors

false Use the theoretical value of 1.0 when computing standard
errors

'DispersionFlag' only applies if 'FitMethod' is 'MPL' or 'REMPL'.

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

'Distribution' — Distribution of the response variable
'Normal' (default) | 'Binomial' | 'Poisson' | 'Gamma' | 'InverseGaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'Normal' Normal distribution
'Binomial' Binomial distribution
'Poisson' Poisson distribution
'Gamma' Gamma distribution
'InverseGaussian' Inverse Gaussian distribution

Example: 'Distribution','Binomial'

'DummyVarCoding' — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as
the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

'reference' Default. Coefficient for first category set to
0.

'effects' Coefficients sum to 0.

22 Functions — Alphabetical List

22-1662

'full' One dummy variable for each category.

Example: 'DummyVarCoding','effects'

'EBMethod' — Method used to approximate empirical Bayes estimates of random effects
'Auto' (default) | 'LineSearchNewton' | 'TrustRegion2D' | 'fsolve'

Method used to approximate empirical Bayes estimates of random effects, specified as
the comma-separated pair consisting of 'EBMethod' and one of the following.

• 'Auto'

• 'LineSearchNewton'

• 'TrustRegion2D'

• 'fsolve'

'Auto' is similar to 'LineSearchNewton' but uses a different convergence criterion
and does not display iterative progress. 'Auto' and 'LineSearchNewton' may fail for
non-canonical link functions. For non-canonical link functions, 'TrustRegion2D' or
'fsolve' are recommended. You must have Optimization Toolbox to use 'fsolve'.

Example: 'EBMethod','LineSearchNewton'

'EBOptions' — Options for empirical Bayes optimization
structure

Options for empirical Bayes optimization, specified as the comma-separated pair
consisting of 'EBOptions' and a structure containing the following.

'TolFun' Relative tolerance on the gradient norm.
Default is 1e-6.

'TolX' Absolute tolerance on the step size. Default
is 1e-8.

'MaxIter' Maximum number of iterations. Default is
100.

'Display' 'off', 'iter', or 'final'. Default is
'off'.

If EBMethod is 'Auto' and 'FitMethod' is 'Laplace', TolFun is the relative
tolerance on the linear predictor of the model, and the 'Display' option does not apply.

 fitglme

22-1663

If 'EBMethod' is 'fsolve', then 'EBOptions' must be specified as an object created
by optimoptions('fsolve').

Data Types: struct

'Exclude' — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the generalized linear mixed-effects model in the data,
specified as the comma-separated pair consisting of 'Exclude' and a vector of integer or
logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]

Data Types: single | double | logical

'FitMethod' — Method for estimating model parameters
'MPL' (default) | 'REMPL' | 'Laplace' | 'ApproximateLaplace

Method for estimating model parameters, specified as the comma-separated pair
consisting of 'FitMethod' and one of the following.

• 'MPL' — Maximum pseudo likelihood
• 'REMPL' — Restricted maximum pseudo likelihood
• 'Laplace' — Maximum likelihood using Laplace approximation
• 'ApproximateLaplace' — Maximum likelihood using approximate Laplace

approximation with fixed effects profiled out

Example: 'FitMethod','REMPL'

'InitPLIterations' — Initial number of pseudo likelihood iterations
10 (default) | integer value in the range [1,∞)

Initial number of pseudo likelihood iterations used to initialize parameters for
ApproximateLaplace and Laplace fit methods, specified as the comma-separated pair
consisting of 'InitPLIterations' and an integer value greater than or equal to 1.

Data Types: single | double

'Link' — Link function
'identity' | 'log' | 'logit' | 'probit' | 'comploglog' | 'reciprocal' |
scalar value | structure

22 Functions — Alphabetical List

22-1664

Link function, specified as the comma-separated pair consisting of 'Link' and one of the
following.

'identity' g(mu) = mu

This is the default for the normal
distribution.

'log' g(mu) = log(mu)

This is the default for the Poisson
distribution.

'logit' g(mu) = log(mu/(1-mu))

This is the default for the binomial
distribution.

'loglog' g(mu) = log(-log(mu))

'probit' g(mu) = norminv(mu)

'comploglog' g(mu) = log(-log(1-mu))

'reciprocal' g(mu) = mu.^(-1)

Scalar value P g(mu) = mu.^P

Structure S A structure containing four fields whose
values are function handles with the
following names:

• S.Link — Link function
• S.Derivative — Derivative
• S.SecondDerivative — Second

derivative
• S.Inverse — Inverse of link

Specification of S.SecondDerivative can
be omitted if FitMethod is MPL or REMPL,
or if S is the canonical link for the specified
distribution.

The default link function used by fitglme is the canonical link that depends on the
distribution of the response.

 fitglme

22-1665

'Normal' 'identity'

'Binomial' 'logit'

'Poisson' 'log'

'Gamma' -1

'InverseGaussian' -2

Example: 'Link','log'

Data Types: single | double | struct

'MuStart' — Starting value for conditional mean
scalar value

Starting value for conditional mean, specified as the comma-separated pair consisting of
'MuStart' and a scalar value. Valid values are as follows.

Distribution Values
'Normal' (-Inf,Inf)

'Binomial' (0,1)

'Poisson' (0,Inf)

'Gamma' (0,Inf)

'InverseGaussian' (0,Inf)

Data Types: single | double

'Offset' — Offset
zeros(n,1) (default) | n-by-1 vector of scalar values

Offset, specified as the comma-separated pair consisting of 'Offset' and an n-by-1
vector of scalar values, where n is the length of the response vector. You can also specify
the variable name of an n-by-1 vector of scalar values. 'Offset' is used as an additional
predictor that has a coefficient value fixed at 1.0.

Data Types: single | double

'Optimizer' — Optimization algorithm
'quasinewton' (default) | 'fminsearch' | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of
'Optimizer' and either of the following.

22 Functions — Alphabetical List

22-1666

'quasinewton' Uses a trust region based quasi-
Newton optimizer. You can change
the options of the algorithm using
statset('fitglme'). If you do not
specify the options, then fitglme uses the
default options of statset('fitglme').

'fminsearch' Uses a derivative-free Nelder-
Mead method. You can change
the options of the algorithm using
optimset('fminsearch'). If
you do not specify the options, then
fitglme uses the default options of
optimset('fminsearch').

'fminunc' Uses a line search-based quasi-Newton
method. You must have Optimization
Toolbox to specify this option. You can
change the options of the algorithm
using optimoptions('fminunc').
If you do not specify the options, then
fitglme uses the default options of
optimoptions('fminunc') with
'Algorithm' set to 'quasi-newton'.

Example: 'Optimizer','fminsearch'

'OptimizerOptions' — Options for optimization algorithm
structure returned by statset | structure returned by optimset | object returned by
optimoptions

Options for the optimization algorithm, specified as the comma-separated pair consisting
of 'OptimizerOptions' and a structure returned by statset('fitglme'),
a structure created by optimset('fminsearch'), or an object returned by
optimoptions('fminunc').

• If 'Optimizer' is 'fminsearch', then use optimset('fminsearch') to change
the options of the algorithm. If 'Optimizer' is 'fminsearch' and you do not
supply 'OptimizerOptions', then the defaults used in fitglme are the default
options created by optimset('fminsearch').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to
change the options of the optimization algorithm. See optimoptions for the

 fitglme

22-1667

options 'fminunc' uses. If 'Optimizer' is 'fminunc' and you do not supply
'OptimizerOptions', then the defaults used in fitglme are the default options
created by optimoptions('fminunc') with 'Algorithm' set to 'quasi-
newton'.

• If 'Optimizer' is 'quasinewton', then use statset('fitglme') to change the
optimization parameters. If 'Optimizer' is 'quasinewton' and you do not change
the optimization parameters using statset, then fitglme uses the default options
created by statset('fitglme').

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('fitglme').

'TolFun' — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar
value.

'TolX' — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

'MaxIter' — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

'Display' — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

'PLIterations' — Maximum number of pseudo likelihood iterations
100 (default) | positive integer value

Maximum number of pseudo likelihood (PL) iterations, specified as the comma-separated
pair consisting of 'PLIterations' and a positive integer value. PL is used for fitting
the model if 'FitMethod' is 'MPL' or 'REMPL'. For other 'FitMethod' values, PL
iterations are used to initialize parameters for subsequent optimization.
Example: 'PLIterations',200

22 Functions — Alphabetical List

22-1668

Data Types: single | double

'PLTolerance' — Relative tolerance factor for pseudo likelihood iterations
1e–08 (default) | positive scalar value

Relative tolerance factor for pseudo likelihood iterations, specified as the comma-
separated pair consisting of 'PLTolerance' and a positive scalar value.

Example: 'PLTolerance',1e-06

Data Types: single | double

'StartMethod' — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting
of 'StartMethod' and either of the following.

'default' Default. An internally defined default
value.

'random' A random initial value.

Example: 'StartMethod','random'

'UseSequentialFitting' — Initial fitting type
false (default) | true

, specified as the comma-separated pair consisting of 'UseSequentialFitting'
and either false or true. If 'UseSequentialFitting' is false, all maximum
likelihood methods are initialized using one or more pseudo likelihood iterations. If
'UseSequentialFitting' is true, the initial values from pseudo likelihood iterations
are refined using 'ApproximateLaplace' for 'Laplace' fitting.

Example: 'UseSequentialFitting',true

'Verbose' — Indicator to display optimization process on screen
0 (default) | 1 | 2

Indicator to display the optimization process on screen, specified as the comma-separated
pair consisting of 'Verbose' and 0, 1, or 2. If 'Verbose' is specified as 1 or 2,
then fitglme displays the progress of the iterative model-fitting process. Specifying
'Verbose' as 2 displays iterative optimization information from the individual pseudo
likelihood iterations. Specifying 'Verbose' as 1 omits this display.

 fitglme

22-1669

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true

'Weights' — Observation weights
vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
If the response distribution is binomial or Poisson, then 'Weights' must be a vector of
positive integers.
Data Types: single | double

Output Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

More About

Formula

In general, a formula for model specification is a string of the form 'y ~ terms'. For
the generalized linear mixed-effects models, this formula is in the form 'y ~ fixed
+ (random1|grouping1) + ... + (randomR|groupingR)', where fixed and
random contain the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, or
cell arrays of strings.

22 Functions — Alphabetical List

22-1670

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|
gR)', the term fixed corresponds to a specification of the fixed-effects design matrix
X, random1 is a specification of the random-effects design matrix Z1 corresponding to
grouping variable g1, and similarly randomR is a specification of the random-effects
design matrix ZR corresponding to grouping variable gR. You can express the fixed and
random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)

X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1. Here are some examples for generalized
linear mixed-effects model specification.

Examples:

Formula Description

'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2.
This is equivalent to 'y ~ 1 + X1 + X2'.

'y ~ -1 + X1 + X2' No intercept and fixed effects for X1
and X2. The implicit intercept term is
suppressed by including -1.

 fitglme

22-1671

Formula Description

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random
effect for the intercept for each level of the
grouping variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with

possible correlation between them. This is
equivalent to 'y ~ 1 + X1 + (1 + X1|
g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 |

g1)'

Independent random effects terms for
intercept and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1

| g1:g2)'

Random intercept model with independent
main effects for g1 and g2, plus an
independent interaction effect.

• “Generalized Linear Mixed-Effects Models” on page 10-64

See Also
GeneralizedLinearMixedModel

22 Functions — Alphabetical List

22-1672

fitgmdist
Fit Gaussian mixture distribution to data

Syntax
GMModel = fitgmdist(X,k)

GMModel = fitgmdist(X,k,Name,Value)

Description
GMModel = fitgmdist(X,k) returns a Gaussian mixture distribution model
(GMModel) with k components fitted to data (X).

GMModel = fitgmdist(X,k,Name,Value) returns a Gaussian mixture distribution
model with additional options specified by one or more Name,Value pair arguments.

For example, you can specify a regularization value or the covariance type.

Examples

Cluster Data Using a Gaussian Mixture Model

Generate data from a mixture of two bivariate Gaussian distributions.

mu1 = [1 2];

Sigma1 = [2 0; 0 0.5];

mu2 = [-3 -5];

Sigma2 = [1 0;0 1];

rng(1); % For reproducibility

X = [mvnrnd(mu1,Sigma1,1000);mvnrnd(mu2,Sigma2,1000)];

Fit a Gaussian mixture model. Specify that there are two components.

GMModel = fitgmdist(X,2);

Plot the data over the fitted Gaussian mixture model contours.

figure

y = [zeros(1000,1);ones(1000,1)];

 fitgmdist

22-1673

h = gscatter(X(:,1),X(:,2),y);

hold on

ezcontour(@(x1,x2)pdf(GMModel,[x1 x2]),get(gca,{'XLim','YLim'}))

title('{\bf Scatter Plot and Fitted Gaussian Mixture Contours}')

legend(h,'Model 0','Model1')

hold off

Regularize Gaussian Mixture Model Estimation

Generate data from a mixture of two bivariate Gaussian distributions. Create a third
predictor that is the sum of the first and second predictors.

mu1 = [1 2];

Sigma1 = [1 0; 0 1];

mu2 = [3 4];

22 Functions — Alphabetical List

22-1674

Sigma2 = [0.5 0; 0 0.5];

rng(1); % For reproducibility

X1 = [mvnrnd(mu1,Sigma1,100);mvnrnd(mu2,Sigma2,100)];

X = [X1,X1(:,1)+X1(:,2)];

The columns of X are linearly dependent. This can cause ill-conditioned covariance
estimates.

Fit a Gaussian mixture model to the data. You can use try / catch statements to help
manage error messages.

rng(1); % Reset seed for common start values

try

 GMModel = fitgmdist(X,2)

catch exception

 disp('There was an error fitting the Gaussian mixture model')

 error = exception.message

end

There was an error fitting the Gaussian mixture model

error =

Ill-conditioned covariance created at iteration 2.

The covariance estimates are ill-conditioned. Subsequently, optimization stops and an
error appears.

Fit a Gaussian mixture model again, but use regularization.

rng(1); % Reset seed for common start values

GMModel = fitgmdist(X,2,'RegularizationValue',0.1)

GMModel =

Gaussian mixture distribution with 2 components in 3 dimensions

Component 1:

Mixing proportion: 0.507057

Mean: 0.9767 2.0130 2.9897

Component 2:

Mixing proportion: 0.492943

Mean: 3.1030 3.9544 7.0574

 fitgmdist

22-1675

In this case, the algorithm converges to a solution due to regularization.

Select the Number of Gaussian Mixture Model Components Using PCA

Gaussian mixture models require that you specify a number of components before being
fit to data. For many applications, it might be diffcult to know the appropriate number of
components. This example shows how to explore the data, and try to get an initial guess
at the number of components using principal component analysis.

Load Fisher's iris data set.

load fisheriris

classes = unique(species)

classes =

 'setosa'

 'versicolor'

 'virginica'

The data set contains three classes of iris species. The analysis proceeds as if this is
unknown.

Use principal component analysis to reduce the dimension of the data to two dimensions
for visualization.

[~,score] = pca(meas,'NumComponents',2);

Fit three Gaussian mixture models to the data by specifying 1, 2, and 3 components.
Increase the number of optimization iterations to 1000. Use dot notation to store the
final parameter estimates. By default, the software fits full and different covariances for
each component.

GMModels = cell(3,1); % Preallocation

options = statset('MaxIter',1000);

rng(1); % For reproducibility

for j = 1:3

 GMModels{j} = fitgmdist(score,j,'Options',options);

 fprintf('\n GM Mean for %i Component(s)\n',j)

22 Functions — Alphabetical List

22-1676

 Mu = GMModels{j}.mu

end

 GM Mean for 1 Component(s)

Mu =

 1.0e-14 *

 -0.2805 -0.0931

 GM Mean for 2 Component(s)

Mu =

 1.3212 -0.0954

 -2.6424 0.1909

 GM Mean for 3 Component(s)

Mu =

 1.9642 0.0062

 -2.6424 0.1909

 0.4750 -0.2292

GMModels is a cell array containing three, fitted gmdistribution models. The means
in the three component models are different, suggesting that the model distinguishes
among the three iris species.

Plot the scores over the fitted Gaussian mixture model contours. Since the data set
includes labels, use gscatter to distinguish between the true number of components.

figure

for j = 1:3

 subplot(2,2,j)

 gscatter(score(:,1),score(:,2),species)

 h = gca;

 hold on

 ezcontour(@(x1,x2)pdf(GMModels{j},[x1 x2]),...

 [h.XLim h.YLim],100)

 fitgmdist

22-1677

 title(sprintf('GM Model - %i Component(s)',j));

 xlabel('1st principal component');

 ylabel('2nd principal component');

 if(j ~= 3)

 legend off;

 end

 hold off

end

g = legend;

g.Position = [0.7 0.25 0.1 0.1];

%set(g,'Position',[0.7,0.25,0.1,0.1])

The three-component Gaussian mixture model, in conjunction with PCA, looks like it
distinguishes between the three iris species.

22 Functions — Alphabetical List

22-1678

There are other options you can use to help select the appropriate number of components
for a Gaussian mixture model. For example,

• Compare multiple models with varying numbers of components using information
criteria, e.g., AIC or BIC.

• Estimate the number of clusters using evalclusters, which supports, the Calinski-
Harabasz criterion and the gap statistic, or other criteria.

Determine the Best Gaussian Mixture Fit Using AIC

Gaussian mixture models require that you specify a number of components before being
fit to data. For many applications, it might be diffcult to know the appropriate number
of components. This example uses the AIC fit statistic to help you choose the best fitting
Gaussian mixture model over varying numbers of components.

Generate data from a mixture of two bivariate Gaussian distributions.

mu1 = [1 1];

Sigma1 = [0.5 0; 0 0.5];

mu2 = [2 4];

Sigma2 = [0.2 0; 0 0.2];

rng(1);

X = [mvnrnd(mu1,Sigma1,1000);mvnrnd(mu2,Sigma2,1000)];

plot(X(:,1),X(:,2),'ko')

title('Scatter Plot')

xlim([min(X(:)) max(X(:))]) % Make axes have the same scale

ylim([min(X(:)) max(X(:))])

 fitgmdist

22-1679

Supposing that you do not know the underlying parameter values, the scatter plots
suggests:

• There are two components.
• The variances between the clusters are different.
• The variance within the clusters is the same.
• There is no covariance within the clusters.

Fit a two-component Gaussian mixture model. Based on the scatter plot inspection,
specify that the covariance matrices are diagonal. Print the final iteration and
loglikelihood statistic to the Command Window by passing a statset structure as the
value of the Options name-value pair argument.

22 Functions — Alphabetical List

22-1680

options = statset('Display','final');

GMModel = fitgmdist(X,2,'CovarianceType','diagonal','Options',options);

10 iterations, log-likelihood = -4787.38

GMModel is a fitted gmdistribution model.

Examine the AIC over varying numbers of components.

AIC = zeros(1,4);

GMModels = cell(1,4);

options = statset('MaxIter',500);

for k = 1:4

 GMModels{k} = fitgmdist(X,k,'Options',options,'CovarianceType','diagonal');

 AIC(k)= GMModels{k}.AIC;

end

[minAIC,numComponents] = min(AIC);

numComponents

BestModel = GMModels{numComponents}

numComponents =

 2

BestModel =

Gaussian mixture distribution with 2 components in 2 dimensions

Component 1:

Mixing proportion: 0.501736

Mean: 1.9824 4.0013

Component 2:

Mixing proportion: 0.498264

Mean: 0.9879 1.0511

 fitgmdist

22-1681

The smallest AIC occurs when the software fits the two-component Gaussian mixture
model.

Set Initial Values When Fitting Gaussian Mixture Models

Gaussian mixture model parameter estimates might vary with different initial values.
This example shows how to control initial values when you fit Gaussian mixture models
using fitgmdist.

Load Fisher's iris data set. Use the petal lengths and widths as predictors.

load fisheriris

X = meas(:,3:4);

Fit a Gaussian mixture model to the data using default initial values. There are three
iris species, so specify k = 3 components.

rng(10); % For reproducibility

GMModel1 = fitgmdist(X,3);

By default, the software:

1 Randomly chooses k = 3 data points
2 Treats the chosen data points as initial means for each component
3 Sets the initial covariance matrices as diagonal, where element (j, j) is the variance

of X(:,j)
4 Treats the initial mixing proportions as uniform

Fit a Gaussian mixture model by connecting each observation to its label.

y = ones(size(X,1),1);

y(strcmp(species,'setosa')) = 2;

y(strcmp(species,'virginica')) = 3;

GMModel2 = fitgmdist(X,3,'Start',y);

Fit a Gaussian mixture model by explicitly specifying the initial means, covariance
matrices, and mixing proportions.

Mu = [1 1; 2 2; 3 3];

Sigma(:,:,1) = [1 1; 1 2];

Sigma(:,:,2) = 2*[1 1; 1 2];

22 Functions — Alphabetical List

22-1682

Sigma(:,:,3) = 3*[1 1; 1 2];

PComponents = [1/2,1/4,1/4];

S = struct('mu',Mu,'Sigma',Sigma,'ComponentProportion',PComponents);

GMModel3 = fitgmdist(X,3,'Start',S);

Use gscatter to plot a scatter diagram that distinguishes between the iris species. For
each model, plot the fitted Gaussian mixture model contours.

figure

subplot(2,2,1)

h = gscatter(X(:,1),X(:,2),species,[],'o',4);

haxis = gca;

xlim = haxis.XLim;

ylim = haxis.YLim;

d = (max([xlim ylim])-min([xlim ylim]))/1000;

[X1Grid,X2Grid] = meshgrid(xlim(1):d:xlim(2),ylim(1):d:ylim(2));

hold on

contour(X1Grid,X2Grid,reshape(pdf(GMModel1,[X1Grid(:) X2Grid(:)]),...

 size(X1Grid,1),size(X1Grid,2)),20)

uistack(h,'top')

title('{\bf Random Initial Values}');

xlabel('Sepal length');

ylabel('Sepal width');

legend off;

hold off

subplot(2,2,2)

h = gscatter(X(:,1),X(:,2),species,[],'o',4);

hold on

contour(X1Grid,X2Grid,reshape(pdf(GMModel2,[X1Grid(:) X2Grid(:)]),...

 size(X1Grid,1),size(X1Grid,2)),20)

uistack(h,'top')

title('{\bf Initial Values from Labels}');

xlabel('Sepal length');

ylabel('Sepal width');

legend off

hold off

subplot(2,2,3)

h = gscatter(X(:,1),X(:,2),species,[],'o',4);

hold on

contour(X1Grid,X2Grid,reshape(pdf(GMModel3,[X1Grid(:) X2Grid(:)]),...

 size(X1Grid,1),size(X1Grid,2)),20)

uistack(h,'top')

title('{\bf Initial Values from the Structure}');

xlabel('Sepal length');

 fitgmdist

22-1683

ylabel('Sepal width');

legend('Location',[0.7,0.25,0.1,0.1]);

hold off

According to the countors, GMModel2 seems to suggest a slight trimodality, while the
others suggest bimodel distributions.

Display the estimated component means.

table(GMModel1.mu,GMModel2.mu,GMModel3.mu,'VariableNames',...

 {'Model1','Model2','Model3'})

ans =

22 Functions — Alphabetical List

22-1684

 Model1 Model2 Model3

 _________________ ________________ ________________

 5.0241 1.8658 4.2857 1.3339 1.4604 0.2429

 4.7471 1.4616 1.462 0.246 4.7509 1.4629

 1.4605 0.24306 5.5507 2.0316 5.0158 1.8592

GMModel2 seems to distinguish between the iris species the best.

• “Clustering Using Gaussian Mixture Models” on page 14-29

Input Arguments

X — Data
numeric matrix

Data to which the Gaussian mixture model is fit, specified as a numeric matrix.

The rows of X correspond to observations, and columns correspond to variables.

NaNs indicate missing values. The software removes rows of X containing at least one NaN
before fitting, which decreases the effective sample size.
Data Types: double

k — Number of components
positive integer

Number of components to use when fitting Gaussian mixture model, specified as a
positive integer. For example, if you specify k = 3, then the software fits a Gaussian
mixture model with three distinct means, covariances matrices, and component
proportions to the data (X).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 fitgmdist

22-1685

Example: 'RegularizationValue',0.1,'CovarianceType','diagonal' specifies
a regularization parameter value of 0.1 and to fit diagonal covariance matrices.

'CovarianceType' — Type of covariance matrix
'full' (default) | 'diagonal'

Type of covariance matrix to fit to the data, specified as the comma-separated pair
consisting of 'CovarianceType' and either 'diagonal' or 'full'.

If you set 'diagonal', then the software fits diagonal covariance matrices. In this case,
the software estimates k*d covariance parameters, where d is the number of columns in
X (i.e., d = size(X,2)).

Otherwise, the software fits full covariance matrices. In this case, the software estimates
k*d*(d+1)/2 covariance parameters.

Example: 'CovarianceType','diagonal'

Data Types: char

'Options' — Iterative EM algorithm optimization options
statset options structure

Iterative EM algorithm optimization options, specified as the comma-separated pair
consisting of 'Options' and a statset options structure.

This table describes the available name-value pair arguments.

Name Value

'Display' 'final': Display the final output.

'iter': Display iterative output to the
Command Window for some functions;
otherwise display the final output.

'off': Do not display optimization
information.

'MaxIter' Positive integer indicating the maximum
number of iterations allowed. The default is
100

22 Functions — Alphabetical List

22-1686

Name Value

'TolFun' Positive scalar indicating the termination
tolerance for the loglikelihood function
value. The default is 1e-6.

Example:
'Options',statset('Display','final','MaxIter',1500,'TolFun',1e-5)

'RegularizationValue' — Regularization parameter value
0 (default) | nonnegative scalar

Regularization parameter value, specified as the comma-separated pair consisting of
'RegularizationValue' and a nonnegative scalar.

Set RegularizationValue to a small positive scalar to ensure that the estimated
covariance matrices are positive definite.
Example: 'RegularizationValue',0.01

Data Types: double

'Replicates' — Number of times to repeat EM algorithm
1 (default) | positive integer

Number of times to repeat the EM algorithm using a new set of initial values, specified
as the comma-separated pair consisting of 'Replicates' and a positive integer.

If Replicates is greater than 1, then:

• The name-value pair argument Start must be randSample (which is the default
value) or plus.

• GMModel is the fit with the largest loglikelihood.

Example: 'Replicates',10

Data Types: double

'SharedCovariance' — Flag indicating whether all covariance matrices are identical
logical false (default) | logical true

Flag indicating whether all covariance matrices are identical (i.e., fit a pooled estimate),
specified as the comma-separated pair consisting of 'SharedCovariance' and either
logical value false or true.

 fitgmdist

22-1687

If SharedCovariance is true, then all k covariance matrices are equal, and the number
of covariance parameters is scaled down by a factor of k.

'Start' — Initial value setting method
'randSample' (default) | 'plus' | vector of integers | structure array

Initial value setting method, specified as the comma-separated pair consisting of
'Start' and 'randSample', 'plus', a vector of integers, or a structure array.

The value of Start determines the initial values required by the optimization routine for
each Gaussian component parameter — mean, covariance, and mixing proportion. This
table summarizes the available options.

Value Description

'randSample'The software selects k observations from X at random as initial
component means. The mixing proportions are uniform. The initial
covariance matrices for all components are diagonal, where the element
j on the diagonal is the variance of X(:,j).

'plus' The software selects k observations from X using the kmeans++
algorithm. The initial mixing proportions are uniform. The initial
covariance matrices for all components are diagonal, where the element
j on the diagonal is the variance of X(:,j).

Vector of
integers

A vector of length n (the number of observations) containing an initial
guess of the component index for each point. That is, each element is
an integer from 1 to k, which corresponds to a component. The software
collects all observations corresponding to the same component, computes
means, covariances, and mixing proportions for each, and sets the initial
values to these statistics.

Structure
array

Suppose that there are d variables (i.e., d = size(X,2)). The structure
array, e.g., S, must have three fields:

• S.mu: A k-by-d matrix specifying the initial mean of each component
• S.Sigma: A numeric array specifying the covariance matrix of each

component. Sigma is one of the following:

• A d-by-d-by-k array. Sigma(:,:,j) is the initial covariance
matrix of component j.

• A 1-by-d-by-k array. diag(Sigma(:,:,j)) is the initial
covariance matrix of component j.

22 Functions — Alphabetical List

22-1688

Value Description

• A d-by-d matrix. Sigma is the initial covariance matrix for all
components.

• A 1-by-d vector. diag(Sigma) is the initial covariance matrix for
all components.

• S.ComponentProportion: A 1-by-k vector of scalars specifying the
initial mixing proportions of each component. The default is uniform.

Example: 'Start',ones(n,1)

Data Types: char | double | struct

Output Arguments

GMModel — Fitted Gaussian mixture model
gmdistribution model

Fitted Gaussian mixture model, returned as a gmdistribution model.

Access properties of GMModel using dot notation. For example, display the AIC by
entering GMModel.AIC.

More About

Tips

gmdistribution might:

• Converge to a solution where one or more of the components has an ill-conditioned or
singular covariance matrix.

The following issues might result in an ill-conditioned covariance matrix:

• The number of dimensions of your data is relatively high and there are not enough
observations.

• Some of the predictors (variables) of your data are highly correlated.

 fitgmdist

22-1689

• Some or all the features are discrete.
• You tried to fit the data to too many components.

In general, you can avoid getting ill-conditioned covariance matrices by using one of
the following precautions:

• Preprocess your data to remove correlated features.
• Set 'SharedCovariance' to true to use an equal covariance matrix for every

component.
• Set 'CovarianceType' to 'diagonal'.
• Use 'RegularizationValue' to add a very small positive number to the

diagonal of every covariance matrix.
• Try another set of initial values.

• Pass through an intermediate step where one or more of the components has an ill-
conditioned covariance matrix. Try another set of initial values to avoid this issue
without altering your data or model.

Algorithms

Gaussian Mixture Model Likelihood Optimization

The software optimizes the Gaussian mixture model likelihood using the iterative
Expectation-Maximization (EM) algorithm.

k-means++ Algorithm for Initialization

The k-means++ algorithm uses an heuristic to find centroid seeds for k-means clustering.
fitgmdist can apply the same principle to initialize the EM algorithm by using the k-
means++ algorithm to select the initial parameter values for a fitted Gaussian mixture
model.

The k-means++ algorithm assumes the number of clusters is k and chooses the initial
parameter values as follows.

1
Select the component mixture probability to be the uniform probability p

k
i =

1 ,

where i = 1, ..., k.

22 Functions — Alphabetical List

22-1690

2 Select the covariance matrices to be diagonal and identical, where
s i kdiag a a a= ()1 2, , ,… and a Xj j= ()var .

3 Select the first initial component center μ1 uniformly from all data points in X.
4 To choose center j:

a Compute the Mahalanobis distances from each observation to each centroid, and
assign each observation to its closest centroid.

b For m = 1,...,n and p = 1,...,j – 1, select centroid j at random from X with
probability

d x

d x

m p

h p

h xh p

2

2

,

,

;

m

m

()
()

Œ
Â

M

where d xm p,m() is the distance between observation m and μp, and Mp is the

set of all observations closest to centroid μp and xm belongs to Mp.

That is, select each subsequent center with a probability proportional to the
distance from itself to the closest center that you already chose.

5 Repeat step 4 until k centroids are chosen.

• “Gaussian Mixture Models” on page 5-150

References

[1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons,
Inc., 2000.

See Also
cluster | gmdistribution

 fitlm

22-1691

fitlm
Create linear regression model

fitlm creates a LinearModel object. Once you create the object, you can see it in
the workspace. You can see all the properties the object contains by clicking on it. You
can create plots and do further diagnostic analysis by using methods such as plot,
plotResiduals, and plotDiagnostics. For a full list of methods for LinearModel,
see methods.

Syntax

mdl = fitlm(tbl)

mdl = fitlm(tbl,modelspec)

mdl = fitlm(X,y)

mdl = fitlm(X,y,modelspec)

mdl = fitlm(___ ,Name,Value)

Description

mdl = fitlm(tbl) returns a linear model fit to variables in the table or dataset array
tbl. By default, fitlm takes the last variable as the response variable.

mdl = fitlm(tbl,modelspec) returns a linear model of the type you specify in
modelspec fit to variables in the table or dataset array tbl.

mdl = fitlm(X,y) returns a linear model of the responses y, fit to the data matrix X.

mdl = fitlm(X,y,modelspec) returns a linear model of the type you specify in
modelspec for the responses y, fit to the data matrix X.

mdl = fitlm(___ ,Name,Value) returns a linear model with additional options
specified by one or more Name,Value pair arguments.

For example, you can specify which variables are categorical, perform robust regression,
or use observation weights.

22 Functions — Alphabetical List

22-1692

Examples

Fit Linear Regression Using Data in Table

Load the sample data.

load carsmall

Store the variables in a table.

tbl = table(Weight,Acceleration,MPG,'VariableNames',{'Weight','Acceleration','MPG'});

Display the first five rows of the table.

tbl(1:5,:)

ans =

 Weight Acceleration MPG

 ______ ____________ ___

 3504 12 18

 3693 11.5 15

 3436 11 18

 3433 12 16

 3449 10.5 17

Fit a linear regression model for miles per gallon (MPG).

lm = fitlm(tbl,'MPG~Weight+Acceleration')

lm =

Linear regression model:

 MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:

 Estimate SE tStat pValue

 __________ __________ _______ __________

 (Intercept) 45.155 3.4659 13.028 1.6266e-22

 Weight -0.0082475 0.00059836 -13.783 5.3165e-24

 fitlm

22-1693

 Acceleration 0.19694 0.14743 1.3359 0.18493

Number of observations: 94, Error degrees of freedom: 91

Root Mean Squared Error: 4.12

R-squared: 0.743, Adjusted R-Squared 0.738

F-statistic vs. constant model: 132, p-value = 1.38e-27

This syntax uses formula to specify the modelspec.

The model 'MPG~Weight+Acceleration' in this example is equivalent to fitting the
model using the string 'linear' as modelspec. For example,

lm2 = fitlm(tbl,'linear');

When you use a string as modelspec and do not specify the response variable, fitlm by
default accepts the last variable in tbl as the response variable and the other variables as
the predictor variables. If you there are any categorical variables and you use 'linear'
as the modelspec, then you must explicitly specify those variables as categorical variables
using the CategoricalVars name-value pair argument.

Fit Linear Regression Using Formula (Wilkinson’s Notation)

Load the sample data.

load carsmall

Store the variables in a table.

tbl = table(Weight,Acceleration,Model_Year,MPG,'VariableNames',{'Weight','Acceleration','Model_Year','MPG'});

Fit a linear regression model for miles per gallon (MPG) with weight and acceleration as
the predictor variables.

lm = fitlm(tbl,'MPG~Weight+Acceleration')

lm =

Linear regression model:

 MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:

22 Functions — Alphabetical List

22-1694

 Estimate SE tStat pValue

 __________ __________ _______ __________

 (Intercept) 45.155 3.4659 13.028 1.6266e-22

 Weight -0.0082475 0.00059836 -13.783 5.3165e-24

 Acceleration 0.19694 0.14743 1.3359 0.18493

Number of observations: 94, Error degrees of freedom: 91

Root Mean Squared Error: 4.12

R-squared: 0.743, Adjusted R-Squared 0.738

F-statistic vs. constant model: 132, p-value = 1.38e-27

The p-value of 0.18493 indicates that Acceleration does not have a significant impact
on MPG.

Remove Acceleration from the model, and try improving the model by adding the
predictor variable Model_Year. First define Model_Year as a nominal variable.

tbl.Model_Year = nominal(tbl.Model_Year)

lm = fitlm(tbl,'MPG~Weight+Model_Year')

lm =

Linear regression model:

 MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:

 Estimate SE tStat pValue

 __________ __________ _______ __________

 (Intercept) 45.155 3.4659 13.028 1.6266e-22

 Weight -0.0082475 0.00059836 -13.783 5.3165e-24

 Acceleration 0.19694 0.14743 1.3359 0.18493

Number of observations: 94, Error degrees of freedom: 91

Root Mean Squared Error: 4.12

R-squared: 0.743, Adjusted R-Squared 0.738

F-statistic vs. constant model: 132, p-value = 1.38e-27

Specifying modelspec using formula enables you to update the model without having
to change the design matrix. fitlm uses only the variables that are specified in the

 fitlm

22-1695

formula. It also creates the necessary two “Dummy Indicator Variables” on page 2-55 for
the categorical variable Model_Year.

Linear Regression with Categorical Predictor and Quadratic Term

Fit a quadratic linear regression model to variables in a table. The data includes
continuous and categorical predictor variables.

Load the sample data.

load carsmall

Construct a table containing continuous predictor variable Weight and response variable
MPG. Add the nominal predictor variable Year.

tbl = table(MPG,Weight);

tbl.Year = nominal(Model_Year);

Create a fitted model of MPG as a function of Year, Weight, and Weight2. You don’t have
to include Weight explicitly in your formula because it is a lower-order term of Weight2.
For details, see “Formula” on page 22-1707.

mdl = fitlm(tbl,'MPG ~ Year + Weight^2')

mdl =

Linear regression model:

 MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:

 Estimate SE tStat

 __________ __________ _______

 (Intercept) 54.206 4.7117 11.505

 Weight -0.016404 0.0031249 -5.2493

 Year_76 2.0887 0.71491 2.9215

 Year_82 8.1864 0.81531 10.041

 Weight^2 1.5573e-06 4.9454e-07 3.149

 pValue

 (Intercept) 2.6648e-19

 Weight 1.0283e-06

 Year_76 0.0044137

 Year_82 2.6364e-16

 Weight^2 0.0022303

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 2.78

22 Functions — Alphabetical List

22-1696

R-squared: 0.885, Adjusted R-Squared 0.88

F-statistic vs. constant model: 172, p-value = 5.52e-41

When you use formula to specify modelspec, you do not have to explicitly specify the
categorical variables. fitlm creates two dummy (indicator) variables for the nominal
variable, Year. The dummy variable Year_76 takes the value 1 if the model year is
1976 and takes the value 0 if it is not. The dummy variable Year_82 takes the value 1 if
model year is 1982 and takes the value 0 if it is not. 1970 is the reference year (for details
on dummy variables, see “Dummy Indicator Variables” on page 2-55). The fitted model is

MPG Weight Year Yearˆ . . . (_) . (_)= - () + +54 206 0 0164 2 0887 76 8 1864 82 ++ -() ()1 557 06
2

. e Weight

Simultaneously Specify the Variables and Use Formula

Simultaneously identify response and predictor variables and specify the model using a
formula in linear regression.

Load sample data.

load hospital

Fit a linear model with interaction terms to the data. Indicate which variable is the
response variable and identify the continuous and categorical predictors using name-
value pair arguments.

mdl = fitlm(hospital,'Weight~1+Age*Sex*Smoker-Age:Sex:Smoker','ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},'CategoricalVar',{'Sex','Smoker'})

mdl =

Linear regression model:

 Weight ~ 1 + Sex*Age + Sex*Smoker + Age*Smoker

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 118.7 7.0718 16.785 6.821e-30

 Sex_Male 68.336 9.7153 7.0339 3.3386e-10

 Age 0.31068 0.18531 1.6765 0.096991

 Smoker_1 3.0425 10.446 0.29127 0.77149

 Sex_Male:Age -0.49094 0.24764 -1.9825 0.050377

 Sex_Male:Smoker_1 0.9509 3.8031 0.25003 0.80312

 Age:Smoker_1 -0.07288 0.26275 -0.27737 0.78211

Number of observations: 100, Error degrees of freedom: 93

 fitlm

22-1697

Root Mean Squared Error: 8.75

R-squared: 0.898, Adjusted R-Squared 0.892

F-statistic vs. constant model: 137, p-value = 6.91e-44

The t-statistics in tStat and corresponding p-values in pValue indicate that patient
weights do not seem to differ significantly according to age, or the status of smoking, or
the interaction of these factors with gender at the 5% significance level.

Robust Linear Regression Model

Fit a linear regression model of the Hald data using robust fitting.

Load the data.

load hald

X = ingredients; % Predictor variables

y = heat; % Response

Fit a robust linear model to the data.

mdl = fitlm(X,y,'linear','RobustOpts','on')

mdl =

Linear regression model (robust fit):

 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 60.09 75.818 0.79256 0.4509

 x1 1.5753 0.80585 1.9548 0.086346

 x2 0.5322 0.78315 0.67957 0.51596

 x3 0.13346 0.8166 0.16343 0.87424

 x4 -0.12052 0.7672 -0.15709 0.87906

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 2.65

R-squared: 0.979, Adjusted R-Squared 0.969

F-statistic vs. constant model: 94.6, p-value = 9.03e-07

• “Examine Quality and Adjust the Fitted Model” on page 9-20
• “Predict or Simulate Responses to New Data” on page 9-37
• “Linear Regression Workflow” on page 9-41
• “Regression with Categorical Covariates” on page 2-58

22 Functions — Alphabetical List

22-1698

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

modelspec — Model specification
'linear' (default) | string naming the model | t-by-(p + 1) terms matrix | string of the
form 'Y ~ terms'

 fitlm

22-1699

Model specification, specified as one of the following. The choice is the starting model for
stepwiselm. Default is 'linear'.

• A string naming the model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

• t-by-(p + 1) matrix, namely terms matrix, specifying terms to include in the model,
where t is the number of terms and p is the number of predictor variables, and plus 1
is for the response variable.

• A string representing a formula in the form
'Y ~ terms',
where the terms are in Wilkinson Notation.

Example: 'quadratic'

Example: 'y ~ X1 + X2^2 + X1:X2'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-1700

Example: 'Intercept',false,'PredictorVars',
[1,3],'ResponseVar',5,'RobustOpts','logistic' specifies a robust regression
model with no constant term, where the algorithm uses the logistic weighting function
with the default tuning constant, first and third variables are the predictor variables,
and fifth variable is the response variable.

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical
variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

 fitlm

22-1701

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.

22 Functions — Alphabetical List

22-1702

Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

'RobustOpts' — Indicator of robust fitting type
'off' (default) | 'on' | string | structure with string or function handle

Indicator of the robust fitting type to use, specified as the comma-separated pair
consisting of 'RobustOpts' and one of the following.

• 'off' — No robust fitting. fitlm uses ordinary least squares.
• 'on' — Robust fitting. When you use robust fitting, 'bisquare' weight function is

the default.
• String — Name of the robust fitting weight function from the following table. fitlm

uses the corresponding default tuning constant in the table.
• Structure with the string RobustWgtFun containing the name of the robust fitting

weight function from the following table and optional scalar Tune fields — fitlm
uses the RobustWgtFun weight function and Tune tuning constant from the
structure. You can choose the name of the robust fitting weight function from this
table. If you do not supply a Tune field, the fitting function uses the corresponding
default tuning constant.

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'

(default)
w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'ols' Ordinary least squares (no weighting

function)
None

'talwar' w = 1 * (abs(r)<1) 2.795

 fitlm

22-1703

Weight Function Equation Default Tuning
Constant

'welsch' w = exp(-(r.^2)) 2.985

The value r in the weight functions is

r = resid/(tune*s*sqrt(1-h)),

where resid is the vector of residuals from the previous iteration, h is the vector
of leverage values from a least-squares fit, and s is an estimate of the standard
deviation of the error term given by

s = MAD/0.6745.

MAD is the median absolute deviation of the residuals from their median. The
constant 0.6745 makes the estimate unbiased for the normal distribution. If there are
p columns in X, the smallest p absolute deviations are excluded when computing the
median.

Default tuning constants give coefficient estimates that are approximately 95% as
statistically efficient as the ordinary least-squares estimates, provided the response
has a normal distribution with no outliers. Decreasing the tuning constant increases
the downweight assigned to large residuals; increasing the tuning constant decreases
the downweight assigned to large residuals.

• Structure with the function handle RobustWgtFun and optional scalar Tune fields
— You can specify a custom weight function. fitlm uses the RobustWgtFun weight
function and Tune tuning constant from the structure. Specify RobustWgtFun as a
function handle that accepts a vector of residuals, and returns a vector of weights the
same size. The fitting function scales the residuals, dividing by the tuning constant
(default 1) and by an estimate of the error standard deviation before it calls the
weight function.

Example: 'RobustOpts','andrews'

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

22 Functions — Alphabetical List

22-1704

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments

mdl — Linear model
LinearModel object

Linear model representing a least-squares fit of the response to the data, returned as a
LinearModel object.

If the value of the 'RobustOpts' name-value pair is not [] or 'ols', the model is not a
least-squares fit, but uses the robust fitting function.

For properties and methods of the linear model object, mdl, see the LinearModel class
page.

More About

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

 fitlm

22-1705

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

22 Functions — Alphabetical List

22-1706

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 fitlm

22-1707

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

• Y is the response name.

22 Functions — Alphabetical List

22-1708

• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

 fitlm

22-1709

Wilkinson Notation Factors in Standard Notation

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.
• “Linear Regression” on page 9-11

See Also
LinearModel | predict | stepwiselm

22 Functions — Alphabetical List

22-1710

fitlme
Fit linear mixed-effects model

Syntax
lme = fitlme(tbl,formula)

lme = fitlme(tbl,formula,Name,Value)

Description
lme = fitlme(tbl,formula) returns a linear mixed-effects model, specified by
formula, fitted to the variables in the table or dataset array tbl.

lme = fitlme(tbl,formula,Name,Value) returns a linear mixed-effects model with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify the covariance pattern of the random-effects terms, the
method to use in estimating the parameters, or options for the optimization algorithm.

Examples

Fit Linear Mixed-Effects Model

Load the sample data.

load imports-85

Store the variables in a table.

tbl = table(X(:,12),X(:,14),X(:,24),'VariableNames',{'Horsepower','CityMPG','EngineType'});

Display the first five rows of the table.

tbl(1:5,:)

ans =

 Horsepower CityMPG EngineType

 __________ _______ __________

 fitlme

22-1711

 111 21 13

 111 21 13

 154 19 37

 102 24 35

 115 18 35

Fit a linear mixed-effects model for miles per gallon in the city, with fixed effects for
horsepower, and uncorrelated random effect for intercept and horsepower grouped by the
engine type.

lme = fitlme(tbl,'CityMPG~Horsepower+(1|EngineType)+(Horsepower-1|EngineType)');

In this model, CityMPG is the response variable, horsepower is the predictor variable,
and engine type is the grouping variable. The fixed-effects portion of the model
corresponds to 1 + Horsepower, because the intercept is included by default.

Since the random-effect terms for intercept and horsepower are uncorrelated, these
terms are specified separately. Because the second random-effect term is only for
horsepower, you must include a –1 to eliminate the intercept from the second random-
effect term.

Display the model.

lme

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 203

 Fixed effects coefficients 2

 Random effects coefficients 14

 Covariance parameters 3

Formula:

 CityMPG ~ 1 + Horsepower + (1 | EngineType) + (Horsepower | EngineType)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 1099.5 1116 -544.73 1089.5

Fixed effects coefficients (95% CIs):

22 Functions — Alphabetical List

22-1712

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 37.276 2.8556 13.054 201 1.3147e-28 31.645 42.906

 'Horsepower' -0.12631 0.02284 -5.53 201 9.8848e-08 -0.17134 -0.081269

Random effects covariance parameters (95% CIs):

Group: EngineType (7 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 5.7338 2.3773 13.829

Group: EngineType (7 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Horsepower' 'Horsepower' 'std' 0.050357 0.02307 0.10992

Group: Error

 Name Estimate Lower Upper

 'Res Std' 3.226 2.9078 3.5789

Note that the random-effects covariance parameters for intercept and horsepower are
separate in the display.

Now, fit a linear mixed-effects model for miles per gallon in the city, with the same
fixed-effects term and potentially correlated random effect for intercept and horsepower
grouped by the engine type.

lme2 = fitlme(tbl,'CityMPG~Horsepower+(Horsepower|EngineType)');

Because the random-effect term includes the intercept by default, you do not have to add
1, the random effect term is equivalent to (1 + Horsepower|EngineType).

Display the model.

lme2

lme2 =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 203

 Fixed effects coefficients 2

 Random effects coefficients 14

 Covariance parameters 4

Formula:

 fitlme

22-1713

 CityMPG ~ 1 + Horsepower + (1 + Horsepower | EngineType)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 1089 1108.9 -538.52 1077

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 33.824 4.0181 8.4178 201 7.1678e-15 25.901 41.747

 'Horsepower' -0.1087 0.032912 -3.3029 201 0.0011328 -0.1736 -0.043806

Random effects covariance parameters (95% CIs):

Group: EngineType (7 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 9.4952 4.7022 19.174

 'Horsepower' '(Intercept)' 'corr' -0.96843 -0.99568 -0.78738

 'Horsepower' 'Horsepower' 'std' 0.078874 0.039917 0.15585

Group: Error

 Name Estimate Lower Upper

 'Res Std' 3.1845 2.8774 3.5243

Note that the random effects covariance parameters for intercept and horsepower are
together in the display, and it includes the correlation ('corr') between the intercept
and horsepower.

Random Intercept Model

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated
influenza rates (in 9 different regions, estimated from Google searches, plus a nationwide
estimate from the Centers for Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset
array. To fit a linear mixed-effects model with the influenza rates as the responses,
combine the nine columns corresponding to the regions into a tall array. The new dataset
array, flu2, must have the new response variable FluRate, the nominal variable
Region that shows which region each estimate is from, the nationwide estimate WtdILI,
and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

22 Functions — Alphabetical List

22-1714

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Display the first six rows of flu2.

flu2(1:6,:)

ans =

 Date WtdILI Region FluRate

 10/9/2005 1.182 NE 0.97

 10/9/2005 1.182 MidAtl 1.025

 10/9/2005 1.182 ENCentral 1.232

 10/9/2005 1.182 WNCentral 1.286

 10/9/2005 1.182 SAtl 1.082

 10/9/2005 1.182 ESCentral 1.457

Fit a linear mixed-effects model with a fixed-effects term for the nationwide estimate,
WtdILI, and a random intercept that varies by Date. The model corresponds to

y WtdILI b i mim im m im= + + + = =b b e0 1 0 1 2 468 1 2 52, , ,..., , , , ..., ,

where yim is the observation i for level m of grouping variable Date. b0m is the random
effect for level m of the grouping variable Date and εim is the observation error for
observation i. The random effect has the prior distribution, b ~ N(0,σ2

b) and the error
term has the distribution, ε ~ N(0,σ2).

lme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 468

 Fixed effects coefficients 2

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 fitlme

22-1715

 286.24 302.83 -139.12 278.24

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.16385 0.057525 2.8484 466 0.0045885 0.050813 0.27689

 'WtdILI' 0.7236 0.032219 22.459 466 3.0502e-76 0.66028 0.78691

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.17146 0.13227 0.22226

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.30201 0.28217 0.32324

Estimated covariance parameters are displayed in the section titled "Random effects
covariance parameters". The estimated value of σb is 0.17146 and its 95% confidence
interval is [0.13227, 0.22226]. Since this interval does not include 0, the random-effects
term is significant. You can formally test the significance of any random-effects term
using a likelihood ratio test via the compare method.

The estimated response at an observation is the sum of the fixed effects and the random-
effect value at the grouping variable level corresponding to that observation. For
example, the estimated flu rate for observation 28 is

ˆ ˆ ˆ ˆ

. . *(.) .

/ /y WtdILI b28 0 1 28 10 30 2005

0 1639 0 7236 1 343 0

= + +

= + +

b b

33318

1 46749= . ,

where ˆb is the estimated best linear unbiased predictor (BLUP) of the random effects for
the intercept. You can compute this value as follows.

beta = fixedEffects(lme);

[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)

STATS.Level = nominal(STATS.Level);

y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')

y_hat =

 1.4674

You can display the fitted value using the fitted method.

22 Functions — Alphabetical List

22-1716

F = fitted(lme);

F(28)

ans =

 1.4674

Randomized Block Design

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

The data shows the absolute deviations from the target quality characteristic measured
from the products each of five operators manufacture during three shifts: morning,
evening, and night. This is a randomized block design, where the operators are the
blocks. The experiment is designed to study the impact of the time of shift on the
performance. The performance measure is the absolute deviations of the quality
characteristics from the target value. This is simulated data.

Fit a linear mixed-effects model with a random intercept grouped by operator to assess
if performance significantly differs according to the time of the shift. Use the restricted
maximum likelihood method and 'effects' contrasts.

'effects' contrasts mean that the coefficients sum to 0, and fitlme creates a matrix
called a “fixed effects design matrix” to describe the effect of shift. This matrix has two
columns, Shift_Evening and Shift_Morning, where

Shift Evening

if Morning

if Evening

if Night

and Shif_ =

-

Ï

Ì
Ô

Ó
Ô

0

1

1

,

,

,

tt Morning

if Morning

if Evening

if Night

_ =

-

Ï

Ì
Ô

Ó
Ô

1

0

1

,

,

,

.

The model corresponds to

Morning Shift: _QCDev Shift Morning b mim i m im= + + + =b b e0 2 0 1 2, , ,...., ,

,

5

0 1 0Evening Shift:

N

_QCDev Shift Evening bim i m im= + + +b b e

iight Shift: _ _QCDev Shift Evening Shift Morniim i= - -b b b0 1 2 nng bi m im+ +0 e ,

 fitlme

22-1717

where b ~ N(0,σ2
b) and ε ~ N(0,σ2).

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)',...

'FitMethod','REML','DummyVarCoding','effects')

lme =

Linear mixed-effects model fit by REML

Model information:

 Number of observations 15

 Fixed effects coefficients 3

 Random effects coefficients 5

 Covariance parameters 2

Formula:

 QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 58.913 61.337 -24.456 48.913

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 3.6525 0.94109 3.8812 12 0.0021832 1.6021 5.703

 'Shift_Evening' -0.53293 0.31206 -1.7078 12 0.11339 -1.2129 0.14699

 'Shift_Morning' -0.91973 0.31206 -2.9473 12 0.012206 -1.5997 -0.23981

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 2.0457 0.98207 4.2612

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.85462 0.52357 1.395

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

B = randomEffects(lme)

B =

 0.5775

22 Functions — Alphabetical List

22-1718

 1.1757

 -2.1715

 2.3655

 -1.9472

The estimated absolute deviation from the target quality characteristics for the third
operator working the evening shift is

ˆ ˆ ˆ ˆ

. .

,y Shift Evening bEvening Operator3 0 1 03

3 6525 0 532

= + +

= -

b b _

993 2 1715

0 94807

-

=

.

. .

You can also display this value as follows.

F = fitted(lme);

F(shift.Shift=='Evening' & shift.Operator=='3')

ans =

 0.9481

Similarly, you can calculate the estimated absolute deviation from the target quality
characteristics for the third operator working the morning shift as

ˆ ˆ ˆ ˆ

. .

,y Shift Morning bMorning Operator3 0 2 03

3 6525 0 919

= + +

= -

b b _

773 2 1715

0 56127

-

=

.

. .

You can also display this value as follows.

F(shift.Shift=='Morning' & shift.Operator=='3')

ans =

 0.5613

The operator tends to make a smaller magnitude of error during the morning shift.

Split-Plot Experiment

Navigate to a folder containing sample data.

 fitlme

22-1719

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five types of tomato plants (cherry, heirloom, grape, vine, and plum) are
randomly assigned to these plots. The tomato plants in the plots are then divided into
subplots, where each subplot is treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, and define Tomato, Soil, and Fertilizer
as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type) and the plots within blocks
(tomato types within soil types) independently.

This model corresponds to

y I F I T I F I Timjk m im
m

j ij
j

mj im ij
m

= + [] + [] + [] []
= = =

Â Âb b b b0 1
2

4

2
2

5

3
2

44

2

5

0 0

ÂÂ
=

+ + +

j

k k jk jk imjkb S b S T(*) ,e

where i = 1, 2, ..., 60, index m corresponds to the fertilizer types, j corresponds to the
tomato types, and k = 1, 2, 3 corresponds to the blocks (soil). Sk represents the kth soil
type, and (S*T)jk represents the jth tomato type nested in the kth soil type. I[F]im is the
dummy variable representing level m of the fertilizer. Similarly, I[T]ij is the dummy
variable representing level j of the tomato type.

The random effects and observation error have these prior distributions: b0k~N(0,σ2
S),

b0jk~N(0,σ2
S*T), and εimjk ~ N(0,σ2).

22 Functions — Alphabetical List

22-1720

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 60

 Fixed effects coefficients 20

 Random effects coefficients 18

 Covariance parameters 3

Formula:

 Yield ~ 1 + Tomato*Fertilizer + (1 | Soil) + (1 | Soil:Tomato)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 522.57 570.74 -238.29 476.57

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 77 8.5836 8.9706 40 4.0206e-11 59.652 94.348

 'Tomato_Grape' -16 11.966 -1.3371 40 0.18873 -40.184 8.1837

 'Tomato_Heirloom' -6.6667 11.966 -0.55714 40 0.58053 -30.85 17.517

 'Tomato_Plum' 32.333 11.966 2.7022 40 0.010059 8.1496 56.517

 'Tomato_Vine' -13 11.966 -1.0864 40 0.28379 -37.184 11.184

 'Fertilizer_2' 34.667 8.572 4.0442 40 0.00023272 17.342 51.991

 'Fertilizer_3' 33.667 8.572 3.9275 40 0.00033057 16.342 50.991

 'Fertilizer_4' 47.667 8.572 5.5607 40 1.9567e-06 30.342 64.991

 'Tomato_Grape:Fertilizer_2' -2.6667 12.123 -0.21997 40 0.82701 -27.167 21.834

 'Tomato_Heirloom:Fertilizer_2' -8 12.123 -0.65992 40 0.51309 -32.501 16.501

 'Tomato_Plum:Fertilizer_2' -15 12.123 -1.2374 40 0.22317 -39.501 9.5007

 'Tomato_Vine:Fertilizer_2' -16 12.123 -1.3198 40 0.19439 -40.501 8.5007

 'Tomato_Grape:Fertilizer_3' 16.667 12.123 1.3748 40 0.17683 -7.8341 41.167

 'Tomato_Heirloom:Fertilizer_3' 3.3333 12.123 0.27497 40 0.78476 -21.167 27.834

 'Tomato_Plum:Fertilizer_3' 3.6667 12.123 0.30246 40 0.76387 -20.834 28.167

 'Tomato_Vine:Fertilizer_3' 3 12.123 0.24747 40 0.80581 -21.501 27.501

 'Tomato_Grape:Fertilizer_4' 13.333 12.123 1.0999 40 0.27796 -11.167 37.834

 'Tomato_Heirloom:Fertilizer_4' -19 12.123 -1.5673 40 0.12492 -43.501 5.5007

 'Tomato_Plum:Fertilizer_4' -2.6667 12.123 -0.21997 40 0.82701 -27.167 21.834

 'Tomato_Vine:Fertilizer_4' 8.6667 12.123 0.71492 40 0.47881 -15.834 33.167

Random effects covariance parameters (95% CIs):

Group: Soil (3 Levels)

 fitlme

22-1721

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 2.5028 0.02771 226.05

Group: Soil:Tomato (15 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 10.225 6.1497 17.001

Group: Error

 Name Estimate Lower Upper

 'Res Std' 10.499 8.5389 12.908

The p-values corresponding to the last 12 rows in the fixed-effects coefficients display
(0.82701 to 0.47881) indicate that interaction coefficients between the tomato and
fertilizer types are not significant. To test for the overall interaction between tomato and
fertilizer, use the anova method after refitting the model using 'effects' contrasts.

The confidence interval for the standard deviations of the random-effects terms
(σ2

S), where the intercept is grouped by soil, is very large. This term does not appear
significant.

Refit the model after removing the interaction term Tomato:Fertilizer and the
random-effects term (1 | Soil).

lme = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 60

 Fixed effects coefficients 8

 Random effects coefficients 15

 Covariance parameters 2

Formula:

 Yield ~ 1 + Tomato + Fertilizer + (1 | Soil:Tomato)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 511.06 532 -245.53 491.06

Fixed effects coefficients (95% CIs):

22 Functions — Alphabetical List

22-1722

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 77.733 7.3293 10.606 52 1.3108e-14 63.026 92.441

 'Tomato_Grape' -9.1667 9.6045 -0.95441 52 0.34429 -28.439 10.106

 'Tomato_Heirloom' -12.583 9.6045 -1.3102 52 0.1959 -31.856 6.6895

 'Tomato_Plum' 28.833 9.6045 3.0021 52 0.0041138 9.5605 48.106

 'Tomato_Vine' -14.083 9.6045 -1.4663 52 0.14858 -33.356 5.1895

 'Fertilizer_2' 26.333 4.5004 5.8514 52 3.3024e-07 17.303 35.364

 'Fertilizer_3' 39 4.5004 8.6659 52 1.1459e-11 29.969 48.031

 'Fertilizer_4' 47.733 4.5004 10.607 52 1.308e-14 38.703 56.764

Random effects covariance parameters (95% CIs):

Group: Soil:Tomato (15 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 10.02 6.0812 16.509

Group: Error

 Name Estimate Lower Upper

 'Res Std' 12.325 10.024 15.153

You can compare the two models using the compare method with the simulated
likelihood ratio test since both a fixed-effect and a random-effect term are tested.

Longitudinal Study with a Covariate

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs (A, B, C, D), and their weight loss is recorded over six 2-
week time periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

 fitlme

22-1723

fitlme uses program A as a reference and creates the necessary dummy variables I[.].
Since the model already has an intercept, fitlme only creates dummy variables for
programs B, C, and D. This is also known as the 'reference' method of coding dummy
variables. This model corresponds to

y IW Week I PB I PC I PD

Week I P

im i i i i i

i

= + + + [] + [] + []

+

b b b b b b

b

0 1 2 3 4 5

6 * BB Week I PC Week I PD

b b Week

i i i i i

m m im i

[]() + []() + []()
+ + +

b b

e

7 8

0 1

* *

mm ,

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20. βj are the fixed-effects coefficients, j = 0, 1, ...,
8, and b1m and b1m are random effects. IW stands for initial weight and I[.] is a dummy
variable representing a type of program. For example, I[PB]i is the dummy variable
representing program B. The random effects and observation error have these prior
distributions: b0m~N(0,σ2

0), b1m~N(0,σ2
1), and εim ~ N(0,σ2).

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 9

 Random effects coefficients 40

 Covariance parameters 4

Formula:

 y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -22.981 13.257 24.49 -48.981

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 0.66105 0.25892 2.5531 111 0.012034 0.14798 1.1741

 'InitialWeight' 0.0031879 0.0013814 2.3078 111 0.022863 0.00045067 0.0059252

 'Program_B' 0.36079 0.13139 2.746 111 0.0070394 0.10044 0.62113

 'Program_C' -0.033263 0.13117 -0.25358 111 0.80029 -0.29319 0.22666

 'Program_D' 0.11317 0.13132 0.86175 111 0.39068 -0.14706 0.3734

22 Functions — Alphabetical List

22-1724

 'Week' 0.1732 0.067454 2.5677 111 0.011567 0.039536 0.30686

 'Program_B:Week' 0.038771 0.095394 0.40644 111 0.68521 -0.15026 0.2278

 'Program_C:Week' 0.030543 0.095394 0.32018 111 0.74944 -0.15849 0.21957

 'Program_D:Week' 0.033114 0.095394 0.34713 111 0.72915 -0.15592 0.22214

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.18407 0.12281 0.27587

 'Week' '(Intercept)' 'corr' 0.66841 0.21076 0.88573

 'Week' 'Week' 'std' 0.15033 0.11004 0.20537

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10261 0.087882 0.11981

The p-values 0.022863 and 0.011567 indicate significant effects of subject initial weights
and time in the amount of weight lost. The weight loss of subjects who are in program B
is significantly different relative to the weight loss of subjects who are in program A. The
lower and upper limits of the covariance parameters for the random effects do not include
0, thus they are significant. You can also test the significance of the random effects using
the compare method.

Input Arguments

tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be
continuous or grouping variables (see “Grouping Variables” on page 2-52). You must
specify the model for the variables using formula.
Data Types: single | double | char | cell

formula — Formula for model specification
string of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|
groupingR)'

Formula for model specification, specified as a string of the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)'. The string is case
sensitive. For a full description, see “Formula” on page 22-1731.

 fitlme

22-1725

Example: 'y ~ treatment + (1|block)'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'CovariancePattern','Diagonal','Optimizer','fminunc','OptimizerOptions',opt

specifies a model, where the random-effects terms have a diagonal covariance matrix
structure, and fitlme uses the fminunc optimization algorithm with the custom
optimization parameters defined in variable opt.

'CovariancePattern' — Pattern of covariance matrix
'FullCholesky' (default) | string | square symmetric logical matrix | cell array of
strings or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated
pair consisting of 'CovariancePattern' and a string, a square symmetric logical
matrix, or a cell array of strings or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be
a cell array of length R, where each element r of this cell array specifies the pattern of
the covariance matrix of the random-effects vector associated with the rth random-effects
term. The options for each element follow.

'FullCholesky' Default. Full covariance matrix using
the Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

'Full' Full covariance matrix, using the log-
Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

'Diagonal' Diagonal covariance matrix. That is, off-
diagonal elements of the covariance matrix
are constrained to be 0.

22 Functions — Alphabetical List

22-1726

s

s

s

b

b

b

1

2

2

2

3

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

'Isotropic' Diagonal covariance matrix with equal
variances. That is, off-diagonal elements
of the covariance matrix are constrained
to be 0, and the diagonal elements are
constrained to be equal. For example, if
there are three random-effects terms with
an isotropic covariance structure, this
covariance matrix looks like

s

s

s

b

b

b

2

2

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

where σ2
b is the common variance of the

random-effects terms.

 fitlme

22-1727

'CompSymm' Compound symmetry structure. That is,
common variance along diagonals and
equal correlation between all random
effects. For example, if there are three
random-effects terms with a covariance
matrix having a compound symmetry
structure, this covariance matrix looks like

s s s

s s s

s s s

b b b b b

b b b b b

b b b b b

1
2

1 2 1 2

1 2 1
2

1 2

1 2 1 2 1
2

, ,

, ,

, ,

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜̃
˜
˜̃

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the
common covariance between any two
random-effects term .

PAT Square symmetric logical matrix. If
'CovariancePattern' is defined
by the matrix PAT, and if PAT(a,b)
= false, then the (a,b) element of
the corresponding covariance matrix is
constrained to be 0.

Example: 'CovariancePattern','Diagonal'

Example: 'CovariancePattern',{'Full','Diagonal'}

'FitMethod' — Method for estimating parameters
'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the
comma-separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'

22 Functions — Alphabetical List

22-1728

'Weights' — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of length n, where n is the number of observations.
Data Types: single | double

'Exclude' — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as
the comma-separated pair consisting of 'Exclude' and a vector of integer or logical
values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]

Data Types: single | double | logical

'DummyVarCoding' — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as
the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

'reference' Default. Coefficient for first category set to
0.

'effects' Coefficients sum to 0.
'full' One dummy variable for each category.

Example: 'DummyVarCoding','effects'

'Optimizer' — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of
'Optimizer' and either of the following.

'quasinewton' Default. Uses a trust region based
quasi-Newton optimizer. Change

 fitlme

22-1729

the options of the algorithm using
statset('LinearMixedModel').
If you don’t specify the options,
then LinearMixedModel
uses the default options of
statset('LinearMixedModel').

'fminunc' You must have Optimization Toolbox
to specify this option. Change the
options of the algorithm using
optimoptions('fminunc'). If
you don’t specify the options, then
LinearMixedModel uses the default
options of optimoptions('fminunc')
with 'Algorithm' set to 'quasi-
newton'.

Example: 'Optimizer','fminunc'

'OptimizerOptions' — Options for optimization algorithm
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-
separated pair consisting of 'OptimizerOptions' and a structure
returned by statset('LinearMixedModel') or an object returned by
optimoptions('fminunc').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the
options of the optimization algorithm. See optimoptions for the options 'fminunc'
uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions',
then the default for LinearMixedModel is the default options created by
optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

• If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel')
to change the optimization parameters. If you don’t change the optimization
parameters, then LinearMixedModel uses the default options created by
statset('LinearMixedModel'):

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('LinearMixedModel').

'TolFun' — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

22 Functions — Alphabetical List

22-1730

Relative tolerance on the gradient of the objective function, specified as a positive scalar
value.

'TolX' — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

'MaxIter' — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

'Display' — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

'StartMethod' — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting
of 'StartMethod' and either of the following.

'default' Default. An internally defined default
value.

'random' A random initial value.

Example: 'StartMethod','random'

'Verbose' — Indicator to display optimization process on screen
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated
pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true

'CheckHessian' — Indicator to check positive definiteness of Hessian
false (default) | true

 fitlme

22-1731

Indicator to check the positive definiteness of the Hessian of the objective function with
respect to unconstrained parameters at convergence, specified as the comma-separated
pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if
the model is overparameterized in the number of covariance parameters.
Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Alternatives

If your model is not easily described using a formula, you can create matrices to define
the fixed and random effects, and fit the model using fitlmematrix(X,y,Z,G).

More About

Formula

In general, a formula for model specification is a string of the form 'y ~ terms'. For
the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed and random contain
the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

22 Functions — Alphabetical List

22-1732

where the grouping variables in Xj and gr can be categorical, logical, character arrays, or
cell arrays of strings.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|
gR)', the term fixed corresponds to a specification of the fixed-effects design matrix
X, random1 is a specification of the random-effects design matrix Z1 corresponding to
grouping variable g1, and similarly randomR is a specification of the random-effects
design matrix ZR corresponding to grouping variable gR. You can express the fixed and
random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)

X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1. Here are some examples for linear
mixed-effects model specification.

Examples:

Formula Description

'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2.
This is equivalent to 'y ~ 1 + X1 + X2'.

 fitlme

22-1733

Formula Description

'y ~ -1 + X1 + X2' No intercept and fixed effects for X1
and X2. The implicit intercept term is
suppressed by including -1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random
effect for the intercept for each level of the
grouping variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with

possible correlation between them. This is
equivalent to 'y ~ 1 + X1 + (1 + X1|
g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 |

g1)'

Independent random effects terms for
intercept and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1

| g1:g2)'

Random intercept model with independent
main effects for g1 and g2, plus an
independent interaction effect.

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the
following prior distribution.

b N D~ , ,0
2s q()()

where D is a q-by-q symmetric and positive semidefinite matrix, parameterized by
a variance component vector θ, q is the number of variables in the random-effects
term, and σ2 is the observation error variance. Since the covariance matrix of the
random effects, D, is symmetric, it has q(q+1)/2 free parameters. Suppose L is the lower
triangular Cholesky factor of D(θ) such that

D L L
T

q q q() = () () ,

then the q*(q+1)/2-by-1 unconstrained parameter vector θ is formed from elements in the
lower triangular part of L.

22 Functions — Alphabetical List

22-1734

For example, if

L

L

L L

L L L

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11

21 22

31 32 33

0 0

0 ,

then

q =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

L

L

L

L

L

L

11

21

31

22

32

33

.

Log-Cholesky Parameterization

When the diagonal elements of L in Cholesky parameterization are constrained to be
positive, then the solution for L is unique. Log-Cholesky parameterization is the same as
Cholesky parameterization except that the logarithm of the diagonal elements of L are
used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing Lii ≥ 0,

q =

()

()

()

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

log

log

log

.

L

L

L

L

L

L

11

21

31

22

32

33

References

[1] Pinherio, J. C., and D. M. Bates. “Unconstrained Parametrizations for Variance-
Covariance Matrices”. Statistics and Computing, Vol. 6, 1996, pp. 289–296.

 fitlme

22-1735

See Also
LinearMixedModel | fitlmematrix

22 Functions — Alphabetical List

22-1736

fitlmematrix

Fit linear mixed-effects model

Syntax

lme = fitlmematrix(X,y,Z,[])

lme = fitlmematrix(X,y,Z,G)

lme = fitlmematrix(___ ,Name,Value)

Description

lme = fitlmematrix(X,y,Z,[]) creates a linear mixed-effects model of the responses
y using the fixed-effects design matrix X and random-effects design matrix or matrices in
Z.

[] implies that there is one group. That is, the grouping variable G is ones(n,1),
where n is the number of observations. Using fitlmematrix(X,Y,Z,[]) without
a specified covariance pattern most likely results in a nonidentifiable model. This
syntax is recommended only if you build the grouping information into the random
effects design Z and specify a covariance pattern for the random effects using the
'CovariancePattern' name-value pair argument.

lme = fitlmematrix(X,y,Z,G) creates a linear mixed-effects model of the responses
y using the fixed-effects design matrix X and random-effects design matrix Z or matrices
in Z, and the grouping variable or variables in G.

lme = fitlmematrix(___ ,Name,Value) also creates a linear mixed-effects model
with additional options specified by one or more Name,Value pair arguments, using any
of the previous input arguments.

For example, you can specify the names of the response, predictor, and grouping
variables. You can also specify the covariance pattern, fitting method, or the optimization
algorithm.

 fitlmematrix

22-1737

Examples
No Grouping Variable Specified

Load the sample data.

load carsmall

Fit a linear mixed-effects model, where miles per gallon (MPG) is the response, weight
is the predictor variable, and the intercept varies by model year. First, define the design
matrices. Then, fit the model using the specified design matrices.

y = MPG;

X = [ones(size(Weight)), Weight];

Z = ones(size(y));

lme = fitlmematrix(X,y,Z,Model_Year)

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 94

 Fixed effects coefficients 2

 Random effects coefficients 3

 Covariance parameters 2

Formula:

 y ~ x1 + x2 + (z11 | g1)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 486.09 496.26 -239.04 478.09

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'x1' 43.575 2.3038 18.915 92 1.8371e-33 39 48.151

 'x2' -0.0067097 0.0004242 -15.817 92 5.5373e-28 -0.0075522 -0.0058672

Random effects covariance parameters (95% CIs):

Group: g1 (3 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'z11' 'z11' 'std' 3.301 1.4448 7.5421

22 Functions — Alphabetical List

22-1738

Group: Error

 Name Estimate Lower Upper

 'Res Std' 2.8997 2.5075 3.3532

Now, fit the same model by building the grouping into the Z matrix.

Z = double([Model_Year==70, Model_Year==76, Model_Year==82]);

lme = fitlmematrix(X,y,Z,[],'Covariancepattern','Isotropic')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 94

 Fixed effects coefficients 2

 Random effects coefficients 3

 Covariance parameters 2

Formula:

 y ~ x1 + x2 + (z11 + z12 + z13 | g1)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 486.09 496.26 -239.04 478.09

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'x1' 43.575 2.3038 18.915 92 1.8371e-33 39 48.151

 'x2' -0.0067097 0.0004242 -15.817 92 5.5373e-28 -0.0075522 -0.0058672

Random effects covariance parameters (95% CIs):

Group: g1 (1 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'z11' 'z11' 'std' 3.301 1.4448 7.5421

Group: Error

 Name Estimate Lower Upper

 'Res Std' 2.8997 2.5075 3.3532

Longitudinal Study with a Covariate

Navigate to a folder containing sample data.

cd(matlabroot)

 fitlmematrix

22-1739

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned 4 exercise programs (A, B, C, D) and their weight loss is recorded over six 2-
week time periods. This is simulated data.

Define Subject and Program as categorical variables. Create the design matrices for
a linear mixed-effects model, with the initial weight, type of program, week, and the
interaction between the week and type of program as the fixed effects. The intercept and
coefficient of week vary by subject.

This model corresponds to

y IW Week I PB I PC I PD

Week I P

im i i i i i

i

= + + + [] + [] + []

+

b b b b b b

b

0 1 2 3 4 5

6 * BB Week I PC Week I PD

b b Week

i i i i i

m m im i

[]() + []() + []()
+ + +

b b

e

7 8

0 1

* *

mm ,

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20. βj are the fixed-effects coefficients, j = 0, 1, ...,
8, and b0m and b1m are random effects. IW stands for initial weight and I[.] is a dummy
variable representing a type of program. For example, I[PB]i is the dummy variable
representing program type B. The random effects and observation error have these prior
distributions: b0m~N(0,σ2

0), b1m~N(0,σ2
1), and εim ~ N(0,σ2).

Subject = nominal(Subject);

Program = nominal(Program);

D = dummyvar(Program); % Create dummy variables for Program

X = [ones(120,1), InitialWeight, D(:,2:4), Week,...

 D(:,2).*Week, D(:,3).*Week, D(:,4).*Week];

Z = [ones(120,1), Week];

G = Subject;

Since the model has an intercept, you only need the dummy variables for programs B, C,
and D. This is also known as the 'reference' method of coding dummy variables.

Fit the model using fitlmematrix with the defined design matrices and grouping
variables.

lme = fitlmematrix(X,y,Z,G,'FixedEffectPredictors',...

{'Intercept','InitWeight','PrgB','PrgC','PrgD','Week','Week_PrgB','Week_PrgC','Week_PrgD'},...

22 Functions — Alphabetical List

22-1740

'RandomEffectPredictors',{{'Intercept','Week'}},'RandomEffectGroups',{'Subject'})

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 9

 Random effects coefficients 40

 Covariance parameters 4

Formula:

 Linear Mixed Formula with 10 predictors.

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -22.981 13.257 24.49 -48.981

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 0.66105 0.25892 2.5531 111 0.012034 0.14798 1.1741

 'InitWeight' 0.0031879 0.0013814 2.3078 111 0.022863 0.00045067 0.0059252

 'PrgB' 0.36079 0.13139 2.746 111 0.0070394 0.10044 0.62113

 'PrgC' -0.033263 0.13117 -0.25358 111 0.80029 -0.29319 0.22666

 'PrgD' 0.11317 0.13132 0.86175 111 0.39068 -0.14706 0.3734

 'Week' 0.1732 0.067454 2.5677 111 0.011567 0.039536 0.30686

 'Week_PrgB' 0.038771 0.095394 0.40644 111 0.68521 -0.15026 0.2278

 'Week_PrgC' 0.030543 0.095394 0.32018 111 0.74944 -0.15849 0.21957

 'Week_PrgD' 0.033114 0.095394 0.34713 111 0.72915 -0.15592 0.22214

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 0.18407 0.12281 0.27587

 'Week' 'Intercept' 'corr' 0.66841 0.21076 0.88573

 'Week' 'Week' 'std' 0.15033 0.11004 0.20537

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10261 0.087882 0.11981

The p-values 0.0228 and 0.0115 indicate significant effects of the initial weights of the
subjects and the time factor in the amount of weight lost. The weight loss of subjects who

 fitlmematrix

22-1741

are in program B is significantly different relative to the weight loss of subjects who are
in program A. The lower and upper limits of the covariance parameters for the random
effects do not include zero, thus they seem significant. You can also test the significance
of the random-effects using the compare method.

Random Intercept Model

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables for estimated influenza
rates (in 9 different regions, estimated from Google searches, plus a nationwide estimate
from the Centers for Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, where the influenza rates are the responses, combine
the nine columns corresponding to the regions into a tall array that has a single response
variable, FluRate, and a nominal variable, Region, the nationwide estimate WtdILI,
that shows which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Define the design matrices for a random-intercept linear mixed-effects model, where the
intercept varies by Date. The corresponding model is

y WtdILI b i mim im m im= + + + = =b b e0 1 0 1 2 468 1 2 52, , ,..., , , , ..., ,

where yim is the observation i for level m of grouping variable Date. b0m is the random
effect for level m of the grouping variable Date and εim is the observation error for
observation i. The random effect has the prior distribution, b0m ~ N(0,σ2

FR) and the error
term has the distribution, εim ~ N(0,σ2).

y = flu2.FluRate;

X = [ones(468,1) flu2.WtdILI];

Z = [ones(468,1)];

G = flu2.Date;

Fit the linear mixed-effects model.

22 Functions — Alphabetical List

22-1742

lme = fitlmematrix(X,y,Z,G,'FixedEffectPredictors',{'Intercept','NationalRate'},...

'RandomEffectPredictors',{{'Intercept'}},'RandomEffectGroups',{'Date'})

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 468

 Fixed effects coefficients 2

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 y ~ Intercept + NationalRate + (Intercept | Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 286.24 302.83 -139.12 278.24

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 0.16385 0.057525 2.8484 466 0.0045885 0.050813 0.27689

 'NationalRate' 0.7236 0.032219 22.459 466 3.0502e-76 0.66028 0.78691

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 0.17146 0.13227 0.22226

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.30201 0.28217 0.32324

The confidence limits of the standard deviation of the random-effects term σ2
b0m, do

not include zero (0.13227, 0.22226), which indicates that the random-effects term is
significant. You can also test the significance of the random-effects using compare
method.

The estimated value of an observation is the sum of the fixed-effects values and value of
the random effect at the grouping variable level corresponding to that observation. For
example, the estimated flu rate for observation 28

 fitlmematrix

22-1743

ˆ ˆ ˆ ˆ

. . *(.) .

/ /y WtdILI b28 0 1 28 10 30 2005

0 1639 0 7236 1 343 0

= + +

= + +

b b

33318

1 46749= . ,

where ˆb is the best linear unbiased predictor (BLUP) of the random effects for the
intercept. You can compute this value as follows.

beta = fixedEffects(lme);

[~,~,STATS] = randomEffects(lme); % compute the random effects statistics STATS

STATS.Level = nominal(STATS.Level);

y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')

y_hat =

 1.4674

You can simply display the fitted value using the fitted(lme) method.

F = fitted(lme);

F(28)

ans =

 1.4674

Randomized Block Design

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

The data shows the deviations from the target quality characteristic measured from
the products that five operators manufacture during three shifts: morning, evening,
and night. This is a randomized block design, where the operators are the blocks. The
experiment is designed to study the impact of the time of shift on the performance. The
performance measure is the deviations of the quality characteristics from the target
value. This is simulated data.

22 Functions — Alphabetical List

22-1744

Define the design matrices for a linear mixed-effects model with a random intercept
grouped by operator, and shift as the fixed effects. Use the 'effects' contrasts.
'effects' contrasts mean that the coefficients sum to 0. You need to create two
contrast coded variables in the fixed-effects design matrix, X1 and X2, where

Shift Evening

if Morning

if Evening

if Night

and Shif_ =

-

Ï

Ì
Ô

Ó
Ô

0

1

1

,

,

,

tt Morning

if Morning

if Evening

if Night

_ =

-

Ï

Ì
Ô

Ó
Ô

1

0

1

,

,

,

.

The model corresponds to

Morning Shift: _QCDev Shift Morning b mim i m im= + + + =b b e0 2 0 1 2, , ,...., ,

,

5

0 1 0Evening Shift:

N

_QCDev Shift Evening bim i m im= + + +b b e

iight Shift: _ _QCDev Shift Evening Shift Morniim i= - -b b b0 1 2 nng bi m im+ +0 e ,

where i represents the observations, and m represents the operators, i = 1, 2, ..., 15, and
m = 1, 2, ..., 5. The random effects and the observation error have these distributions: b0m

~ N(0,σ2
b0m) and εim ~ N(0,σ2).

S = shift.Shift;

X1 = (S=='Morning') - (S=='Night');

X2 = (S=='Evening') - (S=='Night');

X = [ones(15,1), X1, X2];

y = shift.QCDev;

Z = ones(15,1);

G = shift.Operator;

Fit a linear mixed-effects model using the specified design matrices and restricted
maximum likelihood method.

lme = fitlmematrix(X,y,Z,G,'FitMethod','REML','FixedEffectPredictors',....

{'Intercept','S_Morning','S_Evening'},'RandomEffectPredictors',{{'Intercept'}},...

'RandomEffectGroups',{'Operator'},'DummyVarCoding','effects')

lme =

Linear mixed-effects model fit by REML

Model information:

 Number of observations 15

 Fixed effects coefficients 3

 fitlmematrix

22-1745

 Random effects coefficients 5

 Covariance parameters 2

Formula:

 y ~ Intercept + S_Morning + S_Evening + (Intercept | Operator)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 58.913 61.337 -24.456 48.913

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 3.6525 0.94109 3.8812 12 0.0021832 1.6021 5.703

 'S_Morning' -0.91973 0.31206 -2.9473 12 0.012206 -1.5997 -0.23981

 'S_Evening' -0.53293 0.31206 -1.7078 12 0.11339 -1.2129 0.14699

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 2.0457 0.98207 4.2612

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.85462 0.52357 1.395

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

B = randomEffects(lme)

B =

 0.5775

 1.1757

 -2.1715

 2.3655

 -1.9472

The estimated deviation from the target quality characteristics for the third operator
working the evening shift is

ˆ ˆ ˆ ˆ

. .

,y Shift Evening bEvening Operator3 0 1 03

3 6525 0 532

= + +

= -

b b _

993 2 1715

0 94807

-

=

.

. .

22 Functions — Alphabetical List

22-1746

You can also display this value as follows.

F = fitted(lme);

F(shift.Shift=='Evening' & shift.Operator=='3')

ans =

 0.9481

Correlated and Uncorrelated Random-Effects Terms

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration and horsepower, and uncorrelated random effect for intercept and
acceleration grouped by the model year. This model corresponds to

MPG Acc HP b b Acc mim i m m im im= + + + + + =b b b e0 1 2 0 1 1 2 3, , , ,

with the random-effects terms having these distributions: b0m ~ N(0,σ2
0), and b1m ~

N(0,σ2
1). m represents the model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];

Z = {ones(406,1),Acceleration};

G = {Model_Year,Model_Year};

Model_Year = nominal(Model_Year);

Now, fit the model using fitlmematrix with the defined design matrices and grouping
variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'})

lme =

Linear mixed-effects model fit by ML

 fitlmematrix

22-1747

Model information:

 Number of observations 392

 Fixed effects coefficients 3

 Random effects coefficients 26

 Covariance parameters 3

Formula:

 y ~ Intercept + Acceleration + Horsepower + (Intercept | Model_Year) + (Acceleration | Model_Year)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 2194.5 2218.3 -1091.3 2182.5

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 49.839 2.0518 24.291 389 5.6168e-80 45.806 53.873

 'Acceleration' -0.58565 0.10846 -5.3995 389 1.1652e-07 -0.7989 -0.3724

 'Horsepower' -0.16534 0.0071227 -23.213 389 1.9755e-75 -0.17934 -0.15133

Random effects covariance parameters (95% CIs):

Group: Model_Year (13 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 8.0669e-07 NaN NaN

Group: Model_Year (13 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Acceleration' 'Acceleration' 'std' 0.18783 0.12523 0.28172

Group: Error

 Name Estimate Lower Upper

 'Res Std' 3.7258 3.4698 4.0007

Note that the random effects covariance parameters for intercept and acceleration are
separate in the display. The standard deviation of the random effect for the intercept
does not seem significant.

Refit the model with potentially correlated random effects for intercept and acceleration.
In this case, the random-effects terms has this prior distribution

b
b

b
Nm

m

m

=
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

0

1

0
2

0 1

0 1 1
2

0~ , ,
,

,

s s

s s

22 Functions — Alphabetical List

22-1748

where m represents the model year.

First, prepare the random-effects design matrix and grouping variable.

Z = [ones(406,1) Acceleration];

G = Model_Year;

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'})

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 392

 Fixed effects coefficients 3

 Random effects coefficients 26

 Covariance parameters 4

Formula:

 y ~ Intercept + Acceleration + Horsepower + (Intercept + Acceleration | Model_Year)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 2193.5 2221.3 -1089.7 2179.5

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 50.133 2.2652 22.132 389 7.7727e-71 45.679 54.586

 'Acceleration' -0.58327 0.13394 -4.3545 389 1.7075e-05 -0.84661 -0.31992

 'Horsepower' -0.16954 0.0072609 -23.35 389 5.188e-76 -0.18382 -0.15527

Random effects covariance parameters (95% CIs):

Group: Model_Year (13 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 3.3475 1.2862 8.7119

 'Acceleration' 'Intercept' 'corr' -0.87971 -0.98501 -0.29675

 'Acceleration' 'Acceleration' 'std' 0.33789 0.1825 0.62558

Group: Error

 Name Estimate Lower Upper

 'Res Std' 3.6874 3.4298 3.9644

 fitlmematrix

22-1749

Note that the random effects covariance parameters for intercept and acceleration are
together in the display, with an addition of the correlation between the intercept and
acceleration. The confidence intervals for the standard deviations and the correlation
between the random effects for intercept and acceleration do not include 0s, hence they
seem significant. You can compare these two models using the compare method.

Specify the Covariance Pattern

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Define Subject and Program as categorical variables.

Subject = nominal(Subject);

Program = nominal(Program);

Create the design matrices for a linear mixed-effects model, with the initial weight, type
of program, and week as the fixed effects.

D = dummyvar(Program);

X = [ones(120,1), InitialWeight, D(:,2:4), Week];

Z = [ones(120,1) Week];

G = Subject;

This model corresponds to

y IW Week I PB I PC I PD

b b Wee

im i i i i i

m m

= + + + [] + [] + []
+ +

b b b b b b0 1 2 3 4 5

0 1 kk b Week b Week b Week

b Week b Week

im m im m im m im

m im m

2 4 6 8

10

2 3 4

5 6

+ + +

+ + 112im im+ e ,

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20.

βj are the fixed-effects coefficients, j = 0, 1, ..., 8, and b1m and b1m are random effects. IW
stands for initial weight and I[.] is a dummy variable representing a type of program. For

22 Functions — Alphabetical List

22-1750

example, I[PB]i is the dummy variable representing program type B. The random effects
and observation error have these prior distributions: b0m~N(0,σ2

0), b1m~N(0,σ2
1), and εim ~

N(0,σ2).

Fit the model using fitlmematrix with the defined design matrices and grouping
variables. Assume the repeated observations collected on a subject have common
variance along diagonals.

lme = fitlmematrix(X,y,Z,G,'FixedEffectPredictors',...

{'Intercept','InitWeight','PrgB','PrgC','PrgD','Week'},...

'RandomEffectPredictors',{{'Intercept','Week'}},...

'RandomEffectGroups',{'Subject'},'CovariancePattern','Isotropic')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 6

 Random effects coefficients 40

 Covariance parameters 2

Formula:

 y ~ Intercept + InitWeight + PrgB + PrgC + PrgD + Week + (Intercept + Week | Subject)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -24.783 -2.483 20.391 -40.783

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 0.4208 0.28169 1.4938 114 0.13799 -0.13723 0.97883

 'InitWeight' 0.0045552 0.0015338 2.9699 114 0.0036324 0.0015168 0.0075935

 'PrgB' 0.36993 0.12119 3.0525 114 0.0028242 0.12986 0.61

 'PrgC' -0.034009 0.1209 -0.28129 114 0.77899 -0.27351 0.2055

 'PrgD' 0.121 0.12111 0.99911 114 0.31986 -0.11891 0.36091

 'Week' 0.19881 0.037134 5.3538 114 4.5191e-07 0.12525 0.27237

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 0.16561 0.12896 0.21269

 fitlmematrix

22-1751

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10272 0.088014 0.11987

Input Arguments

X — Fixed-effects design matrix
n-by-p matrix

Fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of
observations, and p is the number of fixed-effects predictor variables. Each row of X
corresponds to one observation, and each column of X corresponds to one variable.

Data Types: single | double

y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.
Data Types: single | double

Z — Random-effects design
n-by-q matrix | cell array of R n-by-q(r) matrices, r = 1, 2, ..., R

Random-effects design, specified as either of the following.

• If there is one random-effects term in the model, then Z must be an n-by-q matrix,
where n is the number of observations and q is the number of variables in the
random-effects term.

• If there are R random-effects terms, then Z must be a cell array of length R. Each
cell of Z contains an n-by-q(r) design matrix Z{r}, r = 1, 2, ..., R, corresponding to
each random-effects term. Here, q(r) is the number of random effects term in the rth
random effects design matrix, Z{r}.

Data Types: single | double | cell

G — Grouping variable or variables
n-by-1 vector | cell array of R n-by-1 vectors

Grouping variable or variables, specified as either of the following.

22 Functions — Alphabetical List

22-1752

• If there is one random-effects term, then G must be an n-by-1 vector corresponding to
a single grouping variable with M levels or groups.

G can be a categorical vector, numeric vector, character array, or cell array of strings.
• If there are multiple random-effects terms, then G must be a cell array of length R.

Each cell of G contains a grouping variable G{r}, r = 1, 2, ..., R, with M(r) levels.

G{r} can be a categorical vector, numeric vector, character array, or cell array of
strings.

Data Types: single | double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'CovariancePattern','Diagonal','DummyVarCoding','full','Optimizer','fminunc'

specifies a random-effects covariance pattern with zero off-diagonal elements, creates
a dummy variable for each level of a categorical variable, and uses the fminunc
optimization algorithm.

'FixedEffectPredictors' — Names of columns in fixed-effects design matrix
{'x1','x2',...,'xP'} (default) | cell array of length p

Names of columns in the fixed-effects design matrix X, specified as the comma-separated
pair consisting of 'FixedEffectPredictors' and a cell array of length p.

For example, if you have a constant term and two predictors, say TimeSpent and
Gender, where Female is the reference level for Gender, as the fixed effects, then you
can specify the names of your fixed effects in the following way. Gender_Male represents
the dummy variable you must create for category Male. You can choose different names
for these variables.
Example: 'FixedEffectPredictors',
{'Intercept','TimeSpent','Gender_Male'},

Data Types: cell

 fitlmematrix

22-1753

'RandomEffectPredictors' — Names of columns in random-effects design matrix or cell
array
cell array of length q | cell array of length R with elements of length q(r), r = 1, 2, ..., R

Names of columns in the random-effects design matrix or cell array Z, specified as the
comma-separated pair consisting of 'RandomEffectPredictors' and either of the
following:

• A cell array of length q when Z is an n-by-q design matrix. In this case, the default is
{'z1','z2',...,'zQ'}.

• A cell array of length R, when Z is a cell array of length R with each
element Z{r} of length q(r), r = 1, 2, ..., R. In this case, the default is
{'z11','z12',...,'z1Q(1)'},...,{'zr1','zr2',...,'zrQ(r)'}.

For example, suppose you have correlated random effects for intercept and a variable
named Acceleration. Then, you can specify the random-effects predictor names as
follows.
Example: 'RandomEffectPredictors',{'Intercept','Acceleration'}

If you have two random effects terms, one for the intercept and the variable
Acceleration grouped by variable g1, and the second for the intercept, grouped by the
variable g2, then you specify the random-effects predictor names as follows.

Example: 'RandomEffectPredictors',{{'Intercept','Acceleration'},
{'Intercept'}}

Data Types: cell

'ResponseVarName' — Name of response variable
'y' (default) | string

Name of response variable, specified as the comma-separated pair consisting of
'ResponseVarName' and a string.

For example, if your response variable name is score, then you can specify it as follows.

Example: 'ResponseVarName','score'

Data Types: char

'RandomEffectGroups' — Names of random effects grouping variables
'g' or {'g1','g2',...,'gR'} (default) | string | cell array of strings

22 Functions — Alphabetical List

22-1754

Names of random effects grouping variables, specified as the comma-separated pair
'RandomEffectGroups' and either of the following:

• String — If there is only one random-effects term, that is, if G is a vector, then the
value of 'RandomEffectGroups' is a string containing the name for the grouping
variable G. The default is 'g'.

• Cell array of strings — If there are multiple random-effects terms, that is, if G is a cell
array of length R, then the value of 'RandomEffectGroups' is a cell array of length
R, where each cell contains the name for the grouping variable G{r}. The default is
{'g1','g2',...,'gR'}.

For example, if you have two random-effects terms, z1 and z2, grouped by the grouping
variables sex and subject, then you can specify the names of your grouping variables
as follows.
Example: 'RandomEffectGroups',{'sex','subject'}

Data Types: char | cell

'CovariancePattern' — Pattern of covariance matrix
'FullCholesky' (default) | string | square symmetric logical matrix | cell array of
strings or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated
pair consisting of 'CovariancePattern' and a string, a square symmetric logical
matrix, or a cell array of strings or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be
a cell array of length R, where each element r of this cell array specifies the pattern of
the covariance matrix of the random-effects vector associated with the rth random-effects
term. The options for each element follow.

'FullCholesky' Default. Full covariance matrix using
the Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

'Full' Full covariance matrix, using the log-
Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

 fitlmematrix

22-1755

'Diagonal' Diagonal covariance matrix. That is, off-
diagonal elements of the covariance matrix
are constrained to be 0.

s

s

s

b

b

b

1

2

2

2

3

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

'Isotropic' Diagonal covariance matrix with equal
variances. That is, off-diagonal elements
of the covariance matrix are constrained
to be 0, and the diagonal elements are
constrained to be equal. For example, if
there are three random-effects terms with
an isotropic covariance structure, this
covariance matrix looks like

s

s

s

b

b

b

2

2

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

where σ2
b is the common variance of the

random-effects terms.

22 Functions — Alphabetical List

22-1756

'CompSymm' Compound symmetry structure. That is,
common variance along diagonals and
equal correlation between all random
effects. For example, if there are three
random-effects terms with a covariance
matrix having a compound symmetry
structure, this covariance matrix looks like

s s s

s s s

s s s

b b b b b

b b b b b

b b b b b

1
2

1 2 1 2

1 2 1
2

1 2

1 2 1 2 1
2

, ,

, ,

, ,

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜̃
˜
˜̃

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the
common covariance between any two
random-effects term .

PAT Square symmetric logical matrix. If
'CovariancePattern' is defined
by the matrix PAT, and if PAT(a,b)
= false, then the (a,b) element of
the corresponding covariance matrix is
constrained to be 0.

Example: 'CovariancePattern','Diagonal'

Example: 'CovariancePattern',{'Full','Diagonal'}

'FitMethod' — Method for estimating parameters
'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the
comma-separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'

 fitlmematrix

22-1757

'Weights' — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of length n, where n is the number of observations.
Data Types: single | double

'Exclude' — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as
the comma-separated pair consisting of 'Exclude' and a vector of integer or logical
values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]

Data Types: single | double | logical

'DummyVarCoding' — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as
the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

'reference' Default. Coefficient for first category set to
0.

'effects' Coefficients sum to 0.
'full' One dummy variable for each category.

Example: 'DummyVarCoding','effects'

'Optimizer' — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of
'Optimizer' and either of the following.

'quasinewton' Default. Uses a trust region based
quasi-Newton optimizer. Change

22 Functions — Alphabetical List

22-1758

the options of the algorithm using
statset('LinearMixedModel').
If you don’t specify the options,
then LinearMixedModel
uses the default options of
statset('LinearMixedModel').

'fminunc' You must have Optimization Toolbox
to specify this option. Change the
options of the algorithm using
optimoptions('fminunc'). If
you don’t specify the options, then
LinearMixedModel uses the default
options of optimoptions('fminunc')
with 'Algorithm' set to 'quasi-
newton'.

Example: 'Optimizer','fminunc'

'OptimizerOptions' — Options for optimization algorithm
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-
separated pair consisting of 'OptimizerOptions' and a structure
returned by statset('LinearMixedModel') or an object returned by
optimoptions('fminunc').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the
options of the optimization algorithm. See optimoptions for the options 'fminunc'
uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions',
then the default for LinearMixedModel is the default options created by
optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

• If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel')
to change the optimization parameters. If you don’t change the optimization
parameters, then LinearMixedModel uses the default options created by
statset('LinearMixedModel'):

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('LinearMixedModel').

'TolFun' — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

 fitlmematrix

22-1759

Relative tolerance on the gradient of the objective function, specified as a positive scalar
value.

'TolX' — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

'MaxIter' — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

'Display' — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

'StartMethod' — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting
of 'StartMethod' and either of the following.

'default' Default. An internally defined default
value.

'random' A random initial value.

Example: 'StartMethod','random'

'Verbose' — Indicator to display optimization process on screen
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated
pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true

22 Functions — Alphabetical List

22-1760

'CheckHessian' — Indicator to check positive definiteness of Hessian
false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with
respect to unconstrained parameters at convergence, specified as the comma-separated
pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if
the model is overparameterized in the number of covariance parameters.
Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Alternative Functionality

You can also fit a linear mixed-effects model using fitlme(tbl,formula), where tbl
is a table or dataset array containing the response y, the predictor variables X, and the
grouping variables, and formula is of the form 'y ~ fixed + (random1|g1) + ...
+ (randomR|gR)'.

More About

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the
following prior distribution.

b N D~ , ,0
2s q()()

 fitlmematrix

22-1761

where D is a q-by-q symmetric and positive semidefinite matrix, parameterized by
a variance component vector θ, q is the number of variables in the random-effects
term, and σ2 is the observation error variance. Since the covariance matrix of the
random effects, D, is symmetric, it has q(q+1)/2 free parameters. Suppose L is the lower
triangular Cholesky factor of D(θ) such that

D L L
T

q q q() = () () ,

then the q*(q+1)/2-by-1 unconstrained parameter vector θ is formed from elements in the
lower triangular part of L.

For example, if

L

L

L L

L L L

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11

21 22

31 32 33

0 0

0 ,

then

q =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

L

L

L

L

L

L

11

21

31

22

32

33

.

Log-Cholesky Parameterization

When the diagonal elements of L in Cholesky parameterization are constrained to be
positive, then the solution for L is unique. Log-Cholesky parameterization is the same as
Cholesky parameterization except that the logarithm of the diagonal elements of L are
used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing Lii ≥ 0,

22 Functions — Alphabetical List

22-1762

q =

()

()

()

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

log

log

log

.

L

L

L

L

L

L

11

21

31

22

32

33

See Also
compare | fitlme | LinearMixedModel

 fitrm

22-1763

fitrm
Fit repeated measures model

Syntax

rm = fitrm(t,modelspec)

rm = fitrm(t,modelspec,Name,Value)

Description

rm = fitrm(t,modelspec) returns a repeated measures model, specified by
modelspec, fitted to the variables in the table or dataset array t.

rm = fitrm(t,modelspec,Name,Value) returns a repeated measures model, with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify the hypothesis for the within-subject factors.

Examples

Fit a Repeated Measures Model

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

22 Functions — Alphabetical List

22-1764

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)

rm =

 RepeatedMeasuresModel with properties:

 Between Subjects:

 BetweenDesign: [150x5 table]

 ResponseNames: {'meas1' 'meas2' 'meas3' 'meas4'}

 BetweenFactorNames: {'species'}

 BetweenModel: '1 + species'

 Within Subjects:

 WithinDesign: [4x1 table]

 WithinFactorNames: {'Measurements'}

 WithinModel: 'separatemeans'

 Estimates:

 Coefficients: [3x4 table]

 Covariance: [4x4 table]

Display the coefficients.

rm.Coefficients

ans =

 meas1 meas2 meas3 meas4

 ________ ________ ______ ________

 (Intercept) 5.8433 3.0573 3.758 1.1993

 species_setosa -0.83733 0.37067 -2.296 -0.95333

 species_versicolor 0.092667 -0.28733 0.502 0.12667

fitrm uses the 'effects' contrasts which means that the coefficients sum to 0. The
rm.DesignMatrix has one column of 1s for the intercept, and two other columns
species_setosa and species_versicolor, which are as follows:

species_setosa =

-

Ï

Ì
Ô

Ó
Ô

1

0

1

,

,

,

if setosa

if versicolor

if virginica

aand species_versicolor =

-

0

1

1

,

,

,

if setosa

if versicolor

if virginiica

Ï

Ì
Ô

Ó
Ô

Display the covariance matrix.

 fitrm

22-1765

rm.Covariance

ans =

 meas1 meas2 meas3 meas4

 ________ ________ ________ ________

 meas1 0.26501 0.092721 0.16751 0.038401

 meas2 0.092721 0.11539 0.055244 0.03271

 meas3 0.16751 0.055244 0.18519 0.042665

 meas4 0.038401 0.03271 0.042665 0.041882

Specify the Within-Subject Hypothesis

Navigate to the folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load('longitudinalData')

The matrix Y contains response data for 16 individuals. The response is the blood level of
a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds
to an individual, and each column corresponds to a time point. The first eight subjects
are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to conduct repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...

'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where blood levels are the responses and gender is the
predictor variable. Also define the hypothesis for within-subject factors.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time,'WithinModel','orthogonalcontrasts')

22 Functions — Alphabetical List

22-1766

rm =

 RepeatedMeasuresModel with properties:

 Between Subjects:

 BetweenDesign: [16x6 table]

 ResponseNames: {'t0' 't2' 't4' 't6' 't8'}

 BetweenFactorNames: {'Gender'}

 BetweenModel: '1 + Gender'

 Within Subjects:

 WithinDesign: [5x1 table]

 WithinFactorNames: {'Time'}

 WithinModel: 'orthogonalcontrasts'

 Estimates:

 Coefficients: [2x5 table]

 Covariance: [5x5 table]

Fit a Model with Covariates

Load the sample data.

load repeatedmeas

The table between includes the eight repeated measurements y1–y8 as responses and
the between-subject factors Group, Gender , IQ, and Age. IQ and Age as continuous
variables. The table within includes the within-subject factors w1 and w2.

Fit a repeated measures model, where age, IQ, and group, gender are the predictor
variables, and the model includes the interaction effect of group and gender. Also define
the within-subject factors.

rm = fitrm(between,'y1-y8 ~ Group*Gender+Age+IQ','WithinDesign',within)

rm =

 RepeatedMeasuresModel with properties:

 Between Subjects:

 BetweenDesign: [30x12 table]

 ResponseNames: {'y1' 'y2' 'y3' 'y4' 'y5' 'y6' 'y7' 'y8'}

 BetweenFactorNames: {'Age' 'IQ' 'Group' 'Gender'}

 BetweenModel: '1 + Age + IQ + Group*Gender'

 fitrm

22-1767

 Within Subjects:

 WithinDesign: [8x2 table]

 WithinFactorNames: {'w1' 'w2'}

 WithinModel: 'separatemeans'

 Estimates:

 Coefficients: [8x8 table]

 Covariance: [8x8 table]

Display the coefficients.

rm.Coefficients

ans =

 y1 y2 y3 y4 y5 y6 y7 y8

 ________ _______ _______ _______ _________ ________ _______ ________

 (Intercept) 141.38 195.25 9.8663 -49.154 157.77 0.23762 -42.462 76.111

 Age 0.32042 -4.7672 -1.2748 0.6216 -1.0621 0.89927 1.2569 -0.38328

 IQ -1.2671 -1.1653 0.05862 0.4288 -1.4518 -0.25501 0.22867 -0.72548

 Group_A -1.2195 -9.6186 22.532 15.303 12.602 12.886 10.911 11.487

 Group_B 2.5186 1.417 -2.2501 0.50181 8.0907 3.1957 11.591 9.9188

 Gender_Female 5.3957 -3.9719 8.5225 9.3403 6.0909 1.642 -2.1212 4.8063

 Group_A:Gender_Female 4.1046 10.064 -7.3053 -3.3085 4.6751 2.4907 -4.325 -4.6057

 Group_B:Gender_Female -0.48486 -2.9202 1.1222 0.69715 -0.065945 0.079468 3.1832 6.5733

The display shows the coefficients for fitting the repeated measures as a function of the
terms in the between-subjects model.

Input Arguments

t — Input data
table

Input data, which includes the values of the response variables and the between-subject
factors to use as predictors in the repeated measures model, specified as a table.
Data Types: table

modelspec — Formula for model specification
string of the form 'y1-yk ~ terms'

22 Functions — Alphabetical List

22-1768

Formula for model specification, specified as a string of the form 'y1-yk ~ terms'. The
responses and terms are specified using Wilkinson notation. fitrm treats the variables
used in model terms as categorical if they are categorical (nominal or ordinal), logical,
char arrays, or a cell arrays of strings.

For example, if you have four repeated measures as responses and the factors x1, x2, and
x3 as the predictor variables, then you can define a repeated measures model as follows.

Example: 'y1-y4 ~ x1 + x2 * x3'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'WithinDesign','W','WithinModel','w1+w2' specifies the matrix w as
the design matrix for within-subject factors, and the model for within-subject factors w1
and w2 is 'w1+w2'.

'WithinDesign' — Design for within-subject factors
numeric vector of length r (default) | r-by-k numeric matrix | r-by-k table

Design for within-subject factors, specified as the comma-separated pair consisting of
'WithinDesign' and one of the following:

• Numeric vector of length r, where r is the number of repeated measures.

In this case, fitrm treats the values in the vector as continuous, and these are
typically time values.

• r-by-k numeric matrix of the values of the k within-subject factors, w1, w2, ..., wk.

In this case,fitrm treats all k variables as continuous.
• r-by-k table that contains the values of the k within-subject factors.

In this case, fitrm treats all numeric variables as continuous, and all categorical
variables as categorical.

For example, if the table weeks contains the values of the within-subject factors, then
you can define the design table as follows.

 fitrm

22-1769

Example: 'WithinDesign',weeks

Data Types: single | double | table

'WithinModel' — Model specifying within-subject hypothesis test
'separatemeans' (default) | 'orthogonalcontrasts' | string that defines a model

Model specifying the within-subject hypothesis test, specified as the comma-separated
pair consisting of 'WithinModel' and one of the following:

• 'separatemeans' — Compute a separate mean for each group.
• 'orthogonalcontrasts' — This is valid only when the within-subject model has

a single numeric factor T. Responses are the average, the slope of centered T, and,
in general, all orthogonal contrasts for a polynomial up to T^(p – 1), where p is the
number if rows in the within-subject model.

• A string that defines a model specification in the within-subject factors. You can
define the model based on the rules for the terms in modelspec.

For example, if there are three within-subject factors w1, w2, and w3, then you can specify
a model for the within-subject factors as follows.
Example: 'WithinModel','w1+w2+w2*w3'

Data Types: single | double

Output Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

More About

Model Specification Using Wilkinson Notation

Wilkinson notation describes the factors present in models. It does not describe the
multipliers (coefficients) of those factors.

22 Functions — Alphabetical List

22-1770

The following rules specify the responses in modelspec.

Wilkinson Notation Meaning

Y1,Y2,Y3 Specific list of variables
Y1-Y5 All table variables from Y1 through Y5

The following rules specify terms in modelspec.

Wilkinson notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1*X2
X1:X2 X1*X2 only
-X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

See Also
RepeatedMeasuresModel

 fitdist

22-1771

fitdist
Fit probability distribution object to data

Syntax
pd = fitdist(x,distname)

pd = fitdist(x,distname,Name,Value)

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar)

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar,Name,Value)

Description
pd = fitdist(x,distname) creates a probability distribution object by fitting the
distribution specified by distname to the data in column vector x.

pd = fitdist(x,distname,Name,Value) creates the probability distribution
object with additional options specified by one or more name-value pair arguments. For
example, you can indicate censored data or specify control parameters for the iterative
fitting algorithm.

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar) creates probability
distribution objects by fitting the distribution specified by distname to the data in x
based on the grouping variable groupvar. It returns a cell array of fitted probability
distribution objects, pdca, a cell array of group labels, gn, and a cell array of grouping
variable levels, gl.

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar,Name,Value) returns
the above output arguments using additional options specified by one or more name-
value pair arguments. For example, you can indicate censored data or specify control
parameters for the iterative fitting algorithm.

Examples

Fit a Normal Distribution to Data

Load the sample data. Create a vector containing the patients' weight data.

22 Functions — Alphabetical List

22-1772

load hospital

x = hospital.Weight;

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 154 [148.728, 159.272]

 sigma = 26.5714 [23.3299, 30.8674]

Plot the pdf of the distribution.

x_values = 50:1:250;

y = pdf(pd,x_values);

plot(x_values,y,'LineWidth',2)

 fitdist

22-1773

Fit a Kernel Distribution to Data

Load the sample data. Create a vector containing the patients' weight data.

load hospital

x = hospital.Weight;

Create a kernel distribution object by fitting it to the data. Use the Epanechnikov kernel
function.

pd = fitdist(x,'Kernel','Kernel','epanechnikov')

pd =

22 Functions — Alphabetical List

22-1774

 KernelDistribution

 Kernel = epanechnikov

 Bandwidth = 14.3792

 Support = unbounded

Plot the pdf of the distribution.

x_values = 50:1:250;

y = pdf(pd,x_values);

plot(x_values,y)

 fitdist

22-1775

Fit Normal Distributions to Grouped Data

Load the sample data. Create a vector containing the patients' weight data.

load hospital

x = hospital.Weight;

Create normal distribution objects by fitting them to the data, grouped by patient gender.

gender = hospital.Sex;

[pdca,gn,gl] = fitdist(x,'Normal','By',gender)

pdca =

22 Functions — Alphabetical List

22-1776

 [1x1 prob.NormalDistribution] [1x1 prob.NormalDistribution]

gn =

 'Female'

 'Male'

gl =

 'Female'

 'Male'

The cell array pdca contains two probability distribution objects, one for each gender
group. The cell array gn contains two strings of the group labels. The cell array gl
contains two strings of the group levels.

View each distribution in the cell array pdca to compare the mean, mu, and the standard
deviation, sigma, grouped by patient gender.

female = pdca{1} % Distribution for females

female =

 NormalDistribution

 Normal distribution

 mu = 130.472 [128.183, 132.76]

 sigma = 8.30339 [6.96947, 10.2736]

male = pdca{2} % Distribution for males

male =

 NormalDistribution

 Normal distribution

 mu = 180.532 [177.833, 183.231]

 fitdist

22-1777

 sigma = 9.19322 [7.63933, 11.5466]

Compute the pdf of each distribution.

x_values = 50:1:250;

femalepdf = pdf(female,x_values);

malepdf = pdf(male,x_values);

Plot the pdfs for a visual comparison of weight distribution by gender.

figure

plot(x_values,femalepdf,'LineWidth',2)

hold on

plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)

legend(gn,'Location','NorthEast')

hold off

22 Functions — Alphabetical List

22-1778

Fit Kernel Distributions to Grouped Data

Load the sample data. Create a vector containing the patients' weight data.

load hospital

x = hospital.Weight;

Create kernel distribution objects by fitting them to the data, grouped by patient gender.
Use a triangular kernel function.

gender = hospital.Sex;

[pdca,gn,gl] = fitdist(x,'Kernel','By',gender,'Kernel','triangle');

View each distribution in the cell array pdca to see the kernel distributions for each
gender.

 fitdist

22-1779

female = pdca{1} % Distribution for females

female =

 KernelDistribution

 Kernel = triangle

 Bandwidth = 4.25894

 Support = unbounded

male = pdca{2} % Distribution for males

male =

 KernelDistribution

 Kernel = triangle

 Bandwidth = 5.08961

 Support = unbounded

Compute the pdf of each distribution.

x_values = 50:1:250;

femalepdf = pdf(female,x_values);

malepdf = pdf(male,x_values);

Plot the pdfs for a visual comparison of weight distribution by gender.

figure

plot(x_values,femalepdf,'LineWidth',2)

hold on

plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)

legend(gn,'Location','NorthEast')

hold off

22 Functions — Alphabetical List

22-1780

Input Arguments

x — Input data
column vector

Input data, specified as a column vector. fitdist ignores NaN values in x. Additionally,
any NaN values in the censoring vector or frequency vector causes fitdist to ignore the
corresponding values in x.
Data Types: single | double

 fitdist

22-1781

distname — Distribution name
string

Distribution name, specified as one of the following strings. The distribution specified by
distname determines the class type of the returned probability distribution object.

Distribution Name Description Distribution Class

'Beta' Beta distribution prob.BetaDistribution

'Binomial' Binomial distribution prob.BinomialDistribution

'BirnbaumSaunders' Birnbaum-Saunders
distribution

prob.BirnbaumSaundersDistribution

'Burr' Burr distribution prob.BurrDistribution

'Exponential' Exponential distribution prob.ExponentialDistribution

'ExtremeValue' Extreme Value distribution prob.ExtremeValueDistribution

'Gamma' Gamma distribution prob.GammaDistribution

'GeneralizedExtremeValue'Generalized Extreme Value
distribution

prob.GeneralizedExtremeValueDistribution

'GeneralizedPareto' Generalized Pareto
distribution

prob.GeneralizedParetoDistribution

'InverseGaussian' Inverse Gaussian
distribution

prob.InverseGaussianDistribution

'Kernel' Kernel distribution prob.KernelDistribution

'Logistic' Logistic distribution prob.LogisticDistribution

'Loglogistic' Loglogistic distribution prob.LoglogisticDistribution

'Lognormal' Lognormal distribution prob.LognormalDistribution

'Multinomial' Multinomial distribution prob.MultinomialDistribution

'Nakagami' Nakagami distribution prob.NakagamiDistribution

'NegativeBinomial' Negative Binomial
distribution

prob.NegativeBinomialDistribution

'Normal' Normal distribution prob.NormalDistribution

'Poisson' Poisson distribution prob.PoissonDistribution

'Rayleigh' Rayleigh distribution prob.RayleighDistribution

22 Functions — Alphabetical List

22-1782

Distribution Name Description Distribution Class

'Rician' Rician distribution prob.RicianDistribution

'tLocationScale' t Location-Scale distribution prob.tLocationScaleDistribution

'Weibull' Weibull distribution prob.WeibullDistribution

groupvar — Grouping variable
categorical array | logical or numeric vector | cell array of strings

Grouping variable, specified as a categorical array, logical or numeric vector, or cell array
of strings. Each unique value in a grouping variable defines a group.

For example, if Gender is a cell array of strings with values 'Male' and 'Female', you
can use Gender as a grouping variable to fit a distribution to your data by gender.

More than one grouping variable can be used by specifying a cell array of grouping
variable names. Observations are placed in the same group if they have common values
of all specified grouping variables.

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for
smokers, then specifying the cell array {Gender,Smoker} divides observations into four
groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker.
Example: {Gender,Smoker}

Data Types: single | double | logical | cell | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: fitdist(x,'Kernel','Kernel','triangle') fits a kernel distribution
object to the data in x using a triangular kernel function.

'Censoring' — Logical flag for censored data
0 (default) | vector of logical values

Logical flag for censored data, specified as the comma-separated pair consisting of
'Censoring' and a vector of logical values that is the same size as input vector x. The

 fitdist

22-1783

value is 1 when the corresponding element in x is a right-censored observation and 0
when the corresponding elements is an exact observation. The default is a vector of 0s,
indicating that all observations are exact.

fitdist ignores any NaN values in this censoring vector. Additionally, any NaN values
in x or the frequency vector causes fitdist to ignore the corresponding values in the
censoring vector.
Data Types: logical

'Frequency' — Observation frequency
1 (default) | vector of nonnegative integer values

Observation frequency, specified as the comma-separated pair consisting of
'Frequency' and a vector of nonnegative integer values that is the same size as
input vector x. Each element of the frequency vector specifies the frequencies for the
corresponding elements in x. The default is a vector of 1s, indicating that each value in x
only appears once.

fitdist ignores any NaN values in this frequency vector are ignored by the fitting
calculations. Additionally, any NaN values in x or the censoring vector causes fitdist to
ignore the corresponding values in the frequency vector.
Data Types: logical

'Options' — Control parameters
structure

Control parameters for the iterative fitting algorithm, specified as the comma-separated
pair consisting of 'Options' and a structure you create using statset.

Data Types: struct

'NTrials' — Number of trials
positive integer value

Number of trials for the binomial distribution, specified as the comma-separated pair
consisting of 'NTrials' and a positive integer value. You must specify distname as
'Binomial' to use this option.

Data Types: single | double

'Theta' — Threshold parameter
0 (default) | scalar value

22 Functions — Alphabetical List

22-1784

Threshold parameter for the generalized Pareto distribution, specified as the comma-
separated pair consisting of 'Theta' and a scalar value. You must specify distname as
'GeneralizedPareto' to use this option.

Data Types: single | double

'Kernel' — Kernel smoother type
'normal' (default) | 'box' | 'triangle' | 'epanechnikov'

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and
one of the following:

• 'normal'

• 'box'

• 'triangle'

• 'epanechnikov'

You must specify distname as 'Kernel' to use this option.

'Support' — Kernel density support
'unbounded' (default) | 'positive' | two-element vector

Kernel density support, specified as the comma-separated pair consisting of 'Support'
and a string or two-element vector. The string must be one of the following.

'unbounded' Density can extend over the whole real line.
'positive' Density is restricted to positive values.

Alternatively, you can specify a two-element vector giving finite lower and upper limits
for the support of the density.

You must specify distname as 'Kernel' to use this option.

Data Types: single | double

'Width' — Bandwidth of kernel smoothing window
scalar value

Bandwidth of the kernel smoothing window, specified as the comma-separated pair
consisting of 'Width' and a scalar value. The default value used by fitdist is optimal
for estimating normal densities, but you might want to choose a smaller value to reveal

 fitdist

22-1785

features such as multiple modes. You must specify distname as 'Kernel' to use this
option.
Data Types: single | double

Output Arguments

pd — Probability distribution
probability distribution object

Probability distribution, returned as a probability distribution object. The distribution
specified by distname determines the class type of the returned probability distribution
object.

pdca — Probability distribution objects
cell array

Probability distribution objects of the type specified by distname, returned as a cell
array.

gn — Group labels
cell array of strings

Group labels, returned as a cell array of strings.

gl — Grouping variable levels
cell array of strings

Grouping variable levels, returned as a cell array of strings containing one column for
each grouping variable.

Alternative Functionality

App

The Distribution Fitting app opens a graphical user interface for you to import data
from the workspace and interactively fit a probability distribution to that data. You can
then save the distribution to the workspace as a probability distribution object. Open the
Distribution Fitting app using dfittool, or click Distribution Fitting on the Apps tab.

22 Functions — Alphabetical List

22-1786

More About

Algorithms

The fitdist function fits most distributions using maximum likelihood estimation. Two
exceptions are the normal and lognormal distributions with uncensored data.

• For the uncensored normal distribution, the estimated value of the sigma parameter
is the square root of the unbiased estimate of the variance.

• For the uncensored lognormal distribution, the estimated value of the sigma
parameter is the square root of the unbiased estimate of the variance of the log of the
data.

References

[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.

[3] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis.
New York: Oxford University Press, 1997.

See Also
dfittool | makedist

 fitensemble

22-1787

fitensemble
Fitted ensemble for classification or regression

Syntax

Ensemble = fitensemble(X,Y,Method,NLearn,Learners)

Ensemble = fitensemble(X,Y,Method,NLearn,Learners,Name,Value)

Description

Ensemble = fitensemble(X,Y,Method,NLearn,Learners) creates an ensemble
model that predicts responses to data. The ensemble consists of models listed in
Learners.

Ensemble = fitensemble(X,Y,Method,NLearn,Learners,Name,Value) creates
an ensemble model with additional options specified by one or more Name,Value
pair arguments. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments

X

Matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

For classification, Y is a categorical variable, character array, or cell array of strings.
Each row of Y represents the classification of the corresponding row of X.

For regression, Y is a numeric column vector with the same number of rows as X. Each
entry in Y is the response to the data in the corresponding row of X.

Method

Case-insensitive string consisting of one of the following.

22 Functions — Alphabetical List

22-1788

• For classification with two classes:

• 'AdaBoostM1'

• 'LogitBoost'

• 'GentleBoost'

• 'RobustBoost' (requires an Optimization Toolbox license)
• 'LPBoost' (requires an Optimization Toolbox license)
• 'TotalBoost' (requires an Optimization Toolbox license)
• 'RUSBoost'

• 'Subspace'

• 'Bag'

• For classification with three or more classes:

• 'AdaBoostM2'

• 'LPBoost' (requires an Optimization Toolbox license)
• 'TotalBoost' (requires an Optimization Toolbox license)
• 'RUSBoost'

• 'Subspace'

• 'Bag'

• For regression:

• 'LSBoost'

• 'Bag'

'Bag' applies to all methods. So when you use 'Bag', indicate whether you want a
classifier or regressor with the type name-value pair set to 'classification' or
'regression'.

NLearn

Number of ensemble learning cycles, a positive integer (or the string
'AllPredictorCombinations', see the next paragraph). At every training cycle,
fitensemble loops over all learner templates in Learners and trains one weak
learner for every template. The total number of trained learners in Ensemble is
NLearn*numel(Learners).

 fitensemble

22-1789

If you set Method to 'Subspace', you can set NLearn to
'AllPredictorCombinations'. With this setting, fitensemble constructs learners
for all possible combinations of predictors taken NPredToSample at a time. This gives a
total of nchoosek(size(X,2),NPredToSample) learners in the ensemble. You can use
only one learner template for this setting.

NLearn for ensembles can vary from a few dozen to a few thousand. Usually, an
ensemble with a good predictive power needs from a few hundred to a few thousand
weak learners. You do not have to train an ensemble for that many cycles at once. You
can start by growing a few dozen learners, inspect the ensemble performance and, if
necessary, train more weak learners using the resume method of the ensemble.

Learners

One of the following:

• A string with the name of a weak learner:

• 'Discriminant' recommended for 'Subspace')
• 'KNN' (applies only to 'Subspace')
• 'Tree' (applies to all methods except 'Subspace')

• A single weak learner template you create with templateTree, templateKNN, or
templateDiscriminant.

• A cell array of weak learner templates. Usually you should supply only one weak
learner template.

Ensemble performance depends on the parameters of the weak learners, and you can get
poor performance using weak learners with default parameters. Specify the parameters
for the weak learners in the template. Specify parameters for the ensemble in the
fitensemble name-value pairs.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-1790

All Ensembles
'CategoricalPredictors'

List of categorical predictors. Pass CategoricalPredictors as one of:

• A numeric vector with indices from 1 to p, where p is the number of columns of X.
• A logical vector of length p, where a true entry means that the corresponding column

of X is a categorical variable.
• 'All', meaning all predictors are categorical.
• A cell array of strings, where each element in the array is the name of a predictor

variable. The names must match entries in the PredictorNames property.
• A character matrix, where each row of the matrix is the name of a predictor variable.

The names must match entries in the PredictorNames property. Pad the names
with extra blanks so each row of the character matrix has the same length.

You can set CategoricalPredictors for these learners:

• 'Tree'

• 'KNN', when all predictors are categorical

Default: []

'CrossVal'

If 'On', grows a cross-validated learner with 10 folds. You can use 'KFold',
'Holdout', 'Leaveout', or 'CVPartition' parameters to override this cross-
validation setting. You can only use one of these four parameters ('KFold', 'Holdout',
'Leaveout', or 'CVPartition') at a time when creating a cross-validated learner.

Default: 'Off'

'CVPartition'

Partition created with cvpartition to use in a cross-validated learner. You can
only use one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

'FResample'

Fraction of the training set to be selected by resampling for every weak learner. A
numeric scalar from 0 through 1. This parameter has no effect unless you grow an

 fitensemble

22-1791

ensemble by bagging or set 'Resample' to 'on'. The default setting is the one used
most often for an ensemble grown by resampling.

Default: 1

'Holdout'

Holdout validation tests the specified fraction of the data, and uses the remaining
data for training. Specify a numeric scalar from 0 to 1. You can only use one of these
four options at a time for creating a cross-validated learner: 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'.

'KFold'

Number of folds to use in a cross-validated learner, a positive integer. You can only
use one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Default: 10

'Leaveout'

Use leave-one-out cross validation by setting to 'on'. You can only use one of these four
options at a time: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

'NPredToSample'

Number of predictors in each random subspace learner, a positive integer from 1 to
size(X,2).

Default: 1

'NPrint'

Printout frequency, a positive integer scalar. Set to 'Off' for no printout. Use this
parameter to track how many weak learners have been trained so far. This is useful
when you train ensembles with many learners on large data sets. If you use one of the
cross-validation options, this parameter defines the printout frequency per number of
cross-validation folds.

Default: 'Off'

22 Functions — Alphabetical List

22-1792

'PredictorNames'

Cell array of names for the predictor variables, in the order in which they appear in X.

Default: {'x1','x2',...}

'Replace'

'On' or 'Off'. If 'On', sample with replacement. If 'Off', sample without
replacement. This parameter has no effect unless you grow an ensemble by bagging
or set Resample to 'On'. If you set Resample to 'On' and Replace to 'Off',
fitensemble samples training observations assuming uniform weights, and boosts by
reweighting observations.

Default: 'On'

'Resample'

'On' or 'Off'. If 'On', grow an ensemble by resampling, with the resampling fraction
given by FResample, and sampling with or without replacement given by Replace.

• Boosting — When 'Off', the boosting algorithm reweights observations at every
learning iteration. When 'On', the algorithm samples training observations using
updated weights as the multinomial sampling probabilities.

• Bagging — You can use only the default value of this parameter ('On').

Default: 'Off' for boosting, 'On' for bagging

'ResponseName'

Name of the response variable Y, a string.

Default: 'Y'

'Type'

String, either 'Classification' or 'Regression'. Specify Type when the Method is
'Bag'.

'Weights'

Vector of observation weights. The length of Weights is the number of rows in X.

 fitensemble

22-1793

Default: ones(size(X,1),1)

Classification Ensembles

'ClassNames'

Array of class names. Specify a data type the same as exists in Y.

Use ClassNames to order the classes or to select a subset of classes for training.

Default: Class names that exist in Y

'Cost'

Square matrix C, where C(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the
predicted class). To specify the class order for the corresponding rows and columns of
Cost, additionally specify the ClassNames name-value pair argument.

Alternatively, cost can be a structure S having two fields:

• S.ClassNames containing the group names as a categorical variable, character array,
or cell array of strings

• S.ClassificationCosts containing the cost matrix C

If Method is Bag, Type is Classification, and Cost is highly skewed, then, for in-bag
samples, the software oversamples unique observations from the class that has a large
penalty. For smaller sample sizes, this might cause a very low relative frequency of out-
of-bag observations from the class that has a large penalty. Therefore, the estimated out-
of-bag error is highly variable, and might be difficult to interpret.

Default: C(i,j) = 1 if i ~= j, and C(i,j) = 0 if i = j

'Prior'

Prior probabilities for each class. Specify as one of:

• A string:

• 'Empirical' determines class probabilities from class frequencies in Y. If you
pass observation weights, they are used to compute the class probabilities.

• 'Uniform' sets all class probabilities equal.

22 Functions — Alphabetical List

22-1794

• A vector (one scalar value for each class). To specify the class order for the
corresponding elements of Prior, additionally specify the ClassNames name-value
pair argument.

• A structure S with two fields:

• S.ClassNames containing the class names as a categorical variable, character
array, or cell array of strings

• S.ClassProbs containing a vector of corresponding probabilities

If you set values for both Weights and Prior, the weights are renormalized to add up to
the value of the prior probability in the respective class.

If Method is Bag, Type is Classification, and Prior is highly skewed, then, for in-
bag samples, the software oversamples unique observations from the class that has a
large prior probability. For smaller sample sizes, this might cause a very low relative
frequency of out-of-bag observations from the class that has a large prior probability.
Therefore, the estimated out-of-bag error is highly variable, and might be difficult to
interpret.

Default: 'Empirical'

AdaBoostM1, AdaBoostM2, LogitBoost, GentleBoost,
RUSBoost, and LSBoost

'LearnRate'

Learning rate for shrinkage, a numeric scalar from 0 to 1. If you set the learning rate to
less than 1, the ensemble requires more learning iterations but often achieves a better
accuracy. 0.1 is a popular choice for an ensemble grown with shrinkage.

Default: 1

RUSBoost

'RatioToSmallest'

Either a numeric scalar or vector with K elements when there are K classes. Every
element of this vector is the sampling proportion for this class with respect to the class

 fitensemble

22-1795

with fewest observations in Y. If you pass a scalar, the software uses this sampling
proportion for all classes. For example, suppose you have class A with 100 observations
and class B with 10 observations. If you pass [2 1] for 'RatioToSmallest', every
learner in the ensemble is trained on 20 observations of class A and 10 observations of
class B. If you pass 2 or [2 2], every learner is trained on 20 observations of class A and
20 observations of class B. If you specify class names by using the ClassNames name-
value pair argument of the fitting function, then the software matches elements in the
array of class names to elements in this vector.

Default: ones(K,1)

LPBoost and TotalBoost

'MarginPrecision'

Margin precision, a numeric scalar between 0 and 1. MarginPrecision affects the
number of boosting iterations required for conversion. Use a small value to grow an
ensemble with many learners, and use a large value to grow an ensemble with few
learners.

Default: 0.01

RobustBoost

'RobustErrorGoal'

Target classification error for RobustBoost, a numeric scalar from 0 through 1. Usually
there is an optimal range for this parameter for your training data. If you set the error
goal too low or too high, RobustBoost can produce a model with poor classification
accuracy.

Default: 0.1

'RobustMarginSigma'

Spread of the distribution of classification margins over the training set for
RobustBoost, a numeric positive scalar. You should consult literature on RobustBoost
before setting this parameter

22 Functions — Alphabetical List

22-1796

Default: 0.1

'RobustMaxMargin'

Maximal classification margin for RobustBoost in the training set, a nonnegative
numeric scalar. RobustBoost minimizes the number of observations in the training set
with classification margins below RobustMaxMargin.

Default: 0

Output Arguments

Ensemble

Ensemble object for predicting characteristics. The class of Ensemble depends on
settings. In the following table, cross-validation names are CrossVal, 'KFold',
'Holdout', 'Leaveout', or 'CVPartition'.

Settings Class

Resample name-value pair is 'Off', and you
don't set a cross-validation name-value pair
argument.

ClassificationEnsemble

Resample name-value pair is 'Off', and you
don't set a cross-validation name-value pair
argument.

RegressionEnsemble

Resample name-value pair is 'On', type is
'classification', and you don't set a cross-
validation name-value pair argument.

ClassificationBaggedEnsemble

Resample name-value pair is 'On', type is
'regression', and you don't set a cross-
validation name-value pair argument.

RegressionBaggedEnsemble

Method is a classification method, and you set a
cross-validation name-value pair argument.

ClassificationPartitionedEnsemble

Method is a regression method, and you set a
cross-validation name-value pair argument.

RegressionPartitionedEnsemble

 fitensemble

22-1797

Examples

Estimate the Resubstitution Loss of a Boosting Ensemble

Estimate the resubstitution loss of a trained, boosting classification ensemble of decision
trees.

Load the ionosphere data set.

load ionosphere;

Train a decision tree ensemble using AdaBoost, 100 learning cycles, and the entire data
set.

ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');

ClassTreeEns is a trained ClassificationEnsemble ensemble classifier.

Determine the cumulative resubstitution losses (i.e., the cumulative misclassification
error of the labels in the training data).

rsLoss = resubLoss(ClassTreeEns,'Mode','Cumulative');

rsLoss is a 100-by-1 vector, where element k contains the resubstition loss after the first
k learning cycles.

Plot the cumulative resubstitution loss over the number of learning cycles.

plot(rsLoss);

xlabel('Number of Learning Cycles');

ylabel('Resubstitution Loss');

22 Functions — Alphabetical List

22-1798

In general, as the number of decision trees in the trained classification ensemble
increases, the resubstitution loss decreases.

A decrease in resubstitution loss might indicate that the software trained the ensemble
sensibly. However, you cannot infer the predictive power of the ensemble by this
decrease. To measure the predictive power of an ensemble, estimate the generalization
error by:

1 Randomly partitioning the data into training and cross-validation sets. Do this by
specifying 'holdout',holdoutProportion when you train the ensemble using
fitensemble.

 fitensemble

22-1799

2 Passing the trained ensemble to kfoldLoss, which estimates the generalization
error.

Train a Regression Ensemble

Use a trained, boosted regression tree ensemble to predict the fuel economy of a car.
Choose the number of cylinders, volume displaced by the cylinders, horsepower, and
weight as predictors.

Load the carsmall data set. Set the predictors to X.

load carsmall

X = [Cylinders,Displacement,Horsepower,Weight];

xnames = {'Cylinders','Displacement','Horsepower','Weight'};

Specify a regression tree template that uses surrogate splits to impove predictive
accuracy in the presence of NaN values.

RegTreeTemp = templateTree('Surrogate','On');

Train the regression tree ensemble using LSBoost and 100 learning cycles.

RegTreeEns = fitensemble(X,MPG,'LSBoost',100,RegTreeTemp,...

 'PredictorNames',xnames);

RegTreeEns is a trained RegressionEnsemble regression ensemble.

Use the trained regression ensemble to predict the fuel economy for a four-cylinder car
with a 200-cubic inch displacement, 150 horsepower, and weighing 3000 lbs.

predMPG = predict(RegTreeEns,[4 200 150 3000])

predMPG =

 22.6290

The average fuel economy of a car with these specifications is 21.78 mpg.

Estimate the Generalization Error of a Boosting Ensemble

Estimate the generalization error of a trained, boosting classification ensemble of
decision trees.

22 Functions — Alphabetical List

22-1800

Load the ionosphere data set.

load ionosphere;

Train a decision tree ensemble using AdaBoostM1, 100 learning cycles, and half of the
data chosen randomly. The software validates the algorithm using the remaining half.

rng(2); % For reproducibility

ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...

 'Holdout',0.5);

ClassTreeEns is a trained ClassificationEnsemble ensemble classifier.

Determine the cumulative generalization error, i.e., the cumulative misclassification
error of the labels in the validation data).

genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');

genError is a 100-by-1 vector, where element k contains the generalization error after
the first k learning cycles.

Plot the generalization error over the number of learning cycles.

plot(genError);

xlabel('Number of Learning Cycles');

ylabel('Generalization Error');

 fitensemble

22-1801

The cumulative generalization error decreases to approximately 7% when 25 weak
learners compose the ensemble classifier.

Find the Optimal Number of Splits and Trees for an Ensemble

You can control the depth of the trees in an ensemble of decision trees. You can also
control the tree depth in an ECOC model containing decision tree binary learners using
the MaxNumSplits, MinLeafSize, or MinParentSize name-value pair parameters.

• When bagging decision trees, fitensemble grows deep decision trees by default. You
can grow shallower trees to reduce model complexity or computation time.

• When boosting decision trees, fitensemble grows stumps (a tree with one split) by
default. You can grow deeper trees for better accuracy.

22 Functions — Alphabetical List

22-1802

Load the carsmall data set. Specify the variables Acceleration, Displacement,
Horsepower, and Weight as predictors, and MPG as the response.

load carsmall

X = [Acceleration Displacement Horsepower Weight];

Y = MPG;

The default values of the tree depth controllers for boosting regression trees are:

• 1 for MaxNumSplits. This option grows stumps.
• 5 for MinLeafSize
• 10 for MinParentSize

To search for the optimal number of splits:

1 Train a set of ensembles. Exponentially increase the maximum number of splits for
subsequent ensembles from stump to at most n - 1 splits. Also, decrease the learning
rate for each ensemble from 1 to 0.1.

2 Cross validate the ensembles.
3 Estimate the cross-validated mean-squared error (MSE) for each ensemble.
4 Compare the cross-validated MSEs. The ensemble with the lowest one performs the

best, and indicates the optimal maximum number of splits, number of trees, and
learning rate for the data set.

Grow and cross validate a deep classification tree and a stump. Specify to use surrogate
splits because the data contain missing values. These serve as benchmarks.

MdlDeep = fitrtree(X,Y,'CrossVal','on','MergeLeaves','off',...

 'MinParentSize',1,'Surrogate','on');

MdlStump = fitrtree(X,Y,'MaxNumSplits',1,'CrossVal','on','Surrogate','on');

Train the boosting ensembles using 200 regression trees. Cross validate the ensemble
using 10-fold cross validation. Vary the maximum number of splits using the values in
the sequence , where m is such that is no greater than n - 1. For each
variant, adjust the learning rate to each value in the set {0.1, 0.25, 0.5, 1};

n = size(X,1);

m = floor(log2(n - 1));

lr = [0.1 0.25 0.5 1];

maxNumSplits = 2.^(0:m);

 fitensemble

22-1803

numTrees = 250;

Mdl = cell(numel(maxNumSplits),numel(lr));

rng(1); % For reproducibility

for k = 1:numel(lr);

 for j = 1:numel(maxNumSplits);

 t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');

 Mdl{j,k} = fitensemble(X,Y,'LSBoost',numTrees,t,...

 'Type','regression','CrossVal','on','LearnRate',lr(k));

 end;

end;

Compute the cross-validated MSE for each ensemble.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');

errorCell = cellfun(kflAll,Mdl,'Uniform',false);

error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(lr)]);

errorDeep = kfoldLoss(MdlDeep);

errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated classification error behaves as the number of trees in the
ensemble increases for a few of the ensembles, the deep tree, and the stump. Plot the
curves with respect to learning rate in the same plot, and plot separate plots for varying
tree complexities. Choose a subset of tree complexity levels.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];

figure;

for k = 1:3;

 subplot(2,2,k);

 plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2);

 axis tight;

 hold on;

 h = gca;

 plot(h.XLim,[errorDeep errorDeep],'-.b','LineWidth',2);

 plot(h.XLim,[errorStump errorStump],'-.r','LineWidth',2);

 plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'--k');

 h.YLim = [10 50];

 xlabel 'Number of trees';

 ylabel 'Cross-validated MSE';

 title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))));

 hold off;

end;

hL = legend([cellstr(num2str(lr','Learning Rate = %0.2f'));...

 'Deep Tree';'Stump';'Min. MSE']);

hL.Position(1) = 0.6;

22 Functions — Alphabetical List

22-1804

Each curve contains a minimum cross-validated MSE occuring at the optimal number of
trees in the ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields
the lowest MSE overall.

[minErr minErrIdxLin] = min(error(:));

[idxNumTrees idxMNS idxLR] = ind2sub(size(error),minErrIdxLin);

fprintf('\nMin. MSE = %0.5f',minErr)

fprintf('\nOptimal Parameter Values:\nNum. Trees = %d',idxNumTrees);

fprintf('\nMaxNumSplits = %d\nLearning Rate = %0.2f\n',...

 maxNumSplits(idxMNS),lr(idxLR))

 fitensemble

22-1805

Min. MSE = 17.87423

Optimal Parameter Values:

Num. Trees = 79

MaxNumSplits = 1

Learning Rate = 0.25

More About

Tips

Avoid large estimated out-of-bag error variances by setting a more balanced
misclassification cost matrix or a less skewed prior probability vector. This is particularly
important if you train using a small sample size.

Algorithms

• For details of boosting and bagging algorithms, see “Ensemble Algorithms” on page
16-155.

• fitensemble generates in-bag samples by oversampling classes with large
misclassification costs and undersampling classes with small misclassification
costs. Consequently, out-of-bag samples have fewer observations from classes
with large misclassification costs and more observations from classes with small
misclassification costs. If you train a classification ensemble using a small data set
and a highly skewed cost matrix, then the number of out-of-bag observations per
class might be very low. Therefore, the estimated out-of-bag error might have a large
variance and might be difficult to interpret. The same phenomenon can occur for
classes with large prior probabilities.

• For ensembles of decision trees, and for dual-core systems and above, fitensemble
parallelizes training using Intel Threading Building Blocks (TBB). For details on Intel
TBB, see https://software.intel.com/en-us/intel-tbb.

• “Supervised Learning Workflow and Algorithms” on page 16-2
• “Ensemble Methods” on page 16-68

See Also
RegressionEnsemble | RegressionBaggedEnsemble |
ClassificationPartitionedEnsemble | RegressionPartitionedEnsemble

https://software.intel.com/en-us/intel-tbb

22 Functions — Alphabetical List

22-1806

| ClassificationEnsemble | ClassificationBaggedEnsemble |
templateDiscriminant | templateKNN | templateTree

 fitnlm

22-1807

fitnlm
Fit nonlinear regression model

Syntax
mdl = fitnlm(tbl,modelfun,beta0)

mdl = fitnlm(X,y,modelfun,beta0)

mdl = fitnlm(___ ,modelfun,beta0,Name,Value)

Description
mdl = fitnlm(tbl,modelfun,beta0) fits the model specified by modelfun to
variables in the table or dataset array tbl, and returns the nonlinear model mdl.

fitnlm estimates model coefficients using an iterative procedure starting from the
initial values in beta0.

mdl = fitnlm(X,y,modelfun,beta0) fits a nonlinear regression model using the
column vector y as a response variable and the columns of the matrix X as predictor
variables.

mdl = fitnlm(___ ,modelfun,beta0,Name,Value) fits a nonlinear regression
model with additional options specified by one or more Name,Value pair arguments.

Examples
Nonlinear Model from a Table

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig

tbl = table(Horsepower,Weight,MPG);

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

mdl = fitnlm(tbl,modelfun,beta0)

22 Functions — Alphabetical List

22-1808

mdl =

Nonlinear regression model:

 MPG ~ b1 + b2*Horsepower^b3 + b4*Weight^b5

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ________ ________

 b1 -49.383 119.97 -0.41164 0.68083

 b2 376.43 567.05 0.66384 0.50719

 b3 -0.78193 0.47168 -1.6578 0.098177

 b4 422.37 776.02 0.54428 0.58656

 b5 -0.24127 0.48325 -0.49926 0.61788

Number of observations: 392, Error degrees of freedom: 387

Root Mean Squared Error: 3.96

R-Squared: 0.745, Adjusted R-Squared 0.743

F-statistic vs. constant model: 283, p-value = 1.79e-113

Nonlinear Model from Matrix Data

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig

X = [Horsepower,Weight];

y = MPG;

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

mdl = fitnlm(X,y,modelfun,beta0)

mdl =

Nonlinear regression model:

 y ~ b1 + b2*x1^b3 + b4*x2^b5

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 -49.383 119.97 -0.41164 0.68083

 fitnlm

22-1809

 b2 376.43 567.05 0.66384 0.50719

 b3 -0.78193 0.47168 -1.6578 0.098177

 b4 422.37 776.02 0.54428 0.58656

 b5 -0.24127 0.48325 -0.49926 0.61788

Number of observations: 392, Error degrees of freedom: 387

Root Mean Squared Error: 3.96

R-Squared: 0.745, Adjusted R-Squared 0.743

F-statistic vs. constant model: 283, p-value = 1.79e-113

Adjust Fitting Options in the Nonlinear Model

Create a nonlinear model for auto mileage based on the carbig data. Strive for more
accuracy by lowering the TolFun option, and observe the iterations by setting the
Display option.

Load the data and create a nonlinear model.

load carbig

X = [Horsepower,Weight];

y = MPG;

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

Create options to lower TolFun and to report iterative display, and create a model using
the options.

opts = statset('Display','iter','TolFun',1e-10);

mdl = fitnlm(X,y,modelfun,beta0,'Options',opts);

 Norm of Norm of

 Iteration SSE Gradient Step

 0 1.82248e+06

 1 678600 788810 1691.07

 2 616716 6.12739e+06 45.4738

%%% Many iterations deleted %%%

 122 6068.48 1.56393 0.629325

 123 6068.48 1.13809 0.432543

 124 6068.48 0.295962 0.297511

Iterations terminated: relative change in SSE less than OPTIONS.TolFun

Specify Nonlinear Regression Using Model String Syntax

Specify a nonlinear regression model for estimation using a function handle or model
string syntax.

22 Functions — Alphabetical List

22-1810

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Use a function handle to specify the Hougen-Watson model for the rate data.

mdl = fitnlm(X,y,@hougen,beta0)

mdl =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.2526 0.86701 1.4447 0.18654

 b2 0.062776 0.043561 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075157 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.193

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Alternatively, you can use a string expression to specify the Hougen-Watson model for
the rate data.

myfun = 'y~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';

mdl2 = fitnlm(X,y,myfun,beta0)

mdl2 =

Nonlinear regression model:

 y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)

Estimated Coefficients:

 Estimate SE tStat pValue

 fitnlm

22-1811

 b1 1.2526 0.86701 1.4447 0.18654

 b2 0.062776 0.043561 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075157 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.193

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Estimate Nonlinear Regression Using Robust Fitting Options

Generate sample data from the nonlinear regression model

y b b b x= + -{ } +1 2 3exp ,e

where b1, b2, and b3 are coefficients, and the error term is normally distributed with
mean 0 and standard deviation 0.5.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility

b = [1;3;2];

x = exprnd(2,100,1);

y = modelfun(b,x) + normrnd(0,0.5,100,1);

Set robust fitting options.

opts = statset('nlinfit');

opts.RobustWgtFun = 'bisquare';

Fit the nonlinear model using the robust fitting options. Here, use a string expression to
specify the model.

b0 = [2;2;2];

modelstr = 'y ~ b1 + b2*exp(-b3*x)';

mdl = fitnlm(x,y,modelstr,b0,'Options',opts)

mdl =

22 Functions — Alphabetical List

22-1812

Nonlinear regression model (robust fit):

 y ~ b1 + b2*exp(- b3*x)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.0218 0.07202 14.188 2.1344e-25

 b2 3.6619 0.25429 14.401 7.974e-26

 b3 2.9732 0.38496 7.7232 1.0346e-11

Number of observations: 100, Error degrees of freedom: 97

Root Mean Squared Error: 0.501

R-Squared: 0.807, Adjusted R-Squared 0.803

F-statistic vs. constant model: 203, p-value = 2.34e-35

Fit Nonlinear Regression Model Using Weights Function Handle

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Specify a function handle for observation weights. The function accepts the model fitted
values as input, and returns a vector of weights.

 a = 1; b = 1;

 weights = @(yhat) 1./((a + b*abs(yhat)).^2);

Fit the Hougen-Watson model to the rate data using the specified observation weights
function.

mdl = fitnlm(X,y,@hougen,beta0,'Weights',weights)

mdl =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 0.83085 0.58224 1.427 0.19142

 b2 0.04095 0.029663 1.3805 0.20477

 fitnlm

22-1813

 b3 0.025063 0.019673 1.274 0.23842

 b4 0.080053 0.057812 1.3847 0.20353

 b5 1.8261 1.281 1.4256 0.19183

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 0.037

R-Squared: 0.998, Adjusted R-Squared 0.998

F-statistic vs. zero model: 1.14e+03, p-value = 3.49e-11

Nonlinear Regression Model Using Nonconstant Error Model

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error variance model.

mdl = fitnlm(X,y,@hougen,beta0,'ErrorModel','combined')

mdl =

Nonlinear regression model:

 y ~ hougen(b,X)

Estimated Coefficients:

 Estimate SE tStat pValue

 b1 1.2526 0.86702 1.4447 0.18654

 b2 0.062776 0.043561 1.4411 0.18753

 b3 0.040048 0.030885 1.2967 0.23089

 b4 0.11242 0.075158 1.4957 0.17309

 b5 1.1914 0.83671 1.4239 0.1923

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 1.27

R-Squared: 0.999, Adjusted R-Squared 0.998

F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

• “Examine Quality and Adjust the Fitted Nonlinear Model” on page 11-7
• “Predict or Simulate Responses Using a Nonlinear Model” on page 11-10

22 Functions — Alphabetical List

22-1814

• “Nonlinear Regression Workflow” on page 11-14

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. If you do not specify the predictor and
response variables, the last variable is the response variable and the others are the
predictor variables by default.

Predictor variables and response variable must be numeric.

You specify the response and predictor names in your model string. If you do not provide
a model string, you can set a different column as the response variable by using the
ResponseVar name-value pair argument. You can select a subset of the columns as
predictors by using the PredictorVars name-value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.
Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

modelfun — Functional form of the model
function handle | string of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)'

Functional form of the model, specified as either of the following.

• Function handle @modelfun or @(b,x)modelfun, where

 fitnlm

22-1815

• b is a coefficient vector with the same number of elements as beta0.
• x is a matrix with the same number of columns as X or the number of predictor

variable columns of tbl.

modelfun(b,x) returns a column vector that contains the same number of rows as
x. Each row of the vector is the result of evaluating modelfun on the corresponding
row of x. In other words, modelfun is a vectorized function, one that operates on all
data rows and returns all evaluations in one function call. modelfun should return
real numbers to obtain meaningful coefficients.

• String of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)', where f represents
a scalar function of the scalar coefficient variables b1,...,bj and the scalar data
variables x1,...,xk.

beta0 — Coefficients
numeric vector

Coefficients for the nonlinear model, specified as a numeric vector. NonLinearModel
starts its search for optimal coefficients from beta0.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ErrorModel','combined','Exclude',2,'Options',opt specifies the
error model as the combined model, excludes the second observation from the fit, and
uses the options defined in the structure opt to control the iterative fitting procedure.

'CoefficientNames' — Names of the model coefficients
{'b1','b2',...,'bk'} (default) | cell array of strings

Names of the model coefficients, specified as a cell array of strings.
Data Types: char

'ErrorModel' — Form of the error variance model
'constant' (default) | 'proportional' | 'combined'

22 Functions — Alphabetical List

22-1816

Form of the error variance model, specified as one of the following. Each model defines
the error using a standard mean-zero and unit-variance variable e in combination with
independent components: the function value f, and one or two parameters a and b

'constant' (default) y f ae= +

'proportional' y f bfe= +

'combined'
y f a b f e= + +()

The only allowed error model when using Weights is 'constant'.

Note: options.RobustWgtFun must have value [] when using an error model other
than 'constant'.

Example: 'ErrorModel','proportional'

'ErrorParameters' — Initial estimates of the error model parameters
numeric array

Initial estimates of the error model parameters for the chosen ErrorModel, specified as a
numeric array.

Error Model Parameters Default Values

'constant' a 1

'proportional' b 1

'combined' a, b [1,1]

You can only use the 'constant' error model when using Weights.

Note: options.RobustWgtFun must have value [] when using an error model other
than 'constant'.

For example, if 'ErrorModel' has the value 'combined', you can specify the starting
value 1 for a and the starting value 2 for b as follows.
Example: 'ErrorParameters',[1,2]

 fitnlm

22-1817

Data Types: single | double

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Options' — Options for controlling the iterative fitting procedure
[] (default) | structure

Options for controlling the iterative fitting procedure, specified as a structure created by
statset. The relevant fields are the nonempty fields in the structure returned by the
call statset('fitnlm').

Option Meaning Default

DerivStep Relative difference used in finite difference
derivative calculations. A positive scalar, or a
vector of positive scalars the same size as the
vector of parameters estimated by the Statistics
and Machine Learning Toolbox function using the
options structure.

eps^(1/3)

Display Amount of information displayed by the fitting
algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.
• 'iter' — Displays iterative output to the

Command Window.

'off'

FunValCheck String indicating to check for invalid values, such
as NaN or Inf, from the model function.

'on'

22 Functions — Alphabetical List

22-1818

Option Meaning Default

MaxIter Maximum number of iterations allowed. Positive
integer.

200

RobustWgtFun Weight function for robust fitting. Can also be a
function handle that accepts a normalized residual
as input and returns the robust weights as output.
If you use a function handle, give a Tune constant.
See “Robust Options” on page 22-1820

[]

Tune Tuning constant used in robust fitting to
normalize the residuals before applying the weight
function. A positive scalar. Required if the weight
function is specified as a function handle.

See “Robust Options”
on page 22-1820
for the default,
which depends on
RobustWgtFun.

TolFun Termination tolerance for the objective function
value. Positive scalar.

1e-8

TolX Termination tolerance for the parameters. Positive
scalar.

1e-8

Data Types: struct

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

 fitnlm

22-1819

Data Types: single | double | logical | cell

'ResponseVar' — Response variable
last column of tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable.

If you supply a model string, it specifies the response variable. Otherwise, when fitting a
table or dataset array, 'ResponseVar' indicates which variable fitnlm should use as
the response.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Weights' — Observation weights
ones(n,1) (default) | vector of nonnegative scalar values | function handle

22 Functions — Alphabetical List

22-1820

Observation weights, specified as a vector of nonnegative scalar values or function
handle.

• If you specify a vector, then it must have n elements, where n is the number of rows in
tbl or y.

• If you specify a function handle, then the function must accept a vector of predicted
response values as input, and return a vector of real positive weights as output.

Given weights, W, NonLinearModel estimates the error variance at observation i by
MSE*(1/W(i)), where MSE is the mean squared error.

Data Types: single | double | function_handle

Output Arguments

mdl — Nonlinear model
NonLinearModel object

Nonlinear model representing a least-squares fit of the response to the data, returned as
a NonLinearModel object.

If the Options structure contains a nonempty RobustWgtFun field, the model is not a
least-squares fit, but uses the RobustWgtFun robust fitting function.

For properties and methods of the nonlinear model object, mdl, see the NonLinearModel
class page.

More About

Robust Options

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'

(default)
w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385

 fitnlm

22-1821

Weight Function Equation Default Tuning
Constant

'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'talwar' w = 1 * (abs(r)<1) 2.795
'welsch' w = exp(-(r.^2)) 2.985
[] No robust fitting —

Algorithms

fitnlm uses the same fitting algorithm as nlinfit.
• “Nonlinear Regression” on page 11-2

References

[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-
Interscience, 2003.

[2] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple
Regression Computing Environment.” Computer Science and Statistics:
Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American
Statistical Association, 1989.

[3] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted
Least-Squares.” Communications in Statistics: Theory and Methods, A6, 1977, pp.
813–827.

See Also
nlinfit | NonLinearModel

22 Functions — Alphabetical List

22-1822

LinearMixedModel.fitmatrix
Class: LinearMixedModel

Fit linear mixed-effects model using design matrices

Compatibility

LinearMixedModel.fitmatrix will be removed in a future release. Use
fitlmematrix instead.

Syntax

lme = LinearMixedModel.fitmatrix(X,y,Z,[])

lme = LinearMixedModel.fitmatrix(X,y,Z,G)

lme = LinearMixedModel.fitmatrix(___ ,Name,Value)

Description

lme = LinearMixedModel.fitmatrix(X,y,Z,[]) creates a linear mixed-effects
model of the responses y using the fixed-effects design matrix X and random-effects
design matrix or matrices in Z.

[] implies that there is one group. That is, the grouping variable G is ones(n,1),
where n is the number of observations. Using LinearMixedModel.fitmatrix(X,Y,Z,
[]) without a specified covariance pattern most likely will result in a non-identifiable
model. This syntax is recommended only if you build the grouping information into the
random effects design Z and specify a covariance pattern for the random effects using
'CovariancePattern' name-value pair argument.

lme = LinearMixedModel.fitmatrix(X,y,Z,G) creates a linear mixed-effects
model of the responses y using the fixed-effects design matrix X and random-effects
design matrix Z or matrices in Z, and the grouping variable or variables in G.

lme = LinearMixedModel.fitmatrix(___ ,Name,Value) also creates a linear
mixed-effects model with additional options specified by one or more Name,Value pair
arguments, using any of the previous input arguments.

 LinearMixedModel.fitmatrix

22-1823

For example, you can specify the names of the response, predictor, and grouping
variables. You can also specify the covariance pattern, fitting method, or the optimization
algorithm.

Tips

• If your model is not easily described using a formula, you can create matrices to define
the fixed and random effects, and fit the model using fitlmematrix.

Input Arguments

X — Fixed-effects design matrix
n-by-p matrix

Fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of
observations, and p is the number of fixed-effects predictor variables. Each row of X
corresponds to one observation, and each column of X corresponds to one variable.

Data Types: single | double

y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.
Data Types: single | double

Z — Random-effects design
n-by-q matrix | cell array of R n-by-q(r) matrices, r = 1, 2, ..., R

Random-effects design, specified as either of the following.

• If there is one random-effects term in the model, then Z must be an n-by-q matrix,
where n is the number of observations and q is the number of variables in the
random-effects term.

• If there are R random-effects terms, then Z must be a cell array of length R. Each
cell of Z contains an n-by-q(r) design matrix Z{r}, r = 1, 2, ..., R, corresponding to
each random-effects term. Here, q(r) is the number of random effects term in the rth
random effects design matrix, Z{r}.

22 Functions — Alphabetical List

22-1824

Data Types: single | double | cell

G — Grouping variable or variables
n-by-1 vector | cell array of R n-by-1 vectors

Grouping variable or variables, specified as either of the following.

• If there is one random-effects term, then G must be an n-by-1 vector corresponding to
a single grouping variable with M levels or groups.

G can be a categorical vector, numeric vector, character array, or cell array of strings.
• If there are multiple random-effects terms, then G must be a cell array of length R.

Each cell of G contains a grouping variable G{r}, r = 1, 2, ..., R, with M(r) levels.

G{r} can be a categorical vector, numeric vector, character array, or cell array of
strings.

Data Types: single | double | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'FixedEffectPredictors' — Names of columns in fixed-effects design matrix
{'x1','x2',...,'xP'} (default) | cell array of length p

Names of columns in the fixed-effects design matrix X, specified as the comma-separated
pair consisting of 'FixedEffectPredictors' and a cell array of length p.

For example, if you have a constant term and two predictors, say TimeSpent and
Gender, where Female is the reference level for Gender, as the fixed effects, then you
can specify the names of your fixed effects in the following way. Gender_Male represents
the dummy variable you must create for category Male. You can choose different names
for these variables.
Example: 'FixedEffectPredictors',
{'Intercept','TimeSpent','Gender_Male'},

Data Types: cell

 LinearMixedModel.fitmatrix

22-1825

'RandomEffectPredictors' — Names of columns in random-effects design matrix or cell
array
cell array of length q | cell array of length R with elements of length q(r), r = 1, 2, ..., R

Names of columns in the random-effects design matrix or cell array Z, specified as the
comma-separated pair consisting of 'RandomEffectPredictors' and either of the
following:

• A cell array of length q when Z is an n-by-q design matrix. In this case, the default is
{'z1','z2',...,'zQ'}.

• A cell array of length R, when Z is a cell array of length R with each
element Z{r} of length q(r), r = 1, 2, ..., R. In this case, the default is
{'z11','z12',...,'z1Q(1)'},...,{'zr1','zr2',...,'zrQ(r)'}.

For example, suppose you have correlated random effects for intercept and a variable
named Acceleration. Then, you can specify the random-effects predictor names as
follows.
Example: 'RandomEffectPredictors',{'Intercept','Acceleration'}

If you have two random effects terms, one for the intercept and the variable
Acceleration grouped by variable g1, and the second for the intercept, grouped by the
variable g2, then you specify the random-effects predictor names as follows.

Example: 'RandomEffectPredictors',{{'Intercept','Acceleration'},
{'Intercept'}}

Data Types: cell

'ResponseVarName' — Name of response variable
'y' (default) | string

Name of response variable, specified as the comma-separated pair consisting of
'ResponseVarName' and a string.

For example, if your response variable name is score, then you can specify it as follows.

Example: 'ResponseVarName','score'

Data Types: char

'RandomEffectGroups' — Names of random effects grouping variables
'g' or {'g1','g2',...,'gR'} (default) | string | cell array of strings

22 Functions — Alphabetical List

22-1826

Names of random effects grouping variables, specified as the comma-separated pair
'RandomEffectGroups' and either of the following:

• String — If there is only one random-effects term, that is, if G is a vector, then the
value of 'RandomEffectGroups' is a string containing the name for the grouping
variable G. The default is 'g'.

• Cell array of strings — If there are multiple random-effects terms, that is, if G is a cell
array of length R, then the value of 'RandomEffectGroups' is a cell array of length
R, where each cell contains the name for the grouping variable G{r}. The default is
{'g1','g2',...,'gR'}.

For example, if you have two random-effects terms, z1 and z2, grouped by the grouping
variables sex and subject, then you can specify the names of your grouping variables
as follows.
Example: 'RandomEffectGroups',{'sex','subject'}

Data Types: char | cell

'CovariancePattern' — Pattern of covariance matrix
'FullCholesky' (default) | string | square symmetric logical matrix | cell array of
strings or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated
pair consisting of 'CovariancePattern' and a string, a square symmetric logical
matrix, or a cell array of strings or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be
a cell array of length R, where each element r of this cell array specifies the pattern of
the covariance matrix of the random-effects vector associated with the rth random-effects
term. The options for each element follow.

'FullCholesky' Default. Full covariance matrix using
the Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

'Full' Full covariance matrix, using the log-
Cholesky parameterization. fitlme
estimates all elements of the covariance
matrix.

 LinearMixedModel.fitmatrix

22-1827

'Diagonal' Diagonal covariance matrix. That is, off-
diagonal elements of the covariance matrix
are constrained to be 0.

s

s

s

b

b

b

1

2

2

2

3

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

'Isotropic' Diagonal covariance matrix with equal
variances. That is, off-diagonal elements
of the covariance matrix are constrained
to be 0, and the diagonal elements are
constrained to be equal. For example, if
there are three random-effects terms with
an isotropic covariance structure, this
covariance matrix looks like

s

s

s

b

b

b

2

2

2

0 0

0 0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

where σ2
b is the common variance of the

random-effects terms.

22 Functions — Alphabetical List

22-1828

'CompSymm' Compound symmetry structure. That is,
common variance along diagonals and
equal correlation between all random
effects. For example, if there are three
random-effects terms with a covariance
matrix having a compound symmetry
structure, this covariance matrix looks like

s s s

s s s

s s s

b b b b b

b b b b b

b b b b b

1
2

1 2 1 2

1 2 1
2

1 2

1 2 1 2 1
2

, ,

, ,

, ,

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜̃
˜
˜̃

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the
common covariance between any two
random-effects term .

PAT Square symmetric logical matrix. If
'CovariancePattern' is defined
by the matrix PAT, and if PAT(a,b)
= false, then the (a,b) element of
the corresponding covariance matrix is
constrained to be 0.

Example: 'CovariancePattern','Diagonal'

Example: 'CovariancePattern',{'Full','Diagonal'}

'FitMethod' — Method for estimating parameters
'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the
comma-separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'

 LinearMixedModel.fitmatrix

22-1829

'Weights' — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of length n, where n is the number of observations.
Data Types: single | double

'Exclude' — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as
the comma-separated pair consisting of 'Exclude' and a vector of integer or logical
values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]

Data Types: single | double | logical

'DummyVarCoding' — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as
the comma-separated pair consisting of 'DummyVarCoding' and one of the following.

'reference' Default. Coefficient for first category set to
0.

'effects' Coefficients sum to 0.
'full' One dummy variable for each category.

Example: 'DummyVarCoding','effects'

'Optimizer' — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of
'Optimizer' and either of the following.

'quasinewton' Default. Uses a trust region based
quasi-Newton optimizer. Change

22 Functions — Alphabetical List

22-1830

the options of the algorithm using
statset('LinearMixedModel').
If you don’t specify the options,
then LinearMixedModel
uses the default options of
statset('LinearMixedModel').

'fminunc' You must have Optimization Toolbox
to specify this option. Change the
options of the algorithm using
optimoptions('fminunc'). If
you don’t specify the options, then
LinearMixedModel uses the default
options of optimoptions('fminunc')
with 'Algorithm' set to 'quasi-
newton'.

Example: 'Optimizer','fminunc'

'OptimizerOptions' — Options for optimization algorithm
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-
separated pair consisting of 'OptimizerOptions' and a structure
returned by statset('LinearMixedModel') or an object returned by
optimoptions('fminunc').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the
options of the optimization algorithm. See optimoptions for the options 'fminunc'
uses. If 'Optimizer' is 'fminunc' and you do not supply 'OptimizerOptions',
then the default for LinearMixedModel is the default options created by
optimoptions('fminunc') with 'Algorithm' set to 'quasi-newton'.

• If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel')
to change the optimization parameters. If you don’t change the optimization
parameters, then LinearMixedModel uses the default options created by
statset('LinearMixedModel'):

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('LinearMixedModel').

'TolFun' — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

 LinearMixedModel.fitmatrix

22-1831

Relative tolerance on the gradient of the objective function, specified as a positive scalar
value.

'TolX' — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

'MaxIter' — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

'Display' — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

'StartMethod' — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting
of 'StartMethod' and either of the following.

'default' Default. An internally defined default
value.

'random' A random initial value.

Example: 'StartMethod','random'

'Verbose' — Indicator to display optimization process on screen
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated
pair consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.

Example: 'Verbose',true

'CheckHessian' — Indicator to check positive definiteness of Hessian
false (default) | true

22 Functions — Alphabetical List

22-1832

Indicator to check the positive definiteness of the Hessian of the objective function with
respect to unconstrained parameters at convergence, specified as the comma-separated
pair consisting of 'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if
the model is overparameterized in the number of covariance parameters.
Example: 'CheckHessian',true

Output Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Examples

No Grouping Variable Specified

Load the sample data.

load carsmall

Fit a linear mixed-effects model, where MPG is the response, weight is the predictor
variable, and the intercept varies by model year. First, define the design matrices. Then,
fit the model using the specified design matrices.

y = MPG;

X = [ones(size(Weight)), Weight];

Z = ones(size(y));

lme = LinearMixedModel.fitmatrix(X,y,Z,Model_Year)

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 94

 LinearMixedModel.fitmatrix

22-1833

 Fixed effects coefficients 2

 Random effects coefficients 3

 Covariance parameters 2

Formula:

 y ~ x1 + x2 + (z11 | g1)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 486.09 496.26 -239.04 478.09

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'x1' 43.575 2.3038 18.915 92 1.8371e-33 39 48.151

 'x2' -0.0067097 0.0004242 -15.817 92 5.5373e-28 -0.0075522 -0.0058672

Random effects covariance parameters (95% CIs):

Group: g1 (3 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'z11' 'z11' 'std' 3.301 1.4448 7.5421

Group: Error

 Name Estimate Lower Upper

 'Res Std' 2.8997 2.5075 3.3532

Now fit the same model by building the grouping into the Z matrix.

Z = double([Model_Year==70, Model_Year==76, Model_Year==82]);

lme = LinearMixedModel.fitmatrix(X,y,Z,[],...

'Covariancepattern','Isotropic')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 94

 Fixed effects coefficients 2

 Random effects coefficients 3

 Covariance parameters 2

Formula:

 y ~ x1 + x2 + (z11 + z12 + z13 | g1)

22 Functions — Alphabetical List

22-1834

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 486.09 496.26 -239.04 478.09

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'x1' 43.575 2.3038 18.915 92 1.8371e-33 39 48.151

 'x2' -0.0067097 0.0004242 -15.817 92 5.5373e-28 -0.0075522 -0.0058672

Random effects covariance parameters (95% CIs):

Group: g1 (1 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'z11' 'z11' 'std' 3.301 1.4448 7.5421

Group: Error

 Name Estimate Lower Upper

 'Res Std' 2.8997 2.5075 3.3532

Longitudinal Study with Covariate

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned 4 exercise programs (A, B, C, D) and their weight loss is recorded over six two-
week time periods. This is simulated data.

Define Subject and Program as categorical variables. Create the design matrices for
a linear mixed-effects model, with the initial weight, type of program, week, and the
interaction between the week and type of program as the fixed effects. The intercept and
coefficient of week vary by subject.

This model corresponds to

y IW Week I PB I PC I PD

Week I P

im i i i i i

i

= + + + [] + [] + []

+

b b b b b b

b

0 1 2 3 4 5

6 * BB Week I PC Week I PD

b b Week

i i i i i

m m im i

[]() + []() + []()
+ + +

b b

e

7 8

0 1

* *

mm ,

 LinearMixedModel.fitmatrix

22-1835

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20. βj are the fixed-effects coefficients, j = 0,
1, ...,8, and b0m and b1m are random effects. IW stands for initial weight and I[.] is a
dummy variable representing a type of program. For example, I[PB]i is the dummy
variable representing program type B. The random effects and observation error have the
following prior distributions: b0m~N(0,σ2

0), b1m~N(0,σ2
1), and εim ~ N(0,σ2).

Subject = nominal(Subject);

Program = nominal(Program);

D = dummyvar(Program); % Create dummy variables for Program

X = [ones(120,1), InitialWeight, D(:,2:4), Week,...

 D(:,2).*Week, D(:,3).*Week, D(:,4).*Week];

Z = [ones(120,1), Week];

G = Subject;

Since the model has an intercept, you only need the dummy variables for programs B, C,
and D. This is also known as the 'reference' method of coding dummy variables.

Fit the model using LinearMixedModel.fitmatrix with the defined design matrices
and grouping variables.

lme = LinearMixedModel.fitmatrix(X,y,Z,G,'FixedEffectPredictors',...

{'Intercept','InitWeight','PrgB','PrgC','PrgD','Week','Week_PrgB','Week_PrgC','Week_PrgD'},...

'RandomEffectPredictors',{{'Intercept','Week'}},'RandomEffectGroups',{'Subject'})

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 9

 Random effects coefficients 40

 Covariance parameters 4

Formula:

 Linear Mixed Formula with 10 predictors.

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -22.981 13.257 24.49 -48.981

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

22 Functions — Alphabetical List

22-1836

 'Intercept' 0.66105 0.25892 2.5531 111 0.012034 0.14798 1.1741

 'InitWeight' 0.0031879 0.0013814 2.3078 111 0.022863 0.00045067 0.0059252

 'PrgB' 0.36079 0.13139 2.746 111 0.0070394 0.10044 0.62113

 'PrgC' -0.033263 0.13117 -0.25358 111 0.80029 -0.29319 0.22666

 'PrgD' 0.11317 0.13132 0.86175 111 0.39068 -0.14706 0.3734

 'Week' 0.1732 0.067454 2.5677 111 0.011567 0.039536 0.30686

 'Week_PrgB' 0.038771 0.095394 0.40644 111 0.68521 -0.15026 0.2278

 'Week_PrgC' 0.030543 0.095394 0.32018 111 0.74944 -0.15849 0.21957

 'Week_PrgD' 0.033114 0.095394 0.34713 111 0.72915 -0.15592 0.22214

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 0.18407 0.12281 0.27587

 'Week' 'Intercept' 'corr' 0.66841 0.21076 0.88573

 'Week' 'Week' 'std' 0.15033 0.11004 0.20537

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10261 0.087882 0.11981

The p-values 0.0228 and 0.0115 indicate significant effects of the initial weights of the
subjects and the time factor in the amount of weight lost. The weight loss of subjects that
are in program B is significantly different relative to the weight loss of subjects that are
in program A. The lower and upper limits of the covariance parameters for the random
effects do not include zero, thus they seem significant. You can also test the significance
of the random-effects using the compare method.

Random-Intercept Model

Load the sample data.

load flu

flu dataset array has a Date variable, and 10 variables for estimated influenza rates (in
9 different regions, estimated from Google searches, plus a nationwide estimate from the
CDC).

To fit a linear-mixed effects model, where the influenza rates are the responses, combine
the nine columns corresponding to the regions into a tall array that has a single response
variable, FluRate, and a nominal variable, Region, the nationwide estimate WtdILI,
that shows which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 LinearMixedModel.fitmatrix

22-1837

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Define the design matrices for a random-intercept linear mixed-effects model, where the
intercept varies by Date. The corresponding model is

y WtdILI b i mim im m im= + + + = =b b e0 1 0 1 2 468 1 2 52, , ,..., , , , ..., ,

where yim is the observation i for level m of grouping variable Date. b0m is the random
effect for level m of the grouping variable Date and εim is the observation error for
observation i. The random effect has the prior distribution, b0m ~ N(0,σ2

FR) and the error
term has the distribution, εim ~ N(0,σ2).

y = flu2.FluRate;

X = [ones(468,1) flu2.WtdILI];

Z = [ones(468,1)];

G = flu2.Date;

Fit the linear mixed-effects model.

lme = LinearMixedModel.fitmatrix(X,y,Z,G,'FixedEffectPredictors',{'Intercept','NationalRate'},...

'RandomEffectPredictors',{{'Intercept'}},'RandomEffectGroups',{'Date'})

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 468

 Fixed effects coefficients 2

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 y ~ Intercept + NationalRate + (Intercept | Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 286.24 302.83 -139.12 278.24

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

22 Functions — Alphabetical List

22-1838

 'Intercept' 0.16385 0.057525 2.8484 466 0.0045885 0.050813 0.27689

 'NationalRate' 0.7236 0.032219 22.459 466 3.0502e-76 0.66028 0.78691

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 0.17146 0.13227 0.22226

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.30201 0.28217 0.32324

The confidence limits of the standard deviation of the random-effects term σ2
b0m, do

not include zero (0.13227, 0.22226), which indicates that the random-effects term is
significant. You can also test the significance of the random-effects using compare
method.

The estimated value of an observation is the sum of the fixed-effects values and value of
the random effect at the grouping variable level corresponding to that observation. For
example, the estimated flu rate for observation 28

ˆ ˆ ˆ ˆ

. . *(.) .

/ /y WtdILI b28 0 1 28 10 30 2005

0 1639 0 7236 1 343 0

= + +

= + +

b b

33318

1 46749= . ,

where ˆb is the BLUP of the random effects for the intercept. You can compute this value
in the following way.

beta = fixedEffects(lme);

[~,~,STATS] = randomEffects(lme); % compute the random effects statistics STATS

STATS.Level = nominal(STATS.Level);

y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')

y_hat =

 1.4674

You can simply display the fitted value using the fitted(lme) method.

F = fitted(lme);

F(28)

 LinearMixedModel.fitmatrix

22-1839

ans =

 1.4674

Randomized-Block Design

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

The data set shows the deviations from the target quality characteristic measured from
the products each of five operators manufacture over three different shifts, morning,
evening, and night. This is a randomized block design, where the operators are the
blocks. The experiment is designed to study the impact of the time of shift on the
performance. The performance measure is the deviations of the quality characteristics
from the target value. This is simulated data.

Define the design matrices for a linear mixed-effects model with a random intercept
grouped by operator, and shift as the fixed effects. Use the 'effects' contrasts.
'effects' contrasts mean that the coefficients sum to zero. You need to create two
contrast coded variables in the fixed-effects design matrix, X1 and X2, where

Shift Evening

if Morning

if Evening

if Night

and Shif_ =

-

Ï

Ì
Ô

Ó
Ô

0

1

1

,

,

,

tt Morning

if Morning

if Evening

if Night

_ =

-

Ï

Ì
Ô

Ó
Ô

1

0

1

,

,

,

.

The model corresponds to

Morning Shift: _QCDev Shift Morning b mim i m im= + + + =b b e0 2 0 1 2, , ,...., ,

,

5

0 1 0Evening Shift:

N

_QCDev Shift Evening bim i m im= + + +b b e

iight Shift: _ _QCDev Shift Evening Shift Morniim i= - -b b b0 1 2 nng bi m im+ +0 e ,

where i represents the observations, and m represents the operators, i = 1, 2, ..., 15,
and m = 1, 2, ..., 5. The random effects and the observation error have the following
distributions: b0m ~ N(0,σ2

b0m) and εim ~ N(0,σ2).

22 Functions — Alphabetical List

22-1840

S = shift.Shift;

X1 = (S=='Morning') - (S=='Night');

X2 = (S=='Evening') - (S=='Night');

X = [ones(15,1), X1, X2];

y = shift.QCDev;

Z = ones(15,1);

G = shift.Operator;

Fit a linear mixed-effects model using the specified design matrices and restricted
maximum likelihood method.

lme = LinearMixedModel.fitmatrix(X,y,Z,G,'FitMethod','REML','FixedEffectPredictors',....

{'Intercept','S_Morning','S_Evening'},'RandomEffectPredictors',{{'Intercept'}},...

'RandomEffectGroups',{'Operator'},'DummyVarCoding','effects')

lme =

Linear mixed-effects model fit by REML

Model information:

 Number of observations 15

 Fixed effects coefficients 3

 Random effects coefficients 5

 Covariance parameters 2

Formula:

 y ~ Intercept + S_Morning + S_Evening + (Intercept | Operator)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 58.913 61.337 -24.456 48.913

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 3.6525 0.94109 3.8812 12 0.0021832 1.6021 5.703

 'S_Morning' -0.91973 0.31206 -2.9473 12 0.012206 -1.5997 -0.23981

 'S_Evening' -0.53293 0.31206 -1.7078 12 0.11339 -1.2129 0.14699

Random effects covariance parameters (95% CIs):

Group: Operator (5 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 2.0457 0.98207 4.2612

Group: Error

 LinearMixedModel.fitmatrix

22-1841

 Name Estimate Lower Upper

 'Res Std' 0.85462 0.52357 1.395

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

B = randomEffects(lme)

B =

 0.5775

 1.1757

 -2.1715

 2.3655

 -1.9472

The estimated deviation from the target quality characteristics for the third operator
working in the evening shift is

ˆ ˆ ˆ ˆ

. .

,y Shift Evening bEvening Operator3 0 1 03

3 6525 0 532

= + +

= -

b b _

993 2 1715

0 94807

-

=

.

. .

You can also display this value in the following way.

F = fitted(lme);

F(shift.Shift=='Evening' & shift.Operator=='3')

ans =

 0.9481

Correlated and Uncorrelated Random-Effects Terms

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower and the cylinders, and uncorrelated random-effect for intercept
and acceleration grouped by the model year. This model corresponds to

MPG Acc HP b b Acc mim i m m im im= + + + + + =b b b e0 1 2 0 1 1 2 3, , , ,

22 Functions — Alphabetical List

22-1842

with the random-effects terms having the following prior distributions: b0m ~ N(0,σ2
0),

and b1m ~ N(0,σ2
1). m represents the model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];

Z = {ones(406,1),Acceleration};

G = {Model_Year,Model_Year};

Model_Year = nominal(Model_Year);

Now, fit the model using LinearMixedModel.fitmatrix with the defined design
matrices and grouping variables.

lme = LinearMixedModel.fitmatrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'})

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 392

 Fixed effects coefficients 3

 Random effects coefficients 26

 Covariance parameters 3

Formula:

 y ~ Intercept + Acceleration + Horsepower + (Intercept | Model_Year) + (Acceleration | Model_Year)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 2194.5 2218.3 -1091.3 2182.5

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 49.839 2.0518 24.291 389 5.6168e-80 45.806 53.873

 'Acceleration' -0.58565 0.10846 -5.3995 389 1.1652e-07 -0.7989 -0.3724

 'Horsepower' -0.16534 0.0071227 -23.213 389 1.9755e-75 -0.17934 -0.15133

Random effects covariance parameters (95% CIs):

Group: Model_Year (13 Levels)

 Name1 Name2 Type Estimate Lower Upper

 LinearMixedModel.fitmatrix

22-1843

 'Intercept' 'Intercept' 'std' 8.0669e-07 NaN NaN

Group: Model_Year (13 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Acceleration' 'Acceleration' 'std' 0.18783 0.12523 0.28172

Group: Error

 Name Estimate Lower Upper

 'Res Std' 3.7258 3.4698 4.0007

The standard deviation of the random effect for the intercept does not seem significant.

Refit the model with potentially correlated random effects for intercept and acceleration.
In this case the random-effects terms have the following prior distribution

b
b

b
Nm

m

m

=
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

0

1

0
2

0 1

0 1 1
2

0~ , ,
,

,

s s

s s

where m represents the model year.

First prepare the random-effects design matrix and grouping variable.

Z = [ones(406,1) Acceleration];

G = Model_Year;

lme = LinearMixedModel.fitmatrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'})

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 392

 Fixed effects coefficients 3

 Random effects coefficients 26

 Covariance parameters 4

Formula:

 y ~ Intercept + Acceleration + Horsepower + (Intercept + Acceleration | Model_Year)

22 Functions — Alphabetical List

22-1844

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 2193.5 2221.3 -1089.7 2179.5

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 50.133 2.2652 22.132 389 7.7727e-71 45.679 54.586

 'Acceleration' -0.58327 0.13394 -4.3545 389 1.7075e-05 -0.84661 -0.31992

 'Horsepower' -0.16954 0.0072609 -23.35 389 5.188e-76 -0.18382 -0.15527

Random effects covariance parameters (95% CIs):

Group: Model_Year (13 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 3.3475 1.2862 8.7119

 'Acceleration' 'Intercept' 'corr' -0.87971 -0.98501 -0.29675

 'Acceleration' 'Acceleration' 'std' 0.33789 0.1825 0.62558

Group: Error

 Name Estimate Lower Upper

 'Res Std' 3.6874 3.4298 3.9644

The confidence intervals for the standard deviations and the correlation between the
random effects for intercept and acceleration do not include zeros, hence they seem
significant. You can compare these two models using the compare method.

Specify the Covariance Pattern

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned 4 exercise programs, and their weight loss is recorded over six two-week time
periods. This is simulated data.

Define Subject and Program as categorical variables.

Subject = nominal(Subject);

Program = nominal(Program);

 LinearMixedModel.fitmatrix

22-1845

Create the design matrices for a linear mixed-effects model, with the initial weight, type
of program, and week are the fixed effects.

D = dummyvar(Program);

X = [ones(120,1), InitialWeight, D(:,2:4), Week];

Z = [ones(120,1) Week];

G = Subject;

This model corresponds to

y IW Week I PB I PC I PD

b b Wee

im i i i i i

m m

= + + + [] + [] + []
+ +

b b b b b b0 1 2 3 4 5

0 1 kk b Week b Week b Week

b Week b Week

im m im m im m im

m im m

2 4 6 8

10

2 3 4

5 6

+ + +

+ + 112im im+ e ,

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20.

βj are the fixed-effects coefficients, j = 0, 1, ...,8, and b1m and b1m are random effects. IW
stands for initial weight and I[.] is a dummy variable representing a type of program. For
example, I[PB]i is the dummy variable representing program type B. The random effects
and observation error have the following prior distributions: b0m~N(0,σ2

0), b1m~N(0,σ2
1),

and εim ~ N(0,σ2).

Fit the model using LinearMixedModel.fitmatrix with the defined design matrices
and grouping variables. Assume the repeated observations collected on a subject have
common variance along diagonals.

lme = LinearMixedModel.fitmatrix(X,y,Z,G,'FixedEffectPredictors',...

{'Intercept','InitWeight','PrgB','PrgC','PrgD','Week'},...

'RandomEffectPredictors',{{'Intercept','Week'}},...

'RandomEffectGroups',{'Subject'},'CovariancePattern','Isotropic')

lme =

Linear mixed-effects model fit by ML

Model information:

 Number of observations 120

 Fixed effects coefficients 6

 Random effects coefficients 40

 Covariance parameters 2

22 Functions — Alphabetical List

22-1846

Formula:

 y ~ Intercept + InitWeight + PrgB + PrgC + PrgD + Week + (Intercept + Week | Subject)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 -24.783 -2.483 20.391 -40.783

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 0.4208 0.28169 1.4938 114 0.13799 -0.13723 0.97883

 'InitWeight' 0.0045552 0.0015338 2.9699 114 0.0036324 0.0015168 0.0075935

 'PrgB' 0.36993 0.12119 3.0525 114 0.0028242 0.12986 0.61

 'PrgC' -0.034009 0.1209 -0.28129 114 0.77899 -0.27351 0.2055

 'PrgD' 0.121 0.12111 0.99911 114 0.31986 -0.11891 0.36091

 'Week' 0.19881 0.037134 5.3538 114 4.5191e-07 0.12525 0.27237

Random effects covariance parameters (95% CIs):

Group: Subject (20 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 0.16561 0.12896 0.21269

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.10272 0.088014 0.11987

Definitions

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the
following prior distribution.

b N D~ , ,0
2s q()()

where D is a q-by-q symmetric and positive semidefinite matrix, parameterized by
a variance component vector θ, q is the number of variables in the random-effects
term, and σ2 is the observation error variance. Since the covariance matrix of the
random effects, D, is symmetric, it has q(q+1)/2 free parameters. Suppose L is the lower
triangular Cholesky factor of D(θ) such that

 LinearMixedModel.fitmatrix

22-1847

D L L
T

q q q() = () () ,

then the q*(q+1)/2-by-1 unconstrained parameter vector θ is formed from elements in the
lower triangular part of L.

For example, if

L

L

L L

L L L

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11

21 22

31 32 33

0 0

0 ,

then

q =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

L

L

L

L

L

L

11

21

31

22

32

33

.

Log-Cholesky Parameterization

When the diagonal elements of L in Cholesky parameterization are constrained to be
positive, then the solution for L is unique. Log-Cholesky parameterization is the same as
Cholesky parameterization except that the logarithm of the diagonal elements of L are
used to guarantee unique parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing Lii ≥ 0,

q =

()

()

()

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

log

log

log

.

L

L

L

L

L

L

11

21

31

22

32

33

22 Functions — Alphabetical List

22-1848

Alternatives

You can also fit a linear mixed-effects model using fitlme(tbl,formula), where tbl
is a table or dataset array containing the response y, the predictor variables X, and the
grouping variables, and formula is of the form 'y ~ fixed + (random1|g1) + ...
+ (randomR|gR)'.

If your model is not easily described using a formula, you can create matrices to define
the fixed and random effects, and fit the model using fitlmematrix(X,y,Z,G).

See Also
fitlme | LinearMixedModel

 fitNaiveBayes

22-1849

fitNaiveBayes
Train naive Bayes classifier

Compatibility

fitNaiveBayes will be removed in a future release. Use fitcnb instead.

Syntax

NBModel = fitNaiveBayes(X,Y)

NBModel = fitNaiveBayes(X,Y,Name,Value)

Description

NBModel = fitNaiveBayes(X,Y) returns a naive Bayes classifier NBModel, trained
by predictors X and class labels Y for K-level classification.

Predict labels for new data by passing the data and NBModel to predict.

NBModel = fitNaiveBayes(X,Y,Name,Value) returns a naive Bayes classifier with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify a distribution to model the data, prior probabilities for the
classes, or the kernel smoothing window bandwidth.

Examples

Train a Naive Bayes Classifier

Load Fisher's iris data set.

load fisheriris

X = meas(:,3:4);

Y = species;

tabulate(Y)

22 Functions — Alphabetical List

22-1850

 Value Count Percent

 setosa 50 33.33%

 versicolor 50 33.33%

 virginica 50 33.33%

The software can classify data with more than two classes using naive Bayes methods.

Train a naive Bayes classifier.

NBModel = fitNaiveBayes(X,Y)

NBModel =

Naive Bayes classifier with 3 classes for 2 dimensions.

Feature Distribution(s):normal

Classes:setosa, versicolor, virginica

NBModel is a trained NaiveBayes classifier.

By default, the software models the predictor distribution within each class using a
Gaussian distribution having some mean and standard deviation. Use dot notation
to display the parameters of a particular Gaussian fit, e.g., display the fit for the first
feature within setosa.

setosaIndex = strcmp(NBModel.ClassLevels,'setosa');

estimates = NBModel.Params{setosaIndex,1}

estimates =

 1.4620

 0.1737

The mean is 1.4620 and the standard deviation is 0.1737.

Plot the Gaussian contours.

figure

gscatter(X(:,1),X(:,2),Y);

h = gca;

xylim = [h.XLim h.YLim];

 fitNaiveBayes

22-1851

hold on

Params = cell2mat(NBModel.Params);

Mu = Params(2*(1:3)-1,1:2); % Extracts the means

Sigma = zeros(2,2,3);

for j = 1:3

 Sigma(:,:,j) = diag(Params(2*j,:)); % Extracts the standard deviations

 ezcontour(@(x1,x2)mvnpdf([x1,x2],Mu(j,:),Sigma(:,:,j)),...

 xylim+0.5*[-1,1,-1,1]) ...

 % Draws contours for the multivariate normal distributions

end

title('Naive Bayes Classifier -- Fisher''s Iris Data')

xlabel('Petal Length (cm)')

ylabel('Petal Width (cm)')

hold off

22 Functions — Alphabetical List

22-1852

You can change the default distribution using the name-value pair argument
'Distribution'. For example, If some predictors are count based, then you can specify
that they are multinomial random variables using 'Distribution','mn' .

Specify Predictor Distributions for Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

Train a naive Bayes classifier using every predictor.

NBModel1 = fitNaiveBayes(X,Y);

NBModel1.ClassLevels % Display the class order

NBModel1.Params

NBModel1.Params{1,2}

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 [2x1 double] [2x1 double] [2x1 double] [2x1 double]

 [2x1 double] [2x1 double] [2x1 double] [2x1 double]

 [2x1 double] [2x1 double] [2x1 double] [2x1 double]

ans =

 3.4280

 0.3791

By default, the software models the predictor distribution within each class as a
Gaussian with some mean and standard deviation. There are four predictors and three
class levels. Each cell in NBModel1.Params corresponds to a numeric vector containing
the mean and standard deviation of each distribution, e.g., the mean and standard
deviation for setosa iris sepal widths are 3.4280 and 0.3791, respectively.

 fitNaiveBayes

22-1853

Estimate the confusion matrix for NBModel1.

predictLabels1 = predict(NBModel1,X);

[ConfusionMat1,labels] = confusionmat(Y,predictLabels1)

ConfusionMat1 =

 50 0 0

 0 47 3

 0 3 47

labels =

 'setosa'

 'versicolor'

 'virginica'

Element (j, k) of ConfusionMat1 represents the number of observations that the
software classifies as k, but the data show as being in class j.

Retrain the classifier using the Gaussian distribution for predictors 1 and 2 (the sepal
lengths and widths), and the default normal kernel density for predictors 3 and 4 (the
petal lengths and widths).

NBModel2 = fitNaiveBayes(X,Y,...

 'Distribution',{'normal','kernel','normal','kernel'});

NBModel2.Params{1,2}

ans =

 KernelDistribution

 Kernel = normal

 Bandwidth = 0.179536

 Support = unbounded

The software does not train parameters to the kernel density. Rather, the software
chooses an optimal width. However, you can specify a width using the 'KSWidth' name-
value pair argument.

22 Functions — Alphabetical List

22-1854

Estimate the confusion matrix for NBModel2.

predictLabels2 = predict(NBModel2,X);

ConfusionMat2 = confusionmat(Y,predictLabels2)

ConfusionMat2 =

 50 0 0

 0 47 3

 0 3 47

Based on the confusion matrices, the two classifiers perform similarly in the training
sample.

Train Naive Bayes Classifiers Using Multinomial Predictors

Some spam filters classify an incoming email as spam based on how many times a word
or puncutation (called tokens) occurs in an email. The predictors are the frequencies
of particular words or punctuations in an email. Therefore, the predictors compose
multinomial random variables.

This example illustrates classification using naive Bayes and mutlinomial predictors.

Suppose you observed 1000 emails and classified them as spam or not spam. Do this by
randomly assigning -1 or 1 to y for each email.

n = 1000; % Sample size

rng(1); % For reproducibility

y = randsample([-1 1],n,true); % Random labels

To build the predictor data, suppose that there are five tokens in the vocabulary, and
20 observed tokens per email. Generate predictor data from the five tokens by drawing
multinomial deviates. The relative frequencies for tokens corresponding to spam emails
should differ from emails that are not spam.

tokenProbs = [0.2 0.3 0.1 0.15 0.25;...

 0.4 0.1 0.3 0.05 0.15]; % Token relative frequencies

tokensPerEmail = 20;

X = zeros(n,5);

X(y == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),sum(y == 1));

X(y == -1,:) = mnrnd(tokensPerEmail,tokenProbs(2,:),sum(y == -1));

 fitNaiveBayes

22-1855

Train a naive Bayes classifier. Specify that the predictors are multinomial.

NBModel = fitNaiveBayes(X,y,'Distribution','mn');

NBModel is a trained NaiveBayes classifier.

Assess the in-sample performance of NBModel by estimating the misclassification rate.

predSpam = predict(NBModel,X);

misclass = sum(y'~=predSpam)/n

misclass =

 0.0200

The in-sample misclassification rate is 2%.

Randomly generate deviates that represent a new batch of emails.

nOut = 500;

yOut = randsample([-1 1],nOut,true);

XOut = zeros(nOut,5);

XOut(yOut == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),...

 sum(yOut == 1));

XOut(yOut == -1,:) = mnrnd(tokensPerEmail,tokenProbs(2,:),...

 sum(yOut == -1));

Classify the new emails using the trained naive Bayes classifier NBModel, and determine
whether the algorithm generalizes.

predSpamOut = predict(NBModel,XOut);

genRate = sum(yOut'~=predSpamOut)/nOut

genRate =

 0.0260

22 Functions — Alphabetical List

22-1856

The out-of-sample misclassification rate is 2.6% indicating that the classifier generalizes
fairly well.

Input Arguments

X — Predictor data
matrix of numeric values

Predictor data to which the naive Bayes classifier is trained, specified as a matrix of
numeric values.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equivalent.

Data Types: double

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels to which the naive Bayes classifier is trained, specified as a categorical or
character array, logical or numeric vector, or cell array of strings. Each element of Y
defines the class membership of the corresponding row of X. Y supports K class levels.

If Y is a character array, then each row must correspond to one class label.

The length of Y and the number of rows of X must be equivalent.

Data Types: cell | char | double | logical

Note: The software treats NaN, empty string (''), and <undefined> elements as missing
values.

• If Y contains missing values, then the software removes them and the corresponding
rows of X.

• If X contains any rows composed entirely of missing values, then the software removes
those rows and the corresponding elements of Y.

 fitNaiveBayes

22-1857

• If X contains missing values and you set 'Distribution','mn', then the software
removes those rows of X and the corresponding elements of Y.

• If a predictor is not represented in a class, that is, if all of its values are NaN within a
class, then the software returns an error.

Removing rows of X and corresponding elements of Y decreases the effective training or
cross-validation sample size.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Distribution','mn','Prior','uniform','KSWidth',0.5 specifies the
following: the data distribution is multinomial, the prior probabilities for all classes are
equal, and the kernel smoothing window bandwidth for all classes is 0.5 units.

'Distribution' — Data distributions
'normal' (default) | 'kernel' | 'mn' | 'mvmn' | cell array of strings

Data distributions fitNaiveBayes uses to model the data, specified as the comma-
separated pair consisting of 'Distribution' and a string or cell array of strings.

This table summarizes the available distributions.

Value Description

'kernel' Kernel smoothing density estimate.
'mn' Multinomial distribution. If you specify

mn, then all features are components of
a multinomial distribution. Therefore,
you cannot include 'mn' as an element
of a cell array of strings. For details, see
“Algorithms” on page 22-1862.

'mvmn' Multivariate multinomial distribution. For
details, see “Algorithms” on page 22-1862.

'normal' Normal (Gaussian) distribution.

22 Functions — Alphabetical List

22-1858

If you specify a string, then the software models all the features using that distribution.
If you specify a 1-by-D cell array of strings, then the software models feature j using the
distribution in element j of the cell array.
Example: 'Distribution',{'kernel','normal'}

Data Types: cell | char

'KSSupport' — Kernel smoothing density support
'unbounded' (default) | 'positive' | cell array | numeric row vector

Kernel smoothing density support, specified as the comma-separated pair consisting of
'KSSupport' and a numeric row vector, a string, or a cell array. The software applies
the kernel smoothing density to this region.

If you do not specify 'Distribution','kernel', then the software ignores the values
of 'KSSupport', 'KSType', and 'KSWidth'.

This table summarizes the available options for setting the kernel smoothing density
region.

Value Description

1-by-2 numeric row
vector

For example, [L,U], where L and U are the finite lower and
upper bounds, respectively, for the density support.

'positive' The density support is all positive real values.
'unbounded' The density support is all real values.

If you specify a 1-by-D cell array, with each cell containing any value in the table, then
the software trains the classifier using the kernel support in cell j for feature j in X.
Example: 'KSSupport',{[-10,20],'unbounded'}

Data Types: cell | char | double

'KSType' — Kernel smoother type
'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | cell array of strings

Kernel smoother type, specified as the comma-separated pair consisting of 'KSType' and
a string or cell array of strings.

If you do not specify 'Distribution','kernel', then the software ignores the values
of 'KSSupport', 'KSType', and 'KSWidth'.

 fitNaiveBayes

22-1859

This table summarizes the available options for setting the kernel smoothing density
region. Let I{u} denote the indictor function.

Value Kernel Formula

'box' Box (uniform)
f x I x() .= { }£0 5 1

'epanechnikov'Epanechnikov
f x x I x() .= -() { }£0 75 1 1

2

'normal' Gaussian
f x x() exp .= -()1

2
0 5 2

p

'triangle'Triangular
f x x I x() = -() { }£1 1

If you specify a 1-by-D cell array, with each cell containing any value in the table, then
the software trains the classifier using the kernel smoother type in cell j for feature j in
X.
Example: 'KSType',{'epanechnikov','normal'}

Data Types: cell | char

'KSWidth' — Kernel smoothing window bandwidth
matrix of numeric values (default) | numeric column vector | numeric row vector |
scalar | structure array

Kernel smoothing window bandwidth, specified as the comma-separated pair consisting
of 'KSWidth' and a matrix of numeric values, numeric row vector, numeric column
vector, scalar, or structure array.

If you do not specify 'Distribution','kernel', then the software ignores the values
of 'KSSupport', 'KSType', and 'KSWidth'.

Suppose there are K class levels and D predictors. This table summarizes the available
options for setting the kernel smoothing window bandwidth.

Value Description

K-by-D matrix of numeric values Element (k,d) specifies the bandwidth for predictor
d in class k.

22 Functions — Alphabetical List

22-1860

Value Description

K-by-1 numeric column vector Element k specifies the bandwidth for all predictors
in class k.

1-by-D numeric row vector Element d specifies the bandwidth in all class
levels for predictor d.

scalar Specifies the bandwidth for all features in all
classes.

structure array A structure array S containing class levels and
their bandwidths. S must have two fields:

• S.width: A numeric row vector of bandwidths,
or a matrix of numeric values with D columns.

• S.group: A vector of the same type as Y,
containing unique class levels indicating the
class for the corresponding element of S.width.

By default, the software selects a default bandwidth automatically for each combination
of feature and class by using a value that is optimal for a Gaussian distribution.
Example: 'KSWidth',struct('width',[0.5,0.25],'group',{{'b';'g'}})

Data Types: double | struct

'Prior' — Class prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Class prior probabilities, specified as the comma-separated pair consisting of 'Prior'
and a numeric vector, structure array, or string.

This table summarizes the available options for setting prior probabilities.

Value Description

'empirical' The software uses the class relative frequencies distribution for the
prior probabilities.

numeric vector A numeric vector of length K specifying the prior probabilities for
each class. The order of the elements of Prior should correspond to
the order of the class levels. For details on the order of the classes,
see “Algorithms” on page 22-1862.

The software normalizes prior probabilities to sum to 1.

 fitNaiveBayes

22-1861

Value Description

structure array A structure array S containing class levels and their prior
probabilities. S must have two fields:

• S.prob: A numeric vector of prior probabilities. The software
normalizes prior probabilities to sum to 1.

• S.group: A vector of the same type as Y containing unique
class levels indicating the class for the corresponding element of
S.prob. S.class must contain all the K levels in Y. It can also
contain classes that do not appear in Y. This can be useful if X is
a subset of a larger training set. The software ignores any classes
that appear in S.group but not in Y.

'uniform' The prior probabilities are equal for all classes.

Example: 'Prior',struct('prob',[1,2],'group',{{'b';'g'}})

Data Types: char | double | struct

Output Arguments

NBModel — Trained naive Bayes classifier
NaiveBayes classifier

Trained naive Bayes classifier, returned as a NaiveBayes classifier.

More About

Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of
occurrences of token j in this observation. The number of categories (bins) in this
multinomial model is the number of distinct tokens, that is, the number of predictors.

Tips

• For classifying count-based data, such as the bag-of-tokens model, use the
multinomial distribution (e.g., set 'Distribution','mn').

22 Functions — Alphabetical List

22-1862

• This list defines the order of the classes. It is useful when you specify prior
probabilities by setting 'Prior',prior, where prior is a numeric vector.

• If Y is a categorical array, then the order of the class levels matches the output of
categories(Y).

• If Y is a numeric or logical vector, then the order of the class levels matches the
output of sort(unique(Y)).

• For cell arrays of string and character arrays, the order of the class labels is the
order which each label appears in Y.

Algorithms

• If you specify 'Distribution','mn', then the software considers each observation
as multiple trials of a multinomial distribution, and considers each occurrence of a
token as one trial (see “Bag-of-Tokens Model” on page 22-1861).

• If you specify 'Distribution','mvmn', then the software assumes each individual
predicator follows a multinomial model within a class. The parameters for a predictor
include the probabilities of all possible values that the corresponding feature can take.

• “Naive Bayes Classification” on page 15-31
• “Grouping Variables” on page 2-52

See Also
NaiveBayes | posterior | predict

 fitPosterior

22-1863

fitPosterior
Class: ClassificationSVM

Fit posterior probabilities

Syntax

ScoreSVMModel = fitPosterior(SVMModel)

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel)

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,Name,Value)

Description

ScoreSVMModel = fitPosterior(SVMModel) returns a trained support vector
machine (SVM) classifier ScoreSVMModel containing the optimal score-to-posterior-
probability transformation function for two-class learning.

The software fits the appropriate score-to-posterior-probability transformation function
using the SVM classifier SVMModel, and by conducting 10-fold cross validation using the
stored predictor data (SVMModel.X) and the class labels (SVMModel.Y) as outlined in [1].
The transformation function computes the posterior probability that an observation is
classified into the positive class (SVMModel.Classnames(2)).

• If the classes are inseparable, then the transformation function is the sigmoid
function.

• If the classes are perfectly separable, then the transformation function is the step
function.

• In two-class learning, if one of the two classes has a relative frequency of 0, then the
transformation function is the constant function. fitPosterior is not appropriate
for one-class learning.

• The software stores the optimal score transformation function in
ScoreSVMModel.ScoreTransform.

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel) additionally
returns the optimal score-to-posterior-probability transformation function parameters
(ScoreTransform).

22 Functions — Alphabetical List

22-1864

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,Name,Value)

returns the optimal score-to-posterior-probability transformation function and its
parameters with additional options specified by one or more Name,Value pair arguments.

Tips

Here is one way to predict positive class posterior probabilities.

1 Train an SVM classifier by passing the data to fitcsvm. The result is a trained
SVM classifier, such as, SVMModel, that stores the data. The software sets the score
transformation function property (SVMModel.ScoreTransformation) to none.

2 Pass the trained SVM classifier SVMModel to fitSVMPosterior or fitPosterior.
The result, for example, ScoreSVMModel, is the same, trained SVM classifier as
SVMModel, except the software sets ScoreSVMModel.ScoreTransformation to
the optimal score transformation function.

If you skip step 2, then predict returns the positive class score rather than the
positive class posterior probability.

3 Pass the trained SVM classifier containing the optimal score transformation function
(ScoreSVMModel) and predictor data matrix to predict. The second column
of the second output argument stores the positive class posterior probabilities
corresponding to each row of the predictor data matrix.

Input Arguments

SVMModel — Trained SVM classifier
ClassificationSVM classifier

Trained SVM classifier, specified as a ClassificationSVM.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 fitPosterior

22-1865

'CVPartition' — Cross-validation partition
[] (default) | cvpartition partition

Cross-validation partition used to compute the transformation function, specified
as the comma-separated pair consisting of 'CVPartition' and a cvpartition
partition as created by cvpartition. You can use only one of these four options at
a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

crossval splits the data into subsets using cvpartition.

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data for holdout validation used to compute the transformation function,
specified as the comma-separated pair consisting of 'Holdout' and a scalar value in
the range (0,1). Holdout validation tests the specified fraction of the data, and uses the
remaining data for training.

You can use only one of these four options at a time for creating a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use when computing the transformation function, specified as the
comma-separated pair consisting of 'KFold' and a positive integer value.

You can use only one of these four options at a time for creating a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag indicating whether to use leave-one-out cross
validation to compute the transformation function, specified as the comma-separated

22 Functions — Alphabetical List

22-1866

pair consisting of 'Leaveout' and 'on' or 'off'. Use leave-one-out cross validation by
using 'on'.

You can use only one of these four options at a time for creating a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Leaveout','on'

Output Arguments

ScoreSVMModel — Trained SVM classifier
ClassificationSVM classifier

Trained SVM classifier containing the estimated score-to-posterior-probability
transformation function, returned as a ClassificationSVM classifier.

To estimate posterior probabilities for the training set observations, pass
ScoreSVMModel to resubPredict.

To estimate posterior probabilities for new observations, then pass them and
ScoreSVMModel to predict. If you set 'Standardize',true in fitcsvm to train
SVMModel, then predict standardizes the columns of X using the corresponding means
in SVMModel.Mu and standard deviations in SVMModel.Sigma.

ScoreTransform — Optimal score transformation function parameters
structure array

Optimal score-to-posterior-probability transformation function parameters, returned as a
structure array.

• If field Type is sigmoid, then ScoreTransform has the following other fields:

• Slope: The value of A in the sigmoid function
• Intercept: The value of B in the sigmoid function

• If field Type is step, then ScoreTransform has the following other fields:

• PositiveClassProbability: The value of π in the step function. It represents
the probability that an observation is in the positive class. Also, the posterior
probability that an observation is in the positive class given that its score is in the
interval (LowerBound,UpperBound).

 fitPosterior

22-1867

• LowerBound: The value max
y

n

n

s
=-1

 in the step function. It represents the

lower bound of the score interval that assigns observations with scores
in the interval the posterior probability of being in the positive class
PositiveClassProbability. Any observation with a score less than
LowerBound has the posterior probability of being the positive class 0.

• UpperBound: The value min
y

n

n

s
=+1

 in the step function. It represents the

upper bound of the score interval that assigns observations with scores
in the interval the posterior probability of being in the positive class
PositiveClassProbability. Any observation with a score greater than
UpperBound has the posterior probability of being the positive class 1.

• If field Type is constant, then ScoreTransform.PredictedClass contains the
name of the class prediction.

This result is the same as SVMModel.ClassNames. The posterior probability of an
observation being in ScoreTransform.PredictedClass is always 1.

Definitions

Sigmoid Function

The sigmoid function that maps score sj corresponding to observation j to the positive
class posterior probability is

P s
As B

j
j

()
exp()

.=

+ +

1

1

If the output argument ScoreTransform.Type is sigmoid, then parameters A and B
correspond to the fields Scale and Intercept of ScoreTransform, respectively.

Step Function

The step function that maps score sj corresponding to observation j to the positive class
posterior probability is

22 Functions — Alphabetical List

22-1868

P s

s s

s s s

s

j j

j

y
k

y
k

y
k

y

k

k k

k

() =

<

>

£ £

=-

=- =+

=+

0

1

1

1 1

; max

max min

min

;

;

p

11
sk

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

,

where:

• sj the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

If the output argument ScoreTransform.Type is step, then the quantities max
y

k
k

s
=-1

and min
y

k
k

s
=+1

correspond to the fields LowerBound and UpperBound of ScoreTransform,

respectively.

Constant Function

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

If all observations have posterior probability 1, then they are expected to come from the
positive class.

If all observations have posterior probability 0, then they are not expected to come from
the positive class.

Examples

Estimate In-Sample Posterior Probabilities of SVM Classifiers

Load the ionosphere data set.

load ionosphere

 fitPosterior

22-1869

Train an SVM classifier. It is good practice to specify the class order and standardize the
data.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier. The positive class is 'g'.

Fit the optimal score-to-posterior-probability transformation function.

rng(1); % For reproducibility

ScoreSVMModel = fitPosterior(SVMModel)

ScoreSVMModel =

 ClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: '@(S)sigmoid(S,-9.481802e-01,-1.218745e-01)'

 NumObservations: 351

 Alpha: [90x1 double]

 Bias: -0.1343

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 BoxConstraints: [351x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [351x1 logical]

 Solver: 'SMO'

Since the classes are inseparable, the score transformation function
(ScoreSVMModel.ScoreTransform) is the sigmoid function.

Estimate scores and positive class posterior probabilities for the training data. Display
the results for the first 10 observations.

[label,scores] = resubPredict(SVMModel);

[~,postProbs] = resubPredict(ScoreSVMModel);

table(Y(1:10),label(1:10),scores(1:10,2),postProbs(1:10,2),'VariableNames',...

 {'TrueLabel','PredictedLabel','Score','PosteriorProbability'})

22 Functions — Alphabetical List

22-1870

ans =

 TrueLabel PredictedLabel Score PosteriorProbability

 _________ ______________ _______ ____________________

 'g' 'g' 1.4861 0.82215

 'b' 'b' -1.0004 0.30436

 'g' 'g' 1.8685 0.86916

 'b' 'b' -2.6458 0.084183

 'g' 'g' 1.2805 0.79184

 'b' 'b' -1.4617 0.22028

 'g' 'g' 2.1672 0.89814

 'b' 'b' -5.7085 0.0050122

 'g' 'g' 2.4797 0.92223

 'b' 'b' -2.7811 0.074805

Plot Posterior Probability Contours for Multiple Classes Using SVM

This example steps through the process of one-versus-all (OVA) classification to train
a multiclass SVM classifier, and then plots probability contours for each class. To
implement OVA directly, see fitcecoc.

Load Fisher's iris data set. Use the petal lengths and widths.

load fisheriris

X = meas(:,3:4);

Y = species;

Examine a scatter plot of the data.

figure

gscatter(X(:,1),X(:,2),Y);

title('{\bf Scatter Diagram of Iris Measurements}');

xlabel('Petal length');

ylabel('Petal width');

legend('Location','Northwest');

axis tight

 fitPosterior

22-1871

Train three binary SVM classifiers that separate each type of iris from the others.
Assume that a radial basis function is an appropriate kernel for each, and allow the
algorithm to choose a kernel scale. It is good practice to define the class order and
standardize the predictors.

classNames = {'setosa'; 'virginica'; 'versicolor'};

numClasses = size(classNames,1);

inds = cell(3,1); % Preallocation

SVMModel = cell(3,1);

rng(1); % For reproducibility

for j = 1:numClasses

 inds{j} = strcmp(Y,classNames{j}); % OVA classification

 SVMModel{j} = fitcsvm(X,inds{j},'ClassNames',[false true],...

22 Functions — Alphabetical List

22-1872

 'Standardize',true,'KernelFunction','rbf','KernelScale','auto');

end

fitcsvm uses a heuristic procedure that involves subsampling to compute the value of
the kernel scale.

Fit the optimal score-to-posterior-probability transformation function for each classifier.

for j = 1:numClasses

 SVMModel{j} = fitPosterior(SVMModel{j});

end

Warning: Classes are perfectly separated. The optimal score-to-posterior

transformation is a step function.

Define a grid to plot the posterior probability contours. Estimate the posterior
probabilities over the grid for each classifier.

d = 0.02;

[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...

 min(X(:,2)):d:max(X(:,2)));

xGrid = [x1Grid(:),x2Grid(:)];

posterior = cell(3,1);

for j = 1:numClasses

 [~,posterior{j}] = predict(SVMModel{j},xGrid);

end

For each SVM classifier, plot the posterior probability contour under the scatter plot of
the data.

figure

h = zeros(numClasses + 1,1); % Preallocation for graphics handles

for j = 1:numClasses

subplot(2,2,j)

contourf(x1Grid,x2Grid,reshape(posterior{j}(:,2),size(x1Grid,1),size(x1Grid,2)));

hold on

h(1:numClasses) = gscatter(X(:,1),X(:,2),Y);

title(sprintf('Posteriors for %s Class',classNames{j}));

xlabel('Petal length');

ylabel('Petal width');

legend off

axis tight

hold off

end

h(numClasses + 1) = colorbar('Location','EastOutside',...

 fitPosterior

22-1873

 'Position',[[0.8,0.1,0.05,0.4]]);

set(get(h(numClasses + 1),'YLabel'),'String','Posterior','FontSize',16);

legend(h(1:numClasses),'Location',[0.6,0.2,0.1,0.1]);

Fit Optimal Posterior Probability Function Using Holdout Cross Validation

Platt (2000) outlines a bias-reducing method of estimating the score-to-posterior-
probability transformation function. This method estimates the transformation function
after the SVM classifer is trained, and uses cross validation to reduce bias. By default,
fitPosterior and fitSVMPosterior use 10-fold cross validation when they estimate
the transformation function. To reduce run time for larger data sets, you can specify to
use holdout cross validation instead.

Load the ionosphere data set.

22 Functions — Alphabetical List

22-1874

load ionosphere

Train an SVM classifier. It is good practice to specify the class order and standardize the
data.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier. The positive class is 'g'.

Fit the optimal score-to-posterior-probability transformation function. For comparison,
use 10-fold cross validation (default) and specify a 10% holdout test sample.

rng(1); % For reproducibility

tic; % Start the stopwatch

SVMModel_10FCV = fitPosterior(SVMModel);

toc % Stop the stopwatch and display the run time

tic;

SVMModel_HO = fitPosterior(SVMModel,'Holdout',0.10);

toc

Elapsed time is 0.878663 seconds.

Elapsed time is 0.166979 seconds.

Though both runtimes are short because the data set is relatively small, SVMModel_HO
fitted the score tansformation function much faster than SVMModel_10FCV.

Algorithms
If you reestimate the score-to-posterior-probability transformation function, that
is, if you pass an SVM classifier to fitPosterior or fitSVMPosterior and its
ScoreTransform property is not none, then the software:

• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

Alternatives
You can also fit the posterior probability function using fitSVMPosterior. This
function is similar to fitPosterior, except it is more broad since it accepts a wider
range of SVM classifer types.

 fitPosterior

22-1875

References

[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods”. In: Advances in Large Margin Classifiers.
Cambridge, MA: The MIT Press, 2000, pp. 61–74.

See Also
ClassificationSVM | fitcsvm | fitSVMPosterior | predict

22 Functions — Alphabetical List

22-1876

fitPosterior

Class: CompactClassificationSVM

Fit posterior probabilities

Syntax

ScoreSVMModel = fitPosterior(SVMModel,X,Y)

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,X,Y)

Description

ScoreSVMModel = fitPosterior(SVMModel,X,Y) returns a trained support vector
machine (SVM) classifier ScoreSVMModel containing the optimal score-to-posterior-
probability transformation function for two-class learning.

The software fits the appropriate score-to-posterior-probability transformation function
using the SVM classifier SVMModel, and by conducting 10-fold cross validation using the
stored predictor data (SVMModel.X) and the class labels (SVMModel.Y) as outlined in [1].
The transformation function computes the posterior probability that an observation is
classified into the positive class (SVMModel.Classnames(2)).

• If the classes are inseparable, then the transformation function is the sigmoid
function.

• If the classes are perfectly separable, the transformation function is the step function.
• In two-class learning, if one of the two classes has a relative frequency of 0, then the

transformation function is the constant function. fitPosterior is not appropriate
for one-class learning.

• The software stores the optimal score-to-posterior-probability transformation function
in ScoreSVMModel.ScoreTransform.

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,X,Y) additionally
returns the optimal score-to-posterior-probability transformation function parameters
(ScoreTransform)

 fitPosterior

22-1877

Tips

Here is one way to predict positive class posterior probabilities.

1 Train an SVM classifier by passing the data to fitcsvm. The result is a trained
SVM classifier, such as, SVMModel, that stores the data. The software sets the score
transformation function property (SVMModel.ScoreTransformation) to none.

2 Pass the trained SVM classifier SVMModel to fitSVMPosterior or fitPosterior.
The result, for example, ScoreSVMModel, is the same, trained SVM classifier as
SVMModel, except the software sets ScoreSVMModel.ScoreTransformation to
the optimal score transformation function.

If you skip step 2, then predict returns the positive class score rather than the
positive class posterior probability.

3 Pass the trained SVM classifier containing the optimal score transformation function
(ScoreSVMModel) and predictor data matrix to predict. The second column
of the second output argument stores the positive class posterior probabilities
corresponding to each row of the predictor data matrix.

Input Arguments

SVMModel — Trained, compact SVM classifier
CompactClassificationSVM classifier

Trained, compact SVM classifier, specified as a CompactClassificationSVM.

X — Predictor data
matrix

Predictor data used to estimate the score-to-posterior-probability transformation
function, specified as a matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software
standardizes the columns of X using the corresponding means in SVMModel.Mu and

22 Functions — Alphabetical List

22-1878

standard deviations in SVMModel.Sigma. If the software fits the transformation-function
parameter estimates using standardized data, then the estimates might differ from
estimation without standardized data.
Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels used to estimate the score-to-posterior-probability transformation function,
specified as a categorical or character array, logical or numeric vector, or cell array of
strings.

If Y is a character array, then each element must correspond to one class label.

The length of Y and the number of rows of X must be equal.

Output Arguments

ScoreSVMModel — Trained, compact SVM classifier
CompactClassificationSVM classifier

Trained, compact SVM classifier containing the estimated score-to-posterior-probability
transformation function, returned as a CompactClassificationSVM classifier.

To estimate posterior probabilities, pass ScoreSVMModel and predictor data to predict.
If you set 'Standardize',true in fitcsvm to train SVMModel, then predict
standardizes the columns of X using the corresponding means in SVMModel.Mu and
standard deviations in SVMModel.Sigma.

ScoreTransform — Optimal score transformation function parameters
structure array

Optimal score-to-posterior-probability transformation function parameters, returned as a
structure array.

• If field Type is sigmoid, then ScoreTransform has the following other fields:

• Slope: The value of A in the sigmoid function
• Intercept: The value of B in the sigmoid function

 fitPosterior

22-1879

• If field Type is step, then ScoreTransform has the following other fields:

• PositiveClassProbability: The value of π in the step function. It represents
the probability that an observation is in the positive class. Also, the posterior
probability that an observation is in the positive class given that its score is in the
interval (LowerBound,UpperBound).

• LowerBound: The value max
y

n

n

s
=-1

 in the step function. It represents the

lower bound of the score interval that assigns observations with scores
in the interval the posterior probability of being in the positive class
PositiveClassProbability. Any observation with a score less than
LowerBound has the posterior probability of being the positive class 0.

• UpperBound: The value min
y

n

n

s
=+1

 in the step function. It represents the

upper bound of the score interval that assigns observations with scores
in the interval the posterior probability of being in the positive class
PositiveClassProbability. Any observation with a score greater than
UpperBound has the posterior probability of being the positive class 1.

• If field Type is constant, then ScoreTransform.PredictedClass contains the
name of the class prediction.

This result is the same as SVMModel.ClassNames. The posterior probability of an
observation being in ScoreTransform.PredictedClass is always 1.

Definitions

Sigmoid Function

The sigmoid function that maps score sj corresponding to observation j to the positive
class posterior probability is

P s
As B

j
j

()
exp()

.=

+ +

1

1

If the output argument ScoreTransform.Type is sigmoid, then parameters A and B
correspond to the fields Scale and Intercept of ScoreTransform, respectively.

22 Functions — Alphabetical List

22-1880

Step Function

The step function that maps score sj corresponding to observation j to the positive class
posterior probability is

P s

s s

s s s

s

j j

j

y
k

y
k

y
k

y

k

k k

k

() =

<

>

£ £

=-

=- =+

=+

0

1

1

1 1

; max

max min

min

;

;

p

11
sk

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

,

where:

• sj the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

If the output argument ScoreTransform.Type is step, then the quantities max
y

k
k

s
=-1

and min
y

k
k

s
=+1

correspond to the fields LowerBound and UpperBound of ScoreTransform,

respectively.

Constant Function

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

If all observations have posterior probability 1, then they are expected to come from the
positive class.

If all observations have posterior probability 0, then they are not expected to come from
the positive class.

Examples
Estimate Posterior Probabilities for New Data When Classes Are Inseparable

Load the ionosphere data set. Reserve 20 random observations of the data, and
consider this set new data.

 fitPosterior

22-1881

load ionosphere

n = size(X,1);

rng(1); % For reproducibility

indx = ~ismember([1:n],randsample(n,20)); % Indices for the training data

The classes of this data set are inseparable.

Train an SVM classifier using the training data. It is good practice to specify the class
order and standardize the data.

SVMModel = fitcsvm(X(indx,:),Y(indx),'ClassNames',{'b','g'},...

 'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Use the new data set to estimate the optimal score-to-posterior-probability
transformation function for mapping scores to the posterior probability of an observation
being classified as g. For efficiency, make a compact version of the SVM classifier
SVMModel, and pass it and the new data to fitPosterior.

CompactSVMModel = compact(SVMModel);

[ScoreCSVMModel,ScoreParameters] = fitPosterior(CompactSVMModel,...

 X(~indx,:),Y(~indx));

ScoreTransform = ScoreCSVMModel.ScoreTransform

ScoreParameters

ScoreTransform =

@(S)sigmoid(S,-1.098922e+00,4.519963e-01)

ScoreParameters =

 Type: 'sigmoid'

 Slope: -1.0989

 Intercept: 0.4520

ScoreTransform is the optimal score transform function. ScoreParameters is a
structure array having three fields: the score transformation function name (Type), the
sigmoid slope (Slope) and sigmoid intercept (Intercept) estimates.

22 Functions — Alphabetical List

22-1882

Alternatively, you can pass SVMModel and the new data to fitSVMPosterior, but this
does not have the benefit of efficiency.

Estimate the posterior probabilities that the observations in the new data are in class g.

[labels,postProbs] = predict(ScoreCSVMModel,X(~indx,:));

table(Y(~indx),labels,postProbs(:,2),...

 'VariableNames',{'TrueLabel','PredictedLabel','PosteriorProbability'})

ans =

 TrueLabel PredictedLabel PosteriorProbability

 _________ ______________ ____________________

 'g' 'g' 0.78437

 'b' 'b' 0.024588

 'g' 'g' 0.82399

 'b' 'b' 0.0061637

 'b' 'b' 3.6118e-06

 'b' 'b' 0.15688

 'b' 'g' 0.9622

 'b' 'b' 6.1348e-09

 'b' 'b' 0.0019646

 'g' 'g' 0.7251

 'g' 'g' 0.70263

 'b' 'b' 0.075298

 'g' 'g' 0.90691

 'g' 'g' 0.82849

 'b' 'b' 0.051193

 'g' 'g' 0.95331

 'b' 'b' 0.0031877

 'b' 'b' 0.16015

 'g' 'g' 0.92008

 'g' 'g' 0.91349

Estimate Posterior Probabilities for New Data When Classes Are Separable

Load Fisher's iris data set. Use the petal lengths and widths, and remove the virginica
species from the data. Reserve 10 random observations of the data, and consider this set
new data.

load fisheriris

 fitPosterior

22-1883

classKeep = ~strcmp(species,'virginica');

X = meas(classKeep,3:4);

Y = species(classKeep);

rng(1); % For reproducibility

indx1 = 1:numel(species);

indx2 = indx1(classKeep);

indx = ~ismember(indx2,randsample(indx2,10)); % Indices for the training data

gscatter(X(indx,1),X(indx,2),Y(indx));

title('Scatter Diagram of Iris Measurements')

xlabel('Petal length')

ylabel('Petal width')

legend('Setosa','Versicolor')

22 Functions — Alphabetical List

22-1884

The classes are perfectly separable. Therefore, the score-to-posterior-probability
transformation function is a step function.

Train an SVM classifier. It is good practice to specify the class order and standardize the
data.

SVMModel = fitcsvm(X(indx,:),Y(indx),...

 'ClassNames',{'setosa','versicolor'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Use the new data set to estimate the optimal score-to-posterior-probability
transformation function for mapping scores to the posterior probability of an observation
being classified as versicolor. For efficiency, make a compact version of the SVM
classifier SVMModel, and pass it and the new data to fitPosterior.

CompactSVMModel = compact(SVMModel);

[ScoreCSVMModel,ScoreParameters] = fitPosterior(CompactSVMModel,...

 X(~indx,:),Y(~indx));

ScoreTransform = ScoreCSVMModel.ScoreTransform

Warning: Classes are perfectly separated. The optimal score-to-posterior

transformation is a step function.

ScoreTransform =

@(S)step(S,-1.338450e+00,2.012495e+00,5.333333e-01)

fitPosterior displays a warning whenever the classes are separable, and stores the
step function in ScoreSVMModel.ScoreTransform.

Display the score function type and its estimated values.

ScoreParameters

ScoreParameters =

 Type: 'step'

 LowerBound: -1.3385

 UpperBound: 2.0125

 fitPosterior

22-1885

 PositiveClassProbability: 0.5333

ScoreParameters is a structure array having four fields:

• The score transformation function type (Type)
• The score corresponding to negative class boundary (LowerBound)
• The score corresponding to positive class boundary (UpperBound)
• The positive class probability (PositiveClassProbability)

Alternatively, you can pass SVMModel and the new data to fitSVMPosterior, but this
does not have the benefit of efficiency.

Estimate the posterior probabilities that the observations in the new data are versicolor
irises.

[labels,postProbs] = predict(ScoreCSVMModel,X(~indx,:));

table(Y(~indx),labels,postProbs(:,2),...

 'VariableNames',{'TrueLabel','PredictedLabel','PosteriorProbability'})

ans =

 TrueLabel PredictedLabel PosteriorProbability

 ____________ ______________ ____________________

 'setosa' 'setosa' 0

 'setosa' 'setosa' 0

 'setosa' 'setosa' 0

 'setosa' 'setosa' 0

 'setosa' 'setosa' 0

 'setosa' 'setosa' 0

 'setosa' 'setosa' 0

 'setosa' 'setosa' 0

 'versicolor' 'versicolor' 1

 'versicolor' 'versicolor' 1

Since the classes are separable, the step function transforms the positive-class score to:

• 0, if the score is less than ScoreParameters.LowerBound
• 1, if the score is greater than ScoreParameters.UpperBound

22 Functions — Alphabetical List

22-1886

• ScoreParameters.PositiveClassProbability, if the score is in the interval [
ScoreParameters.LowerBound , ScoreParameters.LowerBound]

Algorithms

If you reestimate the score-to-posterior-probability transformation function, that
is, if you pass an SVM classifier to fitPosterior or fitSVMPosterior and its
ScoreTransform property is not none, then the software:

• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

Alternatives

You can also estimate the optimal score-to-posterior-probability function using
fitSVMPosterior. This function is similar to fitPosterior, except it is more broad
since it accepts a wider range of SVM classifer types.

References

[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods”. In: Advances in Large Margin Classifiers.
Cambridge, MA: The MIT Press, 2000, pp. 61–74.

See Also
CompactClassificationSVM | fitcsvm | fitSVMPosterior | predict

 fitrtree

22-1887

fitrtree

Binary decision tree for regression

Syntax

tree = fitrtree(x,y)

tree = fitrtree(x,y,Name,Value)

Description

tree = fitrtree(x,y) returns a regression tree based on the input variables (also
known as predictors, features, or attributes) x and output (response) y. The returned tree
is a binary tree where each branching node is split based on the values of a column of x.

tree = fitrtree(x,y,Name,Value) fits a tree with additional options specified by
one or more name-value pair arguments. For example, you can grow a cross-validated
tree, hold out a fraction of data for validation, or specify observation weights.

Examples

Construct a Regression Tree

Load the sample data.

load carsmall;

Construct a regression tree using the sample data.

tree = fitrtree([Weight, Cylinders],MPG,...

 'categoricalpredictors',2,'MinParentSize',20,...

 'PredictorNames',{'W','C'})

tree =

22 Functions — Alphabetical List

22-1888

 RegressionTree

 PredictorNames: {'W' 'C'}

 ResponseName: 'Y'

 ResponseTransform: 'none'

 CategoricalPredictors: 2

 NumObservations: 94

Predict the mileage of 4,000-pound cars with 4, 6, and 8 cylinders.

mileage4K = predict(tree,[4000 4; 4000 6; 4000 8])

mileage4K =

 19.2778

 19.2778

 14.3889

Control Regression Tree Depth

You can control the depth of trees using the MaxNumSplits, MinLeafSize, or
MinParentSize name-value pair parameters. fitrtree grows deep decision trees by
default. You can grow shallower trees to reduce model complexity or computation time.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

The default values of the tree-depth controllers for growing regression trees are:

• n - 1 for MaxNumSplits. n is the training sample size.
• 1 for MinLeafSize.
• 10 for MinParentSize.

These default values tend to grow deep trees for large training sample sizes.

Train a regression tree using the default values for tree-depth control. Cross validate the
model using 10-fold cross validation.

 fitrtree

22-1889

rng(1); % For reproducibility

MdlDefault = fitrtree(X,MPG,'CrossVal','on');

Draw a histogram of the number of imposed on the trees. The number of imposed splits is
one less than the number of leaves. Also, view one of the trees.

numBranches = @(x)sum(x.IsBranch);

mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);

figure;

histogram(mdlDefaultNumSplits)

view(MdlDefault.Trained{1},'Mode','graph')

22 Functions — Alphabetical List

22-1890

The average number of splits is between 14 and 15.

Suppose that you want a regression tree that is not as complex (deep) as the ones trained
using the default number of splits. Train another regression tree, but set the maximum
number of splits at 7, which is about half the mean number of splits from the default
regression tree. Cross validate the model using 10-fold cross validation.

Mdl7 = fitrtree(X,MPG,'MaxNumSplits',7,'CrossVal','on');

view(Mdl7.Trained{1},'Mode','graph')

 fitrtree

22-1891

Compare the cross validation MSEs of the models.

mseDefault = kfoldLoss(MdlDefault)

mse7 = kfoldLoss(Mdl7)

mseDefault =

 27.7277

22 Functions — Alphabetical List

22-1892

mse7 =

 28.3833

Mdl7 is much less complex and performs only slightly worse than MdlDefault.

Input Arguments

x — Predictor values
matrix of scalar values

Predictor values, specified as a matrix of scalar values. Each column of x represents one
variable, and each row represents one observation.

fitrtree considers NaN values in x as missing values. fitrtree does not use
observations with all missing values for x in the fit. fitrtree uses observations with
some missing values for x to find splits on variables for which these observations have
valid values.
Data Types: single | double

y — Response values
vector of scalar values

Response values, specified as a vector of scalar values with the same number of rows as
x. Each entry in y is the response to the data in the corresponding row of x.

fitrtree considers NaN values in y to be missing values. fitrtree does not use
observations with missing values for y in the fit.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'CrossVal','on','MinParentSize',30 specifies a cross-validated
regression tree with a minimum of 30 observations per branch node.

 fitrtree

22-1893

'CategoricalPredictors' — Categorical predictors list
numeric or logical vector | cell array of strings | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

• A numeric vector with indices from 1 through p, where p is the number of columns of
x.

• A logical vector of length p, where a true entry means that the corresponding column
of x is a categorical variable.

• A cell array of strings, where each element in the array is the name of a predictor
variable. The names must match entries in the PredictorNames property.

• A character matrix, where each row of the matrix is a name of a predictor variable.
Pad the names with extra blanks so each row of the character matrix has the same
length.

• 'all', meaning all predictors are categorical.

Data Types: single | double | logical | char | cell

'CrossVal' — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal'
and either 'on' or 'off'.

If 'on', fitrtree grows a cross-validated decision tree with 10 folds. You can override
this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' name-value pair arguments. You can only use one of these arguments
at a time when creating a cross-validated tree.

Alternatively, cross validate tree later using the crossval method.

Example: 'CrossVal','on'

'CVPartition' — Partition for cross-validated tree
cvpartition object

Partition for cross-validated tree, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition.

If you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or
'Leaveout' name-value pair arguments.

22 Functions — Alphabetical List

22-1894

'Holdout' — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the rest of the data for training.

If you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or
'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or
'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting
of 'Leaveout' and either 'on' or 'off. Specify 'on' to use leave-one-out cross
validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or
'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'MaxNumSplits' — Maximal number of decision splits
size(X,1) - 1 (default) | positive integer

Maximal number of decision splits (or branch nodes), specified as the comma-
separated pair consisting of 'MaxNumSplits' and a positive integer. fitrtree splits

 fitrtree

22-1895

MaxNumSplits or fewer branch nodes. For more details on splitting behavior, see
Algorithms.
Example: 'MaxNumSplits',5

Data Types: single | double

'MergeLeaves' — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves'
and either 'on' or 'off'.

If MergeLeaves is 'on', then fitrtree merges leaves that originate from the same
parent node, and that give a sum of risk values greater or equal to the risk associated
with the parent node. Otherwise, fitrtree does not merge leaves.

Example: 'MergeLeaves','off'

'MinLeafSize' — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair
consisting of 'MinLeafSize' and a positive integer value. Each leaf has at least
MinLeafSize observations per tree leaf. If you supply both MinParentSize and
MinLeafSize, fitrtree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

Example: 'MinLeafSize',3

Data Types: single | double

'MinParentSize' — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair
consisting of 'MinParentSize' and a positive integer value. Each branch node in the
tree has at least MinParentSize observations. If you supply both MinParentSize and
MinLeafSize, fitrtree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

Example: 'MinParentSize',8

Data Types: single | double

22 Functions — Alphabetical List

22-1896

'NumVariablesToSample' — Number of predictors to select at random for each split
'all' (default) | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated
pair consisting of 'NumVariablesToSample' and a positive integer value. You can also
specify 'all' to use all available predictors.

Example: 'NumVariablesToSample',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.
Data Types: cell

'Prune' — Flag to estimate the optimal sequence of pruned subtrees
'on' (default) | 'off'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-
separated pair consisting of 'Prune' and either 'on' or 'off'.

If Prune is 'on', then fitrtree grows the regression tree and estimates the optimal
sequence of pruned subtrees, but does not prune the regression tree. Otherwise,
fitrtree grows the regression tree without estimating the optimal sequence of pruned
subtrees.

To prune a trained RegressionTree model, pass it to prune.

Example: 'Prune','off'

'PruneCriterion' — Pruning criterion
'mse'

Pruning criterion, specified as the comma-separated pair consisting of
'PruneCriterion' and 'mse'.

Example: 'PruneCriterion','mse'

'QuadraticErrorTolerance' — Quadratic error tolerance
1e-6 (default) | positive scalar value

 fitrtree

22-1897

Quadratic error tolerance per node, specified as the comma-separated pair consisting of
'QuadraticErrorTolerance' and a positive scalar value. Splitting nodes stops when
the quadratic error per node drops below QuadraticErrorTolerance*QED, where QED
is the quadratic error for all data computed before the decision tree is grown.
Example: 'QuadraticErrorTolerance',1e-4

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable in y.

Example: 'ResponseName','Response'

Data Types: char

'ResponseTransform' — Response transform function
'none' (default) | function handle

Response transform function for transforming the raw response values, specified as
the comma-separated pair consisting of 'ResponseTransform' and either a function
handle or 'none'. The function handle should accept a matrix of response values
and return a matrix of the same size. The default string 'none' means @(x)x, or no
transformation.

Add or change a ResponseTransform function using dot notation:

tree.ResponseTransform = @function

Data Types: function_handle

'SplitCriterion' — Split criterion
'MSE'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion'
and 'MSE', meaning mean squared error.

Example: 'SplitCriterion','MSE'

'Surrogate' — Surrogate decision splits flag
'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of
'Surrogate' and one of 'on', 'off', 'all', or a positive integer value.

22 Functions — Alphabetical List

22-1898

• When 'on', fitrtree finds at most 10 surrogate splits at each branch node.
• When set to a positive integer value, fitrtree finds at most the specified number of

surrogate splits at each branch node.
• When set to 'all', fitrtree finds all surrogate splits at each branch node. The

'all' setting can use considerable time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also lets you compute measures of predictive association between predictors.
Example: 'Surrogate','on'

Data Types: single | double

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in x.

Data Types: single | double

Output Arguments

tree — Regression tree
regression tree object

Regression tree, returned as a regression tree object. Note that using the 'Crossval',
'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a tree of class
RegressionPartitionedModel. You cannot use a partitioned tree for prediction, so
this kind of tree does not have a predict method.

Otherwise, tree is of class RegressionTree, and you can use the predict method to
make predictions.

More About

Tips

By default, Prune is 'on'. However, this specification does not prune the regression tree.
To prune a trained regression tree, pass the regression tree to prune.

 fitrtree

22-1899

Algorithms

• If MergeLeaves is 'on' and PruneCriterion is 'error' (which are the default values
for these name-value pair arguments), then the software applies pruning only to the
leaves and by using classification error. This specification amounts to merging leaves
that share the most popular class per leaf.

• To accommodate MaxNumSplits, fitrtree splits all nodes in the current
layer, and then counts the number of branch nodes. A layer is the set of nodes
that are equidistant from the root node. If the number of branch nodes exceeds
MaxNumSplits, fitrtree follows this procedure:

1 Determine how many branch nodes in the current layer must be unsplit so that
there are at most MaxNumSplits branch nodes.

2 Sort the branch nodes by their impurity gains.
3 Unsplit the number of least successful branches.
4 Return the decision tree grown so far.

This procedure produces maximally balanced trees.
• The software splits branch nodes layer by layer until at least one of these events

occurs:

• There are MaxNumSplits branch nodes.
• A proposed split causes the number of observations in at least one branch node to

be fewer than MinParentSize.
• A proposed split causes the number of observations in at least one leaf node to be

fewer than MinLeafSize.
• The algorithm cannot find a good split within a layer (i.e., the pruning criterion

(see PruneCriterion), does not improve for all proposed splits in a layer). A special
case is when all nodes are pure (i.e., all observations in the node have the same
class).

MaxNumSplits and MinLeafSize do not affect splitting at their default values.
Therefore, if you set 'MaxNumSplits', splitting might stop due to the value of
MinParentSize, before MaxNumSplits splits occur.

• For dual-core systems and above, fitrtree parallelizes training decision trees
using Intel Threading Building Blocks (TBB). For details on Intel TBB, see https://
software.intel.com/en-us/intel-tbb.

https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb

22 Functions — Alphabetical List

22-1900

• “Splitting Categorical Predictors” on page 16-65

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
predict | prune | RegressionPartitionedModel | RegressionTree

 fitSVMPosterior

22-1901

fitSVMPosterior

Fit posterior probabilities

Syntax

ScoreSVMModel = fitSVMPosterior(SVMModel)

ScoreSVMModel = fitSVMPosterior(SVMModel,Name,Value)

ScoreSVMModel = fitSVMPosterior(SVMModel,X,Y)

[ScoreSVMModel,ScoreTransform] = fitSVMPosterior(___)

Description

ScoreSVMModel = fitSVMPosterior(SVMModel) returns ScoreSVMModel, which
is a trained, support vector machine (SVM) classifier containing the optimal score-to-
posterior-probability transformation function for two-class learning.

The software fits the appropriate score-to-posterior-probability transformation function
using the SVM classifierSVMModel, and by cross validation using the stored predictor
data (SVMModel.X) and the class labels (SVMModel.Y). The transformation function
computes the posterior probability that an observation is classified into the positive class
(SVMModel.Classnames(2)).

• If the classes are inseparable, then the transformation function is the sigmoid
function.

• If the classes are perfectly separable, the transformation function is the step function.
• In two-class learning, if one of the two classes has a relative frequency of 0, then

the transformation function is the constant function. fitSVMPosterior is not
appropriate for one-class learning.

• If SVMModel is a ClassificationSVM classifier, then the software estimates
the optimal transformation function by 10-fold cross validation as outlined in [1].
Otherwise, SVMModel must be a ClassificationPartitionedModel classifier.
SVMModel specifies the cross-validation method.

• The software stores the optimal transformation function in
ScoreSVMModel.ScoreTransform.

22 Functions — Alphabetical List

22-1902

ScoreSVMModel = fitSVMPosterior(SVMModel,Name,Value) uses additional
options specified by one or more Name,Value pair arguments provided SVMModel is a
ClassificationSVM classifier.

For example, you can specify the number of folds to use in k-fold cross validation.

ScoreSVMModel = fitSVMPosterior(SVMModel,X,Y) returns a trained, support
vector classifier containing the transformation function from the trained, compact SVM
classifier SVMModel. The software estimates the score transformation function using
predictor data X and class labels Y.

[ScoreSVMModel,ScoreTransform] = fitSVMPosterior(___) additionally
returns the transformation function parameters (ScoreTransform) using any of the input
arguments in the previous syntaxes.

Examples

Fit the Score-to-Posterior Probability Function for Separable Classes

Load Fisher's iris data set. Train the classifier using the petal lengths and widths, and
remove the virginica species from the data.

load fisheriris

classKeep = ~strcmp(species,'virginica');

X = meas(classKeep,3:4);

y = species(classKeep);

gscatter(X(:,1),X(:,2),y);

title('Scatter Diagram of Iris Measurements')

xlabel('Petal length')

ylabel('Petal width')

legend('Setosa','Versicolor')

 fitSVMPosterior

22-1903

The classes are perfectly separable. Therefore, the score transformation function is a step
function.

Train an SVM classifier using the data. Cross validate the classifer using 10-fold cross
validation (the default).

rng(1);

CVSVMModel = fitcsvm(X,y,'CrossVal','on');

CVSVMModel is a trained ClassificationPartitionedModel SVM classifier.

Estimate the step function that transforms scores to posterior probabilities.

[ScoreCVSVMModel,ScoreParameters] = fitSVMPosterior(CVSVMModel);

22 Functions — Alphabetical List

22-1904

Warning: Classes are perfectly separated. The optimal score-to-posterior

transformation is a step function.

fitSVMPosterior does the following:

• Uses the data that the software stored in CVSVMModel to fit the transformation
function

• Warns whenever the classes are separable
• Stores the step function in ScoreCSVMModel.ScoreTransform

Display the score function type and its parameter values.

ScoreParameters

ScoreParameters =

 Type: 'step'

 LowerBound: -0.8431

 UpperBound: 0.6897

 PositiveClassProbability: 0.5000

ScoreParameters is a structure array with four fields:

• The score transformation function type (Type)
• The score corresponding to the negative class boundary (LowerBound)
• The score corresponding to the positive class boundary (UpperBound)
• The positive class probability (PositiveClassProbability)

Since the classes are separable, the step function transforms the score to either 0 or 1,
which is the posterior probability that an observation is a versicolor iris.

Fit the Score-to-Posterior Probability Function for Inseparable Classes

Load the ionosphere data set.

load ionosphere

The classes of this data set are not separable.

Train an SVM classifier. Cross validate using 10-fold cross validation (the default). It is
good practice to standardize the predictors and specify the class order.

 fitSVMPosterior

22-1905

rng(1) % For reproducibility

CVSVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true,...

 'CrossVal','on');

ScoreTransform = CVSVMModel.ScoreTransform

ScoreTransform =

none

CVSVMModel is a trained ClassificationPartitionedModel SVM classifier. The
positive class is 'g'. The ScoreTransform property is none.

Estimate the optimal score function for mapping observation scores to posterior
probabilities of an observation being classified as 'g'.

[ScoreCVSVMModel,ScoreParameters] = fitSVMPosterior(CVSVMModel);

ScoreTransform = ScoreCVSVMModel.ScoreTransform

ScoreParameters

ScoreTransform =

@(S)sigmoid(S,-9.481576e-01,-1.218300e-01)

ScoreParameters =

 Type: 'sigmoid'

 Slope: -0.9482

 Intercept: -0.1218

ScoreTransform is the optimal score transform function. ScoreParameters contains
the score transformation function, slope estimate, and the intercept estimate.

You can estimate test-sample, posterior probabilities by passing ScoreCVSVMModel to
kfoldPredict.

Estimate Posterior Probabilities for Test Samples

Estimate positive class posterior probabilities for the test set of an SVM algorithm.

22 Functions — Alphabetical List

22-1906

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Specify a 20% holdout sample. It is good practice to standardize
the predictors and specify the class order.

rng(1) % For reproducibility

CVSVMModel = fitcsvm(X,Y,'Holdout',0.2,'Standardize',true,...

 'ClassNames',{'b','g'});

CVSVMModel is a trained ClassificationPartitionedModel cross-validated
classifier.

Estimate the optimal score function for mapping observation scores to posterior
probabilities of an observation being classified as 'g'.

ScoreCVSVMModel = fitSVMPosterior(CVSVMModel);

ScoreSVMModel is a trained ClassificationPartitionedModel cross-validated
classifier containing the optimal score transformation function estimated from the
training data.

Estimate the out-of-sample positive class posterior probabilities. Display the results for
the first 10 out-of-sample observations.

[~,OOSPostProbs] = kfoldPredict(ScoreCVSVMModel);

indx = ~isnan(OOSPostProbs(:,2));

hoObs = find(indx); % Holdout observation numbers

OOSPostProbs = [hoObs, OOSPostProbs(indx,2)];

table(OOSPostProbs(1:10,1),OOSPostProbs(1:10,2),...

 'VariableNames',{'ObservationIndex','PosteriorProbability'})

ans =

 ObservationIndex PosteriorProbability

 ________________ ____________________

 6 0.17378

 7 0.89637

 8 0.0076609

 9 0.91602

 16 0.026718

 fitSVMPosterior

22-1907

 22 4.6081e-06

 23 0.9024

 24 2.4129e-06

 38 0.00042697

 41 0.86427

Input Arguments

SVMModel — Trained SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier |
ClassificationPartitionedModel classifier

Trained SVM classifier, specified as a ClassificationSVM,
CompactClassificationSVM, or ClassificationPartitionedModel classifier.

If SVMModel is a ClassificationSVM classifier, then you can set optional name-value
pair arguments.

If SVMModel is a CompactClassificationSVM classifier, then you must input predictor
data X and class labels Y.

X — Predictor data
matrix

Predictor data used to estimate the score-to-posterior-probability transformation
function, specified as a matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software
standardizes the columns of X using the corresponding means in SVMModel.Mu and
standard deviations in SVMModel.Sigma. If the software fits the transformation-function
parameter estimates using standardized data, then the estimates might differ from
estimation without standardized data.
Data Types: double | single

22 Functions — Alphabetical List

22-1908

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels used to estimate the score-to-posterior-probability transformation function,
specified as a categorical or character array, logical or numeric vector, or cell array of
strings.

If Y is a character array, then each element must correspond to one class label.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'KFold',8 performs 8-fold cross validation when SVMModel is a
ClassificationSVM classifier.

'CVPartition' — Cross-validation partition
[] (default) | cvpartition partition

Cross-validation partition used to compute the transformation function, specified
as the comma-separated pair consisting of 'CVPartition' and a cvpartition
partition as created by cvpartition. You can use only one of these four options at
a time for creating a cross-validated model: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

crossval splits the data into subsets using cvpartition.

'Holdout' — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data for holdout validation used to compute the transformation function,
specified as the comma-separated pair consisting of 'Holdout' and a scalar value in
the range (0,1). Holdout validation tests the specified fraction of the data, and uses the
remaining data for training.

 fitSVMPosterior

22-1909

You can use only one of these four options at a time for creating a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Holdout',0.1

Data Types: double | single

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use when computing the transformation function, specified as the
comma-separated pair consisting of 'KFold' and a positive integer value.

You can use only one of these four options at a time for creating a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag indicating whether to use leave-one-out cross
validation to compute the transformation function, specified as the comma-separated
pair consisting of 'Leaveout' and 'on' or 'off'. Use leave-one-out cross validation by
using 'on'.

You can use only one of these four options at a time for creating a cross-validated model:
'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Example: 'Leaveout','on'

Output Arguments

ScoreSVMModel — Trained SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier |
ClassificationPartitionedModel classifier

Trained SVM classifier containing the estimated score transformation function,
returned as a ClassificationSVM, CompactClassificationSVM, or
ClassificationPartitionedModel classifier.

22 Functions — Alphabetical List

22-1910

The ScoreSVMModel classifier type is the same as the SVMModel classifier type.

To estimate posterior probabilities, pass ScoreSVMModel and predictor data to predict.
If you set 'Standardize',true in fitcsvm to train SVMModel, then predict
standardizes the columns of X using the corresponding means in SVMModel.Mu and
standard deviations in SVMModel.Sigma.

ScoreTransform — Optimal score-to-posterior-probability transformation function
parameters
structure array

Optimal score-to-posterior-probability transformation function parameters, specified as a
structure array. If field Type is:

• sigmoid, then ScoreTransform has these fields:

• Slope — The value of A in the sigmoid function
• Intercept — The value of B in the sigmoid function

• step, then ScoreTransform has these fields:

• PositiveClassProbability: the value of π in the step function. π represents:

• The probability that an observation is in the positive class.
• The posterior probability that a score is in the interval

(LowerBound,UpperBound).
• LowerBound: the value max

y
n

n

s
=-1

 in the step function. It represents the lower bound

of the interval that assigns the posterior probability of being in the positive class
PositiveClassProbability to scores. Any observation with a score less than
LowerBound has posterior probability of being the positive class 0.

• UpperBound: the value min
y

n

n

s
=+1

 in the step function. It represents the upper

bound of the interval that assigns the posterior probability of being in the positive
class PositiveClassProbability. Any observation with a score greater than
UpperBound has posterior probability of being the positive class 1.

• constant, then ScoreTransform.PredictedClass contains the name of the class
prediction.

This result is the same as SVMModel.ClassNames. The posterior probability of an
observation being in ScoreTransform.PredictedClass is always 1.

 fitSVMPosterior

22-1911

More About

Sigmoid Function

The sigmoid function that maps score sj corresponding to observation j to the positive
class posterior probability is

P s
As B

j
j

()
exp()

.=

+ +

1

1

If the output argument ScoreTransform.Type is sigmoid, then parameters A and B
correspond to the fields Scale and Intercept of ScoreTransform, respectively.

Step Function

The step function that maps score sj corresponding to observation j to the positive class
posterior probability is

P s

s s

s s s

s

j j

j

y
k

y
k

y
k

y

k

k k

k

() =

<

>

£ £

=-

=- =+

=+

0

1

1

1 1

; max

max min

min

;

;

p

11
sk

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

,

where:

• sj the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

If the output argument ScoreTransform.Type is step, then the quantities max
y

k
k

s
=-1

and min
y

k
k

s
=+1

correspond to the fields LowerBound and UpperBound of ScoreTransform,

respectively.

Constant Function

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

22 Functions — Alphabetical List

22-1912

If all observations have posterior probability 1, then they are expected to come from the
positive class.

If all observations have posterior probability 0, then they are not expected to come from
the positive class.

Tips

Here is one way to predict positive class posterior probabilities.

1 Train an SVM classifier by passing the data to fitcsvm. The result is a trained
SVM classifier, such as, SVMModel, that stores the data. The software sets the score
transformation function property (SVMModel.ScoreTransformation) to none.

2 Pass the trained SVM classifier SVMModel to fitSVMPosterior or fitPosterior.
The result, for example, ScoreSVMModel, is the same, trained SVM classifier as
SVMModel, except the software sets ScoreSVMModel.ScoreTransformation to
the optimal score transformation function.

If you skip step 2, then predict returns the positive class score rather than the
positive class posterior probability.

3 Pass the trained SVM classifier containing the optimal score transformation function
(ScoreSVMModel) and predictor data matrix to predict. The second column
of the second output argument stores the positive class posterior probabilities
corresponding to each row of the predictor data matrix.

Algorithms

If you reestimate the score-to-posterior-probability transformation function, that
is, if you pass an SVM classifier to fitPosterior or fitSVMPosterior and its
ScoreTransform property is not none, then the software:

• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

References

[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods”. In: Advances in Large Margin Classifiers.
Cambridge, MA: The MIT Press, 2000, pp. 61–74.

 fitSVMPosterior

22-1913

See Also
ClassificationPartitionedModel | ClassificationSVM |
CompactClassificationSVM | fitcsvm | fitPosterior | fitPosterior |
kfoldPredict | predict

22 Functions — Alphabetical List

22-1914

fitted

Class: GeneralizedLinearMixedModel

Fitted responses from generalized linear mixed-effects model

Syntax

mufit = fitted(glme)

mufit = fitted(glme,Name,Value)

Description

mufit = fitted(glme) returns the fitted conditional response of the generalized
linear mixed-effects model glme.

mufit = fitted(glme,Name,Value) returns the fitted response with additional
options specified by one or more name-value pair arguments. For example, you can
specify to compute the marginal fitted response.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 fitted

22-1915

'Conditional' — Indicator for conditional response
true (default) | false

Indicator for conditional response, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

true Contributions from both fixed effects and
random effects (conditional)

false Contribution from only fixed effects
(marginal)

To obtain fitted marginal response values, fitted computes the conditional mean of the
response with the empirical Bayes predictor vector of random effects b set equal to 0. For
more information, see “Conditional and Marginal Response” on page 22-1915
Example: 'Conditional',false

Output Arguments

mufit — Fitted response values
n-by-1 vector

Fitted response values, returned as an n-by-1 vector, where n is the number of
observations.

Definitions

Conditional and Marginal Response

A conditional response includes contributions from both fixed- and random-effects
predictors. A marginal response includes contribution from only fixed effects.

Suppose the generalized linear mixed-effects model glme has an n-by-p fixed-effects
design matrix X and an n-by-q random-effects design matrix Z. Also, suppose the
estimated p-by-1 fixed-effects vector is b̂ , and the q-by-1 empirical Bayes predictor

vector of random effects is ˆb .

22 Functions — Alphabetical List

22-1916

The fitted conditional response corresponds to the 'Conditional',true name-value
pair argument, and is defined as

ˆ ˆ ,m hcond MEg= ()-1

where ĥME is the linear predictor including the fixed- and random-effects of the
generalized linear mixed-effects model

ˆ ˆ ˆ .h b dME X Zb= + +

The fitted marginal response corresponds to the 'Conditional',false name-value
pair argument, and is defined as

ˆ ˆ ,m hmar FEg= ()-1

whereĥ
FE is the linear predictor including only the fixed-effects portion of the

generalized linear mixed-effects model

ˆ ˆ .h b d
FE

X= +

Examples

Plot Observed Versus Fitted Values

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The

 fitted

22-1917

company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

22 Functions — Alphabetical List

22-1918

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Generate the fitted conditional mean values for the model.

mufit = fitted(glme);

Create a scatterplot of the observed values versus fitted values.

figure

scatter(mfr.defects,mufit)

title('Residuals versus Fitted Values')

xlabel('Fitted Values')

ylabel('Residuals')

 fitted

22-1919

See Also
GeneralizedLinearMixedModel | designMatrix | fitglme | residuals |
response

22 Functions — Alphabetical List

22-1920

fitted
Class: LinearMixedModel

Fitted responses from a linear mixed-effects model

Syntax

yfit = fitted(lme)

yfit = fitted(lme,Name,Value)

Description

yfit = fitted(lme) returns the fitted conditional response from the linear mixed-
effects model lme.

yfit = fitted(lme,Name,Value) returns the fitted response from the linear mixed-
effects model lme with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify if you want to compute the fitted marginal response.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 fitted

22-1921

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Conditional' — Indicator for conditional response
True (default) | False

Indicator for conditional response, specified as the comma-separated pair consisting of
'Conditional' and either of the following.

True Contribution from both fixed effects and
random effects (conditional)

False Contribution from only fixed effects
(marginal)

Example: 'Conditional,'False'

Output Arguments

yfit — Fitted response values
n-by-1 vector

Fitted response values, returned as an n-by-1 vector, where n is the number of
observations.

Examples

Compute Fitted Conditional and Marginal Responses

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated
influenza rates (in 9 different regions, estimated from Google searches, plus a nationwide
estimate from the Center for Disease Control and Prevention, CDC).

22 Functions — Alphabetical List

22-1922

To fit a linear-mixed effects model, your data must be in a properly formatted dataset
array. To fit a linear mixed-effects model with the influenza rates as the responses
and region as the predictor variable, combine the nine columns corresponding to the
regions into a tall array. The new dataset array, flu2, must have the response variable,
FluRate, the nominal variable, Region, that shows which region each estimate is from,
and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with fixed effects for region and a random intercept that
varies by Date.

Region is a categorical variable. You can specify the contrasts for categorical variables
using the DummyVarCoding name-value pair argument when fitting the model. When
you do not specify the contrasts, fitlme uses the 'reference' contrast by default.
Because the model has an intercept, fitlme takes the first region, NE, as the reference
and creates eight dummy variables representing the other eight regions. For example,
I[MidAtl] is the dummy variable representing the region MidAtl. For details, see
“Dummy Indicator Variables” on page 2-55.

The corresponding model is

y I MidAtl I ENCentral I WNCentral I SAtim i i i
= + [] + [] + [] +b b b b b0 1 2 3 4 ll

I ESCentral I WSCentral I Mtn I Pac

i

i i i i

[]

+ [] + [] + [] + [] +b b b b5 6 7 8 bb mm im0 1 2 52+ =e , , , ..., ,

where yim is the observation i for level m of grouping variable Date, βj, j = 0, 1, ..., 8,
are the fixed-effects coefficients, with β0 being the coefficient for region NE. b0m is the
random effect for level m of the grouping variable Date, and εim is the observation error
for observation i. The random effect has the prior distribution, b0m ~ N(0,σb

2) and the
error term has the distribution, εim ~ N(0,σ2).

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')

Linear mixed-effects model fit by ML

Model information:

 fitted

22-1923

 Number of observations 468

 Fixed effects coefficients 9

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 FluRate ~ 1 + Region + (1|Date)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 318.71 364.35 -148.36 296.71

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 1.2233 0.096678 12.654 459 1.085e-31 1.0334 1.4133

 'Region_MidAtl' 0.010192 0.052221 0.19518 459 0.84534 -0.092429 0.11281

 'Region_ENCentral' 0.051923 0.052221 0.9943 459 0.3206 -0.050698 0.15454

 'Region_WNCentral' 0.23687 0.052221 4.5359 459 7.3324e-06 0.13424 0.33949

 'Region_SAtl' 0.075481 0.052221 1.4454 459 0.14902 -0.02714 0.1781

 'Region_ESCentral' 0.33917 0.052221 6.495 459 2.1623e-10 0.23655 0.44179

 'Region_WSCentral' 0.069 0.052221 1.3213 459 0.18705 -0.033621 0.17162

 'Region_Mtn' 0.046673 0.052221 0.89377 459 0.37191 -0.055948 0.14929

 'Region_Pac' -0.16013 0.052221 -3.0665 459 0.0022936 -0.26276 -0.057514

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.6443 0.5297 0.78368

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.26627 0.24878 0.285

The p-values 7.3324e-06 and 2.1623e-10 respectively show that the fixed effects of the flu
rates in regions WNCentral and ESCentral are significantly different relative to the flu
rates in region NE.

The confidence limits for the standard deviation of the random-effects term, σ2
b, do not

include 0 (0.5297, 0.78368), which indicates that the random-effects term is significant.
You can also test the significance of the random-effects terms using the compare method.

The conditional fitted response from the model at a given observation includes
contributions from fixed and random effects. For example, the estimated best linear
unbiased predictor (BLUP) of the flu rate for region WNCentral in week 10/9/2005 is

22 Functions — Alphabetical List

22-1924

ˆ ˆ ˆ ˆ

.

, / / / /y I WNCentral bWNCentral10 9 2005 0 3 10 9 2005

1 22

= + []+

=

b b

333 0 23687 0 1718

1 28837

+ -

=

. .

. .

This is the fitted conditional response, since it includes contributions to the estimate
from both the fixed and random effects. You can compute this value as follows.

beta = fixedEffects(lme);

[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)

STATS.Level = nominal(STATS.Level);

y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')

y_hat =

 1.2884

In the previous calculation, beta(1) corresponds to the estimate for β0 and beta(4)
corresponds to the estimate for β3 You can simply display the fitted value using the
fitted method.

F = fitted(lme);

F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans =

 1.2884

The estimated marginal response for region WNCentral in week 10/9/2005 is

ˆ ˆ ˆ

.

, / /
()y I WNCentral
WNCentral10 9 2005 0 3

1 2233

marginal = + []
=

b b

++

=

0 23687

1 46017

.

. .

Compute the fitted marginal response.

F = fitted(lme,'Conditional',false);

F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

 fitted

22-1925

ans =

 1.4602

Plot Residuals vs. Fitted Values

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fitted values and raw residuals.

F = fitted(lme);

R = residuals(lme);

Plot the residuals versus the fitted values.

plot(F,R,'bx')

xlabel('Fitted Values')

ylabel('Residuals')

22 Functions — Alphabetical List

22-1926

Now, plot the residuals versus the fitted values, grouped by program.

figure();

gscatter(F,R,Program)

 fitted

22-1927

Definitions

Fitted Conditional and Marginal Response

A conditional response includes contributions from both fixed and random effects,
whereas a marginal response includes contribution from only fixed effects.

Suppose the linear mixed-effects model, lme, has an n-by-p fixed-effects design matrix
X and an n-by-q random-effects design matrix Z. Also, suppose the p-by-1 estimated

22 Functions — Alphabetical List

22-1928

fixed-effects vector is b̂ , and the q-by-1 estimated best linear unbiased predictor (BLUP)

vector of random effects is ˆb . The fitted conditional response is

ˆ ˆ ˆ,y X ZbCond = +b

and the fitted marginal response is

ˆ ˆ,y XMar = b

See Also
LinearMixedModel | residuals | response

 fixedEffects

22-1929

fixedEffects
Class: GeneralizedLinearMixedModel

Estimates of fixed effects and related statistics

Syntax

beta = fixedEffects(glme)

[beta,betanames] = fixedEffects(glme)

[beta,betanames,stats] = fixedEffects(glme)

[___] = fixedEffects(glme,Name,Value)

Description

beta = fixedEffects(glme) returns the estimated fixed-effects coefficients, beta, of
the generalized linear mixed-effects model glme.

[beta,betanames] = fixedEffects(glme) also returns the names of estimated
fixed-effects coefficients in betanames. Each name corresponds to a fixed-effects
coefficient in beta.

[beta,betanames,stats] = fixedEffects(glme) also returns a table of statistics,
stats, related to the estimated fixed-effects coefficients of glme.

[___] = fixedEffects(glme,Name,Value) returns any of the output arguments
in previous syntaxes using additional options specified by one or more Name,Value
pair arguments. For example, you can specify the confidence level, or the method for
computing the approximate degrees of freedom for the t-statistic.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

22 Functions — Alphabetical List

22-1930

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'DFMethod' — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated
pair consisting of 'DFMethod' and one of the following.

'residual' The degrees of freedom are assumed to
be constant and equal to n – p, where n is
the number of observations and p is the
number of fixed effects.

'none' All degrees of freedom are set to infinity.

Example: 'DFMethod','none'

Output Arguments

beta — Estimated fixed-effects coefficients
vector

Estimated fixed-effects coefficients of the fitted generalized linear mixed-effects model
glme, returned as a vector.

 fixedEffects

22-1931

betanames — Names of fixed-effects coefficients
table

Names of fixed-effects coefficients in beta, returned as a table.

stats — Fixed-effects estimates and related statistics
dataset array

Fixed-effects estimates and related statistics, returned as a dataset array that has one
row for each of the fixed effects and one column for each of the following statistics.

Name Name of the fixed-effects coefficient
Estimate Estimated coefficient value
SE Standard error of the estimate
tStat t-statistic for a test that the coefficient is 0
DF Estimated degrees of freedom for the t-

statistic
pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for

the fixed-effects coefficient
Upper Upper limit of a 95% confidence interval for

the fixed-effects coefficient

When fitting a model using fitglme and one of the maximum likelihood fit methods
('Laplace' or 'ApproximateLaplace'), if you specify the 'CovarianceMethod'
name-value pair argument as 'conditional', then SE does not account for the
uncertainty in estimating the covariance parameters. To account for this uncertainty,
specify 'CovarianceMethod' as 'JointHessian'.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods
('MPL' or 'REMPL'), fixedEffects bases the fixed effects estimates and related
statistics on the fitted linear mixed-effects model from the final pseudo likelihood
iteration.

Examples
Estimate Fixed-Effects Coefficients

Navigate to the folder containing the sample data. Load the sample data.

22 Functions — Alphabetical List

22-1932

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

 fixedEffects

22-1933

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compute and display the estimated fixed-effects coefficient values and related statistics.

[beta,betanames,stats] = fixedEffects(glme);

stats

stats =

 Fixed effect coefficients: DFMethod = 'residual', Alpha = 0.05

 Name Estimate SE tStat DF

 '(Intercept)' 1.4689 0.15988 9.1875 94

 'newprocess' -0.36766 0.17755 -2.0708 94

 'time_dev' -0.094521 0.82849 -0.11409 94

 'temp_dev' -0.28317 0.9617 -0.29444 94

 'supplier_C' -0.071868 0.078024 -0.9211 94

 'supplier_B' 0.071072 0.07739 0.91836 94

 pValue Lower Upper

 9.8194e-15 1.1515 1.7864

22 Functions — Alphabetical List

22-1934

 0.041122 -0.72019 -0.015134

 0.90941 -1.7395 1.5505

 0.76907 -2.1926 1.6263

 0.35936 -0.22679 0.083051

 0.36078 -0.082588 0.22473

The returned results indicate, for example, that the estimated coefficient for temp_dev
is –0.28317. Its large p-value, 0.76907, indicates that it is not a statistically significant
predictor at the 5% significance level. Additionally, the confidence interval boundaries
Lower and Upper indicate that the 95% confidence interval for the coefficient for
temp_dev is [-0.2.1926 , 1.6263]. This interval contains 0, which supports the conclusion
that temp_dev is not statistically significant at the 5% significance level.

See Also
coefCI | coefTest | fitglme | GeneralizedLinearMixedModel | randomEffects

 fixedEffects

22-1935

fixedEffects
Class: LinearMixedModel

Estimates of fixed effects and related statistics

Syntax

beta = fixedEffects(lme)

[beta,betanames] = fixedEffects(lme)

[beta,betanames,stats] = fixedEffects(lme)

[beta,betanames,stats] = fixedEffects(lme,Name,Value)

Description

beta = fixedEffects(lme) returns the estimated fixed-effects coefficients, beta, of
the linear mixed-effects model lme.

[beta,betanames] = fixedEffects(lme) also returns the names of estimated
fixed-effects coefficients in betanames. Each name corresponds to a fixed-effects
coefficient in beta.

[beta,betanames,stats] = fixedEffects(lme) also returns the estimated fixed-
effects coefficients of the linear mixed-effects model lme and related statistics in stats.

[beta,betanames,stats] = fixedEffects(lme,Name,Value) also returns the
estimated fixed-effects coefficients of the linear mixed-effects model lme and related
statistics with additional options specified by one or more Name,Value pair arguments.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

22 Functions — Alphabetical List

22-1936

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'DFMethod' — Method for computing approximate degrees of freedom
'Residual' (default) | 'Satterthwaite' | 'None'

Method for computing approximate degrees of freedom for the t-statistic that tests the
fixed-effects coefficients against 0, specified as the comma-separated pair consisting of
'DFMethod' and one of the following.

'Residual' Default. The degrees of freedom are
assumed to be constant and equal to n – p,
where n is the number of observations and
p is the number of fixed effects.

'Satterthwaite' Satterthwaite approximation.
'None' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','Satterthwaite'

Output Arguments

beta — Fixed-effects coefficients estimates
vector

 fixedEffects

22-1937

Fixed-effects coefficients estimates of the fitted linear mixed-effects model lme, returned
as a vector.

betanames — Names of fixed-effects coefficients
table

Names of fixed-effects coefficients in beta, returned as a table.

stats — Fixed-effects estimates and related statistics
dataset array

Fixed-effects estimates and related statistics, returned as a dataset array that has one
row for each of the fixed effects and one column for each of the following statistics.

Name Name of the fixed effect coefficient
Estimate Estimated coefficient value
SE Standard error of the estimate
tStat t-statistic for a test that the coefficient is

zero
DF Estimated degrees of freedom for the t-

statistic
pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for

the fixed-effect coefficient
Upper Upper limit of a 95% confidence interval for

the fixed-effect coefficient

Examples

Display Fixed-Effects Coefficient Estimates and Names

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

22 Functions — Alphabetical List

22-1938

load weight

The data set weight contains data from a longitudinal study, where 20 subjects are
randomly assigned to 4 exercise programs, and their weight loss is recorded over six 2-
week time periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = tbl(InitWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between week and program are the fixed effects. The intercept and week vary
by subject.

lme = fitlme(tbl,'y ~ InitWeight + Program*Week + (Week|Subject)');

Display the fixed-effects coefficient estimates and corresponding fixed-effects names.

[beta,betanames] = fixedEffects(lme);

beta =

 0.6610

 0.0032

 0.3608

 -0.0333

 0.1132

 0.1732

 0.0388

 0.0305

 0.0331

betanames =

 Name

 '(Intercept)'

 'InitWeight'

 'Program_B'

 'Program_C'

 'Program_D'

 'Week'

 'Program_B:Week'

 fixedEffects

22-1939

 'Program_C:Week'

 'Program_D:Week'

Compute Coefficient Estimates and Related Statistics

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration and horsepower, and potentially correlated random effects for intercept and
acceleration grouped by model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the fixed-effects coefficients estimates and related statistics.

[~,~,stats] = fixedEffects(lme)

stats =

 Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.05

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 50.133 2.2652 22.132 389 7.7727e-71 45.679 54.586

 'Acceleration' -0.58327 0.13394 -4.3545 389 1.7075e-05 -0.84661 -0.31992

 'Horsepower' -0.16954 0.0072609 -23.35 389 5.188e-76 -0.18382 -0.15527

The small p-values (under pValue) indicate that all fixed-effects coefficients are
significant.

Compute Confidence Intervals with Specified Options

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load shift

22 Functions — Alphabetical List

22-1940

The data shows the deviations from the target quality characteristic measured from
the products that five operators manufacture during three shifts: morning, evening,
and night. This is a randomized block design, where the operators are the blocks. The
experiment is designed to study the impact of the time of shift on the performance. The
performance measure is the deviation of the quality characteristics from the target value.
This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);

shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the 99% confidence intervals for fixed-effects coefficients, using the residual
method to compute the degrees of freedom. This is the default method.

[~,~,stats] = fixedEffects(lme,'alpha',0.01)

stats =

 Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.01

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 3.1196 0.88681 3.5178 12 0.0042407 0.41081 5.8284

 'Shift_Morning' -0.3868 0.48344 -0.80009 12 0.43921 -1.8635 1.0899

 'Shift_Night' 1.9856 0.48344 4.1072 12 0.0014535 0.5089 3.4623

Compute the 99% confidence intervals for fixed-effects coefficients, using the
Satterthwaite approximation to compute the degrees of freedom.

[~,~,stats] = fixedEffects(lme,'DFMethod','Satterthwaite','alpha',0.01)

stats =

 Fixed effect coefficients: DFMethod = 'Satterthwaite', Alpha = 0.01

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 3.1196 0.88681 3.5178 6.123 0.01214 -0.14122 6.3804

 'Shift_Morning' -0.3868 0.48344 -0.80009 10 0.44225 -1.919 1.1454

 fixedEffects

22-1941

 'Shift_Night' 1.9856 0.48344 4.1072 10 0.00212 0.45343 3.5178

The Satterthwaite approximation usually produces smaller DF values than the residual
method. That is why it produces larger p-values (pValue) and larger confidence intervals
(see Lower and Upper).

See Also
coefCI | coefTest | fitlme | LinearMixedModel | randomEffects

22 Functions — Alphabetical List

22-1942

fpdf

F probability density function

Syntax

Y = fpdf(X,V1,V2)

Description

Y = fpdf(X,V1,V2) computes the F pdf at each of the values in X using the
corresponding numerator degrees of freedom V1 and denominator degrees of freedom
V2. X, V1, and V2 can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input is expanded to a constant array with the same dimensions as
the other inputs. V1 and V2 parameters must contain real positive values, and the values
in X must lie on the interval [0 ∞).

The probability density function for the F distribution is

y f x= =

+

























(| ,)

()

n n

n n

n n

n

n
1 2

1 2

1 2

1

2

2

2 2

Γ

Γ Γ

nn n

n n

n

n

1 1

1 2

2

2

2

1

2

2
1

x

x

−

+

+




















Examples

y = fpdf(1:6,2,2)

y =

 0.2500 0.1111 0.0625 0.0400 0.0278 0.0204

z = fpdf(3,5:10,5:10)

z =

 0.0689 0.0659 0.0620 0.0577 0.0532 0.0487

 fpdf

22-1943

More About
• “F Distribution” on page B-45

See Also
pdf | fcdf | finv | fstat | frnd

22 Functions — Alphabetical List

22-1944

fracfact
Fractional factorial design

Syntax
X = fracfact(gen)

[X,conf] = fracfact(gen)

[X,conf] = fracfact(gen,Name,Value)

Description
X = fracfact(gen) creates the two-level fractional factorial design defined by the
generator string gen.

[X,conf] = fracfact(gen) returns a cell array of strings containing the confounding
pattern for the design.

[X,conf] = fracfact(gen,Name,Value) creates a fractional factorial designs with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
gen

Either a cell array of strings where each cell contains one “word,” or a string consisting of
“words” separated by spaces. “Words” consist of case-sensitive letters or groups of letters,
where 'a' represents string 1, 'b' represents string 2, ..., 'A' represents string 27, ...,
'Z' represents string 52.

Each word defines how the corresponding factor’s levels are defined as products of
generators from a 2^K full-factorial design. K is the number of letters of the alphabet in
gen.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 fracfact

22-1945

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'FactorNames'

Cell array specifying the name for each factor.

Default: {'X1','X2',...}

'MaxInt'

Positive integer setting the maximum level of interaction to include in the confounding
output.

Default: 2

Output Arguments
X

The two-level fractional factorial design. X is a matrix of size N-by-P, where

• N = 2^K, where K is the number of letters of the alphabet in gen.
• P is the number of words in gen.

Because X is a two-level design, the components of X are ±1. For the meaning of X, see
“Fractional Factorial Designs” on page 19-5.

conf

Cell array of strings containing the confounding pattern for the design.

Examples
Generate a fractional factorial design for four variables, where the fourth variable is the
product of the first three:

x = fracfact('a b c abc')

x =

 -1 -1 -1 -1

 -1 -1 1 1

22 Functions — Alphabetical List

22-1946

 -1 1 -1 1

 -1 1 1 -1

 1 -1 -1 1

 1 -1 1 -1

 1 1 -1 -1

 1 1 1 1

Find generators for a six-factor design that uses four factors and achieves resolution IV
using fracfactgen. Use the result to specify the design:

generators = fracfactgen('a b c d e f',4, ... % 4 factors

 4) % resolution 4

generators =

 'a'

 'b'

 'c'

 'd'

 'bcd'

 'acd'

x = fracfact(generators)

x =

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 1 1 1

 -1 -1 1 -1 1 1

 -1 -1 1 1 -1 -1

 -1 1 -1 -1 1 -1

 -1 1 -1 1 -1 1

 -1 1 1 -1 -1 1

 -1 1 1 1 1 -1

 1 -1 -1 -1 -1 1

 1 -1 -1 1 1 -1

 1 -1 1 -1 1 -1

 1 -1 1 1 -1 1

 1 1 -1 -1 1 1

 1 1 -1 1 -1 -1

 1 1 1 -1 -1 -1

 1 1 1 1 1 1

More About
• “Fractional Factorial Designs” on page 19-5

 fracfact

22-1947

References

[1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken,
NJ: Wiley-Interscience, 1978.

See Also
ff2n | fracfactgen | fullfact | hadamard

22 Functions — Alphabetical List

22-1948

fracfactgen
Fractional factorial design generators

Syntax
generators = fracfactgen(terms)

generators = fracfactgen(terms,k)

generators = fracfactgen(terms,k,R)

generators = fracfactgen(terms,k,R,basic)

Description
generators = fracfactgen(terms) uses the Franklin-Bailey algorithm to find
generators for the smallest two-level fractional-factorial design for estimating linear
model terms specified by terms. terms is a string consisting of words formed from the
52 case-sensitive letters a-Z, separated by spaces. Use 'a'-'z' for the first 26 factors,
and, if necessary, 'A'-'Z' for the remaining factors. For example, terms = 'a b c
ab ac'. Single-character words indicate main effects to be estimated; multiple-character
words indicate interactions. Alternatively, terms is an m-by-n matrix of 0s and 1s where
m is the number of model terms to be estimated and n is the number of factors. For
example, if terms contains rows [0 1 0 0] and [1 0 0 1], then the factor b and the
interaction between factors a and d are included in the model. generators is a cell
array of strings with one generator per cell. Pass generators to fracfact to produce
the fractional-factorial design and corresponding confounding pattern.

generators = fracfactgen(terms,k) returns generators for a two-level fractional-
factorial design with 2k-runs, if possible. If k is [], fracfactgen finds the smallest
design.

generators = fracfactgen(terms,k,R) finds a design with resolution R, if possible.
The default resolution is 3.

A design of resolution R is one in which no n-factor interaction is confounded with
any other effect containing less than R – n factors. Thus a resolution III design does
not confound main effects with one another but may confound them with two-way
interactions, while a resolution IV design does not confound either main effects or two-
way interactions but may confound two-way interactions with each other.

 fracfactgen

22-1949

If fracfactgen is unable to find a design at the requested resolution, it tries to find a
lower-resolution design sufficient to calibrate the model. If it is successful, it returns the
generators for the lower-resolution design along with a warning. If it fails, it returns an
error.

generators = fracfactgen(terms,k,R,basic) also accepts a vector basic
specifying the indices of factors that are to be treated as basic. These factors receive
full-factorial treatments in the design. The default includes factors that are part of the
highest-order interaction in terms.

Examples

Suppose you wish to determine the effects of four two-level factors, for which there
may be two-way interactions. A full-factorial design would require 24 = 16 runs. The
fracfactgen function finds generators for a resolution IV (separating main effects)
fractional-factorial design that requires only 23 = 8 runs:

generators = fracfactgen('a b c d',3,4)

generators =

 'a'

 'b'

 'c'

 'abc'

The more economical design and the corresponding confounding pattern are returned by
fracfact:

[dfF,confounding] = fracfact(generators)

dfF =

 -1 -1 -1 -1

 -1 -1 1 1

 -1 1 -1 1

 -1 1 1 -1

 1 -1 -1 1

 1 -1 1 -1

 1 1 -1 -1

 1 1 1 1

confounding =

 'Term' 'Generator' 'Confounding'

 'X1' 'a' 'X1'

 'X2' 'b' 'X2'

22 Functions — Alphabetical List

22-1950

 'X3' 'c' 'X3'

 'X4' 'abc' 'X4'

 'X1*X2' 'ab' 'X1*X2 + X3*X4'

 'X1*X3' 'ac' 'X1*X3 + X2*X4'

 'X1*X4' 'bc' 'X1*X4 + X2*X3'

 'X2*X3' 'bc' 'X1*X4 + X2*X3'

 'X2*X4' 'ac' 'X1*X3 + X2*X4'

 'X3*X4' 'ab' 'X1*X2 + X3*X4'

The confounding pattern shows, for example, that the two-way interaction between X1
and X2 is confounded by the two-way interaction between X3 and X4.

More About
• “Fractional Factorial Designs” on page 19-5

References

[1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken,
NJ: Wiley-Interscience, 1978.

See Also
fracfact | hadamard

 friedman

22-1951

friedman
Friedman’s test

Syntax

p = friedman(x,reps)

p = friedman(x,reps,displayopt)

[p,tbl] = friedman(___)

[p,tbl,stats] = friedman(___)

Description

p = friedman(x,reps) returns the p-value for the nonparametric Friedman's test to
compare column effects in a two-way layout. friedman tests the null hypothesis that the
column effects are all the same against the alternative that they are not all the same.

p = friedman(x,reps,displayopt) enables the ANOVA table display when
displayopt is 'on' (default) and suppresses the display when displayopt is 'off'.

[p,tbl] = friedman(___) returns the ANOVA table (including column and row
labels) in cell array tbl.

[p,tbl,stats] = friedman(___) also returns a structure stats that you can use to
perform a follow-up multiple comparison test.

Examples

Test For Column Effects Using Friedman's Test

This example shows how to test for column effects in a two-way layout using Friedman's
test.

Load the sample data.

load popcorn

22 Functions — Alphabetical List

22-1952

popcorn

popcorn =

 5.5000 4.5000 3.5000

 5.5000 4.5000 4.0000

 6.0000 4.0000 3.0000

 6.5000 5.0000 4.0000

 7.0000 5.5000 5.0000

 7.0000 5.0000 4.5000

This data comes from a study of popcorn brands and popper type (Hogg 1987). The
columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows
are popper type (Oil and Air). The study popped a batch of each brand three times with
each popper. The values are the yield in cups of popped popcorn.

Use Friedman's test to determine whether the popcorn brand affects the yield of popcorn.

p = friedman(popcorn,3)

p =

 0.0010

 friedman

22-1953

The small value of p = 0.001 indicates the popcorn brand affects the yield of popcorn.

Input Arguments

x — Sample data
matrix

Sample data for the hypothesis test, specified as a matrix. The columns of x represent
changes in a factor A. The rows represent changes in a blocking factor B. If there is more
than one observation for each combination of factors, input reps indicates the number of
replicates in each “cell,” which must be constant.

22 Functions — Alphabetical List

22-1954

Data Types: single | double

reps — Number of replicates per cell
1 (default) | positive integer value

Number of replicates per cell, specified as a positive integer value.
Data Types: single | double

displayopt — ANOVA table display option
'off' (default) | 'on'

ANOVA table display option, specified as 'off' or 'on'.

If displayopt is 'on', then friedman displays a figure showing an ANOVA table, which
divides the variability of the ranks into two or three parts:

• The variability due to the differences among the column effects
• The variability due to the interaction between rows and columns (if reps is greater

than its default value of 1)
• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.
• The second shows the Sum of Squares (SS) due to each source.
• The third shows the degrees of freedom (df) associated with each source.
• The fourth shows the Mean Squares (MS), which is the ratio SS/df.
• The fifth shows Friedman's chi-square statistic.
• The sixth shows the p value for the chi-square statistic.

You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text
from the Edit menu.

Output Arguments

p — p-value
scalar value in the range [0,1]

 friedman

22-1955

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

tbl — ANOVA table
cell array

ANOVA table, including column and row labels, returned as a cell array. The ANOVA
table has six columns:

• The first shows the source of the variability.
• The second shows the Sum of Squares (SS) due to each source.
• The third shows the degrees of freedom (df) associated with each source.
• The fourth shows the Mean Squares (MS), which is the ratio SS/df.
• The fifth shows Friedman's chi-square statistic.
• The sixth shows the p value for the chi-square statistic.

You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text
from the Edit menu.

stats — Test data
structure

Test data, returned as a structure. friedman evaluates the hypothesis that the column
effects are all the same against the alternative that they are not all the same. However,
sometimes it is preferable to perform a test to determine which pairs of column effects
are significantly different, and which are not. You can use the multcompare function to
perform such tests by supplying stats as the input value.

More About

Friedman’s Test

Friedman's test is similar to classical balanced two-way ANOVA, but it tests only for
column effects after adjusting for possible row effects. It does not test for row effects or
interaction effects. Friedman's test is appropriate when columns represent treatments
that are under study, and rows represent nuisance effects (blocks) that need to be taken
into account but are not of any interest.

22 Functions — Alphabetical List

22-1956

The different columns of X represent changes in a factor A. The different rows represent
changes in a blocking factor B. If there is more than one observation for each combination
of factors, input reps indicates the number of replicates in each “cell,” which must be
constant.

The matrix below illustrates the format for a set-up where column factor A has three
levels, row factor B has two levels, and there are two replicates (reps=2). The subscripts
indicate row, column, and replicate, respectively.

x x x

x x x

x x x

x x x

111 121 131

112 122 132

211 221 231

212 222 232



















Friedman's test assumes a model of the form

xijk i j ijk= + + +m a b e

where μ is an overall location parameter, ai represents the column effect, b j represents

the row effect, and e ijk represents the error. This test ranks the data within each level
of B, and tests for a difference across levels of A. The p that friedman returns is the
p value for the null hypothesis that ai

= 0 . If the p value is near zero, this casts doubt
on the null hypothesis. A sufficiently small p value suggests that at least one column-
sample median is significantly different than the others; i.e., there is a main effect due
to factor A. The choice of a critical p value to determine whether a result is “statistically
significant” is left to the researcher. It is common to declare a result significant if the p
value is less than 0.05 or 0.01.

Friedman's test makes the following assumptions about the data in X:

• All data come from populations having the same continuous distribution, apart from
possibly different locations due to column and row effects.

• All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the stronger
assumption that data come from normal distributions.

 friedman

22-1957

References

[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ:
John Wiley & Sons, Inc., 1999.

See Also
anova2 | kruskalwallis | multcompare

22 Functions — Alphabetical List

22-1958

frnd

F random numbers

Syntax

R = frnd(V1,V2)

R = frnd(V1,V2,m,n,...)

R = frnd(V1,V2,[m,n,...])

Description

R = frnd(V1,V2) generates random numbers from the F distribution with numerator
degrees of freedom V1 and denominator degrees of freedom V2. V1 and V2 can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar input for V1 or
V2 is expanded to a constant array with the same dimensions as the other input.

R = frnd(V1,V2,m,n,...) or R = frnd(V1,V2,[m,n,...]) generates an m-by-n-
by-... array containing random numbers from the F distribution with parameters V1 and
V2. V1 and V2 can each be scalars or arrays of the same size as R.

Examples

n1 = frnd(1:6,1:6)

n1 =

 0.0022 0.3121 3.0528 0.3189 0.2715 0.9539

n2 = frnd(2,2,[2 3])

n2 =

 0.3186 0.9727 3.0268

 0.2052 148.5816 0.2191

n3 = frnd([1 2 3;4 5 6],1,2,3)

n3 =

 0.6233 0.2322 31.5458

 2.5848 0.2121 4.4955

 frnd

22-1959

More About
• “F Distribution” on page B-45

See Also
random | fpdf | fcdf | finv | fstat

22 Functions — Alphabetical List

22-1960

fstat
F mean and variance

Syntax

[M,V] = fstat(V1,V2)

Description

[M,V] = fstat(V1,V2) returns the mean of and variance for the F distribution with
numerator degrees of freedom V1 and denominator degrees of freedom V2. V1 and V2 can
be vectors, matrices, or multidimensional arrays that all have the same size, which is
also the size of M and V. A scalar input for V1 or V2 is expanded to a constant arrays with
the same dimensions as the other input.

The mean of the F distribution for values of ν2 greater than 2 is

n

n

2

2
2−

The variance of the F distribution for values of ν2 greater than 4 is

2 2

2 4

2
2

1 2

1 2
2

2

n n n

n n n

()

() ()

+ −

− −

The mean of the F distribution is undefined if ν2 is less than 3. The variance is undefined
for ν2 less than 5.

Examples

fstat returns NaN when the mean and variance are undefined.

[m,v] = fstat(1:5,1:5)

 fstat

22-1961

m =

 NaN NaN 3.0000 2.0000 1.6667

v =

 NaN NaN NaN NaN 8.8889

More About
• “F Distribution” on page B-45

See Also
fpdf | fcdf | finv | frnd

22 Functions — Alphabetical List

22-1962

fsurfht
Interactive contour plot

Syntax

fsurfht(fun,xlims,ylims)

fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5)

Description

fsurfht(fun,xlims,ylims) is an interactive contour plot of the function specified by
the text variable fun. The x-axis limits are specified by xlims in the form [xmin xmax],
and the y-axis limits are specified by ylims in the form [ymin ymax].

fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5) allows for five optional parameters
that you can supply to the function fun.

The intersection of the vertical and horizontal reference lines on the plot defines the
current x value and y value. You can drag these reference lines and watch the calculated
z-values (at the top of the plot) update simultaneously. Alternatively, you can type the x
value and y value into editable text fields on the x-axis and y-axis.

Examples

Plot the Gaussian likelihood function for the gas.mat data.

load gas

Create a function containing the following commands, and name it gauslike.m.

function z = gauslike(mu,sigma,p1)

n = length(p1);

z = ones(size(mu));

for i = 1:n

z = z .* (normpdf(p1(i),mu,sigma));

end

 fsurfht

22-1963

The gauslike function calls normpdf, treating the data sample as fixed and the
parameters µ and σ as variables. Assume that the gas prices are normally distributed,
and plot the likelihood surface of the sample.

fsurfht('gauslike',[112 118],[3 5],price1)

The sample mean is the x value at the maximum, but the sample standard deviation is
not the y value at the maximum.

mumax = mean(price1)

mumax =

 115.1500

sigmamax = std(price1)*sqrt(19/20)

sigmamax =

22 Functions — Alphabetical List

22-1964

 3.7719

 fullfact

22-1965

fullfact
Full factorial design

Syntax

dFF = fullfact(levels)

Description

dFF = fullfact(levels) gives factor settings dFF for a full factorial design with n
factors, where the number of levels for each factor is given by the vector levels of length
n. dFF is m-by-n, where m is the number of treatments in the full-factorial design. Each
row of dFF corresponds to a single treatment. Each column contains the settings for a
single factor, with integer values from one to the number of levels.

Examples

The following generates an eight-run full-factorial design with two levels in the first
factor and four levels in the second factor:

dFF = fullfact([2 4])

dFF =

 1 1

 2 1

 1 2

 2 2

 1 3

 2 3

 1 4

 2 4

See Also
ff2n

22 Functions — Alphabetical List

22-1966

gagerr
Gage repeatability and reproducibility study

Syntax
gagerr(y,{part,operator})

gagerr(y,GROUP)

gagerr(y,part)

gagerr(...,param1,val1,param2,val2,...)

[TABLE, stats] = gagerr(...)

Description
gagerr(y,{part,operator}) performs a gage repeatability and reproducibility study
on measurements in y collected by operator on part. y is a column vector containing
the measurements on different parts. part and operator are categorical variables,
numeric vectors, character matrices, or cell arrays of strings. The number of elements in
part and operator should be the same as in y.

gagerr prints a table in the command window in which the decomposition of variance,
standard deviation, study var (5.15 x standard deviation) are listed with respective
percentages for different sources. Summary statistics are printed below the table giving
the number of distinct categories (NDC) and the percentage of Gage R&R of total
variations (PRR).

gagerr also plots a bar graph showing the percentage of different components of
variations. Gage R&R, repeatability, reproducibility, and part-to-part variations are
plotted as four vertical bars. Variance and study var are plotted as two groups.

To determine the capability of a measurement system using NDC, use the following
guidelines:

• If NDC > 5, the measurement system is capable.
• If NDC < 2, the measurement system is not capable.
• Otherwise, the measurement system may be acceptable.

To determine the capability of a measurement system using PRR, use the following
guidelines:

 gagerr

22-1967

• If PRR < 10%, the measurement system is capable.
• If PRR > 30%, the measurement system is not capable.
• Otherwise, the measurement system may be acceptable.

gagerr(y,GROUP) performs a gage R&R study on measurements in y with part and
operator represented in GROUP. GROUP is a numeric matrix whose first and second
columns specify different parts and operators, respectively. The number of rows in GROUP
should be the same as the number of elements in y.

gagerr(y,part) performs a gage R&R study on measurements in y without operator
information. The assumption is that all variability is contributed by part.

gagerr(...,param1,val1,param2,val2,...) performs a gage R&R study using one
or more of the following parameter name/value pairs:

• 'spec' — A two-element vector that defines the lower and upper limit of the process,
respectively. In this case, summary statistics printed in the command window include
Precision-to-Tolerance Ratio (PTR). Also, the bar graph includes an additional group,
the percentage of tolerance.

To determine the capability of a measurement system using PTR, use the following
guidelines:

• If PTR < 0.1, the measurement system is capable.
• If PTR > 0.3, the measurement system is not capable.
• Otherwise, the measurement system may be acceptable.

• 'printtable' — A string with a value 'on' or 'off' that indicates whether the
tabular output should be printed in the command window or not. The default value is
'on'.

• 'printgraph' — A string with a value 'on' or 'off' that indicates whether the
bar graph should be plotted or not. The default value is 'on'.

• 'randomoperator' — A logical value, true or false, that indicates whether the
effect of operator is random or not. The default value is true.

• 'model' — The model to use, specified by one of:

• 'linear' — Main effects only (default)
• 'interaction' — Main effects plus two-factor interactions
• 'nested' — Nest operator in part

22 Functions — Alphabetical List

22-1968

The default value is 'linear'.

[TABLE, stats] = gagerr(...) returns a 6-by-5 matrix TABLE and a structure
stats. The columns of TABLE, from left to right, represent variance, percentage
of variance, standard deviations, study var, and percentage of study var. The rows
of TABLE, from top to bottom, represent different sources of variations: gage R&R,
repeatability, reproducibility, operator, operator and part interactions, and part. stats
is a structure containing summary statistics for the performance of the measurement
system. The fields of stats are:

• ndc — Number of distinct categories
• prr — Percentage of gage R&R of total variations
• ptr — Precision-to-tolerance ratio. The value is NaN if the parameter 'spec' is not

given.

Examples

Gage R&R Study

Simulate a measurement system by randomly generating the operators, parts, and the
measurements, y , operators do on the parts.

rng(1234,'twister') % for reproducibility

y = randn(100,1); % measurements

part = ceil(3*rand(100,1)); % parts

operator = ceil(4*rand(100,1)); % operators

Conduct a gage R&R study for this system using a mixed ANOVA model without
interactions.

gagerr(y,{part, operator},'randomoperator',true)

 Columns 1 through 4

 'Source' 'Variance' '% Variance' 'sigma'

 'Gage R&R' [0.9715] [99.2653] [0.9857]

 ' Repeatability' [0.9535] [97.4201] [0.9765]

 ' Reproducibility' [0.0181] [1.8452] [0.1344]

 ' Operator' [0.0181] [1.8452] [0.1344]

 'Part' [0.0072] [0.7347] [0.0848]

 'Total' [0.9787] [100] [0.9893]

 gagerr

22-1969

 Columns 5 through 6

 '5.15*sigma' '% 5.15*sigma'

 [5.0762] [99.6320]

 [5.0288] [98.7016]

 [0.6921] [13.5838]

 [0.6921] [13.5838]

 [0.4367] [8.5716]

 [5.0949] ''

Number of distinct categories (NDC):0

% of Gage R&R of total variations (PRR): 99.63

Note: The last column of the above table does not have to sum to 100%

22 Functions — Alphabetical List

22-1970

More About
• “Grouping Variables” on page 2-52

 gamcdf

22-1971

gamcdf
Gamma cumulative distribution function

Syntax

gamcdf(x,a,b)

[p,plo,pup] = gamcdf(x,a,b,pcov,alpha)

[p,plo,pup] = gamcdf(___ ,'upper')

Description

gamcdf(x,a,b) returns the gamma cdf at each of the values in x using the
corresponding shape parameters in a and scale parameters in b. x, a, and b can be
vectors, matrices, or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other inputs. The
parameters in a and b must be positive.

[p,plo,pup] = gamcdf(x,a,b,pcov,alpha) produces confidence bounds for p when
the input parameters a and b are estimates. pcov is a 2-by-2 matrix containing the
covariance matrix of the estimated parameters. alpha has a default value of 0.05, and
specifies 100(1-alpha)% confidence bounds. plo and pup are arrays of the same size as
p containing the lower and upper confidence bounds.

[p,plo,pup] = gamcdf(___ ,'upper') returns the complement of the gamma cdf
at each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities. You can use the 'upper' argument with any of the previous syntaxes.

The gamma cdf is

p F x a b
b a

t e dt
a

a

t

b

x

= = −
−

∫(| ,)
()

1 1

0Γ

The result, p, is the probability that a single observation from a gamma distribution with
parameters a and b will fall in the interval [0 x].

gammainc is the gamma distribution with b fixed at 1.

22 Functions — Alphabetical List

22-1972

Examples

Compute Gamma Distribution CDF

The mean of the gamma distribution is the product of the parameters, ab. In this
example, the mean approaches the median as it increases (i.e., the distribution becomes
more symmetric).

a = 1:6;

b = 5:10;

prob = gamcdf(a.*b,a,b)

prob =

 0.6321 0.5940 0.5768 0.5665 0.5595 0.5543

More About
• “Gamma Distribution” on page B-48

See Also
cdf | gampdf | gaminv | gamstat | gamfit | gamlike | gamrnd | gamma

 gamfit

22-1973

gamfit
Gamma parameter estimates

Syntax

phat = gamfit(data)

[phat,pci] = gamfit(data)

[phat,pci] = gamfit(data,alpha)

[...] = gamfit(data,alpha,censoring,freq,options)

Description

phat = gamfit(data) returns the maximum likelihood estimates (MLEs) for the
parameters of the gamma distribution given the data in vector data.

[phat,pci] = gamfit(data) returns MLEs and 95% percent confidence intervals.
The first row of pci is the lower bound of the confidence intervals; the last row is the
upper bound.

[phat,pci] = gamfit(data,alpha) returns 100(1 - alpha)% confidence
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

[...] = gamfit(data,alpha,censoring) accepts a Boolean vector of the same size
as data that is 1 for observations that are right-censored and 0 for observations that are
observed exactly.

[...] = gamfit(data,alpha,censoring,freq) accepts a frequency vector of the
same size as data. freq typically contains integer frequencies for the corresponding
elements in data, but may contain any nonnegative values.

[...] = gamfit(data,alpha,censoring,freq,options) accepts a structure,
options, that specifies control parameters for the iterative algorithm the function uses
to compute maximum likelihood estimates. The gamma fit function accepts an options
structure which can be created using the function statset. Enter statset('gamfit')
to see the names and default values of the parameters that gamfit accepts in the
options structure.

22 Functions — Alphabetical List

22-1974

Examples

Fit a gamma distribution to random data generated from a specified gamma distribution:

a = 2; b = 4;

data = gamrnd(a,b,100,1);

[p,ci] = gamfit(data)

p =

 2.1990 3.7426

ci =

 1.6840 2.8298

 2.7141 4.6554

More About
• “Gamma Distribution” on page B-48

References

[1] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in Engineering. Hoboken, NJ:
John Wiley & Sons, Inc., 1994, p. 88.

See Also
mle | gamlike | gampdf | gamcdf | gaminv | gamstat | gamrnd

 prob.GammaDistribution class

22-1975

prob.GammaDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Gamma probability distribution object

Description

prob.GammaDistribution is an object consisting of parameters, a model description,
and sample data for a gamma probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Gamma') creates a gamma probability distribution object using the
default parameter values.

pd = makedist('Gamma','a',a,'b',b) creates a gamma probability distribution
object using the specified parameter values.

Input Arguments

a — Shape parameter
1 (default) | positive scalar value

Shape parameter for the gamma distribution, specified as a positive scalar value.
Data Types: single | double

b — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter for the gamma distribution, specified as a nonnegative scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-1976

Properties

a — Shape parameter
positive scalar value

Shape parameter for the gamma distribution, stored as a positive scalar value.
Data Types: single | double

b — Scale parameter
nonnegative scalar value

Scale parameter for the gamma distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.

 prob.GammaDistribution class

22-1977

Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

22 Functions — Alphabetical List

22-1978

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

 prob.GammaDistribution class

22-1979

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Gamma Distribution

The gamma distribution is a two-parameter family of distributions used to model sums
of exponentially distributed random variables. The chi-square and the exponential
distributions, which are children of the gamma distribution, are one-parameter
distributions that fix one of the two gamma parameters.

The gamma distribution uses the following parameters.

Parameter Description Support

a Shape parameter
a > 0

b Scale parameter b ≥ 0

22 Functions — Alphabetical List

22-1980

The probability density function (pdf) is

f x a b
b a

x e x
a

a

x

b| , ; ,() =
()

>
-

-
1

01

G

where G ◊() is the Gamma function.

Examples

Create a Gamma Distribution Object Using Default Parameters

Create a gamma distribution object using the default parameter values.

pd = makedist('Gamma')

pd =

 GammaDistribution

 Gamma distribution

 a = 1

 b = 1

Create a Gamma Distribution Object Using Specified Parameters

Create a gamma distribution object by specifying the parameter values.

pd = makedist('Gamma', 'a',2,'b',4)

pd =

 GammaDistribution

 Gamma distribution

 a = 2

 b = 4

Compute the mean of the distribution.

m = mean(pd)

 prob.GammaDistribution class

22-1981

m =

 8

See Also
dfittool | fitdist | makedist

More About
• “Gamma Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-1982

gaminv
Gamma inverse cumulative distribution function

Syntax
X = gaminv(P,A,B)

[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha)

Description
X = gaminv(P,A,B) computes the inverse of the gamma cdf with shape parameters
in A and scale parameters in B for the corresponding probabilities in P. P, A, and B can
be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other inputs. The
parameters in A and B must all be positive, and the values in P must lie on the interval [0
1].

The gamma inverse function in terms of the gamma cdf is

x F p a b x F x a b p= = =−1 (| ,) { : (| ,) }

where

p F x a b
b a

t e dt
a

a

t

b

x

= = −
−

∫(| ,)
()

1 1

0Γ

[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha) produces confidence bounds for P when
the input parameters A and B are estimates. pcov is a 2-by-2 matrix containing the
covariance matrix of the estimated parameters. alpha has a default value of 0.05, and
specifies 100(1-alpha)% confidence bounds. PLO and PUP are arrays of the same size as
P containing the lower and upper confidence bounds.

Examples
This example shows the relationship between the gamma cdf and its inverse function.

 gaminv

22-1983

a = 1:5;

b = 6:10;

x = gaminv(gamcdf(1:5,a,b),a,b)

x =

 1.0000 2.0000 3.0000 4.0000 5.0000

More About

Algorithms

There is no known analytical solution to the integral equation above. gaminv uses an
iterative approach (Newton's method) to converge on the solution.
• “Gamma Distribution” on page B-48

See Also
icdf | gamcdf | gampdf | gamstat | gamfit | gamlike | gamrnd

22 Functions — Alphabetical List

22-1984

gamlike
Gamma negative log-likelihood

Syntax

nlogL = gamlike(params,data)

[nlogL,AVAR] = gamlike(params,data)

Description

nlogL = gamlike(params,data) returns the negative of the gamma log-likelihood
of the parameters, params, given data. params(1)=A, shape parameters, and
params(2)=B, scale parameters.

[nlogL,AVAR] = gamlike(params,data) also returns AVAR, which is the asymptotic
variance-covariance matrix of the parameter estimates when the values in params
are the maximum likelihood estimates. AVAR is the inverse of Fisher's information
matrix. The diagonal elements of AVAR are the asymptotic variances of their respective
parameters.

[...] = gamlike(params,data,censoring) accepts a Boolean vector of the same
size as data that is 1 for observations that are right-censored and 0 for observations that
are observed exactly.

[...] = gamfit(params,data,censoring,freq) accepts a frequency vector of the
same size as data. freq typically contains integer frequencies for the corresponding
elements in data, but may contain any non-negative values.

gamlike is a utility function for maximum likelihood estimation of the gamma
distribution. Since gamlike returns the negative gamma log-likelihood function,
minimizing gamlike using fminsearch is the same as maximizing the likelihood.

Examples

Compute the negative log-likelihood of parameter estimates computed by the gamfit
function:

 gamlike

22-1985

a = 2; b = 3;

r = gamrnd(a,b,100,1);

[nlogL,AVAR] = gamlike(gamfit(r),r)

nlogL =

 267.5648

AVAR =

 0.0788 -0.1104

 -0.1104 0.1955

More About
• “Gamma Distribution” on page B-48

See Also
gamfit | gampdf | gamcdf | gaminv | gamstat | gamrnd

22 Functions — Alphabetical List

22-1986

gampdf
Gamma probability density function

Syntax

Y = gampdf(X,A,B)

Description

Y = gampdf(X,A,B) computes the gamma pdf at each of the values in X using the
corresponding shape parameters in A and scale parameters in B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other inputs. The
parameters in A and B must all be positive, and the values in X must lie on the interval
[0 ∞).

The gamma pdf is

y f x a b
b a

x e
a

a

x

b= = −
−

(| ,)
()

1 1

Γ

The gamma probability density function is useful in reliability models of lifetimes.
The gamma distribution is more flexible than the exponential distribution in that the
probability of a product surviving an additional period may depend on its current age.
The exponential and χ2 functions are special cases of the gamma function.

Examples

The exponential distribution is a special case of the gamma distribution.

mu = 1:5;

y = gampdf(1,1,mu)

y =

 gampdf

22-1987

 0.3679 0.3033 0.2388 0.1947 0.1637

y1 = exppdf(1,mu)

y1 =

 0.3679 0.3033 0.2388 0.1947 0.1637

More About
• “Gamma Distribution” on page B-48

See Also
pdf | gamcdf | gaminv | gamstat | gamfit | gamlike | gamrnd

22 Functions — Alphabetical List

22-1988

gamrnd
Gamma random numbers

Syntax
R = gamrnd(A,B)

R = gamrnd(A,B,m,n,...)

R = gamrnd(A,B,[m,n,...])

Description
R = gamrnd(A,B) generates random numbers from the gamma distribution with
shape parameters in A and scale parameters in B. A and B can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input for A or B is
expanded to a constant array with the same dimensions as the other input.

R = gamrnd(A,B,m,n,...) or R = gamrnd(A,B,[m,n,...]) generates an m-by-n-
by-... array containing random numbers from the gamma distribution with parameters A
and B. A and B can each be scalars or arrays of the same size as R.

Examples
n1 = gamrnd(1:5,6:10)

n1 =

 9.1132 12.8431 24.8025 38.5960 106.4164

n2 = gamrnd(5,10,[1 5])

n2 =

 30.9486 33.5667 33.6837 55.2014 46.8265

n3 = gamrnd(2:6,3,1,5)

n3 =

 12.8715 11.3068 3.0982 15.6012 21.6739

More About
• “Gamma Distribution” on page B-48

 gamrnd

22-1989

See Also
randg | random | gampdf | gamcdf | gaminv | gamstat | gamfit | gamlike

22 Functions — Alphabetical List

22-1990

gamstat

Gamma mean and variance

Syntax

[M,V] = gamstat(A,B)

Description

[M,V] = gamstat(A,B) returns the mean of and variance for the gamma distribution
with shape parameters in A and scale parameters in B. A and B can be vectors, matrices,
or multidimensional arrays that have the same size, which is also the size of M and V. A
scalar input for A or B is expanded to a constant array with the same dimensions as the
other input.

The mean of the gamma distribution with parameters a and b is ab. The variance is ab2.

Examples

[m,v] = gamstat(1:5,1:5)

m =

 1 4 9 16 25

v =

 1 8 27 64 125

[m,v] = gamstat(1:5,1./(1:5))

m =

 1 1 1 1 1

v =

 1.0000 0.5000 0.3333 0.2500 0.2000

More About
• “Gamma Distribution” on page B-48

 gamstat

22-1991

See Also
gampdf | gamcdf | gaminv | gamfit | gamlike | gamrnd

22 Functions — Alphabetical List

22-1992

ge
Class: qrandstream

Greater than or equal relation for handles

Syntax

h1 >= h2

Description

h1 >= h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and
h2 must be of the same dimensions unless one is a scalar. The result is a logical array of
the same dimensions, where each element is an element-wise >= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar.

tf = ge(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | gt | le | ne | eq | lt

 prob.GeneralizedExtremeValueDistribution class

22-1993

prob.GeneralizedExtremeValueDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Generalized extreme value probability distribution object

Description
prob.GeneralizedExtremeValueDistribution is an object consisting of
parameters, a model description, and sample data for a generalized extreme value
probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction
pd = makedist('GeneralizedExtremeValue') creates a generalized extreme value
probability distribution object using the default parameter values.

pd = makedist('GeneralizedExtremeValue','k',k,'sigma',sigma,'mu',mu)

creates a generalized extreme value probability distribution object using the specified
parameter values.

Input Arguments

k — Shape parameter
0 (default) | scalar value

Shape parameter for the generalized extreme value distribution, specified as a scalar
value.
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter for the generalized extreme value distribution, specified as a
nonnegative scalar value.

22 Functions — Alphabetical List

22-1994

Data Types: single | double

mu — Location parameter
0 (default) | scalar value

Location parameter for the generalized extreme value distribution, specified as a scalar
value.
Data Types: single | double

Properties
k — Shape parameter
scalar value

Shape parameter of the generalized extreme value distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the generalized extreme value distribution, stored as a nonnegative
scalar value.
Data Types: single | double

mu — Location parameter
scalar value

Location parameter of the generalized extreme value distribution, stored as a scalar
value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

 prob.GeneralizedExtremeValueDistribution class

22-1995

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.

22 Functions — Alphabetical List

22-1996

Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

 prob.GeneralizedExtremeValueDistribution class

22-1997

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

22 Functions — Alphabetical List

22-1998

Definitions

Generalized Extreme Value Distribution

The generalized extreme value distribution is often used to model the smallest or
largest value among a large set of independent, identically distributed random values
representing measurements or observations. It combines three simpler distributions into
a single form, allowing a continuous range of possible shapes that include all three of the
simpler distributions.

The three distribution types correspond to the limiting distribution of block maxima from
different classes of underlying distributions:

• Type 1 — Distributions whose tails decrease exponentially, such as the normal
distribution

• Type 2 — Distributions whose tails decrease as a polynomial, such as Student’s t
distribution

• Type 3 — Distributions whose tails are finite, such as the beta distribution

The generalized extreme value distribution uses the following parameters.

Parameter Description Support

k Shape parameter -• £ £ •k

sigma Scale parameter s ≥ 0

mu Location parameter -• £ £ •m

The probability density function (pdf) for a Type 1 distribution, where shape parameter
k = 0 , is

f x
x x

| , , exp exp ;0
1m s
s

m

s

m

s
() = Ê

ËÁ
ˆ
¯̃

- -
-()Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

-()Ê

Ë
ÁÁ

ˆ

¯
˜̃ - •• < < •x .

When k π 0 , the pdf is

 prob.GeneralizedExtremeValueDistribution class

22-1999

f x k k
x

k
xk

| , , expm s
s

m

s
() = Ê

Ë
Á

ˆ
¯
˜ - +

-()Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+
--

1
1 1

1

mm

s
()Ê

Ë
ÁÁ

ˆ

¯
˜̃
- -1

1

k

for

1 0+
-()

>k
x m

s
.

For the Type 2 case, k > 0 and x
k

≥ -m
s . For the Type 3 case, k < 0 and x

k
< -m

s .

Examples

Create a Generalized Extreme Value Distribution Object Using Default Parameters

Create a generalized extreme value distribution object using the default parameter
values.

pd = makedist('GeneralizedExtremeValue')

pd =

 GeneralizedExtremeValueDistribution

 Generalized Extreme Value distribution

 k = 0

 sigma = 1

 mu = 0

Create a Generalized Extreme Value Distribution Object Using Specified Parameters

Create a generalized extreme value distribution object by specifying values for the
parameters.

pd = makedist('GeneralizedExtremeValue','k',0,'sigma',2,'mu',1)

pd =

22 Functions — Alphabetical List

22-2000

 GeneralizedExtremeValueDistribution

 Generalized Extreme Value distribution

 k = 0

 sigma = 2

 mu = 1

Compute the mean of the distribution.

m = mean(pd)

m =

 2.1544

See Also
dfittool | fitdist | makedist

More About
• “Generalized Extreme Value Distribution”
• Class Attributes
• Property Attributes

 GeneralizedLinearMixedModel class

22-2001

GeneralizedLinearMixedModel class

Generalized linear mixed-effects model class

Description

A GeneralizedLinearMixedModel object represents a regression model of a response
variable that contains both fixed and random effects. The object comprises data, a
model description, fitted coefficients, covariance parameters, design matrices, residuals,
residual plots, and other diagnostic information for a generalized linear mixed-effects
(GLME) model. You can predict model responses with the predict function and
generate random data at new design points using the random function.

Construction

You can fit a generalized linear mixed-effects (GLME) model to sample data using
fitglme(tbl,formula). For more information, see fitglme.

Input Arguments

tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be continuous
or grouping variables (see “Grouping Variables” on page 2-52). You must specify the
model for the variables using formula.
Data Types: table

formula — Formula for model specification
string of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|
groupingR)'

Formula for model specification, specified as a string of the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)'. For a full description, see
Formula.

22 Functions — Alphabetical List

22-2002

Example: 'y ~ treatment +(1|block)'

Properties

Coefficients — Estimates of fixed-effects coefficients
dataset array

Estimates of fixed-effects coefficients and related statistics, stored as a dataset array that
has one row for each coefficient and the following columns:

• Name — Name of the coefficient
• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t-statistic for a test that the coefficient is equal to 0
• DF — Degrees of freedom associated with the t statistic
• pValue — p-value for the t-statistic
• Lower — Lower confidence limit
• Upper — Upper confidence limit

To obtain any of these columns as a vector, index into the property using dot notation.

Use the coefTest method to perform other tests on the coefficients.

CoefficientCovariance — Covariance of estimated fixed-effects vector
matrix

Covariance of estimated fixed-effects vector, stored as a matrix.
Data Types: single | double

CoefficientNames — Names of fixed-effects coefficients
cell array of strings

Names of fixed-effects coefficients, stored as a cell array of strings. The label for the
coefficient of the constant term is (Intercept). The labels for other coefficients indicate
the terms that they multiply. When the term includes a categorical predictor, the label
also indicates the level of that predictor.

 GeneralizedLinearMixedModel class

22-2003

Data Types: cell

DFE — Degrees of freedom for error
positive integer value

Degrees of freedom for error, stored as a positive integer value. DFE is the number of
observations minus the number of estimated coefficients.

DFE contains the degrees of freedom corresponding to the 'Residual' method of
calculating denominator degrees of freedom for hypothesis tests on fixed-effects
coefficients. If n is the number of observations and p is the number of fixed-effects
coefficients, then DFE is equal to n – p.

Data Types: double

Dispersion — Model dispersion parameter
scalar value

Model dispersion parameter, stored as a scalar value. The dispersion parameter defines
the conditional variance of the response.

For observation i, the conditional variance of the response yi, given the conditional mean
μi and the dispersion parameter σ2, in a generalized linear mixed-effects model is

var | , ,y
w

vi i
i

im s
s

m2
2

() = ()

where wi is the ith observation weight and v is the variance function for the specified
conditional distribution of the response. The Dispersion property contains an estimate
of σ2 for the specified GLME model. The value of Dispersion depends on the specified
conditional distribution of the response. For binomial and Poisson distributions, the
theoretical value of Dispersion is equal to σ2 = 1.0.

• If FitMethod is MPL or REMPL and the 'DispersionFlag' name-value pair
argument in fitglme is true, then a dispersion parameter is estimated from data for
all distributions, including binomial and Poisson distributions.

• If FitMethod is ApproximateLaplace or Laplace, then the 'DispersionFlag'
name-value pair argument in fitglme does not apply, and the dispersion parameter
is fixed at 1.0 for binomial and Poisson distributions. For all other distributions,
Dispersion is estimated from data.

22 Functions — Alphabetical List

22-2004

Data Types: double

DispersionEstimated — Flag indicating if dispersion parameter was estimated
true | false

Flag indicating estimated dispersion parameter, stored as a logical value.

• If FitMethod is ApproximateLaplace or Laplace, then the dispersion parameter
is fixed at its theoretical value of 1.0 for binomial and Poisson distributions, and
DispersionEstimated is false. For other distributions, the dispersion parameter
is estimated from the data, and DispersionEstimated is true.

• If FitMethod is MPL or REMPL, and the 'DispersionFlag' name-value pair
argument in fitglme is specified as true, then the dispersion parameter is
estimated for all distributions, including binomial and Poisson distributions, and
DispersionEstimated is true.

• If FitMethod is MPL or REMPL, and the 'DispersionFlag' name-value pair
argument in fitglme is specified as false, then the dispersion parameter
is fixed at its theoretical value for binomial and Poisson distributions, and
DispersionEstimated is false. For distributions other than binomial and Poisson,
the dispersion parameter is estimated from the data, and DispersionEstimated is
true.

Data Types: logical

Distribution — Response distribution name
'Normal' | 'Binomial' | 'Poisson' | 'Gamma' | 'InverseGaussian'

Response distribution name, stored as one of the following:

• 'Normal' — Normal distribution
• 'Binomial' — Binomial distribution
• 'Poisson' — Poisson distribution
• 'Gamma' — Gamma distribution
• 'InverseGaussian' — Inverse Gaussian distribution

FitMethod — Method used to fit the model
'MPL' | 'REMPL' | 'ApproximateLaplace' | 'Laplace'

Method used to fit the model, stored as one of the following.

 GeneralizedLinearMixedModel class

22-2005

• 'MPL' — Maximum pseudo likelihood
• 'REMPL' — Restricted maximum pseudo likelihood
• 'ApproximateLaplace' — Maximum likelihood using the approximate Laplace

method, with fixed effects profiled out
• 'Laplace' — Maximum likelihood using the Laplace method

Formula — Model specification formula
object

Model specification formula, stored as an object. The model specification formula uses
Wilkinson’s notation to describe the relationship between the fixed-effects terms,
random-effects terms, and grouping variables in the GLME model. For more information
see Formula.

Link — Link function characteristics
structure

Link function characteristics, stored as a structure containing the following fields. The
link is a function G that links the distribution parameter MU to the linear predictor ETA as
follows: G(MU) = ETA.

Name Name of the link function
Link Function that defines G
Derivative Derivative of G
SecondDerivative Second derivative of G
Inverse Inverse of G

Data Types: struct

LogLikelihood — Log of likelihood function
scalar value

Log of likelihood function evaluated at the estimated coefficient values, stored as a scalar
value. LogLikelihood depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then LogLikelihood is the
maximized log likelihood.

22 Functions — Alphabetical List

22-2006

• If you use 'MPL', then LogLikelihood is the maximized log likelihood of the pseudo
data from the final pseudo likelihood iteration.

• If you use 'REMPL', then LogLikelihood is the maximized restricted log likelihood
of the pseudo data from the final pseudo likelihood iteration.

Data Types: double

ModelCriterion — Model criterion
table

Model criterion to compare fitted generalized linear mixed-effects models, stored as a
table with the following fields.

AIC Akaike information criterion
BIC Bayesian information criterion
LogLikelihood • For a model fit using 'Laplace'

or 'ApproximateLaplace',
LogLikelihood is the maximized log
likelihood.

• For a model fit using 'MPL',
LogLikelihood is the maximized log
likelihood of the pseudo data from the
final pseudo likelihood iteration.

• For a model fit using 'REMPL',
LogLikelihood is the maximized
restricted log likelihood of the pseudo
data from the final pseudo likelihood
iteration.

Deviance –2 times LogLikelihood

NumCoefficients — Number of fixed-effects coefficients
positive integer value

Number of fixed-effects coefficients in the fitted generalized linear mixed-effects model,
stored as a positive integer value.
Data Types: double

NumEstimatedCoefficients — Number of estimated fixed-effects coefficients
positive integer value

 GeneralizedLinearMixedModel class

22-2007

Number of estimated fixed-effects coefficients in the fitted generalized linear mixed-
effects model, stored as a positive integer value.
Data Types: double

NumObservations — Number of observations
positive integer value

Number of observations used in the fit, stored as a positive integer value.
NumObservations is the number of rows in the table or dataset array tbl, minus rows
excluded using the 'Exclude' name-value pair of fitglme or rows containing NaN
values.
Data Types: double

NumPredictors — Number of predictors
positive integer value

Number of variables used as predictors in the generalized linear mixed-effects model,
stored as a positive integer value.
Data Types: double

NumVariables — Total number of variables
positive integer value

Total number of variables, including the response and predictors, stored as a positive
integer value. If the sample data is in a table or dataset array tbl, then NumVariables
is the total number of variables in tbl, including the response variable. NumVariables
includes variables, if any, that are not used as predictors or as the response.
Data Types: double

ObservationInfo — Information about the observations
table

Information about the observations used in the fit, stored as a table.

ObservationInfo has one row for each observation and the following columns.

Weights The weight value for the observation. The
default value is 1.

22 Functions — Alphabetical List

22-2008

Excluded If the observation was excluded from the
fit using the 'Exclude' name-value pair
argument in fitglme, then Excluded is
true, or 1. Otherwise, Excluded is false,
or 0.

Missing If the observation was excluded from the fit
because any response or predictor value is
missing, then Missing is true. Otherwise,
Missing is false.

Missing values include NaN for numeric
variables, empty cells for cell arrays,
blank rows for character arrays, and the
<undefined> value for categorical arrays.

Subset If the observation was used in the fit, then
Subset is true. If the observation was
not used in the fit because it is missing or
excluded, then Subset is false.

BinomSize Binomial size for each observation. This
column only applies when fitting a binomial
distribution.

Data Types: table

ObservationNames — Names of observations
cell array of strings

Names of observations used in the fit, stored as a cell array of strings.

• If the data is in a table or dataset array tbl that contains observation names, then
ObservationNames uses those names.

• If the data is provided in matrices, or in a table or dataset array without observation
names, then ObservationNames is an empty cell array.

Data Types: cell

PredictorNames — Names of predictors
cell array of strings

Names of the variables used as predictors in the fit, stored as a cell array of strings that
has the same length as NumPredictors.

 GeneralizedLinearMixedModel class

22-2009

Data Types: cell

ResponseName — Name of response variable
character string

Name of the variable used as the response variable in the fit, stored as a character string.
Data Types: char

Rsquared — Proportion of variability in the response explained by the fitted model
structure

Proportion of variability in the response explained by the fitted model, stored as a
structure. Rsquared contains the R-squared value of the fitted model, also known as the
multiple correlation coefficient. Rsquared contains the following fields.

Ordinary R-squared value, stored as a scalar value in
a structure.
Rsquared.Ordinary = 1 — SSE./SST

Adjusted R-squared value adjusted for the number of
fixed-effects coefficients, stored as a scalar
value in a structure.
Rsquared.Adjusted = 1 — (SSE./

SST)*(DFT./DFE),
where DFE = n – p, DFT = n – 1, n is
the total number of observations, and p is
the number of fixed-effects coefficients.

Data Types: struct

SSE — Error sum of squares
positive scalar value

Error sum of squares, stored as a positive scalar value. SSE is the weighted sum of the
squared conditional residuals, and is calculated as

SSE w y fi
eff

i i
i

n

= -()
=
Â

2

1

,

22 Functions — Alphabetical List

22-2010

where n is the number of observations, wi
eff is the ith effective weight, yi is the ith

response, and fi is the ith fitted value.

The ith effective weight is calculated as

w
w

v b
i
eff i

i i

=
()()

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ôm b̂, ˆ

,

where vi is the variance term for the ith observation, b̂ and ˆb are estimated values of β
and b, respectively.

The ith fitted value is calculated as

f g x z bi i
T

i
T

i= + +()-1 ˆ ˆ ,b d

where xi
T is the ith row of the fixed-effects design matrix X, and zi

T is the ith row of the
random-effects design matrix Z. δi is the ith offset value.

Data Types: double

SSR — Regression sum of squares
positive scalar value

Regression sum of squares, stored as a positive scalar value. SSR is the sum of squares
explained by the generalized linear mixed-effects regression, or equivalently the
weighted sum of the squared deviations of the conditional fitted values from their
weighted mean. SSR is calculated as

SSR w f fi
eff

i
i

N

= -()
=
Â

2

1

,

where n is the number of observations, wi
eff is the ith effective weight, fi is the ith fitted

value, and f is a weighted average of the fitted values.

 GeneralizedLinearMixedModel class

22-2011

The ith effective weight is calculated as

w
w

v b
i
eff i

i i

=
()()

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ôm b̂, ˆ

,

where b̂ and ˆb are estimated values of β and b, respectively.

The ith fitted value is calculated as

f g x z bi i
T

i
T

i= + +()-1 ˆ ˆ ,b d

where xi
T is the ith row of the fixed-effects design matrix X, and zi

T is the ith row of the
random-effects design matrix Z. δi is the ith offset value.

The weighted average of fitted values is calculated as

f

w f

w

i
eff

i

i

n

i
eff

i

n
=

È

Î
Í
Í

˘

˚
˙
˙=

=

Â

Â

1

1

.

Data Types: double

SST — Total sum of squares
positive scalar value

Total sum of squares, stored as a positive scalar value. For a GLME model, SST is
defined as SST = SSE + SSR.

Data Types: double

VariableInfo — Information about the variables
table

22 Functions — Alphabetical List

22-2012

Information about the variables used in the fit, stored as a table. VariableInfo has one
row for each variable and contains the following columns.

Class Class of the variable ('double', 'cell',
'nominal', and so on).

Range Value range of the variable.

• For a numerical variable, Range
is a two-element vector of the form
[min,max].

• For a cell or categorical variable, Range
is a cell or categorical array containing
all unique values of the variable.

InModel If the variable is a predictor in the fitted
model, InModel is true.

If the variable is not in the fitted model,
InModel is false.

IsCategorical If the variable type is treated as a
categorical predictor (such as cell, logical,
or categorical), then IsCategorical is
true.

If the variable is a continuous predictor,
then IsCategorical is false

Data Types: table

VariableNames — Names of the variables
cell array of strings

Names of all the variables contained in the table or dataset array tbl, stored as a cell
array of strings.
Data Types: cell

Variables — Variables
table

Variables, stored as a table. If the fit is based on a table or dataset array tbl, then
Variables is identical to tbl.

 GeneralizedLinearMixedModel class

22-2013

Data Types: table

Methods

anova
Analysis of variance for generalized linear
mixed-effects model

coefCI
Confidence intervals for coefficients of
generalized linear mixed-effects model

coefTest
Hypothesis test on fixed and random effects
of generalized linear mixed-effects model

compare
Compare generalized linear mixed-effects
models

covarianceParameters
Extract covariance parameters of
generalized linear mixed-effects model

designMatrix
Fixed- and random-effects design matrices

fitted
Fitted responses from generalized linear
mixed-effects model

fixedEffects
Estimates of fixed effects and related
statistics

plotResiduals
Plot residuals of generalized linear mixed-
effects model

predict
Predict response of generalized linear
mixed-effects model

22 Functions — Alphabetical List

22-2014

random
Generate random responses from fitted
generalized linear mixed-effects model

randomEffects
Estimates of random effects and related
statistics

refit
Refit generalized linear mixed-effects
model

residuals
Residuals of fitted generalized linear
mixed-effects model

response
Response vector of generalized linear
mixed-effects model

Definitions

Formula

In general, a formula for model specification is a string of the form 'y ~ terms'.
For generalized linear mixed-effects models, this formula is in the form 'y ~ fixed
+ (random1|grouping1) + ... + (randomR|groupingR)', where fixed and
random contain the fixed-effects and the random-effects terms, respectively, and R is the
number of grouping variables in the model.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, or
cell arrays of strings.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|
gR)', the term fixed corresponds to a specification of the fixed-effects design matrix

 GeneralizedLinearMixedModel class

22-2015

X, random1 is a specification of the random-effects design matrix Z1 corresponding to
grouping variable g1, and similarly randomR is a specification of the random-effects
design matrix ZR corresponding to grouping variable gR. You can express the fixed and
random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)

X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1. Here are some examples for linear
mixed-effects model specification.

Examples:

Formula Description

'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2.
This is equivalent to 'y ~ 1 + X1 + X2'.

'y ~ -1 + X1 + X2' No intercept and fixed effects for X1
and X2. The implicit intercept term is
suppressed by including -1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random
effect for the intercept for each level of the
grouping variable g1.

22 Functions — Alphabetical List

22-2016

Formula Description

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with

possible correlation between them. This is
equivalent to 'y ~ 1 + X1 + (1 + X1|
g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 |

g1)'

Independent random effects terms for
intercept and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1

| g1:g2)'

Random intercept model with independent
main effects for g1 and g2, plus an
independent interaction effect.

Examples

Fit a Generalized Linear Mixed-Effects Model

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch

(supplier)

 GeneralizedLinearMixedModel class

22-2017

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

22 Functions — Alphabetical List

22-2018

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Display the model.

disp(glme)

glme =

Generalized linear mixed-effects model fit by ML

Model information:

 Number of observations 100

 Fixed effects coefficients 6

 Random effects coefficients 20

 Covariance parameters 1

 Distribution Poisson

 Link Log

 FitMethod Laplace

Formula:

 defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 416.35 434.58 -201.17 402.35

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue

 '(Intercept)' 1.4689 0.15988 9.1875 94 9.8194e-15

 'newprocess' -0.36766 0.17755 -2.0708 94 0.041122

 'time_dev' -0.094521 0.82849 -0.11409 94 0.90941

 'temp_dev' -0.28317 0.9617 -0.29444 94 0.76907

 'supplier_C' -0.071868 0.078024 -0.9211 94 0.35936

 'supplier_B' 0.071072 0.07739 0.91836 94 0.36078

 Lower Upper

 1.1515 1.7864

 -0.72019 -0.015134

 -1.7395 1.5505

 -2.1926 1.6263

 -0.22679 0.083051

 -0.082588 0.22473

 GeneralizedLinearMixedModel class

22-2019

Random effects covariance parameters:

Group: factory (20 Levels)

 Name1 Name2 Type Estimate

 '(Intercept)' '(Intercept)' 'std' 0.31381

Group: Error

 Name Estimate

 'sqrt(Dispersion)' 1

The Model information table displays the total number of observations in the sample
data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively),
and the number of covariance parameters (1). It also indicates that the response variable
has a Poisson distribution, the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit
of the model. This includes the Akaike information criterion (AIC), Bayesian information
criterion (BIC) values, log likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95%
confidence intervals. It contains one row for each fixed-effects predictor, and each column
contains statistics corresponding to that predictor. Column 1 (Name) contains the name
of each fixed-effects coefficient, column 2 (Estimate) contains its estimated value, and
column 3 (SE) contains the standard error of the coefficient. Column 4 (tStat) contains
the t-statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF) and
column 6 (pValue) contain the degrees of freedom and p-value that correspond to the t-
statistic, respectively. The last two columns (Lower and Upper) display the lower and
upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping
variable (here, only factory), including its total number of levels (20), and the type and
estimate of the covariance parameter. Here, std indicates that fitglme returns the
standard deviation of the random effect associated with the factory predictor, which has
an estimated value of 0.31381. It also displays a table containing the error parameter
type (here, the square root of the dispersion parameter), and its estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals
for the random-effects parameters. To compute and display these values, use
covarianceParameters.

• “Fit a Generalized Linear Mixed-Effects Model” on page 10-79

22 Functions — Alphabetical List

22-2020

See Also
fitglme

More About
• “Generalized Linear Mixed-Effects Models” on page 10-64

 GeneralizedLinearModel class

22-2021

GeneralizedLinearModel class

Generalized linear regression model class

Description
An object comprising training data, model description, diagnostic information, and
fitted coefficients for a generalized linear regression. Predict model responses with the
predict or feval methods.

Construction
mdl = fitglm(tbl) or mdl = fitglm(X,y) creates a generalized linear model of
a table or dataset array tbl, or of the responses y to a data matrix X. For details, see
fitglm.

mdl = stepwiseglm(tbl) or mdl = stepwiseglm(X,y) creates a generalized linear
model of a table or dataset array tbl, or of the responses y to a data matrix X, with
unimportant predictors excluded. For details, see stepwiseglm.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

22 Functions — Alphabetical List

22-2022

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

Properties

CoefficientCovariance

Covariance matrix of coefficient estimates.

CoefficientNames

Cell array of strings containing a label for each coefficient.

Coefficients

Coefficient values stored as a table. Coefficients has one row for each coefficient and
these columns:

• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t statistic for a test that the coefficient is zero
• pValue — p-value for the t statistic

To obtain any of these columns as a vector, index into the property using dot notation.
For example, in mdl the estimated coefficient vector is

 GeneralizedLinearModel class

22-2023

beta = mdl.Coefficients.Estimate

Use coefTest to perform other tests on the coefficients.

Deviance

Deviance of the fit. It is useful for comparing two models when one is a special case
of the other. The difference between the deviance of the two models has a chi-square
distribution with degrees of freedom equal to the difference in the number of estimated
parameters between the two models. For more information on deviance, see “Deviance”
on page 22-2035.

DFE

Degrees of freedom for error (residuals), equal to the number of observations minus the
number of estimated coefficients.

Diagnostics

Table with diagnostics helpful in finding outliers and influential observations. The table
contains the following fields:

Field Meaning Utility

Leverage Diagonal elements of
HatMatrix

Leverage indicates to what extent the predicted
value for an observation is determined by the
observed value for that observation. A value close to
1 indicates that the prediction is largely determined
by that observation, with little contribution from the
other observations. A value close to 0 indicates the
fit is largely determined by the other observations.
For a model with p coefficients and n observations,
the average value of Leverage is p/n. An observation
with Leverage larger than 2*p/n can be an outlier.

CooksDistance Cook's measure of
scaled change in fitted
values

CooksDistance is a measure of scaled change in
fitted values. An observation with CooksDistance
larger than three times the mean Cook's distance can
be an outlier.

HatMatrix Projection matrix to
compute fitted from
observed responses

HatMatrix is an n-by-n matrix such that
Fitted = HatMatrix*Y, where Y is the response
vector and Fitted is the vector of fitted response
values.

22 Functions — Alphabetical List

22-2024

All of these quantities are computed on the scale of the linear predictor. So, for example,
in the equation that defines the hat matrix,

Yfit = glm.Fitted.LinearPredictor

Y = glm.Fitted.LinearPredictor + glm.Residuals.LinearPredictor

Dispersion

Scale factor of the variance of the response. Dispersion multiplies the variance function
for the distribution.

For example, the variance function for the binomial distribution is p(1–p)/n, where p is
the probability parameter and n is the sample size parameter. If Dispersion is near 1,
the variance of the data appears to agree with the theoretical variance of the binomial
distribution. If Dispersion is larger than 1, the data are “overdispersed” relative to the
binomial distribution.

DispersionEstimated

Logical value indicating whether fitglm used the Dispersion property to compute
standard errors for the coefficients in Coefficients.SE. If DispersionEstimated is
false, fitglm used the theoretical value of the variance.

• DispersionEstimated can be false only for 'binomial' or 'poisson'
distributions.

• Set DispersionEstimated by setting the DispersionFlag name-value pair in
fitglm.

Distribution

Structure with the following fields relating to the generalized distribution:

Field Description

Name Name of the distribution, one of 'normal', 'binomial', 'poisson',
'gamma', or 'inverse gamma'.

DevianceFunction Function that computes the components of the deviance as a function of
the fitted parameter values and the response values.

VarianceFunction Function that computes the theoretical variance for the
distribution as a function of the fitted parameter values. When
DispersionEstimated is true, Dispersion multiplies the variance
function in the computation of the coefficient standard errors.

 GeneralizedLinearModel class

22-2025

Fitted

Table of predicted (fitted) values based on the training data, a table with one row for each
observation and the following columns.

Field Description

Response Predicted values on the scale of the response.
LinearPredictor Predicted values on the scale of the linear predictor. These are the same

as the link function applied to the Response fitted values.
Probability Fitted probabilities (this column is included only with the binomial

distribution).

To obtain any of the columns as a vector, index into the property using dot notation. For
example, in the model mdl, the vector f of fitted values on the response scale is

f = mdl.Fitted.Response

Use predict to compute predictions for other predictor values, or to compute confidence
bounds on Fitted.

Formula

Object containing information about the model.

Link

Structure with fields relating to the link function. The link is a function f that links the
distribution parameter μ to the fitted linear combination Xb of the predictors:
f(μ) = Xb.

The structure has the following fields.

Field Description

Name Name of the link function, or '' if you specified the link as a function
handle rather than a string.

LinkFunction The function that defines f, a function handle.
DevianceFunction Derivative of f, a function handle.

22 Functions — Alphabetical List

22-2026

Field Description

VarianceFunction Inverse of f, a function handle.

LogLikelihood

Log likelihood of the model distribution at the response values, with mean fitted from the
model, and other parameters estimated as part of the model fit.

ModelCriterion

AIC and other information criteria for comparing models. A structure with fields:

• AIC — Akaike information criterion
• AICc — Akaike information criterion corrected for sample size
• BIC — Bayesian information criterion
• CAIC — Consistent Akaike information criterion

To obtain any of these values as a scalar, index into the property using dot notation. For
example, in a model mdl, the AIC value aic is:

aic = mdl.ModelCriterion.AIC

NumCoefficients

Number of coefficients in the model, a positive integer. NumCoefficients includes
coefficients that are set to zero when the model terms are rank deficient.

NumEstimatedCoefficients

Number of estimated coefficients in the model, a positive integer.
NumEstimatedCoefficients does not include coefficients that are set to zero when the
model terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom
for regression.

NumObservations

Number of observations the fitting function used in fitting. This is the number of
observations supplied in the original table, dataset, or matrix, minus any excluded rows
(set with the Excluded name-value pair) or rows with missing values.

 GeneralizedLinearModel class

22-2027

NumPredictors

Number of variables fitlm used as predictors for fitting.

NumVariables

Number of variables in the data. NumVariables is the number of variables in the
original table or dataset, or the total number of columns in the predictor matrix and
response vector when the fit is based on those arrays. It includes variables, if any, that
are not used as predictors or as the response.

ObservationInfo

Table with the same number of rows as the input data (tbl or X).

Field Description

Weights Observation weights. Default is all 1.
Excluded Logical value, 1 indicates an observation that you excluded from

the fit with the Exclude name-value pair.
Missing Logical value, 1 indicates a missing value in the input. Missing

values are not used in the fit.
Subset Logical value, 1 indicates the observation is not excluded or

missing, so is used in the fit.

ObservationNames

Cell array of strings containing the names of the observations used in the fit.

• If the fit is based on a table or dataset containing observation names,
ObservationNames uses those names.

• Otherwise, ObservationNames is an empty cell array

Offset

Vector with the same length as the number of rows in the data, passed from fitglm or
stepwiseglm in the Offset name-value pair. The fitting function used Offset as a
predictor variable, but with the coefficient set to exactly 1. In other words, the formula
for fitting was

22 Functions — Alphabetical List

22-2028

μ ~ Offset + (terms involving real predictors)

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is
known for theoretical reasons to be proportional to a predictor A. By using the log link
function and by specifying log(A) as an offset, you can force the model to satisfy this
theoretical constraint.

PredictorNames

Cell array of strings, the names of the predictors used in fitting the model.

Residuals

Table containing residuals, with one row for each observation and these variables.

Field Description

Raw Observed minus fitted values.
LinearPredictor Residuals on the linear predictor scale, equal to the adjusted

response value minus the fitted linear combination of the
predictors.

Pearson Raw residuals divided by the estimated standard deviation of
the response.

Anscombe Residuals defined on transformed data with the transformation
chosen to remove skewness.

Deviance Residuals based on the contribution of each observation to the
deviance.

To obtain any of these columns as a vector, index into the property using dot notation.
For example, in a model mdl, the ordinary raw residual vector r is:

r = mdl.Residuals.Raw

Rows not used in the fit because of missing values (in ObservationInfo.Missing)
contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded)
contain NaN values, with the following exceptions:

 GeneralizedLinearModel class

22-2029

• raw contains the difference between the observed and predicted values.
• standardized is the residual, standardized in the usual way.
• studentized matches the standardized values because this residual is not used in

the estimate of the residual standard deviation.

ResponseName

String giving naming the response variable.

Rsquared

Proportion of total sum of squares explained by the model. The ordinary R-squared value
relates to the SSR and SST properties:
Rsquared = SSR/SST = 1 - SSE/SST.

For a linear or nonlinear model, Rsquared is a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients

For a generalized linear model, Rsquared is a structure with five fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients
• LLR — Log-likelihood ratio
• Deviance — Deviance
• AdjGeneralized — Adjusted generalized R-squared

To obtain any of these values as a scalar, index into the property using dot notation. For
example, the adjusted R-squared value in mdl is

r2 = mdl.Rsquared.Adjusted

SSE

Sum of squared errors (residuals).

The Pythagorean theorem implies

22 Functions — Alphabetical List

22-2030

SST = SSE + SSR.

SSR

Regression sum of squares, the sum of squared deviations of the fitted values from their
mean.

The Pythagorean theorem implies
SST = SSE + SSR.

SST

Total sum of squares, the sum of squared deviations of y from mean(y).

The Pythagorean theorem implies
SST = SSE + SSR.

Steps

Structure that is empty unless stepwiselm constructed the model.

Field Description

Start Formula representing the starting model
Lower Formula representing the lower bound model, these terms that

must remain in the model
Upper Formula representing the upper bound model, model cannot

contain more terms than Upper
Criterion Criterion used for the stepwise algorithm, such as 'sse'
PEnter Value of the parameter, such as 0.05
PRemove Value of the parameter, such as 0.10
History Table representing the steps taken in the fit

The History table has one row for each step including the initial fit, and the following
variables (columns).

Field Description

Action Action taken during this step, one of:

• 'Start' — First step

 GeneralizedLinearModel class

22-2031

Field Description

• 'Add' — A term is added
• 'Remove' — A term is removed

TermName • 'Start' step: The starting model specification
• 'Add' or 'Remove' steps: The term moved in that step

Terms Terms matrix (see modelspec of fitlm)
DF Regression degrees of freedom after this step
delDF Change in regression degrees of freedom from previous step

(negative for steps that remove a term)
Deviance Deviance (residual sum of squares) at that step
FStat F statistic that led to this step
PValue p-value of the F statistic

VariableInfo

Table containing metadata about Variables. There is one row for each term in the
model, and the following columns.

Field Description

Class String giving variable class, such as 'double'
Range Cell array giving variable range:

• Continuous variable — Two-element vector [min,max], the
minimum and maximum values

• Categorical variable — Cell array of distinct variable values
InModel Logical vector, where true indicates the variable is in the

model
IsCategorical Logical vector, where true indicates a categorical variable

VariableNames

Cell array of strings containing names of the variables in the fit.

• If the fit is based on a table or dataset, this property provides the names of the
variables in that table or dataset.

22 Functions — Alphabetical List

22-2032

• If the fit is based on a predictor matrix and response vector, VariableNames is the
values in the VarNames name-value pair of the fitting method.

• Otherwise the variables have the default fitting names.

Variables

Table containing the data, both observations and responses, that the fitting function used
to construct the fit. If the fit is based on a table or dataset array, Variables contains
all of the data from that table or dataset array. Otherwise, Variables is a table created
from the input data matrix X and response vector y.

Methods

addTerms
Add terms to generalized linear model

coefCI
Confidence intervals of coefficient
estimates of generalized linear model

coefTest
Linear hypothesis test on generalized
linear regression model coefficients

devianceTest
Analysis of deviance

disp
Display generalized linear regression model

feval
Evaluate generalized linear regression
model prediction

fit
Create generalized linear regression model

plotDiagnostics
Plot diagnostics of generalized linear
regression model

plotResiduals
Plot residuals of generalized linear
regression model

 GeneralizedLinearModel class

22-2033

plotSlice
Plot of slices through fitted generalized
linear regression surface

predict
Predict response of generalized linear
regression model

random
Simulate responses for generalized linear
regression model

removeTerms
Remove terms from generalized linear
model

step
Improve generalized linear regression
model by adding or removing terms

stepwise
Create generalized linear regression model
by stepwise regression

Definitions

Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models

Distribution Link Function Name Link Function Mean (Inverse) Function

'normal' 'identity' f(μ) = μ μ = Xb
'binomial' 'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)
'inverse

gaussian'

-2 f(μ) = 1/μ2 μ = (Xb)–1/2

22 Functions — Alphabetical List

22-2034

Hat Matrix

The hat matrix H is defined in terms of the data matrix X and a diagonal weight matrix
W:
H = X(XTWX)–1XTWT.

W has diagonal elements wi:

w
g

V
i

i

i

=
¢()

()

m

m
,

where

• g is the link function mapping yi to xib.
• ¢g is the derivative of the link function g.

• V is the variance function.
• μi is the ith mean.

The diagonal elements Hii satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

where n is the number of observations (rows of X), and p is the number of coefficients in
the regression model.

Leverage

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix H.
Because the sum of the leverage values is p (the number of coefficients in the regression
model), an observation i can be considered to be an outlier if its leverage substantially
exceeds p/n, where n is the number of observations.

Cook’s Distance

The Cook’s distance Di of observation i is

 GeneralizedLinearModel class

22-2035

D w
e

p

h

h
i i

i ii

ii

=
-()

2

2
1ˆ

,
j

where

• ĵ is the dispersion parameter (estimated or theoretical).

• ei is the linear predictor residual, g y xi i() - b̂ , where

• g is the link function.
• yi is the observed response.
• xi is the observation.
• b̂ is the estimated coefficient vector.

• p is the number of coefficients in the regression model.
• hii is the ith diagonal element of the Hat Matrix H.

Deviance

Deviance of a model M1 is twice the difference between the loglikelihood of that model
and the saturated model, MS. The saturated model is the model with the maximum
number of parameters that can be estimated. For example, if there are n observations yi,
i = 1, 2, ..., n, with potentially different values for Xi

Tβ, then you can define a saturated
model with n parameters. Let L(b,y) denote the maximum value of the likelihood function
for a model. Then the deviance of model M1 is

- () - ()()2 1log , log , ,L b y L b yS

where b1 are the estimated parameters for model M1 and bS are the estimated
parameters for the saturated model. The deviance has a chi-square distribution with n –
p degrees of freedom, where n is the number of parameters in the saturated model and p
is the number of parameters in model M1.

If M1 and M2 are two different generalized linear models, then the fit of the models can
be assessed by comparing the deviances D1 and D2 of these models. The difference of the
deviances is

22 Functions — Alphabetical List

22-2036

D D D L b y L b y L b y L b yS S= - = - () - ()() + () - ()()2 1 2 12 2log , log , log , log ,

== - () - ()()2 2 1log , log , .L b y L b y

Asymptotically, this difference has a chi-square distribution with degrees of freedom v
equal to the number of parameters that are estimated in one model but fixed (typically
at 0) in the other. That is, it is equal to the difference in the number of parameters
estimated in M1 and M2. You can get the p-value for this test using 1 - chi2cdf(D,V),
where D = D2 – D1.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Fit a Generalized Linear Model

Fit a logistic regression model of probability of smoking as a function of age, weight, and
sex, using a two-way interactions model.

Load the hospital dataset array.

load hospital

ds = hospital; % just to use the ds name

Specify the model using a formula that allows up to two-way interactions.

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

Create the generalized linear model.

mdl = fitglm(ds,modelspec,'Distribution','binomial')

mdl =

Generalized Linear regression model:

 logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight

 Distribution = Binomial

 GeneralizedLinearModel class

22-2037

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) -6.0492 19.749 -0.3063 0.75938

 Sex_Male -2.2859 12.424 -0.18399 0.85402

 Age 0.11691 0.50977 0.22934 0.81861

 Weight 0.031109 0.15208 0.20455 0.83792

 Sex_Male:Age 0.020734 0.20681 0.10025 0.92014

 Sex_Male:Weight 0.01216 0.053168 0.22871 0.8191

 Age:Weight -0.00071959 0.0038964 -0.18468 0.85348

100 observations, 93 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

The large p-value indicates the model might not differ statistically from a constant.

Create a Generalized Linear Model Stepwise

Create response data using just three of 20 predictors, and create a generalized linear
model stepwise to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors,
plus a constant.

rng('default') % for reproducibility

X = randn(100,20);

mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);

y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl = stepwiseglm(X,y,...

 'constant','upper','linear','Distribution','poisson')

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13

2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07

3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x5 + x10 + x15

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.0115 0.064275 15.737 8.4217e-56

 x5 0.39508 0.066665 5.9263 3.0977e-09

 x10 0.18863 0.05534 3.4085 0.0006532

 x15 0.29295 0.053269 5.4995 3.8089e-08

100 observations, 96 error degrees of freedom

22 Functions — Alphabetical List

22-2038

Dispersion: 1

Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

• “Generalized Linear Model Workflow” on page 10-39

See Also
fitglm | LinearModel | NonLinearModel | stepwiseglm

More About
• “Generalized Linear Models” on page 10-12

 prob.GeneralizedParetoDistribution class

22-2039

prob.GeneralizedParetoDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Generalized Pareto probability distribution object

Description

prob.GeneralizedParetoDistribution is an object consisting of parameters, a
model description, and sample data for a generalized Pareto probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('GeneralizedPareto') creates a generalized Pareto probability
distribution object using default parameter values.

pd = makedist('GeneralizedPareto','k',k,'sigma',sigma,'theta',theta)

creates a generalized Pareto probability distribution object using the specified parameter
values.

Input Arguments

k — Shape parameter
1 (default) | scalar value

Shape parameter for the generalized Pareto distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter for the generalized Pareto distribution, specified as a nonnegative scalar
value.

22 Functions — Alphabetical List

22-2040

Data Types: single | double

theta — Location parameter
1 (default) | scalar value

Location parameter for the generalized Pareto distribution, specified as a scalar value.
Data Types: single | double

Properties

k — Shape parameter
scalar value

Shape parameter for the generalized Pareto distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter for the generalized Pareto distribution, stored as a nonnegative scalar
value.
Data Types: single | double

theta — Location parameter
scalar value

Location parameter for the generalized Pareto distribution, stored as a scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

 prob.GeneralizedParetoDistribution class

22-2041

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.

22 Functions — Alphabetical List

22-2042

Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

 prob.GeneralizedParetoDistribution class

22-2043

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

22 Functions — Alphabetical List

22-2044

Definitions

Generalized Pareto Distribution

The generalized Pareto distribution is used to model the tails of another distribution.
It allows a continuous range of possible shapes that include both the exponential and
Pareto distributions as special cases. It has three basic forms, each corresponding to a
limiting distribution of exceedence data from a different class of underlying distributions.

• Distributions whose tails decrease exponentially, such as the normal, lead to a
generalized Pareto shape parameter of zero.

• Distributions whose tails decrease polynomially, such as the Student’s t, lead to a
positive shape parameter.

• Distributions whose tails are finite, such as the beta, lead to a negative shape
parameter.

The generalized Pareto distribution uses the following parameters.

Parameter Description Support

k Shape parameter -• < < •k

sigma Scale parameter s ≥ 0

theta Location parameter -• < < •q

The probability density function (pdf) of the generalized Pareto distribution with shape
parameter k π 0 is

f x k k
x k

| , ,s q
s

q

s
() = Ê

Ë
Á

ˆ
¯
˜ +

-()Ê

Ë
ÁÁ

ˆ

¯
˜̃

- -
1

1

1
1

for x > q , when k > 0 , or for
q

s
< < -x

k , when k < 0 .

For k = 0 , the pdf is

 prob.GeneralizedParetoDistribution class

22-2045

y f x
x

= () = Ê
Ë
Á

ˆ
¯
˜ -

-()Ê

Ë
ÁÁ

ˆ

¯
˜̃| , , exp0

1s q
s

q

s

for x > q .

If k = 0 and q = 0 , the generalized Pareto distribution is equivalent to the exponential

distribution. If k > 0 and
q

s
=

k , the generalized Pareto distribution is equivalent to the
Pareto distribution.

Examples

Create a Generalized Pareto Distribution Object Using Default Parameters

Create a generalized Pareto distribution object using the default parameter values.

pd = makedist('GeneralizedPareto')

pd =

 GeneralizedParetoDistribution

 Generalized Pareto distribution

 k = 1

 sigma = 1

 theta = 1

Create a Generalized Pareto Distribution Object Using Specified Parameters

Create a generalized Pareto distribution object by specifying parameter values.

pd = makedist('GeneralizedPareto','k',0,'sigma',2,'theta',1)

pd =

 GeneralizedParetoDistribution

 Generalized Pareto distribution

 k = 0

 sigma = 2

22 Functions — Alphabetical List

22-2046

 theta = 1

Compute the mean of the distribution.

m = mean(pd)

m =

 2.1544

See Also
dfittool | fitdist | makedist

More About
• “Generalized Pareto Distribution”
• Class Attributes
• Property Attributes

 geocdf

22-2047

geocdf
Geometric cumulative distribution function

Syntax

y = geocdf(x,p)

y = geocdf(x,p,'upper')

Description

y = geocdf(x,p) returns the cumulative distribution function (cdf) of the geometric
distribution at each value in x using the corresponding probabilities in p. x and p can
be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other input. The
parameters in p must lie on the interval [0,1].

y = geocdf(x,p,'upper') returns the complement of the geometric distribution cdf
at each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities.

Examples

Compute Geometric Distribution cdf

Suppose you toss a fair coin repeatedly, and a "success" occurs when the coin lands with
heads facing up. What is the probability of observing three or fewer tails ("failures")
before tossing a heads?

To solve, determine the value of the cumulative distribution function (cdf) for the
geometric distribution at x equal to 3. The probability of success (tossing a heads) p in
any given trial is 0.5.

x = 3;

p = 0.5;

y = geocdf(x,p)

22 Functions — Alphabetical List

22-2048

y =

 0.9375

The returned value of y indicates that the probability of observing three or fewer tails
before tossing a heads is 0.9375.

More About

Geometric Distribution cdf

The cumulative distribution function (cdf) of the geometric distribution is

y F x p p x
x

= = - -() =
+

(|) ; , , , ...,1 1 0 1 2
1

where p is the probability of success, and x is the number of failures before the first
success. The result y is the probability of observing up to x trials before a success, when
the probability of success in any given trial is p.
• “Geometric Distribution” on page B-65

See Also
geopdf | geoinv | geostat | geornd | cdf | mle

 geoinv

22-2049

geoinv
Geometric inverse cumulative distribution function

Syntax

x = geoinv(y,p)

Description

x = geoinv(y,p) returns the inverse cumulative distribution function (icdf) of the
geometric distribution at each value in y using the corresponding probabilities in p.

geoinv returns the smallest positive integer x such that the geometric cdf evaluated at x
is equal to or exceeds y. You can think of y as the probability of observing x successes in
a row in independent trials, where p is the probability of success in each trial.

y and p can be vectors, matrices, or multidimensional arrays that all have the same size.
A scalar input for p or y is expanded to a constant array with the same dimensions as the
other input. The values in p and y must lie on the interval [0,1].

Examples

Compute Geometric Distribution icdf

Suppose the probability of a five-year-old car battery not starting in cold weather is 0.03.
If we want no more than a ten percent chance that the car does not start, what is the
maximum number of days in a row that we should try to start the car?

To solve, compute the inverse cdf of the geometric distribution. In this example, a
"success" means the car does not start, while a "failure" means the car does start. The
probability of success for each trial p equals 0.03, while the probability of observing x
failures in a row before observing a success y equals 0.1.

y = 0.1;

p = 0.03;

x = geoinv(y,p)

22 Functions — Alphabetical List

22-2050

x =

 3

The returned result indicates that if we start the car three times, there is at least a ten
percent chance that it will not start on one of those tries. Therefore, if we want no greater
than a ten percent chance that the car will not start, we should only attempt to start it
for a maximum of two days in a row.

We can confirm this result by evaluating the cdf at values of x equal to 2 and 3, given the
probability of success for each trial p equal to 0.03.

y2 = geocdf(2,p) % cdf for x = 2

y3 = geocdf(3,p) % cdf for x = 3

y2 =

 0.0873

y3 =

 0.1147

The returned results indicate an 8.7% chance of the car not starting if we try two days in
a row, and an 11.5% chance of not starting if we try three days in a row.

More About
• “Geometric Distribution” on page B-65

See Also
geocdf | geopdf | geostat | geornd | icdf

 geomean

22-2051

geomean
Geometric mean

Syntax

m = geomean(x)

geomean(X,dim)

Description

m = geomean(x) calculates the geometric mean of a sample. For vectors, geomean(x)
is the geometric mean of the elements in x. For matrices, geomean(X) is a row vector
containing the geometric means of each column. For N-dimensional arrays, geomean
operates along the first nonsingleton dimension of X.

geomean(X,dim) takes the geometric mean along the dimension dim of X.

The geometric mean is

m xi

i

n n

=










=

∏
1

1

Examples

The arithmetic mean is greater than or equal to the geometric mean.

x = exprnd(1,10,6);

geometric = geomean(x)

geometric =

 0.7466 0.6061 0.6038 0.2569 0.7539 0.3478

average = mean(x)

average =

22 Functions — Alphabetical List

22-2052

 1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

More About
• “Geometric Distribution” on page B-65

See Also
mean | median | harmmean | trimmean

 geopdf

22-2053

geopdf
Geometric probability density function

Syntax

y = geopdf(x,p)

Description

y = geopdf(x,p) returns the probability density function (pdf) of the geometric
distribution at each value in x using the corresponding probabilities in p. x and p can
be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other input. The
parameters in p must lie on the interval [0,1].

Examples

Compute Geometric Distribution pdf

Suppose you toss a fair coin repeatedly, and a "success" occurs when the coin lands with
heads facing up. What is the probability of observing exactly three tails ("failures") before
tossing a heads?

To solve, determine the value of the probability density function (pdf) for the geometric
distributon at x equal to 3. The probability of success (tossing a heads) p in any given
trial is 0.5.

x = 3;

p = 0.5;

y = geopdf(x,p)

y =

 0.0625

22 Functions — Alphabetical List

22-2054

The returned value of y indicates that the probability of observing exactly three tails
before tossing a heads is 0.0625.

More About

Geometric Distribution pdf

The probability distribution function (pdf) of the geometric distribution is

y f x p p p xx
= = - =(|) () ; , , , ,1 0 1 2…

where p is the probability of success, and x is the number of failures before the first
success. The result y is the probability of observing exactly x trials before a success,
when the probability of success in any given trial is p. For discrete distributions, the
probability distribution function is also known as the probability mass function (pmf).
• “Geometric Distribution” on page B-65

See Also
geocdf | geoinv | geostat | geornd | pdf | mle

 geornd

22-2055

geornd
Geometric random numbers

Syntax

r = geornd(p)

r = geornd(p,m,n,...)

r = geornd(p,[m,n,...])

Description

r = geornd(p) generates random numbers from a geometric distribution with
probability parameter p. p can be a vector, a matrix, or a multidimensional array. The
size of r is equal to the size of p. The parameters in p must lie in the interval [0,1].

r = geornd(p,m,n,...) or r = geornd(p,[m,n,...]) generates a
multidimensional m-by-n-by-... array containing random numbers from the geometric
distribution with probability parameter p. p can be a scalar or an array of the same size
as r.

The geometric distribution is useful to model the number of failures before one success
in a series of independent trials, where each trial results in either success or failure, and
the probability of success in any individual trial is the constant p.

Examples

Generate Random Numbers from Geometric Distribution

Generate a single random number from a geometric distribution with probability
parameter p equal to 0.01.

rng default % For reproducibility

p = 0.01;

r1 = geornd(0.01)

22 Functions — Alphabetical List

22-2056

r1 =

 20

The returned random number represents a single experiment in which 20 failures were
observed before a success, where each independent trial has a probability of success p
equal to 0.01.

Generate a 1-by-5 array of random numbers from a geometric distribution with
probability parameter p equal to 0.01.

r2 = geornd(p,1,5)

r2 =

 9 205 9 45 231

Each random number in the returned array represents the result of an experiment to
determine the number of failures observed before a success, where each independent trial
has a probability of success p equal to 0.01.

Generate a 1-by-3 array containing one random number from each of the three geometric
distributions corresponding to the parameters in the 1-by-3 array of probabilities p.

p = [0.01 0.1 0.5];

r3 = geornd(p,[1 3])

r3 =

 127 5 0

Each element of the returned 1-by-3 array r3 contains one random number generated
from the geometric distribution described by the corresponding parameter in P. For
example, the first element in r3 represents an experiment in which 127 failures were
observed before a success, where each independent trial has a probability of success p
equal to 0.01. The second element in r3 represents an experiment in which 5 failures
were observed before a success, where each independent trial has a probability of success
p equal to 0.1. The third element in r3 represents an experiment in which zero failures

 geornd

22-2057

were observed before a success - in other words, the first attempt was a success - where
each independent trial has a probability of success p equal to 0.5.

More About
• “Geometric Distribution” on page B-65

See Also
geopdf | geocdf | geoinv | geostat | random

22 Functions — Alphabetical List

22-2058

geostat
Geometric mean and variance

Syntax

[m,v] = geostat(p)

Description

[m,v] = geostat(p) returns the mean m and variance v of a geometric distribution
with corresponding probability parameters in p. p can be a vector, a matrix, or a
multidimensional array. The parameters in p must lie in the interval [0,1].

Examples

Compute Mean and Variance of Geometric Distribution

Define a probability vector that contains six different parameter values.

p = 1./(1:6)

p =

 1.0000 0.5000 0.3333 0.2500 0.2000 0.1667

Compute the mean and variance of the geometric distribution that corresponds to each
value contained in probability vector.

[m,v] = geostat(1./(1:6))

m =

 0 1.0000 2.0000 3.0000 4.0000 5.0000

 geostat

22-2059

v =

 0 2.0000 6.0000 12.0000 20.0000 30.0000

The returned values indicate that, for example, the mean of a geometric distribution with
probability parameter p equal to 1/3 is 2, and its variance is 6.

More About

Geometric Distribution Mean and Variance

The mean of the geometric distribution is

mean =

-1 p

p
,

and the variance of the geometric distribution is

var ,=

-1

2

p

p

where p is the probability of success.
• “Geometric Distribution” on page B-65

See Also
geopdf | geocdf | geoinv | geornd

22 Functions — Alphabetical List

22-2060

clustering.evaluation.GapEvaluation class
Package: clustering.evaluation
Superclasses: clustering.evaluation.ClusterCriterion

Gap criterion clustering evaluation object

Description

clustering.evaluation.GapEvaluation is an object consisting of sample data,
clustering data, and gap criterion values used to evaluate the optimal number of clusters.
Create a gap criterion clustering evaluation object using evalclusters.

Construction

eva = evalclusters(x,clust,'Gap') creates a gap criterion clustering evaluation
object.

eva = evalclusters(x,clust,'Gap',Name,Value) creates a gap criterion
clustering evaluation object using additional options specified by one or more name-value
pair arguments.

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the
number of variables.
Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions |
function handle

Clustering algorithm, specified as one of the following.

 clustering.evaluation.GapEvaluation class

22-2061

'kmeans' Cluster the data in x using the kmeans clustering
algorithm, with 'EmptyAction' set to 'singleton' and
'Replicates' set to 5.

'linkage' Cluster the data in x using the clusterdata
agglomerative clustering algorithm, with 'Linkage' set
to 'ward'.

'gmdistribution' Cluster the data in x using the gmdistribution
Gaussian mixture distribution algorithm, with
'SharedCov' set to true and 'Replicates' set to 5.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you can
specify a clustering algorithm using the function_handle (@) operator. The function
must be of the form C = clustfun(DATA,K), where DATA is the data to be clustered,
and K is the number of clusters. The output of clustfun must be one of the following:

• A vector of integers representing the cluster index for each observation in DATA. There
must be K unique values in this vector.

• A numeric n-by-K matrix of score for n observations and K classes. In this case, the
cluster index for each observation is determined by taking the largest score value in
each row.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you
can also specify clust as a n-by-K matrix containing the proposed clustering solutions.
n is the number of observations in the sample data, and K is the number of proposed
clustering solutions. Column j contains the cluster indices for each of the N points in the
jth clustering solution.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'KList',[1:5],'Distance','cityblock' specifies to test 1, 2, 3, 4, and 5
clusters using the sum of absolute differences distance measure.

'B' — Number of reference data sets
100 (default) | positive integer value

22 Functions — Alphabetical List

22-2062

Number of reference data sets generated from the reference distribution
ReferenceDistribution, specified as the comma-separated pair consisting of 'B' and a
positive integer value.
Example: 'B',150

'Distance' — Distance metric
'sqEuclidean' (default) | 'Euclidean' | 'cityblock' | function | ...

Distance metric used for computing the criterion values, specified as the comma-
separated pair consisting of 'Distance' and one of the following.

'sqEuclidean' Squared Euclidean distance
'Euclidean' Euclidean distance
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle between points

(treated as vectors)
'correlation' One minus the sample correlation between points (treated

as sequences of values)
'Hamming' Percentage of coordinates that differ
'Jaccard' Percentage of nonzero coordinates that differ

For detailed information about each distance metric, see pdist.

You can also specify a function for the distance metric by using the function_handle
(@) operator. The distance function must be of the form

d2 = distfun(XI,XJ),

where XI is a 1-by-n vector corresponding to a single row of the input matrix X, and XJ is
an m2-by-n matrix corresponding to multiple rows of X. distfun must return an m2-by-1
vector of distances d2, whose kth element is the distance between XI and XJ(k,:).

If Criterion is 'silhouette', you can also specify Distance as the output vector
output created by the function pdist.

When Clust a string representing a built-in clustering algorithm, evalclusters uses
the distance metric specified for Distance to cluster the data, except for the following:

• If Clust is 'linkage', and Distance is either 'sqEuclidean' or 'Euclidean',
then the clustering algorithm uses Euclidean distance and Ward linkage.

 clustering.evaluation.GapEvaluation class

22-2063

• If Clust is 'linkage' and Distance is any other metric, then the clustering
algorithm uses the specified distance metric and average linkage.

In all other cases, the distance metric specified for Distance must match the distance
metric used in the clustering algorithm to obtain meaningful results.
Example: 'Distance','Euclidean'

'KList' — List of number of clusters to evaluate
vector

List of number of clusters to evaluate, specified as the comma-separated pair consisting
of 'KList' and a vector of positive integer values. You must specify KList when clust is
a clustering algorithm name string or a function handle. When criterion is 'gap', clust
must be a string or a function handle, and you must specify KList.
Example: 'KList',[1:6]

'ReferenceDistribution' — Reference data generation method
'PCA' (default) | 'uniform'

Reference data generation method, specified as the comma-separated pair consisting of
'ReferenceDistributions' and one of the following.

'PCA' Generate reference data from a uniform distribution over
a box aligned with the principal components of the data
matrix x.

'uniform' Generate reference data uniformly over the range of each
feature in the data matrix x.

Example: 'ReferenceDistribution','uniform'

'SearchMethod' — Method for selecting optimal number of clusters
'globalMaxSE' (default) | 'firstMaxSE'

Method for selecting the optimal number of clusters, specified as the comma-separated
pair consisting of 'SearchMethod' and one of the following.

'globalMaxSE' Evaluate each proposed number of clusters in KList and
select the smallest number of clusters satisfying

Gap SEK GAPMAX GAPMAX() ≥ - (),

22 Functions — Alphabetical List

22-2064

where K is the number of clusters, Gap(K) is the gap value
for the clustering solution with K clusters, GAPMAX is the
largest gap value, and SE(GAPMAX) is the standard error
corresponding to the largest gap value.

'firstMaxSE' Evaluate each proposed number of clusters in KList and
select the smallest number of clusters satisfying

Gap Gap SE() () (),K K K≥ + - +1 1

where K is the number of clusters, Gap(K) is the gap value
for the clustering solution with K clusters, and SE(K + 1)
is the standard error of the clustering solution with K + 1
clusters.

Example: 'SearchMethod','globalMaxSE'

Properties

B

Number of data sets generated from the reference distribution, stored as a positive
integer value.

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering
algorithm name string or function handle. If the clustering solutions are provided in the
input, ClusteringFunction is empty.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name
string.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK,
stored as a vector of numerical values.

 clustering.evaluation.GapEvaluation class

22-2065

Distance

Distance measure used for clustering data, stored as a valid distance measure name
string.

ExpectedLogW

Expectation of the natural logarithm of W based on the generated reference data, stored
as a vector of scalar values. W is the within-cluster dispersion computed using the
distance measurement Distance.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a
vector of positive integer values.

LogW

Natural logarithm of W based on the input data, stored as a vector of scalar values. W is
the within-cluster dispersion computed using the distance measurement Distance.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing
equals true, then the corresponding value in the data matrix x is not used in the
clustering solution.

NumObservations

Number of observations in the data matrix X, minus the number of missing (NaN) values
in X, stored as a positive integer value.

OptimalK

Optimal number of clusters, stored as a positive integer value.

OptimalY

Optimal clustering solution corresponding to OptimalK, stored as a column vector of
positive integer values. If the clustering solutions are provided in the input, OptimalY is
empty.

22 Functions — Alphabetical List

22-2066

ReferenceDistribution

Reference data generation method, stored as a valid reference distribution name string.

SE

Standard error of the natural logarithm of W with respect to the reference data for each
number of clusters in InspectedK, stored as a vector of scalar values. W is the within-
cluster dispersion computed using the distance measurement Distance.

SearchMethod

Method for determining the optimal number of clusters, stored as a valid search method
name string.

StdLogW

Standard deviation of the natural logarithm of W with respect to the reference data for
each number of clusters in InspectedK. W is the within-cluster dispersion computed
using the distance measurement Distance.

X

Data used for clustering, stored as a matrix of numerical values.

Methods

increaseB
Increase reference data sets

Inherited Methods

addK
Evaluate additional numbers of clusters

plot
Plot clustering evaluation object criterion
values

 clustering.evaluation.GapEvaluation class

22-2067

compact
Compact clustering evaluation object

Definitions

Gap Value

A common graphical approach to cluster evaluation involves plotting an error
measurement versus several proposed numbers of clusters, and locating the “elbow” of
this plot. The “elbow” occurs at the most dramatic decrease in error measurement. The
gap criterion formalizes this approach by estimating the “elbow” location as the number
of clusters with the largest gap value. Therefore, under the gap criterion, the optimal
number of clusters occurs at the solution with the largest local or global gap value within
a tolerance range.

The gap value is defined as

Gap k E W Wn n k k() = (){ } - ()* log log ,

where n is the sample size, k is the number of clusters being evaluated, and Wk is the
pooled within-cluster dispersion measurement

W
n

Dk
r

r

r

k

=

=

Â
1

2
1

,

where nr is the number of data points in cluster r, and Dr is the sum of the pairwise
distances for all points in cluster r.

The expected value E Wn k
* log (){ } is determined by Monte Carlo sampling from a

reference distribution, and log(Wk) is computed from the sample data.

The gap value is defined even for clustering solutions that contain only one cluster, and
can be used with any distance metric. However, the gap criterion is more computationally

22 Functions — Alphabetical List

22-2068

expensive than other cluster evaluation criteria, because the clustering algorithm must
be applied to the reference data for each proposed clustering solution.

Examples

Evaluate the Clustering Solution Using Gap Criterion

Evaluate the optimal number of clusters using the gap clustering evaluation criterion.

Load the sample data.

load fisheriris;

The data contains sepal and petal measurements from three species of iris flowers.

Evaluate the number of clusters based on the gap criterion values. Cluster the data using
kmeans.

rng('default'); % For reproducibility

eva = evalclusters(meas,'kmeans','gap','KList',[1:6])

eva =

 GapEvaluation with properties:

 NumObservations: 150

 InspectecedK: [1 2 3 4 5 6]

 CriterionValues: [1x6 double]

 OptimalK: 4

The OptimalK value indicates that, based on the gap criterion, the optimal number of
clusters is four.

Plot the gap criterion values for each number of clusters tested.

figure;

plot(eva);

 clustering.evaluation.GapEvaluation class

22-2069

Based on the plot, the maximum value of the gap criterion occurs at five clusters.
However, the value at four clusters is within one standard error of the maximum, so the
suggested optimal number of clusters is four.

Create a grouped scatter plot to examine the relationship between petal length and
width. Group the data by suggested clusters.

figure;

PetalLength = meas(:,3);

PetalWidth = meas(:,4);

ClusterGroup = eva.OptimalY;

figure;

gscatter(PetalLength,PetalWidth,ClusterGroup,'rbgk','xod^');

22 Functions — Alphabetical List

22-2070

The plot shows cluster 1 in the lower-left corner, completely separated from the other
three clusters. Cluster 1 contains flowers with the smallest petal widths and lengths.
Cluster 4 is in the upper-right corner, and contains flowers with the largest petal widths
and lengths. Clusters 2 and 3 are near the center of the plot, and contain flowers with
measurements between the two extremes.

References

[1] Tibshirani, R., G. Walther, and T. Hastie. “Estimating the number of clusters in a
data set via the gap statistic.” Journal of the Royal Statistical Society: Series B.
Vol. 63, Part 2, 2001, pp. 411–423.

 clustering.evaluation.GapEvaluation class

22-2071

See Also
clustering.evaluation.CalinskiHarabaszEvaluation

| clustering.evaluation.DaviesBouldinEvaluation |
clustering.evaluation.SilhouetteEvaluation | evalclusters |
evalclusters

More About
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-2072

get
Class: dataset

Access dataset array properties

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

get(A)

s = get(A)

p = get(A,PropertyName)

p = get(A,{PropertyName1,PropertyName2,...})

Description

get(A) displays a list of property/value pairs for the dataset array A.

s = get(A) returns the values in a scalar structure s with field names given by the
properties.

p = get(A,PropertyName) returns the value of the property specified by the string
PropertyName.

p = get(A,{PropertyName1,PropertyName2,...}) allows multiple property names
to be specified and returns their values in a cell array.

Examples

Create a dataset array from Fisher's iris data and access the information.

 get

22-2073

load fisheriris

NumObs = size(meas,1);

NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));

iris = dataset({nominal(species),'species'},...

 {meas,'SL','SW','PL','PW'},...

 'ObsNames',NameObs);

get(iris)

 Description: ''

 Units: {}

 DimNames: {'Observations' 'Variables'}

 UserData: []

 ObsNames: {150x1 cell}

 VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

ON = get(iris,'ObsNames');

ON(1:3)

ans =

 'Obs1'

 'Obs2'

 'Obs3'

See Also
set | summary

22 Functions — Alphabetical List

22-2074

getlabels
Access categorical array labels

Compatibility
The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax
labels = getlabels(A)

Description
labels = getlabels(A) returns the labels of the levels in the nominal or ordinal
array A as a cell array of strings, labels. If A is an ordinal array, getlabels returns the
labels in the order of the levels.

Examples
• “Change Category Labels” on page 2-9

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

More About
• Using nominal Objects

 getlabels

22-2075

• Using ordinal Objects

See Also
getlevels | nominal | ordinal

22 Functions — Alphabetical List

22-2076

getlevels
Access categorical array levels

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

L = getlevels(A)

Description

L = getlevels(A) returns the levels in the nominal or ordinal array A in L, a vector
with the same type as A.

Examples
• “Add and Drop Category Levels” on page 2-21
• “Merge Category Levels” on page 2-19
• “Reorder Category Levels” on page 2-11

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

 getlevels

22-2077

More About
• Using nominal Objects
• Using ordinal Objects

See Also
getlabels | nominal | ordinal

22 Functions — Alphabetical List

22-2078

gevcdf
Generalized extreme value cumulative distribution function

Syntax

p = gevcdf(x,k,sigma,mu)

p = gevcdf(x,k,sigma,mu,'upper')

Description

p = gevcdf(x,k,sigma,mu) returns the cdf of the generalized extreme value (GEV)
distribution with shape parameter k, scale parameter sigma, and location parameter,
mu, evaluated at the values in x. The size of p is the common size of the input arguments.
A scalar input functions as a constant matrix of the same size as the other inputs.

p = gevcdf(x,k,sigma,mu,'upper') returns the complement of the cdf of the GEV
distribution, using an algorithm that more accurately computes the extreme upper tail
probabilities.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wblcdf function, then -w has a type III extreme
value distribution and 1/w has a type II extreme value distribution. In the limit as k
approaches 0, the GEV is the mirror image of the type I extreme value distribution as
computed by the evcdf function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite
when k ≥ 1/2. The GEV distribution has positive density only for values of X such that
k*(X-mu)/sigma > -1.

More About
• “Generalized Extreme Value Distribution” on page B-54

 gevcdf

22-2079

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
cdf | gevpdf | gevinv | gevstat | gevfit | gevlike | gevrnd

22 Functions — Alphabetical List

22-2080

gevfit
Generalized extreme value parameter estimates

Syntax

parmhat = gevfit(X)

[parmhat,parmci] = gevfit(X)

[parmhat,parmci] = gevfit(X,alpha)

[...] = gevfit(X,alpha,options)

Description

parmhat = gevfit(X) returns maximum likelihood estimates of the parameters for
the generalized extreme value (GEV) distribution given the data in X. parmhat(1) is the
shape parameter, k, parmhat(2) is the scale parameter, sigma, and parmhat(3) is the
location parameter, mu.

[parmhat,parmci] = gevfit(X) returns 95% confidence intervals for the parameter
estimates.

[parmhat,parmci] = gevfit(X,alpha) returns 100(1-alpha)% confidence
intervals for the parameter estimates.

[...] = gevfit(X,alpha,options) specifies control parameters for the iterative
algorithm used to compute ML estimates. This argument can be created by a call to
statset. See statset('gevfit') for parameter names and default values. Pass in []
for alpha to use the default values.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wblfit function, then -w has a type III extreme
value distribution and 1/w has a type II extreme value distribution. In the limit as k
approaches 0, the GEV is the mirror image of the type I extreme value distribution as
computed by the evfit function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite
when k ≥ 1/2. The GEV distribution is defined for k*(X-mu)/sigma > -1.

 gevfit

22-2081

More About
• “Generalized Extreme Value Distribution” on page B-54

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
mle | gevlike | gevpdf | gevcdf | gevinv | gevstat | gevrnd

22 Functions — Alphabetical List

22-2082

gevinv
Generalized extreme value inverse cumulative distribution function

Syntax
X = gevinv(P,k,sigma,mu)

Description
X = gevinv(P,k,sigma,mu) returns the inverse cdf of the generalized extreme
value (GEV) distribution with shape parameter k, scale parameter sigma, and location
parameter mu, evaluated at the values in P. The size of X is the common size of the input
arguments. A scalar input functions as a constant matrix of the same size as the other
inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wblinv function, then -w has a type III extreme
value distribution and 1/w has a type II extreme value distribution. In the limit as k
approaches 0, the GEV is the mirror image of the type I extreme value distribution as
computed by the evinv function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite
when k ≥ 1/2. The GEV distribution has positive density only for values of X such that
k*(X-mu)/sigma > -1.

More About
• “Generalized Extreme Value Distribution” on page B-54

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

 gevinv

22-2083

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
icdf | gevcdf | gevpdf | gevstat | gevfit | gevlike | gevrnd

22 Functions — Alphabetical List

22-2084

gevlike

Generalized extreme value negative log-likelihood

Syntax

nlogL = gevlike(params,data)

[nlogL,ACOV] = gevlike(params,data)

Description

nlogL = gevlike(params,data) returns the negative of the log-likelihood nlogL
for the generalized extreme value (GEV) distribution, evaluated at parameters params.
params(1) is the shape parameter, k, params(2) is the scale parameter, sigma, and
params(3) is the location parameter, mu.

[nlogL,ACOV] = gevlike(params,data) returns the inverse of Fisher's information
matrix, ACOV. If the input parameter values in params are the maximum likelihood
estimates, the diagonal elements of ACOV are their asymptotic variances. ACOV is based
on the observed Fisher's information, not the expected information.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wbllike function, then -w has a type III extreme
value distribution and 1/w has a type II extreme value distribution. In the limit as k
approaches 0, the GEV is the mirror image of the type I extreme value distribution as
computed by the evlike function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite
when k ≥ 1/2. The GEV distribution has positive density only for values of X such that
k*(X-mu)/sigma > -1.

More About
• “Generalized Extreme Value Distribution” on page B-54

 gevlike

22-2085

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah.Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
gevfit | gevpdf | gevcdf | gevinv | gevstat | gevrnd

22 Functions — Alphabetical List

22-2086

gevpdf
Generalized extreme value probability density function

Syntax

Y = gevpdf(X,k,sigma,mu)

Description

Y = gevpdf(X,k,sigma,mu) returns the pdf of the generalized extreme value (GEV)
distribution with shape parameter k, scale parameter sigma, and location parameter,
mu, evaluated at the values in X. The size of Y is the common size of the input arguments.
A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wblpdf function, then -w has a type III extreme
value distribution and 1/w has a type II extreme value distribution. In the limit as k
approaches 0, the GEV is the mirror image of the type I extreme value distribution as
computed by the evcdf function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite
when k ≥ 1/2. The GEV distribution has positive density only for values of X such that
k*(X-mu)/sigma > -1.

More About
• “Generalized Extreme Value Distribution” on page B-54

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

 gevpdf

22-2087

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
pdf | gevcdf | gevinv | gevstat | gevfit | gevlike | gevrnd

22 Functions — Alphabetical List

22-2088

gevrnd
Generalized extreme value random numbers

Syntax

R = gevrnd(k,sigma,mu)

R = gevrnd(k,sigma,mu,m,n,...)

R = gevrnd(k,sigma,mu,[m,n,...])

Description

R = gevrnd(k,sigma,mu) returns an array of random numbers chosen from the
generalized extreme value (GEV) distribution with shape parameter k, scale parameter
sigma, and location parameter, mu. The size of R is the common size of the input
arguments if all are arrays. If any parameter is a scalar, the size of R is the size of the
other parameters.

R = gevrnd(k,sigma,mu,m,n,...) or R = gevrnd(k,sigma,mu,[m,n,...])
generates an m-by-n-by-... array containing random numbers from the GEV distribution
with parameters k, sigma, and mu. The k, sigma, mu parameters can each be scalars or
arrays of the same size as R.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wblrnd function, then -w has a type III extreme
value distribution and 1/w has a type II extreme value distribution. In the limit as k
approaches 0, the GEV is the mirror image of the type I extreme value distribution as
computed by the evrnd function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite
when k ≥ 1/2. The GEV distribution has positive density only for values of X such that
k*(X-mu)/sigma > -1.

More About
• “Generalized Extreme Value Distribution” on page B-54

 gevrnd

22-2089

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
random | gevpdf | gevcdf | gevinv | gevstat | gevfit | gevlike

22 Functions — Alphabetical List

22-2090

gevstat
Generalized extreme value mean and variance

Syntax

[M,V] = gevstat(k,sigma,mu)

Description

[M,V] = gevstat(k,sigma,mu) returns the mean of and variance for the generalized
extreme value (GEV) distribution with shape parameter k, scale parameter sigma, and
location parameter, mu. The sizes of M and V are the common size of the input arguments.
A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV
distribution is the type II, or Frechet, extreme value distribution. If w has a Weibull
distribution as computed by the wblstat function, then -w has a type III extreme
value distribution and 1/w has a type II extreme value distribution. In the limit as k
approaches 0, the GEV is the mirror image of the type I extreme value distribution as
computed by the evstat function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite
when k ≥ 1/2. The GEV distribution has positive density only for values of X such that
k*(X-mu)/sigma > -1.

More About
• “Generalized Extreme Value Distribution” on page B-54

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

 gevstat

22-2091

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
gevpdf | gevcdf | gevinv | gevfit | gevlike | gevrnd

22 Functions — Alphabetical List

22-2092

gline

Interactively add line to plot

Syntax

gline(h)

gline

hline = gline(...)

Description

gline(h) allows you to draw a line segment in the figure with handle h by clicking the
pointer at the two endpoints. A rubber-band line tracks the pointer movement.

gline with no input arguments defaults to h = gcf and draws in the current figure.

hline = gline(...) returns the handle hline to the line.

Examples

Use gline to connect two points in a plot:

x = 1:10;

y = x + randn(1,10);

scatter(x,y,25,'b','*')

lsline

mu = mean(y);

hold on

plot([1 10],[mu mu],'ro')

hline = gline; % Connect circles

set(hline,'Color','r')

 gline

22-2093

See Also
refline | refcurve | lsline

22 Functions — Alphabetical List

22-2094

glmfit
Generalized linear model regression

Syntax

b = glmfit(X,y,distr)

b = glmfit(X,y,distr,param1,val1,param2,val2,...)

[b,dev] = glmfit(...)

[b,dev,stats] = glmfit(...)

Description

b = glmfit(X,y,distr) returns a (p + 1)-by-1 vector b of coefficient estimates for
a generalized linear regression of the responses in y on the predictors in X, using the
distribution distr. X is an n-by-p matrix of p predictors at each of n observations. distr
can be any of the following strings: 'binomial', 'gamma', 'inverse gaussian',
'normal' (the default), and 'poisson'.

In most cases, y is an n-by-1 vector of observed responses. For the binomial distribution,
y can be a binary vector indicating success or failure at each observation, or a two column
matrix with the first column indicating the number of successes for each observation and
the second column indicating the number of trials for each observation.

This syntax uses the canonical link (see below) to relate the distribution to the predictors.

Note: By default, glmfit adds a first column of 1s to X, corresponding to a constant term
in the model. Do not enter a column of 1s directly into X. You can change the default
behavior of glmfit using the 'constant' parameter, below.

glmfit treats NaNs in either X or y as missing values, and ignores them.

b = glmfit(X,y,distr,param1,val1,param2,val2,...) additionally allows
you to specify optional parameter name/value pairs to control the model fit. Acceptable
parameters are as follows.

 glmfit

22-2095

Parameter Value Description

'identity', default for the
distribution 'normal'

µ = Xb

'log', default for the
distribution 'poisson'

log(µ) = Xb

'logit', default for the
distribution 'binomial'

log(µ/(1 – µ)) = Xb

'probit' norminv(µ) = Xb
'comploglog' log(-log(1 – µ)) = Xb
'reciprocal', default for
the distribution 'gamma'

1/µ = Xb

'loglog' log(-log(µ)) = Xb
p (a number), default for
the distribution 'inverse
gaussian' (with p = -2)

µp = Xb

'link'

cell array of the form {FL
FD FI}, containing three
function handles, created
using @, that define the link
(FL), the derivative of the
link (FD), and the inverse
link (FI).

Custom-defined link function. You
must provide

• FL(mu)

• FD = dFL(mu)/dmu

• FI = FL^(-1)

'on' Estimates a dispersion parameter for
the binomial or Poisson distribution.

'estdisp'

'off' (Default for binomial
or Poisson distribution)

Uses the theoretical value of 1.0 for
those distributions.

'offset' Vector Used as an additional predictor
variable, but with a coefficient value
fixed at 1.0.

'weights' Vector of prior weights,
such as the inverses of the
relative variance of each
observation

22 Functions — Alphabetical List

22-2096

Parameter Value Description

'on' (default) Includes a constant term in the
model. The coefficient of the constant
term is the first element of b.

'constant'

'off' Omit the constant term.

[b,dev] = glmfit(...)returns dev, the deviance of the fit at the solution vector. The
deviance is a generalization of the residual sum of squares. It is possible to perform an
analysis of deviance to compare several models, each a subset of the other, and to test
whether the model with more terms is significantly better than the model with fewer
terms.

[b,dev,stats] = glmfit(...) returns dev and stats.

stats is a structure with the following fields:

• beta — Coefficient estimates b
• dfe — Degrees of freedom for error
• sfit — Estimated dispersion parameter
• s — Theoretical or estimated dispersion parameter
• estdisp — 0 when the 'estdisp' name-value pair argument value is 'off' and 1

when the 'estdisp' name-value pair argument value is 'on'.
• covb — Estimated covariance matrix for B
• se — Vector of standard errors of the coefficient estimates b
• coeffcorr — Correlation matrix for b
• t — t statistics for b
• p — p-values for b
• resid — Vector of residuals
• residp — Vector of Pearson residuals
• residd — Vector of deviance residuals
• resida — Vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution, then
stats.s is set equal to stats.sfit. Also, the elements of stats.se differ by the factor
stats.s from their theoretical values.

 glmfit

22-2097

Examples

Fit Generalized Linear Model with Probit Link

Enter sample data.

x = [2100 2300 2500 2700 2900 3100 ...

 3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

Each y value is the number of successes in corresponding number of trials inn, and x
contains the predictor variable values.

Fit a probit regression model for y on x.

b = glmfit(x,[y n],'binomial','link','probit');

Compute the estimated number of successes and plot the percent observed and estimated
percent success versus the x values.

yfit = glmval(b,x,'probit','size',n);

plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)

22 Functions — Alphabetical List

22-2098

Use Custom-defined Link Function

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the response and predictor variables.

X = meas(51:end,:);

y = strcmp('versicolor',species(51:end));

Define three function handles, created using @, that define the link, the derivative of the
link, and the inverse link for a logit link function, and store them in a cell array.

link = @(mu) log(mu ./ (1-mu));

 glmfit

22-2099

derlink = @(mu) 1 ./ (mu .* (1-mu));

invlink = @(resp) 1 ./ (1 + exp(-resp));

F = {link, derlink, invlink};

Fit a logistic regression using glmfit with the link function you defined.

b = glmfit(X,y,'binomial','link',F)

b =

 42.6378

 2.4652

 6.6809

 -9.4294

 -18.2861

Now, fit a generalized linear model using the logit link function and compare the
results.

b = glmfit(X,y,'binomial','link','logit')

b =

 42.6378

 2.4652

 6.6809

 -9.4294

 -18.2861

References

[1] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

[3] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

See Also
glmval | regress | regstats | GeneralizedLinearModel | fitglm |
stepwiseglm

22 Functions — Alphabetical List

22-2100

glmval
Generalized linear model values

Syntax

yhat = glmval(b,X,link)

[yhat,dylo,dyhi] = glmval(b,X,link,stats)

[...] = glmval(...,param1,val1,param2,val2,...)

Description

yhat = glmval(b,X,link) computes predicted values for the generalized linear model
with link function link and predictors X. Distinct predictor variables should appear in
different columns of X. b is a vector of coefficient estimates as returned by the glmfit
function. link can be any of the strings or the custom-defined link functions used as
values for the 'link' name-value pair argument in the glmfit function.

Note: By default, glmval adds a first column of 1s to X, corresponding to a constant term
in the model. Do not enter a column of 1s directly into X. You can change the default
behavior of glmval using the 'constant' parameter, below.

[yhat,dylo,dyhi] = glmval(b,X,link,stats) also computes 95% confidence
bounds for the predicted values. When the stats structure output of the glmfit
function is specified, dylo and dyhi are also returned. dylo and dyhi define a lower
confidence bound of yhat-dylo, and an upper confidence bound of yhat+dyhi.
Confidence bounds are nonsimultaneous, and apply to the fitted curve, not to a new
observation.

[...] = glmval(...,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs to control the predicted values. Acceptable parameters are:

Parameter Value

'confidence' — the confidence level for
the confidence bounds

A scalar between 0 and 1

 glmval

22-2101

Parameter Value

'size' — the size parameter (N) for a
binomial model

A scalar, or a vector with one value for each
row of X

'offset' — used as an additional
predictor variable, but with a coefficient
value fixed at 1.0

A vector

'constant' • 'on' — Includes a constant term in the
model. The coefficient of the constant
term is the first element of b.

• 'off' — Omit the constant term
'simultaneous' — Compute
simultaneous confidence intervals (true),
or compute non-simultaneous confidence
intervals (default false)

true or false

Examples

Fit Generalized Linear Model with Probit Link

Enter sample data.

x = [2100 2300 2500 2700 2900 3100 ...

 3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

Each y value is the number of successes in corresponding number of trials inn, and x
contains the predictor variable values.

Fit a generalized linear model for y on x using a probit link function.

b = glmfit(x,[y n],'binomial','link','probit');

Compute the estimated number of successes and plot the observed and estimated percent
success versus the x values.

yfit = glmval(b,x,'probit','size',n);

plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)

22 Functions — Alphabetical List

22-2102

Use Custom-defined Link Function

Enter sample data.

x = [2100 2300 2500 2700 2900 3100 ...

 3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

Each y value is the number of successes in corresponding number of trials in n, and x
contains the predictor variable values.

Now define three function handles, created using @, that define the link, the derivative of
the link, and the inverse link for a probit link function, and store them in a cell array.

link = @(mu) norminv(mu);

derlink = @(mu) 1 ./ normpdf(norminv(mu));

invlink = @(resp) normcdf(resp);

 glmval

22-2103

F = {link, derlink, invlink};

Fit a generalized linear model for y on x using the link function you defined.

b = glmfit(x,[y n],'binomial','link',F);

Compute the estimated number of successes and plot the observed and estimated percent
success versus the x values.

yfit = glmval(b,x,F,'size',n);

plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)

References

[1] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

22 Functions — Alphabetical List

22-2104

[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

[3] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

See Also
glmfit | GeneralizedLinearModel | fitglm | stepwiseglm

 glyphplot

22-2105

glyphplot

Glyph plot

Syntax

glyphplot(X)

glyphplot(X,'glyph','face')

glyphplot(X,'glyph','face','features',f)

glyphplot(X,...,'grid',[rows,cols])

glyphplot(X,...,'grid',[rows,cols],'page',p)

glyphplot(X,...,'centers',C)

glyphplot(X,...,'centers',C,'radius',r)

glyphplot(X,...,'obslabels',labels)

glyphplot(X,...,'standardize',method)

glyphplot(X,...,prop1,val1,...)

h = glyphplot(X,...)

Description

glyphplot(X) creates a star plot from the multivariate data in the n-by-p matrix
X. Rows of X correspond to observations, columns to variables. A star plot represents
each observation as a “star” whose ith spoke is proportional in length to the ith
coordinate of that observation. glyphplot standardizes X by shifting and scaling
each column separately onto the interval [0,1] before making the plot, and centers
the glyphs on a rectangular grid that is as close to square as possible. glyphplot
treats NaNs in X as missing values, and does not plot the corresponding rows of X.
glyphplot(X,'glyph','star') is a synonym for glyphplot(X).

glyphplot(X,'glyph','face') creates a face plot from X. A face plot represents
each observation as a “face,” whose ith facial feature is drawn with a characteristic
proportional to the ith coordinate of that observation. The features are described in “Face
Features” on page 22-2107.

glyphplot(X,'glyph','face','features',f) creates a face plot where the ith
element of the index vector f defines which facial feature will represent the ith column of

22 Functions — Alphabetical List

22-2106

X. f must contain integers from 0 to 17, where 0 indicate that the corresponding column
of X should not be plotted. See “Face Features” on page 22-2107 for more information.

glyphplot(X,...,'grid',[rows,cols]) organizes the glyphs into a rows-by-cols
grid.

glyphplot(X,...,'grid',[rows,cols],'page',p) organizes the glyph into one or
more pages of a rows-by-cols grid, and displays the page p. If p is a vector, glyphplot
displays multiple pages in succession. If p is 'all', glyphplot displays all pages. If p is
'scroll', glyphplot displays a single plot with a scrollbar.

glyphplot(X,...,'centers',C) creates a plot with each glyph centered at the
locations in the n-by-2 matrix C.

glyphplot(X,...,'centers',C,'radius',r) creates a plot with glyphs positioned
using C, and scale the glyphs so the largest has radius r.

glyphplot(X,...,'obslabels',labels) labels each glyph with the text in the
character array or cell array of strings labels. By default, the glyphs are labelled 1:N.
Use '' for blank labels.

glyphplot(X,...,'standardize',method) standardizes X before making the plot.
Choices for method are

• 'column' — Maps each column of X separately onto the interval [0,1]. This is the
default.

• 'matrix' — Maps the entire matrix X onto the interval [0,1].
• 'PCA' — Transforms X to its principal component scores, in order of decreasing

eigenvalue, and maps each one onto the interval [0,1].
• 'off' — No standardization. Negative values in X may make a star plot

uninterpretable.

glyphplot(X,...,prop1,val1,...) sets properties to the specified property values
for all line graphics objects created by glyphplot.

h = glyphplot(X,...) returns a matrix of handles to the graphics objects created
by glyphplot. For a star plot, h(:,1) and h(:,2) contain handles to the line objects
for each star's perimeter and spokes, respectively. For a face plot, h(:,1) and h(:,2)
contain object handles to the lines making up each face and to the pupils, respectively.
h(:,3) contains handles to the text objects for the labels, if present.

 glyphplot

22-2107

Face Features

The following table describes the correspondence between the columns of the vector f,
the value of the 'Features' input parameter, and the facial features of the glyph plot. If
X has fewer than 17 columns, unused features are displayed at their default value.

Column Facial Feature

1 Size of face
2 Forehead/jaw relative arc length
3 Shape of forehead
4 Shape of jaw
5 Width between eyes
6 Vertical position of eyes
7 Height of eyes
8 Width of eyes (this also affects eyebrow width)
9 Angle of eyes (this also affects eyebrow angle)
10 Vertical position of eyebrows
11 Width of eyebrows (relative to eyes)
12 Angle of eyebrows (relative to eyes)
13 Direction of pupils
14 Length of nose
15 Vertical position of mouth
16 Shape of mouth
17 Mouth arc length

Examples

Star and Face Plots of Multivariate Data

Load the sample data.

load carsmall

X = [Acceleration Displacement Horsepower MPG Weight];

22 Functions — Alphabetical List

22-2108

Create a star plot of the data in X . Standardize the data before plotting.

glyphplot(X,'standardize','column','obslabels',Model,'grid',[2 2],...

 'page','scroll');

Create a faceplot of the data in X .

glyphplot(X,'glyph','face','obslabels',Model,'grid',[2 3],'page',9);

 glyphplot

22-2109

See Also
andrewsplot | parallelcoords

22 Functions — Alphabetical List

22-2110

gmdistribution class

Gaussian mixture models

Description
An object of the gmdistribution class defines a Gaussian mixture distribution,
which is a multivariate distribution that consists of a mixture of one or more
multivariate Gaussian distribution components. The number of components for a given
gmdistribution object is fixed. Each multivariate Gaussian component is defined by
its mean and covariance, and the mixture is defined by a vector of mixing proportions.

Construction
To create a Gaussian mixture distribution by specifying the distribution parameters, use
the gmdistribution constructor. To fit a Gaussian mixture distribution model to data,
use fitgmdist.

fit
Gaussian mixture parameter estimates

.gmdistribution
Construct Gaussian mixture distribution

Properties
All objects of the class have the properties listed in the following table.

CovarianceType
Type of covariance matrices

DistributionName
Type of distribution

mu
Input matrix of means mu

NumComponents
Number k of mixture components

 gmdistribution class

22-2111

NumVariables
Dimension d of multivariate Gaussian
distributions

ComponentProportion
Input vector of mixing proportions

SharedCovariance
true if all covariance matrices are
restricted to be the same

Sigma
Input array of covariances

Objects constructed with fitgmdist have the additional properties listed in the
following table.

AIC
Akaike Information Criterion

BIC
Bayes Information Criterion

Converged
Determine if algorithm converged

NumIterations
Number of iterations

NegativeLogLikelihood
Negative of log-likelihood

RegularizationValue
Value of 'Regularize' parameter

Methods

cdf
Cumulative distribution function for
Gaussian mixture distribution

cluster
Construct clusters from Gaussian mixture
distribution

22 Functions — Alphabetical List

22-2112

disp
Display Gaussian mixture distribution
object

display
Display Gaussian mixture distribution
object

fit
Gaussian mixture parameter estimates

mahal
Mahalanobis distance to component means

pdf
Probability density function for Gaussian
mixture distribution

posterior
Posterior probabilities of components

random
Random numbers from Gaussian mixture
distribution

subsasgn
Subscripted reference for Gaussian mixture
distribution object

subsref
Subscripted reference for Gaussian mixture
distribution object

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

 gmdistribution class

22-2113

Examples

Fit a Gaussian Mixture Model

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd
function. Fit the resulting data.

Generate the data using 1000 points from each distribution.

MU1 = [1 2];

SIGMA1 = [2 0; 0 .5];

MU2 = [-3 -5];

SIGMA2 = [1 0; 0 1];

X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')

hold on

22 Functions — Alphabetical List

22-2114

Fit a two-component Gaussian mixture model.

options = statset('Display','final');

obj = fitgmdist(X,2,'Options',options);

18 iterations, log-likelihood = -7058.35

Plot the fit.

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

 gmdistribution class

22-2115

• “Normal Distribution”

References

[1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons,
Inc., 2000.

See Also
fitgmdist

22 Functions — Alphabetical List

22-2116

gmdistribution

Class: gmdistribution

Construct Gaussian mixture distribution

Syntax

obj = gmdistribution(mu,sigma,p)

Description

obj = gmdistribution(mu,sigma,p) constructs an object obj of the
gmdistribution class defining a Gaussian mixture distribution.

mu is a k-by-d matrix specifying the d-dimensional mean of each of the k components.

sigma specifies the covariance of each component. The size of sigma is:

• d-by-d-by-k if there are no restrictions on the form of the covariance. In this case,
sigma(:,:,I) is the covariance of component I.

• 1-by-d-by-k if the covariance matrices are restricted to be diagonal, but not restricted
to be same across components. In this case, sigma(:,:,I) contains the diagonal
elements of the covariance of component I.

• d-by-d matrix if the covariance matrices are restricted to be the same across
components, but not restricted to be diagonal. In this case, sigma is the pooled
estimate of covariance.

• 1-by-d if the covariance matrices are restricted to be diagonal and the same across
components. In this case, sigma contains the diagonal elements of the pooled
estimate of covariance.

p is an optional 1-by-k vector specifying the mixing proportions of each component. If p
does not sum to 1, gmdistribution normalizes it. The default is equal proportions.

 gmdistribution

22-2117

Examples

Construct a Gaussian Mixture Distribution

Create a gmdistribution distribution defining a two-component mixture of bivariate
Gaussian distributions.

mu = [1 2;-3 -5];

sigma = cat(3,[2 0;0 .5],[1 0;0 1]);

p = ones(1,2)/2;

obj = gmdistribution(mu,sigma,p);

ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])

22 Functions — Alphabetical List

22-2118

References

[1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons,
Inc., 2000.

See Also
fitgmdist | cdf | cluster | mahal | pdf | random | posterior

 gname

22-2119

gname

Add case names to plot

Syntax

gname(cases)

gname

h = gname(cases,line_handle)

Description

gname(cases) displays a figure window and waits for you to press a mouse button or a
keyboard key. The input argument cases is a character array or a cell array of strings,
in which each row of the character array or each element of the cell array contains the
case name of a point. Moving the mouse over the graph displays a pair of cross-hairs.
If you position the cross-hairs near a point with the mouse and click once, the graph
displays the label corresponding to that point. Alternatively, you can click and drag the
mouse to create a rectangle around several points. When you release the mouse button,
the graph displays the labels for all points in the rectangle. Right-click a point to remove
its label. When you are done labelling points, press the Enter or Escape key to stop
labeling.

gname with no arguments labels each case with its case number.

cases typically contains unique case names for each point, and is a cell array of strings
or a character matrix with each row representing a name. cases can also be any
grouping variable, which gname converts to labels.

h = gname(cases,line_handle) returns a vector of handles to the text objects on the
plot. Use the scalar line_handle to identify the correct line if there is more than one
line object on the plot.

You can use gname to label plots created by the plot, scatter, gscatter,
plotmatrix, and gplotmatrix functions.

22 Functions — Alphabetical List

22-2120

Examples

This example uses the city ratings data sets to find out which cities are the best and
worst for education and the arts.

load cities

education = ratings(:,6);

arts = ratings(:,7);

plot(education,arts,'+')

gname(names)

Click the point at the top of the graph to display its label, “New York.”

 gname

22-2121

See Also
gtext | gscatter | gplotmatrix

22 Functions — Alphabetical List

22-2122

gpcdf
Generalized Pareto cumulative distribution function

Syntax

p = gpcdf(x,k,sigma,theta)

p = gpcdf(x,k,sigma,theta,'upper')

Description

p = gpcdf(x,k,sigma,theta) returns the cdf of the generalized Pareto (GP)
distribution with the tail index (shape) parameter k, scale parameter sigma, and
threshold (location) parameter, theta, evaluated at the values in x. The size of p is the
common size of the input arguments. A scalar input functions as a constant matrix of the
same size as the other inputs.

p = gpcdf(x,k,sigma,theta,'upper') returns the complement of the cdf of the
generalized Pareto (GP) distribution, using an algorithm that more accurately computes
the extreme upper tail probabilities.

Default values for k, sigma, and theta are 0, 1, and 0, respectively.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When
k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale
parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP
is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP
has positive density for

x > theta, or, when

k < 0, 0
1

£
-

£-
x

k

q

s
.

More About
• “Generalized Pareto Distribution” on page B-60

 gpcdf

22-2123

• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61
• “Supported Distributions” on page 5-17

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
cdf | gppdf | gpinv | gpstat | gpfit | gplike | gprnd

22 Functions — Alphabetical List

22-2124

gpfit
Generalized Pareto parameter estimates

Syntax

parmhat = gpfit(x)

[parmhat,parmci] = gpfit(x)

[parmhat,parmci] = gpfit(x,alpha)

[...] = gpfit(x,alpha,options)

Description

parmhat = gpfit(x) returns maximum likelihood estimates of the parameters for the
two-parameter generalized Pareto (GP) distribution given the data in x. parmhat(1)
is the tail index (shape) parameter, k and parmhat(2) is the scale parameter, sigma.
gpfit does not fit a threshold (location) parameter.

[parmhat,parmci] = gpfit(x) returns 95% confidence intervals for the parameter
estimates.

[parmhat,parmci] = gpfit(x,alpha) returns 100(1-alpha)% confidence
intervals for the parameter estimates.

[...] = gpfit(x,alpha,options) specifies control parameters for the iterative
algorithm used to compute ML estimates. This argument can be created by a call to
statset. See statset('gpfit') for parameter names and default values.

Other functions for the generalized Pareto, such as gpcdf allow a threshold parameter,
theta. However, gpfit does not estimate theta. It is assumed to be known, and
subtracted from x before calling gpfit.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When
k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale
parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP
is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP
has positive density for

 gpfit

22-2125

k > theta, or, when k < 0, for

0
1

£
-

£-
x

k

q

s

More About
• “Generalized Pareto Distribution” on page B-60
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61
• “Supported Distributions” on page 5-17

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
mle | gplike | gppdf | gpcdf | gpinv | gpstat | gprnd

22 Functions — Alphabetical List

22-2126

gpinv
Generalized Pareto inverse cumulative distribution function

Syntax

x = gpinv(p,k,sigma,theta)

Description

x = gpinv(p,k,sigma,theta) returns the inverse cdf for a generalized Pareto (GP)
distribution with tail index (shape) parameter k, scale parameter sigma, and threshold
(location) parameter theta, evaluated at the values in p. The size of x is the common
size of the input arguments. A scalar input functions as a constant matrix of the same
size as the other inputs.

Default values for k, sigma, and theta are 0, 1, and 0, respectively.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When
k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale
parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP
is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP
has positive density for

x > theta, or, when

k < 0, 0
1

£
-

£-
x

k

q

s
.

More About
• “Generalized Pareto Distribution” on page B-60
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61

 gpinv

22-2127

• “Supported Distributions” on page 5-17

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
icdf | gpcdf | gppdf | gpstat | gpfit | gplike | gprnd

22 Functions — Alphabetical List

22-2128

gplike
Generalized Pareto negative log-likelihood

Syntax

nlogL = gplike(params,data)

[nlogL,acov] = gplike(params,data)

Description

nlogL = gplike(params,data) returns the negative of the log-likelihood nlogL
for the two-parameter generalized Pareto (GP) distribution, evaluated at parameters
params. params(1) is the tail index (shape) parameter, k, and params(2) is the scale
parameter. gplike does not allow a threshold (location) parameter.

[nlogL,acov] = gplike(params,data) returns the inverse of Fisher's information
matrix, acov. If the input parameter values in params are the maximum likelihood
estimates, the diagonal elements of acov are their asymptotic variances. acov is based
on the observed Fisher's information, not the expected information.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When
k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale
parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP
is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP
has positive density for

x > theta, or, when

k < 0, 0
1

£
-

£-
x

k

q

s
.

More About
• “Generalized Pareto Distribution” on page B-60
• “Working with Probability Distributions” on page 5-3

 gplike

22-2129

• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61
• “Supported Distributions” on page 5-17

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
gpfit | gppdf | gpcdf | gpinv | gpstat | gprnd

22 Functions — Alphabetical List

22-2130

gppdf
Generalized Pareto probability density function

Syntax

p = gppdf(x,k,sigma,theta)

Description

p = gppdf(x,k,sigma,theta) returns the pdf of the generalized Pareto (GP)
distribution with the tail index (shape) parameter k, scale parameter sigma, and
threshold (location) parameter, theta, evaluated at the values in x. The size of p is the
common size of the input arguments. A scalar input functions as a constant matrix of the
same size as the other inputs.

Default values for k, sigma, and theta are 0, 1, and 0, respectively.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When
k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale
parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP
is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP
has positive density for

x > theta, or, when

k < 0, 0
1

£
-

£-
x

k

q

s
.

More About
• “Generalized Pareto Distribution” on page B-60
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61

 gppdf

22-2131

• “Supported Distributions” on page 5-17

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
pdf | gpcdf | gpinv | gpstat | gpfit | gplike | gprnd

22 Functions — Alphabetical List

22-2132

gplotmatrix
Matrix of scatter plots by group

Syntax

gplotmatrix(x,y,group)

gplotmatrix(x,y,group,clr,sym,siz)

gplotmatrix(x,y,group,clr,sym,siz,doleg)

gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt)

gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt,xnam,ynam)

[h,ax,bigax] = gplotmatrix(...)

Description

gplotmatrix(x,y,group) creates a matrix of scatter plots. Each individual set of axes
in the resulting figure contains a scatter plot of a column of x against a column of y. All
plots are grouped by the grouping variable group.

x and y are matrices with the same number of rows. If x has p columns and y has q
columns, the figure contains a p-by-q matrix of scatter plots. If you omit y or specify it as
the empty matrix, [], gplotmatrix creates a square matrix of scatter plots of columns
of x against each other.

group is a grouping variable that can be a categorical variable, vector, string array, or
cell array of strings. group must have the same number of rows as x and y. Points with
the same value of group are placed in the same group, and appear on the graph with
the same marker and color. Alternatively, group can be a cell array containing several
grouping variables (such as {g1 g2 g3}); in that case, observations are in the same
group if they have common values of all grouping variables.

gplotmatrix(x,y,group,clr,sym,siz) specifies the color, marker type, and size
for each group. clr is a string array of colors recognized by the plot function. sym is a
string array of symbols recognized by the plot command, with the default value '.'.
siz is a vector of sizes, with the default determined by the DefaultLineMarkerSize
property. If you do not specify enough values for all groups, gplotmatrix cycles through
the specified values as needed.

 gplotmatrix

22-2133

gplotmatrix(x,y,group,clr,sym,siz,doleg) controls whether a legend is
displayed on the graph (doleg is 'on', the default) or not (doleg is 'off').

gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt) controls what appears
along the diagonal of a plot matrix of y versus x. Allowable values are 'none', to leave
the diagonals blank, 'hist', to plot histograms, 'stairs' to display the outlines
of grouped histograms (default if there is more than one group), 'grpbars' to plot
grouped histogram bars. or 'variable', to write the variable names. gplotmatrix
displays histograms along the diagonal only when there is only one variable (i.e.,
gplotmatrix(x,[],[],[],[],[],[],'hist').

gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt,xnam,ynam) specifies the
names of the columns in the x and y arrays. These names are used to label the x- and y-
axes. xnam and ynam must be character arrays or cell arrays of strings, with one name
for each column of x and y, respectively.

[h,ax,bigax] = gplotmatrix(...) returns three arrays of handles. h is an array of
handles to the lines on the graphs. The array's third dimension corresponds to groups in
the input argument group. ax is a matrix of handles to the axes of the individual plots.
If dispopt is 'hist', 'stairs', or 'grpbars', ax contains one extra row of handles
to invisible axes in which the histograms are plotted. bigax is a handle to big (invisible)
axes framing the entire plot matrix. bigax is fixed to point to the current axes, so a
subsequent title, xlabel, or ylabel command will produce labels that are centered
with respect to the entire plot matrix.

Examples

Create Grouped Data Scatter Plot Matrix

Load the sample data.

load discrim;

The ratings array contains rating values for 329 U.S. cities in the nine different
categories listed in the categories array. The group array contains a city size code
that is equal to 2 for the 26 largest cities, and 1 otherwise.

Create a matrix of scatter plots to compare the first two categories, climate and
housing, with categories 4 (crime) and 7 (arts). Specify group as the grouping
variable to visually distinguish the data for large and small cities.

22 Functions — Alphabetical List

22-2134

figure;

gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group);

The figure displays a matrix of scatter plots for the specified comparisons, with each city
size group represented by a different color.

For better clarity, you can adjust the appearance of the graphs by specifying colors and
plotting symbols, and labeling the axes with the rating categories.

figure;

gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group,...

 'br','.o',[],'on','',categories(1:2,:),...

 categories([4 7],:));

 gplotmatrix

22-2135

More About
• “Grouping Variables” on page 2-52

See Also
grpstats | gscatter | plotmatrix

22 Functions — Alphabetical List

22-2136

gprnd
Generalized Pareto random numbers

Syntax

r = gprnd(k,sigma,theta)

r = gprnd(k,sigma,theta,m,n,...)

R = gprnd(K,sigma,theta,[m,n,...])

Description

r = gprnd(k,sigma,theta) returns an array of random numbers chosen from
the generalized Pareto (GP) distribution with tail index (shape) parameter k, scale
parameter sigma, and threshold (location) parameter, theta. The size of r is the
common size of the input arguments if all are arrays. If any parameter is a scalar, the
size of r is the size of the other parameters.

r = gprnd(k,sigma,theta,m,n,...) or R = gprnd(K,sigma,theta,[m,n,...])
generates an m-by-n-by-... array. The k, sigma, theta parameters can each be scalars or
arrays of the same size as r.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When
k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale
parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP
is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP
has positive density for

x > theta, or, when

0
1

£
-

£-
x

k

q

s

More About
• “Generalized Pareto Distribution” on page B-60

 gprnd

22-2137

• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61
• “Supported Distributions” on page 5-17

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
random | gppdf | gpcdf | gpinv | gpstat | gpfit | gplike

22 Functions — Alphabetical List

22-2138

gpstat

Generalized Pareto mean and variance

Syntax

[m,v] = gpstat(k,sigma,theta)

Description

[m,v] = gpstat(k,sigma,theta) returns the mean of and variance for the
generalized Pareto (GP) distribution with the tail index (shape) parameter k, scale
parameter sigma, and threshold (location) parameter, theta.

The default value for theta is 0.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When
k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale
parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP
is not finite when k ≥ 1, and the variance is not finite when k ≥ 1/2. When k ≥ 0, the GP
has positive density for x > theta, or when

k < 0, 0
1

£
-

£-
x

k

q

s
.

More About
• “Generalized Pareto Distribution” on page B-60
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61
• “Supported Distributions” on page 5-17

 gpstat

22-2139

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

See Also
gppdf | gpcdf | gpinv | gpfit | gplike | gprnd

22 Functions — Alphabetical List

22-2140

growTrees

Class: TreeBagger

Train additional trees and add to ensemble

Syntax

B = growTrees(B,ntrees)

B = growTrees(B,ntrees,'param1',val1,'param2',val2,...)

Description

B = growTrees(B,ntrees) grows ntrees new trees and appends them to those trees
already stored in the ensemble B.

B = growTrees(B,ntrees,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'nprint' Specifies that a diagnostic message showing training progress
should display after every value training cycles (grown trees).
Default is no diagnostic messages.

'options' A struct that specifies options that govern computation
when growing the ensemble of decision trees. One option
requests that the computation of decision trees on multiple
bootstrap replicates uses multiple processors, if the Parallel
Computing Toolbox is available. Two options specify the
random number streams to use in selecting bootstrap
replicates. You can create this argument with a call to
statset. You can retrieve values of the individual fields with
a call to statget. Applicable statset parameters are:

• 'UseParallel' — If true and if a parpool of the
Parallel Computing Toolbox is open, compute decision trees
drawn on separate boostrap replicates in parallel. If the
Parallel Computing Toolbox is not installed, or a parpool

 growTrees

22-2141

is not open, computation occurs in serial mode. Default is
false, or serial computation.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute
reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such
objects. If you do not specify Streams, growTrees uses
the default stream or streams. If you choose to specify
Streams, use a single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel
pool.

See Also
TreeBagger | TreeBagger | fitctree | fitrtree | statset | statget

22 Functions — Alphabetical List

22-2142

grp2idx
Create index vector from grouping variable

Syntax
[G,GN]=grp2idx(S)

[G,GN,GL] = grp2idx(S)

Description
[G,GN]=grp2idx(S) creates an index vector G from the grouping variable S. S can be
a categorical, numeric, logical, datetime, or duration vector; a cell vector of strings; or
a character matrix with each row representing a group label. The result G is a vector
taking integer values from 1 up to the number K of distinct groups. GN is a cell array of
strings representing group labels. GN(G) reproduces S (aside from any differences in
type).

The order of GN depends on the grouping variable:

• For numeric and logical grouping variables, the order is the sorted order of S.
• For categorical grouping variables, the order is the order of getlabels(S).
• For string grouping variables, the order is the order of first appearance in S.

[G,GN,GL] = grp2idx(S) returns a column vector GL representing the group levels.
The set of groups and their order in GL and GN are the same, except that GL has the same
type as S. If S is a character matrix, GL(G,:) reproduces S, otherwise GL(G) reproduces
S.

grp2idx treats NaNs (numeric, duration, or logical), empty strings (char or cell array of
strings), or <undefined> values (categorical) or NaTs (datetime) in S as missing values
and returns NaNs in the corresponding rows of G. GN and GL don't include entries for
missing values.

Examples
Load the data in hospital.mat and create a categorical grouping variable:

 grp2idx

22-2143

load hospital

edges = 0:10:100;

labels = strcat(num2str((0:10:90)','%d'),{'s'});

AgeGroup = ordinal(hospital.Age,labels,[],edges);

ages = hospital.Age(1:5)

ages =

 38

 43

 38

 40

 49

group = AgeGroup(1:5)

group =

 30s

 40s

 30s

 40s

 40s

indices = grp2idx(group)

indices =

 4

 5

 4

 5

 5

More About
• “Grouping Variables” on page 2-52

See Also
gscatter | grpstats | crosstab | getlabels

22 Functions — Alphabetical List

22-2144

grpstats
Summary statistics organized by group

Syntax

statarray = grpstats(tbl,groupvar)

statarray = grpstats(tbl,groupvar,whichstats)

statarray = grpstats(tbl,groupvar,whichstats,Name,Value)

means = grpstats(X,group)

[stats1,...,statsN] = grpstats(X,group,whichstats)

[stats1,...,statsN] = grpstats(X,group,whichstats,'Alpha',alpha)

grpstats(X,group,alpha)

Description

statarray = grpstats(tbl,groupvar) returns a table or dataset array with the
means for the data groups specified in tbl determined by the values of the grouping
variable or variables specified in groupvar.

• If there is a single grouping variable, then there is a row in statarray for each value
of the grouping variable. grpstats sorts the groups by order of appearance (if the
grouping variable is a character array), in ascending numeric order (if the grouping
variable is numeric), or in order of the levels (if the grouping variable is categorical).

• If groupvar is a cell array of strings containing multiple grouping variable names, or a
vector of column numbers, then there is a row in statarray for each observed unique
combination of values of the grouping variables. grpstats sorts the groups by the
values of the first grouping variable, then the second grouping variable, and so on.

• If any variables in tbl (other than those specified in groupvar) are not numeric or
logical arrays, then you must specify the names or column numbers of the numeric
and logical variables for which you want to calculate means using the name-value
pair argument, DataVars.

statarray = grpstats(tbl,groupvar,whichstats) returns the group values for
the summary statistics types specified in whichstats.

 grpstats

22-2145

statarray = grpstats(tbl,groupvar,whichstats,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

means = grpstats(X,group) returns a column vector or matrix with the means of
the groups of the data in the matrix or vector X determined by the values of the grouping
variable or variables, group. The rows of means correspond to the grouping variable
values.

• If there is a single grouping variable, then there is a row in means for each value
of the grouping variable. grpstats sorts the groups by order of appearance (if the
grouping variable is a character array), in ascending numeric order (if the grouping
variable is numeric), or in order of the levels (if the grouping variable is categorical).

• If group is a cell array of grouping variables, then there is a row in means for each
observed unique combination of values of the grouping variables. grpstats sorts the
groups by the values of the first grouping variable, then the second grouping variable,
and so on.

• If X is a matrix, then means is a matrix with the same number of columns as X. Each
column of means has the group means for the corresponding column of X.

[stats1,...,statsN] = grpstats(X,group,whichstats) returns column vectors
or arrays with group values for the summary statistic types specified in whichstats.

[stats1,...,statsN] = grpstats(X,group,whichstats,'Alpha',alpha)

specifies the significance level for confidence and prediction intervals.

grpstats(X,group,alpha) plots the means of the groups of data in the vector or
matrix X determined by the values of the grouping variable, group. The grouping
variable values are on the horizontal plot axis. Each group mean has 100×(1 – alpha)%
confidence intervals.

• If X is a matrix, then grpstats plots the means and confidence intervals for each
column of X.

• If group is a cell array of grouping variables, then grpstats plots the means
and confidence intervals for the groups of data in X determined by the unique
combinations of values of the grouping variables. For example, if there are two
grouping variables, each with two values, there are four possible combinations of
grouping variable values. The plot includes only the combinations of values that exist
in the input grouping variables (not all possible combinations).

22 Functions — Alphabetical List

22-2146

Examples

Dataset Array Summary Statistics Organized by Group

Load the sample data.

load('hospital')

The dataset array hospital has 100 observations and 7 variables.

Create a dataset array with only the variables Sex, Age, Weight, and Smoker.

ds = hospital(:,{'Sex','Age','Weight','Smoker'});

Sex is a nominal array, with levels Male and Female. The variables Age and Weight
have numeric values, and Smoker has logical values.

Compute the mean for the numeric and logical arrays, Age, Weight, and Smoker,
grouped by the levels in Sex.

statarray = grpstats(ds,'Sex')

statarray =

 Sex GroupCount mean_Age mean_Weight mean_Smoker

 Female Female 53 37.717 130.47 0.24528

 Male Male 47 38.915 180.53 0.44681

statarray is a dataset array with two rows, corresponding to the levels in Sex.
GroupCount is the number of observations in each group. The means of Age, Weight,
and Smoker, grouped by Sex, are given in mean_Age, mean_Weight, and mean_Smoker.

Compute the mean for Age and Weight, grouped by the values in Smoker.

statarray = grpstats(ds,'Smoker','mean','DataVars',{'Age','Weight'})

statarray =

 Smoker GroupCount mean_Age mean_Weight

 0 false 66 37.97 149.91

 1 true 34 38.882 161.94

In this case, not all variables in ds (excluding the grouping variable, Smoker) are
numeric or logical arrays; the variable Sex is a nominal array. When not all variables in

 grpstats

22-2147

the input dataset array are numeric or logical arrays, you must specify the variables for
which you want to calculate summary statistics using DataVars.

Compute the minimum and maximum weight, grouped by the combinations of values in
Sex and Smoker.

statarray = grpstats(ds,{'Sex','Smoker'},{'min','max'},...

 'DataVars','Weight')

statarray =

 Sex Smoker GroupCount min_Weight max_Weight

 Female_0 Female false 40 111 147

 Female_1 Female true 13 115 146

 Male_0 Male false 26 158 194

 Male_1 Male true 21 164 202

There are two unique values in Smoker and two levels in Sex, for a total of four possible
combinations of values: Female Nonsmoker (Female_0), Female Smoker (Female_1),
Male Nonsmoker (Male_0), and Male Smoker (Male_1).

Specify the names for the columns in the output.

statarray = grpstats(ds,{'Sex','Smoker'},{'min','max'},...

 'DataVars','Weight','VarNames',{'Gender','Smoker',...

 'GroupCount','LowestWeight','HighestWeight'})

statarray =

 Gender Smoker GroupCount LowestWeight HighestWeight

 Female_0 Female false 40 111 147

 Female_1 Female true 13 115 146

 Male_0 Male false 26 158 194

 Male_1 Male true 21 164 202

Summary Statistics for a Dataset Array Without Grouping

Load the sample data.

load('hospital')

The dataset array hospital has 100 observations and 7 variables.

Create a dataset array with only the variables Age, Weight, and Smoker.

22 Functions — Alphabetical List

22-2148

ds = hospital(:,{'Age','Weight','Smoker'});

The variables Age and Weight have numeric values, and Smoker has logical values.

Compute the mean, minimum, and maximum for the numeric and logical arrays, Age,
Weight, and Smoker, with no grouping.

statarray = grpstats(ds,[],{'mean','min','max'})

statarray =

 GroupCount mean_Age min_Age max_Age mean_Weight

 All 100 38.28 25 50 154

 min_Weight max_Weight mean_Smoker min_Smoker max_Smoker

 All 111 202 0.34 false true

The observation name All indicates that all observations in ds were used to compute the
summary statistics.

Group Means for a Matrix Using One or More Grouping Variables

Load the sample data.

load('carsmall')

All variables are measured for 100 cars. Origin is the country of origin for each car
(France, Germany, Italy, Japan, Sweden, or USA). Cylinders has three unique values,
4, 6, and 8, indicating the number of cylinders in each car.

Calculate the mean acceleration, grouped by country of origin.

means = grpstats(Acceleration,Origin)

means =

 14.4377

 18.0500

 15.8867

 16.3778

 16.6000

 15.5000

means is a 6-by-1 vector of mean accelerations, where each value corresponds to a
country of origin.

 grpstats

22-2149

Calculate the mean acceleration, grouped by both country of origin and number of
cylinders.

means = grpstats(Acceleration,{Origin,Cylinders})

means =

 17.0818

 16.5267

 11.6406

 18.0500

 15.9143

 15.5000

 16.3375

 16.7000

 16.6000

 15.5000

There are 18 possible combinations of grouping variable values because Origin has 6
unique values and Cylinders has 3 unique values. Only 10 of the possible combinations
appear in the data, so means is a 10-by-1 vector of group means corresponding to the
observed combinations of values.

Return the group names along with the mean acceleration for each group.

[means,grps] = grpstats(Acceleration,{Origin,Cylinders},...

 {'mean','gname'})

means =

 17.0818

 16.5267

 11.6406

 18.0500

 15.9143

 15.5000

 16.3375

 16.7000

 16.6000

 15.5000

grps =

 'USA' '4'

22 Functions — Alphabetical List

22-2150

 'USA' '6'

 'USA' '8'

 'France' '4'

 'Japan' '4'

 'Japan' '6'

 'Germany' '4'

 'Germany' '6'

 'Sweden' '4'

 'Italy' '4'

The output grps shows the 10 observed combinations of grouping variable values. For
example, the mean acceleration of 4-cylinder cars made in France is 18.05.

Multiple Summary Statistics for a Matrix Organized by Group

Load the sample data.

load('carsmall')

The variable Acceleration was measured for 100 cars. The variable Origin is the
country of origin for each car (France, Germany, Italy, Japan, Sweden, or USA).

Return the minimum, median, and maximum acceleration, grouped by country of origin.

[grpMin,grpMed,grpMax,grp] = grpstats(Acceleration,Origin,...

 {'min','median','max','gname'})

grpMin =

 8.0000

 15.3000

 13.9000

 12.2000

 15.7000

 15.5000

grpMed =

 14.7000

 17.5000

 15.7000

 15.3000

 16.6000

 grpstats

22-2151

 15.5000

grpMax =

 22.2000

 21.9000

 18.2000

 24.6000

 17.5000

 15.5000

grp =

 'USA'

 'France'

 'Japan'

 'Germany'

 'Sweden'

 'Italy'

The sample car with the lowest acceleration is made in the USA, and the sample car with
the highest acceleration is made in Germany.

Plot Prediction Intervals for a New Observation in Each Group

Load the sample data.

load('carsmall')

The variable Weight was measured for 100 cars. The variable Model_Year has three
unique values, 70, 76, and 82, which correspond to model years 1970, 1976, and 1982.

Calculate the mean weight and 90% prediction intervals for each model year.

[means,pred,grp] = grpstats(Weight,Model_Year,...

 {'mean','predci','gname'},'Alpha',0.1);

Plot error bars showing the mean weight and 90% prediction intervals, grouped by model
year. Label the horizontal axis with the group names.

ngrps = length(grp); % Number of groups

22 Functions — Alphabetical List

22-2152

figure()

errorbar((1:ngrps)',means,pred(:,2)-means)

set(gca,'xtick',1:ngrps,'xticklabel',grp)

title('90% Prediction Intervals for Weight by Year')

Plot Group Means and Confidence Intervals

Load the sample data.

load('carsmall')

The variables Acceleration and Weight are the acceleration and weight values
measured for 100 cars. The variable Cylinders is the number of cylinders in each car.
The variable Model_Year has three unique values, 70, 76, and 82, which correspond to
model years 1970, 1976, and 1982.

Plot mean acceleration, grouped by Cylinders, with 95% confidence intervals.

grpstats(Acceleration,Cylinders,0.05)

 grpstats

22-2153

The mean acceleration for cars with 8 cylinders is significantly lower than for cars with 4
or 6 cylinders.

Plot mean acceleration and weight, grouped by Cylinders, and 95% confidence
intervals. Scale the Weight values by 1000 so the means of Weight and Acceleration
are the same order of magnitude.

grpstats([Acceleration,Weight/1000],Cylinders,0.05)

22 Functions — Alphabetical List

22-2154

The average weight of cars increases with the number of cylinders, and the average
acceleration decreases with the number of cylinders.

Plot mean acceleration, grouped by both Cylinders and Model_Year. Specify 95%
confidence intervals.

grpstats(Acceleration,{Cylinders,Model_Year},0.05)

 grpstats

22-2155

There are nine possible combinations of grouping variable values because there are three
unique values in Cylinders and three unique values in Model_Year. The plot does
not show 8-cylinder cars with model year 1982 because the data did not include this
combination.

The mean acceleration of 8-cylinder cars made in 1976 is significantly larger than the
mean acceleration of 8-cylinder cars made in 1970.

• “Summary Statistics Grouped by Category” on page 2-38
• “Test Differences Between Category Means” on page 2-29
• “Plot Data Grouped by Category” on page 2-25
• “Calculations on Dataset Arrays” on page 2-108

Input Arguments
tbl — Input data
table | dataset array

22 Functions — Alphabetical List

22-2156

Input data, specified as a table or dataset array. tbl must include at least one variable
that is a grouping variable.

Summary statistics can only be calculated for variables that have a numeric or logical
data type. If any variables in tbl (other than the grouping variables) are not numeric or
logical arrays, then use the name-value pair argument DataVars to specify the names
or column numbers of the numeric and logical variables for which to calculate summary
statistics.

groupvar — Identifiers for the grouping variables
cell array of strings | vector of positive integers | logical vector | []

Identifiers for the grouping variables in the input data, tbl, specified as one of the
following:

String or cell array of strings Names of the grouping variables
Positive integer or vector of positive
integers

Variable numbers of the grouping variables

Vector of logical values with number
of elements equal to the number of
variables in tbl

Logical indicator with value true for grouping
variables and false otherwise

[] No groups (returns summary statistics for all
data)

Any variable that is identified by groupvar as a grouping variable must have a valid
grouping variable data type: categorical array, logical or numeric vector, datetime or
duration vector, or cell array of strings.

For example, consider an input table, tbl, with six variables. The fourth variable is
named Gender. To be a valid grouping variable, the data type of Gender might be a cell
array of strings or a nominal array, with the unique values Male and Female. To specify
the variable Gender as the grouping variable, you can use any of these syntaxes:

• statarray = grpstats(tbl,'Gender')

• statarray = grpstats(tbl,4)

• statarray = grpstats(tbl,logical([0 0 0 1 0 0]))

Data Types: double | logical | cell | char

 grpstats

22-2157

whichstats — Types of summary statistics
string | function handle

Types of summary statistics to compute, specified as a string or function handle, or a
cell array of strings and function handles. Use a cell array to specify multiple types of
summary statistics.

Possible string values are:

'mean' Mean
'sem' Standard error of the mean
'numel' Count, or number, of non-NaN elements
'gname' Group name
'std' Standard deviation
'var' Variance
'min' Minimum
'max' Maximum
'range' Range
'meanci' 95% confidence interval for the mean
'predci' 95% prediction interval for a new observation

Example: [stat1,stat2] = grpstats(X,group,{'mean','sem'})

You can specify different significance levels for the 'meanci' and 'predci' options
using the name-value pair argument, Alpha.

To specify other types of summary statistics, you can use function handles. You can use
the handle to any function that accepts a column or matrix of data, and returns the same
size output each time grpstats calls it (even if the output for some groups is empty).

If the function accepts a column of data, then the function can return either a scalar
value, or an nvals-by-1 column vector for descriptive statistics of length nvals (for
example, confidence intervals have length two). If the function accepts a matrix, it must
either return a 1-by-ncols row vector, or an nvals-by-ncols matrix, where ncols is the
number of columns in the input data matrix.
Example: [stat1,stat2,stat3] = grpstats(X,group,
{'mean','std',@skewness})

22 Functions — Alphabetical List

22-2158

For functions that do not compute column-wise statistics, specify the computation
direction while specifying the function.
Example: stat1 = grpstats(X,group,@(x)sum(x,1))

Data Types: char | function_handle

alpha — Significance level
scalar value in the range (0,1)

Significance level, specified as a scalar value in the range (0,1).

• When you specify 'meanci' or 'predci' in whichstats, you can use alpha to specify
the significance level for the confidence or prediction intervals. If you specify alpha,
then grpstats returns 100×(1 – alpha)% confidence or prediction intervals. If you do
not specify alpha, then grpstats returns 95% intervals (alpha = 0.05).

• Use alpha with the grpstats(X,group,alpha) syntax to plot group means and
corresponding 100×(1 – alpha)% confidence intervals.

Data Types: double

X — Input data
vector | matrix

Input data, specified as a vector or a matrix. If X is a matrix, then grpstats returns
summary statistics for each column of X.

Data Types: double | single

group — Grouping variable
categorical array | logical or numeric vector | datetime or duration vector | cell array of
strings | []

Grouping variable, specified as a categorical array, logical or numeric vector, or cell array
of strings. Each unique value in a grouping variable defines a group. grpstats groups
data for summary statistics using the grouping variable values.

There must be a grouping variable value for each row of the input data X. Observations
(rows) with the same value of the grouping variable are in the same group. Use [] to
compute summary statistics for all data, without using groups.

For example, if Gender is a cell array of strings with values 'Male' and 'Female', you
can use Gender as a grouping variable to summarize your data by gender.

 grpstats

22-2159

You can also use more than one grouping variable to group data for summary statistics.
In this case, specify a cell array of grouping variables.

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for
smokers, then specifying the cell array {Gender,Smoker} divides observations into
four groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker.
grpstats returns summary statistics only for the combinations of values that exist in
the input grouping variables (not all possible combinations).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'DataVars',[1,3,4],'Alpha',0.01 specifies that summary statistics be
calculated for the 1st, 3rd, and 4th variables in a dataset array, with 99% confidence
intervals.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for confidence and prediction intervals, specified as the comma-
separated pair consisting of 'Alpha' and a scalar value in the range (0,1).

When you include 'meanci' or 'predci' in whichstats, you can use Alpha to specify
the significance level for confidence or prediction intervals. If you specify the value α,
then grpstats returns 100×(1 – α)% confidence or prediction intervals.

If you do not specify a value for Alpha, then grpstats returns 95% intervals (α = 0.05).

Example: 'Alpha',0.1

Data Types: double

'DataVars' — Variable names or columns
cell array of strings | vector of positive integers | logical vector

Variable names or columns indicating which variables in the input data tbl you want
to compute summary statistics for, specified as the comma-separated pair consisting of
'DataVars' and a cell array of strings, vector of positive integers, or a logical vector.
Use a string to specify a variable name, a positive integer to specify a variable column

22 Functions — Alphabetical List

22-2160

number, or logical values to indicate which variables to include (true if you want to
compute summary statistics, false otherwise).

You must specify DataVars if there are any variables in tbl (other than the grouping
variables specified in groupvar) that are not numeric or logical arrays. Summary
statistics can only be calculated for variables that have a numeric or logical data type.
Example: 'DataVars',{'Height','Weight'}

Data Types: double | cell | char

'VarNames' — Variable names for output
cell array of strings

Variable names for the output statarray, specified as the comma-separated pair
consisting of 'VarNames' and a cell array of strings. By default, grpstats constructs
output variable names by appending a prefix to the variable names from the input data
tbl. This prefix corresponds to the summary statistic name.
Example: 'VarNames',{'Gender','GroupCount','MaleMean','FemaleMean'}

Data Types: cell

Output Arguments

statarray — Group summary statistics
table | dataset array

Group summary statistics, returned as a table or a dataset array. If tbl is a table,
grpstats returns statarray as a table. If tbl is a dataset array, grpstats returns
statarray as a dataset array.

statarray contains summary statistic values for the groups of data in tbl determined by
the levels of the grouping variables specified by groupvar. There is a row in statarray
for each observed value or combination of values in the variables specified by groupvar.
The output statarray contains:

• All grouping variables specified by groupvar.
• The variable GroupCount, containing the number of observations in each group.
• Group summary statistic values for all variables in tbl (other than those specified by

groupvar), or for only the variables specified using DataVars.

 grpstats

22-2161

The total number of variables in statarray is ngroupvars + 1 + ndatavars×nstats,
where ngroupvars is the number of variables in groupvar, ndatavars is the number
of variables for which summary statistics are computed, and nstats is the number of
summary statistic types specified in whichstats.

grpstats assigns default names to the variables in statarray, unless you specify
variable names using the name-value pair argument VarNames.

means — Group means
column vector | array

Group means for the groups of data in the vector or matrix X determined by the levels
of group, returned as an ngroups-by-ncols array. Here, ngroups is the number of unique
values in the grouping variable, and ncols is the number of columns in X. If X is a vector,
then means is a column vector.

stats1,...,statsN — Group summary statistics
column vectors | arrays

Group summary statistics for the groups of data in the vector or matrix X determined by
the levels of group, returned as ngroups-by-ncols arrays. Here, ngroups is the number
of unique values in the grouping variable, and ncols is the number of columns in X.
You must specify an output argument for each type of summary statistic specified in
whichstats.

If a summary statistic type in whichstats returns a value of length nvals (for example,
a confidence interval is a descriptive statistic of length two), then the corresponding
output argument is an ngroups-by-ncols-by-nvals array.

More About

Algorithms

• grpstats treats NaNs as missing values, and removes them from the input data
before calculating summary statistics.

• grpstats ignores empty group names.

• “Dataset Arrays” on page 2-132
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-2162

• “Categorical Arrays” on page 2-42

See Also
dataset | table

 grpstats

22-2163

grpstats

Class: RepeatedMeasuresModel

Compute descriptive statistics of repeated measures data by group

Syntax

statstbl = grpstats(rm,g)

statstbl = grpstats(rm,g,stats)

Description

statstbl = grpstats(rm,g) returns the count, mean, and variance for the data used
to fit the repeated measures model rm, grouped by the factors, g.

statstbl = grpstats(rm,g,stats) returns the statistics specified by stats for the
data used to fit the repeated measures model rm, grouped by the factors, g.

Tips

• grpstats computes results separately for each group. The results do not depend on
the fitted repeated measures model. It computes the results on all available data,
without omitting entire rows that contain NaNs.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

22 Functions — Alphabetical List

22-2164

g — Name of grouping factor or factors
string | cell array of strings

Name of grouping factor or factors, specified as a string or cell array of strings.
Example: 'Drug'

Example: {'Drug','Sex'}

Data Types: char

stats — Statistics to compute
string | function handle | cell array of multiple strings and function handles

Statistics to compute, specified as one of the following:

• String specifying the name of the statistics to compute. Names can be one of the
following.

Name Description

'mean' Mean
'sem' Standard error of the mean
'numel' Count or number of elements
'gname' Group name
'std' Standard deviation
'var' Variance
'min' Minimum
'max' Maximum
'range' Maximum minus minimum
'meanci' 95% confidence interval for the mean
'predci' 95% prediction interval for a new observation

• Function handle — The function you specify must accept a vector of response values
for a single group, and compute descriptive statistics for it. A function should typically
return a value that has one row. A function must return the same size output each
time grpstats calls it, even if the input for some groups is empty.

• A cell array of strings and function handles.

Example: @median

 grpstats

22-2165

Example: @skewness

Example: 'gname'

Example: {'gname','range','predci'}

Data Types: char | function_handle | cell

Output Arguments

statstbl — Statistics values for each group
table

Statistics values for each group, returned as a table.

Examples

Compute Group Statistics

Load the sample data.

load fisheriris

The column vector, species consists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Compute group counts, mean, and standard deviation with respect to species.

grpstats(rm,'species')

22 Functions — Alphabetical List

22-2166

ans =

 species GroupCount mean std

 ____________ __________ ______ ______

 'setosa' 200 2.5355 1.8483

 'versicolor' 200 3.573 1.7624

 'virginica' 200 4.285 1.9154

Now, compute the range of data and 95% confidence intervals for the group means for the
factor species. Also display the group name.

grpstats(rm,'species',{'gname','range','predci'})

ans =

 species gname GroupCount range predci

 ____________ ____________ __________ _____ ____________________

 'setosa' 'setosa' 200 5.7 -1.1185 6.1895

 'versicolor' 'versicolor' 200 6 0.088976 7.057

 'virginica' 'virginica' 200 6.5 0.4985 8.0715

Statistics for Data Grouped by Two Factors

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 through y8 as responses. The table within includes the
within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the
responses, and age, IQ, group, gender, and the group-gender interaction are the predictor
variables. Also specify the within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Compute group counts, mean, standard deviation, skewness, and kurtosis of data
grouped by the factors Group and Gender.

GS = grpstats(rm,{'Group','Gender'},{'mean','std',@skewness,@kurtosis})

GS =

 grpstats

22-2167

 Group Gender GroupCount mean std skewness kurtosis

 _____ ______ __________ _______ ______ ________ ________

 A Female 40 16.554 21.498 0.35324 3.7807

 A Male 40 9.8335 20.602 -0.38722 2.7834

 B Female 40 11.261 25.779 -0.49177 4.1484

 B Male 40 3.6078 24.646 0.55447 2.7966

 C Female 40 -11.335 27.186 1.7499 6.1429

 C Male 40 -14.028 31.984 1.7362 5.141

See Also
fitrm | plot

22 Functions — Alphabetical List

22-2168

gscatter

Scatter plot by group

Syntax

gscatter(x,y,group)

gscatter(x,y,group,clr,sym,siz)

gscatter(x,y,group,clr,sym,siz,doleg)

gscatter(x,y,group,clr,sym,siz,doleg,xnam,ynam)

h = gscatter(...)

Description

gscatter(x,y,group) creates a scatter plot of x and y, grouped by group. x and y
are vectors of the same size. group is a grouping variable in the form of a categorical
variable, vector, string array, or cell array of strings. Alternatively, group can be a
cell array containing several grouping variables (such as {g1 g2 g3}), in which case
observations are in the same group if they have common values of all grouping variables.
Points in the same group and appear on the graph with the same marker and color.

gscatter(x,y,group,clr,sym,siz) specifies the color, marker type, and size for
each group. clr is a string array of colors recognized by the plot function. sym is a
string array of symbols recognized by the plot command, with the default value '.'.
siz is a vector of sizes, with the default determined by the 'DefaultLineMarkerSize'
property. If you do not specify enough values for all groups, gscatter cycles through the
specified values as needed.

gscatter(x,y,group,clr,sym,siz,doleg) controls whether a legend is displayed
on the graph (doleg is 'on', the default) or not (doleg is 'off').

gscatter(x,y,group,clr,sym,siz,doleg,xnam,ynam) specifies the name to use
for the x-axis and y-axis labels. If the x and y inputs are simple variable names and xnam
and ynam are omitted, gscatter labels the axes with the variable names.

h = gscatter(...) returns an array of handles to the lines on the graph.

 gscatter

22-2169

Examples

Scatter Plot of Climate and Housing Ratings

Load the sample data.

load discrim

The sample data contains ratings of cities according to nine factors such as climate,
housing, education, and health in the matrix ratings .

Plot the relationship between the ratings for climate (first column) and housing (second
column) grouped by city size in the matrix group. Choose different colors and plotting
symbols for each group.

figure;

gscatter(ratings(:,1),ratings(:,2),group,'br','xo')

xlabel('climate');

ylabel('housing');

22 Functions — Alphabetical List

22-2170

More About
• “Grouping Variables” on page 2-52

See Also
gplotmatrix | grpstats | scatter

 gt

22-2171

gt
Class: qrandstream

Greater than relation for handles

Syntax

h1 > h2

Description

h1 > h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and
h2 must be of the same dimensions unless one is a scalar. The result is a logical array of
the same dimensions, where each element is an element-wise > result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar.

tf = gt(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | ge | le | ne | eq | lt

22 Functions — Alphabetical List

22-2172

haltonset class
Superclasses: qrandset

Halton quasi-random point sets

Description
haltonset is a quasi-random point set class that produces points from the Halton
sequence.

Construction
.haltonset

Construct Halton quasi-random point set

Methods

Inherited Methods

Methods in the following table are inherited from qrandset.

disp
Display qrandset object

end
Last index in indexing expression for point
set

length
Length of point set

ndims
Number of dimensions in matrix

net
Generate quasi-random point set

scramble
Scramble quasi-random point set

 haltonset class

22-2173

size
Number of dimensions in matrix

subsref
Subscripted reference for qrandset

Properties

Inherited Properties

Properties in the following table are inherited from qrandset.

Dimensions
Number of dimensions

Leap
Interval between points

ScrambleMethod
Settings that control scrambling

Skip
Number of initial points to omit from
sequence

Type
Name of sequence on which point set P is
based

Copy Semantics

Handle. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

References

[1] Kocis, L., and W. J. Whiten, "Computational Investigations of Low-Discrepancy
Sequences," ACM Transactions on Mathematical Software, Vol. 23, No. 2, pp. 266-294,
1997.

22 Functions — Alphabetical List

22-2174

See Also
sobolset

How To
• “Quasi-Random Point Sets” on page 6-17

 haltonset

22-2175

haltonset
Class: haltonset

Construct Halton quasi-random point set

Syntax

p = haltonset(d)

p = haltonset(d,prop1,val1,prop2,val2,...)

Description

p = haltonset(d) constructs a d-dimensional point set p of the haltonset class, with
default property settings.

p = haltonset(d,prop1,val1,prop2,val2,...) specifies property name/value
pairs used to construct p.

The object p returned by haltonset encapsulates properties of a specified quasi-
random sequence. The point set is finite, with a length determined by the Skip and Leap
properties and by limits on the size of point set indices (maximum value of 253). Values
of the point set are not generated and stored in memory until you access p using net or
parenthesis indexing.

Examples

Generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st
point:

p = haltonset(3,'Skip',1e3,'Leap',1e2)

p =

 Halton point set in 3 dimensions (8.918019e+013 points)

 Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : none

22 Functions — Alphabetical List

22-2176

Use scramble to apply reverse-radix scrambling:

p = scramble(p,'RR2')

p =

 Halton point set in 3 dimensions (8.918019e+013 points)

 Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : RR2

Use net to generate the first four points:

X0 = net(p,4)

X0 =

 0.0928 0.6950 0.0029

 0.6958 0.2958 0.8269

 0.3013 0.6497 0.4141

 0.9087 0.7883 0.2166

Use parenthesis indexing to generate every third point, up to the 11th point:

X = p(1:3:11,:)

X =

 0.0928 0.6950 0.0029

 0.9087 0.7883 0.2166

 0.3843 0.9840 0.9878

 0.6831 0.7357 0.7923

References

[1] Kocis, L., and W. J. Whiten. “Computational Investigations of Low-Discrepancy
Sequences.” ACM Transactions on Mathematical Software. Vol. 23, No. 2, 1997,
pp. 266–294.

See Also
net | scramble | sobolset

 harmmean

22-2177

harmmean
Harmonic mean

Syntax

m = harmmean(X)

harmmean(X,dim)

Description

m = harmmean(X) calculates the harmonic mean of a sample. For vectors,
harmmean(x) is the harmonic mean of the elements in x. For matrices, harmmean(X) is
a row vector containing the harmonic means of each column. For N-dimensional arrays,
harmmean operates along the first nonsingleton dimension of X.

harmmean(X,dim) takes the harmonic mean along dimension dim of X.

The harmonic mean is

m
n

xii

n
=

=
∑ 1

1

Examples

The arithmetic mean is greater than or equal to the harmonic mean.

x = exprnd(1,10,6);

harmonic = harmmean(x)

harmonic =

 0.3382 0.3200 0.3710 0.0540 0.4936 0.0907

average = mean(x)

average =

22 Functions — Alphabetical List

22-2178

 1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also
mean | median | geomean | trimmean

 hist3

22-2179

hist3

Bivariate histogram

Syntax

hist3(X)

hist3(X,nbins)

hist3(X,ctrs)

hist3(X,'Edges',edges)

N = hist3(X,...)

[N,C] = hist3(X,...)

hist3(...,param1,val1,param2,val2,...)

Description

hist3(X) bins the elements of the m-by-2 matrix X into a 10-by-10 grid of equally spaced
containers, and plots a histogram. Each column of X corresponds to one dimension in the
bin grid.

hist3(X,nbins) plots a histogram using an nbins(1)-by-nbins(2) grid of bins.
hist3(X,'Nbins',nbins) is equivalent to hist3(X,nbins).

hist3(X,ctrs), where ctrs is a two-element cell array of numeric vectors with
monotonically non-decreasing values, uses a 2-D grid of bins centered on ctrs{1} in the
first dimension and on ctrs{2} in the second. hist3 assigns rows of X falling outside
the range of that grid to the bins along the outer edges of the grid, and ignores rows of X
containing NaNs. hist3(X,'Ctrs',ctrs) is equivalent to hist3(X,ctrs).

hist3(X,'Edges',edges), where edges is a two-element cell array of numeric
vectors with monotonically non-decreasing values, uses a 2-D grid of bins with edges at
edges{1} in the first dimension and at edges{2} in the second. The (i, j)th bin includes
the value X(k,:) if

edges{1}(i) <= X(k,1) < edges{1}(i+1)

edges{2}(j) <= X(k,2) < edges{2}(j+1)

22 Functions — Alphabetical List

22-2180

Rows of X that fall on the upper edges of the grid, edges{1}(end) or edges{2}(end),
are counted in the (I,j)th or (i,J)th bins, where I and J are the lengths of edges{1}
and edges{2}. hist3 does not count rows of X falling outside the range of the grid. Use
-Inf and Inf in edges to include all non-NaN values.

N = hist3(X,...) returns a matrix containing the number of elements of X that fall in
each bin of the grid, and does not plot the histogram.

[N,C] = hist3(X,...) returns the positions of the bin centers in a 1-by-2 cell array
of numeric vectors, and does not plot the histogram. hist3(ax,X,...) plots onto an
axes with handle ax instead of the current axes. See the axes reference page for more
information about handles to plots.

hist3(...,param1,val1,param2,val2,...) allows you to specify graphics
parameter name/value pairs to fine-tune the plot.

Examples

Plot Density Histogram with Intensity Map

Load the sample data.

load seamount

Correct grid for negative y-values and draw histogram in 2D.

hold on

dat = [-y,x];

hist3(dat)

 hist3

22-2181

Extract histogram data.

n = hist3(dat); % default is to 10x10 bins

n1 = n';

n1(size(n,1) + 1, size(n,2) + 1) = 0;

Generate grid for 2-D projected view of intensities.

xb = linspace(min(dat(:,1)),max(dat(:,1)),size(n,1)+1);

yb = linspace(min(dat(:,2)),max(dat(:,2)),size(n,1)+1);

Make a pseudocolor plot.

h = pcolor(xb,yb,n1);

22 Functions — Alphabetical List

22-2182

Set the z-level and colormap of the displayed grid, and display the default 3-D
perspective view.

h.ZData = ones(size(n1)) * -max(max(n));

colormap(hot) % heat map

title('Seamount:Data Point Density Histogram and Intensity Map');

grid on

view(3);

 hist3

22-2183

Histogram with Semi-Transparent Bars

Load the sample data.

load carbig

Use the data to make histogram on a 7-by-7 grid of bins.

X = [MPG,Weight];

hist3(X,[7 7]);

xlabel('MPG'); ylabel('Weight');

22 Functions — Alphabetical List

22-2184

Make a histogram with semi-transparent bars.

hist3(X,[7 7],'FaceAlpha',.65);

xlabel('MPG'); ylabel('Weight');

set(gcf,'renderer','opengl');

 hist3

22-2185

Specify bin centers, different in each direction; get back counts, but don't make the plot.

cnt = hist3(X, {0:10:50 2000:500:5000});

Histogram Bars Colored According to Height

Load the sample data.

load carbig

Make a histogram on a 7-by-7 grid of bins.

X = [MPG,Weight];

hist3(X,[7 7]);

22 Functions — Alphabetical List

22-2186

xlabel('MPG'); ylabel('Weight');

set(gcf,'renderer','opengl');

Color the bars based on the frequency of the observations, i.e. according to the height of
the bars.

set(get(gca,'child'),'FaceColor','interp','CDataMode','auto');

 hist3

22-2187

See Also
accumarray | histc | bar | bar3 | histogram

22 Functions — Alphabetical List

22-2188

histfit

Histogram with a distribution fit

Syntax

histfit(data)

histfit(data,nbins)

histfit(data,nbins,dist)

h = histfit(___)

Description

histfit(data) plots a histogram of values in data using the number of bins equal to
the square root of the number of elements in data and fits a normal density function.

histfit(data,nbins) plots a histogram using nbins bins and fits a normal density
function.

histfit(data,nbins,dist) plots a histogram with nbins bins and fits a density
function from the distribution specified by dist.

h = histfit(___) returns a vector of handles h, where h(1) is the handle to the
histogram and h(2) is the handle to the density curve. It can include any of the input
arguments in previous syntaxes.

Examples

Histogram with a Normal Distribution Fit

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

rng default; % For reproducibility

r = normrnd(10,1,100,1);

 histfit

22-2189

Construct a histogram with a normal distribution fit.

histfit(r)

Histogram for a Given Number of Bins

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

rng default; % For reproducibility

r = normrnd(10,1,100,1);

Construct a histogram using six bins with a normal distribution fit.

histfit(r,6)

22 Functions — Alphabetical List

22-2190

Histogram with a Specified Distribution Fit

Generate a sample of size 100 from a beta distribution with parameters (3,10).

rng default; % For reproducibility

b = betarnd(3,10,100,1);

Construct a histogram using 10 bins with a beta distribution fit.

histfit(b,10,'beta')

 histfit

22-2191

Histogram with a Kernel Smoothing Function Fit

Generate a sample of size 100 from a beta distribution with parameters (3,10).

rng default; % For reproducibility

b = betarnd(3,10,[100,1]);

Construct a histogram using 10 bins with a smoothing function fit.

histfit(b,10,'kernel')

22 Functions — Alphabetical List

22-2192

Handle for a Histogram with a Distribution Fit

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

rng default % for reproducibility

r = normrnd(10,1,100,1);

Construct a histogram with a normal distribution fit.

h = histfit(r,10,'normal')

h =

 histfit

22-2193

 2x1 graphics array:

 Patch

 Line

Change the bar colors of the histogram.

h(1).FaceColor = [.8 .8 1];

22 Functions — Alphabetical List

22-2194

Change the color of the density curve.

h(2).Color = [.2 .2 .2];

 histfit

22-2195

Input Arguments

data — Input data
vector

Input data, specified as a vector.
Example: data = [1.5 2.5 4.6 1.2 3.4]

Example: data = [1.5 2.5 4.6 1.2 3.4]'

Data Types: double | single

22 Functions — Alphabetical List

22-2196

nbins — Number of bins
positive integer | []

Number of bins for the histogram, specified as a positive integer. Default value is the
square root of the number of elements in data, rounded up. Use [] for the default
number of bins when fitting a distribution.
Example: y = histfit(x,8)
Example: y = histfit(x,10,'gamma')
Example: y = histfit(x,[],'weibull')
Data Types: double | single

dist — Distribution to fit
'normal' (default) | string

Distribution to fit to the histogram, specified as a string. The following table shows the
supported distributions.

dist Description

'beta' Beta
'birnbaumsaunders' Birnbaum-Saunders
'burr' Burr Type XII
'exponential' Exponential
'extreme value' or 'ev' Extreme value
'gamma' Gamma
'generalized extreme value' or
'gev'

Generalized extreme value

'generalized pareto' or 'gp' Generalized Pareto (threshold 0)
'inversegaussian' Inverse Gaussian
'logistic' Logistic
'loglogistic' Loglogistic
'lognormal' Lognormal
'nakagami' Nakagami
'negative binomial' or 'nbin' Negative binomial

 histfit

22-2197

dist Description

'normal' Normal
'poisson' Poisson
'rayleigh' Rayleigh
'rician' Rician
'tlocationscale' t location-scale
'weibull' or 'wbl' Weibull
'kernel' Nonparametric kernel-smoothing

distribution. The density is evaluated at
100 equally spaced points that cover the
range of the data in data. It works best
with continuously distributed samples.

Data Types: char

Output Arguments

h — Handles for the plot
plot handle

Handles for the plot, returned as a vector, where h(1) is the handle to the histogram,
and h(2) is the handle to the density curve.

See Also
dfittool | histogram | normfit

22 Functions — Alphabetical List

22-2198

hmmdecode

Hidden Markov model posterior state probabilities

Syntax

PSTATES = hmmdecode(seq,TRANS,EMIS)

[PSTATES,logpseq] = hmmdecode(...)

[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...)

hmmdecode(...,'Symbols',SYMBOLS)

Description

PSTATES = hmmdecode(seq,TRANS,EMIS) calculates the posterior state probabilities,
PSTATES, of the sequence seq, from a hidden Markov model. The posterior state
probabilities are the conditional probabilities of being at state k at step i, given the
observed sequence of symbols, sym. You specify the model by a transition probability
matrix, TRANS, and an emissions probability matrix, EMIS. TRANS(i,j) is the
probability of transition from state i to state j. EMIS(k,seq) is the probability that
symbol seq is emitted from state k.

PSTATES is an array with the same length as seq and one row for each state in the
model. The (i, j)th element of PSTATES gives the probability that the model is in state i at
the jth step, given the sequence seq.

Note The function hmmdecode begins with the model in state 1 at step 0, prior to the
first emission. hmmdecode computes the probabilities in PSTATES based on the fact that
the model begins in state 1.

[PSTATES,logpseq] = hmmdecode(...) returns logpseq, the logarithm of the
probability of sequence seq, given transition matrix TRANS and emission matrix EMIS.

[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...) returns the forward
and backward probabilities of the sequence scaled by S.

 hmmdecode

22-2199

hmmdecode(...,'Symbols',SYMBOLS) specifies the symbols that are emitted.
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default
symbols are integers 1 through N, where N is the number of possible emissions.

Examples
trans = [0.95,0.05;

 0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;

 1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis);

pStates = hmmdecode(seq,trans,emis);

[seq,states] = hmmgenerate(100,trans,emis,...

 'Symbols',{'one','two','three','four','five','six'})

pStates = hmmdecode(seq,trans,emis,...

 'Symbols',{'one','two','three','four','five','six'});

References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge, UK: Cambridge University Press, 1998.

See Also
hmmgenerate | hmmestimate | hmmviterbi | hmmtrain

22 Functions — Alphabetical List

22-2200

hmmestimate
Hidden Markov model parameter estimates from emissions and states

Syntax

[TRANS,EMIS] = hmmestimate(seq,states)

hmmestimate(...,'Symbols',SYMBOLS)

hmmestimate(...,'Statenames',STATENAMES)

hmmestimate(...,'Pseudoemissions',PSEUDOE)

hmmestimate(...,'Pseudotransitions',PSEUDOTR)

Description

[TRANS,EMIS] = hmmestimate(seq,states) calculates the maximum likelihood
estimate of the transition, TRANS, and emission, EMIS, probabilities of a hidden Markov
model for sequence, seq, with known states, states.

hmmestimate(...,'Symbols',SYMBOLS) specifies the symbols that are emitted.
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default
symbols are integers 1 through N, where N is the number of possible emissions.

hmmestimate(...,'Statenames',STATENAMES) specifies the names of the states.
STATENAMES can be a numeric array or a cell array of the names of the states. The
default state names are 1 through M, where M is the number of states.

hmmestimate(...,'Pseudoemissions',PSEUDOE) specifies pseudocount emission
values in the matrix PSEUDO. Use this argument to avoid zero probability estimates
for emissions with very low probability that might not be represented in the sample
sequence. PSEUDOE should be a matrix of size m-by-n, where m is the number of states
in the hidden Markov model and n is the number of possible emissions. If the i k→
emission does not occur in seq, you can set PSEUDOE(i,k) to be a positive number
representing an estimate of the expected number of such emissions in the sequence seq.

hmmestimate(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount
transition values. You can use this argument to avoid zero probability estimates for
transitions with very low probability that might not be represented in the sample
sequence. PSEUDOTR should be a matrix of size m-by-m, where m is the number of states

 hmmestimate

22-2201

in the hidden Markov model. If the i j→ transition does not occur in states, you can
set PSEUDOTR(i,j) to be a positive number representing an estimate of the expected
number of such transitions in the sequence states.

Pseudotransitions and Pseudoemissions

If the probability of a specific transition or emission is very low, the transition might
never occur in the sequence states, or the emission might never occur in the sequence
seq. In either case, the algorithm returns a probability of 0 for the given transition
or emission in TRANS or EMIS. You can compensate for the absence of transition with
the 'Pseudotransitions' and 'Pseudoemissions' arguments. The simplest
way to do this is to set the corresponding entry of PSEUDO or PSEUDOTR to 1. For
example, if the transition i j→ does not occur in states, set PSEUOTR(i,j) = 1. This
forces TRANS(i,j) to be positive. If you have an estimate for the expected number of
transitions i j→ in a sequence of the same length as states, and the actual number of
transitions i j→ that occur in seq is substantially less than what you expect, you can
set PSEUOTR(i,j) to the expected number. This increases the value of TRANS(i,j). For
transitions that do occur in states with the frequency you expect, set the corresponding
entry of PSEUDOTR to 0, which does not increase the corresponding entry of TRANS.

If you do not know the sequence of states, use hmmtrain to estimate the model
parameters.

Examples
trans = [0.95,0.05; 0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;

 1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(1000,trans,emis);

[estimateTR,estimateE] = hmmestimate(seq,states);

References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge, UK: Cambridge University Press, 1998.

22 Functions — Alphabetical List

22-2202

See Also
hmmgenerate | hmmdecode | hmmviterbi | hmmtrain

 hmmgenerate

22-2203

hmmgenerate
Hidden Markov model states and emissions

Syntax

[seq,states] = hmmgenerate(len,TRANS,EMIS)

hmmgenerate(...,'Symbols',SYMBOLS)

hmmgenerate(...,'Statenames',STATENAMES)

Description

[seq,states] = hmmgenerate(len,TRANS,EMIS) takes a known Markov model,
specified by transition probability matrix TRANS and emission probability matrix EMIS,
and uses it to generate

• A random sequence seq of emission symbols
• A random sequence states of states

The length of both seq and states is len. TRANS(i,j) is the probability of transition
from state i to state j. EMIS(k,l) is the probability that symbol l is emitted from state
k.

Note The function hmmgenerate begins with the model in state 1 at step 0, prior to the
first emission. The model then makes a transition to state i1, with probability T1i1, and
generates an emission ak1 with probability Ei1k11

. hmmgenerate returns i1 as the first
entry of states, and ak1 as the first entry of seq.

hmmgenerate(...,'Symbols',SYMBOLS) specifies the symbols that are emitted.
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default
symbols are integers 1 through N, where N is the number of possible emissions.

hmmgenerate(...,'Statenames',STATENAMES) specifies the names of the states.
STATENAMES can be a numeric array or a cell array of the names of the states. The
default state names are 1 through M, where M is the number of states.

22 Functions — Alphabetical List

22-2204

Since the model always begins at state 1, whose transition probabilities are in the first
row of TRANS, in the following example, the first entry of the output states is be 1 with
probability 0.95 and 2 with probability 0.05.

Examples
 trans = [0.95,0.05;

 0.10,0.90];

 emis = [1/6 1/6 1/6 1/6 1/6 1/6;

 1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis)

[seq,states] = hmmgenerate(100,trans,emis,...

 'Symbols',{'one','two','three','four','five','six'},...

 'Statenames',{'fair';'loaded'})

See Also
hmmviterbi | hmmdecode | hmmestimate | hmmtrain

 hmmtrain

22-2205

hmmtrain
Hidden Markov model parameter estimates from emissions

Syntax

[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS)

hmmtrain(...,'Algorithm',algorithm)

hmmtrain(...,'Symbols',SYMBOLS)

hmmtrain(...,'Tolerance',tol)

hmmtrain(...,'Maxiterations',maxiter)

hmmtrain(...,'Verbose',true)

hmmtrain(...,'Pseudoemissions',PSEUDOE)

hmmtrain(...,'Pseudotransitions',PSEUDOTR)

Description

[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates the transition
and emission probabilities for a hidden Markov model using the Baum-Welch algorithm.
seq can be a row vector containing a single sequence, a matrix with one row per
sequence, or a cell array with each cell containing a sequence. TRGUESS and EMITGUESS
are initial estimates of the transition and emission probability matrices. TRGUESS(i,j)
is the estimated probability of transition from state i to state j. EMITGUESS(i,k) is the
estimated probability that symbol k is emitted from state i.

hmmtrain(...,'Algorithm',algorithm) specifies the training algorithm.
algorithm can be either 'BaumWelch' or 'Viterbi'. The default algorithm is
'BaumWelch'.

hmmtrain(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS
can be a numeric array or a cell array of the names of the symbols. The default symbols
are integers 1 through N, where N is the number of possible emissions.

hmmtrain(...,'Tolerance',tol) specifies the tolerance used for testing convergence
of the iterative estimation process. The default tolerance is 1e-4.

hmmtrain(...,'Maxiterations',maxiter) specifies the maximum number of
iterations for the estimation process. The default maximum is 100.

22 Functions — Alphabetical List

22-2206

hmmtrain(...,'Verbose',true) returns the status of the algorithm at each
iteration.

hmmtrain(...,'Pseudoemissions',PSEUDOE) specifies pseudocount emission values
for the Viterbi training algorithm. Use this argument to avoid zero probability estimates
for emissions with very low probability that might not be represented in the sample
sequence. PSEUDOE should be a matrix of size m-by-n, where m is the number of states in
the hidden Markov model and n is the number of possible emissions. If the i→k emission
does not occur in seq, you can set PSEUDOE(i,k) to be a positive number representing
an estimate of the expected number of such emissions in the sequence seq.

hmmtrain(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount transition
values for the Viterbi training algorithm. Use this argument to avoid zero probability
estimates for transitions with very low probability that might not be represented in the
sample sequence. PSEUDOTR should be a matrix of size m-by-m, where m is the number
of states in the hidden Markov model. If the i→j transition does not occur in states,
you can set PSEUDOTR(i,j) to be a positive number representing an estimate of the
expected number of such transitions in the sequence states.

If you know the states corresponding to the sequences, use hmmestimate to estimate the
model parameters.

Tolerance

The input argument 'tolerance' controls how many steps the hmmtrain algorithm
executes before the function returns an answer. The algorithm terminates when all of the
following three quantities are less than the value that you specify for tolerance:

• The log likelihood that the input sequence seq is generated by the currently
estimated values of the transition and emission matrices

• The change in the norm of the transition matrix, normalized by the size of the matrix
• The change in the norm of the emission matrix, normalized by the size of the matrix

The default value of 'tolerance' is .0001. Increasing the tolerance decreases the
number of steps the hmmtrain algorithm executes before it terminates.

maxiterations

The maximum number of iterations, 'maxiterations', controls the maximum
number of steps the algorithm executes before it terminates. If the algorithm

 hmmtrain

22-2207

executes maxiter iterations before reaching the specified tolerance, the algorithm
terminates and the function returns a warning. If this occurs, you can increase the
value of 'maxiterations' to make the algorithm reach the desired tolerance before
terminating.

Examples
trans = [0.95,0.05;

 0.10,0.90];

emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;

 1/10, 1/10, 1/10, 1/10, 1/10, 1/2];

seq1 = hmmgenerate(100,trans,emis);

seq2 = hmmgenerate(200,trans,emis);

seqs = {seq1,seq2};

[estTR,estE] = hmmtrain(seqs,trans,emis);

References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge, UK: Cambridge University Press, 1998.

See Also
hmmgenerate | hmmdecode | hmmestimate | hmmviterbi

22 Functions — Alphabetical List

22-2208

hmmviterbi
Hidden Markov model most probable state path

Syntax

STATES = hmmviterbi(seq,TRANS,EMIS)

hmmviterbi(...,'Symbols',SYMBOLS)

hmmviterbi(...,'Statenames',STATENAMES)

Description

STATES = hmmviterbi(seq,TRANS,EMIS) given a sequence, seq, calculates the
most likely path through the hidden Markov model specified by transition probability
matrix, TRANS, and emission probability matrix EMIS. TRANS(i,j) is the probability of
transition from state i to state j. EMIS(i,k) is the probability that symbol k is emitted
from state i.

Note The function hmmviterbi begins with the model in state 1 at step 0, prior to the
first emission. hmmviterbi computes the most likely path based on the fact that the
model begins in state 1.

hmmviterbi(...,'Symbols',SYMBOLS) specifies the symbols that are emitted.
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default
symbols are integers 1 through N, where N is the number of possible emissions.

hmmviterbi(...,'Statenames',STATENAMES) specifies the names of the states.
STATENAMES can be a numeric array or a cell array of the names of the states. The
default state names are 1 through M, where M is the number of states.

Examples
trans = [0.95,0.05;

 0.10,0.90];

 hmmviterbi

22-2209

emis = [1/6 1/6 1/6 1/6 1/6 1/6;

 1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis);

estimatedStates = hmmviterbi(seq,trans,emis);

[seq,states] = ...

 hmmgenerate(100,trans,emis,...

 'Statenames',{'fair';'loaded'});

estimatesStates = ...

 hmmviterbi(seq,trans,emis,...

 'Statenames',{'fair';'loaded'});

References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge, UK: Cambridge University Press, 1998.

See Also
hmmgenerate | hmmdecode | hmmestimate | hmmtrain

22 Functions — Alphabetical List

22-2210

horzcat
Class: dataset

Horizontal concatenation for dataset arrays

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

ds = horzcat(ds1, ds2, ...)

Description

ds = horzcat(ds1, ds2, ...) horizontally concatenates the dataset arrays ds1,
ds2, You may concatenate dataset arrays that have duplicate variable names,
however, the variables must contain identical data, and horzcat includes only one copy
of the variable in the output dataset.

Observation names for all dataset arrays that have them must be identical except for
order. horzcat concatenates by matching observation names when present, or by
position for datasets that do not have observation names.

See Also
cat | vertcat

 hougen

22-2211

hougen
Hougen-Watson model

Syntax

yhat = hougen(beta,x)

Description

yhat = hougen(beta,x) returns the predicted values of the reaction rate, yhat, as a
function of the vector of parameters, beta, and the matrix of data, X. beta must have 5
elements and X must have three columns.

hougen is a utility function for rsmdemo.

The model form is:

ˆ
/

y
x x

x x x
=

-

+ + +

b b

b b b
1 2 3 5

2 1 3 2 4 31

References

[1] Bates, D. M., and D. G. Watts. Nonlinear Regression Analysis and Its Applications.
Hoboken, NJ: John Wiley & Sons, Inc., 1988.

See Also
rsmdemo

22 Functions — Alphabetical List

22-2212

hygecdf

Hypergeometric cumulative distribution function

Syntax

hygecdf(x,M,K,N)

hygecdf(x,M,K,N,'upper')

Description

hygecdf(x,M,K,N) computes the hypergeometric cdf at each of the values in x
using the corresponding size of the population, M, number of items with the desired
characteristic in the population, K, and number of samples drawn, N. Vector or matrix
inputs for x, M, K, and N must all have the same size. A scalar input is expanded to a
constant matrix with the same dimensions as the other inputs.

hygecdf(x,M,K,N,'upper') returns the complement of the hypergeometric cdf at
each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities.

The hypergeometric cdf is

p F x M K N

K

i

M K

N i

M

N
i

x

= =











−
−



















=

∑(| , ,)
0

The result, p, is the probability of drawing up to x of a possible K items in N drawings
without replacement from a group of M objects.

 hygecdf

22-2213

Examples

Compute Hypergeometric Distribution CDF

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective.
What is the probability of drawing zero to two defective floppies if you select 10 at
random?

p = hygecdf(2,100,20,10)

p =

 0.6812

See Also
cdf | hygepdf | hygeinv | hygestat | hygernd

22 Functions — Alphabetical List

22-2214

hygeinv
Hypergeometric inverse cumulative distribution function

Syntax

hygeinv(P,M,K,N)

Description

hygeinv(P,M,K,N) returns the smallest integer X such that the hypergeometric cdf
evaluated at X equals or exceeds P. You can think of P as the probability of observing X
defective items in N drawings without replacement from a group of M items where K are
defective.

Examples

Suppose you are the Quality Assurance manager for a floppy disk manufacturer. The
production line turns out floppy disks in batches of 1,000. You want to sample 50 disks
from each batch to see if they have defects. You want to accept 99% of the batches if
there are no more than 10 defective disks in the batch. What is the maximum number of
defective disks should you allow in your sample of 50?

x = hygeinv(0.99,1000,10,50)

x =

 3

What is the median number of defective floppy disks in samples of 50 disks from batches
with 10 defective disks?

x = hygeinv(0.50,1000,10,50)

x =

 0

See Also
icdf | hygecdf | hygepdf | hygestat | hygernd

 hygepdf

22-2215

hygepdf
Hypergeometric probability density function

Syntax

Y = hygepdf(X,M,K,N)

Description

Y = hygepdf(X,M,K,N) computes the hypergeometric pdf at each of the values in
X using the corresponding size of the population, M, number of items with the desired
characteristic in the population, K, and number of samples drawn, N. X, M, K, and N can be
vectors, matrices, or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other inputs.

The parameters in M, K, and N must all be positive integers, with N ≤ M. The values in X
must be less than or equal to all the parameter values.

The hypergeometric pdf is

y f x M K N

K

x

M K

N x

M

N

= =











−
−





















(| , ,)

The result, y, is the probability of drawing exactly x of a possible K items in n drawings
without replacement from a group of M objects.

Examples

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective.
What is the probability of drawing 0 through 5 defective floppy disks if you select 10 at
random?

22 Functions — Alphabetical List

22-2216

p = hygepdf(0:5,100,20,10)

p =

 0.0951 0.2679 0.3182 0.2092 0.0841 0.0215

See Also
pdf | hygecdf | hygeinv | hygestat | hygernd

 hygernd

22-2217

hygernd
Hypergeometric random numbers

Syntax

R = hygernd(M,K,N)

R = hygernd(M,K,N,m,n,...)

R = hygernd(M,K,N,[m,n,...])

Description

R = hygernd(M,K,N) generates random numbers from the hypergeometric distribution
with corresponding size of the population, M, number of items with the desired
characteristic in the population, K, and number of samples drawn, N. M, K, and N can be
vectors, matrices, or multidimensional arrays that all have the same size, which is also
the size of R. A scalar input for M, K, or N is expanded to a constant array with the same
dimensions as the other inputs.

R = hygernd(M,K,N,m,n,...) or R = hygernd(M,K,N,[m,n,...]) generates an
m-by-n-by-... array. The M, K, N parameters can each be scalars or arrays of the same size
as R.

Examples
numbers = hygernd(1000,40,50)

numbers =

 1

See Also
random | hygepdf | hygecdf | hygeinv | hygestat

22 Functions — Alphabetical List

22-2218

hygestat

Hypergeometric mean and variance

Syntax

[MN,V] = hygestat(M,K,N)

Description

[MN,V] = hygestat(M,K,N) returns the mean of and variance for the hypergeometric
distribution with corresponding size of the population, M, number of items with the
desired characteristic in the population, K, and number of samples drawn, N. Vector or
matrix inputs for M, K, and N must have the same size, which is also the size of MN and V.
A scalar input for M, K, or N is expanded to a constant matrix with the same dimensions
as the other inputs.

The mean of the hypergeometric distribution with parameters M, K, and N is NK/M, and
the variance is NK(M-K)(M-N)/[M^2(M-1)].

Examples

The hypergeometric distribution approaches the binomial distribution, where p = K/M,
as M goes to infinity.

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)

m =

 0.9000 0.9000 0.9000 0.9000

v =

 0.0900 0.7445 0.8035 0.8094

[m,v] = binostat(9,0.1)

m =

 0.9000

v =

 0.8100

 hygestat

22-2219

See Also
hygepdf | hygecdf | hygeinv | hygernd

22 Functions — Alphabetical List

22-2220

icdf
Inverse cumulative distribution functions

Syntax

x = icdf('name',y,A)

x = icdf('name',y,A,B)

x = icdf('name',y,A,B,C)

x = icdf(pd,y)

Description

x = icdf('name',y,A) returns the inverse cumulative distribution function (icdf) for
the one-parameter distribution family specified by 'name', evaluated at the probability
values in y. A contains the parameter value for the distribution.

x = icdf('name',y,A,B) returns the icdf for the two-parameter distribution family
specified by 'name', evaluated at the probability values in y. A and B contain the
parameter values for the distribution.

x = icdf('name',y,A,B,C) returns the icdf for the three-parameter distribution
family specified by 'name', evaluated at the probability values in y. A, B, and C contain
the parameter values for the distribution.

x = icdf(pd,y) returns the inverse cumulative distribution function of the probability
distribution object, pd, evaluated at the probability values in y.

Examples

Compute the Normal Distribution icdf

Create a standard normal distribution object with the mean, , equal to 0 and the
standard deviation, , equal to 1.

mu = 0;

sigma = 1;

 icdf

22-2221

pd = makedist('Normal',mu,sigma);

Define the input vector y to contain the probability values at which to calculate the icdf.

y = [0.1,0.25,0.5,0.75,0.9];

Compute the icdf values for the standard normal distribution at the values in y.

x = icdf(pd,y)

x =

 -1.2816 -0.6745 0 0.6745 1.2816

Each value in x corresponds to a value in the input vector y. For example, at the value y
equal to 0.9, the corresponding icdf value x is equal to 1.2816.

Alternatively, you can compute the same icdf values without creating a probability
distribution object. Use the icdf function and specify a standard normal distribution
using the same parameter values for and .

x2 = icdf('Normal',y,mu,sigma)

x2 =

 -1.2816 -0.6745 0 0.6745 1.2816

The icdf values are the same as those computed using the probability distribution object.

Compute the Poisson Distribution icdf

Create a Poisson distribution object with the rate parameter, , equal to 2.

lambda = 2;

pd = makedist('Poisson',lambda);

Define the input vector y to contain the probability values at which to calculate the icdf.

y = [0.1,0.25,0.5,0.75,0.9];

Compute the icdf values for the Poisson distribution at the values in y.

x = icdf(pd,y)

22 Functions — Alphabetical List

22-2222

x =

 0 1 2 3 4

Each value in x corresponds to a value in the input vector y. For example, at the value y
equal to 0.9, the corresponding icdf value x is equal to 4.

Alternatively, you can compute the same icdf values without creating a probability
distribution object. Use the icdf function and specify a Poisson distribution using the
same value for the rate parameter .

x2 = icdf('Poisson',y,lambda)

x2 =

 0 1 2 3 4

The icdf values are the same as those computed using the probability distribution object.

Input Arguments

'name' — Probability distribution name
probability distribution name string

Probability distribution name, specified as one of the following probability distribution
name strings.

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Beta' “Beta Distribution” on page
B-4

a: first
shape
parameter

b: second
shape
parameter

—

'Binomial' “Binomial Distribution” on page
B-9

n: number of
trials

p: probability
of success for
each trial

—

'BirnbaumSaunders'“Birnbaum-Saunders Distribution”
on page B-13

β: scale
parameter

γ: shape
parameter

—

 icdf

22-2223

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Burr' “Burr Type XII Distribution” on
page B-15

α: scale
parameter

c: first shape
parameter

k: second
shape
parameter

'Chisquare' “Chi-Square Distribution” on page
B-29

ν: degrees of
freedom

— —

'Exponential' “Exponential Distribution” on page
B-35

μ: mean — —

'Extreme

Value'

“Extreme Value Distribution” on
page B-39

μ: location
parameter

σ: scale
parameter

—

'F' “F Distribution” on page B-45 ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

—

'Gamma' “Gamma Distribution” on page
B-48

a: shape
parameter

b: scale
parameter

—

'Generalized

Extreme

Value'

“Generalized Extreme Value
Distribution” on page B-54

k: shape
parameter

σ: scale
parameter

μ: location
parameter

'Generalized

Pareto'

“Generalized Pareto Distribution”
on page B-60

k: tail index
(shape)
parameter

σ: scale
parameter

μ: threshold
(location)
parameter

'Geometric' “Geometric Distribution” on page
B-65

p:
probability
parameter

— —

'Hypergeometric'“Hypergeometric Distribution” on
page B-74

m: size
of the
population

k: number of
items with
the desired
characteristic
in the
population

n: number
of samples
drawn

'InverseGaussian'“Inverse Gaussian Distribution” on
page B-77

μ: scale
parameter

λ: shape
parameter

—

22 Functions — Alphabetical List

22-2224

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Logistic' “Logistic Distribution” on page
B-91

μ: mean σ: scale
parameter

—

'LogLogistic' “Loglogistic Distribution” on page
B-93

μ: log mean σ: log scale
parameter

—

'Lognormal' “Lognormal Distribution” on page
B-95

μ: log mean σ: log
standard
deviation

—

'Nakagami' “Nakagami Distribution” on page
B-113

μ: shape
parameter

ω: scale
parameter

—

'Negative

Binomial'

“Negative Binomial Distribution”
on page B-115

r: number of
successes

p: probability
of success in
a single trial

—

'Noncentral

F'

“Noncentral F Distribution” on
page B-123

ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

δ:
noncentrality
parameter

'Noncentral

t'

“Noncentral t Distribution” on page
B-126

ν: degrees of
freedom

δ:
noncentrality
parameter

—

'Noncentral

Chi-square'

“Noncentral Chi-Square
Distribution” on page B-120

ν: degrees of
freedom

δ:
noncentrality
parameter

—

'Normal' “Normal Distribution” on page
B-130

μ: mean σ: standard
deviation

—

'Poisson' “Poisson Distribution” on page
B-138

λ: mean — —

'Rayleigh' “Rayleigh Distribution” on page
B-141

b: scale
parameter

— —

'Rician' “Rician Distribution” on page
B-144

s:
noncentrality
parameter

σ: scale
parameter

—

 icdf

22-2225

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'T' “Student's t Distribution” on page
B-146

ν: degrees of
freedom

— —

'tLocationScale'“t Location-Scale Distribution” on
page B-154

μ: location
parameter

σ: scale
parameter

ν: shape
parameter

'Uniform' “Uniform Distribution
(Continuous)” on page B-163

a: lower
endpoint
(minimum)

b: upper
endpoint
(maximum)

—

'Discrete

Uniform'

“Uniform Distribution (Discrete)”
on page B-169

n: maximum
observable
value

— —

'Weibull' “Weibull Distribution” on page
B-172

a: scale
parameter

b: shape
parameter

—

y — Probability values at which to evaluate icdf
scalar value | array of scalar values

Probability values at which to evaluate the icdf, specified as a scalar value, or an array of
scalar values.

• If y is a scalar value, and if you specify distribution parameters A, B, or C as arrays,
then cdf expands it into a constant matrix the same size as A and B.

• If y is an array, and if you specify distribution parameters A, B, or C as arrays, then y,
A, B, and C must all be the same size.

Example: [0.1,0.25,0.5,0.75,0.9]

Data Types: single | double

A — First probability distribution parameter
scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value, or an array of scalar
values.

If x and A are arrays, they must be the same size. If x is a scalar, then cdf expands it
into a constant matrix the same size as A. If A is a scalar, then cdf expands it into a
constant matrix the same size as x.

22 Functions — Alphabetical List

22-2226

Data Types: single | double

B — Second probability distribution parameter
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value, or an array of
scalar values.

If x, A, and B are arrays, they must be the same size. If x is a scalar, then cdf expands it
into a constant matrix the same size as A and B. If A or B are scalars, then cdf expands
them into constant matrices the same size as x
Data Types: single | double

C — Third probability distribution parameter
scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value, or an array of scalar
values.

If x, A, B, and C are arrays, they must be the same size. If x is a scalar, then cdf expands
it into a constant matrix the same size as A, B, and C. If any of A, B or C are scalars,
then cdf expands them into constant matrices the same size as x.

Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object created using one of
the following.

makedist Create a probability distribution object
using specified parameter values.

fitdist Fit a probability distribution object to
sample data.

dfittool Fit a probability distribution object
to sample data using the interactive
Distribution Fitting app.

paretotails Create a Pareto tails object.

 icdf

22-2227

gmdistribution Create a Gaussian mixture distribution
object.

Output Arguments

x — Inverse cumulative distribution function
array

Inverse cumulative distribution function of the specified probability distribution,
returned as an array.

• If you specify distribution parameters A, B, orC, then x is the common size of y, A, B,
and C after any necessary scalar expansion.

• If you specify a probability distribution object, pd, then x has the same dimensions as
y.

See Also
cdf | mle | pdf | random

22 Functions — Alphabetical List

22-2228

icdf
Class: piecewisedistribution

Inverse cumulative distribution function for piecewise distribution

Syntax

X = icdf(obj,P)

Description

X = icdf(obj,P) returns an array X of values of the inverse cumulative distribution
function for the piecewise distribution object obj, evaluated at the values in the array P.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

[p,q] = boundary(obj)

p =

 0.1000

 0.9000

q =

 -1.7766

 1.8432

icdf(obj,p)

ans =

 -1.7766

 1.8432

See Also
paretotails | cdf

 icdf

22-2229

icdf
Class: ProbDistUnivKernel

Return inverse cumulative distribution function (ICDF) for ProbDistUnivKernel object

Syntax

Y = icdf(PD, P)

Description

Y = icdf(PD, P) returns Y, an array containing the inverse cumulative distribution
function (ICDF) for the ProbDistUnivKernel object PD, evaluated at values in P.

Input Arguments

PD An object of the class ProbDistUnivKernel.
P A numeric array of values from 0 to 1 where you want to evaluate

the ICDF.

Output Arguments

Y An array containing the inverse cumulative distribution function
(ICDF) for the ProbDistUnivKernel object PD.

See Also
icdf

22 Functions — Alphabetical List

22-2230

icdf
Class: ProbDistUnivParam

Return inverse cumulative distribution function (ICDF) for ProbDistUnivParam object

Syntax

Y = icdf(PD, P)

Description

Y = icdf(PD, P) returns Y, an array containing the inverse cumulative distribution
function (ICDF) for the ProbDistUnivParam object PD, evaluated at values in P.

Input Arguments

PD An object of the class ProbDistUnivParam.
P A numeric array of values from 0 to 1 where you want to evaluate

the ICDF.

Output Arguments

Y An array containing the inverse cumulative distribution function
(ICDF) for the ProbDistUnivParam object PD.

See Also
icdf

 icdf

22-2231

icdf

Class: prob.TruncatableDistribution
Package: prob

Inverse cumulative distribution function of probability distribution object

Syntax

y = icdf(pd,prob)

Description

y = icdf(pd,prob) returns the inverse cumulative distribution function (icdf) values
of the probability distribution pd at the probabilities in prob.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

prob — Probabilities
array of scalar values in the range [0,1]

Probabilities at which to compute the icdf, specified as an array of scalar values in the
range [0,1]. For example, specifying [.25 .5 .75] returns a vector containing three
icdf values corresponding to these probabilities.
Data Types: single | double

22 Functions — Alphabetical List

22-2232

Output Arguments

y — Inverse cumulative distribution function
array

Inverse cumulative distribution function (icdf) values of the specified probability
distribution, evaluated at the probabilities in prob, returned as an array. y has the same
dimensions as x.

Examples

Compute Standard Normal Critical Values

Create a standard normal distribution object.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Determine the critical values at the 5% significance level for a test statistic with a
standard normal distribution, by computing the upper and lower 2.5% values.

y = icdf(pd,[.025,.975])

y =

 -1.9600 1.9600

Plot the cdf and shade the critical regions.

p = normspec(y,0,1,'outside')

 icdf

22-2233

See Also
cdf | dfittool | fitdist | makedist | normspec | pdf

22 Functions — Alphabetical List

22-2234

inconsistent
Inconsistency coefficient

Syntax

Y = inconsistent(Z)

Y = inconsistent(Z,d)

Description

Y = inconsistent(Z) computes the inconsistency coefficient for each link of the
hierarchical cluster tree Z, where Z is an (m-1)-by-3 matrix generated by the linkage
function. The inconsistency coefficient characterizes each link in a cluster tree by
comparing its height with the average height of other links at the same level of the
hierarchy. The higher the value of this coefficient, the less similar the objects connected
by the link.

Y = inconsistent(Z,d) computes the inconsistency coefficient for each link in the
hierarchical cluster tree Z to depth d, where d is an integer denoting the number of levels
of the cluster tree that are included in the calculation. By default, d=2.

The output, Y, is an (m-1)-by-4 matrix formatted as follows.

Column Description

1 Mean of the heights of all the links included in the calculation.
2 Standard deviation of the heights of all the links included in the

calculation.
3 Number of links included in the calculation.
4 Inconsistency coefficient.

For each link, k, the inconsistency coefficient is calculated as:

Y k z k Y k Y k(,) ((,) (,)) / (,)4 3 1 2= −

For leaf nodes, nodes that have no further nodes under them, the inconsistency
coefficient is set to 0.

 inconsistent

22-2235

Examples

Compute Inconsistency Coefficient

Create the sample data.

X = gallery('uniformdata',[10 2],12);

Y = pdist(X);

Generate the hierarchical cluster tree.

Z = linkage(Y,'single');

Generate a dendrogram plot of the hierarchical cluster tree.

dendrogram(Z)

22 Functions — Alphabetical List

22-2236

Compute the inconsistency coefficient for each link in the cluster tree Z to depth 3.

W = inconsistent(Z,3)

W =

 0.1313 0 1.0000 0

 0.1386 0 1.0000 0

 0.1463 0.0109 2.0000 0.7071

 0.2391 0 1.0000 0

 0.1951 0.0568 4.0000 0.9425

 0.2308 0.0543 4.0000 0.9320

 0.2395 0.0748 4.0000 0.7636

 0.2654 0.0945 4.0000 0.9203

 0.3769 0.0950 3.0000 1.1040

References

[1] Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper Saddle River, NJ:
Prentice-Hall, 1988.

[2] Zahn, C. T. “Graph-theoretical methods for detecting and describing Gestalt clusters.”
IEEE Transactions on Computers. Vol. C-20, Issue 1, 1971, pp. 68–86.

See Also
cluster | cophenet | clusterdata | dendrogram | linkage | pdist |
squareform

 increaseB

22-2237

increaseB
Class: clustering.evaluation.GapEvaluation
Package: clustering.evaluation

Increase reference data sets

Syntax

eva_out = increaseB(eva,nref)

Description

eva_out = increaseB(eva,nref) returns a gap criterion clustering evaluation object
eva_out that uses the same evaluation criteria as the input object eva and an additional
number of reference data sets as specified by nref.

Input Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, specified as a clustering evaluation object. Create a
clustering evaluation object using evalclusters.

nref — Number of additional reference data sets
positive integer value

Number of additional reference data sets, specified as a positive integer value.

Output Arguments

eva_out — Updated clustering evaluation data
clustering evaluation object

22 Functions — Alphabetical List

22-2238

Updated clustering evaluation data, returned as a gap criterion clustering evaluation
object. eva_out contains evaluation data obtained using the reference data sets from the
input object eva plus a number of additional reference data sets as specified in nref.

increaseB updates the B property of the input object eva to reflect the increase in the
number of reference data sets used to compute the gap criterion values. increaseB also
updates the CriterionValues property with gap criterion values computed using the
total number of reference data sets. increaseB might also update the OptimalK and
OptimalY properties to reflect the optimal number of clusters and optimal clustering
solution as determined using the total number of reference data sets. Additionally,
increaseB might also update the LogW, ExpectedLogW, StdLogW, and SE properties.

Examples

Evaluate Clustering Solutions Using Additional Reference Data

Create a gap clustering evaluation object using evalclusters, then use increaseB to
increase the number of reference data sets used to compute the gap criterion values.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Cluster the flower measurement data using kmeans, and use the gap criterion to
evaluate proposed solutions of one through five clusters. Use 50 reference data sets.

eva = evalclusters(meas,'kmeans','gap','klist',1:5,'B',50)

eva =

 GapEvaluation with properties:

 NumObservations: 150

 InspectedK: [1 2 3 4 5]

 CriterionValues: [0.0848 0.5920 0.8750 1.0044 1.0462]

 OptimalK: 5

The clustering evaluation object eva contains data on each proposed clustering solution.
The returned results indicate that the optimal number of clusters is five.

 increaseB

22-2239

The value of the B property of eva shows 50 reference data sets.

eva.B

ans =

 50

Increase the number of reference data sets by 50, for a total of 100 sets.

eva = increaseB(eva,50)

eva =

 GapEvaluation with properties:

 NumObservations: 150

 InspectedK: [1 2 3 4 5]

 CriterionValues: [0.0824 0.5899 0.8742 1.0044 1.0463]

 OptimalK: 4

The returned results now indicate that the optimal number of clusters is four.

The value of the B property of eva now shows 100 reference data sets.

eva.B

ans =

 100

See Also
evalclusters

22 Functions — Alphabetical List

22-2240

InputData property
Class: ProbDist

Read-only structure containing information about input data to ProbDist object

Description

InputData is a read-only property of the ProbDist class. InputData is a structure
containing information about input data to a ProbDist object. It includes the following
fields:

• data

• cens

• freq

Values

Possible values for the three fields in the structure are any data supplied to the fitdist
function:

• data — Data passed to the fitdist function when creating the ProbDist object. This
field is empty if the ProbDist object was created without fitting to data, that is by
using the ProbDistUnivParam constructor.

• cens — The vector supplied with the 'censoring' parameter when creating the
ProbDist object using the fitdist function. This field is empty if the ProbDist
object was created without fitting to data, that is by using the ProbDistUnivParam
constructor.

• freq — The vector supplied with the 'frequency' parameter when creating the
ProbDist object using the fitdist function. This field is empty if the ProbDist
object was created without fitting to data, that is by using the ProbDistUnivParam
constructor.

Use this information to view and compare the data supplied to create distributions.

 interactionplot

22-2241

interactionplot

Interaction plot for grouped data

Syntax

interactionplot(Y,GROUP)

interactionplot(Y,GROUP,'varnames',VARNAMES)

[h,AX,bigax] = interactionplot(...)

Description

interactionplot(Y,GROUP) displays the two-factor interaction plot for the group
means of matrix Y with groups defined by entries in the cell array GROUP. Y is a numeric
matrix or vector. If Y is a matrix, the rows represent different observations and the
columns represent replications of each observation. If Y is a vector, the rows give the
means of each entry in the cell array GROUP. Each cell of GROUP must contain a grouping
variable that can be a categorical variable, numeric vector, character matrix, or a single-
column cell array of strings. GROUP can also be a matrix whose columns represent
different grouping variables. Each grouping variable must have the same number of rows
as Y. The number of grouping variables must be greater than 1.

The interaction plot is a matrix plot, with the number of rows and columns both equal
to the number of grouping variables. The grouping variable names are printed on the
diagonal of the plot matrix. The plot at off-diagonal position (i,j) is the interaction of
the two variables whose names are given at row diagonal (i,i) and column diagonal (j,j),
respectively.

interactionplot(Y,GROUP,'varnames',VARNAMES) displays the interaction plot
with user-specified grouping variable names VARNAMES. VARNAMES is a character matrix
or a cell array of strings, one per grouping variable. Default names are 'X1', 'X2',

[h,AX,bigax] = interactionplot(...) returns a handle h to the figure window, a
matrix AX of handles to the subplot axes, and a handle bigax to the big (invisible) axes
framing the subplots.

22 Functions — Alphabetical List

22-2242

Examples

Display Interaction Plots

Randomly generate data for a response variable y .

rng default; % For reproducibility

y = randn(1000,1);

Randomly generate data for four three-level factors.

group = ceil(3*rand(1000,4));

Display the interaction plots for the factors and name the factors 'A', 'B', 'C', 'D'.

interactionplot(y,group,'varnames',{'A','B','C','D'})

 interactionplot

22-2243

See Also
maineffectsplot | multivarichart

22 Functions — Alphabetical List

22-2244

intersect

Class: dataset

Set intersection for dataset array observations

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

C = intersect(A,B)

C = intersect(A,B,vars)

C = intersect(A,B,vars,setOrder)

[C,iA,iB] = intersect(___)

Description

C = intersect(A,B) for dataset arrays A and B returns the common set of
observations from the two arrays, with repetitions removed. The observations in the
dataset array C are in sorted order.

C = intersect(A,B,vars) returns the set of common observations from the two
arrays, considering only the variables specified in vars, with repetitions removed. The
observations in the dataset array C are sorted by those variables.

The values for variables not specified in vars for each observation in C are taken from the
corresponding observations in A. If there are multiple observations in A that correspond
to an observation in C, then those values are taken from the first occurrence.

C = intersect(A,B,vars,setOrder) returns the observations in C in the order
specified by setOrder.

 intersect

22-2245

[C,iA,iB] = intersect(___) also returns index vectors iA and iB such that
C = A(iA,:) and C = B(iB,:). If there are repeated observations in A or B, then
intersect returns the index of the first occurrence. You can use any of the previous
input arguments.

Input Arguments

A,B

Input dataset arrays.

vars

Cell array of strings containing variable names or a vector of integers containing variable
column numbers, indicating the variables in A and B that intersect considers.

Specify vars as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of
setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A.

Output Arguments

C

Dataset array with the common set of observations in A and B, with repetitions removed.
C is in sorted order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations in A that are common to B. The vector iA
contains the index to the first occurrence of any repeated observations in A.

22 Functions — Alphabetical List

22-2246

iB

Index vector, indicating the observations in B that are common to A. The vector iB
contains the index to the first occurrence of any repeated observations in B.

Examples

Intersection of Two Dataset Arrays

Navigate to the folder containing sample data, and load sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

A = dataset('XLSFile','hospitalSmall.xlsx');

B = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2);

Return the intersection and index vectors.

[C,iA,iB] = intersect(A,B);

C =

 id name sex age wgt smoke

 'TRW-072' 'WHITE' 'm' 39 202 1

There is one observation in common between A and B.

Find the observation in the original dataset arrays.

A(iA,:)

ans =

 id name sex age wgt smoke

 'TRW-072' 'WHITE' 'm' 39 202 1

B(iB,:)

ans =

 id name sex age wgt smoke

 'TRW-072' 'WHITE' 'm' 39 202 1

• “Merge Dataset Arrays” on page 2-99

 intersect

22-2247

See Also
dataset | ismember | setdiff | setxor | sortrows | union | unique

More About
• “Dataset Arrays” on page 2-132

22 Functions — Alphabetical List

22-2248

prob.InverseGaussianDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Inverse Gaussian probability distribution object

Description

prob.InverseGaussianDistribution is an object consisting of parameters, a model
description, and sample data for an inverse Gaussian probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('InverseGaussian') creates an inverse Gaussian probability
distribution object using the default parameter values.

pd = makedist('InverseGaussian','mu',mu,'lambda',lambda) creates an
inverse Gaussian probability distribution object using the specified parameter values.

Input Arguments

mu — Scale parameter
1 (default) | positive scalar value

Scale parameter for the inverse Gaussian distribution, specified as a positive scalar
value.
Data Types: single | double

lambda — Shape parameter
1 (default) | positive scalar value

Shape parameter for the inverse Gaussian distribution, specified as a positive scalar
value.

 prob.InverseGaussianDistribution class

22-2249

Data Types: single | double

Properties

mu — Scale parameter
positive scalar value

Scale parameter for the inverse Gaussian distribution, stored as a positive scalar value.
Data Types: single | double

lambda — Shape parameter
positive scalar value

Shape parameter for the inverse Gaussian distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

22 Functions — Alphabetical List

22-2250

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

 prob.InverseGaussianDistribution class

22-2251

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

22 Functions — Alphabetical List

22-2252

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Inverse Gaussian Distribution

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative
positively skewed data. Inverse Gaussian distributions have many similarities to
standard Gaussian (normal) distributions, which lead to applications in inferential
statistics.

The inverse Gaussian distribution uses the following parameters.

 prob.InverseGaussianDistribution class

22-2253

Parameter Description Support

mu Scale parameter m > 0

lambda Shape parameter l > 0

The probability density function (pdf) is

f x
x x

x x(| ,) exp ; .m l
l

p

l

m
m= - -()

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
>

2 2
0

3 2

2

Examples

Create an Inverse Gaussian Distribution Object Using Default Parameters

Create an inverse Gaussian distribution object using the default parameter values.

pd = makedist('InverseGaussian')

pd =

 InverseGaussianDistribution

 Inverse Gaussian distribution

 mu = 1

 lambda = 1

Create an Inverse Gaussian Distribution Object Using Specified Parameters

Create an inverse Gaussian distribution object by specifying parameter values.

pd = makedist('InverseGaussian','mu',2,'lambda',4)

pd =

 InverseGaussianDistribution

 Inverse Gaussian distribution

 mu = 2

 lambda = 4

Compute the standard deviation of the distribution.

22 Functions — Alphabetical List

22-2254

s = std(pd)

s =

 1.4142

See Also
dfittool | fitdist | makedist

More About
• “Inverse Gaussian Distribution”
• Class Attributes
• Property Attributes

 invpred

22-2255

invpred
Inverse prediction

Syntax

X0 = invpred(X,Y,Y0)

[X0,DXLO,DXUP] = invpred(X,Y,Y0)

[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...)

Description

X0 = invpred(X,Y,Y0) accepts vectors X and Y of the same length, fits a simple
regression, and returns the estimated value X0 for which the height of the line is equal to
Y0. The output, X0, has the same size as Y0, and Y0 can be an array of any size.

[X0,DXLO,DXUP] = invpred(X,Y,Y0) also computes 95% inverse prediction
intervals. DXLO and DXUP define intervals with lower bound X0–DXLO and upper bound
X0+DXUP. Both DXLO and DXUP have the same size as Y0.

The intervals are not simultaneous and are not necessarily finite. Some intervals may
extend from a finite value to -Inf or +Inf, and some may extend over the entire real
line.

[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...) specifies
optional argument name/value pairs chosen from the following list. Argument names are
case insensitive and partial matches are allowed.

Name Value

'alpha' A value between 0 and 1 specifying a confidence level
of 100*(1-alpha)%. Default is alpha=0.05 for 95%
confidence.

'predopt' Either 'observation', the default value to compute the
intervals for X0 at which a new observation could equal Y0,
or 'curve' to compute intervals for the X0 value at which
the curve is equal to Y0.

22 Functions — Alphabetical List

22-2256

Examples

Inverse Prediction

Generate sample data.

x = 4*rand(25,1);

y = 10 + 5*x + randn(size(x));

Make a scatterplot of the data.

scatter(x,y)

Predict the x value for a given y value of 20.

 invpred

22-2257

x0 = invpred(x,y,20)

x0 =

 1.9967

See Also
polyfit | polyconf | polytool | polyval

22 Functions — Alphabetical List

22-2258

iqr
Interquartile range

Syntax

r = iqr(x)

r = iqr(x,dim)

r = iqr(pd)

Description

r = iqr(x) returns the interquartile range of the values in x.

r = iqr(x,dim) returns the interquartile range along the dimension of x specified by
dim.

r = iqr(pd) returns the interquartile range of the probability distribution, pd.

Examples

Compute the Interquartile Range

Generate a 4-by-4 matrix of random data from a normal distribution with parameter
values equal to 10 and equal to 1.

rng default % For reproducibility

x = normrnd(10,1,4)

x =

 10.5377 10.3188 13.5784 10.7254

 11.8339 8.6923 12.7694 9.9369

 7.7412 9.5664 8.6501 10.7147

 10.8622 10.3426 13.0349 9.7950

 iqr

22-2259

Compute the interquartile range for each column of data.

r = iqr(x)

r =

 2.2086 1.2013 2.5969 0.8541

Compute the interquartile range for each row of data.

r2 = iqr(x,2)

r2 =

 1.7237

 2.9870

 1.9449

 1.8797

Compute the Normal Distribution Interquartile Range

Create a standard normal distribution object with the mean, , equal to 0 and the
standard deviation, , equal to 1.

pd = makedist('Normal',0,1);

Compute the interquartile range of the standard normal distribution.

r = iqr(pd)

r =

 1.3490

The returned value is the difference between the 75th and the 25th percentile values
for the distribution. This is equivalent to computing the difference between the inverse
cumulative distribution function (icdf) values at the probabilities y equal to 0.75 and
0.25.

r2 = icdf(pd,0.75) - icdf(pd,0.25)

22 Functions — Alphabetical List

22-2260

r2 =

 1.3490

Input Arguments

x — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.
Data Types: single | double

dim — Dimension
1 (default) | positive integer value

Dimension along which the interquartile range is calculated, specified as a positive
integer. For example, for a matrix x, when dim is equal to 1, iqr returns the
interquartile range for the columns of x. When dim is equal to 2, iqr returns the
interquartile range for the rows of x. For n-dimensional arrays, iqr operates along the
first nonsingleton dimension of X.

Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object created using one of
the following.

makedist Create a probability distribution object
using specified parameter values.

fitdist Fit a probability distribution object to
sample data.

dfittool Fit a probability distribution object
to sample data using the interactive
Distribution Fitting app.

paretotails Create a Pareto tails object.

 iqr

22-2261

gmdistribution Create a Gaussian mixture distribution
object.

Output Arguments

r — Interquartile range
scalar value

Interquartile range, returned as a scalar value.

• If you input a vector for x, then r is the difference between the 75th and the 25th
percentiles of the sample data contained in x.

• If you input a matrix for x, then r is a row vector containing the difference between
the 75th and the 25th percentiles of the sample data contained each column of x.

• If you input a probability distribution, pd, then the value of r is the difference between
the values of the 75th and 25th percentile of the probability distribution.

See Also
icdf | mad | range | std

22 Functions — Alphabetical List

22-2262

iqr
Class: ProbDistUnivKernel

Return interquartile range (IQR) for ProbDistUnivKernel object

Syntax

Y = iqr(PD)

Description

Y = iqr(PD) returns Y, the interquartile range for the ProbDistUnivKernel object PD.
The interquartile range is the distance between the 75th and 25th percentiles.

Input Arguments

PD An object of the class ProbDistUnivKernel.

Output Arguments

Y The value of the interquartile range for the ProbDistUnivKernel
object PD.

See Also
iqr | ProbDistUnivKernel.icdf

 iqr

22-2263

iqr
Class: ProbDistUnivParam

Return interquartile range (IQR) for ProbDistUnivParam object

Syntax

Y = iqr(PD)

Description

Y = iqr(PD) returns Y, the interquartile range for the ProbDistUnivParam object PD.
The interquartile range is the distance between the 75th and 25th percentiles.

Input Arguments

PD An object of the class ProbDistUnivParam.

Output Arguments

Y The value of the interquartile range for the ProbDistUnivParam
object PD.

See Also
iqr | ProbDistUnivParam.icdf

22 Functions — Alphabetical List

22-2264

iqr

Class: prob.TruncatableDistribution
Package: prob

Interquartile range of probability distribution object

Syntax

r = iqr(pd)

Description

r = iqr(pd) returns the interquartile range r of the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

Output Arguments

r — Interquartile range
scalar value

Interquartile range of the probability distribution, returned as a scalar value. The value
of r is the difference between the values of the 75th and 25th percentile of the probability
distribution.

 iqr

22-2265

Examples

Interquartile Range of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Crete a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the interquartile range of the fitted distribution.

r = iqr(pd)

r =

 11.7634

The returned result indicates that the difference between the 75th and 25th percentile of
the students’ grades is 11.7634.

Use icdf to determine the 75th and 25th percentiles of the students’ grades.

y = icdf(pd,[0.25,0.75])

y =

 69.1266 80.8900

Calculate the difference between the 75th and 25th percentiles. This yields the same
result as iqr.

y(2)-y(1)

22 Functions — Alphabetical List

22-2266

ans =

 11.7634

Use boxplot to visualize the interquartile range.

boxplot(x)

The top line of the box shows the 75th percentile, and the bottom line shows the 25th
percentile. The center line shows the median, which is the 50th percentile.

See Also
boxplot | dfittool | fitdist | makedist

 isbranch

22-2267

isbranch
Class: classregtree

Test node for branch

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

ib = isbranch(t)

ib = isbranch(t,nodes)

Description

ib = isbranch(t) returns an n-element logical vector ib that is true for each branch
node and false for each leaf node.

ib = isbranch(t,nodes) takes a vector nodes of node numbers and returns a vector
of logical values for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

22 Functions — Alphabetical List

22-2268

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

ib = isbranch(t)

ib =

 1

 0

 1

 1

 0

 isbranch

22-2269

 1

 0

 0

 0

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | numnodes | cutvar

22 Functions — Alphabetical List

22-2270

isempty
Class: dataset

True for empty dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

tf = isempty(A)

Description

tf = isempty(A) returns true (1) if A is an empty dataset and false (0) otherwise. An
empty array has no elements, that is prod(size(A))==0.

See Also
size

 islevel

22-2271

islevel

Determine if levels are in nominal or ordinal array

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

tf = islevel(levels,A)

Description

tf = islevel(levels,A) returns a logical array indicating which of the levels in
levels correspond to a level in the nominal or ordinal array A.

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

levels — Levels to test
string | cell array of strings | 2-D character matrix

Levels to test, specified as a string, cell array of strings, or 2-D character matrix.
Data Types: char | cell

22 Functions — Alphabetical List

22-2272

Output Arguments

tf — Logical array
array the same size as levels

Logical array, returned as an array the same size as levels. tf has value 1 (true) where
the corresponding element of levels is the label of a level in the nominal or ordinal array
A, even if the level contains no elements. tf has value 0 (false) otherwise.

More About
• Using nominal Objects
• Using ordinal Objects

See Also
isequal | ismember | nominal | ordinal

 ismember

22-2273

ismember

Class: dataset

Dataset array elements that are members of set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

LiA = ismember(A,B)

LiA = ismember(A,B,vars)

[LiA,LocB] = ismember(___)

Description

LiA = ismember(A,B) for dataset arrays A and B returns a vector of logical values
the same length as A. The output vector, LiA, has value 1 (true) in the elements that
correspond to observations in A that are also present in B, and 0 (false) otherwise.

LiA = ismember(A,B,vars) returns a vector of logical values the same length
as A. The output vector, LiA, has value 1 (true) in the elements that correspond to
observations in A that are also present in B for the variables specified in vars only, and 0
(false) otherwise.

[LiA,LocB] = ismember(___) also returns a vector the same length as A containing
the index to the first observation in B that corresponds to each observation in A, or 0 if
there is no such observation. You can use any of the previous input arguments.

22 Functions — Alphabetical List

22-2274

Input Arguments

A

Query dataset array, containing the observations to be found in B.

B

Set dataset array. When an observation in A is found in B, for all variables or only those
variables specified in vars, the corresponding element of LiA is 1.

vars

Cell array of strings containing variable names or a vector of integers containing variable
column numbers, indicating which variables to match observations on in A and B.

Output Arguments

LiA

Vector of logical values the same length as A. LiA has value 1 (true) when the
corresponding observation in A is present in B. Otherwise, LiA has value 0 (false).

If you specify vars, LiA has value 1 when the corresponding observation in A is present
in B for the variables in vars only.

LocB

Vector the same length as A containing the index to the first observation in B that
corresponds to each observation in A, for all variables or only those variables specified in
vars.

Examples

Find Observations That Are Members of a Dataset Array

Load sample data.

load('hospital')

 ismember

22-2275

B = hospital(1:50,1:5);

This set dataset array, B, has 50 observations on 5 variables.

Specify a query dataset array.

rng('default')

rIx = randsample(100,10);

A = hospital(rIx,1:5)

A =

 LastName Sex Age Weight Smoker

 YLN-495 'COLEMAN' Male 39 188 false

 LQW-768 'TAYLOR' Female 31 132 false

 DGC-290 'BUTLER' Male 38 184 true

 DAU-529 'REED' Male 50 186 true

 REV-997 'ALEXANDER' Male 25 171 true

 QEQ-082 'COX' Female 28 111 false

 AGR-528 'SIMMONS' Male 45 181 false

 PUE-347 'YOUNG' Female 25 114 false

 HVR-372 'RUSSELL' Male 44 188 true

 XUE-826 'JACKSON' Male 25 174 false

Check which observations in A are present in B.

LiA = ismember(A,B)

LiA =

 0

 1

 0

 0

 0

 0

 0

 1

 0

 1

Display the observations in A that are present in B.

A(LiA,:)

ans =

22 Functions — Alphabetical List

22-2276

 LastName Sex Age Weight Smoker

 LQW-768 'TAYLOR' Female 31 132 false

 PUE-347 'YOUNG' Female 25 114 false

 XUE-826 'JACKSON' Male 25 174 false

Find the location of the observations in B.

[~,LocB] = ismember(A,B)

LocB =

 0

 10

 0

 0

 0

 0

 0

 28

 0

 13

Display the observations in B that match observations in A.

B(LocB(LocB>0),:)

ans =

 LastName Sex Age Weight Smoker

 LQW-768 'TAYLOR' Female 31 132 false

 PUE-347 'YOUNG' Female 25 114 false

 XUE-826 'JACKSON' Male 25 174 false

See Also
dataset | intersect | setdiff | setxor | sortrows | union | unique

More About
• “Dataset Arrays” on page 2-132

 ismissing

22-2277

ismissing
Class: dataset

Find dataset array elements with missing values

Compatibility
The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax
I = ismissing(ds)

I = ismissing(ds,Name,Value)

Description
I = ismissing(ds) returns a logical array that indicates which elements in the
dataset array, ds, contain a missing value. By default, ismissing recognizes NaN as
a missing value in numeric variables, '' as a missing value in string variables, and
<undefined> as a missing value in categorical arrays.

• ds2 = ds(~any(I,2),:) creates a new dataset array containing only the complete
observations in ds.

• ds2 = ds(:,~any(I,1)) creates a new dataset array containing only the variables
from ds with no missing values.

I = ismissing(ds,Name,Value) returns missing value indices with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
ds

dataset array

22 Functions — Alphabetical List

22-2278

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NumericTreatAsMissing'

Vector of numeric values to treat as missing value indicators in floating point ds
variables. ismissing always treats a NaN value as a missing value.

Default:

'StringTreatAsMissing'

String or cell array of strings to treat as missing value indicators in string ds variables.
ismissing always treats the empty string '' as a missing value.

Output Arguments

I

Logical array indicating which elements in ds contain a missing value. I is the same size
as ds, with value 1 for elements that contain a missing value.

See Also
dataset | isempty | isnan | isundefined | replaceWithMissing

Related Examples
• “Clean Messy and Missing Data” on page 2-113

More About
• “Dataset Arrays” on page 2-132

 isvalid

22-2279

isvalid
Class: qrandstream

Test handle validity

Syntax

tf = isvalid(h)

Description

tf = isvalid(h) performs an element-wise check for validity on the handle elements
of h. The result is a logical array of the same dimensions as h, where each element is the
element-wise validity result.

A handle is invalid if it has been deleted or if it is an element of a handle array and has
not yet been initialized.

See Also
delete | qrandstream

22 Functions — Alphabetical List

22-2280

NumIterations property
Class: gmdistribution

Number of iterations

Description

The number of iterations of the algorithm.

Note: This property applies only to gmdistribution objects constructed with
fitgmdist.

 iwishrnd

22-2281

iwishrnd
Inverse Wishart random numbers

Syntax

W = iwishrnd(Tau,df)

W = iwishrnd(Tau,df,DI)

[W,DI] = iwishrnd(Tau,df)

Description

W = iwishrnd(Tau,df) generates a random matrix W from the inverse Wishart
distribution with parameters Tau and df. The inverse of W has the Wishart distribution
with covariance matrix Sigma = inv(Tau) and with df degrees of freedom. Tau is a
symmetric and positive definite matrix.

W = iwishrnd(Tau,df,DI) expects DI to be the transpose of the inverse of the
Cholesky factor of Tau, so that DI'*DI = inv(Tau), where inv is the MATLAB inverse
function. DI is lower-triangular and the same size as Tau. If you call iwishrnd multiple
times using the same value of Tau, it is more efficient to supply DI instead of computing
it each time.

[W,DI] = iwishrnd(Tau,df) returns DI so you can use it as an input in future calls
to iwishrnd.

Note that different sources use different parametrizations for the inverse Wishart
distribution. This function defines the parameter tau so that the mean of the output
matrix is Tau/(df-d-1) where d is the dimension of Tau.

More About
• “Inverse Wishart Distribution” on page B-78

See Also
wishrnd

22 Functions — Alphabetical List

22-2282

jackknife
Jackknife sampling

Syntax

jackstat = jackknife(jackfun,X)

jackstat = jackknife(jackfun,X,Y,...)

jackstat = jackknife(jackfun,...,'Options',option)

Description

jackstat = jackknife(jackfun,X) draws jackknife data samples from the n-
by-p data array X, computes statistics on each sample using the function jackfun, and
returns the results in the matrix jackstat. jackknife regards each row of X as one
data sample, so there are n data samples. Each of the n rows of jackstat contains
the results of applying jackfun to one jackknife sample. jackfun is a function handle
specified with @. Row i of jackstat contains the results for the sample consisting of X
with the ith row omitted:

s = x;

s(i,:) = [];

jackstat(i,:) = jackfun(s);

If jackfun returns a matrix or array, then this output is converted to a row vector for
storage in jackstat. If X is a row vector, it is converted to a column vector.

jackstat = jackknife(jackfun,X,Y,...) accepts additional arguments to be
supplied as inputs to jackfun. They may be scalars, column vectors, or matrices.
jackknife creates each jackknife sample by sampling with replacement from the rows
of the non-scalar data arguments (these must have the same number of rows). Scalar
data are passed to jackfun unchanged. Non-scalar arguments must have the same
number of rows, and each jackknife sample omits the same row from these arguments.

jackstat = jackknife(jackfun,...,'Options',option) provides an option to
perform jackknife iterations in parallel, if the Parallel Computing Toolbox is available.
Set 'Options' as a structure you create with statset. jackknife uses the following
field in the structure:

 jackknife

22-2283

'UseParallel' If true and if a parpool of the Parallel Computing Toolbox is
open, use multiple processors to compute jackknife iterations. If the
Parallel Computing Toolbox is not installed, or a parpool is not
open, computation occurs in serial mode. Default is false, or serial
computation.

Examples

Estimate the bias of the MLE variance estimator of random samples taken from the
vector y using jackknife. The bias has a known formula in this problem, so you can
compare the jackknife value to this formula.

sigma = 5;

y = normrnd(0,sigma,100,1);

m = jackknife(@var, y, 1);

n = length(y);

bias = -sigma^2 / n % known bias formula

jbias = (n - 1)*(mean(m)-var(y,1)) % jackknife bias estimate

bias =

 -0.2500

jbias =

 -0.3378

See Also
bootstrp | random | randsample | histogram | ksdensity

22 Functions — Alphabetical List

22-2284

jbtest
Jarque-Bera test

Syntax
h = jbtest(x)

h = jbtest(x,alpha)

h = jbtest(x,alpha,mctol)

[h,p] = jbtest(___)

[h,p,jbstat,critval] = jbtest(___)

Description
h = jbtest(x) returns a test decision for the null hypothesis that the data in vector
x comes from a normal distribution with an unknown mean and variance, using the
Jarque-Bera test. The alternative hypothesis is that it does not come from such a
distribution. The result h is 1 if the test rejects the null hypothesis at the 5% significance
level, and 0 otherwise.

h = jbtest(x,alpha) returns a test decision for the null hypothesis at the
significance level specified by alpha.

h = jbtest(x,alpha,mctol) returns a test decision based on a p-value computed
using a Monte Carlo simulation with a maximum Monte Carlo standard error less than
or equal to mctol.

[h,p] = jbtest(___) also returns the p-value p of the hypothesis test, using any of
the input arguments from the previous syntaxes.

[h,p,jbstat,critval] = jbtest(___) also returns the test statistic jbstatand
the critical value critval for the test.

Examples
Test for a Normal Distribution

Load the data set.

 jbtest

22-2285

load carbig;

Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal
distribution across different makes of cars.

h = jbtest(MPG)

h =

 1

The returned value of h = 1 indicates that jbtest rejects the null hypothesis at the
default 5% significance level.

Test the Hypothesis at a Different Significance Level

Load the data set.

load carbig;

Test the null hypothesis that car mileage in miles per gallon (MPG) follows a normal
distribution across different makes of cars at the 1% significance level.

[h,p] = jbtest(MPG,0.01)

h =

 1

p =

 0.0022

The returned value of h = 1, and the returned p-value less than α = 0.01 indicate that
jbtest rejects the null hypothesis.

Test for a Normal Distribution Using Monte Carlo Simulation

Load the data set.

load carbig;

Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal
distribution across different makes of cars. Use a Monte Carlo simulation to obtain an
exact p-value.

22 Functions — Alphabetical List

22-2286

[h,p,jbstat,critval] = jbtest(MPG,[],0.0001)

h =

 1

p =

 0.0022

jbstat =

 18.2275

critval =

 5.8461

The returned value of h = 1 indicates that jbtest rejects the null hypothesis at the
default 5% significance level. Additionally, the test statistic, jbstat, is larger than the
critical value, critval, which indicates rejection of the null hypothesis.

Input Arguments

x — Sample data
vector

Sample data for the hypothesis test, specified as a vector. jbtest treats NaN values in x
as missing values and ignores them.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as a scalar value in the range (0,1). If
alpha is in the range [0.001,0.50], and if the sample size is less than or equal to 2000,
jbtest looks up the critical value for the test in a table of precomputed values. To
conduct the test at a significance level outside of these specifications, use mctol.

 jbtest

22-2287

Example: 0.01

Data Types: single | double

mctol — Maximum Monte Carlo standard error
nonnegative scalar value

Maximum Monte Carlo standard error for the p-value, p, specified as a nonnegative
scalar value. If you specify a value for mctol, jbtest computes a Monte Carlo
approximation for p directly, rather than interpolating into a table of precomputed
values. jbtest chooses the number of Monte Carlo replications large enough to make
the Monte Carlo standard error for p less than mctol.

If you specify a value for mctol, you must also specify a value for alpha. You can specify
alpha as [] to use the default value of 0.05.

Example: 0.0001

Data Types: single | double

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the alpha significance
level.

p — p-value
scalar value in the range (0,1)

p-value of the test, returned as a scalar value in the range (0,1). p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

jbtest warns when p is not found within the tabulated range of [0.001,0.50], and
returns either the smallest or largest tabulated value. In this case, you can use mctol to
compute a more accurate p-value.

22 Functions — Alphabetical List

22-2288

jbstat — Test statistic
nonnegative scalar value

Test statistic for the Jarque-Bera test, returned as a nonnegative scalar value.

critval — Critical value
nonnegative scalar value

Critical value for the Jarque-Bera test at the alpha significance level, returned as a
nonnegative scalar value. If alpha is in the range [0.001,0.50], and if the sample size
is less than or equal to 2000, jbtest looks up the critical value for the test in a table
of precomputed values. If you use mctol, jbtest determines the critical value of the
test using a Monte Carlo simulation. The null hypothesis is rejected when jbstat >
critval.

More About

Jarque-Bera Test

The Jarque-Bera test is a two-sided goodness-of-fit test suitable when a fully specified
null distribution is unknown and its parameters must be estimated.

The test is specifically designed for alternatives in the Pearson system of distributions.
The test statistic is

JB
n

s
k

= +
-()Ê

Ë

Á
Á

ˆ

¯

˜
˜6

3

4

2

2

,

where n is the sample size, s is the sample skewness, and k is the sample kurtosis. For
large sample sizes, the test statistic has a chi-square distribution with two degrees of
freedom.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the p-value.

The Monte Carlo standard error is calculated as

 jbtest

22-2289

SE
p p

=
() -()ˆ ˆ

,
1

mcreps

where p̂ is the estimated p-value of the hypothesis test, and mcreps is the number
of Monte Carlo replications performed. jbtest chooses the number of Monte Carlo
replications, mcreps, large enough to make the Monte Carlo standard error for p̂ less
than the value specified for mctol.

Algorithms

Jarque-Bera tests often use the chi-square distribution to estimate critical values for
large samples, deferring to the Lilliefors test (see lillietest) for small samples.
jbtest, by contrast, uses a table of critical values computed using Monte Carlo
simulation for sample sizes less than 2000 and significance levels from 0.001 to 0.50.
Critical values for a test are computed by interpolating into the table, using the analytic
chi-square approximation only when extrapolating for larger sample sizes.
• “Generating Data Using the Pearson System” on page 6-27

References

[1] Jarque, C. M., and A. K. Bera. “A Test for Normality of Observations and Regression
Residuals.” International Statistical Review. Vol. 55, No. 2, 1987, pp. 163–172.

[2] Deb, P., and M. Sefton. “The Distribution of a Lagrange Multiplier Test of Normality.”
Economics Letters. Vol. 51, 1996, pp. 123–130. This paper proposed a Monte
Carlo simulation for determining the distribution of the test statistic. The results
of this function are based on an independent Monte Carlo simulation, not the
results in this paper.

See Also
adtest | kstest | lillietest

22 Functions — Alphabetical List

22-2290

johnsrnd
Johnson system random numbers

Syntax
r = johnsrnd(quantiles,m,n)

r = johnsrnd(quantiles)

[r,type] = johnsrnd(...)

[r,type,coefs] = johnsrnd(...)

Description
r = johnsrnd(quantiles,m,n) returns an m-by-n matrix of random numbers drawn
from the distribution in the Johnson system that satisfies the quantile specification
given by quantiles. quantiles is a four-element vector of quantiles for the desired
distribution that correspond to the standard normal quantiles [–1.5 –0.5 0.5 1.5]. In
other words, you specify a distribution from which to draw random values by designating
quantiles that correspond to the cumulative probabilities [0.067 0.309 0.691 0.933].
quantiles may also be a 2-by-4 matrix whose first row contains four standard normal
quantiles, and whose second row contains the corresponding quantiles of the desired
distribution. The standard normal quantiles must be spaced evenly.

Note: Because r is a random sample, its sample quantiles typically differ somewhat from
the specified distribution quantiles.

r = johnsrnd(quantiles) returns a scalar value.

r = johnsrnd(quantiles,m,n,...) or r = johnsrnd(quantiles,[m,n,...])
returns an m-by-n-by-... array.

[r,type] = johnsrnd(...) returns the type of the specified distribution within the
Johnson system. type is 'SN', 'SL', 'SB', or 'SU'. Set m and n to zero to identify the
distribution type without generating any random values.

The four distribution types in the Johnson system correspond to the following
transformations of a normal random variate:

 johnsrnd

22-2291

• 'SN' — Identity transformation (normal distribution)
• 'SL' — Exponential transformation (lognormal distribution)
• 'SB' — Logistic transformation (bounded)
• 'SU' — Hyperbolic sine transformation (unbounded)

[r,type,coefs] = johnsrnd(...) returns coefficients coefs of the transformation
that defines the distribution. coefs is [gamma, eta, epsilon, lambda]. If z is a
standard normal random variable and h is one of the transformations defined above, r =
lambda*h((z-gamma)/eta)+epsilon is a random variate from the distribution type
corresponding to h.

Examples

Generate Random Samples Using the Johnson System

This example shows several different approaches to using the Johnson system of flexible
distribution families to generate random numbers and fit a distribution to sample data.

Generate random values with longer tails than a standard normal.

rng default; % For reproducibility

r = johnsrnd([-1.7 -.5 .5 1.7],1000,1);

figure;

qqplot(r);

22 Functions — Alphabetical List

22-2292

Generate random values skewed to the right.

r = johnsrnd([-1.3 -.5 .5 1.7],1000,1);

figure;

qqplot(r);

 johnsrnd

22-2293

Generate random values that match some sample data well in the right-hand tail.

load carbig;

qnorm = [.5 1 1.5 2];

q = quantile(Acceleration, normcdf(qnorm));

r = johnsrnd([qnorm;q],1000,1);

[q;quantile(r,normcdf(qnorm))]

ans =

 16.7000 18.2086 19.5376 21.7263

 16.6986 18.2220 19.9078 22.0918

22 Functions — Alphabetical List

22-2294

Determine the distribution type and the coefficients.

[r,type,coefs] = johnsrnd([qnorm;q],0)

r =

 []

type =

SU

coefs =

 1.0920 0.5829 18.4382 1.4494

More About
• “Johnson System” on page B-80

See Also
random | pearsrnd

 join

22-2295

join
Class: dataset

Merge observations

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

C = join(A,B)

C = join(A,B,keys)

C = join(A,B,param1,val1,param2,val2,...)

[C,IB] = join(...)

C = join(A,B,'Type',TYPE,...)

C = join(A,B,'Type',TYPE,'MergeKeys',true,...)

[C,IA,IB] = join(A,B,'Type',TYPE,...)

Description

C = join(A,B) creates a dataset array C by merging observations from the two dataset
arrays A and B. join performs the merge by first finding key variables, that is, pairs of
dataset variables, one in A and one in B, that share the same name. Each observation in
B must contain a unique combination of values in the key variables, and must contain
all combinations of values that are present in the keys from A. join then uses these key
variables to define a many-to-one correspondence between observations in A and those
in B. join uses this correspondence to replicate the observations in B and combine them
with the observations in A to create C.

C = join(A,B,keys) performs the merge using the variables specified by keys as the
key variables in both A and B. keys is a positive integer, a vector of positive integers, a
variable name, a cell array of variable names, or a logical vector.

22 Functions — Alphabetical List

22-2296

C contains one observation for each observation in A. Variables in C include all of the
variables from A, as well as one variable corresponding to each variable in B (except for
the keys from B). If A and B contain variables with identical names, join adds the suffix
'_left' and '_right' to the corresponding variables in C.

C = join(A,B,param1,val1,param2,val2,...) specifies optional parameter
name/value pairs to control how the dataset variables in A and B are used in the merge.
Parameters are:

• 'Keys' — Specifies the variables to use as keys in both A and B.
• 'LeftKeys' — Specifies the variables to use as keys in A.
• 'RightKeys' — Specifies the variables to use as keys in B.

You may provide either the 'Keys' parameter, or both the 'LeftKeys' and
'RightKeys' parameters. The value for these parameters is a positive integer, a
vector of positive integers, a variable name, a cell array containing variable names, or a
logical vector. 'LeftKeys' or 'RightKeys' must both specify the same number of key
variables, and join pairs the left and right keys in the order specified.

• 'LeftVars' — Specifies which variables from A to include in C. By default, join
includes all variables from A.

• 'RightVars' — Specifies which variables from B to include in C. By default, join
includes all variables from B except the key variables.

You can use 'LeftVars' or 'RightVars' to include or exclude key variables as well as
data variables. The value for these parameters is a positive integer, a vector of positive
integers, a variable name, a cell array containing one or more variable names, or a logical
vector.

[C,IB] = join(...) returns an index vector IB, where join constructs C by
horizontally concatenating A(:,LeftVars) and B(IB,RightVars). join can also
perform more complicated inner and outer join operations that allow a many-to-many
correspondence between A and B, and allow unmatched observations in either A or B.

C = join(A,B,'Type',TYPE,...) performs the join operation specified by TYPE.
TYPE is one of 'inner', 'leftouter', 'rightouter', 'fullouter', or 'outer'
(which is a synonym for 'fullouter'). For an inner join, C only contains observations
corresponding to a combination of key values that occurred in both A and B. For a left
(or right) outer join, C also contains observations corresponding to keys in A (or B) that
did not match any in B (or A). Variables in C taken from A (or B) contain null values in
those observations. A full outer join is equivalent to a left and right outer join. C contains

 join

22-2297

variables corresponding to the key variables from both A and B, and join sorts the
observations in C by the key values.

For inner and outer joins, C contains variables corresponding to the key variables
from both A and B by default, as well as all the remaining variables. join sorts the
observations in the result C by the key values.

C = join(A,B,'Type',TYPE,'MergeKeys',true,...) includes a single variable in
C for each key variable pair from A and B, rather than including two separate variables.
For outer joins, join creates the single variable by merging the key values from A
and B, taking values from A where a corresponding observation exists in A, and from B
otherwise. Setting the 'MergeKeys' parameter to true overrides inclusion or exclusion
of any key variables specified via the 'LeftVars' or 'RightVars' parameter. Setting
the 'MergeKeys' parameter to false is equivalent to not passing in the 'MergeKeys'
parameter.

[C,IA,IB] = join(A,B,'Type',TYPE,...) returns index vectors IA and IB
indicating the correspondence between observations in C and those in A and B. For an
inner join, join constructs C by horizontally concatenating A(IA,LeftVars) and
B(IB,RightVars). For an outer join, IA or IB may also contain zeros, indicating the
observations in C that do not correspond to observations in A or B, respectively.

Examples
Create a dataset array from Fisher's iris data:

load fisheriris

NumObs = size(meas,1);

NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));

iris = dataset({nominal(species),'species'},...

 {meas,'SL','SW','PL','PW'},...

 'ObsNames',NameObs);

Create a separate dataset array with the diploid chromosome counts for each species of
iris:

snames = nominal({'setosa';'versicolor';'virginica'});

CC = dataset({snames,'species'},{[38;108;70],'cc'})

CC =

 species cc

 setosa 38

 versicolor 108

22 Functions — Alphabetical List

22-2298

 virginica 70

Broadcast the data in CC to the rows of iris using the key variable species in each
dataset:

iris2 = join(iris,CC);

iris2([1 2 51 52 101 102],:)

ans =

 species SL SW PL PW cc

 Obs1 setosa 5.1 3.5 1.4 0.2 38

 Obs2 setosa 4.9 3 1.4 0.2 38

 Obs51 versicolor 7 3.2 4.7 1.4 108

 Obs52 versicolor 6.4 3.2 4.5 1.5 108

 Obs101 virginica 6.3 3.3 6 2.5 70

 Obs102 virginica 5.8 2.7 5.1 1.9 70

Create two datasets and join them using the 'MergeKeys' flag:

% Create two data sets that both contain the key variable

% 'Key1'. The two arrays contain observations with common

% values of Key1, but each array also contains observations

% with values of Key1 not present in the other.

a = dataset({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...

 'VarNames',{'Key1' 'Var1'})

b = dataset({'a' 'b' 'd' 'e'}',[4 5 6 7]',...

 'VarNames',{'Key1' 'Var2'})

% Combine a and b with an outer join, which matches up

% observations with common key values, but also retains

% observations whose key values don't have a match.

% Keep the key values as separate variables in the result.

couter = join(a,b,'key','Key1','Type','outer')

% Join a and b, merging the key values as a single variable

% in the result.

coutermerge = join(a,b,'key','Key1','Type','outer',...

 'MergeKeys',true)

% Join a and b, retaining only observations whose key

% values match.

cinner = join(a,b,'key','Key1','Type','inner',...

 'MergeKeys',true)

a =

 join

22-2299

 Key1 Var1

 'a' 1

 'b' 2

 'c' 3

 'e' 11

 'h' 17

b =

 Key1 Var2

 'a' 4

 'b' 5

 'd' 6

 'e' 7

couter =

 Key1_left Var1 Key1_right Var2

 'a' 1 'a' 4

 'b' 2 'b' 5

 'c' 3 '' NaN

 '' NaN 'd' 6

 'e' 11 'e' 7

 'h' 17 '' NaN

coutermerge =

 Key1 Var1 Var2

 'a' 1 4

 'b' 2 5

 'c' 3 NaN

 'd' NaN 6

 'e' 11 7

 'h' 17 NaN

cinner =

 Key1 Var1 Var2

 'a' 1 4

 'b' 2 5

22 Functions — Alphabetical List

22-2300

 'e' 11 7

See Also
sortrows

 KDTreeSearcher

22-2301

KDTreeSearcher
Grow Kd-tree

Syntax

Mdl = KDTreeSearcher(X)

Mdl = KDTreeSearcher(X,Name,Value)

Description

Mdl = KDTreeSearcher(X) grows a default Kd-tree (Mdl) using the n-by-K numeric
matrix of training data (X). Mdl is a KDTreeSearcher model object that stores the
results of the grown Kd-tree. You can use Mdl to search the training data (X) for the
nearest neighbors to the query data.

Mdl = KDTreeSearcher(X,Name,Value) grows a Kd-tree (Mdl) with additional
options specified by one or more Name,Value pair arguments. For example, you can
specify a distance metric or the maximum number of observations in each leaf node (i.e.,
the bucket size).

Examples

Grow a Default K d-Tree

Load Fisher's iris data set.

load fisheriris

X = meas;

[n,k] = size(X)

n =

 150

22 Functions — Alphabetical List

22-2302

k =

 4

X has 150 observations and 4 predictors.

Grow a 4-dimensional K d-tree using the entire data set as training data.

Mdl = KDTreeSearcher(X)

Mdl =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'euclidean'

 DistParameter: []

 X: [150x4 double]

Mdl is a KDTreeSearcher model object, and its properties appear in the Command
Window. It contains information about the grown 4-dimensional K d-tree, such as the
distance metric. You can alter property values using dot notation

To find the nearest neighbors in X to a batch of query data, pass Mdl and the query data
to knnsearch or rangesearch.

Specify the Minkowski Distance for Nearest Neighbor Search

Load Fisher's iris data. Focus on the petal dimensions.

load fisheriris

X = meas(:,[3 4]); % Predictors

Grow a two-dimensional K d-tree using createns and the training data. Specify the
Minkowski distance metric.

Mdl = createns(X,'NSMethod','kdtree','Distance','Minkowski')

Mdl =

 KDTreeSearcher with properties:

 KDTreeSearcher

22-2303

 BucketSize: 50

 Distance: 'minkowski'

 DistParameter: 2

 X: [150x2 double]

Mdl is a KDTreeSearcher model object. Access properties of Mdl using dot notation. For
example, use Mdl.DistParameter to access the Minkowski distance exponent.

Mdl.DistParameter

ans =

 2

You can pass query data and Mdl to:

• searcher.knnsearch to find indices and distances of nearest neighbors.
• searcher.rangesearch to find indices of all nearest neighbors within a distance that

you specify.

Search for Nearest Neighbors of Query Data Using the Minkowski Distance

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

tIdx = ~ismember(1:n,qIdx); % Indices of training data

Q = meas(qIdx,:);

X = meas(tIdx,:);

Grow a four-dimensional K d-tree using the training data. Specify to use the Minkowski
distance for finding nearest neighbors later.

Mdl = createns(X,'NSMethod','kdtree','Distance','minkowski')

22 Functions — Alphabetical List

22-2304

Mdl =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'minkowski'

 DistParameter: 2

 X: [145x4 double]

Mdl is a KDTreeSearcher model object. By default, the Minkowski distance exponent is
2.

Find the indices of the training data (X) that are the two nearest neighbors of each point
in the query data (Q).

IdxNN = knnsearch(Mdl,Q,'K',2)

IdxNN =

 17 4

 6 2

 1 12

 89 66

 124 100

Each row of NN corresponds to a query data observation, and the column order
corresponds to the order of the nearest neighbors. For example, using the Minkowski
distance, the second nearest neighbor of Q(3,:) is X(12,:).

Input Arguments

X — Training data
numeric matrix

Training data that grows the Kd-tree, specified as a numeric matrix. X has n rows, each
corresponding to an observation (i.e., an instance or example), and K columns, each
corresponding to a predictor or feature.
Data Types: single | double

 KDTreeSearcher

22-2305

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Distance','minkowski','P',3,'BucketSize',10 specifies to use the
Minkowski distance when searching for nearest neighbors, to use 3 for the Minkowski
distance metric exponent, and to use 10 for the bucket size.

'Distance' — Distance metric
'euclidean' (default) | 'chebychev' | 'cityblock' | 'minkowski'

Distance metric used to find nearest neighbors of query points, specified as the comma-
separated pair consisting of 'Distance' and one of these strings.

Value Description

'chebychev' Chebychev distance (maximum coordinate
difference)

'cityblock' City block distance
'euclidean' Euclidean distance
'minkowski' Minkowski distance

For more details, see “Distance Metrics”.

The software does not use the distance metric for training the Kd-tree, so you can alter it
after training using dot notation.
Example: 'Distance','minkowski'

Data Types: char

'P' — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated
pair consisting of 'P' and a positive scalar. If you specify P and do not specify
'Distance','minkowski', then the software throws an error.

Example: 'P',3

22 Functions — Alphabetical List

22-2306

Data Types: double | single

'BucketSize' — Maximum number of data points in each leaf node
50 (default) | positive integer

Maximum number of data points in each leaf node of the Kd-tree, specified as the
comma-separated pair consisting of 'BucketSize' and a positive integer.

Example: 'BucketSize',10

Data Types: double | single

Output Arguments

Mdl — Grown Kd-tree
KDTreeSearcher model object

Grown Kd-tree, returned as a KDTreeSearcher model object. To search the training
data for the nearest neighbors of the query data, pass the query data and Mdl to
knnsearch or rangesearch.

More About
• Using KDTreeSearcher Objects
• “k-Nearest Neighbor Search and Radius Search” on page 16-11
• “Distance Metrics”

See Also
createns | knnsearch | rangesearch

Introduced in R2010a

 Using KDTreeSearcher Objects

22-2307

Using KDTreeSearcher Objects
Nearest neighbor search using Kd-tree

KDTreeSearcher model objects store results of a nearest neighbors search using the Kd-
tree algorithm. Results that you can store include the training data, the distance metric
and its parameters, and the maximal number of data points in each leaf node (i.e., the
bucket size). The Kd-tree algorithm partitions an n-by-K data set by recursively splitting
n points in K-dimensional space into a binary tree. To find the nearest neighbors of a
query observation, KDTreeSearcher restricts the training data space to the training
observations in the leaf node that the query observation belongs to.

Once you create or train a KDTreeSearcher model object, you can search the stored
tree to find all neighboring points to the query data by performing a nearest neighbors
search using knnsearch or radius search using rangesearch. The Kd-tree algorithm is
particularly useful when:

• K is relatively small (i.e., K < 10).
• The training and query sets are not sparse.
• The training and query sets have many observations.

Examples

Grow a Default K d-Tree

Load Fisher's iris data set.

load fisheriris

X = meas;

[n,k] = size(X)

n =

 150

k =

 4

22 Functions — Alphabetical List

22-2308

X has 150 observations and 4 predictors.

Grow a 4-dimensional K d-tree using the entire data set as training data.

Mdl = KDTreeSearcher(X)

Mdl =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'euclidean'

 DistParameter: []

 X: [150x4 double]

Mdl is a KDTreeSearcher model object, and its properties appear in the Command
Window. It contains information about the grown 4-dimensional K d-tree, such as the
distance metric. You can alter property values using dot notation

To find the nearest neighbors in X to a batch of query data, pass Mdl and the query data
to knnsearch or rangesearch.

Alter Properties of KDTreeSearcher Model

Load Fisher's iris data set.

load fisheriris

X = meas;

Grow a default four-dimensional K d-tree using the entire data set as training data.

Mdl = KDTreeSearcher(X)

Mdl =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'euclidean'

 DistParameter: []

 X: [150x4 double]

 Using KDTreeSearcher Objects

22-2309

Specify that the neighbor searcher use the Minkowski metric to compute the distances
between the training and query data.

Mdl.Distance = 'minkowski'

Mdl =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'minkowski'

 DistParameter: 2

 X: [150x4 double]

Pass Mdl and the query data to either knnsearch or rangesearch to find the nearest
neighbors to the points in the query data using the Minkowski distance.

Search for Nearest Neighbors of Query Data Using the Minkowski Distance

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

tIdx = ~ismember(1:n,qIdx); % Indices of training data

Q = meas(qIdx,:);

X = meas(tIdx,:);

Grow a four-dimensional K d-tree using the training data. Specify to use the Minkowski
distance for finding nearest neighbors later.

Mdl = createns(X,'NSMethod','kdtree','Distance','minkowski')

Mdl =

 KDTreeSearcher with properties:

 BucketSize: 50

22 Functions — Alphabetical List

22-2310

 Distance: 'minkowski'

 DistParameter: 2

 X: [145x4 double]

Mdl is a KDTreeSearcher model object. By default, the Minkowski distance exponent is
2.

Find the indices of the training data (X) that are the two nearest neighbors of each point
in the query data (Q).

IdxNN = knnsearch(Mdl,Q,'K',2)

IdxNN =

 17 4

 6 2

 1 12

 89 66

 124 100

Each row of NN corresponds to a query data observation, and the column order
corresponds to the order of the nearest neighbors. For example, using the Minkowski
distance, the second nearest neighbor of Q(3,:) is X(12,:).

Properties

Distance — Distance metric
'chebychev' | 'cityblock' | 'euclidean' | 'minkowski'

Distance metric used to find nearest neighbors of query points, specified as one of these
strings.

Value Description

'chebychev' Chebychev distance (maximum coordinate
difference)

'cityblock' City block distance
'euclidean' Euclidean distance

 Using KDTreeSearcher Objects

22-2311

Value Description

'minkowski' Minkowski distance

For more details, see “Distance Metrics”.

The software does not use the distance metric for training the Kd-tree, so you can alter it
after training using dot notation.
Data Types: char

DistParameter — Distance metric parameter values
[] | positive scalar

Distance metric parameter values, specified as empty ([]) or as a positive scalar.

If Distance is 'minkowski', then:

• DistParameter is the exponent in the Minkowski distance formula.
• You can alter DistParameter of a trained KDTreeSearcher model.

Otherwise, DistParameter is [], indicating that the specified distance metric formula
has no parameters.
Data Types: single | double

X — Training data
numeric matrix

Training data that grows the Kd-tree, specified as a numeric matrix. X has n rows, each
corresponding to an observation (i.e., an instance or example), and K columns, each
corresponding to a predictor or feature.
Data Types: single | double

Object Functions
knnsearchrangesearch

Create Object

Train a KDTreeSearcher model object using KDTreeSearcher or createns.

22 Functions — Alphabetical List

22-2312

See Also
ExhaustiveSearcher

More About
• “k-Nearest Neighbor Search and Radius Search” on page 16-11
• “Distance Metrics”

 Kernel property

22-2313

Kernel property
Class: ProbDistKernel

Read-only string specifying name of kernel smoothing function for ProbDistKernel object

Description

Kernel is a read-only property of the ProbDistKernel class. Kernel is a string
specifying the name of the kernel smoothing function used to create a ProbDistKernel
object.

Values
'normal'

'box'

'triangle'

'epanechnikov'

Use this information to view and compare the kernel smoothing function used to create
distributions.

See Also
ksdensity

22 Functions — Alphabetical List

22-2314

prob.KernelDistribution class
Package: prob
Superclasses: prob.TruncatableDistribution

Kernel probability distribution object

Description

prob.KernelDistribution is an object consisting of parameters, a model description,
and sample data for a nonparametric kernel-smoothing distribution. Create a
prob.KernelDistribution object using fitdist or dfittool.

Construction

pd = fitdist(x,'Kernel') creates a probability distribution object by fitting a
kernel-smoothing distribution to the data in x.

pd = fitdist(x,'Kernel',Name,Value) creates a probability distribution object
with additional options specified by one or more name-value pair arguments. For
example, you can change the kernel function or specify the kernel bandwidth.

Input Arguments

x — Input data
column vector

Input data to fit with a kernel-smoothing distribution, specified as a column vector of
scalar values. fitdist ignores NaN values in x.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 prob.KernelDistribution class

22-2315

'Kernel' — Kernel smoother type
'normal' (default) | 'box' | 'triangle' | 'epanechnikov'

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and
one of the following kernel smoothing function types:

• 'normal'

• 'box'

• 'triangle'

• 'epanechnikov'

'Support' — Kernel density support
'unbounded' (default) | 'positive' | two-element vector

Kernel density support, specified as the comma-separated pair consisting of 'Support'
and a string or two-element vector. The string must be one of the following.

'unbounded' Density can extend over the whole real line.
'positive' Density is restricted to positive values.

Alternatively, you can specify a two-element vector giving finite lower and upper limits
for the support of the density.
Data Types: single | double

'Width' — Bandwidth of kernel smoothing window
scalar value

Bandwidth of the kernel smoothing window, specified as the comma-separated pair
consisting of 'Width' and a scalar value. The default value used by fitdist is optimal
for estimating normal densities, but you might want to choose a smaller value to reveal
features such as multiple modes.
Data Types: single | double

Properties

Kernel — Kernel smoother type
'normal' | 'box' | 'triangle' | 'epanechnikov'

22 Functions — Alphabetical List

22-2316

Kernel function type, stored as a valid kernel function type name.

BandWidth — Bandwidth of kernel smoothing window
positive scalar value

Bandwidth of the kernel smoothing window, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.

 prob.KernelDistribution class

22-2317

Data Types: single | double

Methods

mean
Mean of probability distribution object

negloglik
Negative loglikelihood

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

22 Functions — Alphabetical List

22-2318

truncate
Truncate probability distribution object

Definitions

Kernel Distribution

The kernel distribution is a nonparametric estimation of the probability density function
(pdf) of a random variable.

The kernel distribution uses the following options.

Option Description Possible Values

Kernel Kernel function type normal, box, triangle,
epanechnikov

BandWidth Kernel smoothing parameter BandWidth > 0

The kernel density estimator is

ˆ ; ,f x
nh

K
x x

h
xh

i

i

n

() =
-Ê

Ë
Á

ˆ

¯
˜ - • < < •

=
Â1

1

where n is the sample size, K i() is the kernel function, and h is the bandwidth.

Examples

Fit a Kernel Distribution Object to Data

Load the sample data. Visualize the patient weight data using a histogram.

load hospital

histogram(hospital.Weight)

 prob.KernelDistribution class

22-2319

The histogram shows that the data has two modes, one for female patients and one for
male patients.

Create a probability distribution object by fitting a kernel distribution to the patient
weight data.

pd_kernel = fitdist(hospital.Weight,'Kernel')

pd_kernel =

 KernelDistribution

 Kernel = normal

 Bandwidth = 14.3792

22 Functions — Alphabetical List

22-2320

 Support = unbounded

For comparison, create another probability distribution object by fitting a normal
distribution to the patient weight data.

pd_normal = fitdist(hospital.Weight,'Normal')

pd_normal =

 NormalDistribution

 Normal distribution

 mu = 154 [148.728, 159.272]

 sigma = 26.5714 [23.3299, 30.8674]

Define the x values and compute the pdf of each distribution.

x = 50:1:250;

pdf_kernel = pdf(pd_kernel,x);

pdf_normal = pdf(pd_normal,x);

Plot the pdf of each distribution.

plot(x,pdf_kernel,'Color','b','LineWidth',2);

hold on;

plot(x,pdf_normal,'Color','r','LineStyle',':','LineWidth',2);

legend('Kernel Distribution','Normal Distribution','Location','SouthEast');

hold off;

 prob.KernelDistribution class

22-2321

Fitting a kernel distribution instead of a unimodal distribution such as the normal
reveals the separate modes for the female and male patients.

• “Fit Kernel Distribution Object to Data” on page 5-49

See Also
dfittool | fitdist

More About
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40

22 Functions — Alphabetical List

22-2322

• “Kernel Distribution”
• Class Attributes
• Property Attributes

 kfoldEdge

22-2323

kfoldEdge

Classification edge for observations not used for training

Syntax

edge = kfoldEdge(CVMdl)

edge = kfoldEdge(CVMdl,Name,Value)

Description

edge = kfoldEdge(CVMdl) returns the classification edge obtained by the cross-
validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold,
kfoldEdge computes the classification edge for in-fold observations using an ECOC
model trained on out-of-fold observations. CVMdl.X contains both sets of observations.

edge = kfoldEdge(CVMdl,Name,Value) returns the classification edge with
additional options specified by one or more Name,Value pair arguments.

For example, specify the number of folds, decoding scheme, or verbosity level.

Input Arguments

CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model.
You can create a ClassificationPartitionedECOC model by:

• Passing a trained ECOC model (ClassificationECOC) to crossval
• Training an ECOC model using fitcecoc and setting any one of these cross-

validation name-value pair arguments: 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'

22 Functions — Alphabetical List

22-2324

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
CVMdl.BinaryLoss (default) | function handle | 'hamming' | 'linear' |
'exponential' | 'binodeviance' | 'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in {-1,1,0}) and fj is the score for observation j.

Value Description Score Domain Formula

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yf)]/
log(2)

'exponential' Exponential (-∞,∞) exp(–yf)
'hamming' Hamming (-∞,∞) or [0,1] 1 – sign(yf)
'hinge' Hinge (-∞,∞) max(0,1 – yf)
'linear' Linear (-∞,∞) 1 – yf
'quadratic' Quadratic [0,1] [1 – y(2f – 1)]2

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,f)

where:

• M is the K-by-L coding matrix stored in CVMdl.CodingMatrix.
• f is the 1-by-L row vector of classification scores.
• bLoss is the classification loss.

 kfoldEdge

22-2325

• K is the number of classes.
• L is the number of binary learners.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Folds' — Fold indices for prediction
1:Mdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds'
and a numeric vector of positive integers. The elements of Folds must range from 1
through Mdl.KFold.

The software only uses the folds specified in Folds for prediction.

Example: 'Folds',[1 4 10]

Data Types: single | double

'Mode' — Edge meaning
'average' (default) | 'individual'

Edge meaning, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.

This table describes the values.

Value Description

'average' edge is the scalar average over all folds.
'individual' edge is a vector of length k containing one

edge per fold. k is the number of folds.

22 Functions — Alphabetical List

22-2326

Example: 'Mode','individual'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

Output Arguments

edge — Classification edge
numeric scalar | numeric row vector

Classification edge, returned as a numeric scalar or numeric row vector.

If Mode is 'average', then edge is the average classification edge among all binary
learners. Otherwise, edge is a 1-by-L numeric row vector containing the classification
edge for each, respective binary learner, where L is the number of binary learners
(size(CVMdl.CodingMatrix,2)).

Data Types: single | double

 kfoldEdge

22-2327

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margin

The classification margins are, for each observation, the difference between the negative
loss for the positive class and maximal negative loss among the negative classes. If the
margins are on the same scale, then they serve as a classification confidence measure,
i.e., among multiple classifiers, those that yield larger margins are better [4].

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

22 Functions — Alphabetical List

22-2328

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Estimate k-Fold Cross-Validation Edge of ECOC Models

Load Fisher's iris data set.

load fisheriris

 kfoldEdge

22-2329

X = meas;

Y = categorical(species);

classOrder = unique(Y);

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify to cross validate. It
is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedModel model. By default, the software
implements 10-fold cross validation. You can alter the number of folds using the
'KFold' name-value pair argument.

Estimate the average of the out-of-fold edges.

edge = kfoldEdge(CVMdl)

edge =

 0.4825

Alternatively, you can obtain the per-fold edges by specifying the name-value pair
'Mode','individual' in kfoldEdge.

Display Individual Edges for Each Cross-Validation Fold

The classification edge is a relative measure of classifier quality. You can determine ill-
performing folds by displaying the edges for each fold.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y);

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify to use 8-fold cross
validation. It is good practice to standardize the predictors and define the class order.
Specify to standardize the predictors using an SVM template.

22 Functions — Alphabetical List

22-2330

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);

Estimate the classification edge for each fold.

edges = kfoldEdge(CVMdl,'Mode','individual')

edges =

 0.4791

 0.4872

 0.4260

 0.5302

 0.5064

 0.4575

 0.4860

 0.4687

The edges have similar magnitudes across folds. Ill-performing folds have low edges
relative to the other folds.

You can return the classification edge for the entire model by specifying the well-
performing folds using the 'Folds' name-value pair argument.

Select ECOC Model Features by Comparing Cross-Validation Edges

The classifier edge measures the average of the classifier margins. One way to perform
feature selection is to compare cross-validation edges from multiple models. Based solely
on this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Define these two data sets:

• fullX contains all predictors.
• partX contains the petal dimensions.

 kfoldEdge

22-2331

fullX = X;

partX = X(:,3:4);

Train an ECOC model using SVM binary classifiers for each predictor set, and specify to
cross validate. It is good practice to standardize the predictors and define the class order.
Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(fullX,Y,'CrossVal','on','Learners',t,...

 'ClassNames',classOrder);

PCVMdl = fitcecoc(partX,Y,'CrossVal','on','Learners',t,...

 'ClassNames',classOrder);

CVMdl and PCVMdl are ClassificationPartitionedECOC models. By default, the
software implements 10-fold cross validation.

Estimate the test-sample edge for each classifier.

fullEdge = kfoldEdge(CVMdl)

partEdge = kfoldEdge(PCVMdl)

fullEdge =

 0.4825

partEdge =

 0.4951

PCVMdl achieves an edge that is similar to the more complex model CVMdl.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

References

See Also
ClassificationECOC | ClassificationPartitionedModel | edge | fitcecoc |
kfoldMargin | kfoldPredict | statset

22 Functions — Alphabetical List

22-2332

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

 kfoldEdge

22-2333

kfoldEdge
Class: ClassificationPartitionedEnsemble

Classification edge for observations not used for training

Syntax

E = kfoldEdge(obj)

E = kfoldEdge(obj,Name,Value)

Description

E = kfoldEdge(obj) returns classification edge (average classification margin)
obtained by cross-validated classification ensemble obj. For every fold, this method
computes classification edge for in-fold observations using an ensemble trained on out-of-
fold observations.

E = kfoldEdge(obj,Name,Value) calculates edge with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

Object of class ClassificationPartitionedEnsemble. Create ens with
fitensemble along with one of the cross-validation options: 'crossval', 'kfold',
'holdout', 'leaveout', or 'cvpartition'. Alternatively, create ens from a
classification ensemble with crossval.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-2334

'folds'

Indices of folds ranging from 1 to ens.KFold. Use only these folds for predictions.

Default: 1:ens.KFold

'mode'

String representing the meaning of the output edge:

• 'average' — edge is a scalar value, the average over all folds.
• 'individual' — edge is a vector of length ens.KFold with one element per fold.
• 'cumulative' — edge is a vector of length min(ens.NTrainedPerFold) in which

element J is obtained by averaging values across all folds for weak learners 1:J in
each fold.

Default: 'average'

Output Arguments

E

The average classification margin. E is a scalar or vector, depending on the setting of the
mode name-value pair.

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are the
class probabilities in obj.Prior.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix obj.X.

 kfoldEdge

22-2335

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Examples

Compute the k-fold edge for an ensemble trained on the Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

cvens = crossval(ens);

E = kfoldEdge(cvens)

E =

 3.2078

See Also
kfoldLoss | kfoldMargin | crossval | kfoldPredict | kfoldfun

22 Functions — Alphabetical List

22-2336

kfoldEdge
Class: ClassificationPartitionedModel

Classification edge for observations not used for training

Syntax
E = kfoldEdge(obj)

E = kfoldEdge(obj,Name,Value)

Description
E = kfoldEdge(obj) returns classification edge (average classification margin)
obtained by cross-validated classification model obj. For every fold, this method
computes classification edge for in-fold observations using an ensemble trained on out-of-
fold observations.

E = kfoldEdge(obj,Name,Value) calculates edge with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
obj

Object of class ClassificationPartitionedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'folds'

Indices of folds ranging from 1 to obj.KFold. Use only these folds for predictions.

 kfoldEdge

22-2337

Default: 1:obj.KFold

'mode'

String representing the meaning of the output edge:

• 'average' — edge is a scalar value, the average over all folds.
• 'individual' — edge is a vector of length obj.KFold with one element per fold.

Default: 'average'

Output Arguments

E

The average classification margin. E is a scalar or vector, depending on the setting of the
mode name-value pair.

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are class
prior probabilities. If you supply additional weights, those weights are normalized to
sum to the prior probabilities in the respective classes, and are then used to compute the
weighted average.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the
matrix X. A high value of margin indicates a more reliable prediction than a low value.

22 Functions — Alphabetical List

22-2338

Score

For discriminant analysis, the score of a classification is the posterior probability of the
classification. For the definition of posterior probability in discriminant analysis, see
“Posterior Probability” on page 15-7.

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

 kfoldEdge

22-2339

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

22 Functions — Alphabetical List

22-2340

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

 kfoldEdge

22-2341

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Examples

Esimtate the k-fold Edge of a Classifier

Compute the k-fold edge for a model trained on Fisher's iris data.

Load Fisher's iris data set.

load fisheriris

Train a classification tree classifier.

tree = fitctree(meas,species);

Cross validate the classifier using 10-fold cross validation.

cvtree = crossval(tree);

Compute the k-fold edge.

edge = kfoldEdge(cvtree)

22 Functions — Alphabetical List

22-2342

edge =

 0.8578

See Also
kfoldMargin | kfoldLoss | kfoldfun | crossval |
ClassificationPartitionedModel | kfoldPredict |
ClassificationPartitionedEnsemble

 kfoldfun

22-2343

kfoldfun
Class: ClassificationPartitionedECOC

Cross validate function

Syntax

vals = kfoldfun(CVMdl,fun)

Description

vals = kfoldfun(CVMdl,fun) cross validates the function fun by applying fun to the
data stored in the cross-validated model CVMdl. You must pass fun as a function handle.

Input Arguments

CVMdl — Cross-validated model
ClassificationPartitionedECOC model |
ClassificationPartitionedEnsemble model |
ClassificationPartitionedModel model

Cross-validated model, specified as a ClassificationPartitionedECOC
model, ClassificationPartitionedEnsemble model, or a
ClassificationPartitionedModel model.

fun — Cross-validated function
function handle

Cross-validated function, specified as a function handle. fun has the syntax

testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

• CMP is a compact model stored in one element of the CVMdl.Trained property.
• Xtrain is the training matrix of predictor values.
• Ytrain is the training array of response values.
• Wtrain are the training weights for observations.

22 Functions — Alphabetical List

22-2344

• Xtest and Ytest are the test data, with associated weights Wtest.
• The returned value testvals needs the same size across all folds.

Data Types: function_handle

Output Arguments
vals — Cross-validation results
numeric matrix

Cross-validation results, returned as an numeric matrix. vals is the arrays of testvals
output, concatenated vertically over all folds. For example, if testvals from every fold
is a numeric vector of length N, kfoldfun returns a KFold-by-N numeric matrix with one
row per fold.
Data Types: double

Examples
Estimate Classification Error Using a Custom Loss Function

Train an ECOC multiclass classifier, and then cross validate it using a custom k-fold loss
function.

Load Fisher’s iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers for each predictor set, and specify to
cross validate. It is good practice to standardize the predictors and define the class order.
Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,...

 'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software
implements 10-fold cross validation.

 kfoldfun

22-2345

Compute the classification error (proportion of misclassified observations) for the out-of-
fold observations.

L = kfoldLoss(CVMdl)

L =

 0.0400

Examine the result when the cost of misclassifying a flower as 'versicolor' is 10, and
any other error is 1. Write a function called noversicolor.m that attributes a cost of
1 for misclassification, but 10 for misclassifying a flower as versicolor, and save it on
your MATLAB path.

function averageCost = noversicolor(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

%noversicolor Example custom cross-validation function

% Attributes a cost of 10 for misclassifying versicolor irises, and 1 for

% the other irises. This example function requires the |fisheriris| data

% set.

Ypredict = predict(CMP,Xtest);

misclassified = not(strcmp(Ypredict,Ytest)); % Different result

classifiedAsVersicolor = strcmp(Ypredict,'versicolor'); % Index of bad decisions

cost = sum(misclassified) + ...

 9*sum(misclassified & classifiedAsVersicolor); % Total differences

averageCost = cost/numel(Ytest); % Average error

end

Compute the mean misclassification error with the noversicolor cost.

foldLoss = kfoldfun(CVMdl,@noversicolor);

mean(foldLoss)

ans =

 0.0667

See Also
ClassificationECOC | ClassificationPartitionedECOC |
ClassificationPartitionedModel | crossval | fitcecoc | kfoldEdge |
kfoldLoss | kfoldMargin | kfoldPredict

22 Functions — Alphabetical List

22-2346

kfoldfun
Class: ClassificationPartitionedModel

Cross validate function

Syntax

vals = kfoldfun(CVMdl,fun)

Description

vals = kfoldfun(CVMdl,fun) cross validates the function fun by applying fun to the
data stored in the cross-validated model CVMdl. You must pass fun as a function handle.

Input Arguments

CVMdl — Cross-validated model
ClassificationPartitionedECOC model |
ClassificationPartitionedEnsemble model |
ClassificationPartitionedModel model

Cross-validated model, specified as a ClassificationPartitionedECOC
model, ClassificationPartitionedEnsemble model, or a
ClassificationPartitionedModel model.

fun — Cross-validated function
function handle

Cross-validated function, specified as a function handle. fun has the syntax

testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

• CMP is a compact model stored in one element of the CVMdl.Trained property.
• Xtrain is the training matrix of predictor values.
• Ytrain is the training array of response values.

 kfoldfun

22-2347

• Wtrain are the training weights for observations.
• Xtest and Ytest are the test data, with associated weights Wtest.
• The returned value testvals needs the same size across all folds.

Data Types: function_handle

Output Arguments

vals — Cross-validation results
numeric matrix

Cross-validation results, returned as an numeric matrix. vals is the arrays of testvals
output, concatenated vertically over all folds. For example, if testvals from every fold
is a numeric vector of length N, kfoldfun returns a KFold-by-N numeric matrix with one
row per fold.
Data Types: double

Examples

Estimate Classification Error Using a Custom Loss Function

Train a classification tree classifier, and then cross validate it using a custom k-fold loss
function.

Load Fisher’s iris data set.

load fisheriris

Train a classification tree classifier.

Mdl = fitctree(meas,species);

Mdl is a ClassificationTree model.

Cross validate Mdl using the default 10-fold cross validation. Compute the classification
error (proportion of misclassified observations) for the out-of-fold observations.

rng(1); % For reproducibility

CVMdl = crossval(Mdl);

22 Functions — Alphabetical List

22-2348

L = kfoldLoss(CVMdl)

L =

 0.0467

Examine the result when the cost of misclassifying a flower as 'versicolor' is 10, and
any other error is 1. Write a function called noversicolor.m that attributes a cost of
1 for misclassification, but 10 for misclassifying a flower as versicolor, and save it on
your MATLAB path.

function averageCost = noversicolor(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

%noversicolor Example custom cross-validation function

% Attributes a cost of 10 for misclassifying versicolor irises, and 1 for

% the other irises. This example function requires the |fisheriris| data

% set.

Ypredict = predict(CMP,Xtest);

misclassified = not(strcmp(Ypredict,Ytest)); % Different result

classifiedAsVersicolor = strcmp(Ypredict,'versicolor'); % Index of bad decisions

cost = sum(misclassified) + ...

 9*sum(misclassified & classifiedAsVersicolor); % Total differences

averageCost = cost/numel(Ytest); % Average error

end

Compute the mean misclassification error with the noversicolor cost.

mean(kfoldfun(CVMdl,@noversicolor))

ans =

 0.2267

See Also
ClassificationPartitionedModel | kfoldEdge | kfoldMargin | kfoldLoss |
crossval | ClassificationPartitionedECOC | kfoldPredict | crossval

 kfoldfun

22-2349

kfoldfun
Class: RegressionPartitionedModel

Cross validate function

Syntax

vals = kfoldfun(obj,fun)

Description

vals = kfoldfun(obj,fun) cross validates the function fun by applying fun to the
data stored in the cross-validated model obj. You must pass fun as a function handle.

Input Arguments

obj

Object of class RegressionPartitionedModel or
RegressionPartitionedEnsemble. Create obj with fitrtree or fitensemble
along with one of the cross-validation options: 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'. Alternatively, create obj from a regression tree or
regression ensemble with crossval.

fun

A function handle for a cross-validation function. fun has the syntax

testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

• CMP is a compact model stored in one element of the obj.Trained property.
• Xtrain is the training matrix of predictor values.
• Ytrain is the training array of response values.
• Wtrain are the training weights for observations.
• Xtest and Ytest are the test data, with associated weights Wtest.

22 Functions — Alphabetical List

22-2350

• The returned value testvals must have the same size across all folds.

Output Arguments

vals

The arrays of testvals output, concatenated vertically over all folds. For example, if
testvals from every fold is a numeric vector of length N, kfoldfun returns a KFold-
by-N numeric matrix with one row per fold.

Examples

Cross validate a regression tree, and obtain the mean squared error (see kfoldLoss):

load imports-85

t = fitrtree(X(:,[4 5]),X(:,16),...

 'predictornames',{'length' 'width'},...

 'responsename','price');

cv = crossval(t);

L = kfoldLoss(cv)

L =

 1.5489e+007

Examine the result of simple averaging of responses instead of using predictions:

f = @(cmp,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)...

 mean((Ytest-mean(Ytrain)).^2)

mean(kfoldfun(cv,f))

ans =

 6.3497e+007

See Also
RegressionPartitionedEnsemble | kfoldLoss | crossval | fitrtree |
kfoldPredict | RegressionPartitionedModel

 kfoldLoss

22-2351

kfoldLoss

Classification loss for observations not used for training

Syntax

loss = kfoldLoss(CVMdl)

loss = kfoldLoss(CVMdl,Name,Value)

Description

loss = kfoldLoss(CVMdl) returns the classification loss obtained by the cross-
validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold,
this function computes the classification loss for in-fold observations using a model
trained on out-of-fold observations. CVMdl.X contains both sets of observations.

loss = kfoldLoss(CVMdl,Name,Value) returns the classification loss with
additional options specified by one or more Name,Value pair arguments.

For example, specify the number of folds, decoding scheme, or verbosity level.

Input Arguments

CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model.
You can create a ClassificationPartitionedECOC model by:

• Passing a trained ECOC model (ClassificationECOC) to crossval
• Training an ECOC model using fitcecoc and setting any one of these cross-

validation name-value pair arguments: 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'

22 Functions — Alphabetical List

22-2352

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
CVMdl.BinaryLoss (default) | function handle | 'hamming' | 'linear' |
'exponential' | 'binodeviance' | 'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in {-1,1,0}) and fj is the score for observation j.

Value Description Score Domain Formula

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yf)]/
log(2)

'exponential' Exponential (-∞,∞) exp(–yf)
'hamming' Hamming (-∞,∞) or [0,1] 1 – sign(yf)
'hinge' Hinge (-∞,∞) max(0,1 – yf)
'linear' Linear (-∞,∞) 1 – yf
'quadratic' Quadratic [0,1] [1 – y(2f – 1)]2

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,f)

where:

• M is the K-by-L coding matrix stored in CVMdl.CodingMatrix.
• f is the 1-by-L row vector of classification scores.
• bLoss is the classification loss.

 kfoldLoss

22-2353

• K is the number of classes.
• L is the number of binary learners.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Folds' — Fold indices for prediction
1:Mdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds'
and a numeric vector of positive integers. The elements of Folds must range from 1
through Mdl.KFold.

The software only uses the folds specified in Folds for prediction.

Example: 'Folds',[1 4 10]

Data Types: single | double

'LossFun' — Loss function
'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or 'classiferror'.

You can:

• Specify the built-in function 'classiferror', then the loss function is the
classification error, in other words, the proportion of misclassified observations.

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and k is the number of classes. Your
function needs the signature lossvalue = lossfun(C,S,W,Cost), where:

22 Functions — Alphabetical List

22-2354

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-k logical matrix with rows indicating which class the corresponding

observation belongs. The column order corresponds to the class order in
CVMdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set
every element of row p to 0.

• S is an n-by-k numeric matrix of negated loss values for classes. Each row
corresponds to an observation. The column order corresponds to the class
order in CVMdl.ClassNames. S resembles the output argument negLoss of
kfoldPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes its elements to sum to 1.

• Cost is a k-by-k numeric matrix of misclassification costs. For example, Cost
= ones(K) -eye(K) specifies a cost of 0 for correct classification, and 1 for
misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: function_handle | char

'Mode' — Edge meaning
'average' (default) | 'individual'

Edge meaning, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.

This table describes the values.

Value Description

'average' edge is the scalar average over all folds.
'individual' edge is a vector of length k containing one

edge per fold. k is the number of folds.

Example: 'Mode','individual'

 kfoldLoss

22-2355

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

Output Arguments

loss — Classification loss
numeric scalar | numeric row vector

Classification loss, returned as a numeric scalar or numeric row vector.

If Mode is 'average', then loss is the average classification loss among all binary
learners. Otherwise, loss is a 1-by-L numeric row vector containing the classification
loss for each, respective binary leanrer, where L is the number of binary learners
(size(CVMdl.CodingMatrix,2)).

Data Types: single | double

22 Functions — Alphabetical List

22-2356

Definitions

Classification Error

The classification error is a binary classification error measure that has the form

L

w e

w

j j

j

n

j
j

n
=

=

=

Â

Â

1

1

,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, it is the proportion of observations that the classifier misclassifies.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

 kfoldLoss

22-2357

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Determine k-Fold Cross-Validation Loss of ECOC Models

Load Fisher's iris data set.

22 Functions — Alphabetical List

22-2358

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers, and specify to cross validate. It
is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software
implements 10-fold cross validation. You can alter the number of folds using the
'KFold' name-value pair argument.

Estimate the average out-of-fold classification error.

L = kfoldLoss(CVMdl)

L =

 0.0400

The average classification error for the folds is 4%.

Alternatively, you can obtain the per-fold losses by specifying the name-value pair
'Mode','individual' in kfoldLoss.

Display Individual Losses for Each Cross-Validation Fold

The classification loss is a measure of classifier quality. You can determine ill-performing
folds by displaying the losses for each fold.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y);

rng(1); % For reproducibility

 kfoldLoss

22-2359

Train an ECOC model using SVM binary classifiers and specify to use 8-fold cross
validation. It is good practice to standardize the predictors and define the class order.
Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);

Estimate the average classification loss across folds, and the losses for each fold.

loss = kfoldLoss(CVMdl)

losses = kfoldLoss(CVMdl,'Mode','individual')

loss =

 0.0333

losses =

 0.0556

 0.0526

 0.1579

 0

 0

 0

 0

 0

The third fold misclassifies a much higher portion of observations than any other fold.

Return the classification loss for the entire model by specifying the well-performing folds
using the 'Folds' name-value pair argument.

loss = kfoldLoss(CVMdl,'Folds',[1:2 4:8])

loss =

 0.0153

The total classification loss decreased by approximately half its original size.

22 Functions — Alphabetical List

22-2360

Consider adjusting parameters of the binary classifiers or the coding design to see if
performance for all folds improves.

Determine ECOC Model Quality Using a Custom Cross-Validation Loss

Suppose that it is interesting to know how well a model classifies a particular class. This
example shows how to pass such a custom loss function to kfoldLoss.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

n = numel(Y); % Sample size

classOrder = unique(Y) % Class order

K = numel(classOrder); % Number of classes

rng(1) % For reproducibility

classOrder =

 setosa

 versicolor

 virginica

Train an ECOC model using SVM binary classifiers, and specify to cross validate. It
is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software
implements 10-fold cross validation. You can alter the number of folds using the
'KFold' name-value pair argument.

Compute the negated losses for the out-of-fold observations.

[~,negLoss] = kfoldPredict(CVMdl);

Create a function that takes the minimal loss for each observation, and then averages the
minimal losses across all observations.

lossfun = @(C,S,~,~)mean(min(-negLoss,[],2));

 kfoldLoss

22-2361

Compute the cross-validated custom loss.

kfoldLoss(CVMdl,'LossFun',lossfun)

ans =

 0.0101

The average, minimal, binary loss for the out-of-fold observations is 0.0101.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q, X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | ClassificationPartitionedModel | fitcecoc |
kfoldPredict | loss | statset

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13

22 Functions — Alphabetical List

22-2362

• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on
page 21-7

 kfoldLoss

22-2363

kfoldLoss
Class: ClassificationPartitionedEnsemble

Classification loss for observations not used for training

Syntax

L = kfoldLoss(ens)

L = kfoldLoss(ens,Name,Value)

Description

L = kfoldLoss(ens) returns loss obtained by cross-validated classification model ens.
For every fold, this method computes classification loss for in-fold observations using a
model trained on out-of-fold observations.

L = kfoldLoss(ens,Name,Value) calculates loss with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

Object of class ClassificationPartitionedEnsemble. Create ens with
fitensemble along with one of the cross-validation options: 'crossval', 'kfold',
'holdout', 'leaveout', or 'cvpartition'. Alternatively, create ens from a
classification ensemble with crossval.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-2364

'folds'

Indices of folds ranging from 1 to ens.KFold. Use only these folds for predictions.

Default: 1:ens.KFold

'lossfun '

Function handle or string representing a loss function. Built-in loss functions:

• 'binodeviance' — See “Loss Functions” on page 22-2365
• 'classiferror' — Fraction of misclassified data
• 'exponential' — See “Loss Functions” on page 22-2365
• 'hinge' — See “Loss Functions” on page 22-2365.
• 'mincost' — Smallest misclassification cost as given by the obj.Cost matrix. See

“Loss Functions” on page 22-2365.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-2365.

Default: 'classiferror'

'mode'

A string for determining the output of kfoldLoss:

• 'average' — L is a scalar, the loss averaged over all folds.
• 'individual' — L is a vector of length ens.KFold, where each entry is the loss for

a fold.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'average'

Output Arguments

L

Loss, by default the fraction of misclassified data. L can be a vector, and can mean
different things, depending on the name-value pair settings.

 kfoldLoss

22-2365

Definitions

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'classiferror' — Fraction of misclassified data, weighted by w.
• 'exponential' — With the same definitions as for 'binodeviance', the

exponential loss is

w y f Xn n nexp .- ()()Â

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

22 Functions — Alphabetical List

22-2366

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file of the form

function loss = lossfun(C,S,W,COST)

• N is the number of rows of ens.X.
• K is the number of classes in ens, represented in ens.ClassNames.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in tree.ClassNames.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the score output from predict.
• W is a numeric vector with N elements, the observation weights.
• COST is a K-by-K numeric matrix of misclassification costs. The default

'classiferror' gives a cost of 0 for correct classification, and 1 for
misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

Examples

Find the average cross-validated classification error for an ensemble model of the
ionosphere data:

load ionosphere

ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree');

cvens = crossval(ens);

L = kfoldLoss(cvens)

L =

 0.0826

See Also
kfoldEdge | kfoldMargin | crossval | kfoldPredict | kfoldfun

 kfoldLoss

22-2367

kfoldLoss
Class: ClassificationPartitionedModel

Classification loss for observations not used for training

Syntax

L = kfoldLoss(obj)

L = kfoldLoss(obj,Name,Value)

Description

L = kfoldLoss(obj) returns loss obtained by cross-validated classification model obj.
For every fold, this method computes classification loss for in-fold observations using a
model trained on out-of-fold observations.

L = kfoldLoss(obj,Name,Value) calculates loss with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

obj

Object of class ClassificationPartitionedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'folds'

Indices of folds ranging from 1 to obj.KFold. Use only these folds for predictions.

22 Functions — Alphabetical List

22-2368

Default: 1:obj.KFold

'lossfun '

Function handle or string representing a loss function. Built-in loss functions:

• 'binodeviance' — See “Loss Functions” on page 22-2369.
• 'classiferror' — Fraction of misclassified observations. See “Loss Functions” on

page 22-2369.
• 'exponential' — See “Loss Functions” on page 22-2369.
• 'hinge' — See “Loss Functions” on page 22-2369.
• 'mincost' — Smallest misclassification cost as given by the obj.Cost matrix. See

“Loss Functions” on page 22-2369.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-2369.

Default: 'mincost'

'mode'

A string for determining the output of kfoldLoss:

• 'average' — L is a scalar, the loss averaged over all folds.
• 'individual' — L is a vector of length obj.KFold, where each entry is the loss for a

fold.

Default: 'average'

Output Arguments

L

Loss, by default the fraction of misclassified data. L can be a vector, and can mean
different things, depending on the name-value pair settings.

 kfoldLoss

22-2369

Definitions

Classification Error

The default classification error is the fraction of the data X that obj misclassifies, where
Y are the true classifications.

Weighted classification error is the sum of weight i times the Boolean value that is 1
when obj misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'exponential' — With the same definitions as for 'binodeviance', the
exponential loss is

w y f Xn n nexp .- ()()Â

• 'classiferror' — Predict the label with the largest posterior probability. The loss
is then the fraction of misclassified observations.

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.

22 Functions — Alphabetical List

22-2370

• For binary classification, yj = 1 for the positive class and -1 for the negative class.
For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file in this form:

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in the classifier, represented in the ClassNames property.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in the ClassNames property.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the posterior output from predict.
• W is a numeric vector with N elements, the observation weights. If you pass W, the

elements are normalized to sum to the prior probabilities in the respective classes.
• COST is a K-by-K numeric matrix of misclassification costs. For example, you can use

COST = ones(K) - eye(K), which means a cost of 0 for correct classification, and 1
for misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

Examples

Find the average cross-validated classification error for a model of the ionosphere data:

load ionosphere

tree = fitctree(X,Y);

 kfoldLoss

22-2371

cvtree = crossval(tree);

L = kfoldLoss(cvtree)

L =

 0.1197

See Also
ClassificationPartitionedModel | kfoldEdge | kfoldMargin | kfoldfun |
crossval | kfoldPredict

How To
• “Examine the Quality of a KNN Classifier” on page 16-29

22 Functions — Alphabetical List

22-2372

kfoldLoss

Class: RegressionPartitionedEnsemble

Cross-validation loss of partitioned regression ensemble

Syntax

L = kfoldLoss(cvens)

L = kfoldLoss(cvens,Name,Value)

Description

L = kfoldLoss(cvens) returns the cross-validation loss of cvens.

L = kfoldLoss(cvens,Name,Value) returns cross-validation loss with additional
options specified by one or more Name,Value pair arguments. You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

cvens

Object of class RegressionPartitionedEnsemble. Create obj with fitensemble
along with one of the cross-validation options: 'crossval', 'kfold', 'holdout',
'leaveout', or 'cvpartition'. Alternatively, create obj from a regression ensemble
with crossval.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 kfoldLoss

22-2373

'folds'

Indices of folds ranging from 1 to cvens.KFold. Use only these folds for predictions.

Default: 1:cvens.KFold

'lossfun'

Function handle for loss function, or the string 'mse', meaning mean squared error. If
you pass a function handle fun, loss calls it as

fun(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length.

• Y is the observed response.
• Yfit is the predicted response.
• W is the observation weights.

The returned value fun(Y,Yfit,W) should be a scalar.

Default: 'mse'

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

Output Arguments

L

The loss (mean squared error) between the observations in a fold when compared against
predictions made with an ensemble trained on the out-of-fold data. L can be a vector, and
can mean different things, depending on the name-value pair settings.

22 Functions — Alphabetical List

22-2374

Examples

Find the cross-validation loss for a regression ensemble of the carsmall data:

load carsmall

X = [Displacement Horsepower Weight];

rens = fitensemble(X,MPG,'LSboost',100,'Tree');

cvrens = crossval(rens);

L = kfoldLoss(cvrens)

L =

 25.6935

See Also
RegressionPartitionedEnsemble | loss | kfoldPredict

 kfoldLoss

22-2375

kfoldLoss
Class: RegressionPartitionedModel

Cross-validation loss of partitioned regression model

Syntax

L = kfoldLoss(cvmodel)

L = kfoldLoss(cvmodel,Name,Value)

Description

L = kfoldLoss(cvmodel) returns the cross-validation loss of cvmodel.

L = kfoldLoss(cvmodel,Name,Value) returns cross-validation loss with additional
options specified by one or more Name,Value pair arguments. You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

cvmodel

Object of class RegressionPartitionedModel. Create obj with fitrtree along with
one of the cross-validation options: 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'. Alternatively, create obj from a regression tree with crossval.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'folds'

Indices of folds ranging from 1 to obj.KFold. Use only these folds for predictions.

22 Functions — Alphabetical List

22-2376

Default: 1:obj.KFold

'lossfun'

Function handle for loss function, or the string 'mse', meaning mean squared error. If
you pass a function handle fun, kfoldLoss calls it as

fun(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length.

• Y is the observed response.
• Yfit is the predicted response.
• W is the observation weights.

The returned value fun(Y,Yfit,W) should be a scalar.

Default: 'mse'

'mode'

One of the following strings:

• 'average' — L is the average loss over all folds.
• 'individual' — L is a vector of the individual losses of in-fold observations trained

on out-of-fold data.

Default: 'average'

Output Arguments
L

The loss (mean squared error) between the observations in a fold when compared against
predictions made with a tree trained on the out-of-fold data. If mode is 'individual', L
is a vector of the losses. If mode is 'average', L is the average loss.

Examples
Construct a partitioned regression model, and examine the cross-validation losses for the
folds:

 kfoldLoss

22-2377

load carsmall

XX = [Cylinders Displacement Horsepower Weight];

YY = MPG;

cvmodel = fitrtree(XX,YY,'crossval','on');

L = kfoldLoss(cvmodel,'mode','individual')

L =

 44.9635

 11.8525

 18.2046

 9.2965

 29.4329

 54.8659

 24.6446

 8.2085

 19.7593

 16.7394

Alternatives

You can avoid constructing a cross-validated tree model by calling cvLoss instead of
kfoldLoss. The cross-validated tree can save time if you are going to examine it more
than once.

See Also
loss | kfoldPredict | fitrtree

22 Functions — Alphabetical List

22-2378

kfoldMargin

Classification margins for observations not used for training

Syntax

margin = kfoldMargin(CVMdl)

margin = kfoldMargin(CVMdl,Name,Value)

Description

margin = kfoldMargin(CVMdl) returns classification margins obtained by the cross-
validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold,
this method computes classification margins for in-fold observations using a model
trained on out-of-fold observations. CVMdl.X contains both sets of observations.

margin = kfoldMargin(CVMdl,Name,Value) returns classification margins with
additional options specified by one or more Name,Value pair arguments.

For example, specify the binary learner loss function, decoding scheme, or verbosity level.

Input Arguments

CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model.
You can create a ClassificationPartitionedECOC model by:

• Passing a trained ECOC model (ClassificationECOC) to crossval
• Training an ECOC model using fitcecoc and setting any one of these cross-

validation name-value pair arguments: 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'

 kfoldMargin

22-2379

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
CVMdl.BinaryLoss (default) | function handle | 'hamming' | 'linear' |
'exponential' | 'binodeviance' | 'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in {-1,1,0}) and fj is the score for observation j.

Value Description Score Domain Formula

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yf)]/
log(2)

'exponential' Exponential (-∞,∞) exp(–yf)
'hamming' Hamming (-∞,∞) or [0,1] 1 – sign(yf)
'hinge' Hinge (-∞,∞) max(0,1 – yf)
'linear' Linear (-∞,∞) 1 – yf
'quadratic' Quadratic [0,1] [1 – y(2f – 1)]2

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,f)

where:

• M is the K-by-L coding matrix stored in CVMdl.CodingMatrix.
• f is the 1-by-L row vector of classification scores.
• bLoss is the classification loss.

22 Functions — Alphabetical List

22-2380

• K is the number of classes.
• L is the number of binary learners.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

 kfoldMargin

22-2381

Output Arguments

margin — Classification margins
numeric vector

Classification margins, returned as a numeric vector. margin is an n-by-1 vector,
where each row is the margin of the corresponding observation, and n is the number of
observations (i.e., size(CVMdl.X,1)).

Data Types: single | double

Definitions

Classification Margin

The classification margins are, for each observation, the difference between the negative
loss for the positive class and maximal negative loss among the negative classes. If the
margins are on the same scale, then they serve as a classification confidence measure,
i.e., among multiple classifiers, those that yield larger margins are better [4].

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

22 Functions — Alphabetical List

22-2382

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

 kfoldMargin

22-2383

Examples

Estimate k-Fold Cross-Validated Margins of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y);

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify to cross validate. It
is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedModel model. By default, the software
implements 10-fold cross validation. You can alter the number of folds using the
'KFold' name-value pair argument.

Estimate the out-of-fold margins. Display the distribution of the mnargins using a
boxplot.

margin = kfoldMargin(CVMdl);

figure;

boxplot(margin);

title('Cross-Validated Margins')

22 Functions — Alphabetical List

22-2384

An observation margin is the positive-class, negated loss minus the maximum negative-
class, negated loss. Classifiers that yield relatively large margins are desirable.

Select ECOC Model Features by Comparing Cross-Validation Margins

The classifier margin measures the average of the classifier margins. One way to perform
feature selection is to compare cross-validation margins from multiple models. Based
solely on this criterion, the classifier with the greater margins is the best classifier.

Load Fisher's iris data set.

load fisheriris

X = meas;

 kfoldMargin

22-2385

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Define these two data sets:

• fullX contains all predictors.
• partX contains the petal dimensions.

fullX = X;

partX = X(:,3:4);

Train an ECOC model using SVM binary classifiers for each predictor set, and specify to
cross validate. It is good practice to standardize the predictors and define the class order.
Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(fullX,Y,'CrossVal','on','Learners',t,...

 'ClassNames',classOrder);

PCVMdl = fitcecoc(partX,Y,'CrossVal','on','Learners',t,...

 'ClassNames',classOrder);

CVMdl and PCVMdl are ClassificationPartitionedECOC models. By default, the
software implements 10-fold cross validation.

Estimate the test sample margin for each classifier. Specify to use loss-based decoding
for aggregating the binary learner results. For each model, display the distribution of the
margins using a boxplot.

fullMargins = kfoldMargin(CVMdl,'Decoding','lossbased');

partMargins = kfoldMargin(PCVMdl,'Decoding','lossbased');

figure;

boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'});

title('Boxplots of Cross-Validated Margins')

22 Functions — Alphabetical List

22-2386

The margin distributions are approximately the same, but PCVMdl is a less complex
model, which might make it more desirable.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

 kfoldMargin

22-2387

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | ClassificationPartitionedModel | fitcecoc |
kfoldEdge | kfoldPredict | margin | statset

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

22 Functions — Alphabetical List

22-2388

kfoldMargin
Class: ClassificationPartitionedModel

Classification margins for observations not used for training

Syntax
M = kfoldMargin(obj)

Description
M = kfoldMargin(obj) returns classification margins obtained by cross-validated
classification model obj. For every fold, this method computes classification margins for
in-fold observations using a model trained on out-of-fold observations.

Input Arguments

obj

A partitioned classification model of type ClassificationPartitionedModel or
ClassificationPartitionedEnsemble.

Output Arguments

M

The classification margin.

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

 kfoldMargin

22-2389

The classification margin is a column vector with the same number of rows as in the
matrix X. A high value of margin indicates a more reliable prediction than a low value.

Score

For discriminant analysis, the score of a classification is the posterior probability of the
classification. For the definition of posterior probability in discriminant analysis, see
“Posterior Probability” on page 15-7.

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

22 Functions — Alphabetical List

22-2390

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

 kfoldMargin

22-2391

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

22 Functions — Alphabetical List

22-2392

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Examples

Esimtate the k-fold Margins of a Classifier

Find the k-fold margins for an ensemble that classifies the ionosphere data.

Load the ionosphere data set.

load ionosphere

Train a classification ensemble of decision trees.

Mdl = fitensemble(X,Y,'AdaBoostM1',100,'Tree');

Cross validate the classifier using 10-fold cross validation.

cvens = crossval(Mdl);

Compute the _k_fold margins. Disaply summary statistics for the margins.

m = kfoldMargin(cvens);

marginStats = table(min(m),mean(m),max(m),...

 'VariableNames',{'Min','Mean','Max'})

 kfoldMargin

22-2393

marginStats =

 Min Mean Max

 _______ ______ ______

 -11.312 7.3236 23.517

See Also
ClassificationPartitionedModel | kfoldEdge | kfoldLoss | kfoldfun |
crossval | kfoldPredict

22 Functions — Alphabetical List

22-2394

kfoldPredict
Predict responses for observations not used for training

Syntax
label = kfoldPredict(CVMdl)

label = kfoldPredict(CVMdl,Name,Value)

[label,NegLoss,PBScore] = kfoldPredict(___)

[label,NegLoss,PBScore,Posterior] = kfoldPredict(___)

Description
label = kfoldPredict(CVMdl) returns class labels predicted by the cross-
validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold,
kfoldPredict predicts class labels for in-fold observations using a model trained on
out-of-fold observations. CVMdl.X contains both sets of observations.

The software predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest
average binary loss).

label = kfoldPredict(CVMdl,Name,Value) returns predicted class labels with
additional options specified by one or more Name,Value pair arguments.

For example, specify the posterior probability estimation method, decoding scheme, or
verbosity level.

[label,NegLoss,PBScore] = kfoldPredict(___) additionally returns negated
values of the average binary loss per class (NegLoss) for in-fold observations, and
positive-class scores (PBScore) for in-fold observations classified by each binary learner.

If the coding matrix varies across folds (that is, if the coding scheme is sparserandom or
denserandom), then PBScore is empty ([]).

[label,NegLoss,PBScore,Posterior] = kfoldPredict(___) additionally
returns posterior class probability estimates for in-fold observations (Posterior).

To obtain posterior class probabilities, you must set 'FitPosterior',1 when training
the ECOC model using fitcecoc. Otherwise, kfoldPredict throws an error.

 kfoldPredict

22-2395

Input Arguments

CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model.
You can create a ClassificationPartitionedECOC model by:

• Passing a trained ECOC model (ClassificationECOC) to crossval
• Training an ECOC model using fitcecoc and setting any one of these cross-

validation name-value pair arguments: 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
CVMdl.BinaryLoss (default) | function handle | 'hamming' | 'linear' |
'exponential' | 'binodeviance' | 'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in {-1,1,0}) and fj is the score for observation j.

Value Description Score Domain Formula

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yf)]/
log(2)

'exponential' Exponential (-∞,∞) exp(–yf)
'hamming' Hamming (-∞,∞) or [0,1] 1 – sign(yf)
'hinge' Hinge (-∞,∞) max(0,1 – yf)
'linear' Linear (-∞,∞) 1 – yf

22 Functions — Alphabetical List

22-2396

Value Description Score Domain Formula

'quadratic' Quadratic [0,1] [1 – y(2f – 1)]2

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,f)

where:

• M is the K-by-L coding matrix stored in CVMdl.CodingMatrix.
• f is the 1-by-L row vector of classification scores.
• bLoss is the classification loss.
• K is the number of classes.
• L is the number of binary learners.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'NumKLInitializations' — Number of random initial values
0 (default) | nonnegative integer

Number of random initial values for fitting posterior probabilities by Kullback-
Leibler divergence minimization, specified as the comma-separated pair consisting of
'NumKLInitializations' and a nonnegative integer.

If you do not request the fourth output argument (Posterior) and set
'PosteriorMethod','kl' (the default), then the software ignores the value of
NumKLInitializations.

 kfoldPredict

22-2397

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page
22-3679.
Example: 'NumKLInitializations',5

Data Types: single | double

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'PosteriorMethod' — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair
consisting of 'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior
probabilities by minimizing the Kullback-Leibler divergence between the predicted
and expected posterior probabilities returned by binary learners. For details, see
“Posterior Estimation Using Kullback-Leibler Divergence”.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior
probabilities by solving a least-squares problem using quadratic programming. You
need an Optimization Toolbox license to use this option. For details, see “Posterior
Estimation Using Quadratic Programming”.

• If you do not request the fourth output argument (Posterior), then the software
ignores the value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Data Types: char

'Verbose' — Verbosity level
0 (default) | 1

22 Functions — Alphabetical List

22-2398

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

Output Arguments

label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Predicted class labels, returned as a categorical or character array, logical or numeric
vector, or cell array of strings.

label:

• Is the same data type as CVMdl.Y
• Has length equal to the number of rows of CVMdl.X

The software predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest
average binary loss).

NegLoss — Negated average binary losses
numeric matrix

Negated average binary losses, returned as a numeric matrix. NegLoss is an n-by-K
matrix, where n is the number of observations (size(CVMdl.X,1)) and K is the number
of unique classes (size(CVMdl.ClassNames,1)).

PBScore — Positive-class scores
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. PBScore is
an n-by-L matrix, where n is the number of observations (size(CVMdl.X,1)) and L is
the number of binary learners (size(CVMdl.CodingMatrix,2)).

 kfoldPredict

22-2399

If the coding matrix varies across folds (that is, if the coding scheme is sparserandom or
denserandom), then PBScore is empty ([]).

Posterior — Posterior class probabilities
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an n-by-K
matrix, where n is the number of observations (size(CVMdl.X,1)) and K is the number
of unique classes (size(CVMdl.ClassNames,1)).

You must set 'FitPosterior',1 when training the ECOC model using fitcecoc to
request Posterior. Otherwise, the software throws an error.

Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

22 Functions — Alphabetical List

22-2400

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples
Predict k-Fold Cross-Validation Labels of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

 kfoldPredict

22-2401

classOrder = unique(Y);

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify to cross validate. It
is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedModel model. By default, the software
implements 10-fold cross validation. You can alter the number of folds using the
'KFold' name-value pair argument.

Predict the out-of-fold labels. Print a random subset of true and predicted labels.

labels = kfoldPredict(CVMdl);

idx = randsample(numel(labels),10);

table(Y(idx),labels(idx),...

 'VariableNames',{'TrueLabels','PredictedLabels'})

ans =

 TrueLabels PredictedLabels

 __________ _______________

 setosa setosa

 versicolor versicolor

 setosa setosa

 virginica virginica

 versicolor versicolor

 setosa setosa

 virginica virginica

 virginica virginica

 setosa setosa

 setosa setosa

CVMdl correctly labeled the out-of-fold observations with indices idx.

Predict Cross-Validation Labels of ECOC Models Using Custom Binary Loss Function

Load Fisher's iris data set.

load fisheriris

22 Functions — Alphabetical List

22-2402

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

K = numel(classOrder); % Number of classes

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify to cross validate. It
is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedModel model. By default, the software
implements 10-fold cross validation. You can alter the number of folds using the
'KFold' name-value pair argument.

SVM scores are signed distances from the observation to the decision boundary.
Therefore, the domain is . Create a custom binary loss function that:

• Maps the coding design matrix (M) and positive-class classification scores (s) for each
learner to the binary loss for each observation

• Uses linear loss
• Aggregates the binary learner loss using the median.

You can create a separate function for the binary loss function, and then save it on the
MATLAB® path. Or, you can specify an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

Predict cross-validation labels and estimate the median binary loss per class. Print the
median negative binary losses per class for a random set of 10 out-of-fold observations.

[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);

idx = randsample(numel(label),10);

classOrder

table(Y(idx),label(idx),NegLoss(idx,:),'VariableNames',...

 {'TrueLabel','PredictedLabel','NegLoss'})

classOrder =

 setosa

 kfoldPredict

22-2403

 versicolor

 virginica

ans =

 TrueLabel PredictedLabel NegLoss

 __________ ______________ _________________________________

 setosa versicolor 0.37141 2.1292 -4.0006

 versicolor versicolor -1.2167 0.3669 -0.65017

 setosa versicolor 0.23927 2.08 -3.8193

 virginica virginica -1.9154 -0.19947 0.6149

 versicolor versicolor -1.3746 0.45535 -0.58076

 setosa versicolor 0.20061 2.2774 -3.9781

 virginica versicolor -1.4928 0.090689 -0.097935

 virginica virginica -1.7669 -0.13464 0.4015

 setosa versicolor 0.19999 1.9113 -3.6113

 setosa versicolor 0.16108 1.9684 -3.6295

The order of the columns corresponds to the elements of classOrder. The software
predicts the label based on the maximum negated loss. The results seem to indicate that
the median of the linear losses might not perform as well as other losses.

Estimate Cross-Validation Posterior Probabilities of ECOC Models

Load Fisher's iris data set. Train the classifier using the petal dimensions as predictors.

load fisheriris

X = meas(:,3:4);

Y = categorical(species);

classOrder = unique(Y);

rng(1); % For reproducibility

Create an SVM template, and specify the Gaussian kernel. It is good practice to
standardize the predictors.

t = templateSVM('Standardize',1,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the
ECOC classifier, it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template, and specify to cross validate.
Transform classification scores to class posterior probabilities (returned by

22 Functions — Alphabetical List

22-2404

kfoldPredict) using the 'FitPosterior' name-value pair argument. It is good
practice to specify the class order.

CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on','FitPosterior',true,...

 'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software uses 10-
fold cross validation.

Predict the out-of-fold class posterior probabilities. Specify to use 10 random initial
values for the Kullback-Leibler algorithm.

[label,~,~,Posterior] = kfoldPredict(CVMdl,'NumKLInitializations',10);

The software assigns an observation to the class that yields the smallest average binary
loss. Since all binary learners are computing posterior probabilities, the binary loss
function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10);

CVMdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),...

 'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans =

 setosa

 versicolor

 virginica

ans =

 TrueLabel PredLabel Posterior

 __________ __________ ______________________________________

 versicolor versicolor 0.0086394 0.98243 0.0089291

 versicolor virginica 2.2197e-14 0.12447 0.87553

 setosa setosa 0.999 0.00022837 0.00076884

 versicolor versicolor 2.2194e-14 0.98916 0.010839

 virginica virginica 0.012318 0.012925 0.97476

 virginica virginica 0.0015571 0.0015638 0.99688

 virginica virginica 0.0042895 0.0043556 0.99135

 kfoldPredict

22-2405

 setosa setosa 0.999 0.00028329 0.00071382

 virginica virginica 0.0094719 0.0098229 0.98071

 setosa setosa 0.999 0.00013562 0.00086192

The columns of Posterior correspond to the class order of Mdl.ClassNames.

Estimate Cross-Validation Posterior Probabilities Using Parallel Computing

Train an error-correcting output codes, multiclass model and estimate posterior
probabilities using parallel computing.

Load the arrhythmia data set.

load arrhythmia

Y = categorical(Y);

tabulate(Y)

n = numel(Y);

K = numel(unique(Y));

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

Several classes are not represented in the data, and many of the other classes have low
relative frequencies.

Specify an ensemble learning template that uses the GentleBoost method, and 50 weak,
classification tree learners.

t = templateEnsemble('GentleBoost',50,'Tree');

t is a template object. Most of the options are empty ([]). The software uses default
values for all empty options during training.

22 Functions — Alphabetical List

22-2406

Since there are many classes, specify a sparse random coding design.

rng(1); % For reproducibility

Coding = designecoc(K,'sparserandom');

Train an ECOC model using parallel computing, and specify to cross validate and fit
posterior probabilities (returned by kfoldPredict).

pool = parpool; % Invokes workers

options = statset('UseParallel',1);

CVMdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...

 'FitPosterior',1,'CrossVal','on');

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. By default, the software
implements 10-fold cross validation. You can alter the number of folds using the
'KFold' name-value pair argument.

The pool invokes four workers. The number of workers might vary among systems. Also,
there is a good chance that one or more folds do not contain observations from all classes
since some classes have low relative frequency.

Estimate posterior probabilities, and display the posterior probability of being classified
as not having arrhythmia (class 1) given the data for a random set of out-of-fold
observations.

[~,~,~,posterior] = kfoldPredict(CVMdl,'Options',options);

idx = randsample(n,10);

table(idx,Y(idx),posterior(idx,1),...

 'VariableNames',{'OOFSampleIndex','TrueLabel','PosteriorNoArrhythmia'})

ans =

 OOFSampleIndex TrueLabel PosteriorNoArrhythmia

 ______________ _________ ____________________

 171 1 0.33654

 221 1 0.85135

 72 16 0.9174

 3 10 0.025649

 202 1 0.8438

 243 1 0.94338

 18 1 0.81789

 kfoldPredict

22-2407

 49 6 0.090153

 234 1 0.61626

 315 1 0.97187

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Algorithms

The software can estimate class posterior probabilities using quadratic programming
or by minimizing the Kullback-Leibler divergence. For the following descriptions of the
posterior estimation algorithms, let:

• mkj be the element (k,j) of the coding design matrix M.
• I be the indicator function.
• p̂k be the class posterior probability estimate for class k of an observation, k = 1,...,K.

• rj be the positive-class posterior probability for binary learner j. That is, rj is the
probability that binary learner j classifies an observation into the positive class, given
the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class
posterior probabilities. The Kullback-Leibler divergence between the expected and
observed positive-class posterior probabilities is

D(, �) log
�

log
�

,r r w
r

r
r

r
r r

j

j

L

j
j

j
j

j

j

= + -()
-

-

È

Î
Í
Í

˘

˚
˙
˙=

Â
1

1
1

1

where w wj i
S j

=
*

Â is the weight for binary learner j with Sj the set of observation

indices that binary learner j is trained on and w
i

* is the weight of observation i. The
software minimizes the divergence iteratively. The first step is to choose initial values
ˆ ; ,...,()p k Kk

0 1= for the class posterior probabilities.

22 Functions — Alphabetical List

22-2408

• If you do not specify NumKLIterations, then the software uses both sets of
deterministic initial values described next, and uses the one that minimizes Δ.

•
ˆ / ; ,..., .()p K k Kk

0 1 1= =

•
ˆ ; ,...,()p k Kk

0 1= is the solution of the system

M p r01
0ˆ ,()

=

where M01 is M with all mkj = -1 replaced with 0, and r is a vector of positive-class
posterior probabilities returned by the L binary learners [2]. The software uses
lsqnonneg to solve the system.

• If you specify 'NumKLIterations',c, where c is a natural number, then the
software does the following to choose ˆ ; ,...,()p k Kk

0 1= , and uses the one that
minimizes Δ.

• The software chooses both sets of deterministic initial values as described
previously.

• The software randomly generates c vectors of length K using rand, and then
normalizes each vector to sum to 1.

At iteration t, the software:

1 Computes

ˆ

ˆ ()

ˆ ()

.
()

()

()

r

p I m

p I m m

j
t

k
t

k

K

kj

k
t

k

K

kj kj

=

= +

= + » = -

=

=

Â

Â

1

1

1

1 1

2 Estimates the next class posterior probability using

 kfoldPredict

22-2409

ˆ ˆ() ()p p

w r I I

w

m r m

k
t

k
t

j

j

L

j kj j kj

j
j

+ =

=

=

() + -() ()È
Î

˘
˚= + = -Â

1 1

1

1 11

LL

j
t

kj j
t

kjr I r Im mÂ = + = -() + -() ()È
ÎÍ

˘
˚̇

ˆ ˆ

.

() ()
1 11

3 Normalizes ˆ ,...,;()p k Kk
t+

=
1 1 so that they sum to 1.

4 Checks for convergence.

For more details, see [5] and [7].

Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization
Toolbox license. To estimate posterior probabilities for an observation using this method,
the software:

1 Estimates the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.

2 Using the relationship between rj and p̂k
 [6], minimizes

j

L

j k

k

K

kj j k

k

K

kjr p I m r p I m

= = =
Â Â Â-

È

Î
Í
Í

˘

˚
˙
˙

= -() + -() = +()
1 1 1

2

1 1 1ˆ ˆ

with respect to p̂k
 and the restrictions

0 1

1

£ £

=Â

ˆ

ˆ .

p

p

k

k
k

The software performs minimization using quadprog.

22 Functions — Alphabetical List

22-2410

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Dietterich, T., and G. Bakiri. “Solving Multiclass Learning Problems Via Error-
Correcting Output Codes.” Journal of Artificial Intelligence Research. Vol. 2,
1995, pp. 263–286.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[4] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[5] Hastie, T., and R. Tibshirani. “Classification by Pairwise Coupling.” Annals of
Statistics. Vol. 26, Issue 2, 1998, pp. 451–471.

[6] Wu, T. F., C. J. Lin, and R. Weng. “Probability Estimates for Multi-Class
Classification by Pairwise Coupling.” Journal of Machine Learning Research. Vol.
5, 2004, pp. 975–1005.

[7] Zadrozny, B. “Reducing Multiclass to Binary by Coupling Probability Estimates.”
NIPS 2001: Proceedings of Advances in Neural Information Processing Systems
14, 2001, pp. 1041–1048.

See Also
ClassificationECOC | ClassificationPartitionedModel | edge | fitcecoc |
predict | quadprog | statset

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

 kfoldPredict

22-2411

kfoldPredict
Class: ClassificationPartitionedModel

Predict response for observations not used for training

Syntax

label = kfoldPredict(obj)

[label,score] = kfoldPredict(obj)

[label,score,cost] = kfoldPredict(obj)

Description

label = kfoldPredict(obj) returns class labels predicted by obj, a cross-validated
classification. For every fold, kfoldPredict predicts class labels for in-fold observations
using a model trained on out-of-fold observations.

[label,score] = kfoldPredict(obj) returns the predicted classification scores for
in-fold observations using a model trained on out-of-fold observations.

[label,score,cost] = kfoldPredict(obj) returns misclassification costs.

Input Arguments

obj

Object of class ClassificationPartitionedModel or
ClassificationPartitionedEnsemble.

Output Arguments

label

Vector of class labels of the same type as the response data used in training obj. Each
entry of label corresponds to a predicted class label for the corresponding row of X.

22 Functions — Alphabetical List

22-2412

score

Numeric matrix of size N-by-K, where N is the number of observations (rows) in obj.X,
and K is the number of classes (in obj.ClassNames). score(i,j) represents the
confidence that row i of obj.X is of class j. For details, see “Definitions” on page
22-2412.

cost

Numeric matrix of misclassification costs of size N-by-K. cost(i,j) is the average
misclassification cost of predicting that row i of obj.X is of class j.

Definitions

Cost (discriminant analysis)

The average misclassification cost is the mean misclassification cost for predictions
made by the cross-validated classifiers trained on out-of-fold observations. The matrix of
expected costs per observation is defined in “Cost” on page 15-8.

Score

For discriminant analysis, the score of a classification is the posterior probability of the
classification. For the definition of posterior probability in discriminant analysis, see
“Posterior Probability” on page 15-7.

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

 kfoldPredict

22-2413

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

Prune the tree:

22 Functions — Alphabetical List

22-2414

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

 kfoldPredict

22-2415

[score X(1:10,:)]

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Examples

Estimate Cross-Validation Predictions from an Ensemble

Find the cross-validation predictions for a model based on Fisher's iris data.

Load Fisher's iris data set.

load fisheriris

Train an ensemble of classification trees.

rng(1); % For reproducibility

Mdl = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

Cross valdate the trained ensemble using 10-fold cross validation.

CVMdl = crossval(Mdl);

Estimate cross-validation predicted labels and scores.

22 Functions — Alphabetical List

22-2416

[elabel escore] = kfoldPredict(CVMdl);

Display the maximum and minimum scores of each class.

max(escore)

min(escore)

ans =

 9.3862 8.9871 10.1866

ans =

 0.0017 3.8359 0.8981

See Also
ClassificationPartitionedModel | kfoldEdge | kfoldMargin | kfoldLoss |
kfoldfun | crossval

 kfoldPredict

22-2417

kfoldPredict
Class: RegressionPartitionedModel

Predict response for observations not used for training.

Syntax

yfit = kfoldPredict(obj)

Description

yfit = kfoldPredict(obj) returns the predicted values for the responses of the
training data based on obj, an object trained on out-of-fold observations.

Input Arguments

obj

Object of class RegressionPartitionedModel. Create obj with fitrtree or
fitensemble along with one of the cross-validation options: 'crossval', 'kfold',
'holdout', 'leaveout', or 'cvpartition'. Alternatively, create obj from a
regression tree or regression ensemble with crossval.

Output Arguments

yfit

A vector of predicted values for the response data based on a model trained on out-of-fold
observations.

Examples

Construct a partitioned regression model, and examine the cross-validation loss. The
cross-validation loss is the mean squared error between yfit and the true response data:

22 Functions — Alphabetical List

22-2418

load carsmall

XX = [Cylinders Displacement Horsepower Weight];

YY = MPG;

tree = fitrtree(XX,YY);

cvmodel = crossval(tree);

L = kfoldLoss(cvmodel)

L =

 26.5271

yfit = kfoldPredict(cvmodel);

mean((yfit - tree.Y).^2)

ans =

 26.5271

See Also
kfoldLoss | fitrtree

 kmeans

22-2419

kmeans

k-means clustering

Syntax

idx = kmeans(X,k)

idx = kmeans(X,k,Name,Value)

[idx,C] = kmeans(___)

[idx,C,sumd] = kmeans(___)

[idx,C,sumd,D] = kmeans(___)

Description

idx = kmeans(X,k) performs k-means clustering to partition the observations of the n-
by-p data matrix X into k clusters, and returns an n-by-1 vector (idx) containing cluster
indices of each observation. Rows of X correspond to points and columns correspond to
variables.

By default, kmeans uses the squared Euclidean distance measure and the k-means++
algorithm for cluster center initialization.

idx = kmeans(X,k,Name,Value) returns the cluster indices with additional options
specified by one or more Name,Value pair arguments.

For example, specify the cosine distance, the number of times to repeat the clustering
using new initial values, or to use parallel computing.

[idx,C] = kmeans(___) returns the k cluster centroid locations in the k-by-p matrix
C.

[idx,C,sumd] = kmeans(___) returns the within-cluster sums of point-to-centroid
distances in the k-by-1 vector sumd.

[idx,C,sumd,D] = kmeans(___) returns distances from each point to every centroid
in the n-by-k matrix D.

22 Functions — Alphabetical List

22-2420

Examples

Train a k-Means Clustering Algorithm

Cluster data using k-means clustering, then plot the cluster regions.

Load Fisher's iris data set. Use the petal lengths and widths as predictors.

load fisheriris

X = meas(:,3:4);

figure;

plot(X(:,1),X(:,2),'k*','MarkerSize',5);

title 'Fisher''s Iris Data';

xlabel 'Petal Lengths (cm)';

ylabel 'Petal Widths (cm)';

 kmeans

22-2421

The larger cluster seems to be split into a lower variance region and a higher variance
region. This might indicate that the larger cluster is two, overlapping clusters.

Cluster the data. Specify k = 3 clusters.

rng(1); % For reproducibility

[idx,C] = kmeans(X,3);

kmeans uses the k-means++ algorithm for centroid initialization and squared Euclidean
distance by default. It is good practice to search for lower, local minima by setting the
'Replicates' name-value pair argument.

idx is a vector of predicted cluster indices corrresponding to the observations in X. C is a
3-by-2 matrix containing the final centroid locations.

22 Functions — Alphabetical List

22-2422

Use kmeans to compute the distance from each centroid to points on a grid. To do this,
pass the centroids (C) and points on a grid to kmeans, and implement one iteration of the
algorithm.

x1 = min(X(:,1)):0.01:max(X(:,1));

x2 = min(X(:,2)):0.01:max(X(:,2));

[x1G,x2G] = meshgrid(x1,x2);

XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot

idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C);...

 % Assigns each node in the grid to the closest centroid

Warning: Failed to converge in 1 iterations.

kmeans displays a warning stating that the algorithm did not converge, which you
should expect since the software only implemented one iteration.

Plot the cluster regions.

figure;

gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...

 [0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'..');

hold on;

plot(X(:,1),X(:,2),'k*','MarkerSize',5);

title 'Fisher''s Iris Data';

xlabel 'Petal Lengths (cm)';

ylabel 'Petal Widths (cm)';

legend('Region 1','Region 2','Region 3','Data','Location','Best');

hold off;

 kmeans

22-2423

Partition Data into Two Clusters

Randomly generate the sample data.

rng default; % For reproducibility

X = [randn(100,2)*0.75+ones(100,2);

 randn(100,2)*0.5-ones(100,2)];

figure;

plot(X(:,1),X(:,2),'.');

title 'Randomly Generated Data';

22 Functions — Alphabetical List

22-2424

There appears to be two clusters in the data.

Partition the data into two clusters, and choose the best arrangement out of five
intializations. Display the final output.

opts = statset('Display','final');

[idx,C] = kmeans(X,2,'Distance','cityblock',...

 'Replicates',5,'Options',opts);

Replicate 1, 4 iterations, total sum of distances = 201.533.

Replicate 2, 6 iterations, total sum of distances = 201.533.

Replicate 3, 4 iterations, total sum of distances = 201.533.

Replicate 4, 4 iterations, total sum of distances = 201.533.

Replicate 5, 3 iterations, total sum of distances = 201.533.

 kmeans

22-2425

Best total sum of distances = 201.533

By default, the software initializes the replicates separatly using k-means++.

Plot the clusters and the cluster centroids.

figure;

plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)

hold on

plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)

plot(C(:,1),C(:,2),'kx',...

 'MarkerSize',15,'LineWidth',3)

legend('Cluster 1','Cluster 2','Centroids',...

 'Location','NW')

title 'Cluster Assignments and Centroids'

hold off

22 Functions — Alphabetical List

22-2426

You can determine how well separated the clusters are by passing idx to silhouette.

Cluster Data Using Parallel Computing

Clustering large data sets might take time, particularly if you use online updates (set
by default). If you have a Parallel Computing Toolbox license and you invoke a pool of
workers, then kmeans runs each clustering task (or replicate) in parallel. Therefore, if
Replicates > 1, then the parallel computing decreases time to convergence.

Randomly generate a large data set from a Gaussian mixture model.

Mu = bsxfun(@times,ones(20,30),(1:20)'); % Gaussian mixture mean

rn30 = randn(30,30);

Sigma = rn30'*rn30; % Symmetric and positive-definite covariance

 kmeans

22-2427

Mdl = gmdistribution(Mu,Sigma);

rng(1); % For reproducibility

X = random(Mdl,10000);

Mdl is a 30-dimensional gmdistribution model with 20 components. X is a 10000-
by-30 matrix of data generated from Mdl.

Invoke a parallel pool of workers. Specify options for parallel computing.

pool = parpool; % Invokes workers

stream = RandStream('mlfg6331_64'); % Random number stream

options = statset('UseParallel',1,'UseSubstreams',1,...

 'Streams',stream);

Starting parallel pool (parpool) using the 'local' profile ... connected to 2 workers.

The input argument 'mlfg6331_64' of RandStream specifies to use the multiplicative
lagged Fibonacci generator algorithm. options is a structure array containing fields
that specify options for controlling estimation.

The Command Window indicates that two workers are available. The number of workers
might vary on your system.

Cluster the data using k-means clustering. Specify that there are k = 20 clusters in the
data and increase the number of iterations. Typically, the objective function contains
local minima. Specify 10 replicates to help find a lower, local minimum.

tic; % Start stopwatch timer

[idx,C,sumd,D] = kmeans(X,20,'Options',options,'MaxIter',10000,...

 'Display','final','Replicates',10);

toc % Terminate stopwatch timer

Replicate 4, 121 iterations, total sum of distances = 7.58059e+06.

Replicate 7, 234 iterations, total sum of distances = 7.5904e+06.

Replicate 3, 146 iterations, total sum of distances = 7.59086e+06.

Replicate 2, 179 iterations, total sum of distances = 7.57758e+06.

Replicate 6, 118 iterations, total sum of distances = 7.58614e+06.

Replicate 5, 88 iterations, total sum of distances = 7.59462e+06.

Replicate 1, 99 iterations, total sum of distances = 7.57765e+06.

Replicate 9, 147 iterations, total sum of distances = 7.57639e+06.

Replicate 10, 107 iterations, total sum of distances = 7.60079e+06.

Replicate 8, 144 iterations, total sum of distances = 7.58117e+06.

Best total sum of distances = 7.57639e+06

Elapsed time is 123.857736 seconds.

22 Functions — Alphabetical List

22-2428

The Command Window displays the number of iterations and the terminal objective
function value for each replicate. The output arguments contain the results of replicate 9
because it has the lowest total sum of distances.

• “Create Clusters and Determine Separation” on page 14-22
• “Determine the Correct Number of Clusters” on page 14-24
• “Avoid Local Minima” on page 14-27

Input Arguments
X — Data
numeric matrix

Data, specified as a numeric matrix. The rows of X correspond to observations, and the
columns correspond to variables.

If X is a numeric vector, then kmeans treats it as an n-by-1 data matrix, regardless of its
orientation.
Data Types: single | double

k — Number of clusters
positive integer

Number of clusters in the data, specified as a positive integer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Distance','cosine','Replicates',10,'Options',statset('UseParallel',1)

specifies the cosine distance, 10 replicate clusters at different starting values, and to use
parallel computing.

'Display' — Level of output to display
'off' (default) | 'final' | 'iter'

 kmeans

22-2429

Level of output to display in the Command Window, specified as the comma-separated
pair consisting of 'Display' and a string. Available options are:

• 'final' — Displays results of the final iteration
• 'iter' — Displays results of each iteration
• 'off' — Displays nothing

Example: 'Display','final'

Data Types: char

'Distance' — Distance measure
'sqeuclidean' (default) | 'cityblock' | 'cosine' | 'correlation' | 'hamming'

Distance measure, in p-dimensional space, used for minimization, specified as the
comma-separated pair consisting of 'Distance' and a string.

kmeans computes centroid clusters differently for the different, supported distance
measures. This table summarizes the available distance measures. In the formulae, x is
an observation (that is, a row of X) and c is a centroid (a row vector).

Distance Measure Description Formula

'sqeuclidean' Squared Euclidean distance
(default). Each centroid is
the mean of the points in
that cluster.

d x c x c x c(,) ()()= - - ¢

'cityblock' Sum of absolute differences,
i.e., the L1 distance. Each
centroid is the component-
wise median of the points in
that cluster.

d x c x cj j

j

p

(,) = -

=

Â
1

'cosine' One minus the cosine of
the included angle between
points (treated as vectors).
Each centroid is the mean
of the points in that cluster,
after normalizing those
points to unit Euclidean
length.

d x c
xc

xx cc

(,) = -
¢()()

¢

¢
1

22 Functions — Alphabetical List

22-2430

Distance Measure Description Formula

'correlation' One minus the sample
correlation between points
(treated as sequences of
values). Each centroid
is the component-wise
mean of the points in that
cluster, after centering and
normalizing those points
to zero mean and unit
standard deviation.

d x c
x c

x x c c

x c

x x c c

(,) ,= -
-() -()¢

-() -()¢ -() -()¢
1

r r

r r r r

where

•
r r

x
p

x j

j

p

p

=
Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Â1

1

1

•
r r

c
p

c j

j

p

p

=
Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Â1

1

1

• r

1p is a row vector of p
ones.

'hamming' This measure is only
suitable for binary data.

It is the proportion of bits
that differ. Each centroid is
the component-wise median
of points in that cluster.

d x y x y
p

I

j

p

j j(,) ,= π{ }
=

Â
1

1

where I is the indicator
function.

Example: 'Distance','cityblock'

Data Types: char

'EmptyAction' — Action to take if cluster loses all member observations
'singleton' (default) | 'error' | 'drop'

Action to take if a cluster loses all its member observations, specified as the comma-
separated pair consisting of 'EmptyAction' and a string. This table summarizes the
available options.

Value Description

'error' Treat an empty cluster as an error.

 kmeans

22-2431

Value Description

'drop' Remove any clusters that become empty.
kmeans sets the corresponding return
values in C and D to NaN.

'singleton' Create a new cluster consisting of the one
point furthest from its centroid (default).

Example: 'EmptyAction','error'

Data Types: char

'MaxIter' — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIter' and a positive integer.

Example: 'MaxIter',1000

Data Types: double | single

'OnlinePhase' — Online update flag
'on' (default) | 'off'

Online update flag, specified as the comma-separated pair consisting of 'OnlinePhase'
and 'on' or 'off'.

If OnlinePhase is on (the default), then kmeans performs an online update phase in
addition to a batch update phase. The online phase can be time consuming for large data
sets, but guarantees a solution that is a local minimum of the distance criterion. In other
words, the software finds a partition of the data in which moving any single point to a
different cluster increases the total sum of distances.
Example: 'OnlinePhase','off'

Data Types: char

'Options' — Options for controlling iterative algorithm for minimizing fitting criteria
[] (default) | structure array returned by statset

Options for controlling the iterative algorithm for minimizing the fitting criteria,
specified as the comma-separated pair consisting of 'Options' and a structure array
returned by statset. These options require Parallel Computing Toolbox.

22 Functions — Alphabetical List

22-2432

This table summarizes the available options.

Option Description

'Streams' A RandStream object or cell array of such
objects. If you do not specify Streams,
kmeans uses the default stream or streams.
If you specify Streams, use a single object
except when:

• You have an open parallel pool
• UseParallel is true.
• UseSubstreams is false.

In that case, use a cell array the same size
as the parallel pool. If a parallel pool is not
open, then Streams must supply a single
random number stream.

'UseParallel' • If true, Replicates > 1, and if a parallel
pool of workers from the Parallel
Computing Toolbox is open, then the
software implements k-means on each
replicate in parallel.

• If the Parallel Computing Toolbox is not
installed, or a parallel pool of workers is
not open, computation occurs in serial
mode. Default is default, meaning
serial computation.

'UseSubstreams' Set to true to compute in parallel in a
reproducible fashion. Default is false. To
compute reproducibly, set Streams to a
type allowing substreams: 'mlfg6331_64'
or 'mrg32k3a'.

To ensure more predictable results, use parpool and explicitly create a parallel pool
before invoking kmeans and setting 'Options',statset('UseParallel',1).

Example: 'Options',statset('UseParallel',1)

Data Types: struct

 kmeans

22-2433

'Replicates' — Number of times to repeat clustering using new initial cluster centroid
positions
1 (default) | positive integer

Number of times to repeat clustering using new initial cluster centroid positions,
specified as the comma-separated pair consisting of 'Replicates' and an integer.
kmeans returns the solution with the lowest sumd.

You can set 'Replicates' implicitly by supplying a 3-D array as the value for the
'Start' name-value pair argument.

Example: 'Replicates',5

Data Types: double | single

'Start' — Method for choosing initial cluster centroid positions
'plus' (default) | 'cluster' | 'sample' | 'uniform' | numeric matrix | numeric
array

Method for choosing initial cluster centroid positions (or seeds), specified as the comma-
separated pair consisting of 'Start' and a string, a numeric matrix, or a numeric array.
This table summarizes the available options for choosing seeds.

Value Description

'cluster' Perform a preliminary clustering phase
on a random 10% subsample of X. This
preliminary phase is itself initialized using
'sample'.

'plus' (default) Select k seeds by implementing the k-
means++ algorithm for cluster center
initialization.

'sample' Select k observations from X at random.
'uniform' Select k points uniformly at random

from the range of X. Not valid with the
Hamming distance.

numeric matrix k-by-p matrix of centroid starting locations.
The rows of Start correspond to seeds. The
software infers k from the first dimension
of Start, so you can pass in [] for k.

22 Functions — Alphabetical List

22-2434

Value Description

numeric array k-by-p-r array of centroid starting
locations. The rows of each page correspond
to seeds. The third dimension invokes
replication of the clustering routine. Page j
contains the set of seeds for replicate j. The
software infers the number of replicates
(specified by the 'Replicates' name-
value pair argument) from the size of the
third dimension.

Example: 'Start','sample'

Data Types: char | double | single

Note: The software treats NaNs as missing data, and removes any row of X containing at
least one NaN. Removing rows of X reduces the sample size.

Output Arguments

idx — Cluster indices
numeric column vector

Cluster indices, returned as a numeric column vector. idx has as many rows as X, and
each row indicates the cluster assignment of the corresponding observation.

C — Cluster centroid locations
numeric matrix

Cluster centroid locations, returned as a numeric matrix. C is a k-by-p matrix, where row
j is the centroid of cluster j.

sumd — Within-cluster sums of point-to-centroid distances
numeric column vector

Within-cluster sums of point-to-centroid distances, returned as a numeric column vector.
sumd is a k-by-1 vector, where element j is the sum of point-to-centroid distances within
cluster j.

 kmeans

22-2435

D — Distances from each point to every centroid
numeric matrix

Distances from each point to every centroid, returned as a numeric matrix. D is an n-by-k
matrix, where element (j,m) is the distance from observation j to centroid m.

More About

k-Means Clustering

k-means clustering, or Lloyd’s algorithm [2], is an iterative, data-partitioning algorithm
that assigns n observations to exactly one of k clusters defined by centroids, where k is
chosen before the algorithm starts.

The algorithm proceeds as follows:

1 Choose k initial cluster centers (centroid). For example, choose k observations at
random (by using 'Start','sample') or use the k-means ++ algorithm for cluster
center initialization (the default).

2 Compute point-to-cluster-centroid distances of all observations to each centroid.
3 There are two ways to proceed (specified by OnlinePhase):

• Batch update — Assign each observation to the cluster with the closest centroid.
• Online update — Individually assign observations to a different centroid if the

reassignment decreases the sum of the within-cluster, sum-of-squares point-to-
cluster-centroid distances.

For more details, see “Algorithms” on page 22-2436.
4 Compute the average of the observations in each cluster to obtain k new centroid

locations.
5 Repeat steps 2 through 4 until cluster assignments do not change, or the maximum

number of iterations is reached.

k-means++ Algorithm

The k-means++ algorithm uses an heuristic to find centroid seeds for k-means clustering.
According to Arthur and Vassilvitskii [1], k-means++ improves the running time of
Lloyd’s algorithm, and the quality of the final solution.

The k-means++ algorithm chooses seeds as follows, assuming the number of clusters is k.

22 Functions — Alphabetical List

22-2436

1 Select an observation uniformly at random from the data set, X. The chosen
observation is the first centroid, and is denoted c1.

2 Compute distances from each observation to c1. Denote the distance observation m is

from cj d x cm j,() .

3 Select the next centroid, c2 at random from X with probability

d x c

d x c

m

j

n

j

2
1

1

2
1

,

,

.
()

()
=

Â

4 To choose center j:

a Compute the distances from each observation to each centroid, and assign each
observation to its closest centroid.

b For m = 1,...,n and p = 1,...,j – 1, select centroid j at random from X with
probability

d x c

d x c

m p

h p

h x Ch p

2

2

,

,

,

{ ; }

()

()
Œ

Â

where Cp is the set of all observations closest to centroid cp and xm belongs to Cp.

That is, select each subsequent center with a probability proportional to the
distance from itself to the closest center that you already chose.

5 Repeat step 4 until k centroids are chosen.

Arthur and Vassilvitskii [1] demonstrate, using a simulation study for several cluster
orientations, that k-means++ achieves faster convergence to a lower sum of within-
cluster, sum-of-squares point-to-cluster-centroid distances than Lloyd’s algorithm.

Algorithms

• kmeans uses a two-phase iterative algorithm to minimize the sum of point-to-centroid
distances, summed over all k clusters.

 kmeans

22-2437

1 This first phase uses batch updates, where each iteration consists of reassigning
points to their nearest cluster centroid, all at once, followed by recalculation of
cluster centroids. This phase occasionally does not converge to solution that is a
local minimum. That is, a partition of the data where moving any single point to a
different cluster increases the total sum of distances. This is more likely for small
data sets. The batch phase is fast, but potentially only approximates a solution as
a starting point for the second phase.

2 This second phase uses online updates, where points are individually reassigned
if doing so reduces the sum of distances, and cluster centroids are recomputed
after each reassignment. Each iteration during this phase consists of one pass
though all the points. This phase converges to a local minimum, although there
might be other local minima with lower total sum of distances. In general, finding
the global minimum is solved by an exhaustive choice of starting points, but using
several replicates with random starting points typically results in a solution that
is a global minimum.

• If Replicates = r > 1 and Start is plus (the default), then the software selects r
possibly different sets of seeds according to the k-means++ algorithm.

• If you enable the UseParallel option in Options and Replicates > 1, then each
worker selects seeds and clusters in parallel.

• “Introduction to k-Means Clustering” on page 14-21

References

[1] Arthur, David, and Sergi Vassilvitskii. “K-means++: The Advantages of Careful
Seeding.” SODA ‘07: Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. 2007, pp. 1027–1035.

[2] Lloyd, Stuart P. “Least Squares Quantization in PCM.” IEEE Transactions on
Information Theory. Vol. 28, 1982, pp. 129–137.

[3] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc.,
1984.

[4] Spath, H. Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples.
Translated by J. Goldschmidt. New York: Halsted Press, 1985.

See Also
clusterdata | gmdistribution | linkage | parpool | silhouette | statset

22 Functions — Alphabetical List

22-2438

kmedoids
k-medoids clustering

Syntax

[idx,C] = kmedoids(___)

[idx,C,sumd] = kmedoids(___)

[idx,C,sumd,D] = kmedoids(___)

[idx,C,sumd,D,midx] = kmedoids(___)

[idx,C,sumd,D,midx,info] = kmedoids(___)

Description

idx = kmedoids(X,k) performs “k-medoids Clustering” on page 22-2453 to partition
the observations of the n-by-p matrix X into k clusters, and returns an n-by-1 vector
idx containing cluster indices of each observation. Rows of X correspond to points and
columns correspond to variables. By default, kmedoids uses squared Euclidean distance
measure and the k-means++ algorithm for choosing initial cluster medoid positions.

idx = kmedoids(X,k,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

[idx,C] = kmedoids(___) returns the k cluster medoid locations in the k-by-p
matrix C.

[idx,C,sumd] = kmedoids(___) returns the within-cluster sums of point-to-medoid
distances in the k-by-1 vector sumd.

[idx,C,sumd,D] = kmedoids(___) returns distances from each point to every
medoid in the n-by-k matrix D.

[idx,C,sumd,D,midx] = kmedoids(___) returns the indices midx such that C =
X(midx,:). midx is a k-by-1 vector.

[idx,C,sumd,D,midx,info] = kmedoids(___) returns a structure info with
information about the options used by the algorithm when executed.

 kmedoids

22-2439

Examples

Group Data into Two Clusters

Randomly generate data.

rng('default'); % For reproducibility

X = [randn(100,2)*0.75+ones(100,2);

 randn(100,2)*0.55-ones(100,2)];

figure;

plot(X(:,1),X(:,2),'.');

title('Randomly Generated Data');

Group data into two clusters using kmedoids. Use the cityblock distance measure.

22 Functions — Alphabetical List

22-2440

opts = statset('Display','iter');

[idx,C,sumd,d,midx,info] = kmedoids(X,2,'Distance','cityblock','Options',opts);

 rep iter sum

 1 1 209.856

 1 2 209.856

Best total sum of distances = 209.856

info is a struct that contains information about how the algorithm was executed. For
example, bestReplicate field indicates the replicate that was used to produce the final
solution. In this example, the replicate number 1 was used since the default number of
replicates is 1 for the default algorithm, which is pam in this case.

info

info =

 algorithm: 'pam'

 start: 'plus'

 distance: 'cityblock'

 iterations: 2

 bestReplicate: 1

Plot the clusters and the cluster medoids.

figure;

plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',7)

hold on

plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',7)

plot(C(:,1),C(:,2),'co',...

 'MarkerSize',7,'LineWidth',1.5)

legend('Cluster 1','Cluster 2','Medoids',...

 'Location','NW');

title('Cluster Assignments and Medoids');

hold off

 kmedoids

22-2441

Cluster Categorical Data Using k-Medoids

This example uses "Mushroom" data set [3][4][5] [6][7] from the UCI machine learning
archive [7], described in http://archive.ics.uci.edu/ml/datasets/Mushroom. The data set
includes 22 predictors for 8,124 observations of various mushrooms. The predictors are
categorical data types. For example, cap shape is categorized with features of 'b' for
bell-shaped cap and 'c' for conical. Mushroom color is also categorized with features
of 'n' for brown, and 'p' for pink. The data set also includes a classification for each
mushroom of either edible or poisonous.

Since the features of the mushroom data set are categorical, it is not possible to define
the mean of several data points, and therefore the widely-used k-means clustering
algorithm cannot be meaningfully applied to this data set. k-medoids is a related

22 Functions — Alphabetical List

22-2442

algorithm that partitions data into k distinct clusters, by finding medoids that minimize
the sum of dissimilarities between points in the data and their nearest medoid.

The medoid of a set is a member of that set whose average dissimilarity with the other
members of the set is the smallest. Similarity can be defined for many types of data that
do not allow a mean to be calculated, allowing k-medoids to be used for a broader range of
problems than k-means.

Using k-medoids, this example clusters the mushrooms into two groups, based on the
predictors provided. It then explores the relationship between those clusters and the
classifications of the mushrooms as either edible or poisonous.

This example assumes that you have downloaded the "Mushroom" data set [3][4][5]
[6][7] from the UCI database (http://archive.ics.uci.edu/ml/machine-learning-databases/
mushroom/) and saved it in your current directory as a text file named agaricus-
lepiota.txt. There is no column headers in the data, so readtable uses the default
variable names.

clear all

data = readtable('agaricus-lepiota.txt','ReadVariableNames',false);

Display the first 5 mushrooms with their first few features.

data(1:5,1:10)

ans =

 Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

 ____ ____ ____ ____ ____ ____ ____ ____ ____ _____

 'p' 'x' 's' 'n' 't' 'p' 'f' 'c' 'n' 'k'

 'e' 'x' 's' 'y' 't' 'a' 'f' 'c' 'b' 'k'

 'e' 'b' 's' 'w' 't' 'l' 'f' 'c' 'b' 'n'

 'p' 'x' 'y' 'w' 't' 'p' 'f' 'c' 'n' 'n'

 'e' 'x' 's' 'g' 'f' 'n' 'f' 'w' 'b' 'k'

Extract the first column, labeled data for edible and poisonous groups. Then delete the
column.

labels = data(:,1);

labels = categorical(labels{:,:});

data(:,1) = [];

Store the names of predictors (features), which are described in http://archive.ics.uci.edu/
ml/machine-learning-databases/mushroom/agaricus-lepiota.names.

 kmedoids

22-2443

VarNames = {'cap_shape' 'cap_surface' 'cap_color' 'bruises' 'odor' ...

 'gill_attachment' 'gill_spacing' 'gill_size' 'gill_color' ...

 'stalk_shape' 'stalk_root' 'stalk_surface_above_ring' ...

 'stalk_surface_below_ring' 'stalk_color_above_ring' ...

 'stalk_color_below_ring' 'veil_type' 'veil_color' 'ring_number'

 'ring_type' 'spore_print_color' 'population' 'habitat'};

Set the variable names.

data.Properties.VariableNames = VarNames;

There are a total of 2480 missing values denoted as '?'.

sum(char(data{:,:}) == '?')

ans =

 2480

Based on the inspection of the data set and its description, the missing values belong
only to the 11th variable (stalk_root). Remove the column from the table.

data(:,11) = [];

kmedoids only accepts numeric data. You need to cast the categories you have into
numeric type. The distance function you will use to define the dissimilarity of the data
will be based on the double representation of the categorical data.

cats = categorical(data{:,:});

data = double(cats);

kmedoids can use any distance metric supported by pdist2 to cluster. For this example
you will cluster the data using the Hamming distance because this is an appropriate
distance metric for categorical data as illustrated below. The Hamming distance between
two vectors is the percentage of the vector components that differ. For instance, consider
these two vectors.

v1 = [1 0 2 1];

v2 = [1 1 2 1];

They are equal in the 1st, 3rd and 4th coordinate. Since 1 of the 4 coordinates differ, the
Hamming distance between these two vectors is .25.

22 Functions — Alphabetical List

22-2444

You can use the function pdist2 to measure the Hamming distance between the first
and second row of data, the numerical representation of the categorical mushroom data.
The value .2857 means that 6 of the 21 features of the mushroom differ.

pdist2(data(1,:),data(2,:),'hamming')

ans =

 0.2857

In this example, you’re clustering the mushroom data into two clusters based on features
to see if the clustering corresponds to edibility. The kmedoids function is guaranteed to
converge to a local minima of the clustering criterion; however, this may not be a global
minimum for the problem. It is a good idea to cluster the problem a few times using the
'replicates' parameter. When 'replicates' is set to a value, n, greater than 1, the
k-medoids algorithm is run n times, and the best result is returned.

To run kmedoids to cluster data into 2 clusters, based on the Hamming distance and to
return the best result of 3 replicates, you run the following.

rng('default'); %For reproducibility

[IDX, C, SUMD, D, MIDX, INFO] = kmedoids(data,2,'distance','hamming','replicates',3);

Let's assume that mushrooms in the predicted group 1 are poisonous and group 2 are
all edible. To determine the performance of clustering results, calculate how many
mushrooms in group 1 are indeed poisonous and group 2 are edible based on the known
labels. In other words, calculate the number of false positives, false negatives, as well as
true positives and true negatives.

Construct a confusion matrix (or matching matrix), where the diagonal elements
represent the number of true positives and true negatives, respectively. The off-diagonal
elements represent false negatives and false positives, respectively. For convenience, use
the confusionmat function, which calculates a confusion matrix given known labels
and predicted labels. Get the predicted label information from the IDX variable. IDX
contains values of 1 and 2 for each data point, representing poisonous and edible groups,
respectively.

predLabels = labels; %Initialize a vector for predicted labels.

predLabels(IDX==1) = categorical({'p'}); %Assign group 1 to be poisonous.

predLabels(IDX==2) = categorical({'e'}); %Assign group 2 to be edible.

confMatrix = confusionmat(labels,predLabels)

confMatrix =

 kmedoids

22-2445

 4176 32

 816 3100

Out of 4208 edible mushrooms, 4176 were correctly predicted to be in group 2 (edible
group), and 32 were incorrectly predicted to be in group 1 (poisonous group). Similarly,
out of 3916 poisonous mushrooms, 3100 were correctly predicted to be in group 1
(poisonous group), and 816 were incorrectly predicted to be in group 2 (edible group).

Given this confusion matrix, calculate the accuracy, which is the proportion of true
results (both true positives and true negatives) against the overall data, and precision,
which is the proportion of the true positives against all the positive results (true positives
and false positives).

accuracy = (confMatrix(1,1)+confMatrix(2,2))/(sum(sum(confMatrix)))

accuracy =

 0.8956

precision = confMatrix(1,1) / (confMatrix(1,1)+confMatrix(2,1))

precision =

 0.8365

The results indicated that applying the k-medoids algorithm to the categorical features of
mushrooms resulted in clusters that were associated with edibility.

Input Arguments

X — Data
numeric matrix

Data, specified as a numeric matrix. The rows of X correspond to observations, and the
columns correspond to variables.

k — Number of medoids
positive integer

Number of medoids in the data, specified as a positive integer.

22 Functions — Alphabetical List

22-2446

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Distance','euclidean','Replicates',3,'Options',statset('UseParallel',1)

specifies Euclidean distance, three replicate medoids at different starting values, and to
use parallel computing.

'Algorithm' — Algorithm to find medoids
'pam' | 'small' | 'clara' | 'large'

Algorithm to find medoids, specified as the comma-separated pair consisting of
'Algorithm' and a string. The default algorithm depends on the number of rows of X.

• If the number of rows of X is less than 3000, 'pam' is the default algorithm.
• If the number of rows is between 3000 and 10000, 'small' is the default algorithm.
• For all other cases, 'large' is the default algorithm.

You can override the default choice by explicitly stating the algorithm. This table
summarizes the available algorithms.

Algorithm Description

'pam' Partitioning Around Medoids (PAM) is the classical algorithm for
solving the k-medoids problem described in [1]. After applying
the initialization function to select initial medoid positions, the
program performs the swap-step of the PAM algorithm, that is,
it searches over all possible swaps between medoids and non-
medoids to see if the sum of medoid to cluster member distances
goes down. You can specify which initialization function to use via
the 'Start' name-value pair argument.

The algorithm proceeds as follows.

1 Build-step: Each of k clusters is associated with a potential
medoid. This assignment is performed using a technique
specified by the 'Start' name-value pair argument.

 kmedoids

22-2447

Algorithm Description

2 Swap-step: Within each cluster, each point is tested as a
potential medoid by checking if the sum of within-cluster
distances gets smaller using that point as the medoid. If so, the
point is defined as a new medoid. Every point is then assigned
to the cluster with the closest medoid.

The algorithm iterates the build- and swap-steps until the medoids
do not change, or other termination criteria are met.

The algorithm can produce better solutions than the other
algorithms in some situations, but it can be prohibitively long
running.

'small' Use an algorithm similar to the k-means algorithm to find k
medoids. This option employs a variant of the Lloyd’s iterations
based on [2].

The algorithm proceeds as follows.

1 For each point in each cluster, calculate the sum of distances
from the point to every other point in the cluster. Choose the
point that minimizes the sum as the new medoid.

2 Update the cluster membership for each data point to reflect
the new medoid.

The algorithm repeats these steps until no further updates occur or
other termination criteria are met. The algorithm has an optional
PAM-like online update phase (specified by the 'OnlinePhase'
name-value pair argument) that improves cluster quality. It
tends to return higher quality solutions than the clara or large
algorithms, but it may not be the best choice for very large data.

22 Functions — Alphabetical List

22-2448

Algorithm Description

'clara' Clustering LARge Applications (CLARA) [1] repeatedly performs
the PAM algorithm on random subsets of the data. It aims to
overcome scaling challenges posed by the PAM algorithm through
sampling.

The algorithm proceeds as follows.

1 Select a subset of the data and apply the PAM algorithm to the
subset.

2 Assign points of the full data set to clusters by picking the
closest medoid.

The algorithm repeats these steps until the medoids do not change,
or other termination criteria are met.

For the best performance, it is recommended that you perform
multiple replicates. By default, the program performs five
replicates. Each replicate samples s rows from X (specified by
'NumSamples' name-value pair argument) to perform clustering
on. By default, 40+2*k samples are selected.

'large' This is similar to the small scale algorithm and repeatedly
performs searches using a k-means like update. However,
the algorithm examines only a random sample of cluster
members during each iteration. The user-adjustable parameter,
'PercentNeighbors', controls the number of neighbors to
examine. If there is no improvement after the neighbors are
examined, the algorithm terminates the local search. The algorithm
performs a total of r replicates (specified by 'Replicates' name-
value pair argument) and returns the best clustering result. The
algorithm has an optional PAM-like online phase (specified by the
'OnlinePhase' name-value pair argument) that improves cluster
quality.

Example: 'Algorithm','pam'

'OnlinePhase' — Flag to perform PAM-like online update phase
'on' (default) | 'off'

 kmedoids

22-2449

A flag to perform PAM-like online update phase, specified as a comma-separated pair
consisting of 'OnlinePhase' and 'on' or 'off'.

If it is on, then kmedoids performs a PAM-like update to the medoids after the Lloyd
iterations in the small and large algorithms. During this online update phase, the
algorithm chooses a small subset of data points in each cluster that are the furthest from
and nearest to medoid. For each chosen point, it reassigns the clustering of the entire
data set and check if this creates a smaller sum of distances than the best known.

In other words, the swap considerations are limited to the points near the medoids and
far from the medoids. The near points are considered in order to refine the clustering.
The far points are considered in order to escape local minima. Turning on this feature
tends to improve the quality of solutions generated by both algorithms. Total run time
tends to increase as well, but the increase typically is less than one iteration of PAM.
Example: OnlinePhase,'off'

'Distance' — Distance measure
'sqeuclidean' (default) | 'euclidean' | 'seuclidean' | 'cityblock' |
'minkowski' | 'chebychev' | 'mahalanobis' | 'cosine' | 'correlation' |
'spearman' | 'hamming' | 'jaccard' | custom distance function

Distance measure, in p-dimensional space, specified as the comma-separate pair
consisting of 'Distance' and a string. kmedoids minimizes the sum of medoid to
cluster member distances. See pdist for the definition of each distance measure.
kmedoids supports all distance measures supported by pdist.

Example: 'Distance','hamming'

'Options' — Options to control iterative algorithm to minimize fitting criteria
[] (default) | structure array returned by statset

Options to control the iterative algorithm to minimize fitting criteria, specified as the
comma-separated pair consisting of 'Options' and a structure array returned by
statset. This table summarizes these options.

Option Description

Display Level of display output. Choices are 'off' (default) and 'iter'.
MaxIter Maximum number of iterations allowed. The default is 100.
UseParallel If true and a parpool is open, compute in parallel. If Parallel

Computing Toolbox is not available, or a parpool is not open,

22 Functions — Alphabetical List

22-2450

Option Description

computation occurs in serial mode. The default is false,
meaning serial computation.

UseSubstreams Set to true to compute in parallel in a reproducible fashion.
The default is false. To compute reproducibly, you must also
set Streams to a type allowing substreams: 'mlfg6331_64' or
'mrg32k3a'.

Streams A RandStream object or cell array of such objects. For details
about these options and parallel computing in Statistics
and Machine Learning Toolbox, see “Speed Up Statistical
Computations” or enter help parallelstats at the command
line.

Example: 'Options',statset('Display','off')

'Replicates' — Number of times to repeat clustering using new initial cluster medoid
positions
positive integer

Number of times to repeat clustering using new initial cluster medoid positions, specified
as a positive integer. The default value depends on the choice of algorithm. For pam and
small, the default is 1. For clara, the default is 5. For large, the default is 3.

Example: 'Replicates',4

'NumSamples' — Number of samples to take from data when executing clara algorithm
40+2*k (default) | positive integer

Number of samples to take from the data when executing the clara algorithm, specified
as a positive integer. The default number of samples is calculated as 40+2*k.

Example: 'NumSamples',160

'PercentNeighbors' — Percent of data set to examine using large algorithm
0.001 (default) | scalar value between 0 and 1

Percent of the data set to examine using the large algorithm, specified as a positive
number.

The program examines percentneighbors*size(X,1) number of neighbors for the
medoids. If there is no improvement in the within-cluster sum of distances, then the
algorithm terminates.

 kmedoids

22-2451

The value of this parameter between 0 and 1, where a value closer to 1 tends to give
higher quality solutions, but the algorithm takes longer to run, and a value closer to 0
tends to give lower quality solutions, but finishes faster.
Example: 'PercentNeighbors',0.01

'Start' — Method for choosing initial cluster medoid positions
'plus' (default) | 'sample' | 'cluster' | matrix

Method for choosing initial cluster medoid positions, specified as the comma-separated
pair consisting of 'Start' and a string or a matrix. This table summarizes the available
methods.

Method Description

'plus' (default) Select k observations from X according to
the k-means++ algorithm for cluster center
initialization.

'sample' Select k observations from X at random.
'cluster' Perform preliminary clustering phase

on a random subsample (10%) of X. This
preliminary phase is itself initialized using
sample, that is, the observations are
selected at random.

matrix A custom k-by-p matrix of starting
locations. In this case, you can pass in []
for the k input argument, and kmedoids
infers k from the first dimension of the
matrix. You can also supply a 3-D array,
implying a value for 'Replicates' from
the array’s third dimension.

Example: 'Start','sample'

Output Arguments

idx — Medoid indices
numeric column vector

22 Functions — Alphabetical List

22-2452

Medoid indices, returned as a numeric column vector. idx has as many rows as X, and
each row indicates the medoid assignment of the corresponding observation.

C — Cluster medoid locations
numeric matrix

Cluster medoid locations, returned as a numeric matrix. C is a k-by-p matrix, where row j
is the medoid of cluster j

sumd — Within-cluster sums of point-to-medoid distances
numeric column vector

Within-cluster sums of point-to-medoid distances, returned as a numeric column vector.
sumd is a k-by1 vector, where element j is the sum of point-to-medoid distances within
cluster j.

D — Distances from each point to every medoid
numeric matrix

Distances from each point to every medoid, returned as a numeric matrix. D is an n-by-k
matrix, where element (j,m) is the distance from observation j to medoid m.

midx — Index to X
column vector

Index to X, returned as a column vector of indices. midx is a k-by-1 vector and the indices
satisfy C = X(midx,:).

info — Algorithm information
struct

Algorithm information, returned as a struct. info contains options used by the function
when executed such as k-medoid clustering algorithm (algorithm), method used to
choose initial cluster medoid positions (start), distance measure (distance), number
of iterations taken in the best replicate (iterations) and the replicate number of the
returned results (bestReplicate).

 kmedoids

22-2453

More About

k-medoids Clustering

k-medoids clustering is a partitioning method commonly used in domains that require
robustness to outlier data, arbitrary distance metrics, or ones for which the mean or
median does not have a clear definition.

It is similar to k-means, and the goal of both methods is to divide a set of measurements
or observations into k subsets or clusters so that the subsets minimize the sum of
distances between a measurement and a center of the measurement’s cluster. In the k-
means algorithm, the center of the subset is the mean of measurements in the subset,
often called a centroid. In the k-medoids algorithm, the center of the subset is a member
of the subset, called a medoid.

The k-medoids algorithm returns medoids which are the actual data points in the data
set. This allows you to use the algorithm in situations where the mean of the data does
not exist within the data set. This is the main difference between k-medoids and k-
means where the centroids returned by k-means may not be within the data set. Hence k-
medoids is useful for clustering categorical data where a mean is impossible to define or
interpret.

The function kmedoids provides several iterative algorithms that minimize the sum of
distances from each object to its cluster medoid, over all clusters. One of the algorithms is
called partitioning around medoids (PAM) [1] which proceeds in two steps.

1 Build-step: Each of k clusters is associated with a potential medoid. This assignment
is performed using a technique specified by the 'Start' name-value pair argument.

2 Swap-step: Within each cluster, each point is tested as a potential medoid by
checking if the sum of within-cluster distances gets smaller using that point as the
medoid. If so, the point is defined as a new medoid. Every point is then assigned to
the cluster with the closest medoid.

The algorithm iterates the build- and swap-steps until the medoids do not change, or
other termination criteria are met.

You can control the details of the minimization using several optional input parameters
to kmedoids, including ones for the initial values of the cluster medoids, and for the
maximum number of iterations. By default, kmedoids uses the k-means++ algorithm for
cluster medoid initialization and the squared Euclidean metric to determine distances.

22 Functions — Alphabetical List

22-2454

References

[1] Kaufman, L., and Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction
to Cluster Analysis. Hoboken, New Jersey: John Wiley & Sons, Inc.

[2] Park, H-S, and Jun, C-H. (2009). A simple and fast algorithm for K-medoids
clustering. Expert Systems with Applications. 36, 3336-3341.

[3] Schlimmer,J.S. (1987). Concept Acquisition Through Representational Adjustment
(Technical Report 87-19). Doctoral disseration, Department of Information and
Computer Science, University of California, Irvine.

[4] Iba,W., Wogulis,J., and Langley,P. (1988). Trading off Simplicity and Coverage
in Incremental Concept Learning. In Proceedings of the 5th International
Conference on Machine Learning, 73-79. Ann Arbor, Michigan: Morgan
Kaufmann.

[5] Duch W, A.R., and Grabczewski, K. (1996) Extraction of logical rules from training
data using backpropagation networks. Proc. of the The 1st Online Workshop on
Soft Computing, 19-30, pp. 25-30.

[6] Duch, W., Adamczak, R., Grabczewski, K., Ishikawa, M., and Ueda, H. (1997).
Extraction of crisp logical rules using constrained backpropagation networks
- comparison of two new approaches. Proc. of the European Symposium on
Artificial Neural Networks (ESANN'97), Bruge, Belgium 16-18.

[7] Bache, K. and Lichman, M. (2013). UCI Machine Learning Repository [http://
archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information
and Computer Science.

See Also
clusterdata | evalclusters | kmeans | linkage | linkage | pdist |
silhouette

 knnsearch

22-2455

knnsearch
k-nearest neighbors search using Kd-tree or exhaustive search

Syntax

Idx = knnsearch(Mdl,Y)

Idx = knnsearch(Mdl,Y,Name,Value)

[Idx,D] = knnsearch(___)

Description

Idx = knnsearch(Mdl,Y) searches for the nearest neighbor (i.e., the closest point,
row, or observation) in Mdl.X to each point (i.e., row or observation) in the query data
Y using an exhaustive search or a Kd-tree. knnsearch returns Idx, which is a column
vector of the indices in Mdl.X representing the nearest neighbors.

Idx = knnsearch(Mdl,Y,Name,Value) returns the indices of the closest points
in Mdl.X to Y with additional options specified by one or more Name,Value pair
arguments. For example, specify the number of nearest neighbors to search for, distance
metric different from the one stored in Mdl.Distance. You can also specify which action
to take if the closest distances are tied.

[Idx,D] = knnsearch(___) additionally returns the matrix D using any of the input
arguments in the previous syntaxes. D contains the distances between each observation
in Y that correspond to the closest observations in Mdl.X. The function arranges the
columns of D in ascending order by closeness, with respect to the distance metric.

Examples

Search for Nearest Neighbors Using a K d-tree and Exhaustive Search

knnsearch accepts ExhaustiveSearcher or KDTreeSearcher model objects to search
the training data for the nearest neighbors to the query data. An ExhaustiveSearcher
model invokes the exhaustive searcher algorithm, and a KDTreeSearcher model defines
a K d-tree, which knnsearch uses to search for nearest neighbors.

22 Functions — Alphabetical List

22-2456

Load Fisher's iris data set. Randomly reserve five observations from the data for query
data.

load fisheriris

rng(1); % For reproducibility

n = size(meas,1);

idx = randsample(n,5);

X = meas(~ismember(1:n,idx),:); % Training data

Y = meas(idx,:); % Query data

The variable meas contains 4 predictors.

Grow a default four-dimensional K d-tree.

MdlKDT = KDTreeSearcher(X)

MdlKDT =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'euclidean'

 DistParameter: []

 X: [145x4 double]

MdlKDT is a KDTreeSearcher model object. You can alter its writable properties using
dot notation.

Prepare an exhaustive nearest neighbors searcher.

MdlES = ExhaustiveSearcher(X)

MdlES =

 ExhaustiveSearcher with properties:

 Distance: 'euclidean'

 DistParameter: []

 X: [145x4 double]

MdlKDT is an ExhaustiveSearcher model object. It contains the options, such as the
distance metric, to use to find nearest neighbors.

 knnsearch

22-2457

Alternatively, you can grow a K d-tree or prepare an exhaustive nearest neighbors
searcher using createns.

Search the training data for the nearest neighbors indices that correspond to each query
observation. Conduct both types of searches using the default settings. By default, the
number of neighbors to search for per query observation is 1.

IdxKDT = knnsearch(MdlKDT,Y);

IdxES = knnsearch(MdlES,Y);

[IdxKDT IdxES]

ans =

 17 17

 6 6

 1 1

 89 89

 124 124

In this case, the results of the search are the same.

Search for Nearest Neighbors of Query Data Using the Minkowski Distance

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

X = meas(~ismember(1:n,qIdx),:);

Y = meas(qIdx,:);

Grow a four-dimensional K d-tree using the training data. Specify to use the Minkowski
distance for finding nearest neighbors later.

Mdl = KDTreeSearcher(X,'Distance','minkowski')

Mdl =

22 Functions — Alphabetical List

22-2458

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'minkowski'

 DistParameter: 2

 X: [145x4 double]

Mdl is a KDTreeSearcher model object. By default, the Minkowski distance exponent is
2.

Find the indices of the training data (X) that are the two nearest neighbors of each point
in the query data (Y).

Idx = knnsearch(Mdl,Y,'K',2)

Idx =

 17 4

 6 2

 1 12

 89 66

 124 100

Each row of Idx corresponds to a query data observation, and the column order
corresponds to the order of the nearest neighbors, with respect to ascending distance.
For example, using the Minkowski distance, the second nearest neighbor of Y(3,:) is
X(12,:).

Include Ties in Nearest Neighbors Search

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(4); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

X = meas(~ismember(1:n,qIdx),:);

Y = meas(qIdx,:);

 knnsearch

22-2459

Grow a four-dimensional K d-tree using the training data. Specify to use the Minkowski
distance for finding nearest neighbors later.

Mdl = KDTreeSearcher(X);

Mdl is a KDTreeSearcher model object. By default, the distance metric for finding
nearest neighbors is the Euclidean metric.

Find the indices of the training data (X) that are the seven nearest neighbors of each
point in the query data (Y).

[Idx,D] = knnsearch(Mdl,Y,'K',7,'IncludeTies',true);

Idx and D are five-element cell arrays of vectors, with each vector having at least seven
elements.

Display the lengths of the vectors in Idx.

cellfun('length',Idx)

ans =

 8

 7

 7

 7

 7

Because cell 1 contains a vector with length greater than k = 7, query observation 1
(Y(1,:)) is equally close to at least two observations in X.

Display the indices of the nearest neighbors to Y(1,:) and their distances.

nn5 = Idx{1}

nn5d = D{1}

nn5 =

 91 98 67 69 71 93 88 95

nn5d =

22 Functions — Alphabetical List

22-2460

 Columns 1 through 7

 0.1414 0.2646 0.2828 0.3000 0.3464 0.3742 0.3873

 Column 8

 0.3873

Training observations 88 and 95 are 0.3873 cm away from query observation 1.

Input Arguments

Mdl — Nearest neighbors searcher
ExhaustiveSearcher model object | KDTreeSearcher model object

Nearest neighbors searcher, specified as an ExhaustiveSearcher or KDTreeSearcher
model object, respectively. To create Mdl, with the appropriate mode creator. You can
also use createns.

If Mdl is an ExhaustiveSearcher model, then knnsearch searches for nearest
neighbors using an exhaustive search. Otherwise, knnsearch uses the grown Kd-tree to
search for nearest neighbors.

Y — Query data
numeric matrix

Query data, specified as a numeric matrix.

Y is an m-by-K matrix. Rows of Y correspond to observations (i.e., examples), and columns
correspond to predictors (i.e., variables or features). Y must have the same number of
columns as the training data stored in Mdl.X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 knnsearch

22-2461

Example: 'K',2,'Distance','minkowski' specifies to find the two nearest neighbors
of Mdl.X to each point in Y and to use the Minkowski distance metric.

For Both Nearest Neighbor Searchers

'Distance' — Distance metric
Mdl.Distance (default) | 'cityblock' | 'euclidean' | 'mahalanobis' |
'minkowski' | 'seuclidean' | function handle | ...

Distance metric used to find neighbors of the training data to the query observations,
specified as the comma-separated pair consisting of 'Distance' and a string or function
handle.

For both types of nearest neighbor searchers, Mdl supports these distance metrics.

Value Description

'chebychev' Chebychev distance (maximum coordinate
difference)

'cityblock' City block distance
'euclidean' Euclidean distance
'minkowski' Minkowski distance

If Mdl is an ExhaustiveSearcher model object, then knnsearch supports these
distance metrics.

Value Description

'correlation' One minus the sample linear correlation
between observations (treated as sequences
of values)

'cosine' One minus the cosine of the included angle
between observations (row vectors)

'hamming' Hamming distance, which is the percentage
of coordinates that differ.

'jaccard' One minus the Jaccard coefficient, which is
the percentage of nonzero coordinates that
differ

22 Functions — Alphabetical List

22-2462

Value Description

'mahalanobis' Mahalanobis distance
'seuclidean' Standardized Euclidean distance
'spearman' One minus the sample Spearman's rank

correlation between observations (treated
as sequences of values)

If Mdl is an ExhaustiveSearcher model object, then you can also specify a function
handle for a custom distance metric using @ (for example, @distfun). The custom
distance function must:

• Have the form function D2 = distfun(ZI, ZJ)
• Take as arguments:

• A 1-by-K vector ZI containing a single row from X or from the query points Y
• An m-by-K matrix ZJ containing multiple rows of X or Y

• Return an m-by-1 vector of distances D2, whose jth element is the distance between
the observations ZI and ZJ(j,:)

For more details, see “Distance Metrics”.
Example: 'Distance','minkowski'

Data Types: char | function_handle

'IncludeTies' — Flag to include nearest neighbors that have the same distance from query
observations
false (0) (default) | true (1)

Flag to include nearest neighbors that have the same distance from query observations,
specified as the comma-separated pair consisting of 'IncludeTies' and false (0) or
true (1).

If IncludeTies is true, then:

• knnsearch includes all nearest neighbors whose distances are equal to the Kth
smallest distance in the output arguments.

• Idx and D are m-by-1 cell arrays such that each cell contains a vector of at least K
indices and distances, respectively. Each vector in D contains arranged distances

 knnsearch

22-2463

in ascending order. Each row in Idx contains the indices of the nearest neighbors
corresponding to these smallest distances in D.

If IncludeTies is false, then knnsearch chooses the observation with the smallest
index among the observations that have the same distance from a query point.
Example: 'IncludeTies',true

'K' — Number of nearest neighbors to search for in the training data per query observation
1 (default) | positive integer

Number of nearest neighbors to search for in the training data per query observation,
specified as the comma-separated pair consisting of 'IncludeTies' and a positive
integer.
Example: 'K',2

Data Types: single | double

'P' — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated
pair consisting of 'P' and a positive scalar. If you specify P and do not specify
'Distance','minkowski', then the software throws an error.

Example: 'P',3

Data Types: double | single

For Exhaustive Nearest Neighbor Searchers

'Cov' — Covariance matrix for Mahalanobis distance metric
nancov(X) (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-
separated pair consisting of 'Cov' and a positive definite matrix. Cov is a K-by-K
matrix, where K is the number of columns of X. If you specify Cov and do not specify
'Distance','mahalanobis', then knnsearch throws an error.

Example: 'Cov',eye(3)

Data Types: double | single

22 Functions — Alphabetical List

22-2464

'Scale' — Scale parameter value for standard Euclidean distance metric
nanstd(X) (default) | nonnegative numeric vector

Scale parameter value for the standard Euclidean distance metric, specified as the
comma-separated pair consisting of 'Scale' and a nonnegative numeric vector. Scale
has length K, where K is the number of columns of X.

The software scales each difference between the training and query data using
the corresponding element of Scale. If you specify Scale and do not specify
'Distance','seuclidean', then knnsearch throws an error.

Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)

Data Types: double | single

Note: If you specify 'Distance', 'Cov', 'P', or 'Scale', then Mdl.Distance and
Mdl.DistParameter do not change value.

Output Arguments

Idx — Training data indices of nearest neighbors
numeric matrix | cell array of numeric vectors

Training data indices of nearest neighbors, returned as a numeric matrix or cell array of
numeric vectors.

• If you do not specify IncludeTies (false by default), then Idx is an m-by-K numeric
matrix, where m is the number of rows in Y and K is the number of searched nearest
neighbors. Idx(j,k) indicates that Mdl.X(Idx(j,k),:) is the observation with the
kth smallest distance to the query observation Y(j,:).

• If you specify 'IncludeTies',true, then Idx is an m-by-1 cell array such that cell
j (Idx{j}) contains a vector of at least K indices of the closest observations in Mdl.X
to the query observation Y(j,:). The function arranges the elements of the vectors in
ascending order by distance.

D — Distances of nearest neighbors to the query data
numeric matrix | cell array of numeric vectors

Distances of the nearest neighbors to the query data, returned as a numeric matrix or
cell array of numeric vectors.

 knnsearch

22-2465

• If you do not specify IncludeTies (false by default), then D is an m-by-K numeric
matrix, where m is the number of rows in Y and K is the number of searched
nearest neighbors. D(j,k) is the distance Mdl.X(Idx(j,k),:) is from the query
observation Y(j,:) with respect to the distance metric, and it represents the kth
smallest distance.

• If you specify 'IncludeTies',true, then D is an m-by-1 cell array such that cell j
(D{j}) contains a vector of at least K distances of the closest observations in Mdl.X to
the query observation Y(j,:). The function arranges the elements of the vectors in
ascending order by distance.

Alternatives
• knnsearch is an object function that requires an ExhaustiveSearcher or a

KDTreeSearcher model object and query data. Under equivalent conditions,
knnsearch returns the same results as knnsearch when you specify the name-
value pair argument 'NSMethod','exhaustive' or 'NSMethod','kdtree',
respectively.

• For k-nearest neighbors classification, see fitcknn and ClassificationKNN.

More About

Algorithms

For positive integer K, knnsearch finds the K points in Mdl.X that are nearest each Y
point. In contrast, for positive scalar r, rangesearch finds all the points in Mdl.X that
are within a distance r of each Y point.
• Using ExhaustiveSearcher Objects
• Using KDTreeSearcher Objects
• “k-Nearest Neighbor Search and Radius Search” on page 16-11
• “Distance Metrics”

References

[1] Friedman, J. H., Bentely, J., and Finkel, R. A. (1977). “An Algorithm for Finding Best
Matches in Logarithmic Expected Time.” ACM Transactions on Mathematical
Software Vol. 3, Issue 3, Sept. 1977, pp. 209–226.

22 Functions — Alphabetical List

22-2466

See Also
ClassificationKNN | createns | ExhaustiveSearcher | fitcknn |
KDTreeSearcher | knnsearch | rangesearch

Introduced in R2010a

 knnsearch

22-2467

knnsearch
Find k-nearest neighbors using data

Syntax

IDX = knnsearch(X,Y)

[IDX,D] = knnsearch(X,Y)

[IDX,D] = knnsearch(X,Y,'Name',Value)

Description

IDX = knnsearch(X,Y) finds the nearest neighbor in X for each point in Y. IDX is a
column vector with my rows. Each row in IDX contains the index of nearest neighbor in X
for the corresponding row in Y.

[IDX,D] = knnsearch(X,Y) returns an my-by-1 vector D containing the distances
between each observation in Y and the corresponding closest observation in X. That is,
D(i) is the distance between X(IDX(i),:) and Y(i,:).

[IDX,D] = knnsearch(X,Y,'Name',Value) accepts one or more optional comma-
separated name-value pair arguments. Specify Name inside single quotes.

knnsearch does not save a search object. To create a search object, use createns.

Input Arguments

X

An mx-by-n numeric matrix. Rows of X correspond to observations and columns
correspond to variables.

Y

An my-by-n numeric matrix of query points. Rows of Y correspond to observations and
columns correspond to variables.

22 Functions — Alphabetical List

22-2468

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'K'

Positive integer specifying the number of nearest neighbors in X for each point in Y.
Default is 1. IDX and D are my-by-K matrices. D sorts the distances in each row in
ascending order. Each row in IDX contains the indices of the K closest neighbors in X
corresponding to the K smallest distances in D.

'IncludeTies'

A logical value indicating whether knnsearch includes all the neighbors whose distance
values are equal to the Kth smallest distance. If IncludeTies is true, knnsearch
includes all these neighbors. In this case, IDX and D are my-by-1 cell arrays. Each row
in IDX and D contains a vector with at least K numeric numbers. D sorts the distances
in each vector in ascending order. Each row in IDX contains the indices of the closest
neighbors corresponding to these smallest distances in D.

Default: false

'NSMethod'

Nearest neighbors search method. Value is either:

• 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors. This is the default
value when the number of columns of X is less than 10, X is not sparse, and the
distance measure is one of the following measures. 'kdtree' is only valid when the
distance measure is one of the following:

• 'euclidean'

• 'cityblock'

• 'minkowski'

• 'chebychev'

• 'exhaustive' — Uses the exhaustive search algorithm by computing the distance
values from all the points in X to each point in Y to find nearest neighbors.

 knnsearch

22-2469

'Distance'

A string or a function handle specifying the distance metric. The value can be one of the
following:

• 'euclidean' — Euclidean distance (default).
• 'seuclidean' — Standardized Euclidean distance. Each coordinate difference

between rows in X and the query matrix is scaled by dividing by the corresponding
element of the standard deviation computed from X, S=nanstd(X). To specify another
value for S, use the Scale argument.

• 'cityblock' — City block distance.
• 'chebychev' — Chebychev distance (maximum coordinate difference).
• 'minkowski' — Minkowski distance. The default exponent is 2. To specify a

different exponent, use the 'P' argument.
• 'mahalanobis' — Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is nancov(X). To change the value of C,
use the Cov parameter.

• 'cosine' — 1 minus the cosine of the included angle between observations (treated
as vectors).

• 'correlation' — One minus the sample linear correlation between observations
(treated as sequences of values).

• 'spearman' — One minus the sample Spearman's rank correlation between
observations (treated as sequences of values).

• 'hamming' — Hamming distance, which is the percentage of coordinates that differ.
• 'jaccard' — One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ.
• custom distance function — A distance function specified using @ (for example,

@distfun). A custom distance function must

• Have the form function D2 = distfun(ZI,ZJ)
• Take as arguments:

• A 1-by-n vector ZI containing a single row from X or from the query points Y
• An m2-by-n matrix ZJ containing multiple rows of X or Y

• Return an m2-by-1 vector of distances D2, whose jth element is the distance
between the observations ZI and ZJ(j,:)

22 Functions — Alphabetical List

22-2470

For more information on these distance metrics, see “Distance Metrics”.

'P'

A positive scalar, p, indicating the exponent of the Minkowski distance. This parameter
is only valid if the Distance is 'minkowski'. Default is 2.

'Cov'

A positive definite matrix indicating the covariance matrix when computing the
Mahalanobis distance. This parameter is only valid when Distance is 'mahalanobis'.
Default is nancov(X).

'Scale'

A vector S containing nonnegative values, with length equal to the number of columns in
X. Each coordinate of X and each query point is scaled by the corresponding element of S
when computing the standardized Euclidean distance. This argument is only valid when
Distance is 'seuclidean'. Default is nanstd(X).

'BucketSize'

The maximum number of data points in the leaf node of the kd-tree. This argument is
only meaningful when using the kd-tree search method. Default is 50.

Examples

Classify Using k-Nearest Neighbors

Find the 10 nearest neighbors in x to each point in y using first the 'minkowski'
distance metric with a p value of 5, and then using the 'chebychev' distance metric.

Load Fisher's iris data set

load fisheriris

x = meas(:,3:4);

y = [5 1.45;6 2;2.75 .75];

Perform a knnsearch between x and the query points in y, using first Minkowski then
Chebychev distance metrics.

 knnsearch

22-2471

[n,d]=knnsearch(x,y,'k',10,'distance','minkowski','p',5);

[ncb,dcb] = knnsearch(x,y,'k',10,...

 'distance','chebychev');

Visualize the results of the two different nearest neighbors searches. Plot the training
data. Plot an X for the query points. Use circles to denote the Minkowski nearest
neighbors. Use pentagrams to denote the Chebychev nearest neighbors.

gscatter(x(:,1),x(:,2),species)

line(y(:,1),y(:,2),'marker','x','color','k',...

 'markersize',10,'linewidth',2,'linestyle','none')

line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...

 'linestyle','none','markersize',10)

line(x(ncb,1),x(ncb,2),'color',[.5 .5 .5],'marker','p',...

 'linestyle','none','markersize',10)

legend('setosa','versicolor','virginica','query point',...

'minkowski','chebychev','Location','best')

22 Functions — Alphabetical List

22-2472

Alternatives

knnsearch is the object function of ExhaustiveSearcher and KDTreeSearcher
models for a k-nearest neighbors search. If you set the NSMethod name-value pair
argument to the appropriate value ('exhaustive' for an exhaustive search or
'kdtree' for a Kd-tree), then the search results are equivalent to conducting a distance
search using knnsearch and without using model objects.

 knnsearch

22-2473

More About

Tips

• For a fixed positive integer K, knnsearch finds the K points in X that are nearest each
point in Y. In contrast, for a fixed positive real value r, rangesearch finds all the
points in X that are within a distance r of each point in Y.

Algorithms

For information on a specific search algorithm, see “Distance Metrics”.
• Using ExhaustiveSearcher Objects
• Using KDTreeSearcher Objects
• “k-Nearest Neighbor Search and Radius Search” on page 16-11
• “Distance Metrics”

References

[1] Friedman, J. H., Bentely, J., and Finkel, R. A. (1977) An Algorithm for Finding Best
Matches in Logarithmic Expected Time, ACM Transactions on Mathematical
Software 3, 209.

See Also
createns | ExhaustiveSearcher | KDTreeSearcher | knnsearch

22 Functions — Alphabetical List

22-2474

kruskalwallis

Kruskal-Wallis test

Syntax

p = kruskalwallis(x)

p = kruskalwallis(x,group)

p = kruskalwallis(x,group,displayopt)

[p,tbl,stats] = kruskalwallis(___)

Description

p = kruskalwallis(x) returns the p-value for the null hypothesis that the data in
each column of the matrix x comes from the same distribution, using a Kruskal-Wallis
test. The alternative hypothesis is that not all samples come from the same distribution.
kruskalwallis also returns an ANOVA table and a box plot.

p = kruskalwallis(x,group) returns the p-value for a test of the null hypothesis
that the data in each categorical group, as specified by the grouping variable group comes
from the same distribution. The alternative hypothesis is that not all groups come from
the same distribution.

p = kruskalwallis(x,group,displayopt) returns the p-value of the test and lets
you display or suppress the ANOVA table and box plot.

[p,tbl,stats] = kruskalwallis(___) also returns the ANOVA table as the cell
array tbl and the structure stats containing information about the test statistics.

Examples

Test Data Samples for the Same Distribution

Create two different normal probability distribution objects. The first distribution has mu
= 0 and sigma = 1, and the second distribution has mu = 2 and sigma = 1.

 kruskalwallis

22-2475

pd1 = makedist('Normal');

pd2 = makedist('Normal','mu',2,'sigma',1);

Create a matrix of sample data by generating random numbers from these two
distributions.

rng('default'); % for reproducibility

x = [random(pd1,20,2),random(pd2,20,1)];

The first two columns of x contain data generated from the first distribution, while the
third column contains data generated from the second distribution.

Test the null hypothesis that the sample data from each column in x comes from the
same distribution.

p = kruskalwallis(x)

p =

 3.6896e-06

22 Functions — Alphabetical List

22-2476

The returned value of p indicates that kruskalwallis rejects the null hypothesis that
all three data samples come from the same distribution at a 1% significance level. The
ANOVA table provides additional test results, and the box plot visually presents the
summary statistics for each column in x.

Conduct Followup Tests for Unequal Medians

Create two different normal probability distribution objects. The first distribution has mu
= 0 and sigma = 1. The second distribution has mu = 2 and sigma = 1.

pd1 = makedist('Normal');

pd2 = makedist('Normal','mu',2,'sigma',1);

 kruskalwallis

22-2477

Create a matrix of sample data by generating random numbers from these two
distributions.

rng('default'); % for reproducibility

x = [random(pd1,20,2),random(pd2,20,1)];

The first two columns of x contain data generated from the first distribution, while the
third column contains data generated from the second distribution.

Test the null hypothesis that the sample data from each column in x comes from the
same distribution. Suppress the output displays, and generate the structure stats to
use in further testing.

[p,tbl,stats] = kruskalwallis(x,[],'off')

p =

 3.6896e-06

tbl =

 Columns 1 through 4

 'Source' 'SS' 'df' 'MS'

 'Columns' [7.6311e+03] [2] [3.8155e+03]

 'Error' [1.0364e+04] [57] [181.8228]

 'Total' [17995] [59] []

 Columns 5 through 6

 'Chi-sq' 'Prob>Chi-sq'

 [25.0200] [3.6896e-06]

 [] []

 [] []

stats =

 gnames: [3x1 char]

 n: [20 20 20]

 source: 'kruskalwallis'

 meanranks: [26.7500 18.9500 45.8000]

 sumt: 0

22 Functions — Alphabetical List

22-2478

The returned value of p indicates that the test rejects the null hypothesis at the 1%
significance level. You can use the structure stats to perform additional followup
testing. The cell array tbl contains the same data as the graphical ANOVA table,
including column and row labels.

Conduct a followup test to identify which data sample comes from a different
distribution.

c = multcompare(stats)

Note: Intervals can be used for testing but are not simultaneous confidence intervals.

c =

 1.0000 2.0000 -5.1435 7.8000 20.7435

 1.0000 3.0000 -31.9935 -19.0500 -6.1065

 2.0000 3.0000 -39.7935 -26.8500 -13.9065

 kruskalwallis

22-2479

The results indicate that there is a significant difference between groups 1 and 3, so the
test rejects the null hypothesis that the data in these two groups comes from the same
distribution. The same is true for groups 2 and 3. However, there is not a significant
difference between groups 1 and 2, so the test does not reject the null hypothesis that
these two groups come from the same distribution. Therefore, these results suggest that
the data in groups 1 and 2 come from the same distribution, and the data in group 3
comes from a different distribution.

Test for the Same Distribution Across Groups

Create a vector, strength, containing measurements of the strength of metal beams.
Create a second vector, alloy, containing strings indicating the type of metal alloy from
which the corresponding beam is made.

22 Functions — Alphabetical List

22-2480

strength = [82 86 79 83 84 85 86 87 74 82 ...

 78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...

 'al1','al1','al1','al1','al1','al1',...

 'al2','al2','al2','al2','al2','al2'};

Test the null hypothesis that the beam strength measurements have the same
distribution across all three alloys.

p = kruskalwallis(strength,alloy,'off')

p =

 0.0018

The returned value of p indicates that the test rejects the null hypothesis at the 1%
significance level.

Input Arguments

x — Sample data
vector | matrix

Sample data for the hypothesis test, specified as a vector or an m-by-n matrix. If x is an
m-by-n matrix, each of the n columns represents an independent sample containing m
mutually independent observations.
Data Types: single | double

group — Grouping variable
categorical variable | vector | character array | cell array

Grouping variable, specified as a categorical variable, vector, character array, or cell
array.

• If x is a vector, then each element in group identifies the group to which the
corresponding element in x belongs, and group must be a vector of the same length
as x. If a row of group contains an empty cell or empty string, that row and the
corresponding observation in x are disregarded. NaN values in either x or group are
similarly ignored.

 kruskalwallis

22-2481

• If x is a matrix, then each column in x represents a different group, and you can use
group to specify labels for these columns. The number of elements in group and the
number of columns in x must be equal.

The labels contained in group also annotate the box plot.

Example:
{'red','blue','green','blue','red','blue','green','green','red'}

Data Types: single | double | char

displayopt — Display option
'on' (default) | 'off'

Display option, specified as 'on' or 'off'. If displayopt is 'on', kruskalwallis
displays the following figures:

• An ANOVA table containing the sums of squares, degrees of freedom, and other
quantities calculated based on the ranks of the data in x.

• A box plot of the data in each column of the data matrix x. The box plots are based on
the actual data values, rather than on the ranks.

If displayopt is 'off', kruskalwallis does not display these figures.

If you specify a value for displayopt, you must also specify a value for group. If you do
not have a grouping variable, specify group as [].

Example: 'off'

Output Arguments

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

tbl — ANOVA table
cell array

22 Functions — Alphabetical List

22-2482

ANOVA table of test results, returned as a cell array. tbl includes the sums of squares,
degrees of freedom, and other quantities calculated based on the ranks of the data in x,
as well as column and row labels.

stats — Test data
structure

Test data, returned as a structure. You can perform followup multiple comparison tests
on pairs of sample medians by using multcompare, with stats as the input value.

More About

Kruskal-Wallis Test

The Kruskal-Wallis test is a nonparametric version of classical one-way ANOVA, and
an extension of the Wilcoxon rank sum test to more than two groups. It compares the
medians of the groups of data in x to determine if the samples come from the same
population (or, equivalently, from different populations with the same distribution).

The Kruskal-Wallis test uses ranks of the data, rather than numeric values, to compute
the test statistics. It finds ranks by ordering the data from smallest to largest across all
groups, and taking the numeric index of this ordering. The rank for a tied observation is
equal to the average rank of all observations tied with it. The F-statistic used in classical
one-way ANOVA is replaced by a chi-square statistic, and the p-value measures the
significance of the chi-square statistic.

The Kruskal-Wallis test assumes that all samples come from populations having the
same continuous distribution, apart from possibly different locations due to group effects,
and that all observations are mutually independent. By contrast, classical one-way
ANOVA replaces the first assumption with the stronger assumption that the populations
have normal distributions.
• “Grouping Variables” on page 2-52

See Also
anova1 | boxplot | friedman | multcompare | ranksum

 ksdensity

22-2483

ksdensity

Kernel smoothing function estimate

Syntax

[f,xi] = ksdensity(x)

[f,xi] = ksdensity(x,pts)

[f,xi] = ksdensity(x,pts,Name,Value)

[f,xi,bw] = ksdensity(___)

ksdensity(___)

ksdensity(ax, ___)

Description

[f,xi] = ksdensity(x) returns a probability density estimate, f, for the sample in
the vector x. The estimate is based on a normal kernel function, and is evaluated at 100
equally spaced points, xi, that cover the range of the data in x.

ksdensity works best with continuously distributed samples.

[f,xi] = ksdensity(x,pts) returns a probability density estimate, f, for the sample
in the vector x, evaluated at the specified values in vector pts. Here, the xi and pts
vectors contain identical values.

[f,xi] = ksdensity(x,pts,Name,Value) returns a probability density estimate,
f, for the sample in the vector x, with additional options specified by one or more
Name,Value pair arguments.

For example, you can define the function type ksdensity evaluates, such as probability
density, cumulative probability, survivor function, and so on. Or you can specify the
bandwidth of the smoothing window.

[f,xi,bw] = ksdensity(___) also returns the bandwidth of the kernel smoothing
window, bw. The default bandwidth is the optimal for normal densities.

22 Functions — Alphabetical List

22-2484

ksdensity(___) plots the kernel smoothing function estimate.

ksdensity(ax, ___) plots the results using axes with the handle, ax, instead of the
current axes returned by gca.

Examples

Estimate Density

Generate a sample data set from a mixture of two normal distributions.

rng default % for reproducibility

x = [randn(30,1); 5+randn(30,1)];

Plot the estimated density.

[f,xi] = ksdensity(x);

figure

plot(xi,f);

 ksdensity

22-2485

The density estimate shows the bimodality of the sample.

Estimate Cumulative Distribution Function at Specified Values

Load the sample data.

load hospital

Compute and plot the estimated cdf evaluated at a specified set of values.

pts = (min(hospital.Weight):2:max(hospital.Weight));

figure()

ecdf(hospital.Weight)

hold on

22 Functions — Alphabetical List

22-2486

[f,xi,bw] = ksdensity(hospital.Weight,pts,'support','positive',...

 'function','cdf');

plot(xi,f,'-g','LineWidth',2)

legend('empirical cdf','kernel-bw:default','Location','NorthWest')

xlabel('Patient weights')

ylabel('Estimated cdf')

ksdensity seems to smooth the cumulative distribution function estimate too much.
An estimate with a smaller bandwidth might produce a closer estimate to the empirical
cumulative distribution function.

Return the bandwidth of the smoothing window.

bw

 ksdensity

22-2487

bw =

 0.1070

Plot the cumulative distribution function estimate using a smaller bandwidth.

[f,xi] = ksdensity(hospital.Weight,pts,'support','positive',...

 'function','cdf','bandwidth',0.05);

plot(xi,f,'--r','LineWidth',2)

legend('empirical cdf','kernel-bw:default','kernel-bw:0.05',...

 'Location','NorthWest')

hold off

22 Functions — Alphabetical List

22-2488

The ksdensity estimate with a smaller bandwidth matches the empirical cumulative
distribution function better.

Plot Estimated Cumulative Density Function for Given Number of Points

Load the sample data.

load hospital

Plot the estimated cdf evaluated at 50 equally spaced points.

figure()

ksdensity(hospital.Weight,'support','positive','function','cdf',...

'npoints',50)

xlabel('Patient weights')

ylabel('Estimated cdf')

 ksdensity

22-2489

Estimate Survivor and Cumulative Hazard for Censored Failure Data

Generate sample data from an exponential distribution with mean 3.

rng default % for reproducibility

x = random('exp',3,100,1);

Create a logical vector that indicates censoring. Here, observations with lifetimes longer
than 10 are censored.

T = 10;

cens = (x>10);

Compute and plot the estimated density function.

22 Functions — Alphabetical List

22-2490

figure

ksdensity(x,'support','positive','censoring',cens);

Compute and plot the survivor function.

figure

ksdensity(x,'support','positive','censoring',cens,...

'function','survivor');

 ksdensity

22-2491

Compute and plot the cumulative hazard function.

figure

ksdensity(x,'support','positive','censoring',cens,...

'function','cumhazard');

22 Functions — Alphabetical List

22-2492

Estimate Inverse Cumulative Distribution Function for Specified Probability Values

Generate a mixture of two normal distributions, and plot the estimated inverse
cumulative distribution function at a specified set of probability values.

rng default % for reproducibility

x = [randn(30,1); 5+randn(30,1)];

pi = linspace(.01,.99,99);

figure

ksdensity(x,pi,'function','icdf');

 ksdensity

22-2493

Return Bandwidth of Smoothing Window

Generate a mixture of two normal distributions.

rng default % For reproducibility

x = [randn(30,1); 5+randn(30,1)];

Return the bandwidth of the smoothing window for the probability density estimate.

[f,xi,bw] = ksdensity(x);

bw

bw =

22 Functions — Alphabetical List

22-2494

 1.5141

The default bandwidth is optimal for normal densities.

Plot the estimated density.

figure

plot(xi,f);

xlabel('xi')

ylabel('f')

hold on

 ksdensity

22-2495

Plot the density using an increased bandwidth value.

[f,xi] = ksdensity(x,'width',1.8);

plot(xi,f,'--r','LineWidth',1.5)

A higher bandwidth further smooths the density estimate, which might mask some
characteristics of the distribution.

Now, plot the density using a decreased bandwidth value.

[f,xi] = ksdensity(x,'width',0.8);

plot(xi,f,'-.k','LineWidth',1.5)

legend('bw = default','bw = 1.8','bw = 0.8')

hold off

22 Functions — Alphabetical List

22-2496

A smaller bandwidth smooths the density estimate less, which exaggerates some
characteristics of the sample.

• “Fit Kernel Distribution Using ksdensity” on page 5-54
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-57

Input Arguments

x — Sample data
column vector

Sample data, for which ksdensity returns f values, specified as a column vector.

 ksdensity

22-2497

Example: [f,xi] = ksdensity(x)

Data Types: single | double

pts — Points to evaluate f
vector

Points to evaluate f at, specified as a vector. pts can be a row or column vector. f has the
same dimensions as pts.

Example: pts = (0:1:25); ksdensity(x,pts);

Data Types: single | double

ax — Axes handle
handle

Axes handle for the figure ksdensity plots to, specified as a handle.

For example, if h is a handle for a figure, then ksdensity can plot to that figure as
follows.
Example: ksdensity(h,x)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'censoring',cens,'kernel','triangle','npoints',20,'function','cdf'

specifies that ksdensity estimates the cdf by evaluating at 20 equally spaced points
that covers the range of data, using the triangle kernel smoothing function and
accounting for the censored data information in vector cens.

'censoring' — Logical vector
vector of 0s (default) | vector of 0s and 1s

Logical vector indicating which entries are censored, specified as a vector of binary
values. A value of 0 indicates there is no censoring, 1 indicates that observation is
censored. Default is there is no censoring.

22 Functions — Alphabetical List

22-2498

Example: 'censoring',censdata

Data Types: logical

'kernel' — Type of kernel smoother
'normal' (default) | 'box' | 'triangle' | 'epanechnikov' | function handle |
string

Type of kernel smoother, specified as the comma-separated pair consisting of 'kernel'
and one of the following.

• 'normal' (default)
• 'box'

• 'triangle'

• 'epanechnikov'

• You can also specify a custom kernel function, as a function handle or as a string, e.g.,
@normpdf or 'normpdf'. This calls the function with one argument that is an array
of distances between data values and locations where the density is evaluated. The
function must return an array of the same size containing corresponding values of the
kernel function.

When 'function' is 'pdf', this kernel function returns density values. Otherwise,
it returns cumulative probability values.

Specifying a custom kernel when 'function' is 'icdf' returns an error.

If 'support' is 'positive', then ksdensity transforms x using a log function,
estimates the density of the transformed values, and transforms back to the original
scale. If 'support' is a vector [L U], then ksdensity uses the transformation
log((X-L)/(U-X)). The width parameter and bw outputs are on the scale of the
transformed values.
Example: 'kernel','box'

Data Types: char | function_handle

'npoints' — Number of equally spaced points
100 (default) | scalar value

Number of equally spaced points in xi, specified as the comma-separated pair consisting
of 'npoints' and a scalar value.

 ksdensity

22-2499

For instance, for a kernel smooth estimate of a specified function at 80 equally spaced
points within the range of sample data, input:
Example: 'npoints',80

Data Types: single | double

'support' — Support for the density
'unbounded' (default) | 'positive' | two-element vector, [L U]

Support for the density, specified as the comma-separated pair consisting of 'support'
and one of the following.

'unbounded' Default. Allow the density to extend over the whole real line.
'positive' Restrict the density to positive values.
Two-element vector, [L
U]

Give the finite lower and upper bounds for the support of the
density.

Example: 'support','positive'

Example: 'support',[0 10]

Data Types: single | double | char

'weights' — Weights for each x value
vector

Weights for each x value, specified as the comma-separated pair consisting of 'weights'
and a vector of the same length as x.

For instance, if the weights for the data values are in vector xw, then you can specify the
weights as follows.
Example: 'weights',xw

Data Types: single | double

'bandwidth' — Bandwidth of the kernel smoothing window
optimal value for normal densities (default) | scalar value

The bandwidth of the kernel-smoothing window, which is a function of the number of
points in x, specified as the comma-separated pair consisting of 'width' and a scalar.
The default is optimal for estimating normal densities, but you might want to choose a
larger or smaller value to smooth more or less.

22 Functions — Alphabetical List

22-2500

Example: 'bandwidth',0.8

Data Types: single | double

'function' — Function to estimate
'pdf' (default) | 'cdf' | 'icdf' | 'survivor' | 'cumhazard'

Function to estimate, specified as the comma-separated pair consisting of 'function'
and one of the following.

'pdf' Default. Probability density function.
'cdf' Cumulative distribution function.
'icdf' Inverse cumulative distribution function. For 'icdf', f =

ksdensity(x,pi,'function','icdf') computes the estimated
inverse cdf of the values in x, and evaluates it at the probability
values specified in pi.

'survivor' Survivor function.
'cumhazard' Cumulative hazard function.

Example: 'function','icdf'

Data Types: char

Output Arguments

f — Estimated function values
vector

Estimated function values, returned as a vector of the same dimension as xi or pts.

xi — Evaluation points
100 equally spaced points (default) | vector

Evaluation points at which ksdensity calculates f, returned as a vector. Default is 100
equally spaced points that cover the range of data in x.

bw — Bandwidth of smoothing window
scalar value

Bandwidth of smoothing window, returned as a scalar value.

 ksdensity

22-2501

More About
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Supported Distributions” on page 5-17

References

[1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis.
New York: Oxford University Press Inc., 1997.

See Also
histogram

22 Functions — Alphabetical List

22-2502

kstest

One-sample Kolmogorov-Smirnov test

Syntax

h = kstest(x)

h = kstest(x,Name,Value)

[h,p] = kstest(___)

[h,p,ksstat,cv] = kstest(___)

Description

h = kstest(x) returns a test decision for the null hypothesis that the data in vector x
comes from a standard normal distribution, against the alternative that it does not come
from such a distribution, using the one-sample Kolmogorov-Smirnov test. The result h is
1 if the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = kstest(x,Name,Value) returns a test decision for the one-sample Kolmogorov-
Smirnov test with additional options specified by one or more name-value pair
arguments. For example, you can test for a distribution other than standard normal,
change the significance level, or conduct a one-sided test.

[h,p] = kstest(___) also returns the p-value p of the hypothesis test, using any of
the input arguments from the previous syntaxes.

[h,p,ksstat,cv] = kstest(___) also returns the value of the test statistic ksstat
and the approximate critical value cv of the test.

Examples

Test for a Standard Normal Distribution

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

 kstest

22-2503

load examgrades;

test1 = grades(:,1);

Test the null hypothesis that the data comes from a normal distribution with a mean of
75 and a standard deviation of 10. Use these parameters to center and scale each element
of the data vector since, by default, kstest tests for a standard normal distribution.

x = (test1-75)/10;

h = kstest(x)

h =

 0

The returned value of h = 0 indicates that kstest fails to reject the null hypothesis at
the default 5% significance level.

Plot the empirical cumulative distribution function (cdf) and the standard normal cdf for
a visual comparison.

[f,x_values] = ecdf(x);

F = plot(x_values,f);

set(F,'LineWidth',2);

hold on;

G = plot(x_values,normcdf(x_values,0,1),'r-');

set(G,'LineWidth',2);

legend([F G],...

 'Empirical CDF','Standard Normal CDF',...

 'Location','SE');

22 Functions — Alphabetical List

22-2504

The plot shows the similarity between the empirical cdf of the centered and scaled data
vector and the cdf of the standard normal distribution.

Specify the Hypothesized Distribution Using a Two-Column Matrix

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Specify the hypothesized distribution as a two-column matrix. Column 1 contains
the data vector x. Column 2 contains cdf values evaluated at each value in x for a

 kstest

22-2505

hypothesized Student’s t distribution with a location parameter of 75, a scale parameter
of 10, and one degree of freedom.

test_cdf = [x,cdf('tlocationscale',x,75,10,1)];

Test if the data are from the hypothesized distribution.

h = kstest(x,'CDF',test_cdf)

h =

 1

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the
default 5% significance level.

Specify the Hypothesized Distribution Using a Probability Distribution Object

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Create a probability distribution object to test if the data comes from a Student’s t
distribution with a location parameter of 75, a scale parameter of 10, and one degree of
freedom.

test_cdf = makedist('tlocationscale','mu',75,'sigma',10,'nu',1);

Test the null hypothesis that the data comes from the hypothesized distribution.

h = kstest(x,'CDF',test_cdf)

h =

 1

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the
default 5% significance level.

Test the Hypothesis at Different Significance Levels

Load the sample data. Create a vector containing the first column of the students’ exam
grades.

22 Functions — Alphabetical List

22-2506

load examgrades;

test1 = grades(:,1);

Create a probability distribution object to test if the data comes from a Student’s t
distribution with a location parameter of 75, a scale parameter of 10, and one degree of
freedom.

test_cdf = makedist('tlocationscale','mu',75,'sigma',10,'nu',1);

Test the null hypothesis that data comes from the hypothesized distribution at the 1%
significance level.

[h,p] = kstest(x,'CDF',test_cdf,'Alpha',0.01)

h =

 1

p =

 0.0021

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the 1%
significance level.

Conduct a One-Sided Hypothesis Test

Load the sample data. Create a vector containing the third column of the stock return
data matrix.

load stockreturns;

x = stocks(:,3);

Test the null hypothesis that the data comes from a standard normal distribution,
against the alternative hypothesis that the population cdf of the data is larger than the
standard normal cdf.

[h,p,k,c] = kstest(x,'Tail','larger')

h =

 1

p =

 5.0854e-05

k =

 0.2197

c =

 kstest

22-2507

 0.1207

The returned value of h = 1 indicates that kstest rejects the null hypothesis in favor of
the alternative hypothesis at the default 5% significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.

[f,x_values] = ecdf(x);

J = plot(x_values,f);

hold on;

K = plot(x_values,normcdf(x_values),'r--');

set(J,'LineWidth',2);

set(K,'LineWidth',2);

legend([J K],'Empirical CDF','Standard Normal CDF','Location','SE');

22 Functions — Alphabetical List

22-2508

The plot shows the difference between the empirical cdf of the data vector x and the cdf of
the standard normal distribution.

Input Arguments

x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at
the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'CDF' — cdf of hypothesized continuous distribution
matrix | probability distribution object

cdf of hypothesized continuous distribution, specified the comma-separated pair
consisting of 'CDF' and either a two-column matrix or a continuous probability
distribution object. When CDF is a matrix, column 1 contains a set of possible x values,
and column 2 contains the corresponding hypothesized cumulative distribution function
values G(x). The calculation is most efficient if CDF is specified such that column 1
contains the values in the data vector x. If there are values in x not found in column 1 of
CDF, kstest approximates G(x) by interpolation. All values in x must lie in the interval

 kstest

22-2509

between the smallest and largest values in the first column of CDF. By default, kstest
tests for a standard normal distribution.

The one-sample Kolmogorov-Smirnov test is only valid for continuous cumulative
distribution functions, and requires CDF to be predetermined. The result is not accurate
if CDF is estimated from the data. To test x against the normal, lognormal, extreme
value, Weibull, or exponential distribution without specifying distribution parameters,
use lillietest instead.

Data Types: single | double

'Tail' — Type of alternative hypothesis
'unequal' (default) | 'larger' | 'smaller'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'unequal' Test the alternative hypothesis that the cdf of the population
from which x is drawn is not equal to the cdf of the hypothesized
distribution.

'larger' Test the alternative hypothesis that the cdf of the population
from which x is drawn is greater than the cdf of the hypothesized
distribution.

'smaller' Test the alternative hypothesis that the cdf of the population from
which x is drawn is less than the cdf of the hypothesized distribution.

If the values in the data vector x tend to be larger than expected from the hypothesized
distribution, the empirical distribution function of x tends to be smaller, and vice versa.
Example: 'Tail','larger'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

22 Functions — Alphabetical List

22-2510

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ksstat — Test statistic
nonnegative scalar value

Test statistic of the hypothesis test, returned as a nonnegative scalar value.

cv — Critical value
nonnegative scalar value

Critical value, returned as a nonnegative scalar value.

More About

One-Sample Kolmogorov-Smirnov Test

The one-sample Kolmogorov-Smirnov test is a nonparametric test of the null hypothesis
that the population cdf of the data is equal to the hypothesized cdf.

The two-sided test for “unequal” cdf functions tests the null hypothesis against the
alternative that the population cdf of the data is not equal to the hypothesized cdf. The
test statistic is the maximum absolute difference between the empirical cdf calculated
from x and the hypothesized cdf:

D F x G x
x

*
^

max ,= () - ()
Ê

Ë
ÁÁ

ˆ

¯
˜̃

where F̂ x() is the empirical cdf and G x() is the cdf of the hypothesized distribution.

The one-sided test for a “larger” cdf function tests the null hypothesis against the
alternative that the population cdf of the data is greater than the hypothesized cdf.

 kstest

22-2511

The test statistic is the maximum amount by which the empirical cdf calculated from x
exceeds the hypothesized cdf:

D F x G x
x

*
^

max .= () - ()
Ê

Ë
ÁÁ

ˆ

¯
˜̃

The one-sided test for a “smaller” cdf function tests the null hypothesis against the
alternative that the population cdf of the data is less than the hypothesized cdf. The test
statistic is the maximum amount by which the hypothesized cdf exceeds the empirical cdf
calculated from x:

D G x F x
x

*
^

max .= () - ()
Ê

Ë
ÁÁ

ˆ

¯
˜̃

kstest computes the critical value cv using an approximate formula or by interpolation
in a table. The formula and table cover the range 0.01 ≤ alpha ≤ 0.2 for two-sided tests
and 0.005 ≤ alpha ≤ 0.1 for one-sided tests. cv is returned as NaN if alpha is outside
this range.

Algorithms

kstest decides to reject the null hypothesis by comparing the p-value p with the
significance level Alpha, not by comparing the test statistic ksstat with the critical value
cv. Since cv is approximate, comparing ksstat with cv occasionally leads to a different
conclusion than comparing p with Alpha.

References

[1] Massey, F. J. “The Kolmogorov-Smirnov Test for Goodness of Fit.” Journal of the
American Statistical Association. Vol. 46, No. 253, 1951, pp. 68–78.

[2] Miller, L. H. “Table of Percentage Points of Kolmogorov Statistics.” Journal of the
American Statistical Association. Vol. 51, No. 273, 1956, pp. 111–121.

[3] Marsaglia, G., W. Tsang, and J. Wang. “Evaluating Kolmogorov’s Distribution.”
Journal of Statistical Software. Vol. 8, Issue 18, 2003.

See Also
adtest | kstest2 | lillietest

22 Functions — Alphabetical List

22-2512

kstest2
Two-sample Kolmogorov-Smirnov test

Syntax

h = kstest2(x1,x2)

h = kstest2(x1,x2,Name,Value)

[h,p] = kstest2(___)

[h,p,ks2stat] = kstest2(___)

Description

h = kstest2(x1,x2) returns a test decision for the null hypothesis that the data
in vectors x1 and x2 are from the same continuous distribution, using the two-sample
Kolmogorov-Smirnov test. The alternative hypothesis is that x1 and x2 are from different
continuous distributions. The result h is 1 if the test rejects the null hypothesis at the 5%
significance level, and 0 otherwise.

h = kstest2(x1,x2,Name,Value) returns a test decision for a two-sample
Kolmogorov-Smirnov test with additional options specified by one or more name-value
pair arguments. For example, you can change the significance level or conduct a one-
sided test.

[h,p] = kstest2(___) also returns the asymptotic p-value p, using any of the input
arguments from the previous syntaxes.

[h,p,ks2stat] = kstest2(___) also returns the test statistic ks2stat.

Examples

Test Two Samples for the Same Distribution

Generate sample data from two different Weibull distributions.

rng(1); % For reproducibility

x1 = wblrnd(1,1,1,50);

x2 = wblrnd(1.2,2,1,50);

 kstest2

22-2513

Test the null hypothesis that data in vectors x1 and x2 comes from populations with the
same distribution.

h = kstest2(x1,x2)

h =

 1

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the
default 5% significance level.

Test the Hypothesis at Different Significance Levels

Generate sample data from two different Weibull distributions.

rng(1); % For reproducibility

x1 = wblrnd(1,1,1,50);

x2 = wblrnd(1.2,2,1,50);

Test the null hypothesis that data vectors x1 and x2 are from populations with the same
distribution at the 1% significance level.

[h,p] = kstest2(x1,x2,'Alpha',0.01)

h =

 0

p =

 0.0317

The returned value of h = 0 indicates that kstest does not reject the null hypothesis at
the 1% significance level.

One-Sided Hypothesis Test

Generate sample data from two different Weibull distributions.

rng(1); % For reproducibility

x1 = wblrnd(1,1,1,50);

x2 = wblrnd(1.2,2,1,50);

Test the null hypothesis that data in vectors x1 and x2 comes from populations with the
same distribution, against the alternative hypothesis that the cdf of the distribution of x1
is larger than the cdf of the distribution of x2.

[h,p,k] = kstest2(x1,x2,'Tail','larger')

22 Functions — Alphabetical List

22-2514

h =

 1

p =

 0.0158

k =

 0.2800

The returned value of h = 1 indicates that kstest rejects the null hypothesis, in favor
of the alternative hypothesis that the cdf of the distribution of x1 is larger than the cdf of
the distribution of x2, at the default 5% significance level. The returned value of k is the
test statistic for the two-sample Kolmogorov-Smirnov test.

Input Arguments

x1 — Sample data
vector

Sample data from the first sample, specified as a vector. Data vectors x1 and x2 do not
need to be the same size.
Data Types: single | double

x2 — Sample data
vector

Sample data from the second sample, specified as a vector. Data vectors x1 and x2 do not
need to be the same size.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

 kstest2

22-2515

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Tail' — Type of alternative hypothesis
'unequal' (default) | 'larger' | 'smaller'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'unequal' Test the alternative hypothesis that the empirical cdf of x1 is unequal to
the empirical cdf of x2.

'larger' Test the alternative hypothesis that the empirical cdf of x1 is larger than
the empirical cdf of x2.

'smaller' Test the alternative hypothesis that the empirical cdf of x1 is smaller
than the empirical cdf of x2.

If the data values in x1 tend to be larger than those in x2, the empirical distribution
function of x1 tends to be smaller than that of x2, and vice versa.
Example: 'Tail','larger'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — Asymptotic p-value
scalar value in the range (0,1)

22 Functions — Alphabetical List

22-2516

Asymptotic p-value of the test, returned as a scalar value in the range (0,1). p is the
probability of observing a test statistic as extreme as, or more extreme than, the observed
value under the null hypothesis. The asymptotic p-value becomes very accurate for large
sample sizes, and is believed to be reasonably accurate for sample sizes n1 and n2, such
that (n1*n2)/(n1 + n2) ≥ 4.

ks2stat — Test statistic
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

More About

Two-Sample Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov test is a nonparametric hypothesis test that
evaluates the difference between the cdfs of the distributions of the two sample data
vectors over the range of x in each data set.

The two-sided test uses the maximum absolute difference between the cdfs of the
distributions of the two data vectors. The test statistic is

D F x F x
x

* max � � ,= () - ()()1 2

where F̂ x
1

() is the proportion of x1 values less than or equal to x and F̂ x
2

() is the
proportion of x2 values less than or equal to x.

The one-sided test uses the actual value of the difference between the cdfs of the
distributions of the two data vectors rather than the absolute value. The test statistic is

D F x F x
x

*
max � � .= () - ()()1 2

Algorithms

In kstest2, the decision to reject the null hypothesis is based on comparing the p-value
p with the significance level Alpha, not by comparing the test statistic ks2stat with a
critical value.

 kstest2

22-2517

References

[1] Massey, F. J. “The Kolmogorov-Smirnov Test for Goodness of Fit.” Journal of the
American Statistical Association. Vol. 46, No. 253, 1951, pp. 68–78.

[2] Miller, L. H. “Table of Percentage Points of Kolmogorov Statistics.” Journal of the
American Statistical Association. Vol. 51, No. 273, 1956, pp. 111–121.

[3] Marsaglia, G., W. Tsang, and J. Wang. “Evaluating Kolmogorov’s Distribution.”
Journal of Statistical Software. Vol. 8, Issue 18, 2003.

See Also
adtest | kstest | lillietest

22 Functions — Alphabetical List

22-2518

kurtosis
Kurtosis

Syntax

k = kurtosis(X)

k = kurtosis(X,flag)

k = kurtosis(X,flag,dim)

Description

k = kurtosis(X) returns the sample kurtosis of X. For vectors, kurtosis(x) is the
kurtosis of the elements in the vector x. For matrices kurtosis(X) returns the sample
kurtosis for each column of X. For N-dimensional arrays, kurtosis operates along the
first nonsingleton dimension of X.

k = kurtosis(X,flag) specifies whether to correct for bias (flag is 0) or not (flag is
1, the default). When X represents a sample from a population, the kurtosis of X is biased,
that is, it will tend to differ from the population kurtosis by a systematic amount that
depends on the size of the sample. You can set flag to 0 to correct for this systematic
bias.

k = kurtosis(X,flag,dim) takes the kurtosis along dimension dim of X.

kurtosis treats NaNs as missing values and removes them.

Examples
X = randn([5 4])

X =

 1.1650 1.6961 -1.4462 -0.3600

 0.6268 0.0591 -0.7012 -0.1356

 0.0751 1.7971 1.2460 -1.3493

 0.3516 0.2641 -0.6390 -1.2704

 -0.6965 0.8717 0.5774 0.9846

 kurtosis

22-2519

k = kurtosis(X)

k =

 2.1658 1.2967 1.6378 1.9589

More About

Algorithms

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal
distribution is 3. Distributions that are more outlier-prone than the normal distribution
have kurtosis greater than 3; distributions that are less outlier-prone have kurtosis less
than 3.

The kurtosis of a distribution is defined as

k
E x= −()m

s

4

4

where μ is the mean of x, σ is the standard deviation of x, and E(t) represents the
expected value of the quantity t. kurtosis computes a sample version of this population
value.

Note Some definitions of kurtosis subtract 3 from the computed value, so that the normal
distribution has kurtosis of 0. The kurtosis function does not use this convention.

When you set flag to 1, the following equation applies:

k
n

x x

n
x x

i

i

n

i

i

n
1

4

1

2

1

2

1

1

=

−()

−()










=

=

∑

∑

When you set flag to 0, the following equation applies:

22 Functions — Alphabetical List

22-2520

k
n

n n
n k n

0 1

1

2 3
1 3 1 3= −

−() −()
+() − −()() +

This bias-corrected formula requires that X contain at least four elements.

See Also
mean | moment | skewness | std | var

 lasso

22-2521

lasso
Regularized least-squares regression using lasso or elastic net algorithms

Syntax

B = lasso(X,Y)

[B,FitInfo] = lasso(X,Y)

[B,FitInfo] = lasso(X,Y,Name,Value)

Description

B = lasso(X,Y) returns fitted least-squares regression coefficients for a set of
regularization coefficients Lambda.

[B,FitInfo] = lasso(X,Y) returns a structure containing information about the fits.

[B,FitInfo] = lasso(X,Y,Name,Value) fits regularized regressions with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

X

Numeric matrix with n rows and p columns. Each row represents one observation, and
each column represents one predictor (variable).

Y

Numeric vector of length n, where n is the number of rows of X. Y(i) is the response to
row i of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-2522

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha'

Scalar value from 0 to 1 (excluding 0) representing the weight of lasso (L1) versus ridge
(L2) optimization. Alpha = 1 represents lasso regression, Alpha close to 0 approaches
ridge regression, and other values represent elastic net optimization. See “Definitions” on
page 22- .

Default: 1

'CV'

Method lasso uses to estimate mean squared error:

• K, a positive integer — lasso uses K-fold cross validation.
• cvp, a cvpartition object — lasso uses the cross-validation method expressed in

cvp. You cannot use a 'leaveout' partition with lasso.
• 'resubstitution' — lasso uses X and Y to fit the model and to estimate the mean

squared error, without cross validation.

Default: 'resubstitution'

'DFmax'

Maximum number of nonzero coefficients in the model. lasso returns results only for
Lambda values that satisfy this criterion.

Default: Inf

'Lambda'

Vector of nonnegative Lambda values. See “Definitions” on page 22- .

• If you do not supply Lambda, lasso calculates the largest value of Lambda that gives
a nonnull model. In this case, LambdaRatio gives the ratio of the smallest to the
largest value of the sequence, and NumLambda gives the length of the vector.

• If you supply Lambda, lasso ignores LambdaRatio and NumLambda.

 lasso

22-2523

Default: Geometric sequence of NumLambda values, the largest just sufficient to produce
B = 0

'LambdaRatio'

Positive scalar, the ratio of the smallest to the largest Lambda value when you do not set
Lambda.

If you set LambdaRatio = 0, lasso generates a default sequence of Lambda values, and
replaces the smallest one with 0.

Default: 1e-4

'MCReps'

Positive integer, the number of Monte Carlo repetitions for cross validation.

• If CV is 'resubstitution' or a cvpartition of type 'resubstitution', MCReps
must be 1.

• If CV is a cvpartition of type 'holdout', MCReps must be greater than 1.

Default: 1

'NumLambda'

Positive integer, the number of Lambda values lasso uses when you do not set Lambda.
lasso can return fewer than NumLambda fits if the if the residual error of the fits drops
below a threshold fraction of the variance of Y.

Default: 100

'Options'

Structure that specifies whether to cross validate in parallel, and specifies the random
stream or streams. Create the Options structure with statset. Option fields:

• UseParallel — Set to true to compute in parallel. Default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. To

compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64'
or 'mrg32k3a'. Default is false.

22 Functions — Alphabetical List

22-2524

• Streams — A RandStream object or cell array consisting of one such object. If you do
not specify Streams, lasso uses the default stream.

'PredictorNames'

Cell array of strings representing names of the predictor variables, in the order in which
they appear in X.

Default: {}

'RelTol'

Convergence threshold for the coordinate descent algorithm (see Friedman, Tibshirani,
and Hastie [3]). The algorithm terminates when successive estimates of the coefficient
vector differ in the L2 norm by a relative amount less than RelTol.

Default: 1e-4

'Standardize'

Boolean value specifying whether lasso scales X before fitting the models. This affects
whether the regularization is applied to the coefficients on the standardized scale or
original scale. The results are always presented on the original data scale.

X and Y are always centered.

Default: true

'Weights'

Observation weights, a nonnegative vector of length n, where n is the number of rows of
X. lasso scales Weights to sum to 1.

Default: 1/n * ones(n,1)

Output Arguments

B

Fitted coefficients, a p-by-L matrix, where p is the number of predictors (columns) in X,
and L is the number of Lambda values.

 lasso

22-2525

FitInfo

Structure containing information about the model fits.

Field in FitInfo Description

Intercept Intercept term β0 for each linear model, a 1-by-L vector
Lambda Lambda parameters in ascending order, a 1-by-L vector
Alpha Value of Alpha parameter, a scalar
DF Number of nonzero coefficients in B for each value of Lambda,

a 1-by-L vector
MSE Mean squared error (MSE), a 1-by-L vector

If you set the CV name-value pair to cross validate, the FitInfo structure contains
additional fields.

Field in FitInfo Description

SE The standard error of MSE for each Lambda, as calculated
during cross validation, a 1-by-L vector

LambdaMinMSE The Lambda value with minimum MSE, a scalar
Lambda1SE The largest Lambda such that MSE is within one standard

error of the minimum, a scalar
IndexMinMSE The index of Lambda with value LambdaMinMSE, a scalar
Index1SE The index of Lambda with value Lambda1SE, a scalar

Examples

Remove Redundant Predictors

Construct a data set with redundant predictors, and identify those predictors using cross-
validated lasso.

Create a matrix X of 100 five-dimensional normal variables and a response vector Y from
just two components of X, with small added noise.

22 Functions — Alphabetical List

22-2526

X = randn(100,5);

r = [0;2;0;-3;0]; % only two nonzero coefficients

Y = X*r + randn(100,1)*.1; % small added noise

Construct the default lasso fit.

B = lasso(X,Y);

Find the coefficient vector for the 25th value in B.

B(:,25)

ans =

 0

 1.6093

 0

 -2.5865

 0

lasso identifies and removes the redundant predictors.

Plot a Regularized Fit with Cross Validation

Visually examine the cross-validated error of various levels of regularization.

Load the acetylene data and prepare the data with interactions for fitting.

load acetylene

Xs = [x1 x2 x3];

X = x2fx(Xs,'interaction');

X(:,1) = []; % No constant term

Construct the lasso fit using ten-fold cross validation. Include the FitInfo output so you
can plot the result.

[B FitInfo] = lasso(X,y,'CV',10);

Plot the cross-validated fits.

lassoPlot(B,FitInfo,'PlotType','CV');

 lasso

22-2527

More About

Lasso

For a given value of λ, a nonnegative parameter, lasso solves the problem

min ,
,b b

b b l b
0

1

2
0

2

1 1
N

y xi i
T

i

N

j

j

p

- -() +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

= =
Â Â

where

• N is the number of observations.
• yi is the response at observation i.

22 Functions — Alphabetical List

22-2528

• xi is data, a vector of p values at observation i.
• λ is a nonnegative regularization parameter corresponding to one value of Lambda.
• The parameters β0 and β are scalar and p-vector respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Elastic Net

For an α strictly between 0 and 1, and a nonnegative λ, elastic net solves the problem

min ,
,b b

ab b l b
0

1

2
0

2

1
N

y x Pi i
T

i

N

- -() + ()
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â

where

P j j

j

p

a b
a

b a b
a

b a b() =
-

+ =
-

+Ê
ËÁ

ˆ
¯̃=

Â() ()
.

1

2

1

22

2

1
2

1

Elastic net is the same as lasso when α = 1. As α shrinks toward 0, elastic net approaches
ridge regression. For other values of α, the penalty term Pα(β) interpolates between the
L1 norm of β and the squared L2 norm of β.
• “Lasso and Elastic Net”

References

[1] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, Vol 58, No. 1, pp. 267–288, 1996.

[2] Zou, H. and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B, Vol. 67, No. 2, pp. 301–320,
2005.

[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, Vol 33, No. 1,
2010. http://www.jstatsoft.org/v33/i01

http://www.jstatsoft.org/v33/i01

 lasso

22-2529

[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd
edition. Springer, New York, 2008.

See Also
lassoPlot | ridge

22 Functions — Alphabetical List

22-2530

lassoglm
Lasso or elastic net regularization for generalized linear model regression

Syntax

B = lassoglm(X,Y)

[B,FitInfo] = lassoglm(X,Y)

[B,FitInfo] = lassoglm(X,Y,distr)

[B,FitInfo] = lassoglm(X,Y,distr,Name,Value)

Description

B = lassoglm(X,Y) returns penalized maximum-likelihood fitted coefficients for a
generalized linear model of the response Y to the data matrix X. Y are assumed to have a
Gaussian probability distribution.

[B,FitInfo] = lassoglm(X,Y) returns a structure containing information about the
fits.

[B,FitInfo] = lassoglm(X,Y,distr) fits the model using the probability
distribution type for Y as specified in distr.

[B,FitInfo] = lassoglm(X,Y,distr,Name,Value) fits regularized generalized
linear regressions with additional options specified by one or more Name,Value pair
arguments.

Input Arguments

X

Numeric matrix with n rows and p columns. Each row represents one observation, and
each column represents one predictor (variable).

Y

When distr is not 'binomial', Y is a numeric vector or categorical array of length n,
where n is the number of rows of X. Y(i) is the response to row i of X.

 lassoglm

22-2531

When distr is 'binomial', Y is either a:

• Numeric vector of length n, where each entry represents success (1) or failure (0)
• Logical vector of length n, where each entry represents success or failure
• Categorical array of length n, where each entry represents success or failure
• Two column numeric matrix, where the first column contains the number of successes

for each observation, and the second column contains the total number of trials

distr

Distributional family for the nonsystematic variation in the responses, a string. Choices:

• 'normal'

• 'binomial'

• 'poisson'

• 'gamma'

• 'inverse gaussian'

By default, lassoglm uses the canonical link function corresponding to distr. Specify
another link function using the 'link' name-value pair.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha'

Scalar value from 0 to 1 (excluding 0) representing the weight of lasso (L1) versus ridge
(L2) optimization. Alpha = 1 represents lasso regression, and other values represent
elastic net optimization. Alpha close to 0 approaches ridge regression. See “Definitions”
on page 22- .

Default: 1

'CV'

Method lassoglm uses to estimate deviance:

22 Functions — Alphabetical List

22-2532

• K, a positive integer — lassoglm uses K-fold cross validation.
• cvp, a cvpartition object — lassoglm uses the cross-validation method expressed

in cvp. You cannot use a 'leaveout' partition with lassoglm.
• 'resubstitution' — lassoglm uses X and Y to fit the model and to estimate the

deviance, without cross validation.

Default: 'resubstitution'

'DFmax'

Maximum number of nonzero coefficients in the model. lassoglm returns results for
Lambda values that satisfy this criterion.

Default: Inf

'Lambda'

Vector of nonnegative Lambda values. See “Lasso” on page 22-2539.

• If you do not supply Lambda, lassoglm estimates the largest value of Lambda that
gives a nonnull model. In this case, LambdaRatio gives the ratio of the smallest to
the largest value of the sequence, and NumLambda gives the length of the vector.

• If you supply Lambda, lassoglm ignores LambdaRatio and NumLambda.

Default: Geometric sequence of NumLambda values, the largest just sufficient to produce
B = 0

'LambdaRatio'

Positive scalar, the ratio of the smallest to the largest Lambda value when you do not
explicitly set Lambda.

If you set LambdaRatio = 0, lassoglm generates a default sequence of Lambda values,
and replaces the smallest one with 0.

Default: 1e-4

'Link'

Specify the mapping between the mean µ of the response and the linear predictor Xb.

 lassoglm

22-2533

Value Description

'comploglog' log(–log((1–µ))) = Xb
'identity', default for the
distribution 'normal'

µ = Xb

'log', default for the distribution
'poisson'

log(µ) = Xb

'logit', default for the
distribution 'binomial'

log(µ/(1 – µ)) = Xb

'loglog' log(–log(µ)) = Xb
'probit' Φ–1(µ) = Xb, where Φ is the normal (Gaussian)

CDF function
'reciprocal', default for the
distribution 'gamma'

µ–1 = Xb

p (a number), default for the
distribution 'inverse gaussian'
(with p = –2)

µp = Xb

Cell array of the form {FL FD FI},
containing three function handles,
created using @, that define the
link (FL), the derivative of the link
(FD), and the inverse link (FI).
Equivalently, can be a structure of
function handles with field Link
containing FL, field Derivative
containing FD, and field Inverse
containing FI.

User-specified link function (see “Custom Link
Function” on page 10-16)

'MCReps'

Positive integer, the number of Monte Carlo repetitions for cross validation.

• If CV is 'resubstitution' or a cvpartition of type 'resubstitution', MCReps
must be 1.

• If CV is a cvpartition of type 'holdout', MCReps must be greater than 1.

Default: 1

22 Functions — Alphabetical List

22-2534

'NumLambda'

Positive integer, the number of Lambda values lassoglm uses when you do not set
Lambda. lassoglm can return fewer than NumLambda fits if the deviance of the fits drops
below a threshold fraction of the null deviance (deviance of the fit without any predictors
X).

Default: 100

'Offset'

Numeric vector with the same number of rows as X. lassoglm uses Offset as an
additional predictor variable, but keeps its coefficient value fixed at 1.0.

'Options'

Structure that specifies whether to cross validate in parallel, and specifies the random
stream or streams. Create the Options structure with statset. Option fields:

• UseParallel — Set to true to compute in parallel. Default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. To

compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64'
or 'mrg32k3a'. Default is false.

• Streams — RandStream object or cell array consisting of one such object. If you do
not specify Streams, lassoglm uses the default stream.

'PredictorNames'

Cell array of strings representing names of the predictor variables, in the order in which
they appear in X.

Default: {}

'RelTol'

Convergence threshold for the coordinate descent algorithm (see Friedman, Tibshirani,
and Hastie [3]). The algorithm terminates when successive estimates of the coefficient
vector differ in the L2 norm by a relative amount less than RelTol.

Default: 1e-4

 lassoglm

22-2535

'Standardize'

Boolean value specifying whether lassoglm scales X before fitting the models. This
affects whether the regularization is applied to the coefficients on the standardized scale
or original scale. The results are always presented on the original scale.

Default: true

'Weights'

Observation weights, a nonnegative vector of length n, where n is the number of rows of
X. At least two values must be positive.

Default: 1/n * ones(n,1)

Output Arguments

B

Fitted coefficients, a p-by-L matrix, where p is the number of predictors (columns) in X,
and L is the number of Lambda values.

FitInfo

Structure containing information about the model fits.

Field in FitInfo Description

Alpha Value of Alpha parameter, a scalar.
Deviance Deviance of the fitted model for each value of Lambda, a 1-

by-L vector.
If cross validation was performed, the values for Deviance
represent the estimated expected deviance of the model
applied to new data, as calculated by cross validation.
Otherwise, Deviance is the deviance of the fitted model
applied to the data used to perform the fit.

DF Number of nonzero coefficients in B for each Lambda value,
a 1-by-L vector.

Intercept Intercept term β0 for each linear model, a 1-by-L vector.

22 Functions — Alphabetical List

22-2536

Field in FitInfo Description

Lambda Lambda parameters in ascending order, a 1-by-L vector.

If you set the CV name-value pair to cross validate, the FitInfo structure contains
additional fields.

Field in FitInfo Description

IndexMinDeviance Index of Lambda with value LambdaMinDeviance, a scalar.
Index1SE Index of Lambda with value Lambda1SE, a scalar.
LambdaMinDeviance Lambda value with minimum expected deviance, as

calculated by cross validation, a scalar.
Lambda1SE Largest Lambda such that Deviance is within one standard

error of the minimum, a scalar.
SE Standard error of Deviance for each Lambda, as calculated

during cross validation, a 1-by-L vector.

Examples

Lasso Regularization of a Generalized Linear Model

Construct data from a Poisson model, and identify the important predictors using
lassoglm.

Create data with 20 predictors, and Poisson responses using just three of the predictors,
plus a constant.

rng('default') % for reproducibility

X = randn(100,20);

mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);

y = poissrnd(mu);

Construct a cross-validated lasso regularization of a Poisson regression model of the data.

[B FitInfo] = lassoglm(X,y,'poisson','CV',10);

Examine the cross-validation plot to see the effect of the Lambda regularization
parameter.

 lassoglm

22-2537

lassoPlot(B,FitInfo,'plottype','CV');

The green circle and dashed line locate the Lambda with minimal cross-validation error.
The blue circle and dashed line locate the point with minimal cross-validation error plus
one standard deviation.

Find the nonzero model coefficients corresponding to the two identified points.

minpts = find(B(:,FitInfo.IndexMinDeviance))

minpts =

 3

 5

22 Functions — Alphabetical List

22-2538

 6

 10

 11

 15

 16

min1pts = find(B(:,FitInfo.Index1SE))

min1pts =

 5

 10

 15

The coefficients from the minimal plus one standard error point are exactly those
coefficients used to create the data.

• “Regularize Poisson Regression” on page 10-45
• “Regularize Logistic Regression” on page 10-48
• “Regularize Wide Data in Parallel” on page 10-55

More About

Link Function

A link function f(μ) maps a distribution with mean μ to a linear model with data X and
coefficient vector b using the formula
f(μ) = Xb.

Find the formulas for the link functions in the Link name-value pair description. Here,
“typical” means a link function that is typically used for the listed distribution.

Distributional Family Link Function (typical, {default})

'normal' {'identity'}

'binomial' 'comploglog', 'loglog', 'probit', {'logit'}
'poisson' {'log'}

'gamma' {'reciprocal'}

'inverse gaussian' {-2}

 lassoglm

22-2539

Lasso

For a nonnegative value of λ, lasso solves the problem

min , ,
,b b

b b l b
0

1
0

1
N

j

j

p

Deviance () +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Â

where

• Deviance is the deviance of the model fit to the responses using intercept β0 and
predictor coefficients β. The formula for Deviance depends on the distr parameter
you supply to lassoglm. Minimizing the λ-penalized deviance is equivalent to
maximizing the λ-penalized log likelihood.

• N is the number of observations.
• λ is a nonnegative regularization parameter corresponding to one value of Lambda.
• Parameters β0 and β are scalar and p-vector respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Elastic Net

For an α strictly between 0 and 1, and a nonnegative λ, elastic net solves the problem

min , ,
,b b

ab b l b
0

1
0

N
PDeviance () + ()Ê

ËÁ
ˆ
¯̃

where

P j j

j

p

a b
a

b a b
a

b a b() =
-

+ =
-

+Ê
ËÁ

ˆ
¯̃=

Â() ()
.

1

2

1

22

2

1
2

1

Elastic net is the same as lasso when α = 1. For other values of α, the penalty term Pα(β)
interpolates between the L1 norm of β and the squared L2 norm of β. As α shrinks toward
0, elastic net approaches ridge regression.
• “Lasso Regularization of Generalized Linear Models” on page 10-45

22 Functions — Alphabetical List

22-2540

References

[1] Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society, Series B, Vol. 58, No. 1, pp. 267–288, 1996.

[2] Zou, H. and T. Hastie. Regularization and Variable Selection via the Elastic Net.
Journal of the Royal Statistical Society, Series B, Vol. 67, No. 2, pp. 301–320,
2005.

[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33,
No. 1, 2010. http://www.jstatsoft.org/v33/i01

[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd
edition. Springer, New York, 2008.

[5] Dobson, A. J. An Introduction to Generalized Linear Models, 2nd edition. Chapman &
Hall/CRC Press, New York, 2002.

[6] McCullagh, P., and J. A. Nelder. Generalized Linear Models, 2nd edition. Chapman &
Hall/CRC Press, New York, 1989.

[7] Collett, D. Modelling Binary Data, 2nd edition. Chapman & Hall/CRC Press, New
York, 2003.

See Also
glmfit | lasso | lassoPlot | ridge

http://www.jstatsoft.org/v33/i01

 lassoPlot

22-2541

lassoPlot
Trace plot of lasso fit

Syntax

ax = lassoPlot(B)

ax = lassoPlot(B,FitInfo)

ax = lassoPlot(B,FitInfo,Name,Value)

[ax,figh] = lassoPlot(B,...)

Description

ax = lassoPlot(B) creates a trace plot of the values in B against the L1 norm of B. ax
is a handle to the plot axis.

ax = lassoPlot(B,FitInfo) creates a plot with type depending on the data type of
FitInfo and the value, if any, of the plotType name-value pair.

ax = lassoPlot(B,FitInfo,Name,Value) creates a plot with additional options
specified by one or more Name,Value pair arguments.

[ax,figh] = lassoPlot(B,...) returns a handle to the figure window.

Input Arguments

B

Coefficients of a sequence of regression fits, as returned from the lasso or lassoglm
functions. B is a p-by-NLambda matrix, where p is the number of predictors, and each
column of B is a set of coefficients lasso calculates using one Lambda penalty value.

FitInfo

Information controlling the plot:

• FitInfo is a structure, especially as returned from lasso or lassoglm —
lassoPlot creates a plot based on the PlotType name-value pair.

22 Functions — Alphabetical List

22-2542

• FitInfo is a vector — lassoPlot forms the x-axis of the plot from the values in
FitInfo. The length of FitInfo must equal the number of columns of B.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Parent'

Axis in which to draw the plot.

Default: New plot

'PlotType'

Choose the plot type when you give a FitInfo vector or structure:

FitInfo Type PlotType Plot

Vector or
Structure

'L1' plotLasso creates the x-axis from the L1 norm of the coefficients
in B. The x-axis at the top of the plot contains the degrees of
freedom (df), meaning the number of nonzero coefficients of B.

Structure 'Lambda' plotLasso creates the x-axis from the Lambda field of FitInfo.
The x-axis at the top of the plot contains the degrees of freedom
(df), meaning the number of nonzero coefficients of B.

Cross-Validated
Structure

'CV' • For each Lambda, plots an estimate of the mean squared
prediction error on new data for the model fitted by lasso with
that value of Lambda.

• Plots error bars for the estimates.
• Plots the value of Lambda with minimum cross-validated MSE.
• Plots the greatest Lambda that is within one standard error

of minimum MSE (so makes the sparsest model within that
region).

Default: 'L1'

 lassoPlot

22-2543

'PredictorNames'

Cell array of strings to label each coefficient of B. If the length of PredictorNames is
less than the number of rows of B, the remaining labels are padded with default values.

lassoPlot uses the predictor names in FitInfo only if:

• You created FitInfo with a call to lasso that included a PredictorNames name-
value pair.

• You call lassoPlot without a PredictorNames name-value pair.
• You include FitInfo in your lassoPlot call.

Default: {'B1','B2',...}

'XScale'

• 'linear' for linear x-axis
• 'log' for logarithmic scaled x-axis

Default: 'linear', except 'log' for the 'CV' plot type

Output Arguments

ax

Handle to the axis of the plot (see “Coordinate System”).

figh

Handle to the figure window (see “Special Object Identifiers”).

Examples

Lasso Plot with Default Plot Type

Load the sample data

load acetylene

Prepare the design matrix for lasso fit with interactions.

22 Functions — Alphabetical List

22-2544

X = [x1 x2 x3];

D = x2fx(X,'interaction');

D(:,1) = []; % No constant term

Fit a regularized model of the data using lasso .

B = lasso(D,y);

Plot the fits with the default plot type.

lassoPlot(B);

Lasso Plot with Lambda Plot Type

Load the sample data.

 lassoPlot

22-2545

load acetylene

Prepare the data for lasso fit with interactions.

X = [x1 x2 x3];

D = x2fx(X,'interaction');

D(:,1) = []; % No constant term

Fit a regularized model of the data with lasso .

[B FitInfo] = lasso(D,y);

Plot the fits with the Lambda plot type and logarithmic scaling.

lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');

22 Functions — Alphabetical List

22-2546

Lasso Plot with Cross-Validated Fits

Load the sample data.

load acetylene

Prepare the design matrix for a lasso fit with interactions.

X = [x1 x2 x3];

D = x2fx(X,'interaction');

D(:,1) = []; % No constant term

Fit a regularized model of the data with lasso and cross validation.

[B FitInfo] = lasso(D,y,'CV',10);

 lassoPlot

22-2547

Plot the cross-validated fits.

lassoPlot(B,FitInfo,'PlotType','CV');

More About
• “Lasso and Elastic Net”

See Also
lasso | lassoglm

22 Functions — Alphabetical List

22-2548

le
Class: qrandstream

Less than or equal relation for handles

Syntax

h1 <= h2

Description

Handles are equal if they are handles for the same object. All comparisons use a number
associated with each handle object. Nothing can be assumed about the result of a handle
comparison except that the repeated comparison of two handles in the same MATLAB
session will yield the same result. The order of handle values is purely arbitrary and has
no connection to the state of the handle objects being compared.

h1 <= h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and
h2 must be of the same dimensions unless one is a scalar. The result is a logical array of
the same dimensions, where each element is an element-wise <= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar.

tf = le(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | ge | gt | ne | eq | lt

 Leap property

22-2549

Leap property
Class: qrandset

Interval between points

Description
Number of points to leap over and omit for each point taken from the sequence. The Leap
property of a point set contains a positive integer which specifies the number of points
in the sequence to leap over and omit for every point taken. The default Leap value is 0,
which corresponds to taking every point from the sequence.

Leaping is a technique used to improve the quality of a point set. However, you must
choose the Leap values with care; many Leap values create sequences that fail to touch
on large sub-hyper-rectangles of the unit hypercube, and so fail to be a uniform quasi-
random point set.

Choosing Leap Values for Halton Sets

A known rule for choosing Leap values for Halton sets is to set it to (P-1) where P is a
prime number that has not been used to generate one of the dimensions, i.e. for a k-
dimensional point set P would be the (k+1)th or greater prime.

Examples
Experiment with different leap values:

% No leaping produces the standard Halton sequence.

P = haltonset(5);

P(1:5,:)

% Set a leap of 1. The point set now includes every other

% point from the sequence.

P.Leap = 1;

P(1:5,:)

See Also
net | qrandset | subsref | haltonset | Skip

22 Functions — Alphabetical List

22-2550

length
Class: dataset

Length of dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

n = length(A)

Description

n = length(A) returns the number of observations in the dataset A. length is
equivalent to size(A,1).

See Also
size

 length

22-2551

length
Class: qrandset

Length of point set

Syntax

length(p)

Description

length(p) returns the number of points in the point set p. It is equivalent to size(p,
1).

See Also
qrandset | size

22 Functions — Alphabetical List

22-2552

levelcounts
Element counts by level of a nominal or ordinal array

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

C = levelcounts(A)

C = levelcounts(A,dim)

Description

C = levelcounts(A) returns counts of the number of elements in the nominal or
ordinal array A equal to each of the possible levels in A into the vector C, which has as
many elements as A has levels.

• If A is a matrix, then C is a matrix of column counts.
• If A is an N-dimensional array, levelcounts operates along the first nonsingleton

dimension.

C = levelcounts(A,dim) operates along the dimension dim.

Examples

Count Observations in Each Level

Create a nominal array from string data in a cell array.

colors = nominal({'r','b','g';'g','r','b';'b','r','g'},...

 {'blue','green','red'})

 levelcounts

22-2553

colors =

 red blue green

 green red blue

 blue red green

Count the number of observations of each level in each column.

levelcounts(colors)

ans =

 1 1 1

 1 0 2

 1 2 0

Count the number of observations of each level in each row.

levelcounts(colors,2)

ans =

 1 1 1

 1 1 1

 1 1 1

Alternatively, you can use summary to display the counts with their labels. The default is
to count elements in each column.

summary(colors)

 blue 1 1 1

 green 1 0 2

 red 1 2 0

You can also count elements in each row.

summary(colors,2)

22 Functions — Alphabetical List

22-2554

 blue green red

 1 1 1

 1 1 1

 1 1 1

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

dim — Dimension along which to count
positive integer value

Dimension along which to count the number of elements in each level, specified as a
positive integer value. For example, if the dimension is 1, then levelcounts counts
along each column, while if the dimension is 2, then levelcounts counts along each
row.
Data Types: double | single

More About
• Using nominal Objects
• Using ordinal Objects

See Also
nominal | ordinal | summary

 leverage

22-2555

leverage
Leverage

Syntax

h = leverage(data)

h = leverage(data,model)

Description

h = leverage(data) finds the leverage of each row (point) in the matrix data for a
linear additive regression model.

h = leverage(data,model) finds the leverage on a regression, using a specified
model type, where model can be one of these strings:

• 'linear' - includes constant and linear terms
• 'interaction' - includes constant, linear, and cross product terms
• 'quadratic' - includes interactions and squared terms
• 'purequadratic' - includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a regression due to its
location in the space of the inputs.

Examples

One rule of thumb is to compare the leverage to 2p/n where n is the number of
observations and p is the number of parameters in the model. For the Hald data set this
value is 0.7692.

load hald

h = max(leverage(ingredients,'linear'))

h =

 0.7004

22 Functions — Alphabetical List

22-2556

Since 0.7004 < 0.7692, there are no high leverage points using this rule.

More About

Algorithms

[Q,R] = qr(x2fx(data,'model'));

leverage = (sum(Q'.*Q'))'

• regstats

References

[1] Goodall, C. R. “Computation Using the QR Decomposition.” Handbook in Statistics.
Vol. 9, Amsterdam: Elsevier/North-Holland, 1993.

 lhsdesign

22-2557

lhsdesign
Latin hypercube sample

Syntax

X = lhsdesign(n,p)

X = lhsdesign(...,'smooth','off')

X = lhsdesign(...,'criterion',criterion)

X = lhsdesign(...,'iterations',k)

Description

X = lhsdesign(n,p) returns an n-by-p matrix, X, containing a latin hypercube sample
of n values on each of p variables. For each column of X, the n values are randomly
distributed with one from each interval (0,1/n), (1/n,2/n), ..., (1-1/n,1), and they
are randomly permuted.

X = lhsdesign(...,'smooth','off') produces points at the midpoints of the above
intervals: 0.5/n, 1.5/n, ..., 1-0.5/n. The default is 'on'.

X = lhsdesign(...,'criterion',criterion) iteratively generates latin
hypercube samples to find the best one according to the criterion criterion, which can
be one of the following strings.

Criterion Description

'none' No iteration.
'maximin' Maximize minimum distance between points. This is the

default.
'correlation' Reduce correlation.

X = lhsdesign(...,'iterations',k) iterates up to k times in an attempt to
improve the design according to the specified criterion. The default is k = 5.

See Also
haltonset | sobolset | lhsnorm | unifrnd

22 Functions — Alphabetical List

22-2558

lhsnorm
Latin hypercube sample from normal distribution

Syntax

X = lhsnorm(mu,sigma,n)

X = lhsnorm(mu,sigma,n,flag)

[X,Z] = lhsnorm(...)

Description

X = lhsnorm(mu,sigma,n) returns an n-by-p matrix, X, containing a latin hypercube
sample of size n from a p-dimensional multivariate normal distribution with mean
vector, mu, and covariance matrix, sigma.

X is similar to a random sample from the multivariate normal distribution, but the
marginal distribution of each column is adjusted so that its sample marginal distribution
is close to its theoretical normal distribution.

X = lhsnorm(mu,sigma,n,flag) controls the amount of smoothing in the sample.
If flag is 'off', each column has points equally spaced on the probability scale. In
other words, each column is a permutation of the values G(0.5/n), G(1.5/n), ...,
G(1-0.5/n), whereG is the inverse normal cumulative distribution for that column's
marginal distribution. If flag is 'on' (the default), each column has points uniformly
distributed on the probability scale. For example, in place of 0.5/n you use a value
having a uniform distribution on the interval (0/n,1/n).

[X,Z] = lhsnorm(...) also returns Z, the original multivariate normal sample before
the marginals are adjusted to obtain X.

References

[1] Stein, M. “Large sample properties of simulations using latin hypercube sampling.”
Technometrics. Vol. 29, No. 2, 1987, pp. 143–151. Correction, Vol. 32, p. 367.

 lhsnorm

22-2559

See Also
lhsdesign | mvnrnd

22 Functions — Alphabetical List

22-2560

lillietest
Lilliefors test

Syntax

h = lillietest(x)

h = lillietest(x,Name,Value)

[h,p] = lillietest(___)

[h,p,kstat,critval] = lillietest(___)

Description

h = lillietest(x) returns a test decision for the null hypothesis that the data in
vector x comes from a distribution in the normal family, against the alternative that it
does not come from such a distribution, using a Lilliefors test. The result h is 1 if the test
rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = lillietest(x,Name,Value) returns a test decision with additional options
specified by one or more name-value pair arguments. For example, you can test the data
against a different distribution family, change the significance level, or calculate the p-
value using a Monte Carlo approximation.

[h,p] = lillietest(___) also returns the p-value p, using any of the input
arguments from the previous syntaxes.

[h,p,kstat,critval] = lillietest(___) also returns the test statistic kstat and
the critical value critval for the test.

Examples

Test for a Normal Distribution

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon
(MPG), follows a normal distribution across different makes of cars.

load carbig.mat;

 lillietest

22-2561

[h,p,k,c] = lillietest(MPG)

Warning: P is less than the smallest tabulated value, returning 0.001.

h =

 1

p =

 1.0000e-003

k =

 0.0789

c =

 0.0451

The test statistic k is greater than the critical value c, so lillietest returns a result
of h = 1 to indicate rejection of the null hypothesis at the default 5% significance level.
The warning indicates that the returned p-value is the smallest value in the table of
precomputed values. To find a more accurate p-value, use MCTol to run a Monte Carlo
approximation.

Test the Hypothesis at Different Significance Levels

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Test the null hypothesis that the sample data comes from a normal distribution at the
1% significance level.

[h,p] = lillietest(x,'Alpha',0.01)

h =

 0

p =

 0.0348

The returned value of h = 0 indicates that lillietest does not reject the null
hypothesis at the 1% significance level.

Test for an Exponential Distribution

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon
(MPG), follows an exponential distribution across different makes of cars.

load carbig.mat;

22 Functions — Alphabetical List

22-2562

h = lillietest(MPG,'Distr','exp')

h =

 1

The returned value of h = 1 indicates that lillietest rejects the null hypothesis at
the default 5% significance level.

Determine the p-value Using Monte Carlo Approximation

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon
(MPG), follows a normal distribution across different makes of cars. Determine the p-
value using a Monte Carlo approximation with a maximum Monte Carlo standard error
of 1e-4.

load carbig.mat;

[h,p] = lillietest(MPG,'MCTol',1e-4)

h =

 1

p =

 0

The returned value of h = 1 indicates that lillietest rejects the null hypothesis that
the data comes from a normal distribution at the 5% significance level.

Input Arguments

x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 lillietest

22-2563

Example: 'Distr','exp','Alpha',0.01 tests the null hypothesis that the population
distribution belongs to the exponential distribution family at the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

• If MCTol is not used, Alpha must be in the range [0.001,0.50].
• If MCTol is used, Alpha must be in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Distr' — Distribution family
'norm' (default) | 'exp' | 'ev'

Distribution family for the hypothesis test, specified as the comma-separated pair
consisting of 'Distr' and one of the following.

'norm' Normal distribution
'exp' Exponential distribution
'ev' Extreme value distribution

Example: 'Distr','exp'

'MCTol' — Maximum Monte Carlo standard error
scalar value in the range (0,1)

Maximum Monte Carlo standard error for p, the p-value of the test, specified as the
comma-separated pair consisting of 'MCTol' and a scalar value in the range (0,1).

Example: 'MCTol',0.001

Data Types: single | double

Output Arguments

h — Hypothesis test result
1 | 0

22 Functions — Alphabetical List

22-2564

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range (0,1)

p-value of the test, returned as a scalar value in the range (0,1). p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

• If MCTol is not used, p is computed using inverse interpolation into the table
of critical values, and is returned as a scalar value in the range [0.001,0.50].
lillietest warns when p is not found within the tabulated range and returns
either the smallest or largest tabulated value.

• If MCTol is used, lillietest conducts a Monte Carlo simulation to compute a more
accurate p-value, and p is returned as a scalar value in the range (0,1).

kstat — Test statistic
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

critval — Critical value
nonnegative scalar value

Critical value for the hypothesis test, returned as a nonnegative scalar value.

More About

Lilliefors Test

The Lilliefors test is a two-sided goodness-of-fit test suitable when the parameters of
the null distribution are unknown and must be estimated. This is in contrast to the one-
sample Kolmogorov-Smirnov test, which requires the null distribution to be completely
specified.

 lillietest

22-2565

The Lilliefors test statistic is:

D F x G x
x

* max � ,= () - ()

where F̂ x() is the empirical cdf of the sample data and G x() is the cdf of the
hypothesized distribution with estimated parameters equal to the sample parameters.

lillietest can be used to test whether the data vector x has a lognormal or Weibull
distribution by applying a transformation to the data vector and running the appropriate
Lilliefors test:

• To test x for a lognormal distribution, test if log(x) has a normal distribution.
• To test x for a Weibull distribution, test if log(x) has an extreme value distribution.

The Lilliefors test cannot be used when the null hypothesis is not a location-scale family
of distributions.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the p-value.

The Monte Carlo standard error is calculated as:

SE
p p

=
() -()ˆ ˆ

,
1

mcreps

where p̂ is the estimated p-value of the hypothesis test, and mcreps is the number of
Monte Carlo replications performed.

The number of Monte Carlo replications, mcreps, is determined such that the Monte
Carlo standard error for p̂ less than the value specified for MCTol.

Algorithms

To compute the critical value for the hypothesis test, lillietest interpolates into
a table of critical values pre-computed using Monte Carlo simulation for sample
sizes less than 1000 and significance levels between 0.001 and 0.50. The table used
by lillietest is larger and more accurate than the table originally introduced by

22 Functions — Alphabetical List

22-2566

Lilliefors. If a more accurate p-value is desired, or if the desired significance level is less
than 0.001 or greater than 0.50, the MCTol input argument can be used to run a Monte
Carlo simulation to calculate the p-value more exactly.

When the computed value of the test statistic is greater than the critical value,
lillietest rejects the null hypothesis at significance level Alpha.

lillietest treats NaN values in x as missing values and ignores them.

References

[1] Conover, W. J. Practical Nonparametric Statistics. Hoboken, NJ: John Wiley & Sons,
Inc., 1980.

[2] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for the exponential distribution
with mean unknown.” Journal of the American Statistical Association. Vol. 64,
1969, pp. 387–389.

[3] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for normality with mean and
variance unknown.” Journal of the American Statistical Association. Vol. 62,
1967, pp. 399–402.

See Also
adtest | cdfplot | jbtest | kstest | kstest2

 LinearModel class

22-2567

LinearModel class

Linear regression model class

Description

An object comprising training data, model description, diagnostic information, and fitted
coefficients for a linear regression. Predict model responses with the predict or feval
methods.

Construction

mdl = fitlm(tbl) or mdl = fitlm(X,y) create a linear model of a table or dataset
array tbl, or of the responses y to a data matrix X. For details, see fitlm.

mdl = stepwiselm(tbl) or mdl = stepwiselm(X,y) create a linear model of a
table or dataset array tbl, or of the responses y to a data matrix X, with unimportant
predictors excluded. For details, see stepwiselm.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

22 Functions — Alphabetical List

22-2568

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

Properties

CoefficientCovariance

Covariance matrix of coefficient estimates.

CoefficientNames

Cell array of strings containing a label for each coefficient.

Coefficients

Coefficient values stored as a table. Coefficients has one row for each coefficient and
these columns:

• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t statistic for a test that the coefficient is zero
• pValue — p-value for the t statistic

To obtain any of these columns as a vector, index into the property using dot notation.
For example, in mdl the estimated coefficient vector is

 LinearModel class

22-2569

beta = mdl.Coefficients.Estimate

Use coefTest to perform other tests on the coefficients.

DFE

Degrees of freedom for error (residuals), equal to the number of observations minus the
number of estimated coefficients.

Diagnostics

Table with the same number of rows as the input data (tbl or X). Diagnostics contains
diagnostics helpful in finding outliers and influential observations. Many diagnostics
describe the effect on the fit of deleting single observations. Diagnostics contains the
following fields.

Field Meaning Utility

Leverage Diagonal elements of
HatMatrix

Leverage indicates to what extent the predicted
value for an observation is determined by the
observed value for that observation. A value close to
1 indicates that the prediction is largely determined
by that observation, with little contribution from the
other observations. A value close to 0 indicates the fit
is largely determined by the other observations. For
a model with P coefficients and N observations, the
average value of Leverage is P/N. An observation
with Leverage larger than 2*P/N can be regarded as
having high leverage.

CooksDistance Cook's measure of
scaled change in fitted
values

CooksDistance is a measure of scaled change in
fitted values. An observation with CooksDistance
larger than three times the mean Cook's distance can
be an outlier.

Dffits Delete-1 scaled
differences in fitted
values vs. observation
number

Dffits is the scaled change in the fitted values for
each observation that would result from excluding
that observation from the fit. Values with an absolute
value larger than 2*sqrt(P/N) may be considered
influential.

S2_i Delete-1 variance vs.
observation number

S2_i is a set of residual variance estimates obtained
by deleting each observation in turn. These can be
compared with the value of the MSE property.

22 Functions — Alphabetical List

22-2570

Field Meaning Utility

CovRatio Delete-1 ratio of
determinant of
covariance vs.
observation number

CovRatio is the ratio of the determinant of the
coefficient covariance matrix with each observation
deleted in turn to the determinant of the covariance
matrix for the full model. Values larger than 1+3*P/
N or smaller than 1-3*P/N indicate influential
points.

Dfbetas Delete-1 scaled
differences in
covariance estimates
vs. observation number

Dfbetas is an N-by-P matrix of the scaled change
in the coefficient estimates that would result
from excluding each observation in turn. Values
larger than 3/sqrt(N) in absolute value indicate
that the observation has a large influence on the
corresponding coefficient.

HatMatrix Projection matrix to
compute fitted from
observed responses

HatMatrix is an N-by-N matrix such that
Fitted = HatMatrix*Y, where Y is the response
vector and Fitted is the vector of fitted response
values.

Rows not used in the fit because of missing values (in ObservationInfo.Missing)
contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded)
contain NaN values, with the following exception: Delete-1 diagnostics refer to the
statistic with and without that observation (row) included in the fit. These diagnostics
help identify important observations.

Fitted

Predicted response to the input data by using the model. Use predict to compute
predictions for other predictor values, or to compute confidence bounds on Fitted.

Formula

Object containing information about the model.

LogLikelihood

Log likelihood of the model distribution at the response values, with mean fitted from the
model, and other parameters estimated as part of the model fit.

 LinearModel class

22-2571

ModelCriterion

AIC and other information criteria for comparing models. A structure with fields:

• AIC — Akaike information criterion
• AICc — Akaike information criterion corrected for sample size
• BIC — Bayesian information criterion
• CAIC — Consistent Akaike information criterion

To obtain any of these values as a scalar, index into the property using dot notation. For
example, in a model mdl, the AIC value aic is:

aic = mdl.ModelCriterion.AIC

MSE

Mean squared error (residuals), SSE/DFE.

NumCoefficients

Number of coefficients in the model, a positive integer. NumCoefficients includes
coefficients that are set to zero when the model terms are rank deficient.

NumEstimatedCoefficients

Number of estimated coefficients in the model, a positive integer.
NumEstimatedCoefficients does not include coefficients that are set to zero when the
model terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom
for regression.

NumObservations

Number of observations the fitting function used in fitting. This is the number of
observations supplied in the original table, dataset, or matrix, minus any excluded rows
(set with the Excluded name-value pair) or rows with missing values.

NumPredictors

Number of variables fitlm used as predictors for fitting.

NumVariables

Number of variables in the data. NumVariables is the number of variables in the
original table or dataset, or the total number of columns in the predictor matrix and

22 Functions — Alphabetical List

22-2572

response vector when the fit is based on those arrays. It includes variables, if any, that
are not used as predictors or as the response.

ObservationInfo

Table with the same number of rows as the input data (tbl or X).

Field Description

Weights Observation weights. Default is all 1.
Excluded Logical value, 1 indicates an observation that you excluded from

the fit with the Exclude name-value pair.
Missing Logical value, 1 indicates a missing value in the input. Missing

values are not used in the fit.
Subset Logical value, 1 indicates the observation is not excluded or

missing, so is used in the fit.

ObservationNames

Cell array of strings containing the names of the observations used in the fit.

• If the fit is based on a table or dataset containing observation names,
ObservationNames uses those names.

• Otherwise, ObservationNames is an empty cell array

PredictorNames

Cell array of strings, the names of the predictors used in fitting the model.

Residuals

Table of residuals, with one row for each observation and these variables.

Field Description

Raw Observed minus fitted values.
Pearson Raw residuals divided by RMSE.
Standardized Raw residuals divided by their estimated standard deviation.

 LinearModel class

22-2573

Field Description

Studentized Residual divided by an independent estimate of the residual
standard deviation. The residual for observation i is divided
by an estimate of the error standard deviation based on all
observations except for observation i.

To obtain any of these columns as a vector, index into the property using dot notation.
For example, in a model mdl, the ordinary raw residual vector r is:

r = mdl.Residuals.Raw

Rows not used in the fit because of missing values (in ObservationInfo.Missing)
contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded)
contain NaN values, with the following exceptions:

• raw contains the difference between the observed and predicted values.
• standardized is the residual, standardized in the usual way.
• studentized matches the standardized values because this residual is not used in

the estimate of the residual standard deviation.

ResponseName

String giving naming the response variable.

RMSE

Root mean squared error (residuals), sqrt(MSE).

Robust

Structure that is empty unless fitlm constructed the model using robust regression.

Field Description

WgtFun Robust weighting function, such as 'bisquare' (see
robustfit)

Tune Value specified for tuning parameter (can be [])

22 Functions — Alphabetical List

22-2574

Field Description

Weights Vector of weights used in final iteration of robust fit

Rsquared

Proportion of total sum of squares explained by the model. The ordinary R-squared value
relates to the SSR and SST properties:
Rsquared = SSR/SST = 1 - SSE/SST.

For a linear or nonlinear model, Rsquared is a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients

For a generalized linear model, Rsquared is a structure with five fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients
• LLR — Log-likelihood ratio
• Deviance — Deviance
• AdjGeneralized — Adjusted generalized R-squared

To obtain any of these values as a scalar, index into the property using dot notation. For
example, the adjusted R-squared value in mdl is

r2 = mdl.Rsquared.Adjusted

SSE

Sum of squared errors (residuals).

The Pythagorean theorem implies
SST = SSE + SSR.

SSR

Regression sum of squares, the sum of squared deviations of the fitted values from their
mean.

The Pythagorean theorem implies
SST = SSE + SSR.

 LinearModel class

22-2575

SST

Total sum of squares, the sum of squared deviations of y from mean(y).

The Pythagorean theorem implies
SST = SSE + SSR.

Steps

Structure that is empty unless stepwiselm constructed the model.

Field Description

Start Formula representing the starting model
Lower Formula representing the lower bound model, these terms that

must remain in the model
Upper Formula representing the upper bound model, model cannot

contain more terms than Upper
Criterion Criterion used for the stepwise algorithm, such as 'sse'
PEnter Value of the parameter, such as 0.05
PRemove Value of the parameter, such as 0.10
History Table representing the steps taken in the fit

The History table has one row for each step including the initial fit, and the following
variables (columns).

Field Description

Action Action taken during this step, one of:

• 'Start' — First step
• 'Add' — A term is added
• 'Remove' — A term is removed

TermName • 'Start' step: The starting model specification
• 'Add' or 'Remove' steps: The term moved in that step

Terms Terms matrix (see modelspec of fitlm)
DF Regression degrees of freedom after this step

22 Functions — Alphabetical List

22-2576

Field Description

delDF Change in regression degrees of freedom from previous step
(negative for steps that remove a term)

Deviance Deviance (residual sum of squares) at that step
FStat F statistic that led to this step
PValue p-value of the F statistic

VariableInfo

Table containing metadata about Variables. There is one row for each term in the
model, and the following columns.

Field Description

Class String giving variable class, such as 'double'
Range Cell array giving variable range:

• Continuous variable — Two-element vector [min,max], the
minimum and maximum values

• Categorical variable — Cell array of distinct variable values
InModel Logical vector, where true indicates the variable is in the

model
IsCategorical Logical vector, where true indicates a categorical variable

VariableNames

Cell array of strings containing names of the variables in the fit.

• If the fit is based on a table or dataset, this property provides the names of the
variables in that table or dataset.

• If the fit is based on a predictor matrix and response vector, VariableNames is the
values in the VarNames name-value pair of the fitting method.

• Otherwise the variables have the default fitting names.

Variables

Table containing the data, both observations and responses, that the fitting function used
to construct the fit. If the fit is based on a table or dataset array, Variables contains

 LinearModel class

22-2577

all of the data from that table or dataset array. Otherwise, Variables is a table created
from the input data matrix X and response vector y.

Methods

addTerms
Add terms to linear regression model

anova
Analysis of variance for linear model

coefCI
Confidence intervals of coefficient
estimates of linear model

coefTest
Linear hypothesis test on linear regression
model coefficients

disp
Display linear regression model

dwtest
Durbin-Watson test of linear model

feval
Evaluate linear regression model prediction

fit
Create linear regression model

plot
Scatter plot or added variable plot of linear
model

plotAdded
Added variable plot or leverage plot for
linear model

plotAdjustedResponse
Adjusted response plot for linear regression
model

plotDiagnostics
Plot diagnostics of linear regression model

22 Functions — Alphabetical List

22-2578

plotEffects
Plot main effects of each predictor in linear
regression model

plotInteraction
Plot interaction effects of two predictors in
linear regression model

plotResiduals
Plot residuals of linear regression model

plotSlice
Plot of slices through fitted linear
regression surface

predict
Predict response of linear regression model

random
Simulate responses for linear regression
model

removeTerms
Remove terms from linear model

step
Improve linear regression model by adding
or removing terms

stepwise
Create linear regression model by stepwise
regression

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X:

 LinearModel class

22-2579

H = X(XTX)–1XT.

The diagonal elements Hii satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

where n is the number of observations (rows of X), and p is the number of coefficients in
the regression model.

Leverage

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix H.
Because the sum of the leverage values is p (the number of coefficients in the regression
model), an observation i can be considered to be an outlier if its leverage substantially
exceeds p/n, where n is the number of observations.

Cook’s Distance

Cook’s distance is the scaled change in fitted values. Each element in CooksDistance is
the normalized change in the vector of coefficients due to the deletion of an observation.
The Cook’s distance, Di, of observation i is

D

y y

p MSE
i

j j i
j

n

=

-()
=
Â ˆ ˆ

,

()
2

1

where

• ŷ j is the jth fitted response value.

• ˆ ()y j i is the jth fitted response value, where the fit does not include observation i.

• MSE is the mean squared error.

22 Functions — Alphabetical List

22-2580

• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

D
r

p MSE

h

h
i

i ii

ii

=
-()

Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

2
1

,

where ri is the ith residual, and hii is the ith leverage value.

CooksDistance is an n-by-1 column vector in the Diagnostics table of the
LinearModel object.

Examples

Linear Regression Model of Matrix Data

Fit a linear model of the Hald data.

Load the data.

load hald

X = ingredients; % predictor variables

y = heat; % response

Fit a default linear model to the data.

mdl = fitlm(X,y)

mdl =

Linear regression model:

 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 62.405 70.071 0.8906 0.39913

 x1 1.5511 0.74477 2.0827 0.070822

 x2 0.51017 0.72379 0.70486 0.5009

 x3 0.10191 0.75471 0.13503 0.89592

 x4 -0.14406 0.70905 -0.20317 0.84407

 LinearModel class

22-2581

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 2.45

R-squared: 0.982, Adjusted R-Squared 0.974

F-statistic vs. constant model: 111, p-value = 4.76e-07

Linear Regression with Categorical Predictor and Nonlinear Model

Fit a model of a table that contains a categorical predictor. Use a nonlinear response
formula.

Load the carsmall data.

load carsmall

Construct a table containing continuous predictor variable Weight, nominal predictor
variable Year, and response variable MPG.

tbl = table(MPG,Weight);

tbl.Year = nominal(Model_Year);

Create a fitted model of MPG as a function of Year, Weight, and Weight2. (You don’t have
to include Weight explicitly in your formula because it is a lower-order term of Weight2.

mdl = fitlm(tbl,'MPG ~ Year + Weight^2')

mdl =

Linear regression model:

 MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 54.206 4.7117 11.505 2.6648e-19

 Weight -0.016404 0.0031249 -5.2493 1.0283e-06

 Year_76 2.0887 0.71491 2.9215 0.0044137

 Year_82 8.1864 0.81531 10.041 2.6364e-16

 Weight^2 1.5573e-06 4.9454e-07 3.149 0.0022303

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 2.78

R-squared: 0.885, Adjusted R-Squared 0.88

F-statistic vs. constant model: 172, p-value = 5.52e-41

fitlm creates two dummy (indicator) variables for the nominal variate, Year. The
dummy variable Year_76 takes the value 1 if model year is 1976 and takes the value 0 if
it is not. The dummy variable Year_82 takes the value 1 if model year is 1982 and takes
the value 0 if it is not. And the year 1970 is the reference year. The corresponding model
is

22 Functions — Alphabetical List

22-2582

MPG Weight Year Yearˆ . . . (_) . (_)= - () + +54 206 0 0164 2 0887 76 8 1864 82 ++ -() ()1 557 06
2

. e Weight

Robust Linear Regression Model

Fit a linear regression model of the Hald data using robust fitting.

Load the data.

load hald

X = ingredients; % predictor variables

y = heat; % response

Fit a robust linear model to the data.

mdl = fitlm(X,y,'linear','RobustOpts','on')

mdl =

Linear regression model (robust fit):

 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 60.09 75.818 0.79256 0.4509

 x1 1.5753 0.80585 1.9548 0.086346

 x2 0.5322 0.78315 0.67957 0.51596

 x3 0.13346 0.8166 0.16343 0.87424

 x4 -0.12052 0.7672 -0.15709 0.87906

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 2.65

R-squared: 0.979, Adjusted R-Squared 0.969

F-statistic vs. constant model: 94.6, p-value = 9.03e-07

• “Linear Regression Workflow” on page 9-41
• “Robust Regression versus Standard Least-Squares Fit” on page 9-128

Algorithms

The main fitting algorithm is QR decomposition. For robust fitting, the algorithm is
robustfit.

 LinearModel class

22-2583

Alternatives

To remove redundant predictors in linear regression using lasso or elastic net, use the
lasso function.

To regularize a regression with correlated terms using ridge regression, use the ridge or
lasso functions.

To regularize a regression with correlated terms using partial least squares, use the
plsregress function.

See Also
fitlm | stepwiselm

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-2584

LinearMixedModel class

Linear mixed-effects model class

Description
A LinearMixedModel object represents a model of a response variable with fixed and
random effects. It comprises data, a model description, fitted coefficients, covariance
parameters, design matrices, residuals, residual plots, and other diagnostic information
for a linear mixed-effects model. You can predict model responses with the predict
function and generate random data at new design points using the random function.

Construction
You can fit a linear mixed-effects model using fitlme(tbl,formula) if your data is
in a table or dataset array. Alternatively, if your model is not easily described using a
formula, you can create matrices to define the fixed and random effects, and fit the model
using fitlmematrix(X,y,Z,G).

Input Arguments

tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be
continuous or grouping variables (see “Grouping Variables” on page 2-52). You must
specify the model for the variables using formula.
Data Types: single | double | char | cell

formula — Formula for model specification
string of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|
groupingR)'

Formula for model specification, specified as a string of the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)'. For a full description, see
“Formula” on page 22-2595.

 LinearMixedModel class

22-2585

Example: 'y ~ treatment +(1|block)'

X — Fixed-effects design matrix
n-by-p matrix

Fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of
observations, and p is the number of fixed-effects predictor variables. Each row of X
corresponds to one observation, and each column of X corresponds to one variable.

Data Types: single | double

y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.
Data Types: single | double

Z — Random-effects design
n-by-q matrix | cell array of R n-by-q(r) matrices, r = 1, 2, ..., R

Random-effects design, specified as either of the following.

• If there is one random-effects term in the model, then Z must be an n-by-q matrix,
where n is the number of observations and q is the number of variables in the
random-effects term.

• If there are R random-effects terms, then Z must be a cell array of length R. Each
cell of Z contains an n-by-q(r) design matrix Z{r}, r = 1, 2, ..., R, corresponding to
each random-effects term. Here, q(r) is the number of random effects term in the rth
random effects design matrix, Z{r}.

Data Types: single | double | cell

G — Grouping variable or variables
n-by-1 vector | cell array of R n-by-1 vectors

Grouping variable or variables, specified as either of the following.

• If there is one random-effects term, then G must be an n-by-1 vector corresponding to
a single grouping variable with M levels or groups.

G can be a categorical vector, numeric vector, character array, or cell array of strings.

22 Functions — Alphabetical List

22-2586

• If there are multiple random-effects terms, then G must be a cell array of length R.
Each cell of G contains a grouping variable G{r}, r = 1, 2, ..., R, with M(r) levels.

G{r} can be a categorical vector, numeric vector, character array, or cell array of
strings.

Data Types: single | double | char | cell

Properties

Coefficients — Fixed-effects coefficient estimates
dataset array

Fixed-effects coefficient estimates and related statistics, stored as a dataset array
containing the following fields.

Name Name of the term.
Estimate Estimated value of the coefficient.
SE Standard error of the coefficient.
tStat t-statistics for testing the null hypothesis

that the coefficient is equal to zero.
DF Degrees of freedom for the t-test. Method to

compute DF is specified by the 'DFMethod'
name-value pair argument. Coefficients
always uses the 'Residual' method for
'DFMethod'.

pValue p-value for the t-test.
Lower Lower limit of the confidence interval for

coefficient. Coefficients always uses the
95% confidence level, i.e.'alpha' is 0.05.

Upper Upper limit of confidence interval for
coefficient. Coefficients always uses the
95% confidence level, i.e.'alpha' is 0.05.

You can change 'DFMethod' and 'alpha' while computing confidence intervals for or
testing hypotheses involving fixed- and random-effects, using the coefCI and coefTest
methods.

 LinearMixedModel class

22-2587

CoefficientCovariance — Covariance of the estimated fixed-effects coefficients
p-by-p matrix

Covariance of the estimated fixed-effects coefficients of the linear mixed-effects model,
stored as a p-by-p matrix, where p is the number of fixed-effects coefficients.

You can display the covariance parameters associated with the random effects using the
covarianceParameters method.

Data Types: double

CoefficientNames — Names of the fixed-effects coefficients
1-by-p cell array of strings

Names of the fixed-effects coefficients of a linear mixed-effects model, stored as a 1-by-p
cell array of strings.
Data Types: cell

DFE — Residual degrees of freedom
positive integer value

Residual degrees of freedom, stored as a positive integer value. DFE = n – p, where n is
the number of observations, and p is the number of fixed-effects coefficients.

This corresponds to the 'Residual' method of calculating degrees of freedom in the
fixedEffects and randomEffects methods.

Data Types: double

FitMethod — Method used to fit the linear mixed-effects model
ML | REML

Method used to fit the linear mixed-effects model, stored as either of the following
strings.

• ML, if the fitting method is maximum likelihood
• REML, if the fitting method is restricted maximum likelihood

Data Types: char

Formula — Specification of the fixed- and random-effects terms, and grouping variables
object

22 Functions — Alphabetical List

22-2588

Specification of the fixed-effects terms, random-effects terms, and grouping variables
that define the linear mixed-effects model, stored as an object.

For more information on how to specify the model to fit using a formula, see “Formula”
on page 22-2595.

LogLikelihood — Maximized log or restricted log likelihood
scalar value

Maximized log likelihood or maximized restricted log likelihood of the fitted linear mixed-
effects model depending on the fitting method you choose, stored as a scalar value.
Data Types: double

ModelCriterion — Model criterion
dataset array

Model criterion to compare fitted linear mixed-effects models, stored as a dataset array
with the following columns.

AIC Akaike Information Criterion
BIC Bayesian Information Criterion
Loglikelihood Log likelihood value of the model
Deviance –2 times the log likelihood of the model

If n is the number of observations used in fitting the model, and p is the number of fixed-
effects coefficients, then for calculating AIC and BIC,

• The total number of parameters is nc + p + 1, where nc is the total number of
parameters in the random-effects covariance excluding the residual variance

• The effective number of observations is

• n, when the fitting method is maximum likelihood (ML)
• n – p, when the fitting method is restricted maximum likelihood (REML)

MSE — ML or REML estimate
positive scalar value

ML or REML estimate, based on the fitting method used for estimating σ2, stored as a
positive scalar value. σ2 is the residual variance or variance of the observation error term
of the linear mixed-effects model.

 LinearMixedModel class

22-2589

Data Types: double

NumCoefficients — Number of fixed-effects coefficients
positive integer value

Number of fixed-effects coefficients in the fitted linear mixed-effects model, stored as a
positive integer value.
Data Types: double

NumEstimatedCoefficients — Number of estimated fixed-effects coefficients
positive integer value

Number of estimated fixed-effects coefficients in the fitted linear mixed-effects model,
stored as a positive integer value.
Data Types: double

NumObservations — Number of observations
positive integer value

Number of observations used in the fit, stored as a positive integer value. This is the
number of rows in the table or dataset array, or the design matrices minus the excluded
rows or rows with NaN values.

Data Types: double

NumPredictors — Number of predictors
positive integer value

Number of variables used as predictors in the linear mixed-effects model, stored as a
positive integer value.
Data Types: double

NumVariables — Total number of variables
positive integer value

Total number of variables including the response and predictors, stored as a positive
integer value.

• If the sample data is in a table or dataset array tbl, NumVariables is the total
number of variables in tbl including the response variable.

22 Functions — Alphabetical List

22-2590

• If the fit is based on matrix input, NumVariables is the total number of columns in
the predictor matrix or matrices, and response vector.

NumVariables includes variables, if there are any, that are not used as predictors or as
the response.
Data Types: double

ObservationInfo — Information about the observations
table

Information about the observations used in the fit, stored as a table.

ObservationInfo has one row for each observation and the following four columns.

Weights The value of the weighted variable for that
observation. Default value is 1.

Excluded true, if the observation was excluded from
the fit using the 'Exclude' name-value
pair argument, false, otherwise. 1 stands
for true and 0 stands for false.

Missing true, if the observation was excluded from
the fit because any response or predictor
value is missing, false, otherwise.

Missing values include NaN for numeric
variables, empty cells for cell arrays,
blank rows for character arrays, and the
<undefined> value for categorical arrays.

Subset true, if the observation was used in the
fit, false, if it was not used because it is
missing or excluded.

Data Types: table

ObservationNames — Names of observations
cell array of strings

Names of observations used in the fit, stored as a cell array of strings.

 LinearMixedModel class

22-2591

• If the data is in a table or dataset array, tbl, containing observation names,
ObservationNames has those names.

• If the data is provided in matrices, or a table or dataset array without observation
names, then ObservationNames is an empty cell array.

Data Types: cell

PredictorNames — Names of predictors
cell array of strings

Names of the variables that you use as predictors in the fit, stored as a cell array of
strings that has the same length as NumPredictors.

Data Types: cell

ResponseName — Names of response variable
character string

Name of the variable used as the response variable in the fit, stored as a character string.
Data Types: char

Rsquared — Proportion of variability in the response explained by the fitted model
structure

Proportion of variability in the response explained by the fitted model, stored as a
structure. It is the multiple correlation coefficient or R-squared. Rsquared has two
fields.

Ordinary R-squared value, stored as a scalar value in
a structure. Rsquared.Ordinary = 1 –
SSE./SST

Adjusted R-squared value adjusted for the number of
fixed-effects coefficients, stored as a scalar
value in a structure.

Rsquared.Adjusted = 1 – (SSE./

SST)*(DFT./DFE),

where DFE = n – p, DFT = n – 1, and n
is the total number of observations, p is the
number of fixed-effects coefficients.

22 Functions — Alphabetical List

22-2592

Data Types: struct

SSE — Error sum of squares
positive scalar value

Error sum of squares, that is, sum of the squared conditional residuals, stored as a
positive scalar value.

SSE = sum((y – F).^2), where y is the response vector, and F is the fitted conditional
response of the linear mixed-effects model. The conditional model has contributions from
both fixed and random effects.
Data Types: double

SSR — Regression sum of squares
positive scalar value

Regression sum of squares, that is, the sum of squares explained by the linear mixed-
effects regression, stored as a positive scalar value. It is the sum of squared deviations of
the conditional fitted values from their mean.

SSR = sum((F – mean(F)).^2), where F is the fitted conditional response of the
linear mixed-effects model. The conditional model has contributions from both fixed and
random effects.
Data Types: double

SST — Total sum of squares
positive scalar value

Total sum of squares, that is, the sum of the squared deviations of the observed response
values from their mean, stored as a positive scalar value.

SST = sum((y – mean(y)).^2) = SSR + SSE, where y is the response vector.

Data Types: double

Variables — Variables
table

Variables, stored as a table.

• If the fit is based on a table or dataset array tbl, then Variables is identical to tbl.

 LinearMixedModel class

22-2593

• If the fit is based on matrix input, then Variables is a table containing all the
variables in the predictor matrix or matrices, and response variable.

Data Types: table

VariableInfo — Information about the variables
table

Information about the variables used in the fit, stored as a table.

VariableInfo has one row for each variable and contains the following four columns.

Class Class of the variable ('double', 'cell',
'nominal', and so on).

Range Value range of the variable.

• For a numerical variable, it is a two-
element vector of the form [min,max].

• For a cell or categorical variable, it is a
cell or categorical array containing all
unique values of the variable.

InModel true, if the variable is a predictor in the
fitted model.

false, if the variable is not in the fitted
model.

IsCategorical true, if the variable has a type that
is treated as a categorical predictor,
such as cell, logical, or categorical, or
if it is specified as categorical by the
'Categorical' name-value pair
argument of the fit method.

false, if it is a continuous predictor.

Data Types: table

VariableNames — Names of the variables
cell array of strings

Names of the variables used in the fit, stored as a cell array of strings.

22 Functions — Alphabetical List

22-2594

• If sample data is in a table or dataset array tbl, VariableNames contains the names
of the variables in tbl.

• If sample data is in matrix format, then VariableInfo includes variable names
you supply while fitting the model. If you do not supply the variable names, then
VariableInfo contains the default names.

Data Types: cell

Methods
anova

Analysis of variance for linear mixed-effects
model

coefCI
Confidence intervals for coefficients of
linear mixed-effects model

coefTest
Hypothesis test on fixed and random effects
of linear mixed-effects model

compare
Compare linear mixed-effects models

covarianceParameters
Extract covariance parameters of linear
mixed-effects model

designMatrix
Fixed- and random-effects design matrices

disp
Display linear mixed-effects model

fit
Fit linear mixed-effects model using tables

fitmatrix
Fit linear mixed-effects model using design
matrices

fitted
Fitted responses from a linear mixed-effects
model

 LinearMixedModel class

22-2595

fixedEffects
Estimates of fixed effects and related
statistics

plotResiduals
Plot residuals of linear mixed-effects model

predict
Predict response of linear mixed-effects
model

random
Generate random responses from fitted
linear mixed-effects model

randomEffects
Estimates of random effects and related
statistics

residuals
Residuals of fitted linear mixed-effects
model

response
Response vector of the linear mixed-effects
model

Definitions

Formula

In general, a formula for model specification is a string of the form 'y ~ terms'. For
the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed and random contain
the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

22 Functions — Alphabetical List

22-2596

where the grouping variables in Xj and gr can be categorical, logical, character arrays, or
cell arrays of strings.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|
gR)', the term fixed corresponds to a specification of the fixed-effects design matrix
X, random1 is a specification of the random-effects design matrix Z1 corresponding to
grouping variable g1, and similarly randomR is a specification of the random-effects
design matrix ZR corresponding to grouping variable gR. You can express the fixed and
random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)

X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1. Here are some examples for linear
mixed-effects model specification.

Examples:

Formula Description

'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2.
This is equivalent to 'y ~ 1 + X1 + X2'.

 LinearMixedModel class

22-2597

Formula Description

'y ~ -1 + X1 + X2' No intercept and fixed effects for X1
and X2. The implicit intercept term is
suppressed by including -1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random
effect for the intercept for each level of the
grouping variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with

possible correlation between them. This is
equivalent to 'y ~ 1 + X1 + (1 + X1|
g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 |

g1)'

Independent random effects terms for
intercept and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1

| g1:g2)'

Random intercept model with independent
main effects for g1 and g2, plus an
independent interaction effect.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples
Random Intercept Model with Categorical Predictor

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated
influenza rates (in 9 different regions, estimated from Google searches, plus a nationwide
estimate from the Center for Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset
array. To fit a linear mixed-effects model with the influenza rates as the responses

22 Functions — Alphabetical List

22-2598

and region as the predictor variable, combine the nine columns corresponding to the
regions into a tall array. The new dataset array, flu2, must have the response variable,
FluRate, the nominal variable, Region, that shows which region each estimate is from,
and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...

 'IndVarName','Region');

flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with fixed effects for region and a random intercept that
varies by Date.

Because region is a nominal variable, fitlme takes the first region, NE, as the reference
and creates eight dummy variables representing the other eight regions. For example,
I[MidAtl] is the dummy variable representing the region MidAtl. For details, see
“Dummy Indicator Variables” on page 2-55.

The corresponding model is

y I MidAtl I ENCentral I WNCentral I SAtim i i i
= + [] + [] + [] +b b b b b0 1 2 3 4 ll

I ESCentral I WSCentral I Mtn I Pac

i

i i i i

[]

+ [] + [] + [] + [] +b b b b5 6 7 8 bb mm im0 1 2 52+ =e , , , ..., ,

where yim is the observation i for level m of grouping variable Date, βj, j = 0, 1, ..., 8, are
the fixed-effects coefficients, b0m is the random effect for level m of the grouping variable
Date, and εim is the observation error for observation i. The random effect has the prior
distribution, b ~ N(0,σ2

b) and the error term has the distribution, ε ~ N(0,σ2).

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')

Linear mixed-effects model fit by ML

Model information:

 Number of observations 468

 Fixed effects coefficients 9

 Random effects coefficients 52

 Covariance parameters 2

Formula:

 FluRate ~ 1 + Region + (1|Date)

 LinearMixedModel class

22-2599

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 318.71 364.35 -148.36 296.71

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 '(Intercept)' 1.2233 0.096678 12.654 459 1.085e-31 1.0334 1.4133

 'Region_MidAtl' 0.010192 0.052221 0.19518 459 0.84534 -0.092429 0.11281

 'Region_ENCentral' 0.051923 0.052221 0.9943 459 0.3206 -0.050698 0.15454

 'Region_WNCentral' 0.23687 0.052221 4.5359 459 7.3324e-06 0.13424 0.33949

 'Region_SAtl' 0.075481 0.052221 1.4454 459 0.14902 -0.02714 0.1781

 'Region_ESCentral' 0.33917 0.052221 6.495 459 2.1623e-10 0.23655 0.44179

 'Region_WSCentral' 0.069 0.052221 1.3213 459 0.18705 -0.033621 0.17162

 'Region_Mtn' 0.046673 0.052221 0.89377 459 0.37191 -0.055948 0.14929

 'Region_Pac' -0.16013 0.052221 -3.0665 459 0.0022936 -0.26276 -0.057514

Random effects covariance parameters (95% CIs):

Group: Date (52 Levels)

 Name1 Name2 Type Estimate Lower Upper

 '(Intercept)' '(Intercept)' 'std' 0.6443 0.5297 0.78368

Group: Error

 Name Estimate Lower Upper

 'Res Std' 0.26627 0.24878 0.285

The p-values 7.3324e-06 and 2.1623e-10 respectively show that the fixed effects of the flu
rates in regions WNCentral and ESCentral are significantly different relative to the flu
rates in region NE.

The confidence limits for the standard deviation of the random-effects term, σ2
b, do not

include 0 (0.5297, 0.78368), which indicates that the random-effects term is significant.
You can also test the significance of the random-effects terms using the compare method.

The estimated value of an observation is the sum of the fixed effects and the random-
effect value at the grouping variable level corresponding to that observation. For
example, the estimated best linear unbiased predictor (BLUP) of the flu rate for region
WNCentral in week 10/9/2005 is

ˆ ˆ ˆ ˆ

.

, / / / /y I WNCentral bWNCentral10 9 2005 0 3 10 9 2005

1 22

= + []+

=

b b

333 0 23687 0 1718

1 28837

+ -

=

. .

. .

22 Functions — Alphabetical List

22-2600

This is the fitted conditional response, since it includes contribution to the estimate from
both the fixed and random effects. You can compute this value as follows.

beta = fixedEffects(lme);

[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)

STATS.Level = nominal(STATS.Level);

y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')

y_hat =

 1.2884

You can simply display the fitted value using the fitted method.

F = fitted(lme);

F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans =

 1.2884

Compute the fitted marginal response for region WNCentral in week 10/9/2005.

F = fitted(lme,'Conditional',false);

F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans =

 1.4602

Linear Mixed-Effects Model with a Random Slope

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower and cylinders, and potentially correlated random effect for
intercept and acceleration grouped by model year. This model corresponds to

MPG Acc HP b b Acc mim i m m im im= + + + + + =b b b e0 1 2 0 1 1 2 3, , , ,

with the random-effects terms having the following prior distribution

 LinearMixedModel class

22-2601

b
b

b
Nm

m

m

=
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

0

1

0
2

0 1

0 1 1
2

0~ , ,
,

,

s s

s s

where D(θ) is the covariance matrix.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];

Z = [ones(406,1) Acceleration];

Model_Year = nominal(Model_Year);

G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping
variables. Use the 'fminunc' optimization algorithm.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'},...

'FitMethod','REML')

lme =

Linear mixed-effects model fit by REML

Model information:

 Number of observations 392

 Fixed effects coefficients 3

 Random effects coefficients 26

 Covariance parameters 4

Formula:

 y ~ Intercept + Acceleration + Horsepower + (Intercept + Acceleration | Model_Year)

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 2202.9 2230.7 -1094.5 2188.9

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue Lower Upper

 'Intercept' 50.064 2.3176 21.602 389 1.4185e-68 45.507 54.62

 'Acceleration' -0.57897 0.13843 -4.1825 389 3.5654e-05 -0.85112 -0.30681

 'Horsepower' -0.16958 0.0073242 -23.153 389 3.5289e-75 -0.18398 -0.15518

22 Functions — Alphabetical List

22-2602

Random effects covariance parameters (95% CIs):

Group: Model_Year (13 Levels)

 Name1 Name2 Type Estimate Lower Upper

 'Intercept' 'Intercept' 'std' 3.72 1.5215 9.0954

 'Acceleration' 'Intercept' 'corr' -0.8769 -0.98275 -0.33845

 'Acceleration' 'Acceleration' 'std' 0.3593 0.19418 0.66483

Group: Error

 Name Estimate Lower Upper

 'Res Std' 3.6913 3.4331 3.9688

The fixed effects coefficients display includes the estimate, standard errors (SE), and the
95% confidence interval limits (Lower and Upper). The p-values for (pValue) indicate
that all three fixed-effects coefficients are significant.

The confidence intervals for the standard deviations and the correlation between the
random effects for intercept and acceleration do not include zeros, hence they seem
significant. Use the compare method to test for the random effects.

Display the covariance matrix of the estimated fixed-effects coefficients.

lme.CoefficientCovariance

ans =

 5.3711 -0.2809 -0.0126

 -0.2809 0.0192 0.0005

 -0.0126 0.0005 0.0001

The diagonal elements show the variances of the fixed-effects coefficient estimates. For
example, the variance of the estimate of the intercept is 5.3711. Note that the standard
errors of the estimates are the square roots of the variances. For example, the standard
error of the intercept is 2.3176, which is sqrt(5.3711).

The off-diagonal elements show the correlation between the fixed-effects coefficient
estimates. For example, the correlation between the intercept and acceleration is –0.2809
and the correlation between acceleration and horsepower is 0.0005.

Display the coefficient of determination for the model.

lme.Rsquared

ans =

 LinearMixedModel class

22-2603

 Ordinary: 0.7826

 Adjusted: 0.7815

The adjusted value is the R-squared value adjusted for the number of predictors in the
model.

See Also
fitlme | fitlmematrix

22 Functions — Alphabetical List

22-2604

linhyptest
Linear hypothesis test

Syntax

p = linhyptest(beta,COVB,c,H,dfe)

[p,t,r] = linhyptest(...)

Description

p = linhyptest(beta,COVB,c,H,dfe) returns the p value p of a hypothesis test
on a vector of parameters. beta is a vector of k parameter estimates. COVB is the k-
by-k estimated covariance matrix of the parameter estimates. c and H specify the null
hypothesis in the form H*b = c, where b is the vector of unknown parameters estimated
by beta. dfe is the degrees of freedom for the COVB estimate, or Inf if COVB is known
rather than estimated.

beta is required. The remaining arguments have default values:

• COVB = eye(k)

• c = zeros(k,1)

• H = eye(K)

• dfe = Inf

If H is omitted, c must have k elements and it specifies the null hypothesis values for the
entire parameter vector.

Note: The following functions return outputs suitable for use as the COVB input
argument to linhyptest: nlinfit, coxphfit, glmfit, mnrfit, regstats,
robustfit. nlinfit returns COVB directly; the other functions return COVB in
stats.covb.

[p,t,r] = linhyptest(...) also returns the test statistic t and the rank r of the
hypothesis matrix H. If dfe is Inf or is not given, t*r is a chi-square statistic with r

 linhyptest

22-2605

degrees of freedom . If dfe is specified as a finite value, t is an F statistic with r and dfe
degrees of freedom.

linhyptest performs a test based on an asymptotic normal distribution for the
parameter estimates. It can be used after any estimation procedure for which the
parameter covariances are available, such as regstats or glmfit. For linear
regression, the p-values are exact. For other procedures, the p-values are approximate,
and may be less accurate than other procedures such as those based on a likelihood ratio.

Examples

Fit a multiple linear model to the data in hald.mat:

load hald

stats = regstats(heat,ingredients,'linear');

beta = stats.beta

beta =

 62.4054

 1.5511

 0.5102

 0.1019

 -0.1441

Perform an F-test that the last two coefficients are both 0:

SIGMA = stats.covb;

dfe = stats.fstat.dfe;

H = [0 0 0 1 0;0 0 0 0 1];

c = [0;0];

[p,F] = linhyptest(beta,SIGMA,c,H,dfe)

p =

 0.4668

F =

 0.8391

See Also
regstats | glmfit | robustfit | mnrfit | nlinfit | coxphfit

22 Functions — Alphabetical List

22-2606

linkage
Agglomerative hierarchical cluster tree

Syntax

Z = linkage(X)

Z = linkage(X,method)

Z = linkage(X,method,metric)

Z = linkage(X,method,pdist_inputs)

Z = linkage(X,method,metric,'savememory',value)

Z = linkage(Y)

Z = linkage(Y,method)

Description

Z = linkage(X) returns a matrix Z that encodes a tree of hierarchical clusters of the
rows of the real matrix X.

Z = linkage(X,method) creates the tree using the specified method, where method
describes how to measure the distance between clusters.

Z = linkage(X,method,metric) performs clustering using the distance measure
metric to compute distances between the rows of X.

Z = linkage(X,method,pdist_inputs) passes parameters to the pdist function,
which is the function that computes the distance between rows of X.

Z = linkage(X,method,metric,'savememory',value) uses a memory-saving
algorithm when value is 'true', and uses the standard algorithm when value is
'false'.

Z = linkage(Y) uses a vector representation Y of a distance matrix. Y can be
a distance matrix as computed by pdist, or a more general dissimilarity matrix
conforming to the output format of pdist.

Z = linkage(Y,method) creates the tree using the specified method, where method
describes how to measure the distance between clusters.

 linkage

22-2607

Input Arguments

X

Matrix with two or more rows. The rows represent observations, the columns represent
categories or dimensions.

method

Algorithm for computing distance between clusters.

Method Description

'average' Unweighted average distance (UPGMA)
'centroid' Centroid distance (UPGMC), appropriate for Euclidean distances

only
'complete' Furthest distance
'median' Weighted center of mass distance (WPGMC), appropriate for

Euclidean distances only
'single' Shortest distance
'ward' Inner squared distance (minimum variance algorithm),

appropriate for Euclidean distances only
'weighted' Weighted average distance (WPGMA)

Default: 'single'

metric

Any distance metric that the pdist function accepts.

Metric Description

'euclidean' Euclidean distance (default).
'seuclidean' Standardized Euclidean distance. Each coordinate difference

between rows in X is scaled by dividing by the corresponding
element of the standard deviation S=nanstd(X). To specify
another value for S, use D=pdist(X,'seuclidean',S).

'cityblock' City block metric.

22 Functions — Alphabetical List

22-2608

Metric Description

'minkowski' Minkowski distance. The default exponent is 2. To specify a
different exponent, use D = pdist(X,'minkowski',P),
where P is a scalar positive value of the exponent.

'chebychev' Chebychev distance (maximum coordinate difference).
'mahalanobis' Mahalanobis distance, using the sample covariance of X

as computed by nancov. To compute the distance with a
different covariance, use D = pdist(X,'mahalanobis',C),
where the matrix C is symmetric and positive definite.

'cosine' One minus the cosine of the included angle between points
(treated as vectors).

'correlation' One minus the sample correlation between points (treated as
sequences of values).

'spearman' One minus the sample Spearman's rank correlation between
observations (treated as sequences of values).

'hamming' Hamming distance, which is the percentage of coordinates
that differ.

'jaccard' One minus the Jaccard coefficient, which is the percentage of
nonzero coordinates that differ.

custom distance function A distance function specified using @:
D = pdist(X,@distfun)

A distance function must be of form

d2 = distfun(XI,XJ)

taking as arguments a 1-by-n vector XI, corresponding to a
single row of X, and an m2-by-n matrix XJ, corresponding to
multiple rows of X. distfun must accept a matrix XJ with
an arbitrary number of rows. distfun must return an m2-
by-1 vector of distances d2, whose kth element is the distance
between XI and XJ(k,:).

Default: 'euclidean'

 linkage

22-2609

pdist_inputs

A cell array of parameters accepted by the pdist function. For example, to set
the metric to minkowski and use an exponent of 5, set pdist_inputs to
{'minkowski',5}.

savememory

A string, either 'on' or 'off'. When applicable, the 'on' setting causes linkage to
construct clusters without computing the distance matrix. savememory is applicable
when:

• linkage is 'centroid', 'median', or 'ward'
• distance is 'euclidean' (default)

When savememory is 'on', linkage run time is proportional to the number of
dimensions (number of columns of X). When savememory is 'off', linkage memory
requirement is proportional to N2, where N is the number of observations. So choosing the
best (least-time) setting for savememory depends on the problem dimensions, number
of observations, and available memory. The default savememory setting is a rough
approximation of an optimal setting.

Default: 'on' when X has 20 columns or fewer, or the computer does not have enough
memory to store the distance matrix; otherwise 'off'

Y

A vector of distances with the same format as the output of the pdist function:

• A row vector of length m(m–1)/2, corresponding to pairs of observations in a matrix X
with m rows

• Distances arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ..., (m,m–1))

Y can be a more general dissimilarity matrix conforming to the output format of pdist.

Output Arguments

Z

Z is a (m – 1)-by-3 matrix, where m is the number of observations in the original data.
Columns 1 and 2 of Z contain cluster indices linked in pairs to form a binary tree. The

22 Functions — Alphabetical List

22-2610

leaf nodes are numbered from 1 to m. Leaf nodes are the singleton clusters from which
all higher clusters are built. Each newly-formed cluster, corresponding to row Z(I,:),
is assigned the index m+I. Z(I,1:2) contains the indices of the two component clusters
that form cluster m+I. There are m-1 higher clusters which correspond to the interior
nodes of the clustering tree. Z(I,3) contains the linkage distances between the two
clusters merged in row Z(I,:).

For example, suppose there are 30 initial nodes and at step 12 cluster 5 and cluster 7
are combined. Suppose their distance at that time is 1.5. Then Z(12,:) will be [5, 7,
1.5]. The newly formed cluster will have index 12 + 30 = 42. If cluster 42 appears in
a later row, it means the cluster created at step 12 is being combined into some larger
cluster.

Examples

Compare Cluster Assignments to Clusters

Load the sample data.

load fisheriris

Compute four clusters of the Fisher iris data using Ward linkage and ignoring species
information.

Z = linkage(meas,'ward','euclidean');

c = cluster(Z,'maxclust',4);

See how the cluster assignments correspond to the three species.

crosstab(c,species)

ans =

 0 25 1

 0 24 14

 0 1 35

 50 0 0

Display the first five rows of Z.

firstfive = Z(1:5,:)

 linkage

22-2611

firstfive =

 102.0000 143.0000 0

 8.0000 40.0000 0.1000

 1.0000 18.0000 0.1000

 10.0000 35.0000 0.1000

 129.0000 133.0000 0.1000

Create a dendrogram plot of Z .

dendrogram(Z)

Cluster Data and Plot the Result

Randomly generate the sample data with 20000 observations.

22 Functions — Alphabetical List

22-2612

rng default; % For reproducibility

X = rand(20000,3);

Create a hierarchical cluster tree using Ward's linkage.

Z = linkage(X,'ward','euclidean','savememory','on');

If you set savememory to 'off' , you can get an out-of-memory error if your machine
doesn't have enough memory to hold the distance matrix.

Cluster data into four groups and plot the result.

c = cluster(Z,'maxclust',4);

scatter3(X(:,1),X(:,2),X(:,3),10,c)

 linkage

22-2613

More About
Linkages

The following notation is used to describe the linkages used by the various methods:

• Cluster r is formed from clusters p and q.
• nr is the number of objects in cluster r.
• xri is the ith object in cluster r.

• Single linkage, also called nearest neighbor, uses the smallest distance between
objects in the two clusters:

22 Functions — Alphabetical List

22-2614

d r s dist x x i i n j nri sj r s(,) min((,)), (,...,), (,...,)= ∈ ∈ 1

• Complete linkage, also called furthest neighbor, uses the largest distance between
objects in the two clusters:

d r s dist x x i n j nri sj r s(,) max((,)), (, ...,), (,...,)= ∈ ∈1 1

• Average linkage uses the average distance between all pairs of objects in any two
clusters:

d r s
n n

dist x x
r s

ri sj

j

n

i

n sr

(,) (,)=
==
∑∑1

11

• Centroid linkage uses the Euclidean distance between the centroids of the two
clusters:

d r s x xr s(,) = −
2

where

x
n

x
r

r

ri

i

n
r

=
=
∑1

1

• Median linkage uses the Euclidean distance between weighted centroids of the two
clusters,

d r s x xr s(,) = −% %
2

where %x
r
 and %x

s
 are weighted centroids for the clusters r and s. If cluster r was

created by combining clusters p and q, %x
r
 is defined recursively as

% % %x x xr p q= +
1

2
()

• Ward's linkage uses the incremental sum of squares; that is, the increase in the total
within-cluster sum of squares as a result of joining two clusters. The within-cluster

 linkage

22-2615

sum of squares is defined as the sum of the squares of the distances between all
objects in the cluster and the centroid of the cluster. The sum of squares measure is
equivalent to the following distance measure d(r,s), which is the formula linkage
uses:

d r s
n n

n n
x x

r s

r s

r s
(,)

()
,=

+
−

2

2

where

•
2

 is Euclidean distance

• x
r
 and x

s
 are the centroids of clusters r and s

• nr and ns are the number of elements in clusters r and s

In some references the Ward linkage does not use the factor of 2 multiplying nrns. The
linkage function uses this factor so the distance between two singleton clusters is
the same as the Euclidean distance.

• Weighted average linkage uses a recursive definition for the distance between two
clusters. If cluster r was created by combining clusters p and q, the distance between
r and another cluster s is defined as the average of the distance between p and s and
the distance between q and s:

d r s
d p s d q s

,
, ,

() =
() + ()()

2

Tips

• Computing linkage(Y) can be slow when Y is a vector representation of the distance
matrix. For the 'centroid', 'median', and 'ward' methods, linkage checks
whether Y is a Euclidean distance. Avoid this time-consuming check by passing in X
instead of Y.

• The centroid and median methods can produce a cluster tree that is not monotonic.
This occurs when the distance from the union of two clusters, r and s, to a third
cluster is less than the distance between r and s. In this case, in a dendrogram
drawn with the default orientation, the path from a leaf to the root node takes some
downward steps. To avoid this, use another method. The following image shows a
nonmonotonic cluster tree.

22 Functions — Alphabetical List

22-2616

In this case, cluster 1 and cluster 3 are joined into a new cluster, while the distance
between this new cluster and cluster 2 is less than the distance between cluster 1 and
cluster 3. This leads to a nonmonotonic tree.

• You can provide the output Z to other functions including dendrogram to display the
tree, cluster to assign points to clusters, inconsistent to compute inconsistent
measures, and cophenet to compute the cophenetic correlation coefficient.

See Also
cluster | clusterdata | cophenet | dendrogram | inconsistent | kmeans |
pdist | silhouette | squareform

 prob.LogisticDistribution class

22-2617

prob.LogisticDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Logistic probability distribution object

Description

prob.LogisticDistribution is an object consisting of parameters, a model
description, and sample data for a logistic probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Logistic') creates a logistic probability distribution object using
the default parameter values.

pd = makedist('Logistic','mu',mu,'sigma',sigma) creates a logistic
probability distribution object using the specified parameter values.

Input Arguments

mu — Mean
0 (default) | scalar value

Mean of the logistic distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of the logistic distribution, specified as a nonnegative scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-2618

Properties

mu — Mean
scalar value

Mean of the logistic distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the logistic distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.

 prob.LogisticDistribution class

22-2619

Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

22 Functions — Alphabetical List

22-2620

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

 prob.LogisticDistribution class

22-2621

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Logistic Distribution

The logistic distribution is used for growth models and in logistic regression. It has
longer tails and a higher kurtosis than the normal distribution.

The logistic distribution uses the following parameters.

Parameter Description Support

mu Mean -• < < •m

sigma Scale parameter s ≥ 0

The probability density function (pdf) is

22 Functions — Alphabetical List

22-2622

f x

x

x
x(| ,)

exp

exp

; .m s

m
s

s m
s

=

-Ï
Ì
Ó

¸
˝
˛

+ -Ï
Ì
Ó

¸
˝
˛

Ê

Ë
Á

ˆ

¯
˜

- • < < •

1
2

Examples

Create a Logistic Distribution Object Using Default Parameters

Create a logistic distribution object using the default parameter values.

pd = makedist('Logistic')

pd =

 LogisticDistribution

 Logistic distribution

 mu = 0

 sigma = 1

Create a Logistic Distribution Object Using Specified Parameters

Create a logistic distribution object by specifying parameter values.

pd = makedist('Logistic', 'mu',2,'sigma',4)

pd =

 LogisticDistribution

 Logistic distribution

 mu = 2

 sigma = 4

Compute the standard deviation of the distribution.

s = std(pd)

s =

 prob.LogisticDistribution class

22-2623

 7.2552

See Also
dfittool | fitdist | makedist

More About
• “Logistic Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-2624

prob.LoglogisticDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Loglogistic probability distribution object

Description

prob.LoglogisticDistribution is an object consisting of parameters, a model
description, and sample data for a loglogistic probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Loglogistic') creates a loglogistic probability distribution object
using the default parameter values.

pd = makedist('Loglogistic','mu',mu,'sigma',sigma) creates a loglogistic
probability distribution object using the specified parameter values .

Input Arguments

mu — Log mean
0 (default) | positive scalar value

Log mean for the loglogistic distribution, specified as a positive scalar value.
Data Types: single | double

sigma — Log scale parameter
1 (default) | positive scalar value

Log scale parameter for the loglogistic distribution, specified as a positive scalar value.
Data Types: single | double

 prob.LoglogisticDistribution class

22-2625

Properties

mu — Log mean
positive scalar value

Log mean for the loglogistic distribution, stored as a positive scalar value.
Data Types: single | double

sigma — Log scale parameter
positive scalar value

Log scale parameter for the loglogistic distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.

22 Functions — Alphabetical List

22-2626

Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

 prob.LoglogisticDistribution class

22-2627

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

22 Functions — Alphabetical List

22-2628

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Loglogistic Distribution

The loglogistic distribution is closely related to the logistic distribution. If x is distributed
loglogistically with parameters μ and σ, then log(x) is distributed logistically with mean
and standard deviation. This distribution is often used in survival analysis to model
events that experience an initial rate increase, followed by a rate decrease.

The loglogistic distribution uses the following parameters.

Parameter Description Support

mu Log mean m > 0

sigma Log scale parameter s > 0

The probability density function (pdf) is

 prob.LoglogisticDistribution class

22-2629

f x
x

e

e

x
z

z

(| ,) ; ,m s
s

=

+()
≥

1 1

1

0
2

where z

x

=
() -log m

s
.

Examples

Create a Loglogistic Distribution Object Using Default Parameters

Create a loglogistic distribution object using the default parameter values.

pd = makedist('Loglogistic')

pd =

 LoglogisticDistribution

 Log-Logistic distribution

 mu = 0

 sigma = 1

Create a Loglogistic Distribution Object Using Specified Parameters

Create a loglogistic distribution object by specifying the parameter values.

pd = makedist('Loglogistic','mu',5,'sigma',2)

pd =

 LoglogisticDistribution

 Log-Logistic distribution

 mu = 5

 sigma = 2

Generate random numbers from the loglogistic distribution and compute their log values.

rng(19) % for reproducibility

x = random(pd,10000,1);

logx = log(x);

22 Functions — Alphabetical List

22-2630

Compute the mean of the log values.

m = mean(logx)

m =

 4.9828

The mean of the log of x is equal to the mu parameter of x, since x has a loglogistic
distribution.

Plot logx.

histogram(logx,50)

 prob.LoglogisticDistribution class

22-2631

The plot shows that the log values of x have a logistic distribution.

See Also
dfittool | fitdist | makedist

More About
• “Working with Probability Distributions” on page 5-3
• “Loglogistic Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-2632

logncdf
Lognormal cumulative distribution function

Syntax

p = logncdf(x,mu,sigma)

[p,plo,pup] = logncdf(x,mu,sigma,pcov,alpha)

[p,plo,pup] = logncdf(___ ,'upper')

Description

p = logncdf(x,mu,sigma) returns values at x of the lognormal cdf with distribution
parameters mu and sigma. mu and sigma are the mean and standard deviation,
respectively, of the associated normal distribution. x, mu, and sigma can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar input for x,
mu, or sigma is expanded to a constant array with the same dimensions as the other
inputs.

[p,plo,pup] = logncdf(x,mu,sigma,pcov,alpha) returns confidence bounds for
p when the input parameters mu and sigma are estimates. pcov is the covariance matrix
of the estimated parameters. alpha specifies 100(1 - alpha)% confidence bounds. The
default value of alpha is 0.05. plo and pup are arrays of the same size as p containing
the lower and upper confidence bounds.

[p,plo,pup] = logncdf(___ ,'upper') returns the complement of the lognormal
cdf at each value in x, using an algorithm that more accurately computes the extreme
upper tail probabilities. You can use 'upper' with any of the previous syntaxes.

logncdf computes confidence bounds for p using a normal approximation to the
distribution of the estimate

x - ˆ

ˆ

m

s

and then transforming those bounds to the scale of the output p. The computed bounds
give approximately the desired confidence level when you estimate mu, sigma, and pcov

 logncdf

22-2633

from large samples, but in smaller samples other methods of computing the confidence
bounds might be more accurate.

The lognormal cdf is

p F x
e

t
dt

t

x
= =

− −

∫(| ,)

(ln())

m s
s p

m

s1

2

2

22

0

Examples

Compute the Lognormal Distribution cdf

Compute the cdf of a lognormal distribution with mu = 0 and sigma = 1.

x = (0:0.2:10);

y = logncdf(x,0,1);

Plot the cdf.

plot(x,y);

grid;

xlabel('x');

ylabel('p');

22 Functions — Alphabetical List

22-2634

More About
• “Lognormal Distribution” on page B-95

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 102–105.

 logncdf

22-2635

See Also
cdf | lognpdf | logninv | lognstat | lognfit | lognlike | lognrnd

22 Functions — Alphabetical List

22-2636

lognfit
Lognormal parameter estimates

Syntax

parmhat = lognfit(data)

[parmhat,parmci] = lognfit(data)

[parmhat,parmci] = lognfit(data,alpha)

[...] = lognfit(data,alpha,censoring)

[...] = lognfit(data,alpha,censoring,freq)

[...] = lognfit(data,alpha,censoring,freq,options)

Description

parmhat = lognfit(data) returns a vector of maximum likelihood estimates
parmhat(1) = mu and parmhat(2) = sigma of parameters for a lognormal
distribution fitting data. mu and sigma are the mean and standard deviation,
respectively, of the associated normal distribution.

[parmhat,parmci] = lognfit(data) returns 95% confidence intervals for the
parameter estimates mu and sigma in the 2-by-2 matrix parmci. The first column of the
matrix contains the lower and upper confidence bounds for parameter mu, and the second
column contains the confidence bounds for parameter sigma.

[parmhat,parmci] = lognfit(data,alpha) returns 100(1 - alpha) % confidence
intervals for the parameter estimates, where alpha is a value in the range (0 1)
specifying the width of the confidence intervals. By default, alpha is 0.05, which
corresponds to 95% confidence intervals.

[...] = lognfit(data,alpha,censoring) accepts a Boolean vector censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = lognfit(data,alpha,censoring,freq) accepts a frequency vector,
freq, of the same size as data. Typically, freq contains integer frequencies for the
corresponding elements in data, but can contain any nonnegative values. Pass in [] for
alpha, censoring, or freq to use their default values.

 lognfit

22-2637

[...] = lognfit(data,alpha,censoring,freq,options) accepts a structure,
options, that specifies control parameters for the iterative algorithm the function uses
to compute maximum likelihood estimates when there is censoring. The lognormal fit
function accepts an options structure which can be created using the function statset.
Enter statset('lognfit') to see the names and default values of the parameters that
lognfit accepts in the options structure. See the reference page for statset for more
information about these options.

Note: With no censoring, lognfit computes sigma using the square root of the unbiased
estimator of the variance. With censoring, sigma is the maximum likelihood estimate.

Examples

This example generates 100 independent samples of lognormally distributed data with
µ = 0 and σ = 3. parmhat estimates µ and σ and parmci gives 99% confidence intervals
around parmhat. Notice that parmci contains the true values of µ and σ.

data = lognrnd(0,3,100,1);

[parmhat,parmci] = lognfit(data,0.01)

parmhat =

 -0.2480 2.8902

parmci =

 -1.0071 2.4393

 0.5111 3.5262

More About
• “Lognormal Distribution” on page B-95

See Also
mle | lognlike | lognpdf | logncdf | logninv | lognstat | lognrnd

22 Functions — Alphabetical List

22-2638

logninv

Lognormal inverse cumulative distribution function

Syntax

X = logninv(P,mu,sigma)

[X,XLO,XUP] = logninv(P,mu,sigma,pcov,alpha)

Description

X = logninv(P,mu,sigma) returns values at P of the inverse lognormal cdf with
distribution parameters mu and sigma. mu and sigma are the mean and standard
deviation, respectively, of the associated normal distribution. mu and sigma can be
vectors, matrices, or multidimensional arrays that all have the same size, which is also
the size of X. A scalar input for P, mu, or sigma is expanded to a constant array with the
same dimensions as the other inputs.

[X,XLO,XUP] = logninv(P,mu,sigma,pcov,alpha) returns confidence bounds for
X when the input parameters mu and sigma are estimates. pcov is the covariance matrix
of the estimated parameters. alpha specifies 100(1 - alpha)% confidence bounds. The
default value of alpha is 0.05. XLO and XUP are arrays of the same size as X containing
the lower and upper confidence bounds.

logninv computes confidence bounds for P using a normal approximation to the
distribution of the estimate

ˆ ˆm s+ q

where q is the Pth quantile from a normal distribution with mean 0 and standard
deviation 1. The computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller samples other
methods of computing the confidence bounds might be more accurate.

The lognormal inverse function is defined in terms of the lognormal cdf as

 logninv

22-2639

x F p x F x p= = =−1 (| ,) { : (| ,) }m s m s

where

p F x
e

t
dt

t

x
= =

− −

∫(| ,)

(ln())

m s
s p

m

s1

2

2

22

0

Examples

Compute the Lognormal Distribution Inverse cdf

Compute the inverse cdf of a lognormal distribution with mu = 0 and sigma = 0.5.

p = (0.005:0.01:0.995);

crit = logninv(p,1,0.5);

Plot the inverse cdf.

figure;

plot(p,crit)

xlabel('Probability');

ylabel('Critical Value');

grid

22 Functions — Alphabetical List

22-2640

More About
• “Lognormal Distribution” on page B-95

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ:
Wiley-Interscience, 2000. pp. 102–105.

 logninv

22-2641

See Also
icdf | logncdf | lognpdf | lognstat | lognfit | lognlike | lognrnd

22 Functions — Alphabetical List

22-2642

lognlike
Lognormal negative log-likelihood

Syntax

nlogL = lognlike(params,data)

[nlogL,avar] = lognlike(params,data)

[...] = lognlike(params,data,censoring)

[...] = lognlike(params,data,censoring,freq)

Description

nlogL = lognlike(params,data) returns the negative log-likelihood of data for
the lognormal distribution with parameters params. params(1) is the mean of the
associated normal distribution, mu, and params(2) is the standard deviation of the
associated normal distribution, sigma. The values of mu and sigma are scalars, and the
output nlogL is a scalar.

[nlogL,avar] = lognlike(params,data) returns the inverse of Fisher's
information matrix. If the input parameter value in params is the maximum likelihood
estimate, avar is its asymptotic variance. avar is based on the observed Fisher's
information, not the expected information.

[...] = lognlike(params,data,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = lognlike(params,data,censoring,freq) accepts a frequency vector,
freq, of the same size as data. The vector freq typically contains integer frequencies
for the corresponding elements in data, but can contain any nonnegative values. Pass in
[] for censoring to use its default value.

More About
• “Lognormal Distribution” on page B-95

 lognlike

22-2643

See Also
lognfit | lognpdf | logncdf | logninv | lognstat | lognrnd

22 Functions — Alphabetical List

22-2644

prob.LognormalDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Lognormal probability distribution object

Description

prob.LognormalDistribution is an object consisting of parameters, a model
description, and sample data for a lognormal probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Lognormal') creates a lognormal probability distribution object
using the default parameter values.

pd = makedist('Lognormal','mu',mu,'sigma',sigma) creates a lognormal
probability distribution object using the specified parameter values.

Input Arguments

mu — Log mean
0 (default) | scalar value

Log mean for the lognormal distribution, specified as a scalar value. mu is the mean of
the log of x, when x has a lognormal distribution.
Data Types: single | double

sigma — Log standard deviation
1 (default) | nonnegative scalar value

Log standard deviation for the lognormal distribution, specified as a nonnegative
scalar value. sigma is the standard deviation of the log of x, when x has a lognormal
distribution.

 prob.LognormalDistribution class

22-2645

Data Types: single | double

Properties

mu — Log mean
scalar value

Log mean for the lognormal distribution, stored as a scalar value.
Data Types: single | double

sigma — Log standard deviation
nonnegative scalar value

Log standard deviation for the lognormal distribution, stored as a nonnegative scalar
value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

22 Functions — Alphabetical List

22-2646

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

 prob.LognormalDistribution class

22-2647

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

22 Functions — Alphabetical List

22-2648

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Lognormal Distribution

The lognormal distribution is closely related to the normal distribution. If x is distributed
lognormally with parameters μ and σ, then log(x) is distributed normally with mean μ
and standard deviation σ. The lognormal distribution is applicable when the quantity of
interest must be positive, since log(x) exists only when x is positive.

 prob.LognormalDistribution class

22-2649

The lognormal distribution uses the following parameters.

Parameter Description Support

mu Log mean -• < < •m

sigma Log standard deviation s ≥ 0

The probability density function (pdf) of the lognormal distribution is

f x
x

x
x| , exp

ln
; .m s

s p

m

s
() =

- -()Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
>

1

2 2
0

2

2

Examples

Create a Lognormal Distribution Object Using Default Parameters

Create a lognormal distribution object using the default parameter values.

pd = makedist('Lognormal')

pd =

 LognormalDistribution

 Lognormal distribution

 mu = 0

 sigma = 1

Create a Lognormal Distribution Object Using Specified Parameters

Create a lognormal distribution object by specifying the parameter values.

pd = makedist('Lognormal','mu',5,'sigma',2)

pd =

 LognormalDistribution

22 Functions — Alphabetical List

22-2650

 Lognormal distribution

 mu = 5

 sigma = 2

Compute the mean of the lognormal distribution.

mean(pd)

ans =

 1.0966e+03

The mean of the lognormal distribution is not equal to the mu parameter.

Generate random numbers from the lognormal distribution and compute their log values.

rng(47); % for reproducibility

x = random(pd,10000,1);

logx = log(x);

Compute the mean of the log values.

m = mean(logx)

m =

 4.9999

The mean of the log of x is equal to the mu parameter of x, since x has a lognormal
distribution.

Plot logx.

histogram(logx,50)

 prob.LognormalDistribution class

22-2651

The plot shows that the log values of x are normally distributed with a mean equal to 5
and a standard deviation equal to 2.

See Also
dfittool | fitdist | makedist

More About
• “Lognormal Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-2652

lognpdf
Lognormal probability density function

Syntax

Y = lognpdf(X,mu,sigma)

Description

Y = lognpdf(X,mu,sigma) returns values at X of the lognormal pdf with distribution
parameters mu and sigma. mu and sigma are the mean and standard deviation,
respectively, of the associated normal distribution. X, mu, and sigma can be vectors,
matrices, or multidimensional arrays that all have the same size, which is also the size
of Y. A scalar input for X, mu, or sigma is expanded to a constant array with the same
dimensions as the other inputs.

The lognormal pdf is

y f x
x

e

x

= =
− −()

(| ,)

ln

m s
s p

m

s
1

2

2

22

The normal and lognormal distributions are closely related. If X is distributed
lognormally with parameters µ and σ, then log(X) is distributed normally with mean µ
and standard deviation σ.

The mean m and variance v of a lognormal random variable are functions of µ and σ that
can be calculated with the lognstat function. They are:

m

v

= +()
= +() () −()

exp /

exp exp

m s

m s s

2

2 2

2

2 1

So, a lognormal distribution with mean m and variance v has parameters

 lognpdf

22-2653

m

s

= +





= +()
log /

log /

m v m

v m

2 2

2 1

If you do not know the population mean and variance, m and v, for the lognormal
distribution, you can estimate m and s in the following way:

mu = mean(log(X))

sigma = std(log(X))

The lognormal distribution is applicable when the quantity of interest must be positive,
since log(X) exists only when X is positive.

Examples

Compute the Lognormal Distribution pdf

Compute the pdf of a lognormal distribution with mu = 0 and sigma = 1.

x = (0:0.02:10);

y = lognpdf(x,0,1);

Plot the pdf.

plot(x,y); grid;

xlabel('x'); ylabel('p')

22 Functions — Alphabetical List

22-2654

More About
• “Lognormal Distribution” on page B-95

References

[1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics.
3rd ed., New York: McGraw-Hill, 1974. pp. 540–541.

 lognpdf

22-2655

See Also
pdf | logncdf | logninv | lognstat | lognfit | lognlike | lognrnd

22 Functions — Alphabetical List

22-2656

lognrnd

Lognormal random numbers

Syntax

R = lognrnd(mu,sigma)

R = lognrnd(mu,sigma,m,n,...)

R = lognrnd(mu,sigma,[m,n,...])

Description

R = lognrnd(mu,sigma) returns an array of random numbers generated from the
lognormal distribution with parameters mu and sigma. mu and sigma are the mean and
standard deviation, respectively, of the associated normal distribution. mu and sigma
can be vectors, matrices, or multidimensional arrays that have the same size, which is
also the size of R. A scalar input for mu or sigma is expanded to a constant array with the
same dimensions as the other input.

R = lognrnd(mu,sigma,m,n,...) or R = lognrnd(mu,sigma,[m,n,...])
generates an m-by-n-by-... array. The mu, sigma parameters can each be scalars or arrays
of the same size as R.

The normal and lognormal distributions are closely related. If X is distributed
lognormally with parameters µ and σ, then log(X) is distributed normally with mean µ
and standard deviation σ.

The mean m and variance v of a lognormal random variable are functions of µ and σ that
can be calculated with the lognstat function. They are:

m

v

= +()
= +() () −()

exp /

exp exp

m s

m s s

2

2 2

2

2 1

A lognormal distribution with mean m and variance v has parameters

 lognrnd

22-2657

m

s

= +





= +()
log /

log /

m v m

v m

2 2

2 1

Examples

Generate one million lognormally distributed random numbers with mean 1 and variance
2:

m = 1;

v = 2;

mu = log((m^2)/sqrt(v+m^2));

sigma = sqrt(log(v/(m^2)+1));

[M,V]= lognstat(mu,sigma)

M =

 1

V =

 2.0000

X = lognrnd(mu,sigma,1,1e6);

MX = mean(X)

MX =

 0.9974

VX = var(X)

VX =

 1.9776

More About
• “Lognormal Distribution” on page B-95

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ:
Wiley-Interscience, 2000. pp. 102–105.

22 Functions — Alphabetical List

22-2658

See Also
random | lognpdf | logncdf | logninv | lognstat | lognfit | lognlike |
normrnd

 lognstat

22-2659

lognstat

Lognormal mean and variance

Syntax

[M,V] = lognstat(mu,sigma)

Description

[M,V] = lognstat(mu,sigma) returns the mean of and variance of the lognormal
distribution with parameters mu and sigma. mu and sigma are the mean and standard
deviation, respectively, of the associated normal distribution. mu and sigma can be
vectors, matrices, or multidimensional arrays that all have the same size, which is also
the size of M and V. A scalar input for mu or sigma is expanded to a constant array with
the same dimensions as the other input.

The normal and lognormal distributions are closely related. If X is distributed
lognormally with parameters µ and σ, then log(X) is distributed normally with mean µ
and standard deviation σ.

The mean m and variance v of a lognormal random variable are functions of µ and σ that
can be calculated with the lognstat function. They are:

m

v

= +()
= +() () −()

exp /

exp exp

m s

m s s

2

2 2

2

2 1

A lognormal distribution with mean m and variance v has parameters

m

s

= +





= +()
log /

log /

m v m

v m

2 2

2 1

22 Functions — Alphabetical List

22-2660

Examples

Generate one million lognormally distributed random numbers with mean 1 and variance
2:

m = 1;

v = 2;

mu = log((m^2)/sqrt(v+m^2));

sigma = sqrt(log(v/(m^2)+1));

[M,V]= lognstat(mu,sigma)

M =

 1

V =

 2.0000

X = lognrnd(mu,sigma,1,1e6);

MX = mean(X)

MX =

 0.9974

VX = var(X)

VX =

 1.9776

More About
• “Lognormal Distribution” on page B-95

References

[1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics.
3rd ed., New York: McGraw-Hill, 1974. pp. 540–541.

See Also
lognpdf | logncdf | logninv | lognfit | lognlike | lognrnd

 logP

22-2661

logP

Class: CompactClassificationDiscriminant

Log unconditional probability density for discriminant analysis classifier

Syntax

lp = logP(obj,Xnew)

Description

lp = logP(obj,Xnew) returns the log of the unconditional probability density of each
row of Xnew, computed using the discriminant analysis model obj.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Xnew

Matrix where each row represents an observation, and each column represents a
predictor. The number of columns in Xnew must equal the number of predictors in obj.

Output Arguments

lp

Column vector with the same number of rows as Xnew. Each entry is the logarithm of the
unconditional probability density of the corresponding row of Xnew.

22 Functions — Alphabetical List

22-2662

Definitions

Unconditional Probability Density

The unconditional probability density of a point x of a discriminant analysis model is

P x P x k

k

K

() (,),=

=

Â
1

where P(x,k) is the conditional density of the model at x for class k, when the total
number of classes is K.

The conditional density P(x,k) is
P(x,k) = P(k)P(x|k),

where P(k) is the prior probability of class k, and P(x|k) is the conditional density of x
given class k. The conditional density function of the multivariate normal with mean μk
and covariance Σk at a point x is

P x k x x

k

kk

T

k| exp ,
/

() = - -() -()Ê
Ë
Á

ˆ
¯
˜

()
-1

2

1

21 2
1

p
m m

S
S

where Sk is the determinant of Σk, and Sk
-1 is the inverse matrix.

Examples

Compute the Log Unconditional Probabiltiy Density of an Observation

Construct a discriminant analysis classifier for Fisher's iris data, and examine its
prediction for an average measurement.

Load Fisher's iris data and construct a default discriminant analysis classifier.

load fisheriris

Mdl = fitcdiscr(meas,species);

Find the log probability of the discriminant model applied to an average iris.

 logP

22-2663

logPAverage = logP(Mdl,mean(meas))

logPAverage =

 -1.7254

See Also
CompactClassificationDiscriminant | fitcdiscr | mahal

More About
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-2664

logP
Class: CompactClassificationNaiveBayes

Log unconditional probability density for naive Bayes classifier

Syntax

lp = logP(Mdl,X)

Description

lp = logP(Mdl,X) returns the log unconditional probability density of the observations
(rows) in X using the naive Bayes model Mdl.

You can use lp to identify outliers in the training data.

Input Arguments

Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or
CompactClassificationNaiveBayes model returned by fitcnb or compact,
respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained Mdl.

Data Types: double | single

 logP

22-2665

Output Arguments

lp — Log of unconditional probability density
numeric column vector

Log of the unconditional probability density of the predictors, returned as a numeric
column vector. lp has as many elements as rows in X, and each element is the log
probability density of the corresponding row in X.

If any rows in X contain at least one NaN, then the corresponding element of lp is NaN.

Definitions

Unconditional Probability Density

The unconditional probability density of the predictors is its distribution marginalized
over the classes.

In other words, the unconditional probability density is

P X X XX P X Y k P X y k Y kP P P
k

K

k

K

(),.., (, .., ,) (, .., |) (1
1

1
1

1= = = = =

= =

Â Â p)),

where π(Y = k) is the class prior probability. The conditional distribution of the data
given the class (P(X1,..,XP|y = k)) and the class prior probability distributions are
training options (i.e., are specified when training the classifier).

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Examples

Compute Unconditional Probability Densities of Observations

Load Fisher's iris data set.

22 Functions — Alphabetical List

22-2666

load fisheriris

X = meas; % Predictors

Y = species; % Response

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally normally distributed given its label.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Compute the unconditional probability densities of the in-sample observations.

lp = logP(Mdl,X);

histogram(lp)

xlabel 'Log-unconditional probability'

ylabel 'Frequency'

title 'Histogram: Log-Unconditional Probability'

 logP

22-2667

Identify indices of observations having log-unconditional probability less than -7.

idx = find(lp < -7)

idx =

 61

 118

 132

22 Functions — Alphabetical List

22-2668

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb |
predict

More About
• “Naive Bayes Classification” on page 15-31

 loss

22-2669

loss
Class: ClassificationKNN

Loss of k-nearest neighbor classifier

Syntax
L = loss(mdl,X,Y)

L = loss(mdl,X,Y,Name,Value)

Description
L = loss(mdl,X,Y) returns a scalar representing how well mdl classifies the data in X,
when Y contains the true classifications.

When computing the loss, loss normalizes the class probabilities in Y to the class
probabilities used for training, stored in the Prior property of mdl.

L = loss(mdl,X,Y,Name,Value) returns the loss with additional options specified by
one or more Name,Value pair arguments.

Input Arguments
mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

X — Matrix of predictor values
matrix

22 Functions — Alphabetical List

22-2670

Matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y — Categorical variables
categorical array | cell array of strings | character array | logical vector | numeric
vector

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of Y represents the classification of
the corresponding row of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'lossfun '

Function handle or string representing a loss function. The built-in loss functions are:

• 'binodeviance' — See “Loss Functions” on page 22-2671.
• 'classiferror' — Fraction of misclassified observations. See “Loss Functions” on

page 22-2671.
• 'exponential' — See “Loss Functions” on page 22-2671.
• 'hinge' — See “Loss Functions” on page 22-2671.
• 'mincost' — Smallest misclassification cost as given by the mdl.Cost matrix. See

“Loss Functions” on page 22-2671.

You can write your own loss function using the syntax described in “Loss Functions” on
page 22-2671.

Default: 'mincost'

'weights'

Numeric vector of length N, where N is the number of rows of X. weights are
nonnegative. loss normalizes the weights so that observation weights in each class
sum to the prior probability of that class. When you supply weights, loss computes
weighted classification loss.

 loss

22-2671

Default: ones(N,1)

Output Arguments

L

Classification error, a scalar. The meaning of the error depends on the values in weights
and lossfun. See “Classification Error” on page 22-2677.

Definitions

Classification Error

The default classification error is the fraction of data X that mdl misclassifies, where Y
represents the true classifications.

The weighted classification error is the sum of weight i times the Boolean value that is 1
when mdl misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'exponential' — With the same definitions as for 'binodeviance', the
exponential loss is

w y f Xn n nexp .- ()()Â

• 'classiferror' — Predict the label with the largest posterior probability. The loss
is then the fraction of misclassified observations.

22 Functions — Alphabetical List

22-2672

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file in this form:

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in the classifier, represented in the ClassNames property.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in the ClassNames property.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the posterior output from predict.
• W is a numeric vector with N elements, the observation weights. If you pass W, the

elements are normalized to sum to the prior probabilities in the respective classes.
• COST is a K-by-K numeric matrix of misclassification costs. For example, you can use

COST = ones(K) - eye(K), which means a cost of 0 for correct classification, and 1
for misclassification.

 loss

22-2673

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

True Misclassification Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when
you run fitcknn. Cost(i,j) is the cost of classifying an observation into class j if its
true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other
words, the cost is 0 for correct classification, and 1 for incorrect classification.

Expected Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation. The third output of
predict is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier
mdl. Suppose you have K classes. You place the observations into a matrix Xnew with one
observation per row. The command

[label,score,cost] = predict(mdl,Xnew)

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost
matrix contains the expected (average) cost of classifying the observation into each of the
K classes. cost(n,k) is

ˆ | () | ,P i Xnew n C k i

i

K

() ()
=
Â

1

where

• K is the number of classes.
• ˆ | ()P i Xnew n() is the posterior probability of class i for observation Xnew(n).

22 Functions — Alphabetical List

22-2674

• C k i|() is the true misclassification cost of classifying an observation as k when its
true class is i.

Examples

Loss Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the data.

load fisheriris

Construct a classifier for 5-nearest neighbors.

mdl = fitcknn(meas,species,'NumNeighbors',5);

Examine the loss of the classifier for a mean observation classified 'versicolor'.

X = mean(meas);

Y = {'versicolor'};

L = loss(mdl,X,Y)

L =

 0

The classifier has no doubt that 'versicolor' is the correct classification (all five
nearest neighbors classify as 'versicolor').

• “Examine the Quality of a KNN Classifier” on page 16-29
• “Predict Classification Based on a KNN Classifier” on page 16-30
• “Modify a KNN Classifier” on page 16-30

See Also
ClassificationKNN | edge | fitcknn | margin

More About
• “Classification Using Nearest Neighbors” on page 16-8

 loss

22-2675

loss
Class: CompactClassificationDiscriminant

Classification error

Syntax

L = loss(obj,X,Y)

L = loss(obj,X,Y,Name,Value)

Description

L = loss(obj,X,Y) returns a scalar representing how well obj classifies the data in X,
when Y contains the true classifications.

When computing the loss, loss normalizes the class probabilities in Y to the class
probabilities used for training, stored in the Prior property of obj.

L = loss(obj,X,Y,Name,Value) returns the loss with additional options specified by
one or more Name,Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in obj.

Y

Class labels, with the same data type as exists in obj. The number of elements of Y must
equal the number of rows of X.

22 Functions — Alphabetical List

22-2676

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'lossfun '

Function handle or string representing a loss function. Built-in loss functions:

• 'binodeviance' — See “Loss Functions” on page 22-2677.
• 'classiferror' — Fraction of misclassified observations. See “Loss Functions” on

page 22-2677.
• 'exponential' — See “Loss Functions” on page 22-2677.
• 'hinge' — See “Loss Functions” on page 22-2677.
• 'mincost' — Smallest misclassification cost as given by the obj.Cost matrix. See

“Loss Functions” on page 22-2677.

You can write your own loss function using the syntax described in “Loss Functions” on
page 22-2677.

Default: 'mincost'

'weights'

Numeric vector of length N, where N is the number of rows of X. weights are
nonnegative. loss normalizes the weights so that observation weights in each class
sum to the prior probability of that class. When you supply weights, loss computes
weighted classification loss.

Default: ones(N,1)

Output Arguments

L

Classification error, a scalar. The meaning of the error depends on the values in weights
and lossfun. See “Classification Error” on page 22-2677.

 loss

22-2677

Definitions

Classification Error

The default classification error is the fraction of data X that obj misclassifies, where Y
represents the true classifications.

Weighted classification error is the sum of weight i times the Boolean value that is 1
when obj misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'exponential' — With the same definitions as for 'binodeviance', the
exponential loss is

w y f Xn n nexp .- ()()Â

• 'classiferror' — Predict the label with the largest posterior probability. The loss
is then the fraction of misclassified observations.

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

22 Functions — Alphabetical List

22-2678

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file in this form:

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in the classifier, represented in the ClassNames property.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in the ClassNames property.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the posterior output from predict.
• W is a numeric vector with N elements, the observation weights. If you pass W, the

elements are normalized to sum to the prior probabilities in the respective classes.
• COST is a K-by-K numeric matrix of misclassification costs. For example, you can use

COST = ones(K) - eye(K), which means a cost of 0 for correct classification, and 1
for misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

Posterior Probability

The posterior probability that a point z belongs to class j is the product of the prior
probability and the multivariate normal density. The density function of the multivariate
normal with mean μj and covariance Σj at a point z is

 loss

22-2679

P x k x x

k

kk

T

k| exp ,
/

() = - -() -()Ê
Ë
Á

ˆ
¯
˜

()
-1

2

1

21 2
1

p
m m

S
S

where Sk
 is the determinant of Σk, and Sk

-1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an
observation x is of class k is

ˆ |
|

,P k x
P x k P k

P x
() =

() ()

()

where P(x) is a normalization constant, the sum over k of P(x|k)P(k).

Prior Probability

The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is one over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of

class k divided by the total number of training samples.
• Custom — The prior probability of class k is the kth element of the prior vector. See

fitcdiscr.

After creating a classifier obj, you can set the prior using dot notation:

obj.Prior = v;

where v is a vector of positive elements representing the frequency with which each
element occurs. You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 15-8.

Examples

Compute the resubstituted classification error for the Fisher iris data:

22 Functions — Alphabetical List

22-2680

load fisheriris

obj = fitcdiscr(meas,species);

L = loss(obj,meas,species)

L =

 0.0200

See Also
predict | ClassificationDiscriminant | fitcdiscr | edge | margin

How To
• “Discriminant Analysis” on page 15-3

 loss

22-2681

loss
Class: CompactClassificationECOC

Classification loss for error-correcting output code multiclass classifiers

Syntax

L = loss(Mdl,X,Y)

L = loss(Mdl,X,Y,Name,Value)

Description

L = loss(Mdl,X,Y) returns the classification loss (L), a scalar representing how well
the trained error-correcting output code (ECOC) multiclass classifer Mdl classifies the
predictor data (X) as compared to the true class labels (Y). Each row of X and Y is an
observation.

L = loss(Mdl,X,Y,Name,Value) returns the classification loss with additional
options specified by one or more Name,Value pair arguments.

For example, specify a decoding scheme, classification loss function, or verbosity level.

Input Arguments

Mdl — ECOC multiclass classifier
ClassificationECOC model | CompactClassificationECOC model

ECOC multiclass classifier, specified as a ClassificationECOC or
CompactClassificationECOC model. You can create a:

• ClassificationECOC model by training the ECOC classifier using fitcecoc
• CompactClassificationECOC model by passing a ClassificationECOC classifier

to compact

X — Predictor data
numeric matrix

22 Functions — Alphabetical List

22-2682

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also called an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
composing the columns of X should be the same as the variables that trained the Mdl
classifier.

The length of Y and the number of rows of X must be equal.

If you trained Mdl specifying to standardize the predictor data, then the software
standardizes the columns of X using the corresponding means and standard
deviations that the software stored in Mdl.BinaryLearner{j}.Mu and
Mdl.BinaryLearner{j}.Sigma for learner j.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of Mdl.ClassNames.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

 loss

22-2683

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.
• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

22 Functions — Alphabetical List

22-2684

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'LossFun' — Loss function
'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or 'classiferror'.

You can:

• Specify the built-in function 'classiferror'. Subsequently, the loss function is
classification error, i.e., the proportion of misclassified observations.

• Specify your own function using function handle notation.

 loss

22-2685

Suppose that n = size(X,1) is the sample size and k is the number of classes. Your
function must have the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-k logical matrix with rows indicating which class the corresponding

observation belongs. The column order corresponds to the class order in
Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set
all other elements of row p to 0.

• S is an n-by-k numeric matrix of negated loss values for classes. Each row
corresponds to an observation. The column order corresponds to the class order in
Mdl.ClassNames. S resembles the output argument negLoss of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes its elements to sum to 1.

• Cost is a k-by-k numeric matrix of misclassification costs. For example, Cost
= ones(K) -eye(K) specifies a cost of 0 for correct classification, and 1 for
misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: function_handle | char

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

'Weights' — Observation weights
ones(size(X,1)) (default) | numeric vector

22 Functions — Alphabetical List

22-2686

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector. Weights requires the same length as the number of rows of X,
i.e., size(X,1). The software normalizes Weights to sum up to the value of the prior
probability in the respective class.

If you do not specify your own loss function (using LossFun), then the software
normalizes Weights to sum up to the value of the prior probability in the respective
class.

Output Arguments

L — Classification loss
scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality
measure. Its interpretation depends on the loss function and weighting scheme, but, in
general, better classifiers yield smaller loss values.

Definitions

Classification Error

The classification error is a binary classification error measure that has the form

L

w e

w

j j

j

n

j
j

n
=

=

=

Â

Â

1

1

,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

 loss

22-2687

In other words, it is the proportion of observations that the classifier misclassifies.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

22 Functions — Alphabetical List

22-2688

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Determine the Test Sample Loss of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers, and specify a 15% holdout sample.
It is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder);

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

 loss

22-2689

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

Estimate the test-sample loss.

L = loss(CMdl,XTest,YTest)

L =

 0

The ECOC model correctly classifies all out-of-sample irises.

Determine ECOC Model Quality Using a Custom Loss

Suppose that it is interesting to know how well a model classifies a particular class. This
example shows how to pass such a custom loss function to loss.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

n = numel(Y); % Sample size

classOrder = unique(Y) % Class order

K = numel(classOrder); % Number of classes

rng(1) % For reproducibility

classOrder =

 setosa

 versicolor

 virginica

Train an ECOC model using SVM binary classifiers and specifying a 15% holdout
sample. It is good practice to standardize the predictors and define the class order.
Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder);

22 Functions — Alphabetical List

22-2690

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

Compute the negated losses for the test-sample observations.

[~,negLoss] = predict(CMdl,XTest);

Create a function that takes the minimal loss for each observation, and then averages the
minimal losses across all observations.

lossfun = @(C,S,~,~)mean(min(-negLoss,[],2));

Compute the test-sample custom loss.

loss(CMdl,XTest,YTest,'LossFun',lossfun)

ans =

 0.0033

The average, minimal, binary loss in the test sample is 0.0033.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

 loss

22-2691

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | CompactClassificationECOC | fitcecoc | predict |
resubLoss

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

22 Functions — Alphabetical List

22-2692

loss
Class: CompactClassificationEnsemble

Classification error

Syntax
L = loss(ens,X,Y)

L = loss(ens,X,Y,Name,Value)

Description
L = loss(ens,X,Y) returns the classification error for ensemble ens computed using
matrix of predictors X and true class labels Y.

When computing the loss, loss normalizes the class probabilities in Y to the class
probabilities used for training, stored in the Prior property of ens.

L = loss(ens,X,Y,Name,Value) computes classification error with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
ens

Classification ensemble created with fitensemble, or a compact classification ensemble
created with compact.

X

Matrix of data to classify. Each row of X represents one observation, and each column
represents one predictor. X must have the same number of columns as the data used to
train ens. X should have the same number of rows as the number of elements in Y.

Y

Classification of X. Y should be of the same type as the classification used to train ens,
and its number of elements should equal the number of rows of X.

 loss

22-2693

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. loss uses
only these learners for calculating loss.

Default: 1:NumTrained

'lossfun '

Function handle or string representing a loss function. Built-in loss functions:

• 'binodeviance' — See “Loss Functions” on page 22-2694
• 'classiferror' — Fraction of misclassified data
• 'exponential' — See “Loss Functions” on page 22-2694
• 'hinge' — See “Loss Functions” on page 22-2694.
• 'mincost' — Smallest misclassification cost as given by the obj.Cost matrix. See

“Loss Functions” on page 22-2694.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-2694.

Default: 'classiferror'

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

22 Functions — Alphabetical List

22-2694

'UseObsForLearner'

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row
i of X.

Default: true(N,T)

'weights'

Vector of observation weights, with nonnegative entries. The length of weights must
equal the number of rows in X. When you specify weights, loss normalizes the weights
so that observation weights in each class sum to the prior probability of that class.

Default: ones(size(X,1),1)

Output Arguments
L

Loss, by default the fraction of misclassified data. L can be a vector, and can mean
different things, depending on the name-value pair settings.

Definitions

Classification Error

The default classification error is the fraction of the data X that ens misclassifies, where
Y are the true classifications.

Weighted classification error is the sum of weight i times the Boolean value that is 1
when tree misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

 loss

22-2695

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'classiferror' — Fraction of misclassified data, weighted by w.
• 'exponential' — With the same definitions as for 'binodeviance', the

exponential loss is

w y f Xn n nexp .- ()()Â

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file of the form

function loss = lossfun(C,S,W,COST)

22 Functions — Alphabetical List

22-2696

• N is the number of rows of ens.X.
• K is the number of classes in ens, represented in ens.ClassNames.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in tree.ClassNames.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the score output from predict.
• W is a numeric vector with N elements, the observation weights.
• COST is a K-by-K numeric matrix of misclassification costs. The default

'classiferror' gives a cost of 0 for correct classification, and 1 for
misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

Examples

Create a compact classification ensemble for the ionosphere data, and find the fraction of
training data that the ensemble misclassifies:

load ionosphere

ada = fitensemble(X,Y,'AdaBoostM1',100,'tree');

adb = compact(ada);

L = loss(adb,X,Y)

L =

 0.0085

See Also
loss | margin | predict | edge

 loss

22-2697

loss
Class: CompactClassificationNaiveBayes

Classification error for naive Bayes classifier

Syntax

L = loss(Mdl,X,Y)

L = loss(Mdl,X,Y,Name,Value)

Description

L = loss(Mdl,X,Y) returns the minimum misclassification cost loss (L), a scalar
representing how well the trained naive Bayes classifer Mdl classifies the predictor data
(X) as compared to the true class labels (Y).

loss normalizes the class probabilities in Y to the prior class probabilities fitcnb used
for training, stored in the Prior property of Mdl.

L = loss(Mdl,X,Y,Name,Value) returns the classification loss with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or
CompactClassificationNaiveBayes model returned by fitcnb or compact,
respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

22 Functions — Alphabetical List

22-2698

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained Mdl.

The length of Y and the number of rows of X must be equal.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of Mdl.ClassNames.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'LossFun' — Loss function
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' |
'mincost' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or string.

• This table describes the built-in loss functions. Specify one using its corresponding
string.

String Loss Function

'binodeviance' Binomial deviance
'classiferror' Classification error
'exponential' Exponential loss
'hinge' Hinge loss
'mincost' Minimum misclassification cost loss

 loss

22-2699

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and k =
size(Mdl.ClassNames,1) is the number of classes. Your function must have the
signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-k logical matrix with rows indicating to which class the corresponding

observation belongs. The column order corresponds to the class order in
Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set
all other elements of row p to 0.

• S is an n-by-k numeric matrix of classification scores. The column order
corresponds to the class order in Mdl.ClassNames. S is a matrix of posterior
probabilities, similar to the output of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes the weights to sum to the prior probability of their respective class.
If Mdl is a compact model, then you must also supply the weights using the
'Weights' name-value pair argument.

• Cost is a k-by-k numeric matrix of misclassification costs. For example, Cost
= ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for
misclassification.

Specify your function using 'LossFun',@lossfun.

'Weights' — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector.

The size of Weights must be equal to the number of rows of X. The software weighs the
observations in each row of X with the corresponding weight in Weights.

If you do not specify your own loss function, then the software normalizes Weights to
add up to 1.

Data Types: double

22 Functions — Alphabetical List

22-2700

Output Arguments

L — Classification loss
scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality
measure. Its interpretation depends on the loss function and weighting scheme, but, in
general, better classifiers yield smaller loss values.

Definitions

Binomial Deviance

The binomial deviance (or multinomial deviance for number of classes K > 3) is a
classification error measure that has the form

L

w y f X

w

j

n

j

n

j j j

j

=

+ - ()()()¢

=

=

Â

Â

1

1

1 2log exp

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class. For

problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in the
position corresponding to the true class, e.g., if the second observation is in the third
class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector of
posterior probabilities for each class given observation j.

The binomial deviance has connections to the maximization of the binomial likelihood
function. For details on binomial deviance, see [1].

 loss

22-2701

Classification Error

The classification error is a binary classification error measure that has the form

L

w e

w

j j

j

n

j
j

n
=

=

=

Â

Â

1

1

,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, it is the proportion of observations that the classifier misclassifies.

Exponential Loss

Exponential loss is a classification error measure that is similar to binomial deviance,
and has the form

L

w y f X

w

j

n

j

j

n

j j

j

=

- ()()¢

=

=

Â

Â

1

1

exp

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class. For

problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in the
position corresponding to the true class, e.g., if the second observation is in the third
class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector of
posterior probabilities for each class given observation j.

22 Functions — Alphabetical List

22-2702

Hinge Loss

Hinge loss is a binary classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class. For

problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in the
position corresponding to the true class, e.g., if the second observation is in the third
class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector of
posterior probabilities for each class given observation j.

Hinge loss linearly penalizes for misclassified observations, and is related to the support
vector machine (SVM) objective function used for optimization. For more details on hinge
loss, see [1].

Minimum Misclassification Cost Loss

The minimum misclassification cost loss is the weighted average of the minimum
expected misclassification costs for each observation.

In other words, the minimum misclassification cost is

L

w c

w

j

j

n

j

j
j

n
=

=

Â

Â

1
,

where:

 loss

22-2703

• wj is the weight of observation j.
• cj is the minimum of the expected misclassification costs for observation j.

Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into
the wrong class.

There are two types of misclassification costs: true and expected. Let K be the number of
classes.

• True misclassification cost — A K-by-K matrix, where element (i,j) indicates the
misclassification cost of predicting an observation into class j if its true class is i.
The software stores the misclassification cost in the property Mdl.Cost, and used in
computations. By default, Mdl.Cost(i,j) = 1 if i ≠ j, and Mdl.Cost(i,j) = 0 if
i = j. In other words, the cost is 0 for correct classification, and 1 for any incorrect
classification.

• Expected misclassification cost — A K-dimensional vector, where element k is the
weighted average misclassification cost of classifying an observation into class k,
weighted by the class posterior probabilities. In other words,

c Y j xP xk

j

K

jkP= =()
=

Â ˆ ,...,| .
1

1 Cost

the software classifies observations to the class corresponding with the lowest expected
misclassification cost.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

22 Functions — Alphabetical List

22-2704

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Examples

Determine Test Sample Minimum Cost Loss of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1); % For reproducibility

Train a naive Bayes classifier. Specify a 15% holdout sample for testing. It is good
practice to specify the class order. Assume that each predictor is conditionally normally
distributed given its label.

CVMdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'},...

 'Holdout',0.15);

CMdl = CVMdl.Trained{1}; % Extract the trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes
classifier that the software trained using the training set.

 loss

22-2705

Determine how well the algorithm generalizes by estimating the test sample minimum
cost loss.

L = loss(CMdl,XTest,YTest)

L =

 0.0476

The test sample average classification cost is approximately 0.05.

You might improve the classification error by specifying better predictor distributions
when you train the classifier.

Determine the Test Sample Classification Error of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1); % For reproducibility

Train a naive Bayes classifier. Specify a 15% holdout sample for testing. It is good
practice to specify the class order. Assume that each predictor is conditionally normally
distributed given its label.

CVMdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'},...

 'Holdout',0.15);

CMdl = CVMdl.Trained{1}; % Extract the trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes
classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample
classification error.

L = loss(CMdl,XTest,YTest,'LossFun','classiferror')

22 Functions — Alphabetical List

22-2706

L =

 0.0476

The classifier misclassified approximately 5% of the test sample observations.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
second edition. Springer, New York, 2008.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb |
predict | resubLoss

More About
• “Naive Bayes Classification” on page 15-31

 loss

22-2707

loss

Class: CompactClassificationSVM

Classification error for support vector machine classifiers

Syntax

L = loss(SVMModel,X,Y)

L = loss(SVMModel,X,Y,Name,Value)

Description

L = loss(SVMModel,X,Y) returns the classification error (L), a scalar representing
how well the trained support vector machine (SVM) classifer SVMModel classifies the
predictor data (X) as compared to the true class labels (Y).

loss normalizes the class probabilities in Y to the prior class probabilities fitcsvm used
for training, stored in the Prior property of SVMModel.

L = loss(SVMModel,X,Y,Name,Value) returns the classification error with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

SVMModel — SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier

SVM classifier, specified as a ClassificationSVM classifier or
CompactClassificationSVM classifier returned by fitcsvm or compact, respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

22 Functions — Alphabetical List

22-2708

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained the
SVMModel classifier.

The length of Y and the number of rows of X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software
standardizes the columns of X using the corresponding means in SVMModel.Mu and
standard deviations in SVMModel.Sigma.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of SVMModel.ClassNames.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'LossFun' — Loss function
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' |
function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or string.

• The following lists available loss functions. Specify one using its corresponding string.

Value Loss Function

'binodeviance' Binomial deviance
'classiferror' Classification error

 loss

22-2709

Value Loss Function

'exponential' Exponential loss
'hinge' Hinge loss

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and K=
size(SVMModel.ClassNames,1) is the number of classes. Your function must have
the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding

observation belongs. The column order corresponds to the class order in
SVMModel.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set
all other elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order
corresponds to the class order in SVMModel.ClassNames. S is a matrix of
classification scores, similar to the output of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost
= ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for
misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | function_handle

'Weights' — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector.

The size of Weights must be equal to the number of rows of X. The software weighs the
observations in each row of X with the corresponding weight in Weights.

22 Functions — Alphabetical List

22-2710

If you do not specify your own loss function, then the software normalizes Weights to
sum up to the value of the prior probability in the respective class.
Data Types: double

Output Arguments

L — Classification loss
scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality
measure. Its interpretation depends on the loss function and weighting scheme, but, in
general, better classifiers yield smaller loss values.

Definitions

Binomial Deviance

The binomial deviance is a binary classification error measure that has the form

L

w y f X

w

j

n

j

n

j j j

j

=

+ - ()()()¢

=

=

Â

Â

1

1

1 2log exp

,

where:

• wj is weight j. The software renormalizes the weights to sum to 1.
• yj = {-1,1}.
• f X j() is the score for observation j.

The binomial deviance has connections to the maximization of the binomial likelihood
function. For details on binomial deviance, see [1].

 loss

22-2711

Classification Error

The classification error is a binary classification error measure that has the form

L

w e

w

j j

j

n

j
j

n
=

=

=

Â

Â

1

1

,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, it is the proportion of observations that the classifier misclassifies.

Exponential Loss

A binary classification error measure that is similar to binomial deviance, and has the
form

L

w y f X

w

j

n

j

j

n

j j

j

=

- ()()¢

=

=

Â

Â

1

1

exp

,

where:

• wj is weight j. The software renormalizes the weights to sum to 1.
• yj = {-1,1}.
• f X j() is the score for observation j.

Hinge Loss

Hinge loss is a binary classification error measure that has the form

22 Functions — Alphabetical List

22-2712

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j. The software renormalizes the weights to sum to 1.
• yj = {-1,1}.
• f X j() is the score for observation j.

Hinge loss linearly penalizes for misclassified observations, and is related to the SVM
objective function used for optimization. For more details on hinge loss, see [1].

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x x s b() = () ¢ +/ .b

 loss

22-2713

s is the kernel scale and β is the vector of fitted linear coefficients.

Examples

Determine the Test Sample Classification Error of SVM Classifiers

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing. It is good practice to
specify the class order and standardize the data.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...

 'Standardize',true);

CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier

testInds = test(CVSVMModel.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the
property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM
classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample
classification error.

L = loss(CompactSVMModel,XTest,YTest)

L =

 0.0787

The SVM classifier misclassifies approximately 8% of the test sample radar returns.

Determine the Test Sample Hinge Loss of SVM Classifiers

Load the ionosphere data set.

load ionosphere

22 Functions — Alphabetical List

22-2714

rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing. It is good practice to
specify the class order and standardize the data.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...

 'Standardize',true);

CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier

testInds = test(CVSVMModel.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the
property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM
classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample hinge loss.

L = loss(CompactSVMModel,XTest,YTest,'LossFun','Hinge')

L =

 0.2998

The hinge loss is approximately 0.3. Classifiers with hinge losses close to 0 are desirable.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
second edition. Springer, New York, 2008.

See Also
ClassificationSVM | CompactClassificationSVM | edge | fitcsvm | predict

 loss

22-2715

loss

Class: CompactClassificationTree

Classification error

Syntax

L = loss(tree,X,Y)

L = loss(tree,X,Y,Name,Value)

L = loss(tree,X,Y,'Subtrees',subtreevector)

[L,se] = loss(tree,X,Y,'Subtrees',subtreevector)

[L,se,NLeaf] = loss(tree,X,Y,'Subtrees',subtreevector)

[L,se,NLeaf,bestlevel] = loss(tree,X,Y,'Subtrees',subtreevector)

[L,...] = loss(tree,X,Y,'Subtrees',subtreevector,Name,Value)

Description

L = loss(tree,X,Y) returns a scalar representing how well tree classifies the data
in X, when Y contains the true classifications.

When computing the loss, loss normalizes the class probabilities in Y to the class
probabilities used for training, stored in the Prior property of tree.

L = loss(tree,X,Y,Name,Value) returns the loss with additional options specified
by one or more Name,Value pair arguments.

L = loss(tree,X,Y,'Subtrees',subtreevector) returns a vector of classification
errors for the trees in the pruning sequence subtreevector.

[L,se] = loss(tree,X,Y,'Subtrees',subtreevector) returns the vector of
standard errors of the classification errors.

Note: loss returns se and further outputs only when the LossFun name-value pair is
the default 'classiferror'.

22 Functions — Alphabetical List

22-2716

[L,se,NLeaf] = loss(tree,X,Y,'Subtrees',subtreevector) returns the vector
of numbers of leaf nodes in the trees of the pruning sequence.

[L,se,NLeaf,bestlevel] = loss(tree,X,Y,'Subtrees',subtreevector)

returns the best pruning level as defined in the TreeSize name-value pair. By default,
bestlevel is the pruning level that gives loss within one standard deviation of minimal
loss.

[L,...] = loss(tree,X,Y,'Subtrees',subtreevector,Name,Value) returns
loss statistics with additional options specified by one or more Name,Value pair
arguments.

Input Arguments

tree

A classification tree or compact classification tree constructed by fitctree or compact.

X

Matrix of data to classify. Each row of X represents one observation, and each column
represents one predictor. X must have the same number of columns as the data used to
train tree. X should have the same number of rows as the number of elements in Y.

Y

Classification of X. Y should be of the same type as the classification used to train tree,
and its number of elements should equal the number of rows of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'LossFun '

Function handle or string representing a loss function. Built-in loss functions:

 loss

22-2717

• 'binodeviance' — See “Loss Functions” on page 22-2719
• 'classiferror' — Fraction of misclassified observations. See “Loss Functions” on

page 22-2719.
• 'exponential' — See “Loss Functions” on page 22-2719
• 'hinge' — See “Loss Functions” on page 22-2719.
• 'mincost' — Smallest misclassification cost as given by the tree.Cost matrix. See

“Loss Functions” on page 22-2719.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-2719.

Default: 'mincost'

'Weights'

A numeric vector of length N, where N is the number of rows of X. Weights are
nonnegative. loss normalizes the weights so that observation weights in each class
sum to the prior probability of that class. When you supply Weights, loss computes
weighted classification loss.

Default: ones(N,1)

Name,Value arguments associated with pruning subtrees:

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then CompactClassificationTree.loss operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

CompactClassificationTree.loss prunes tree to each level indicated in Subtrees,
and then estimates the corresponding output arguments. The size of Subtrees
determines the size of some output arguments.

22 Functions — Alphabetical List

22-2718

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

'TreeSize'

One of the following strings:

• 'se' — loss returns the highest pruning level with loss within one standard
deviation of the minimum (L+se, where L and se relate to the smallest value in
Subtrees).

• 'min' — loss returns the element of Subtrees with smallest loss, usually the
smallest element of Subtrees.

Output Arguments

L

Classification error, a vector the length of Subtrees. The meaning of the error depends
on the values in Weights and LossFun; see “Classification Error” on page 22-2719.

se

Standard error of loss, a vector the length of Subtrees.

NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of
Subtrees.

bestlevel

A scalar whose value depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one
standard deviation of the minimum (L+se, where L and se relate to the smallest
value in Subtrees).

 loss

22-2719

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss,
usually the smallest element of Subtrees.

Definitions

Classification Error

The default classification error is the fraction of data X that tree misclassifies, where Y
represents the true classifications.

Weighted classification error is the sum of weight i times the Boolean value that is 1
when tree misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'exponential' — With the same definitions as for 'binodeviance', the
exponential loss is

w y f Xn n nexp .- ()()Â

• 'classiferror' — Predict the label with the largest posterior probability. The loss
is then the fraction of misclassified observations.

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

22 Functions — Alphabetical List

22-2720

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file in this form:

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in the classifier, represented in the ClassNames property.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in the ClassNames property.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the posterior output from predict.
• W is a numeric vector with N elements, the observation weights. If you pass W, the

elements are normalized to sum to the prior probabilities in the respective classes.
• COST is a K-by-K numeric matrix of misclassification costs. For example, you can use

COST = ones(K) - eye(K), which means a cost of 0 for correct classification, and 1
for misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

True Misclassification Cost

There are two costs associated with classification: the true misclassification cost per
class, and the expected misclassification cost per observation.

 loss

22-2721

You can set the true misclassification cost per class in the Cost name-value pair
when you create the classifier using the fitctree method. Cost(i,j) is the cost of
classifying an observation into class j if its true class is i. By default, Cost(i,j)=1 if
i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for correct classification,
and 1 for incorrect classification.

Expected Misclassification Cost

There are two costs associated with classification: the true misclassification cost per
class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier.
Suppose you have K classes. You place the observations into a matrix Xnew with one
observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected
(average) cost of classifying the observation into each of the K classes. CE(n,k) is

ˆ | () | ,P i Xnew n C k i

i

K

() ()
=
Â

1

where

• K is the number of classes.
• ˆ | ()P i Xnew n() is the posterior probability of class i for observation Xnew(n).

• C k i|() is the true misclassification cost of classifying an observation as k when its
true class is i.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

22 Functions — Alphabetical List

22-2722

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

 loss

22-2723

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

22 Functions — Alphabetical List

22-2724

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Examples

Compute the In-sample Classification Error

Compute the resubstituted classification error for the ionosphere data set.

load ionosphere

tree = fitctree(X,Y);

L = loss(tree,X,Y)

L =

 0.0114

Examine the Classification Error for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-
sample performance is to prune a tree (or restrict its growth) so that in-sample and out-
of-sample performance are satisfactory.

 loss

22-2725

Load Fisher's iris data set. Partition the data into training (50%) and validation (50%)
sets.

load fisheriris

n = size(meas,1);

rng(1) % For reproducibility

idxTrn = false(n,1);

idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices

idxVal = idxTrn == false; % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

View the classification tree.

view(Mdl,'Mode','graph');

22 Functions — Alphabetical List

22-2726

The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as
displayed). Level 3 is just the root node (i.e., no splits).

Examine the training sample classification error for each subtree (or pruning level)
excluding the highest level.

m = max(Mdl.PruneList) - 1;

trnLoss = resubLoss(Mdl,'SubTrees',0:m)

trnLoss =

 loss

22-2727

 0.0267

 0.0533

 0.3067

• The full, unpruned tree misclassifies about 2.7% of the training observations.
• The tree pruned to level 1 misclassifies about 5.3% of the training observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training

observations.

Examine the validation sample classification error at each level excluding the highest
level.

valLoss = loss(Mdl,meas(idxVal,:),species(idxVal),'SubTrees',0:m)

valLoss =

 0.0369

 0.0237

 0.3067

• The full, unpruned tree misclassifies about 3.7% of the validation observations.
• The tree pruned to level 1 misclassifies about 2.4% of the validation observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation

observations.

To balance model complexity and out-of-sample performance, consider pruning Mdl to
level 1.

pruneMdl = prune(Mdl,'Level',1);

view(pruneMdl,'Mode','graph')

22 Functions — Alphabetical List

22-2728

See Also
margin | predict | fitctree | edge

 loss

22-2729

loss
Class: CompactRegressionEnsemble

Regression error

Syntax

L = loss(ens,X,Y)

L = loss(ens,X,Y,Name,Value)

Description

L = loss(ens,X,Y) returns the mean squared error between the predictions of ens to
the data in X, compared to the true responses Y.

L = loss(ens,X,Y,Name,Value) computes the error in prediction with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A regression ensemble created with fitensemble, or the compact method.

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

NaN values in X are taken to be missing values. Observations with all missing values for
X are not used in the calculation of loss.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the
response to the data in the corresponding row of X.

22 Functions — Alphabetical List

22-2730

NaN values in Y are taken to be missing values. Observations with missing values for Y
are not used in the calculation of loss.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge
uses only these learners for calculating loss.

Default: 1:NumTrained

'lossfun'

Function handle for loss function, or the string 'mse', meaning mean squared error. If
you pass a function handle fun, loss calls it as

fun(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length.

• Y is the observed response.
• Yfit is the predicted response.
• W is the observation weights.

The returned value fun(Y,Yfit,W) should be a scalar.

Default: 'mse'

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

 loss

22-2731

Default: 'ensemble'

'UseObsForLearner'

A logical matrix of size N-by-NumTrained, where N is the number of
observations in ens.X, and NumTrained is the number of weak learners. When
UseObsForLearner(I,J) is true, predict uses learner J in predicting observation I.

Default: true(N,NumTrained)

'weights'

Numeric vector of observation weights with the same number of elements as Y. The
formula for loss with weights is in “Weighted Mean Squared Error” on page 22-2731.

Default: ones(size(Y))

Output Arguments

L

Weighted mean squared error of predictions. The formula for loss is in “Weighted Mean
Squared Error” on page 22-2731.

Definitions

Weighted Mean Squared Error

Let n be the number of rows of data, xj be the jth row of data, yj be the true response to xj,
and let f(xj) be the response prediction of ens to xj. Let w be the vector of weights (all one
by default).

First the weights are divided by their sum so they add to one: w→w/Σw. The mean
squared error L is

L w f x yj j j

j

n

= () -()
=

Â
2

1

.

22 Functions — Alphabetical List

22-2732

Examples

Find the loss of an ensemble predictor of the carsmall data to find MPG as a function of
engine displacement, horsepower, and vehicle weight:

load carsmall

X = [Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'LSBoost',100,'Tree');

L = loss(ens,X,MPG)

L =

 4.3904

See Also
predict | fitensemble

 loss

22-2733

loss

Class: CompactRegressionTree

Regression error

Syntax

L = loss(tree,X,Y)

[L,se] = loss(tree,X,Y)

[L,se,NLeaf] = loss(tree,X,Y)

[L,se,NLeaf,bestlevel] = loss(tree,X,Y)

L = loss(tree,X,Y,Name,Value)

Description

L = loss(tree,X,Y) returns the mean squared error between the predictions of tree
to the data in X, compared to the true responses Y.

[L,se] = loss(tree,X,Y) returns the standard error of the loss.

[L,se,NLeaf] = loss(tree,X,Y) returns the number of leaves (terminal nodes) in
the tree.

[L,se,NLeaf,bestlevel] = loss(tree,X,Y) returns the optimal pruning level for
tree.

L = loss(tree,X,Y,Name,Value) computes the error in prediction with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

tree

Regression tree created with fitrtree, or the compact method.

22 Functions — Alphabetical List

22-2734

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the
response to the data in the corresponding row of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'LossFun'

Function handle for loss, or the string 'mse' representing mean-squared error. If you
pass a function handle fun, loss calls fun as:

fun(Y,Yfit,W)

• Y is the vector of true responses.
• Yfit is the vector of predicted responses.
• W is the observation weights. If you pass W, the elements are normalized to sum to 1.

All the vectors have the same number of rows as Y.

Default: 'mse'

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

 loss

22-2735

If you specify 'all', then CompactRegressionTree.loss operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

CompactRegressionTree.loss prunes tree to each level indicated in Subtrees, and
then estimates the corresponding output arguments. The size of Subtrees determines
the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

'TreeSize'

A string, either:

• 'se' — loss returns bestlevel that corresponds to the smallest tree whose mean
squared error (MSE) is within one standard error of the minimum MSE.

• 'min' — loss returns bestlevel that corresponds to the minimal MSE tree.

'Weights'

Numeric vector of observation weights with the same number of elements as Y.

Default: ones(size(Y))

Output Arguments

L

Classification error, a vector the length of Subtrees. The error for each tree is the
mean squared error, weighted with Weights. If you include LossFun, L reflects the loss
calculated with LossFun.

se

Standard error of loss, a vector the length of Subtrees.

22 Functions — Alphabetical List

22-2736

NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of
Subtrees.

bestlevel

A scalar whose value depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one
standard deviation of the minimum (L+se, where L and se relate to the smallest
value in Subtrees).

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss,
usually the smallest element of Subtrees.

Definitions

Mean Squared Error

The mean squared error m of the predictions f(Xn) with weight vector w is

m
w f X Y

w

n n n

n

=
() -()Â

Â

2

.

Examples

Compute the In-Sample MSE

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

 loss

22-2737

tree = fitrtree(X,MPG);

Estimate the in-sample MSE.

L = loss(tree,X,MPG)

L =

 4.8952

Find the Pruning Level Yielding the Optimal In-sample Loss

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

Mdl = fitrtree(X,MPG);

View the regression tree.

view(Mdl,'Mode','graph');

22 Functions — Alphabetical List

22-2738

Find the best pruning level that yields the optimal in-sample loss.

[L,se,NLeaf,bestLevel] = loss(Mdl,X,MPG,'Subtrees','all');

bestLevel

bestLevel =

 1

 loss

22-2739

The best pruning level is level 1.

Prune the tree to level 1.

pruneMdl = prune(Mdl,'Level',bestLevel);

view(pruneMdl,'Mode','graph');

22 Functions — Alphabetical List

22-2740

Examine the MSE for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-
sample performance is to prune a tree (or restrict its growth) so that in-sample and out-
of-sample performance are satisfactory.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

 loss

22-2741

X = [Displacement Horsepower Weight];

Y = MPG;

Partition the data into training (50%) and validation (50%) sets.

n = size(X,1);

rng(1) % For reproducibility

idxTrn = false(n,1);

idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices

idxVal = idxTrn == false; % Validation set logical indices

Grow a regression tree using the training set.

Mdl = fitrtree(X(idxTrn,:),Y(idxTrn));

View the regression tree.

view(Mdl,'Mode','graph');

22 Functions — Alphabetical List

22-2742

The regression tree has seven pruning levels. Level 0 is the full, unpruned tree (as
displayed). Level 7 is just the root node (i.e., no splits).

Examine the training sample MSE for each subtree (or pruning level) excluding the
highest level.

m = max(Mdl.PruneList) - 1;

trnLoss = resubLoss(Mdl,'SubTrees',0:m)

 loss

22-2743

trnLoss =

 5.9789

 6.2768

 6.8316

 7.5209

 8.3951

 10.7452

 14.8445

• The MSE for the full, unpruned tree is about 6 units.
• The MSE for the tree pruned to level 1 is about 6.3 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 14.8 units.

Examine the validation sample MSE at each level excluding the highest level.

valLoss = loss(Mdl,X(idxVal,:),Y(idxVal),'SubTrees',0:m)

valLoss =

 32.1205

 31.5035

 32.0541

 30.8183

 26.3535

 30.0137

 38.4695

• The MSE for the full, unpruned tree (level 0) is about 32.1 units.
• The MSE for the tree pruned to level 4 is about 26.4 units.
• The MSE for the tree pruned to level 5 is about 30.0 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 38.5 units.

To balance model complexity and out-of-sample performance, consider pruning Mdl to
level 4.

pruneMdl = prune(Mdl,'Level',4);

view(pruneMdl,'Mode','graph')

22 Functions — Alphabetical List

22-2744

See Also
predict | fitrtree

 lowerparams

22-2745

lowerparams
Class: paretotails

Lower Pareto tails parameters

Syntax

params = lowerparams(obj)

Description

params = lowerparams(obj) returns the 2-element vector params of shape and scale
parameters, respectively, of the lower tail of the Pareto tails object obj. lowerparams
does not return a location parameter.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

lowerparams(obj)

ans =

 -0.1901 1.1898

upperparams(obj)

ans =

 0.3646 0.5103

See Also
paretotails | upperparams

22 Functions — Alphabetical List

22-2746

lt
Class: qrandstream

Less than relation for handles

Syntax

h1 < h2

Description

h1 < h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and
h2 must be of the same dimensions unless one is a scalar. The result is a logical array of
the same dimensions, where each element is an element-wise < result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar.

tf = lt(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | ge | gt | ne | eq | le

 lsline

22-2747

lsline

Add least-squares line to scatter plot

Syntax

lsline

lsline(ax)

h = lsline(___)

Description

lsline superimposes a least-squares line on each scatter plot in the current axes.
Scatter plots are produced by the MATLAB scatter and plot functions. Data points
connected with solid, dashed, or dash-dot lines ('-', '--', or '.-') are not considered to
be scatter plots by lsline, and are ignored.

lsline(ax) superimposes a least-squares line on the scatter plot in axis ax.

h = lsline(___) returns a column vector of handles h to the least-squares lines,
using any of the previous syntaxes.

Examples

Plot a Least-Squares Line

Generate three sets of sample data and plot on the same figure.

x = 1:10;

rng default; % For reproducibility

figure;

y1 = x + randn(1,10);

scatter(x,y1,25,'b','*')

hold on

22 Functions — Alphabetical List

22-2748

y2 = 2*x + randn(1,10);

plot(x,y2,'mo')

y3 = 3*x + randn(1,10);

plot(x,y3,'rx:')

Add a least-squares line for each set of sample data.

lsline

 lsline

22-2749

Specify Axes for Least-Squares and Reference Lines

Define the x-variable and two different y-variables to use for the plots.

rng default % For reproducibility

x = 1:10;

y1 = x + randn(1,10);

y2 = 2*x + randn(1,10);

Define ax1 as the top half of the figure, and ax2 as the bottom half of the figure. Create
the first scatter plot on the top axis using y1, and the second scatter plot on the bottom
axis using y2.

figure

22 Functions — Alphabetical List

22-2750

ax1 = subplot(2,1,1);

ax2 = subplot(2,1,2);

scatter(ax1,x,y1)

scatter(ax2,x,y2)

Superimpose a least-squares line on the top plot, and a reference line at the mean of the
y2 values in the bottom plot.

lsline(ax1)

mu = mean(y2);

refline(ax2,[0 mu])

 lsline

22-2751

See Also
scatter | plot | refline | refcurve | gline

22 Functions — Alphabetical List

22-2752

mad

Mean or median absolute deviation

Syntax

y = mad(X)

Y = mad(X,1)

Y = mad(X,0)

Description

y = mad(X) returns the mean absolute deviation of the values in X. For vector input, y
is mean(abs(X-mean(X))). For a matrix input, y is a row vector containing the mean
absolute deviation of each column of X. For N-dimensional arrays, mad operates along the
first nonsingleton dimension of X.

Y = mad(X,1) returns the median absolute deviation of the values in X. For vector
input, y is median(abs(X-median(X))). For a matrix input, y is a row vector
containing the median absolute deviation of each column of X. For N-dimensional arrays,
mad operates along the first nonsingleton dimension of X.

Y = mad(X,0) is the same as mad(X), and returns the mean absolute deviation of the
values in X.

mad(X,flag,dim) computes absolute deviations along the dimension dim of X. flag is
0 or 1 to indicate mean or median absolute deviation, respectively.

mad treats NaNs as missing values and removes them.

For normally distributed data, multiply mad by one of the following factors to obtain an
estimate of the normal scale parameter σ:

• sigma = 1.253*mad(X,0) — For mean absolute deviation
• sigma = 1.4826*mad(X,1) — For median absolute deviation

 mad

22-2753

Examples

The following compares the robustness of different scale estimates for normally
distributed data in the presence of outliers:

x = normrnd(0,1,1,50);

xo = [x 10]; % Add outlier

r1 = std(xo)/std(x)

r1 =

 1.7385

r2 = mad(xo,0)/mad(x,0)

r2 =

 1.2306

r3 = mad(xo,1)/mad(x,1)

r3 =

 1.0602

References

[1] Mosteller, F., and J. Tukey. Data Analysis and Regression. Upper Saddle River, NJ:
Addison-Wesley, 1977.

[2] Sachs, L. Applied Statistics: A Handbook of Techniques. New York: Springer-Verlag,
1984, p. 253.

See Also
std | range | iqr

22 Functions — Alphabetical List

22-2754

mahal

Mahalanobis distance

Syntax

d = mahal(Y,X)

Description

d = mahal(Y,X) computes the Mahalanobis distance (in squared units) of each
observation in Y from the reference sample in matrix X. If Y is n-by-m, where n is the
number of observations and m is the dimension of the data, d is n-by-1. X and Y must
have the same number of columns, but can have different numbers of rows. X must have
more rows than columns.

For observation I, the Mahalanobis distance is defined by d(I) = (Y(I,:)-
mu)*inv(SIGMA)*(Y(I,:)-mu)', where mu and SIGMA are the sample mean
and covariance of the data in X. mahal performs an equivalent, but more efficient,
computation.

Examples

Compare Mahalanobis and Squared Euclidean Distances

Generate correlated bivariate data.

X = mvnrnd([0;0],[1 .9;.9 1],100);

Input observations.

Y = [1 1;1 -1;-1 1;-1 -1];

Compute the Mahalanobis distance of observations in Y from the reference sample in X .

d1 = mahal(Y,X)

 mahal

22-2755

d1 =

 0.6288

 19.3520

 21.1384

 0.9404

Compute their squared Euclidean distances from the mean of X .

d2 = sum((Y-repmat(mean(X),4,1)).^2, 2)

d2 =

 1.6170

 1.9334

 2.1094

 2.4258

Plot the observations with Y values colored according to the Mahalanobis distance.

scatter(X(:,1),X(:,2))

hold on

scatter(Y(:,1),Y(:,2),100,d1,'*','LineWidth',2)

hb = colorbar;

ylabel(hb,'Mahalanobis Distance')

legend('X','Y','Location','NW')

22 Functions — Alphabetical List

22-2756

The observations in Y with equal coordinate values are much closer to X in Mahalanobis
distance than observations with opposite coordinate values, even though all observations
are approximately equidistant from the mean of X in Euclidean distance. The
Mahalanobis distance, by considering the covariance of the data and the scales of the
different variables, is useful for detecting outliers in such cases.

See Also
pdist | mahal

 mahal

22-2757

mahal
Class: CompactClassificationDiscriminant

Mahalanobis distance to class means

Syntax

M = mahal(obj,X)

M = mahal(obj,X,Name,Value)

Description

M = mahal(obj,X) returns the squared Mahalanobis distances from observations in X
to the class means in obj.

M = mahal(obj,X,Name,Value) computes the squared Mahalanobis distance with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Numeric matrix of size n-by-p, where p is the number of predictors in obj, and n is any
positive integer. mahal computes the Mahalanobis distances from the rows of X to each of
the K means of the classes in obj.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-2758

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ClassLabels'

Class labels consisting of n elements of obj.Y, where n is the number of rows of X.

Output Arguments

M

Size and meaning of output M depends on whether the ClassLabels name-value pair is
present:

• No ClassLabels — M is a numeric matrix of size n-by-K, where K is the number of
classes in obj, and n is the number of rows in X. M(i,j) is the squared Mahalanobis
distance from the ith row of X to the mean of class j.

• ClassLabels exists — M is a column vector with n elements. M(i) is the squared
Mahalanobis distance from the ith row of X to the mean for the class of the ith
element of ClassLabels.

Definitions

Mahalanobis Distance

The Mahalanobis distance d(x,y) between n-dimensional points x and y, with respect to a
given n-by-n covariance matrix S, is

d x y x y S x y
T

(,) .= -() -()-1

Examples

Find the Mahalanobis distances from the mean of the Fisher iris data to the class means,
using distinct covariance matrices for each class:

 mahal

22-2759

load fisheriris

obj = fitcdiscr(meas,species,...

 'DiscrimType','quadratic');

mahadist = mahal(obj,mean(meas))

mahadist =

 220.0667 5.0254 30.5804

See Also
CompactClassificationDiscriminant | fitcdiscr | mahal | gmdistribution

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-2760

mahal

Class: gmdistribution

Mahalanobis distance to component means

Syntax

D = mahal(obj,X)

Description

D = mahal(obj,X) computes the Mahalanobis distance (in squared units) of each
observation in X to the mean of each of the k components of the Gaussian mixture
distribution defined by obj. obj is an object created by gmdistribution or fitgmdist.
X is an n-by-d matrix, where n is the number of observations and d is the dimension
of the data. D is n-by-k, with D(I,J) the distance of observation I from the mean of
component J.

Examples

Measure Mahalanobis Distances in Gaussian Mixture Data

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd
function.

MU1 = [1 2];

SIGMA1 = [2 0; 0 .5];

MU2 = [-3 -5];

SIGMA2 = [1 0; 0 1];

rng(1); % For reproducibility

X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')

hold on

 mahal

22-2761

Fit a two-component Gaussian mixture model.

obj = fitgmdist(X,2);

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

22 Functions — Alphabetical List

22-2762

Compute the Mahalanobis distance of each point in X to the mean of each component of
obj.

D = mahal(obj,X);

delete(h)

scatter(X(:,1),X(:,2),10,D(:,1),'.')

hb = colorbar;

ylabel(hb,'Mahalanobis Distance to Component 1')

 mahal

22-2763

See Also
gmdistribution | posterior | cluster | mahal

22 Functions — Alphabetical List

22-2764

maineffectsplot
Main effects plot for grouped data

Syntax

maineffectsplot(Y,GROUP)

maineffectsplot(Y,GROUP,param1,val1,param2,val2,...)

[figh,AXESH] = maineffectsplot(...)

Description

maineffectsplot(Y,GROUP) displays main effects plots for the group means of matrix
Y with groups defined by entries in the cell array GROUP. Y is a numeric matrix or vector.
If Y is a matrix, the rows represent different observations and the columns represent
replications of each observation. Each cell of GROUP must contain a grouping variable
that can be a categorical variable, numeric vector, character matrix, or single-column cell
array of strings. GROUP can also be a matrix whose columns represent different grouping
variables. Each grouping variable must have the same number of rows as Y. The number
of grouping variables must be greater than 1.

The display has one subplot per grouping variable, with each subplot showing the group
means of Y as a function of one grouping variable.

maineffectsplot(Y,GROUP,param1,val1,param2,val2,...) specifies one or more
of the following name/value pairs:

• 'varnames' — Grouping variable names in a character matrix or a cell array of
strings, one per grouping variable. Default names are 'X1', 'X2',

• 'statistic' — String values that indicate whether the group mean or the group
standard deviation should be plotted. Use 'mean' or 'std'. The default is 'mean'. If
the value is 'std', Y is required to have multiple columns.

• 'parent' — A handle to the figure window for the plots. The default is the current
figure window.

[figh,AXESH] = maineffectsplot(...) returns the handle figh to the figure
window and an array of handles AXESH to the subplot axes.

 maineffectsplot

22-2765

Examples

Main Effects Plot

Load the sample data.

load carsmall;

Display main effects plots for car weight with two grouping variables, model year and
number of cylinders.

maineffectsplot(Weight,{Model_Year,Cylinders}, ...

 'varnames',{'Model Year','# of Cylinders'})

22 Functions — Alphabetical List

22-2766

More About
• “Grouping Variables” on page 2-52

See Also
interactionplot | multivarichart

 ClassificationDiscriminant.make

22-2767

ClassificationDiscriminant.make
Class: ClassificationDiscriminant

Construct discriminant analysis classifier from parameters (to be removed)

Compatibility

ClassificationDiscriminant.make will be removed in a future release. Use
makecdiscr instead.

Syntax

cobj = ClassificationDiscriminant.make(Mu,Sigma)

cobj = ClassificationDiscriminant.make(Mu,Sigma,Name,Value)

Description

cobj = ClassificationDiscriminant.make(Mu,Sigma) constructs a compact
discriminant analysis classifier from the class means Mu and covariance matrix Sigma.

cobj = ClassificationDiscriminant.make(Mu,Sigma,Name,Value) constructs
a compact classifier with additional options specified by one or more Name,Value pair
arguments.

Input Arguments

Mu — Class means
matrix of scalar values

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the
number of classes, and p is the number of predictors. Each row of Mu represents the mean
of the multivariate normal distribution of the corresponding class. The class indices are
in the ClassNames attribute.

22 Functions — Alphabetical List

22-2768

Sigma — Within-class covariance
matrix of scalar values

Within-class covariance, specified as a matrix of scalar values.

• For a linear discriminant, Sigma is a symmetric, positive semidefinite matrix of size
p-by-p, where p is the number of predictors.

• For a quadratic discriminant, Sigma is an array of size p-by-p-by-K, where K is the
number of classes. For each i, Sigma(:,:,i) is a symmetric, positive semidefinite
matrix.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class names as ordered in Mu, specified as the comma-separated pair consisting of
'ClassNames' and an array containing grouping variables. Use any data type for a
grouping variable, including numeric vector, categorical vector, logical vector, character
array, or cell array of strings.

ClassNames names the classes, as ordered in Mu.

Default is 1:K, where K is the number of classes (the number of rows of Mu).

Data Types: single | double | logical | char | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification, specified as the comma-separated pair consisting of 'Cost'
and a square matrix, where Cost(i,j) is the cost of classifying a point into class

 ClassificationDiscriminant.make

22-2769

j if its true class is i. Alternatively, Cost can be a structure S having two fields:
S.ClassNames containing the group names as a variable of the same type as y, and
S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.
Data Types: cell

'Prior' — Prior probabilities
'uniform' (default) | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following.

• 'uniform', a string meaning all class prior probabilities are equal.
• A vector containing one scalar value for each class.
• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as
ClassNames.

• S.ClassProbs containing a vector of corresponding probabilities.

Data Types: single | double | struct

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char

22 Functions — Alphabetical List

22-2770

Output Arguments

cobj — Discriminant analysis classifier
discriminant analysis classifier object

Discriminant analysis classifier, returned as a discriminant analysis classifier object of
class CompactClassificationDiscriminant. You can use the predict method to
predict classification labels for new data.

Examples

Construct a Compact Linear Discriminant Analysis Classifier

Construct a compact linear discriminant analysis classifier from the means and
covariances of the Fisher iris data.

load fisheriris

mu(1,:) = mean(meas(1:50,:));

mu(2,:) = mean(meas(51:100,:));

mu(3,:) = mean(meas(101:150,:));

mm1 = repmat(mu(1,:),50,1);

mm2 = repmat(mu(2,:),50,1);

mm3 = repmat(mu(3,:),50,1);

cc = meas;

cc(1:50,:) = cc(1:50,:) - mm1;

cc(51:100,:) = cc(51:100,:) - mm2;

cc(101:150,:) = cc(101:150,:) - mm3;

sigstar = cc' * cc / 147; % unbiased estimator of sigma

cpct = ClassificationDiscriminant.make(mu,sigstar,...

 'ClassNames',{'setosa','versicolor','virginica'})

cpct =

classreg.learning.classif.CompactClassificationDiscriminant:

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 DiscrimType: 'linear'

 Mu: [3x4 double]

 ClassificationDiscriminant.make

22-2771

 Coeffs: [3x3 struct]

See Also
compact | CompactClassificationDiscriminant | fitcdiscr | makecdiscr

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-2772

makecdiscr
Construct discriminant analysis classifier from parameters

Syntax

cobj = makecdiscr(Mu,Sigma)

cobj = makecdiscr(Mu,Sigma,Name,Value)

Description

cobj = makecdiscr(Mu,Sigma) constructs a compact discriminant analysis classifier
from the class means Mu and covariance matrix Sigma.

cobj = makecdiscr(Mu,Sigma,Name,Value) constructs a compact classifier with
additional options specified by one or more name-value pair arguments. For example, you
can specify the cost of misclassification or the prior probabilities for each class.

Examples

Construct a Compact Linear Discriminant Analysis Classifier

Construct a compact linear discriminant analysis classifier from the means and
covariances of the Fisher iris data.

load fisheriris

mu(1,:) = mean(meas(1:50,:));

mu(2,:) = mean(meas(51:100,:));

mu(3,:) = mean(meas(101:150,:));

mm1 = repmat(mu(1,:),50,1);

mm2 = repmat(mu(2,:),50,1);

mm3 = repmat(mu(3,:),50,1);

cc = meas;

cc(1:50,:) = cc(1:50,:) - mm1;

cc(51:100,:) = cc(51:100,:) - mm2;

cc(101:150,:) = cc(101:150,:) - mm3;

sigstar = cc' * cc / 147; % unbiased estimator of sigma

 makecdiscr

22-2773

cpct = makecdiscr(mu,sigstar,...

 'ClassNames',{'setosa','versicolor','virginica'})

cpct =

classreg.learning.classif.CompactClassificationDiscriminant:

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 DiscrimType: 'linear'

 Mu: [3x4 double]

 Coeffs: [3x3 struct]

Input Arguments

Mu — Class means
matrix of scalar values

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the
number of classes, and p is the number of predictors. Each row of Mu represents the mean
of the multivariate normal distribution of the corresponding class. The class indices are
in the ClassNames attribute.
Data Types: single | double

Sigma — Within-class covariance
matrix of scalar values

Within-class covariance, specified as a matrix of scalar values.

• For a linear discriminant, Sigma is a symmetric, positive semidefinite matrix of size
p-by-p, where p is the number of predictors.

• For a quadratic discriminant, Sigma is an array of size p-by-p-by-K, where K is the
number of classes. For each i, Sigma(:,:,i) is a symmetric, positive semidefinite
matrix.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-2774

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ClassNames',{'setosa' 'versicolor' 'virginica'} specifies a
discriminant analysis classifier that uses 'setosa', 'versicolor', and 'virginica'
as the grouping variables.

'ClassNames' — Class names
numeric vector | categorical vector | logical vector | character array | cell array of
strings

Class names as ordered in Mu, specified as the comma-separated pair consisting of
'ClassNames' and an array containing grouping variables. Use any data type for a
grouping variable, including numeric vector, categorical vector, logical vector, character
array, or cell array of strings.

The default is 1:K, where K is the number of classes (the number of rows of Mu).

Example: 'ClassNames',{'setosa' 'versicolor' 'virginica'}

Data Types: single | double | logical | char | cell

'Cost' — Cost of misclassification
square matrix | structure

Cost of misclassification, specified as the comma-separated pair consisting of 'Cost'
and a square matrix, where Cost(i,j) is the cost of classifying a point into class
j if its true class is i. Alternatively, Cost can be a structure S having two fields:
S.ClassNames containing the group names as a variable of the same type as y, and
S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

Data Types: single | double | struct

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.
Data Types: cell

 makecdiscr

22-2775

'Prior' — Prior probabilities
'uniform' (default) | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and one of the following:

• 'uniform', a string meaning all class prior probabilities are equal
• A vector containing one scalar value for each class
• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as
ClassNames

• S.ClassProbs containing a vector of corresponding probabilities

Data Types: single | double | struct

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable y.

Example: 'ResponseName','Response'

Data Types: char

Output Arguments

cobj — Discriminant analysis classifier
discriminant analysis classifier object

Discriminant analysis classifier, returned as a discriminant analysis classifier object of
class CompactClassificationDiscriminant. You can use the predict method to
predict classification labels for new data.

More About

Tips

• You can change the discriminant type using dot notation after constructing cobj:

22 Functions — Alphabetical List

22-2776

cobj.DiscrimType = 'discrimType'

where discrimType is one of 'linear', 'quadratic', 'diagLinear',
'diagQuadratic', 'pseudoLinear', or 'pseudoQuadratic'. You can change
between linear types or between quadratic types, but cannot change between a linear
and a quadratic type.

• cobj is a linear classifier when Sigma is a matrix. cobj is a quadratic classifier when
Sigma is a three-dimensional array.

• “Discriminant Analysis” on page 15-3

See Also
compact | CompactClassificationDiscriminant | fitcdiscr | predict

 makedist

22-2777

makedist
Create probability distribution object

Syntax

pd = makedist(distname)

pd = makedist(distname,Name,Value)

Description

pd = makedist(distname) creates a probability distribution object for the distribution
distname, using the default parameter values.

pd = makedist(distname,Name,Value) creates a probability distribution object with
one or more distribution parameter values specified by name-value pair arguments.

Examples

Create a Normal Distribution Object

Create a normal distribution object using the default parameter values.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Compute the interquartile range of the distribution.

r = iqr(pd)

r =

22 Functions — Alphabetical List

22-2778

 1.3490

Create a Gamma Distribution Object

Create a gamma distribution object using the default parameter values.

pd = makedist('Gamma')

pd =

 GammaDistribution

 Gamma distribution

 a = 1

 b = 1

Compute the mean of the gamma distribution.

mean = mean(pd)

mean =

 1

Specify Parameters for a Normal Distribution Object

Create a normal distribution object with parameter values mu = 75 and sigma = 10.

pd = makedist('Normal','mu',75,'sigma',10)

pd =

 NormalDistribution

 Normal distribution

 mu = 75

 sigma = 10

Specify Parameters for a Gamma Distribution Object

Create a gamma distribution object with the parameter value a = 3 and the default
value b = 1.

pd = makedist('Gamma','a',3)

 makedist

22-2779

pd =

 GammaDistribution

 Gamma distribution

 a = 3

 b = 1

Input Arguments

distname — Distribution name
string

Distribution name, specified as one of the following strings. The distribution specified by
distname determines the class type of the returned probability distribution object.

Distribution Name Description Distribution Class

'Beta' Beta distribution prob.BetaDistribution

'Binomial' Binomial distribution prob.BinomialDistribution

'BirnbaumSaunders' Birnbaum-Saunders
distribution

prob.BirnbaumSaundersDistribution

'Burr' Burr distribution prob.BurrDistribution

'Exponential' Exponential distribution prob.ExponentialDistribution

'ExtremeValue' Extreme Value distribution prob.ExtremeValueDistribution

'Gamma' Gamma distribution prob.GammaDistribution

'GeneralizedExtremeValue'Generalized Extreme Value
distribution

prob.GeneralizedExtremeValueDistribution

'GeneralizedPareto' Generalized Pareto
distribution

prob.GeneralizedParetoDistribution

'InverseGaussian' Inverse Gaussian
distribution

prob.InverseGaussianDistribution

'Logistic' Logistic distribution prob.LogisticDistribution

'Loglogistic' Loglogistic distribution prob.LoglogisticDistribution

'Lognormal' Lognormal distribution prob.LognormalDistribution

22 Functions — Alphabetical List

22-2780

Distribution Name Description Distribution Class

'Multinomial' Multinomial distribution prob.MultinomialDistribution

'Nakagami' Nakagami distribution prob.NakagamiDistribution

'NegativeBinomial' Negative Binomial
distribution

prob.NegativeBinomialDistribution

'Normal' Normal distribution prob.NormalDistribution

'PiecewiseLinear' Piecewise Linear
distribution

prob.PiecewiseLinearDistribution

'Poisson' Poisson distribution prob.PoissonDistribution

'Rayleigh' Rayleigh distribution prob.RayleighDistribution

'Rician' Rician distribution prob.RicianDistribution

'tLocationScale' t Location-Scale distribution prob.tLocationScaleDistribution

'Triangular' Triangular distribution prob.TriangularDistribution

'Uniform' Uniform distribution prob.UniformDistribution

'Weibull' Weibull distribution prob.WeibullDistribution

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: makedist('Normal','mu',10) specifies a normal distribution with
parameter mu equal to 10, and parameter sigma equal to the default value of 1.

Beta Distribution

'a' — First shape parameter
1 (default) | nonnegative scalar value

Example: 'a',3

Data Types: single | double

'b' — Second shape parameter
1 (default) | nonnegative scalar value

 makedist

22-2781

Example: 'b',5

Data Types: single | double

Binomial Distribution

'N' — Number of trials
1 (default) | positive integer value

Example: 'N',25

Data Types: single | double

'p' — Probability of success
0.5 (default) | scalar value in the range [0,1]

Example: 'p',0.25

Data Types: single | double

Birnbaum-Saunders Distribution

'beta' — Scale parameter
1 (default) | positive scalar value

Example: 'beta',2

Data Types: single | double

'gamma' — Shape parameter
1 (default) | nonnegative scalar value

Example: 'gamma',0

Data Types: single | double

Burr Distribution

'alpha' — Scale parameter
1 (default) | positive scalar value

Example: 'alpha',2

Data Types: single | double

'c' — First shape parameter
1 (default) | positive scalar value

22 Functions — Alphabetical List

22-2782

Example: 'c',2

Data Types: single | double

'k' — Second shape parameter
1 (default) | positive scalar value

Example: 'k',5

Data Types: single | double

Exponential Distribution

'mu' — Mean parameter
1 (default) | positive scalar value

Example: 'mu',5

Data Types: single | double

Extreme Value Distribution

'mu' — Location parameter
0 (default) | scalar value

Example: 'mu',-2

Data Types: single | double

'sigma' — Scale parameter
1 (default) | nonnegative scalar value

Example: 'sigma',2

Data Types: single | double

Gamma Distribution

'a' — Shape parameter
1 (default) | positive scalar value

Example: 'a',2

Data Types: single | double

'b' — Scale parameter
1 (default) | nonnegative scalar value

 makedist

22-2783

Example: 'b',0

Data Types: single | double

Generalized Extreme Value Distribution

'k' — Shape parameter
0 (default) | scalar value

Example: 'k',0

Data Types: single | double

'sigma' — Scale parameter
1 (default) | nonnegative scalar value

Example: 'sigma',2

Data Types: single | double

'mu' — Location parameter
0 (default) | scalar value

Example: 'mu',1

Data Types: single | double

Generalized Pareto Distribution

'k' — Shape parameter
1 (default) | scalar value

Example: 'k',0

Data Types: single | double

'sigma' — Scale parameter
1 (default) | nonnegative scalar value

Example: 'sigma',2

Data Types: single | double

'theta' — Location parameter
1 (default) | scalar value

Example: 'theta',2

22 Functions — Alphabetical List

22-2784

Data Types: single | double

Inverse Gaussian Distribution

'mu' — Scale parameter
1 (default) | positive scalar value

Example: 'mu',2

Data Types: single | double

'lambda' — Shape parameter
1 (default) | positive scalar value

Example: 'lambda',4

Data Types: single | double

Logistic Distribution

'mu' — Mean
0 (default) | scalar value

Example: 'mu',2

Data Types: single | double

'sigma' — Scale parameter
1 (default) | nonnegative scalar value

Example: 'sigma',4

Data Types: single | double

Loglogistic Distribution

'mu' — Log mean
0 (default) | scalar value

Example: 'mu',2

Data Types: single | double

'sigma' — Log scale parameter
1 (default) | nonnegative scalar value

Example: 'sigma',4

 makedist

22-2785

Data Types: single | double

Lognormal Distribution

'mu' — Log mean
0 (default) | scalar value

Example: 'mu',2

Data Types: single | double

'sigma' — Log standard deviation
1 (default) | nonnegative scalar value

Example: 'sigma',2

Data Types: single | double

Multinomial Distribution

'probabilities' — Outcome probabilities
[0.500 0.500] (default) | vector of scalar values in the range [0,1]

Example: 'probabilities',[0.1 0.2 0.5 0.2]

Data Types: single | double

Nakagami Distribution

'mu' — Shape parameter
1 (default) | positive scalar value

Example: 'mu',5

Data Types: single | double

'omega' — Scale parameter
1 (default) | positive scalar value

Example: 'omega',5

Data Types: single | double

Negative Binomial Distribution

'R' — Number of successes
1 (default) | positive scalar value

22 Functions — Alphabetical List

22-2786

Example: 'R',5

Data Types: single | double

'p' — Probability of success
0.5 (default) | scalar value in the range (0,1]

Example: 'p',0.1

Data Types: single | double

Normal Distribution

'mu' — Mean
0 (default) | scalar value

Example: 'mu',2

Data Types: single | double

'sigma' — Standard deviation
1 (default) | nonnegative scalar value

Example: 'sigma',2

Data Types: single | double

Piecewise Linear Distribution

'x' — Data values
1 (default) | vector of scalar values

Example: 'x',[1 2 3]

Data Types: single | double

'Fx' — cdf values
1 (default) | vector of scalar values

Example: 'Fx',[.2 .5 1]

Data Types: single | double

Poisson Distribution

'lambda' — Mean
1 (default) | nonnegative scalar value

 makedist

22-2787

Example: 'lambda',5

Data Types: single | double

Rayleigh Distribution

'b' — Defining parameter
1 (default) | positive scalar value

Example: 'b',3

Data Types: single | double

Rician Distribution

's' — Noncentrality parameter
1 (default) | nonnegative scalar value

Example: 's',0

Data Types: single | double

'sigma' — Scale parameter
1 (default) | positive scalar value

Example: 'sigma',2

Data Types: single | double

t Location-Scale Distribution

'mu' — Location parameter
0 (default) | scalar value

Example: 'mu',-2

Data Types: single | double

'sigma' — Scale parameter
1 (default) | positive scalar value

Example: 'sigma',2

Data Types: single | double

'nu' — Degrees of freedom
5 (default) | positive scalar value

22 Functions — Alphabetical List

22-2788

Example: 'nu',20

Data Types: single | double

Triangular Distribution

'a' — Lower limit
0 (default) | scalar value

Example: 'a',-2

Data Types: single | double

'b' — Peak location
0.5 (default) | scalar value greater than or equal to a

Example: 'b',1

Data Types: single | double

'c' — Upper limit
1 (default) | scalar value greater than or equal to b

Example: 'c',5

Data Types: single | double

Uniform Distribution

'lower' — Lower parameter
0 (default) | scalar value

Example: 'lower',-4

Data Types: single | double

'upper' — Upper parameter
1 (default) | scalar value greater than lower

Example: 'upper',2

Data Types: single | double

Weibull Distribution

'a' — Scale parameter
1 (default) | positive scalar value

 makedist

22-2789

Example: 'a',2

Data Types: single | double

'b' — Shape parameter
1 (default) | positive scalar value

Example: 'b',5

Data Types: single | double

Output Arguments

pd — Probability distribution
probability distribution object

Probability distribution, returned as a probability distribution object of the type specified
by distname.

Alternative Functionality

App

The Distribution Fitting app opens a graphical user interface for you to import data
from the workspace and interactively fit a probability distribution to that data. You can
then save the distribution to the workspace as a probability distribution object. Open the
Distribution Fitting app using dfittool, or click Distribution Fitting on the Apps tab.

See Also
dfittool | fitdist

22 Functions — Alphabetical List

22-2790

manova
Class: RepeatedMeasuresModel

Multivariate analysis of variance

Syntax
manovatbl = manova(rm)

manovatbl = manova(rm,Name,Value)

[manovatbl,A,C,D] = manova(___)

Description
manovatbl = manova(rm) returns the results of multivariate analysis of variance
(manova) for the repeated measures model rm.

manovatbl = manova(rm,Name,Value) also returns manova results with additional
options, specified by one or more Name,Value pair arguments.

[manovatbl,A,C,D] = manova(___) also returns arrays A, C, and D for the
hypotheses tests of the form A*B*C = D, where D is zero.

Tips
• The multivariate response for each observation (subject) is the vector of repeated

measures.
• To test a more general hypothesis A*B*C = D, use coeftest.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

 manova

22-2791

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'WithinModel' — Model specifying within-subjects hypothesis test
'separatemeans' (default) | model specification using formula

Model specifying the within-subjects hypothesis test, specified as one of the following:

• 'separatemeans' — Compute a separate mean for each group, and test for equality
among the means.

• Model specification — This is a model specification in the within-subject factors. Test
each term in the model. In this case, tbl contains a separate manova for each term in
the formula, with the multivariate response equal to the vector of coefficients of that
term.

• An r-by-nc matrix, C, specifying nc contrasts among the r repeated measures. If Y
represents the matrix of repeated measures you use in the repeated measures model
rm, then the output tbl contains a separate manova for each column of Y*C.

Example: 'WithinModel','separatemeans'

'By' — Single between-subjects factor
string

Single between-subjects factor, specified as the comma-separated pair consisting of 'By'
and a string. manova performs a separate test of the within-subjects model for each value
of this factor.

For example, if you have a between-subjects factor, Drug, then you can specify that factor
to perform manova as follows.
Example: 'By','Drug'

Output Arguments

manovatbl — Results of multivariate analysis of variance
table

22 Functions — Alphabetical List

22-2792

Results of multivariate analysis of variance for the repeated measures model rm,
returned as a table.

manova uses these methods to measure the contributions of the model terms to the
overall covariance:

• Wilks’ Lambda
• Pillai’s trace
• Hotelling-Lawley trace
• Roy’s maximum root statistic

For details, see “Multivariate Analysis of Variance for Repeated Measures” on page 8-83.

manova returns the results for these tests for each group. manovatbl contains the
following columns.

Column Name Definition

Within Within-subject terms
Between Between-subject terms
Statistic Name of the statistic computed
Value Value of the corresponding statistic
F F-statistic value
RSquare Measure for variance explained
df1 Numerator degrees of freedom
df2 Denominator degrees of freedom
pValue p-value for the corresponding F-statistic

value

Data Types: table

A — Specification based on between-subjects model
matrix | cell array

Specification based on the between-subjects model, returned as a matrix or a cell array.
It permits the hypothesis on the elements within given columns of B (within time
hypothesis). If manovatbl contains multiple hypothesis tests, A might be a cell array.

 manova

22-2793

Data Types: single | double | cell

C — Specification based on within-subjects model
matrix | cell array

Specification based on the within-subjects model, returned as a matrix or a cell array.
It permits the hypotheses on the elements within given rows of B (between time
hypotheses). If manovatbl contains multiple hypothesis tests, C might be a cell array.
Data Types: single | double | cell

D — Hypothesis value
0

Hypothesis value, returned as 0.

Examples

Perform Multivariate Analysis of Variance

Load the sample data.

load fisheriris

The column vector speciesconsists of iris flowers of three different species: setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform multivariate analysis of variance.

manova(rm)

22 Functions — Alphabetical List

22-2794

ans =

 Within Between Statistic Value F RSquare df1 df2 pValue

 ________ ___________ _________ _________ ______ _______ ___ ___ ___________

 Constant (Intercept) Pillai 0.99013 4847.5 0.99013 3 145 3.7881e-145

 Constant (Intercept) Wilks 0.0098724 4847.5 0.99013 3 145 3.7881e-145

 Constant (Intercept) Hotelling 100.29 4847.5 0.99013 3 145 3.7881e-145

 Constant (Intercept) Roy 100.29 4847.5 0.99013 3 145 3.7881e-145

 Constant species Pillai 0.96909 45.749 0.48455 6 292 2.4729e-39

 Constant species Wilks 0.041153 189.92 0.79714 6 290 2.3958e-97

 Constant species Hotelling 23.051 555.17 0.92016 6 288 4.6662e-155

 Constant species Roy 23.04 1121.3 0.9584 3 146 1.4771e-100

Perform multivariate anova separately for each species.

manova(rm,'By','species')

ans =

 Within Between Statistic Value F RSquare df1 df2 pValue

 ________ __________________ _________ ________ ______ _______ ___ ___ ___________

 Constant species=setosa Pillai 0.9823 2682.7 0.9823 3 145 9.0223e-127

 Constant species=setosa Wilks 0.017698 2682.7 0.9823 3 145 9.0223e-127

 Constant species=setosa Hotelling 55.504 2682.7 0.9823 3 145 9.0223e-127

 Constant species=setosa Roy 55.504 2682.7 0.9823 3 145 9.0223e-127

 Constant species=versicolor Pillai 0.97 1562.8 0.97 3 145 3.7058e-110

 Constant species=versicolor Wilks 0.029999 1562.8 0.97 3 145 3.7058e-110

 Constant species=versicolor Hotelling 32.334 1562.8 0.97 3 145 3.7058e-110

 Constant species=versicolor Roy 32.334 1562.8 0.97 3 145 3.7058e-110

 Constant species=virginica Pillai 0.97261 1716.1 0.97261 3 145 5.1113e-113

 Constant species=virginica Wilks 0.027394 1716.1 0.97261 3 145 5.1113e-113

 Constant species=virginica Hotelling 35.505 1716.1 0.97261 3 145 5.1113e-113

 Constant species=virginica Roy 35.505 1716.1 0.97261 3 145 5.1113e-113

Return Arrays of the Hypothesis Test

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers: the length and width of sepals and petals in centimeters, respectively.

 manova

22-2795

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform multivariate analysis of variance. Also return the arrays for constructing the
hypothesis test.

[manovatbl,A,C,D] = manova(rm)

manovatbl =

 Within Between Statistic Value F RSquare df1 df2 pValue

 ________ ___________ _________ _________ ______ _______ ___ ___ ___________

 Constant (Intercept) Pillai 0.99013 4847.5 0.99013 3 145 3.7881e-145

 Constant (Intercept) Wilks 0.0098724 4847.5 0.99013 3 145 3.7881e-145

 Constant (Intercept) Hotelling 100.29 4847.5 0.99013 3 145 3.7881e-145

 Constant (Intercept) Roy 100.29 4847.5 0.99013 3 145 3.7881e-145

 Constant species Pillai 0.96909 45.749 0.48455 6 292 2.4729e-39

 Constant species Wilks 0.041153 189.92 0.79714 6 290 2.3958e-97

 Constant species Hotelling 23.051 555.17 0.92016 6 288 4.6662e-155

 Constant species Roy 23.04 1121.3 0.9584 3 146 1.4771e-100

A =

 [1x3 double]

 [2x3 double]

C =

 1 0 0

 -1 1 0

 0 -1 1

 0 0 -1

22 Functions — Alphabetical List

22-2796

D =

 0

Index into matrix A.

A{1}

ans =

 1 0 0

A{2}

ans =

 0 1 0

 0 0 1

See Also
anova | coeftest | fitrm | ranova

More About
• “Model Specification for Repeated Measures Models” on page 8-77
• “Multivariate Analysis of Variance for Repeated Measures” on page 8-83

 manova1

22-2797

manova1
One-way multivariate analysis of variance

Syntax

d = manova1(X,group)

d = manova1(X,group,alpha)

[d,p] = manova1(...)

[d,p,stats] = manova1(...)

Description

d = manova1(X,group) performs a one-way Multivariate Analysis of Variance
(MANOVA) for comparing the multivariate means of the columns of X, grouped by
group. X is an m-by-n matrix of data values, and each row is a vector of measurements
on n variables for a single observation. group is a grouping variable defined as a
categorical variable, vector, string array, or cell array of strings. Two observations are in
the same group if they have the same value in the group array. The observations in each
group represent a sample from a population.

The function returns d, an estimate of the dimension of the space containing the group
means. manova1 tests the null hypothesis that the means of each group are the same n-
dimensional multivariate vector, and that any difference observed in the sample X is due
to random chance. If d = 0, there is no evidence to reject that hypothesis. If d = 1, then
you can reject the null hypothesis at the 5% level, but you cannot reject the hypothesis
that the multivariate means lie on the same line. Similarly, if d = 2 the multivariate
means may lie on the same plane in n-dimensional space, but not on the same line.

d = manova1(X,group,alpha) gives control of the significance level, alpha. The
return value d will be the smallest dimension having p > alpha, where p is a p-value for
testing whether the means lie in a space of that dimension.

[d,p] = manova1(...) also returns a p, a vector of p-values for testing whether the
means lie in a space of dimension 0, 1, and so on. The largest possible dimension is either
the dimension of the space, or one less than the number of groups. There is one element
of p for each dimension up to, but not including, the largest.

22 Functions — Alphabetical List

22-2798

If the ith p-value is near zero, this casts doubt on the hypothesis that the group means
lie on a space of i-1 dimensions. The choice of a critical p-value to determine whether the
result is judged statistically significant is left to the researcher and is specified by the
value of the input argument alpha. It is common to declare a result significant if the p-
value is less than 0.05 or 0.01.

[d,p,stats] = manova1(...) also returns stats, a structure containing additional
MANOVA results. The structure contains the following fields.

Field Contents

W Within-groups sum of squares and cross-products matrix
B Between-groups sum of squares and cross-products matrix
T Total sum of squares and cross-products matrix
dfW Degrees of freedom for W
dfB Degrees of freedom for B
dfT Degrees of freedom for T
lambda Vector of values of Wilk's lambda test statistic for testing whether

the means have dimension 0, 1, etc.
chisq Transformation of lambda to an approximate chi-square distribution
chisqdf Degrees of freedom for chisq
eigenval Eigenvalues of W-1B
eigenvec Eigenvectors of W-1B; these are the coefficients for the canonical

variables C, and they are scaled so the within-group variance of the
canonical variables is 1

canon Canonical variables C, equal to XC*eigenvec, where XC is X with
columns centered by subtracting their means

mdist A vector of Mahalanobis distances from each point to the mean of its
group

gmdist A matrix of Mahalanobis distances between each pair of group means

The canonical variables C are linear combinations of the original variables, chosen to
maximize the separation between groups. Specifically, C(:,1) is the linear combination
of the X columns that has the maximum separation between groups. This means that
among all possible linear combinations, it is the one with the most significant F statistic

 manova1

22-2799

in a one-way analysis of variance. C(:,2) has the maximum separation subject to it
being orthogonal to C(:,1), and so on.

You may find it useful to use the outputs from manova1 along with other functions to
supplement your analysis. For example, you may want to start with a grouped scatter
plot matrix of the original variables using gplotmatrix. You can use gscatter to
visualize the group separation using the first two canonical variables. You can use
manovacluster to graph a dendrogram showing the clusters among the group means.

Assumptions

The MANOVA test makes the following assumptions about the data in X:

• The populations for each group are normally distributed.
• The variance-covariance matrix is the same for each population.
• All observations are mutually independent.

Examples
you can use manova1 to determine whether there are differences in the averages of four
car characteristics, among groups defined by the country where the cars were made.

load carbig

[d,p] = manova1([MPG Acceleration Weight Displacement],...

 Origin)

d =

 3

p =

 0

 0.0000

 0.0075

 0.1934

There are four dimensions in the input matrix, so the group means must lie in a four-
dimensional space. manova1 shows that you cannot reject the hypothesis that the means
lie in a 3-D subspace.

More About
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-2800

References

[1] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New
York: Oxford University Press, 1988.

See Also
anova1 | canoncorr | gscatter | gplotmatrix | manovacluster

 manovacluster

22-2801

manovacluster

Dendrogram of group mean clusters following MANOVA

Syntax

manovacluster(stats)

manovacluster(stats,method)

H = manovacluster(stats,method)

Description

manovacluster(stats) generates a dendrogram plot of the group means after a
multivariate analysis of variance (MANOVA). stats is the output stats structure from
manova1. The clusters are computed by applying the single linkage method to the matrix
of Mahalanobis distances between group means.

See dendrogram for more information on the graphical output from this function. The
dendrogram is most useful when the number of groups is large.

manovacluster(stats,method) uses the specified method in place of single linkage.
method can be any of the following character strings that identify ways to create the
cluster hierarchy. (See linkage for additional information.)

Method Description

'single' Shortest distance (default)
'complete' Largest distance
'average' Average distance
'centroid' Centroid distance
'ward' Incremental sum of squares

H = manovacluster(stats,method) returns a vector of handles to the lines in the
figure.

22 Functions — Alphabetical List

22-2802

Examples

Dendrogram of Group Means After MANOVA

Load the sample data.

load carbig

Define the variable matrix.

X = [MPG Acceleration Weight Displacement];

Perform one-way MANOVA to compare the means of MPG, Acceleration, Weight,and
Displacement grouped by Origin.

[d,p,stats] = manova1(X,Origin);

Create a dendrogram plot of the group means.

manovacluster(stats)

 manovacluster

22-2803

See Also
cluster | dendrogram | linkage | manova1

22 Functions — Alphabetical List

22-2804

margin

Class: ClassificationKNN

Margin of k-nearest neighbor classifier

Syntax

m = margin(mdl,X,Y)

Description

m = margin(mdl,X,Y) returns the classification margins for the matrix of predictors X
and class labels Y. For the definition, see “Margin” on page 22-2805.

Input Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

X — Matrix of predictor values
matrix

Matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

 margin

22-2805

Y — Categorical variables
categorical array | cell array of strings | character array | logical vector | numeric
vector

A categorical array, cell array of strings, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of Y represents the classification of
the corresponding row of X.

Output Arguments

m

Numeric column vector of length size(X,1). Each entry in m represents the margin for
the corresponding rows of X and (true class) Y, computed using mdl.

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

Score

The score of a classification is the posterior probability of the classification. The posterior
probability is the number of neighbors that have that classification, divided by the
number of neighbors. For a more detailed definition that includes weights and prior
probabilities, see “Posterior Probability” on page 22-3654.

Examples

Margin Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the data.

22 Functions — Alphabetical List

22-2806

load fisheriris

Construct a classifier for 5-nearest neighbors.

mdl = fitcknn(meas,species,'NumNeighbors',5);

Examine the margin of the classifier for a mean observation classified 'versicolor'.

X = mean(meas);

Y = {'versicolor'};

m = margin(mdl,X,Y)

m =

 1

The classifier has no doubt that 'versicolor' is the correct classification (all five
nearest neighbors classify as 'versicolor').

See Also
ClassificationKNN | edge | fitcknn | loss

More About
• “Classification Using Nearest Neighbors” on page 16-8

 margin

22-2807

margin
Class: CompactClassificationDiscriminant

Classification margins

Syntax
m = margin(obj,X,Y)

Description
m = margin(obj,X,Y) returns the classification margins for the matrix of predictors X
and class labels Y. For the definition, see “Definitions” on page 22-2808.

Input Arguments
obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in obj.

Y

Class labels, with the same data type as exists in obj. The number of elements of Y must
equal the number of rows of X.

Output Arguments
m

Numeric column vector of length size(X,1). Each entry in m represents the margin for
the corresponding rows of X and (true class) Y, computed using obj.

22 Functions — Alphabetical List

22-2808

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the
matrix X. A high value of margin indicates a more reliable prediction than a low value.

Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the
classification. For the definition of posterior probability in discriminant analysis, see
“Posterior Probability” on page 15-7.

Examples

Compute the classification margin for the Fisher iris data, trained on its first two
columns of data, and view the last 10 entries:

load fisheriris

X = meas(:,1:2);

obj = fitcdiscr(X,species);

M = margin(obj,X,species);

M(end-10:end)

ans =

 0.6551

 0.4838

 0.6551

 -0.5127

 0.5659

 0.4611

 0.4949

 0.1024

 0.2787

 -0.1439

 -0.4444

 margin

22-2809

The classifier trained on all the data is better:

obj = fitcdiscr(meas,species);

M = margin(obj,meas,species);

M(end-10:end)

ans =

 0.9983

 1.0000

 0.9991

 0.9978

 1.0000

 1.0000

 0.9999

 0.9882

 0.9937

 1.0000

 0.9649

See Also
predict | ClassificationDiscriminant | fitcdiscr | edge | loss

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-2810

margin
Class: CompactClassificationECOC

Classification margins for error-correcting output code multiclass classifiers

Syntax

m = margin(Mdl,X,Y)

m = margin(Mdl,X,Y,Name,Value)

Description

m = margin(Mdl,X,Y) returns the classification margins (m) for the trained error-
correcting output code (ECOC) multiclass classifier Mdl using the predictor data X and
class labels Y. Each row of X and Y is an observation.

m = margin(Mdl,X,Y,Name,Value) returns the classification margins with additional
options specified by one or more Name,Value pair arguments.

For example, specify a decoding scheme, binary learner loss function, or verbosity level.

Input Arguments

Mdl — ECOC multiclass classifier
ClassificationECOC model | CompactClassificationECOC model

ECOC multiclass classifier, specified as a ClassificationECOC or
CompactClassificationECOC model. You can create a:

• ClassificationECOC model by training the ECOC classifier using fitcecoc
• CompactClassificationECOC model by passing a ClassificationECOC classifier

to compact

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

 margin

22-2811

Each row of X corresponds to one observation (also called an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
composing the columns of X should be the same as the variables that trained the Mdl
classifier.

The length of Y and the number of rows of X must be equal.

If you trained Mdl specifying to standardize the predictor data, then the software
standardizes the columns of X using the corresponding means and standard
deviations that the software stored in Mdl.BinaryLearner{j}.Mu and
Mdl.BinaryLearner{j}.Sigma for learner j.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of Mdl.ClassNames.

The length of Y and the number of rows of X must be equal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

22 Functions — Alphabetical List

22-2812

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.
• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

 margin

22-2813

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

22 Functions — Alphabetical List

22-2814

Data Types: single | double

Output Arguments

m — Classification margins
numeric column vector

Classification margins, returned as a numeric column vector.

m has the same length as Y. The software estimates each entry of m using the trained
ECOC model Mdl, the corresponding row of X, and the true class label Y.

Definitions

Classification Margin

The classification margins are, for each observation, the difference between the negative
loss for the positive class and maximal negative loss among the negative classes. If the
margins are on the same scale, then they serve as a classification confidence measure,
i.e., among multiple classifiers, those that yield larger margins are better [4].

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

 margin

22-2815

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

22 Functions — Alphabetical List

22-2816

Examples

Estimate Test-Sample Classification Margins of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers, and specify a 30% holdout sample.
It is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

Estimate the test-sample classification margins. Display the distribution of the margins
using a boxplot.

m = margin(CMdl,XTest,YTest);

figure;

boxplot(m);

title 'Test-Sample Margins'

 margin

22-2817

An observation margin is the positive-class, negated loss minus the maximum negative-
class, negated loss. Classifiers that yield relatively large margins are desirable.

Select ECOC Model Features by Examining Test-Sample Margins

The classifier margins measure, for each observation, the difference between the positive-
class, negated loss score and the maximal negative-class, negated loss. One way to
perform feature selection is to compare test-sample margins from multiple models. Based
solely on this criterion, the model with the highest margins is the best model.

Load Fisher's iris data set.

load fisheriris

22 Functions — Alphabetical List

22-2818

X = meas;

Y = categorical(species);

classOrder = unique(Y); % Class order

rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 30% holdout sample for
testing.

Partition = cvpartition(Y,'Holdout',0.30);

testInds = test(Partition); % Indices for the test set

XTest = X(testInds,:);

YTest = Y(testInds,:);

Define these two data sets:

• fullX contains all four predictors.
• partX contains the sepal measurements.

fullX = X;

partX = X(:,1:2);

Train an ECOC model using SVM binary classifiers for each predictor set, and specify the
partition definition. It is good practice to standardize the predictors and define the class
order. Specify to standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,...

 'ClassNames',classOrder);

PCVMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,...

 'ClassNames',classOrder);

CMdl = CVMdl.Trained{1};

PCMdl = PCVMdl.Trained{1};

Estimate the test-sample margins for each classifier. For each model, display the
distribution of the margins using a boxplot.

fullMargins = margin(CMdl,XTest,YTest);

partMargins = margin(PCMdl,XTest(:,3:4),YTest);

figure;

boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'});

title('Boxplots of Test-Sample Margins')

 margin

22-2819

The margin distribution of CMdl is situated higher, and with less variability than the
margin distribution of PCMdl.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Tip

To compare margins or edges of several classifiers, use template objects to specify a
common score transform function among the classifiers when you train them using
fitcecoc.

22 Functions — Alphabetical List

22-2820

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | CompactClassificationECOC | edge | fitcecoc |
predict | resubMargin

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

 margin

22-2821

margin
Class: CompactClassificationEnsemble

Classification margins

Syntax

M = margin(ens,X,Y)

M = margin(ens,X,Y,Name,Value)

Description

M = margin(ens,X,Y) returns the classification margin for the predictions of ens on
data X, when the true classifications are Y.

M = margin(ens,X,Y,Name,Value) calculates margin with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

Classification ensemble created with fitensemble, or a compact classification ensemble
created with compact.

X

Matrix of data to classify. Each row of X represents one observation, and each column
represents one predictor. X must have the same number of columns as the data used to
train ens. X should have the same number of rows as the number of elements in Y.

Y

Classification of X. Y should be of the same type as the classification used to train ens,
and its number of elements should equal the number of rows of X.

22 Functions — Alphabetical List

22-2822

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge
uses only these learners for calculating loss.

Default: 1:NumTrained

'UseObsForLearner'

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row
i of X.

Default: true(N,T)

Output Arguments
M

A numeric column vector with the same number of rows as X. Each row of M gives the
classification margin for that row of X.

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix X.

 margin

22-2823

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Examples

Find the margin for classifying an average flower from the Fisheriris data as
'versicolor':

load fisheriris % X = meas, Y = species

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

flower = mean(meas);

predict(ens,flower)

ans =

 'versicolor'

margin(ens,mean(meas),'versicolor')

ans =

 3.2140

See Also
predict | edge | loss

22 Functions — Alphabetical List

22-2824

margin
Class: CompactClassificationNaiveBayes

Classification margins for naive Bayes classifiers

Syntax

m = margin(Mdl,X,Y)

Description

m = margin(Mdl,X,Y) returns the classification margins (m) for the trained naive
Bayes classifier Mdl using the predictor data X and class labels Y.

Input Arguments

Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or
CompactClassificationNaiveBayes model returned by fitcnb or compact,
respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained Mdl.

The length of Y and the number of rows of X must be equal.

Data Types: double | single

 margin

22-2825

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of Mdl.ClassNames.

The length of Y and the number of rows of X must be equal.

Output Arguments

m — Classification margins
numeric vector

Classification margins, returned as a numeric vector.

m has the same length equal to size(X,1). Each entry of m is the classification margin of
the corresponding observation (row) of X and element of Y.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability
of their respective class. The software uses the normalized weights to compute the
weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margin

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

22 Functions — Alphabetical List

22-2826

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Score

The naive Bayes score is the class posterior probability given the observation.

Examples

Estimate Test-Sample Classification Margins of Naive Bayes Classifiers

Load Fisher's iris data set.

 margin

22-2827

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1);

Train a naive Bayes classifier. Specify a 30% holdout sample for testing. It is good
practice to specify the class order. Assume that each predictor is conditionally normally
distributed given its label.

CVMdl = fitcnb(X,Y,'Holdout',0.30,...

 'ClassNames',{'setosa','versicolor','virginica'});

CMdl = CVMdl.Trained{1}; ...

 % Extract the trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes
classifier that the software trained using the training set.

Estimate the test sample classification margins. Display the distribution of the margins
using a boxplot.

m = margin(CMdl,XTest,YTest);

figure;

boxplot(m);

title 'Distribution of the Test-Sample Margins';

22 Functions — Alphabetical List

22-2828

An observation margin is the observed true class score minus the maximum false class
score among all scores in the respective class. Classifiers that yield relatively large
margins are desirable.

Select Naive Bayes Classifier Features by Examining Test Sample Margins

The classifier margins measure, for each observation, the difference between the true
class observed score and the maximal false class score for a particular class. One way to
perform feature selection is to compare test sample margins from multiple models. Based
solely on this criterion, the model with the highest margins is the best model.

Load Fisher's iris data set.

load fisheriris

 margin

22-2829

X = meas; % Predictors

Y = species; % Response

rng(1);

Partition the data set into training and test sets. Specify a 30% holdout sample for
testing.

Partition = cvpartition(Y,'Holdout',0.30);

testInds = test(Partition); % Indices for the test set

XTest = X(testInds,:);

YTest = Y(testInds);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all predictors.
• partX contains the last 2 predictors.

fullX = X;

partX = X(:,3:4);

Train naive Bayes classifiers for each predictor set. Specify the partition definition.

FCVMdl = fitcnb(fullX,Y,'CVPartition',Partition);

PCVMdl = fitcnb(partX,Y,'CVPartition',Partition);

FCMdl = FCVMdl.Trained{1};

PCMdl = PCVMdl.Trained{1};

FullCVMdl and PartCVMdl are ClassificationPartitionedModel classifiers.
They contain the property Trained, which is a 1-by-1 cell array holding a
CompactClassificationNaiveBayes classifier that the software trained using the
training set.

Estimate the test sample margins for each classifier. Display the distributions of the
margins for each model using boxplots.

fullM = margin(FCMdl,XTest,YTest);

partM = margin(PCMdl,XTest(:,3:4),YTest);

figure;

boxplot([fullM partM],'Labels',{'All Predictors','Two Predictors'})

h = gca;

h.YLim = [0.98 1.01]; % Modify axis to see boxes.

22 Functions — Alphabetical List

22-2830

title 'Boxplots of Test-Sample Margins';

The margins have a similar distribution, but PCMdl is less complex.

References

[1] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
| ClassificationNaiveBayes | CompactClassificationNaiveBayes | edge |
fitcnb | loss | predict

 margin

22-2831

More About
• “Naive Bayes Classification” on page 15-31

22 Functions — Alphabetical List

22-2832

margin

Class: CompactClassificationSVM

Classification margins for support vector machine classifiers

Syntax

m = margin(SVMModel,X,Y)

Description

m = margin(SVMModel,X,Y) returns the classification margins (m) for the trained
support vector machine (SVM) classifier SVMModel using the predictor data X and class
labels Y.

Input Arguments

SVMModel — SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier

SVM classifier, specified as a ClassificationSVM classifier or
CompactClassificationSVM classifier returned by fitcsvm or compact, respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained the
SVMModel classifier.

The length of Y and the number of rows of X must be equal.

 margin

22-2833

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software
standardizes the columns of X using the corresponding means in SVMModel.Mu and
standard deviations in SVMModel.Sigma.

Data Types: double | single

Y — Class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class labels, specified as a categorical or character array, logical or numeric vector, or
cell array of strings. Y must be the same as the data type of SVMModel.ClassNames.

The length of Y and the number of rows of X must be equal.

Output Arguments

m — Classification margins
numeric vector

Classification margins, returned as a numeric vector.

m has the same length as Y. The software estimates each entry of m using the trained
SVM classifier SVMModel, the corresponding row of X, and the true class label Y.

Definitions

Classification Margin

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

Classification Edge

The edge is the weighted mean of the classification margins.

22 Functions — Alphabetical List

22-2834

The weights are the prior class probabilities. If you supply weights, then the software
normalizes them to sum to the prior probabilities in the respective classes. The software
uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x x s b() = () ¢ +/ .b

s is the kernel scale and β is the vector of fitted linear coefficients.

Examples

Estimate Test Sample Classification Margins of SVM Classifiers

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

 margin

22-2835

Train an SVM classifier. Specify a 15% holdout sample for testing. It is good practice to
specify the class order and standardize the data.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...

 'Standardize',true);

CompactSVMModel = CVSVMModel.Trained{1}; ...

 % Extract the trained, compact classifier

testInds = test(CVSVMModel.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the
property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM
classifier that the software trained using the training set.

Estimate the test sample classification margins.

m = margin(CompactSVMModel,XTest,YTest);

m(10:20)

ans =

 3.5461

 5.5939

 4.9948

 4.5611

 -4.7963

 5.5127

 -2.8776

 1.8673

 9.4986

 9.5018

 20.9954

An observation margin is the observed true class score minus the maximum false class
score among all scores in the respective class. Classifiers that yield relatively large
margins are desirable.

Select SVM Classifier Features by Examining Test Sample Margins

The classifier margins measure, for each observation, the difference between the true
class observed score and the maximal false class score for a particular class. One way to

22 Functions — Alphabetical List

22-2836

perform feature selection is to compare test sample margins from multiple models. Based
solely on this criterion, the model with the highest margins is the best model.

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 15% holdout sample for
testing.

Partition = cvpartition(Y,'Holdout',0.15);

testInds = test(Partition); % Indices for the test set

XTest = X(testInds,:);

YTest = Y(testInds,:);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

fullX = X;

partX = X(:,end-20:end);

Train SVM classifiers for each predictor set. Specify the partition definition.

FullCVSVMModel = fitcsvm(fullX,Y,'CVPartition',Partition);

PartCVSVMModel = fitcsvm(partX,Y,'CVPartition',Partition);

FCSVMModel = FullCVSVMModel.Trained{1};

PCSVMModel = PartCVSVMModel.Trained{1};

FullCVSVMModel and PartCVSVMModel are ClassificationPartitionedModel
classifiers. They contain the property Trained, which is a 1-by-1 cell array holding a
CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample margins for each classifier.

fullM = margin(FCSVMModel,XTest,YTest);

partM = margin(PCSVMModel,XTest(:,end-20:end),YTest);

n = size(XTest,1);

p = sum(fullM < partM)/n

 margin

22-2837

p =

 0.2500

Approximately 25% of the margins from the full model are less than those from the
model with fewer predictors. This suggests that the model trained using all of the
predictors is better.

Algorithms

For binary classification, the software defines the margin for observation j, mj, as

m y f xj j j= 2 (),

where yj ∊ {-1,1}, and f(xj) is the predicted score of observation j for the positive class.
However, the literature commonly uses mj = yjf(xj) to define the margin.

References

[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

[2] Hu, Q. X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationSVM | CompactClassificationSVM | edge | fitcsvm | loss |
predict

22 Functions — Alphabetical List

22-2838

margin
Class: CompactClassificationTree

Classification margins

Syntax

m = margin(tree,X,Y)

Description

m = margin(tree,X,Y) returns the classification margins for the matrix of predictors
X and class labels Y. For the definition, see “Margin” on page 22-2839.

Input Arguments

tree

A classification tree created by fitctree, or a compact classification tree created by
compact.

X

A matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in tree.

Y

Class labels, with the same data type as exists in tree.

Output Arguments

m

A numeric column vector of length size(X,1). Each entry in m represents the margin
for the corresponding rows of X and (true class) Y, computed using tree.

 margin

22-2839

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix X.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

22 Functions — Alphabetical List

22-2840

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

 margin

22-2841

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

22 Functions — Alphabetical List

22-2842

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Examples

Compute the classification margin for the Fisher iris data, trained on its first two
columns of data, and view the last 10 entries.

load fisheriris

X = meas(:,1:2);

tree = fitctree(X,species);

M = margin(tree,X,species);

M(end-10:end)

ans =

 0.1111

 0.1111

 0.1111

 -0.2857

 0.6364

 0.6364

 0.1111

 0.7500

 1.0000

 0.6364

 margin

22-2843

 0.2000

The classification tree trained on all the data is better.

tree = fitctree(meas,species);

M = margin(tree,meas,species);

M(end-10:end)

ans =

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

 0.9565

See Also
predict | edge | loss | fitctree

22 Functions — Alphabetical List

22-2844

margin
Class: CompactTreeBagger

Classification margin

Syntax

mar = margin(B,X,Y)

mar = margin(B,X,Y,'param1',val1,'param2',val2,...)

Description

mar = margin(B,X,Y) computes the classification margins for predictors X given true
response Y. The Y can be either a numeric vector, character matrix, cell array of strings,
categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees,
where Nobs is the number of rows of X and Y, and NTrees is the number of trees in the
ensemble B. For observation I and tree J, mar(I,J) is the difference between the score
for the true class and the largest score for other classes. This method is available for
classification ensembles only.

mar = margin(B,X,Y,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how the method computes errors. If set to
'cumulative' (default), margin computes cumulative errors and
mar is an Nobs-by-NTrees matrix, where the first column gives
error from trees(1), second column gives error fromtrees(1:2)

etc, up to trees(1:NTrees). If set to 'individual', mar is a
Nobs-by-NTrees matrix, where each element is an error from each
tree in the ensemble. If set to 'ensemble', mar a single column
of length Nobs showing the cumulative margins for the entire
ensemble.

'trees' Vector of indices indicating what trees to include in this calculation.
By default, this argument is set to 'all' and the method uses all
trees. If 'trees' is a numeric vector, the method returns a vector
of length NTrees for 'cumulative' and 'individual' modes,

 margin

22-2845

where NTrees is the number of elements in the input vector, and a
scalar for 'ensemble' mode. For example, in the 'cumulative'
mode, the first element gives error from trees(1), the second
element gives error from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the same length as the
'trees' vector. The method uses these weights to combine output
from the specified trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use this argument in
the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees should
be used to make predictions for each observation. By default the
method uses all trees for all observations.

See Also
TreeBagger.margin

22 Functions — Alphabetical List

22-2846

margin
Class: TreeBagger

Classification margin

Syntax

mar = margin(B,X,Y)

mar = margin(B,X,Y,'param1',val1,'param2',val2,...)

Description

mar = margin(B,X,Y) computes the classification margins for predictors X given true
response Y. The Y can be either a numeric vector, character matrix, cell array of strings,
categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees,
where Nobs is the number of rows of X and Y, and NTrees is the number of trees in the
ensemble B. For observation I and tree J, mar(I,J) is the difference between the score
for the true class and the largest score for other classes. This method is available for
classification ensembles only.

mar = margin(B,X,Y,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how the method computes errors. If set to
'cumulative' (default), margin computes cumulative errors and
mar is an Nobs-by-NTrees matrix, where the first column gives
error from trees(1), second column gives error fromtrees(1:2)

etc, up to trees(1:NTrees). If set to 'individual', mar is a
Nobs-by-NTrees matrix, where each element is an error from each
tree in the ensemble. If set to 'ensemble', mar a single column
of length Nobs showing the cumulative margins for the entire
ensemble.

'trees' Vector of indices indicating what trees to include in this calculation.
By default, this argument is set to 'all' and the method uses all
trees. If 'trees' is a numeric vector, the method returns a vector
of length NTrees for 'cumulative' and 'individual' modes,

 margin

22-2847

where NTrees is the number of elements in the input vector, and a
scalar for 'ensemble' mode. For example, in the 'cumulative'
mode, the first element gives error from trees(1), the second
element gives error from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the same length as the
'trees' vector. The method uses these weights to combine output
from the specified trees by taking a weighted average instead of the
simple non-weighted majority vote. You cannot use this argument in
the 'individual' mode.

'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees should
be used to make predictions for each observation. By default the
method uses all trees for all observations.

See Also
CompactTreeBagger.margin

22 Functions — Alphabetical List

22-2848

margmean
Class: RepeatedMeasuresModel

Estimate marginal means

Syntax

tbl = margmean(rm,vars)

tbl = margmean(rm,vars,'alpha',alpha)

Description

tbl = margmean(rm,vars) returns the estimated marginal means for the variables
vars, in the table tbl.

tbl = margmean(rm,vars,'alpha',alpha) returns the 100*(1–alpha)% confidence
intervals for the marginal means.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

vars — Variables for which to compute the marginal means
string | cell array of strings

Variables for which to compute the marginal means, specified as a string representing
the name of a between or within-subjects factor in rm, or a cell array of strings
representing the names of multiple variables. Each between-subjects factor must be
categorical.

For example, if you want to compute the marginal means for the variables Drug and
Gender, then you can specify as follows.

 margmean

22-2849

Example: {'Drug','Gender'}

Data Types: char | cell

alpha — Confidence level
0.05 (default) | scalar value in the range of 0 to 1

Confidence level of the confidence intervals for population marginal means, specified as a
scalar value in the range of 0 to 1. The confidence level is 100*(1–alpha)%.

For example, you can specify a 99% confidence level as follows.
Example: 'alpha',0.01

Data Types: double | single

Output Arguments

tbl — Estimated marginal means
table

Estimated marginal means, returned as a table. tbl contains one row for each
combination of the groups of the variables you specify in vars, one column for each
variable, and the following columns.

Column name Description

Mean Estimated marginal means
StdErr Standard errors of the estimates
Lower Lower limit of a 95% confidence interval for the true population mean
Upper Upper limit of a 95% confidence interval for the true population mean

Examples

Compute Marginal Means Grouped by Two Factors

Load the sample data.

load repeatedmeas

22 Functions — Alphabetical List

22-2850

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 to y8 as responses. The table within includes the within-
subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 to y8 are the responses,
and age, IQ, group, gender, and the group-gender interaction are the predictor variables.
Also specify the within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Compute the marginal means grouped by the between-subjects factor Group and the
within-subject factor Time.

M = margmean(rm,{'Group' 'Time'})

M =

 Group Time Mean StdErr Lower Upper

 _____ ____ _______ ______ ________ _______

 A 1 20.03 11.966 -4.7859 44.846

 A 2 5.8101 8.0942 -10.976 22.597

 A 3 20.694 5.1928 9.9247 31.463

 A 4 16.802 5.1693 6.0813 27.522

 A 5 13.157 6.2678 0.15862 26.156

 A 6 0.38527 5.8028 -11.649 12.42

 A 7 8.1398 6.4472 -5.2309 21.51

 A 8 11.057 7.6083 -4.7213 26.836

 B 1 23.768 11.816 -0.73653 48.273

 B 2 16.846 7.9927 0.26973 33.422

 B 3 -4.0888 5.1276 -14.723 6.5453

 B 4 2.0001 5.1045 -8.5858 12.586

 B 5 8.6458 6.1892 -4.1898 21.481

 B 6 -9.3054 5.73 -21.189 2.578

 B 7 8.8204 6.3663 -4.3825 22.023

 B 8 9.4889 7.5129 -6.0918 25.07

 C 1 19.951 12.236 -5.4261 45.327

 C 2 23.63 8.2771 6.4646 40.796

 C 3 -22.121 5.3101 -33.133 -11.109

 C 4 -14.307 5.2861 -25.27 -3.3443

 C 5 -20.138 6.4094 -33.43 -6.8456

 C 6 -28.583 5.9339 -40.889 -16.277

 C 7 -25.273 6.5928 -38.946 -11.6

 C 8 -21.836 7.7801 -37.971 -5.7009

 margmean

22-2851

Display the description for table M.

M.Properties.Description

ans =

Estimated marginal means

Means computed with Age=13.7, IQ=98.2667

Compute Estimated Marginal Means and Confidence Intervals

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers, the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Compute the marginal means grouped by the factor species.

margmean(rm,'species')

ans =

 species Mean StdErr Lower Upper

 ____________ ______ ________ ______ ______

 'setosa' 2.5355 0.042807 2.4509 2.6201

 'versicolor' 3.573 0.042807 3.4884 3.6576

 'virginica' 4.285 0.042807 4.2004 4.3696

StdError field shows the standard errors of the estimated marginal means. The Lower
and Upper fields show the lower and upper bounds for the 95% confidence intervals

22 Functions — Alphabetical List

22-2852

of the group marginal means, respectively. None of the confidence intervals overlap,
which indicates that marginal means differ with species. You can also plot the estimated
marginal means using the plotprofile method.

Compute the 99% confidence intervals for the marginal means.

margmean(rm,'species','alpha',0.01)

ans =

 species Mean StdErr Lower Upper

 ____________ ______ ________ ______ ______

 'setosa' 2.5355 0.042807 2.4238 2.6472

 'versicolor' 3.573 0.042807 3.4613 3.6847

 'virginica' 4.285 0.042807 4.1733 4.3967

See Also
multcompare | fitrm | plotprofile

 mauchly

22-2853

mauchly

Class: RepeatedMeasuresModel

Mauchly’s test for sphericity

Syntax

tbl = mauchly(rm)

tbl = mauchly(rm,C)

Description

tbl = mauchly(rm) returns the result of the Mauchly’s test for sphericity for the
repeated measures model rm.

It tests the null hypothesis that the sphericity assumption is true for the response
variables in rm.

For more information, see “Mauchly’s Test of Sphericity” on page 8-81.

tbl = mauchly(rm,C) returns the result of the Mauchly’s test based on the contrast
matrix C.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

C — Contrasts
matrix

22 Functions — Alphabetical List

22-2854

Contrasts, specified as a matrix. The default value of C is the Q factor in a QR
decomposition of the matrix M, where M is defined so that Y*M is the difference between
all successive pairs of columns of the repeated measures matrix Y.
Data Types: single | double

Output Arguments

tbl — Results of Mauchly’s test of sphericity
table

Results of Mauchly’s test for sphericity for the repeated measures model rm, returned as
a table.

tbl contains the following columns.

Column Name Definition

W Value of Mauchly’s W statistic
ChiStat Chi-square statistic value
DF Degrees of freedom of the Chi-square

statistic
pValue p-value corresponding to the Chi-square

statistic

Data Types: table

Examples

Perform Mauchly’s Test

Load the sample data.

load fisheriris

The column vector speciesconsists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

 mauchly

22-2855

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform Mauchly’s test to assess the sphericity assumption.

mauchly(rm)

ans =

 W ChiStat DF pValue

 _______ _______ __ __________

 0.55814 84.976 5 1.1102e-16

The small p-value (in the pValue field) indicates that the sphericity, hence the
compound symmetry assumption, does not hold. You should use epsilon corrections
to compute the p-values for a repeated measures anova. You can compute the epsilon
corrections using the epsilon method and perform the repeated measures anova with
the corrected p-values using the ranova method.

See Also
epsilon | fitrm | ranova

More About
• “Mauchly’s Test of Sphericity” on page 8-81
• “Compound Symmetry Assumption and Epsilon Corrections” on page 8-79

22 Functions — Alphabetical List

22-2856

mat2dataset
Convert matrix to dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

ds = mat2dataset(X)

ds = mat2dataset(X,Name,Value)

Description

ds = mat2dataset(X) converts a matrix to a dataset array.

ds = mat2dataset(X,Name,Value) performs the conversion using additional options
specified by one or more Name,Value pair arguments.

Examples

Convert Matrix to Dataset Array

Convert a matrix to a dataset array using the default options.

Load sample data.

load('fisheriris')

X = meas;

size(X)

ans =

 mat2dataset

22-2857

 150 4

Convert the matrix to a dataset array.

ds = mat2dataset(X);

size(ds)

ans =

 150 4

ds(1:5,:)

ans =

 X1 X2 X3 X4

 5.1 3.5 1.4 0.2

 4.9 3 1.4 0.2

 4.7 3.2 1.3 0.2

 4.6 3.1 1.5 0.2

 5 3.6 1.4 0.2

When you do not specify variable names, mat2dataset uses the matrix name and
column numbers to create default variable names.

Convert Matrix to Dataset Array with Variable Names

Load sample data.

load('fisheriris')

X = meas;

size(X)

ans =

 150 4

Convert the matrix to a dataset array, providing a variable name for each of the four
column of X.

ds = mat2dataset(X,'VarNames',{'SLength',...

'SWidth','PLength','PWidth'});

size(ds)

ans =

22 Functions — Alphabetical List

22-2858

 150 4

ds(1:5,:)

ans =

 SWidth SLength PWidth PLength

 5.1 3.5 1.4 0.2

 4.9 3 1.4 0.2

 4.7 3.2 1.3 0.2

 4.6 3.1 1.5 0.2

 5 3.6 1.4 0.2

Create a Dataset Array with Multicolumn Variables

Convert a matrix to a dataset array containing multicolumn variables.

Load sample data.

load('fisheriris')

X = meas;

size(X)

ans =

 150 4

Convert the matrix to a dataset array, combining the sepal measurements (the first two
columns) into one variable named SepalMeas, and the petal measurements (third and
fourth columns) into one variable names PetalMeas.

ds = mat2dataset(X,'NumCols',[2,2],...

'VarNames',{'SepalMeas','PetalMeas'});

ds(1:5,:)

ans =

 SepalMeas PetalMeas

 5.1 3.5 1.4 0.2

 4.9 3 1.4 0.2

 4.7 3.2 1.3 0.2

 4.6 3.1 1.5 0.2

 5 3.6 1.4 0.2

The output dataset array has 150 observations and 2 variables.

 mat2dataset

22-2859

size(ds)

ans =

 150 2

• “Create a Dataset Array from Workspace Variables” on page 2-63
• “Create a Dataset Array from a File” on page 2-69

Input Arguments

X — Input matrix
matrix

Input matrix to convert to a dataset array, specified as an M-by-N numeric matrix. Each
column of X becomes a variable in the output M-by-N dataset array.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NumCols',[1,1,2,1] specifies that the 3rd and 4th columns of the input
matrix should be combined into a single variable.

'VarNames' — Variable names for output dataset array
cell array of strings

Variable names for the output dataset array, specified as the comma-separated pair
consisting of 'VarNames' and a cell array of strings. You must provide a variable name
for each variable in ds. The names must be valid MATLAB identifiers, and must be
unique.
Example: 'VarNames',{'myVar1','myVar2','myVar3'}

'ObsNames' — Observation names for output dataset array
cell array of strings

22 Functions — Alphabetical List

22-2860

Observation names for the output dataset array, specified as the comma-separated pair
consisting of 'ObsNames' and a cell array of strings. The names do not need to be valid
MATLAB identifiers, but they must be unique.

'NumCols' — Number of columns for each variable
vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair
consisting of 'NumCols' and a vector of nonnegative integers. When the number of
columns for a variable is greater than one, mat2dataset combines multiple columns
in X into a single variable in ds. The vector you assign to NumCols must sum to
size(X,2).

For example, to convert a matrix with eight columns into a dataset array with five
variables, specify a vector with five elements that sum to eight, such as 'NumCols',
[1,1,3,1,2].

Output Arguments

ds — Output dataset array
dataset array

Output dataset array, returned by default with a variable for each column of X, and an
observation for each row of X. If you specify NumCols, then the number of variables in ds
is equal to the length of the specified vector of column numbers.

More About
• “Dataset Arrays” on page 2-132

See Also
cell2dataset | dataset | struct2dataset

 mdscale

22-2861

mdscale

Nonclassical multidimensional scaling

Syntax

Y = mdscale(D,p)

[Y,stress] = mdscale(D,p)

[Y,stress,disparities] = mdscale(D,p)

[...] = mdscale(D,p,'Name',value)

Description

Y = mdscale(D,p) performs nonmetric multidimensional scaling on the n-by-n
dissimilarity matrix D, and returns Y, a configuration of n points (rows) in p dimensions
(columns). The Euclidean distances between points in Y approximate a monotonic
transformation of the corresponding dissimilarities in D. By default, mdscale uses
Kruskal's normalized stress1 criterion.

You can specify D as either a full n-by-n matrix, or in upper triangle form such as is
output by pdist. A full dissimilarity matrix must be real and symmetric, and have zeros
along the diagonal and non-negative elements everywhere else. A dissimilarity matrix in
upper triangle form must have real, non-negative entries. mdscale treats NaNs in D as
missing values, and ignores those elements. Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the diagonal and all
other elements less than one. mdscale transforms a similarity matrix to a dissimilarity
matrix in such a way that distances between the points returned in Y approximate
sqrt(1-D). To use a different transformation, transform the similarities prior to calling
mdscale.

[Y,stress] = mdscale(D,p) returns the minimized stress, i.e., the stress evaluated
at Y.

[Y,stress,disparities] = mdscale(D,p) returns the disparities, that is, the
monotonic transformation of the dissimilarities D.

22 Functions — Alphabetical List

22-2862

[...] = mdscale(D,p,'Name',value) specifies one or more optional parameter
name/value pairs that control further details of mdscale. Specify Name in single quotes.
Available parameters are

• Criterion— The goodness-of-fit criterion to minimize. This also determines the type
of scaling, either non-metric or metric, that mdscale performs. Choices for non-metric
scaling are:

• 'stress' — Stress normalized by the sum of squares of the inter-point distances,
also known as stress1. This is the default.

• 'sstress' — Squared stress, normalized with the sum of 4th powers of the inter-
point distances.

Choices for metric scaling are:

• 'metricstress' — Stress, normalized with the sum of squares of the
dissimilarities.

• 'metricsstress' — Squared stress, normalized with the sum of 4th powers of
the dissimilarities.

• 'sammon' — Sammon's nonlinear mapping criterion. Off-diagonal dissimilarities
must be strictly positive with this criterion.

• 'strain' — A criterion equivalent to that used in classical multidimensional
scaling.

• Weights — A matrix or vector the same size as D, containing nonnegative
dissimilarity weights. You can use these to weight the contribution of the
corresponding elements of D in computing and minimizing stress. Elements of D
corresponding to zero weights are effectively ignored.

Note: When you specify weights as a full matrix, its diagonal elements are ignored
and have no effect, since the corresponding diagonal elements of D do not enter into
the stress calculation.

• Start — Method used to choose the initial configuration of points for Y. The choices
are

• 'cmdscale' — Use the classical multidimensional scaling solution. This is the
default. 'cmdscale' is not valid when there are zero weights.

• 'random' — Choose locations randomly from an appropriately scaled p-
dimensional normal distribution with uncorrelated coordinates.

 mdscale

22-2863

• An n-by-p matrix of initial locations, where n is the size of the matrix D and p is
the number of columns of the output matrix Y. In this case, you can pass in [] for
p and mdscale infers p from the second dimension of the matrix. You can also
supply a 3-D array, implying a value for 'Replicates' from the array's third
dimension.

• Replicates — Number of times to repeat the scaling, each with a new initial
configuration. The default is 1.

• Options — Options for the iterative algorithm used to minimize the fitting criterion.
Pass in an options structure created by statset. For example,

opts = statset(param1,val1,param2,val2, ...);

[...] = mdscale(...,'Options',opts)

The choices of statset parameters are

• 'Display' — Level of display output. The choices are 'off' (the default),
'iter', and 'final'.

• 'MaxIter' — Maximum number of iterations allowed. The default is 200.
• 'TolFun' — Termination tolerance for the stress criterion and its gradient. The

default is 1e-4.
• 'TolX'— Termination tolerance for the configuration location step size. The

default is 1e-4.

Examples
load cereal.mat

X = [Calories Protein Fat Sodium Fiber ...

 Carbo Sugars Shelf Potass Vitamins];

% Take a subset from a single manufacturer.

X = X(strcmp('K',cellstr(Mfg)),:);

% Create a dissimilarity matrix.

dissimilarities = pdist(X);

% Use non-metric scaling to recreate the data in 2D,

% and make a Shepard plot of the results.

[Y,stress,disparities] = mdscale(dissimilarities,2);

distances = pdist(Y);

22 Functions — Alphabetical List

22-2864

[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);

plot(dissimilarities,distances,'bo', ...

dissimilarities(ord),disparities(ord),'r.-');

xlabel('Dissimilarities'); ylabel('Distances/Disparities')

legend({'Distances' 'Disparities'},'Location','NW');

% Do metric scaling on the same dissimilarities.

figure

[Y,stress] = ...

mdscale(dissimilarities,2,'criterion','metricsstress');

distances = pdist(Y);

plot(dissimilarities,distances,'bo', ...

[0 max(dissimilarities)],[0 max(dissimilarities)],'r.-');

xlabel('Dissimilarities'); ylabel('Distances')

 mdscale

22-2865

See Also
cmdscale | pdist | statset

22 Functions — Alphabetical List

22-2866

mdsProx
Class: CompactTreeBagger

Multidimensional scaling of proximity matrix

Syntax

[SC,EIGEN] = mdsProx(B,X)

[SC,EIGEN] = mdsProx(B,X,'param1',val1,'param2',val2,...)

Description

[SC,EIGEN] = mdsProx(B,X) applies classical multidimensional scaling to
the proximity matrix computed for the data in the matrix X, and returns scaled
coordinates SC and eigenvalues EIGEN of the scaling transformation. The method applies
multidimensional scaling to the matrix of distances defined as 1-prox, where prox is the
proximity matrix returned by the proximity method.

You can supply the proximity matrix directly by using the 'data' parameter.

[SC,EIGEN] = mdsProx(B,X,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'data' Flag indicating how the method treats the X input argument. If set
to 'predictors' (default), mdsProx assumes X to be a matrix of
predictors and used for computation of the proximity matrix. If set to
'proximity', the method treats X as a proximity matrix returned by
the proximity method.

'colors' If you supply this argument, mdsProx makes overlaid scatter plots of
two scaled coordinates using specified colors for different classes. You
must supply the colors as a string with one character for each color.
If there are more classes in the data than characters in the supplied
string, mdsProx only plots the first C classes, where C is the length of
the string. For regression or if you do not provide the vector of true class
labels, the method uses the first color for all observations in X.

 mdsProx

22-2867

'labels' Vector of true class labels for a classification ensemble. True class
labels can be either a numeric vector, character matrix, or cell array of
strings. If supplied, this vector must have as many elements as there
are observations (rows) in X. This argument has no effect unless you
also supply the 'colors' argument.

'mdscoords' Indices of the two scaled coordinates to plot. By default, mdsProx
makes a scatter plot of the first and second scaled coordinates which
correspond to the two largest eigenvalues. You can specify any other
two or three indices not exceeding the dimensionality of the scaled
data. This argument has no effect unless you also supply the 'colors'
argument.

See Also
cmdscale | TreeBagger.mdsProx | proximity

22 Functions — Alphabetical List

22-2868

mdsProx
Class: TreeBagger

Multidimensional scaling of proximity matrix

Syntax

[S,E] = mdsProx(B)

[S,E] = mdsProx(B,'param1',val1,'param2',val2,...)

Description

[S,E] = mdsProx(B) returns scaled coordinates, S, and eigenvalues, E, for the
proximity matrix in the ensemble B. An earlier call to fillProximities(B) must
create the proximity matrix.

[S,E] = mdsProx(B,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'keep' Array of indices of observations in the training data to use for
multidimensional scaling. By default, this argument is set to 'all'.
If you provide numeric or logical indices, the method uses only the
subset of the training data specified by these indices to compute the
scaled coordinates and eigenvalues.

'colors' If you supply this argument, mdsProx makes overlaid scatter plots
of two scaled coordinates using specified colors for different classes.
You must supply the colors as a string with one character for each
color. If there are more classes in the data than characters in the
supplied string, mdsProx only plots the first C classes, where C is
the length of the string. For regression or if you do not provide the
vector of true class labels, the method uses the first color for all
observations in X.

'mdscoords' Indices of the two scaled coordinates to plot. By default, mdsProx
makes a scatter plot of the first and second scaled coordinates which
correspond to the two largest eigenvalues. You can specify any

 mdsProx

22-2869

other two or three indices not exceeding the dimensionality of the
scaled data. This argument has no effect unless you also supply the
'colors' argument.

See Also
cmdscale | CompactTreeBagger.mdsProx | fillProximities

22 Functions — Alphabetical List

22-2870

mean
Mean of probability distribution

Syntax

m = mean(pd)

Description

m = mean(pd) returns the mean m of the probability distribution pd.

Examples

Mean of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the mean of the fitted distribution.

m = mean(pd)

m =

 mean

22-2871

 75.0083

The mean of the normal distribution is equal to the parameter mu.

Mean of a Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

Compute the mean of the distribution.

mean = mean(pd)

mean =

 4.4311

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

m — Mean
scalar value

22 Functions — Alphabetical List

22-2872

Mean of the probability distribution, returned as a scalar value.

See Also
dfittool | fitdist | makedist

 mean

22-2873

mean
Class: prob.KernelDistribution
Package: prob

Mean of probability distribution object

Syntax
m = mean(pd)

Description
m = mean(pd) returns the mean m of the probability distribution pd.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Fit a probability
distribution object to data using fitdist or the Distribution Fitting app.

Output Arguments
m — Mean
scalar value

Mean of the probability distribution, returned as a scalar value.

Examples
Mean of a Kernel Distribution

Load the sample data. Create a probability distribution object by fitting a kernel
distribution to the miles per gallon (MPG) data.

22 Functions — Alphabetical List

22-2874

load carsmall;

pd = fitdist(MPG,'Kernel')

pd =

 KernelDistribution

 Kernel = normal

 Bandwidth = 4.11428

 Support = unbounded

Compute the mean of the distribution.

mean(pd)

ans =

 23.7181

See Also
dfittool | fitdist

 mean

22-2875

mean
Class: ProbDistUnivParam

Return mean of ProbDistUnivParam object

Syntax

M = mean(PD)

Description

M = mean(PD) returns M, the mean of the ProbDistUnivParam object PD.

Input Arguments

PD An object of the class ProbDistUnivParam.

Output Arguments

M The mean of the ProbDistUnivParam object PD.

See Also
mean

22 Functions — Alphabetical List

22-2876

mean
Class: prob.ParametricTruncatableDistribution
Package: prob

Mean of probability distribution object

Syntax

m = mean(pd)

Description

m = mean(pd) returns the mean m of the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.

Output Arguments

m — Mean
scalar value

Mean of the probability distribution, returned as a scalar value.

Examples

Mean of a Uniform Distribution

Create a uniform distribution object

 mean

22-2877

pd = makedist('Uniform','lower',-3,'upper',5)

pd =

 UniformDistribution

 Uniform distribution

 Lower = -3

 Upper = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 1

See Also
makedist

22 Functions — Alphabetical List

22-2878

mean

Class: prob.ToolboxFittableParametricDistribution
Package: prob

Mean of probability distribution object

Syntax

m = mean(pd)

Description

m = mean(pd) returns the mean m of the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

m — Mean
scalar value

Mean of the probability distribution, returned as a scalar value.

 mean

22-2879

Examples

Mean of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the mean of the fitted distribution.

m = mean(pd)

m =

 75.0083

The mean of the normal distribution is equal to the parameter mu.

Mean of a Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

22 Functions — Alphabetical List

22-2880

Compute the mean of the distribution.

mean = mean(pd)

mean =

 4.4311

See Also
dfittool | fitdist | makedist

 meanMargin

22-2881

meanMargin
Class: CompactTreeBagger

Mean classification margin

Syntax

mar = meanMargin(B,X,Y)

mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)

Description

mar = meanMargin(B,X,Y) computes average classification margins for predictors X
given true response Y. The Y can be either a numeric vector, character matrix, cell array
of strings, categorical vector or logical vector. meanMargin averages the margins over all
observations (rows) in X for each tree. mar is a matrix of size 1-by-NTrees, where NTrees
is the number of trees in the ensemble B. This method is available for classification
ensembles only.

mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how meanMargin computes errors. If set to
'cumulative' (default), is a vector of length NTrees where the first
element gives mean margin from trees(1), second column gives
mean margins from trees(1:2) etc, up to trees(1:NTrees). If
set to 'individual', mar is a vector of length NTrees, where each
element is a mean margin from each tree in the ensemble . If set to
'ensemble', mar is a scalar showing the cumulative mean margin
for the entire ensemble.

'trees' Vector of indices indicating what trees to include in this calculation.
By default, this argument is set to 'all' and the method uses all
trees. If 'trees' is a numeric vector, the method returns a vector
of length NTrees for 'cumulative' and 'individual' modes,
where NTrees is the number of elements in the input vector, and a
scalar for 'ensemble' mode. For example, in the 'cumulative'

22 Functions — Alphabetical List

22-2882

mode, the first element gives mean margin from trees(1), the
second element gives mean margin from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the same length as the
'trees' vector. meanMargin uses these weights to combine output
from the specified trees by taking a weighted average instead of the
simple nonweighted majority vote. You cannot use this argument in
the 'individual' mode.

See Also
TreeBagger.meanMargin

 meanMargin

22-2883

meanMargin
Class: TreeBagger

Mean classification margin

Syntax

mar = meanMargin(B,X,Y)

mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)

Description

mar = meanMargin(B,X,Y) computes average classification margins for predictors X
given true response Y. The Y can be either a numeric vector, character matrix, cell array
of strings, categorical vector or logical vector. meanMargin averages the margins over all
observations (rows) in X for each tree. mar is a matrix of size 1-by-NTrees, where NTrees
is the number of trees in the ensemble B. This method is available for classification
ensembles only.

mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how meanMargin computes errors. If set to
'cumulative' (default), is a vector of length NTrees where the first
element gives mean margin from trees(1), second column gives
mean margins from trees(1:2) etc, up to trees(1:NTrees). If
set to 'individual', mar is a vector of length NTrees, where each
element is a mean margin from each tree in the ensemble . If set to
'ensemble', mar is a scalar showing the cumulative mean margin
for the entire ensemble .

'trees' Vector of indices indicating what trees to include in this calculation.
By default, this argument is set to 'all' and the method uses all
trees. If 'trees' is a numeric vector, the method returns a vector
of length NTrees for 'cumulative' and 'individual' modes,
where NTrees is the number of elements in the input vector, and a
scalar for 'ensemble' mode. For example, in the 'cumulative'

22 Functions — Alphabetical List

22-2884

mode, the first element gives mean margin from trees(1), the
second element gives mean margin from trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the same length as the
'trees' vector. meanMargin uses these weights to combine output
from the specified trees by taking a weighted average instead of the
simple nonweighted majority vote. You cannot use this argument in
the 'individual' mode.

See Also
CompactTreeBagger.meanMargin

 meansurrvarassoc

22-2885

meansurrvarassoc
Class: classregtree

Mean predictive measure of association for surrogate splits in decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

MA = meansurrvarassoc(T)

MA = meansurrvarassoc(T,N)

Description

MA = meansurrvarassoc(T) returns a p-by-p matrix, MA, with predictive measures
of association for p predictors. Element MA(i,j) is the predictive measure of association
averaged over surrogate splits on predictor j for which predictor i is the optimal split
predictor. This average is computed by summing positive values of the predictive
measure of association over optimal splits on predictor i and surrogate splits on predictor
j and dividing by the total number of optimal splits on predictor i, including splits for
which the predictive measure of association between predictors i and j is negative.

MA = meansurrvarassoc(T,N) takes an array N of node numbers and returns the
predictive measure of association averaged over the specified nodes.

See Also
classregtree | surrcuttype | surrcutpoint | surrcutvar | surrvarassoc |
surrcutcategories | surrcutflip

22 Functions — Alphabetical List

22-2886

surrogateAssociation
Class: CompactClassificationTree

Mean predictive measure of association for surrogate splits in decision tree

Syntax

ma = surrogateAssociation(tree)

ma = surrogateAssociation(tree,N)

Description

ma = surrogateAssociation(tree) returns a matrix of predictive measures of
association for the predictors in tree.

ma = surrogateAssociation(tree,N) returns a matrix of predictive measures of
association averaged over the nodes in vector N.

Input Arguments

tree

A classification tree constructed with fitctree, or a compact regression tree
constructed with compact.

N

Vector of node numbers in tree.

Output Arguments

ma

• ma = surrogateAssociation(tree) returns a P-by-P matrix, where P is the
number of predictors in tree. ma(i,j) is the predictive measure of association

 surrogateAssociation

22-2887

between the optimal split on variable i and a surrogate split on variable j. See
“Predictive Measure of Association” on page 22-2887.

• ma = surrogateAssociation(tree,N) returns a P-by-P representing the
predictive measure of association between variables averaged over nodes in the vector
N. N contains node numbers from 1 to max(tree.NumNodes).

Definitions

Predictive Measure of Association

The predictive measure of association between the optimal split on variable i and a
surrogate split on variable j is:

li j

L R L L R R

L R

P P P P

P P

i j i j

,

,

,
.=

() - - -()
()

min

min

1

Here

• PL and PR are the node probabilities for the optimal split of node i into Left and Right
nodes respectively.

• PL Li j
 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Left.
• PR Ri j

 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Right.

Clearly, λi,j lies from –∞ to 1. Variable j is a worthwhile surrogate split for variable i if
λi,j>0.

Element ma(i,j) is the predictive measure of association averaged over surrogate
splits on predictor j for which predictor i is the optimal split predictor. This average
is computed by summing positive values of the predictive measure of association over
optimal splits on predictor i and surrogate splits on predictor j and dividing by the total
number of optimal splits on predictor i, including splits for which the predictive measure
of association between predictors i and j is negative.

22 Functions — Alphabetical List

22-2888

Examples

Find the mean predictive measure of association between the variables in the Fisher iris
data:

load fisheriris

obj = fitctree(meas,species,'surrogate','on');

msva = surrogateAssociation(obj)

msva =

 1.0000 0 0 0

 0 1.0000 0 0

 0.4633 0.2500 1.0000 0.5000

 0.2065 0.1413 0.4022 1.0000

Find the mean predictive measure of association averaged over the odd-numbered nodes
in obj:

N = 1:2:obj.NumNodes;

msva = surrogateAssociation(obj,N)

msva =

 1.0000 0 0 0

 0 1.0000 0 0

 0.7600 0.5000 1.0000 1.0000

 0.4130 0.2826 0.8043 1.0000

See Also
ClassificationTree | fitctree

 surrogateAssociation

22-2889

surrogateAssociation
Class: CompactRegressionTree

Mean predictive measure of association for surrogate splits in decision tree

Syntax

ma = surrogateAssociation(tree)

ma = surrogateAssociation(tree,N)

Description

ma = surrogateAssociation(tree) returns a matrix of predictive measures of
association for the predictors in tree.

ma = surrogateAssociation(tree,N) returns a matrix of predictive measures of
association averaged over the nodes in vector N.

Input Arguments

tree

A regression tree constructed with fitrtree, or a compact regression tree constructed
with compact.

N

Vector of node numbers in tree.

Output Arguments

ma

• ma = surrogateAssociation(tree) returns a P-by-P matrix, where P is the
number of predictors in tree. ma(i,j) is the predictive measure of association

22 Functions — Alphabetical List

22-2890

between the optimal split on variable i and a surrogate split on variable j. See
“Predictive Measure of Association” on page 22-2890.

• ma = surrogateAssociation(tree,N) returns a P-by-P representing the
predictive measure of association between variables averaged over nodes in the vector
N. N contains node numbers from 1 to max(tree.NumNodes).

Definitions

Predictive Measure of Association

The predictive measure of association between the optimal split on variable i and a
surrogate split on variable j is:

li j

L R L L R R

L R

P P P P

P P

i j i j

,

,

,
.=

() - - -()
()

min

min

1

Here

• PL and PR are the node probabilities for the optimal split of node i into Left and Right
nodes respectively.

• PL Li j
 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Left.
• PR Ri j

 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Right.

Clearly, λi,j lies from –∞ to 1. Variable j is a worthwhile surrogate split for variable i if
λi,j > 0.

Element ma(i,j) is the predictive measure of association averaged over surrogate
splits on predictor j for which predictor i is the optimal split predictor. This average
is computed by summing positive values of the predictive measure of association over
optimal splits on predictor i and surrogate splits on predictor j and dividing by the total
number of optimal splits on predictor i, including splits for which the predictive measure
of association between predictors i and j is negative.

 surrogateAssociation

22-2891

Examples

Find the mean predictive measure of association between the Displacement,
Horsepower, and Weight variables in the carsmall data:

load carsmall

X = [Displacement Horsepower Weight];

tree = fitrtree(X,MPG,'surrogate','on');

ma = surrogateAssociation(tree)

ma =

 1.0000 0.2708 0.3854

 0.4764 1.0000 0.4568

 0.3472 0.2326 1.0000

Find the mean predictive measure of association averaged over the odd-numbered nodes
in tree:

N = 1:2:tree.NumNodes;

ma = surrogateAssociation(tree,N)

ma =

 1.0000 0.2500 0.3750

 0.5910 1.0000 0.5861

 0.5000 0.2361 1.0000

See Also
prune | RegressionTree | fitrtree

22 Functions — Alphabetical List

22-2892

median

Median of probability distribution

Syntax

m = median(pd)

Description

m = median(pd) returns the median m for the probability distribution pd

Examples

Median of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the median of the fitted distribution.

m = median(pd)

 median

22-2893

m =

 75.0083

For a symmetrical distribution such as the normal distribution, the median will be equal
to the mean, mu.

Median of a Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

Compute the median of the distribution.

m = median(pd)

m =

 4.1628

For a skewed distribution such as the Weibull distribution, the median and the mean
may not be equal.

Calculate the mean of the Weibull distribution and compare it to the median.

mean = mean(pd)

mean =

 4.4311

The mean of the distribution is greater than the median.

Plot the pdf to visualize the distribution.

x = [0:.1:15];

pdf = pdf(pd,x);

22 Functions — Alphabetical List

22-2894

plot(x,pdf)

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

 median

22-2895

Output Arguments

m — Median
scalar value

Median of the probability distribution, returned as a scalar value. The value of m is the
50th percentile of the probability distribution.

See Also
dfittool | fitdist | makedist | mean | median

22 Functions — Alphabetical List

22-2896

median
Class: ProbDistUnivKernel

Return median of ProbDistUnivKernel object

Syntax

M = median(PD)

Description

M = median(PD) returns M, the median of the ProbDistUnivKernel object PD.

Input Arguments

PD An object of the class ProbDistUnivKernel.

Output Arguments

M The median of the ProbDistUnivKernel object PD.

See Also
median

 median

22-2897

median
Class: ProbDistUnivParam

Return median of ProbDistUnivParam object

Syntax

M = median(PD)

Description

M = median(PD) returns M, the median of the ProbDistUnivParam object PD.

Input Arguments

PD An object of the class ProbDistUnivParam.

Output Arguments

M The median of the ProbDistUnivParam object PD.

See Also
median

22 Functions — Alphabetical List

22-2898

median

Class: prob.TruncatableDistribution
Package: prob

Median of probability distribution object

Syntax

m = median(pd)

Description

m = median(pd) returns the median m for the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

Output Arguments

m — Median
scalar value

Median of the probability distribution, returned as a scalar value. The value of m is the
50th percentile of the probability distribution.

 median

22-2899

Examples

Median of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the median of the fitted distribution.

m = median(pd)

m =

 75.0083

For a symmetrical distribution such as the normal distribution, the median will be equal
to the mean, mu.

Median of a Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

22 Functions — Alphabetical List

22-2900

 Weibull distribution

 A = 5

 B = 2

Compute the median of the distribution.

m = median(pd)

m =

 4.1628

For a skewed distribution such as the Weibull distribution, the median and the mean
may not be equal.

Calculate the mean of the Weibull distribution and compare it to the median.

mean = mean(pd)

mean =

 4.4311

The mean of the distribution is greater than the median.

Plot the pdf to visualize the distribution.

x = [0:.1:15];

pdf = pdf(pd,x);

plot(x,pdf)

 median

22-2901

See Also
dfittool | fitdist | makedist | mean | median

22 Functions — Alphabetical List

22-2902

MergeLeaves property
Class: TreeBagger

Flag to merge leaves that do not improve risk

Description

The MergeLeaves property is true if decision trees have their leaves with the same
parent merged for splits that do not decrease the total risk, and false otherwise. The
default value is false.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

 mergelevels

22-2903

mergelevels
Merge levels of nominal or ordinal arrays

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

B = mergelevels(A,oldlevels)

B = mergelevels(A,oldlevels,newlevel)

Description

B = mergelevels(A,oldlevels) merges two or more levels of A.

• If A is a nominal array, mergelevels uses the first label in oldlevels as the new
level.

• If A is an ordinal array, the levels specified by oldlevels must be consecutive, and
mergelevels uses the label corresponding to the lowest level in oldlevels as the label
for the new level.

B = mergelevels(A,oldlevels,newlevel) merges two or more levels into the new
level with label newlevel.

Examples

Create New Category From Merged Levels

Create a nominal array from string data in a cell array.

colors = nominal({'r','b','g';'g','r','b';'b','r','g'},...

22 Functions — Alphabetical List

22-2904

 {'blue','green','red'})

colors =

 red blue green

 green red blue

 blue red green

Merge the elements of the 'red' and 'blue' levels into a new level labeled 'purple'.

colors = mergelevels(colors,{'red','blue'},'purple')

colors =

 purple purple green

 green purple purple

 purple purple green

Display the levels of colors.

getlevels(colors)

ans =

 purple green

• “Merge Category Levels” on page 2-19

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

oldlevels — Levels to merge
cell array of strings | 2-D character matrix

 mergelevels

22-2905

Levels to merge, specified as a cell array of strings or 2-D character matrix. For ordinal
arrays, the levels in oldlevels must be consecutive.
Data Types: char | cell

newlevel — Level to create
string

Level to create from the merged levels, specified as a string that gives the label for the
new level.
Data Types: char

Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

More About
• Using nominal Objects
• Using ordinal Objects

See Also
addlevels | droplevels | nominal | ordinal | reorderlevels

22 Functions — Alphabetical List

22-2906

Method property
Class: TreeBagger

Method used by trees (classification or regression)

Description

The Method property is 'classification' for classification ensembles and
'regression' for regression ensembles.

 mhsample

22-2907

mhsample
Metropolis-Hastings sample

Syntax

smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,

'proprnd',proprnd)

smpl = mhsample(...,'symmetric',sym)

smpl = mhsample(...,'burnin',K)

smpl = mhsample(...,'thin',m)

smpl = mhsample(...,'nchain',n)

[smpl,accept] = mhsample(...)

Description

smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,

'proprnd',proprnd) draws nsamples random samples from a target stationary
distribution pdf using the Metropolis-Hastings algorithm.

start is a row vector containing the start value of the Markov Chain, nsamples
is an integer specifying the number of samples to be generated, and pdf, proppdf,
and proprnd are function handles created using @. proppdf defines the proposal
distribution density, and proprnd defines the random number generator for the proposal
distribution. pdf and proprnd take one argument as an input with the same type and
size as start. proppdf takes two arguments as inputs with the same type and size as
start.

smpl is a column vector or matrix containing the samples. If the log density function is
preferred, 'pdf' and 'proppdf' can be replaced with 'logpdf' and 'logproppdf'.
The density functions used in Metropolis-Hastings algorithm are not necessarily
normalized.

The proposal distribution q(x,y) gives the probability density for choosing x as the next
point when y is the current point. It is sometimes written as q(x|y).

If the proppdf or logproppdf satisfies q(x,y) = q(y,x), that is, the proposal distribution
is symmetric, mhsample implements Random Walk Metropolis-Hastings sampling. If

22 Functions — Alphabetical List

22-2908

the proppdf or logproppdf satisfies q(x,y) = q(x), that is, the proposal distribution is
independent of current values, mhsample implements Independent Metropolis-Hastings
sampling.

smpl = mhsample(...,'symmetric',sym) draws nsamples random samples from
a target stationary distribution pdf using the Metropolis-Hastings algorithm. sym is a
logical value that indicates whether the proposal distribution is symmetric. The default
value is false, which corresponds to the asymmetric proposal distribution. If sym is true,
for example, the proposal distribution is symmetric, proppdf and logproppdf are
optional.

smpl = mhsample(...,'burnin',K) generates a Markov chain with values between
the starting point and the kth point omitted in the generated sequence. Values beyond the
kth point are kept. k is a nonnegative integer with default value of 0.

smpl = mhsample(...,'thin',m) generates a Markov chain with m-1 out of m values
omitted in the generated sequence. m is a positive integer with default value of 1.

smpl = mhsample(...,'nchain',n) generates n Markov chains using the
Metropolis-Hastings algorithm. n is a positive integer with a default value of 1. smpl is
a matrix containing the samples. The last dimension contains the indices for individual
chains.

[smpl,accept] = mhsample(...) also returns accept, the acceptance rate of the
proposed distribution. accept is a scalar if a single chain is generated and is a vector if
multiple chains are generated.

Examples

Estimate Moments Using Independent Metropolis-Hastings Sampling

Use Independent Metropolis-Hastings sampling to estimate the second order moment of
a Gamma distribution.

rng default; % For reproducibility

alpha = 2.43;

beta = 1;

pdf = @(x)gampdf(x,alpha,beta); % Target distribution

proppdf = @(x,y)gampdf(x,floor(alpha),floor(alpha)/alpha);

proprnd = @(x)sum(...

 exprnd(floor(alpha)/alpha,floor(alpha),1));

 mhsample

22-2909

nsamples = 5000;

smpl = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,...

 'proppdf',proppdf);

Plot the results.

xxhat = cumsum(smpl.^2)./(1:nsamples)';

figure;

plot(1:nsamples,xxhat)

Random Walk Metropolis-Hastings Sampling

Use Random Walk Metropolis-Hastings sampling to generate sample data from a
standard normal distribution.

22 Functions — Alphabetical List

22-2910

rng default % For reproducibility

delta = .5;

pdf = @(x) normpdf(x);

proppdf = @(x,y) unifpdf(y-x,-delta,delta);

proprnd = @(x) x + rand*2*delta - delta;

nsamples = 15000;

x = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,'symmetric',1);

Plot the sample data.

figure;

h = histfit(x,50);

h(1).FaceColor = [.8 .8 1];

• “Using the Metropolis-Hastings Algorithm” on page 6-14

 mhsample

22-2911

See Also
rand | slicesample

22 Functions — Alphabetical List

22-2912

MinLeaf property
Class: TreeBagger

Minimum number of observations per tree leaf

Description

The MinLeaf property specifies the minimum number of observations per tree leaf. The
default values are 1 for classification and 5 for regression. For fitctree or fitrtree
training, the 'minparent' value is set to 2*MinLeaf.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

 mle

22-2913

mle
Maximum likelihood estimates

Syntax

phat = mle(data)

phat = mle(data,'distribution',dist)

phat = mle(data,'pdf',pdf,'start',start)

phat = mle(data,'pdf',pdf,'start',start,'cdf',cdf)

phat = mle(data,'logpdf',logpdf,'start',start)

phat = mle(data,'logpdf',logpdf,'start',start,'logsf',logsf)

phat = mle(data,'nloglf',nloglf,'start',start)

phat = mle(___ ,Name,Value)

[phat,pci] = mle(___)

Description

phat = mle(data) returns maximum likelihood estimates (MLEs) for the parameters
of a normal distribution, using the sample data in the vector data.

phat = mle(data,'distribution',dist) returns parameter estimates for a
distribution specified by dist.

phat = mle(data,'pdf',pdf,'start',start) returns parameter estimates for
a custom distribution specified by the probability density function pdf. You must also
specify the initial parameter values, start.

phat = mle(data,'pdf',pdf,'start',start,'cdf',cdf) returns parameter
estimates for a custom distribution specified by the probability density function pdf and
custom cumulative distribution function cdf.

phat = mle(data,'logpdf',logpdf,'start',start) returns parameter estimates
for a custom distribution specified by the log probability density function logpdf. You
must also specify the initial parameter values, start.

22 Functions — Alphabetical List

22-2914

phat = mle(data,'logpdf',logpdf,'start',start,'logsf',logsf) returns
parameter estimates for a custom distribution specified by the log probability density
function logpdf and custom log survival function logsf.

phat = mle(data,'nloglf',nloglf,'start',start) returns parameter estimates
for the custom distribution specified by the negative loglikelihood function nloglf. You
must also specify the initial parameter values, start.

phat = mle(___ ,Name,Value) also returns the parameter estimates with additional
options specified by one or more name-value pair arguments. You can use any of the
input arguments in the previous syntaxes.

[phat,pci] = mle(___) also returns the 95% confidence intervals for the
parameters.

Examples

Estimate Parameters of Burr Distribution

Load the sample data.

load carbig

The variable MPG has the miles per gallon for different models of cars.

Draw a histogram of MPG data.

 histogram(MPG)

 mle

22-2915

The distribution is somewhat right skewed. A symmetric distribution, such as normal
distribution, might not be a good fit.

Estimate the parameters of the Burr Type XII distribution for the MPG data.

phat = mle(MPG,'distribution','burr')

phat =

 34.6447 3.7898 3.5722

22 Functions — Alphabetical List

22-2916

The maximum likelihood estimates for the scale parameter α is 34.6447. The estimates
for the two shape parameters c and k of the Burr Type XII distribution are 3.7898 and
3.5722, respectively.

Fit Custom Distribution to Censored Data

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load readmissiontimes

The data includes ReadmissionTime, which has readmission times for 100 patients.
The column vector Censored has the censorship information for each patient, where 1
indicates a censored observation, and 0 indicates the exact readmission time is observed.
This is simulated data.

Define a custom probability density and cumulative distribution function.

custpdf = @(data,lambda) lambda*exp(-lambda*data);

custcdf = @(data,lambda) 1-exp(-lambda*data);

Estimate the parameter, lambda, of the custom distribution for the censored sample
data.

phat = mle(ReadmissionTime,'pdf',custpdf,...

'cdf',custcdf,'start',0.05,'Censoring',Censored)

phat

phat =

 0.1096

Estimate Parameters of a Noncentral Chi-Square Distribution

Generate sample data of size 1000 from a noncentral chi-square distribution with degrees
of freedom 8 and noncentrality parameter 3.

rng('default') % for reproducibility

x = ncx2rnd(8,3,1000,1);

Estimate the parameters of the noncentral chi-square distribution from the sample data.
To do this, custom define the noncentral chi-square pdf using the pdf input argument.

 mle

22-2917

[phat,pci] = mle(x,'pdf',@(x,v,d)ncx2pdf(x,v,d),'start',[1,1])

phat =

 8.1052 2.6693

pci =

 7.1121 1.6025

 9.0983 3.7362

The estimate for the degrees of freedom is 8.1052 and the noncentrality parameter is
2.6693. The 95% confidence interval for the degrees of freedom is (7.0983,9.0983) and
the noncentrality parameter is (1.6025,3.7362). The confidence intervals include the true
parameter values of 8 and 3, respectively.

Fit Custom Log pdf and Survival Function

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load readmissiontimes

The data includes ReadmissionTime, which has readmission times for 100 patients.
The column vector Censored has the censorship information for each patient, where 1
indicates a censored observation, and 0 indicates the exact readmission time is observed.
This is simulated data.

Define a custom log probability density and survival function.

custlogpdf = @(data,lambda,k) log(k)-k*log(lambda)...

 +(k-1)*log(data)-(data/lambda).^k;

custlogsf = @(data,lambda,k) -(data/lambda).^k;

Estimate the parameters, lambda and k, of the custom distribution for the censored
sample data.

phat = mle(ReadmissionTime,'logpdf',custlogpdf,...

'logsf',custlogsf,'start',[1,0.75],'Censoring',Censored)

phat =

22 Functions — Alphabetical List

22-2918

 9.2090 1.4223

The scale and shape parameters of the custom-defined distribution are 9.2090 and
1.4223, respectively.

Fit Custom Log Negative Likelihood Function

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load readmissiontimes

The data includes ReadmissionTime, which has readmission times for 100 patients.
This is simulated data.

Define a negative log likelihood function.

custnloglf = @(lambda,data,cens,freq) -length(data)*log(lambda)...

+ nansum(lambda*data);

Estimate the parameters of the defined distribution.

phat = mle(ReadmissionTime,'nloglf',custnloglf,'start',0.05)

phat =

 0.1462

Estimate Probability of Success

Generate 100 random observations from a binomial distribution with the number of
trials, n = 20, and the probability of success, p = 0.75.

data = binornd(20,0.75,100,1);

Estimate the probability of success and 95% confidence limits using the simulated
sample data.

[phat,pci] = mle(data,'distribution','binomial',...

 'alpha',.05,'ntrials',20)

phat =

 0.7370

 mle

22-2919

pci =

 0.7171

 0.7562

The estimate of probability of success is 0.737 and the lower and upper limits of the 95%
confidence interval are 0.7171 and 0.7562. This interval covers the true value used to
simulate the data.

Fit a Distribution with Known Parameter

Generate sample data of size 1000 from a noncentral chi-square distribution with degrees
of freedom 10 and noncentrality parameter 5.

rng('default') % for reproducibility

x = ncx2rnd(10,5,1000,1);

Suppose the noncentrality parameter is fixed at the value 5. Estimate the degrees of
freedom of the noncentral chi-square distribution from the sample data. To do this,
custom define the noncentral chi-square pdf using the pdf input argument.

[phat,pci] = mle(x,'pdf',@(x,v,d)ncx2pdf(x,v,5),'start',1)

phat =

 9.9307

pci =

 9.5626

 10.2989

The estimate for the noncentrality parameter is 9.9307, with a 95% confidence interval of
9.5626 and 10.2989. The confidence interval includes the true parameter value of 10.

Fit Rician Distribution with Known Scale Parameter

Generate sample data of size 1000 from a Rician distribution with noncentrality
parameter of 8 and scale parameter of 5. First create the Rician distribution.

r = makedist('Rician','s',8,'sigma',5);

Now, generate sample data from the distribution you created above.

rng('default');

x = random(r,1000,1);

22 Functions — Alphabetical List

22-2920

Suppose the scale parameter is known, and estimate the noncentrality parameter from
sample data. To do this using mle, you must custom define the Rician probability density
function.

[phat,pci] = mle(x,'pdf',@(x,s,sigma) pdf('rician',x,s,5),'start',10)

phat =

 7.8953

pci =

 7.5405

 8.2501

The estimate for the noncentrality parameter is 7.8953, with a 95% confidence interval of
7.5404 and 8.2501. The confidence interval includes the true parameter value of 8.

Fit a Distribution with Additional Parameter

Add a scale parameter to the chi-square distribution for adapting to the scale of data and
fit it. First, generate sample data of size 1000 from a chi-square distribution with degrees
of freedom 5, and scale it by the factor of 100.

rng('default') % for reproducibility

x = 100*chi2rnd(5,1000,1);

Estimate the degrees of freedom and the scaling factor. To do this, custom define the chi-
square probability density function using the pdf input argument. The density function
requires a 1/s factor for data scaled by s.

[phat,pci] = mle(x,'pdf',@(x,v,s)chi2pdf(x/s,v)/s,'start',[1,200])

phat =

 5.1079 99.1681

pci =

 4.6862 90.1215

 5.5297 108.2146

The estimate for the degrees of freedom is 5.1079 and the scale is 99.1681. The 95%
confidence interval for the degrees of freedom is (4.6862,5.5279) and the scale parameter

 mle

22-2921

is (90.1215,108.2146). The confidence intervals include the true parameter values of 5
and 100, respectively.

Input Arguments

data — Sample data
vector

Sample data mle uses to estimate the distribution parameters, specified as a vector.

Data Types: single | double

dist — Distribution type
'normal' (default) | string

Distribution type to estimate parameters for, specified as one of the following.

dist Description Parameter 1 Parameter 2 Parameter
3

'bernoulli' “Bernoulli Distribution” on
page B-2

p: probability of
success for each
trial

— —

'beta' or 'Beta' “Beta Distribution” on page
B-4

a b —

'bino' or
'Binomial'

“Binomial Distribution” on
page B-9

n: number of
trials

p: probability of
success for each
trial

—

'birnbaumsaunders'“Birnbaum-Saunders
Distribution” on page
B-13

β: scale γ: shape —

'burr' or 'Burr' “Burr Type XII Distribution”
on page B-15

α: scale c: first shape k: second
shape

'Discrete

Uniform' or
'unid'

“Uniform Distribution
(Discrete)” on page B-169

N: maximum
observable value

— —

'exp' or
'Exponential'

“Exponential Distribution”
on page B-35

μ: mean — —

22 Functions — Alphabetical List

22-2922

dist Description Parameter 1 Parameter 2 Parameter
3

'ev' or 'Extreme
Value'

“Extreme Value
Distribution” on page
B-39

μ: location σ: scale —

'gam' or 'Gamma' “Gamma Distribution” on
page B-48

a: shape b: scale —

'gev' or
'Generalized

Extreme Value'

“Generalized Extreme
Value Distribution” on page
B-54

k: shape σ: scale μ: location

'gp' or
'Generalized

Pareto'

“Generalized Pareto
Distribution” on page
B-60

k: tail index
(shape)

σ: scale θ:
threshold

'geo' or
'Geometric'

“Geometric Distribution” on
page B-65

p: probability — —

'inversegaussian'“Inverse Gaussian
Distribution” on page
B-77

μ: scale λ: shape —

'logistic' “Logistic Distribution” on
page B-91

μ: location σ: scale —

'loglogistic' “Loglogistic Distribution” on
page B-93

μ: log location σ: log scale —

'logn' or
'Lognormal'

“Lognormal Distribution” on
page B-95

μ: log location σ: log scale —

'nakagami' “Nakagami Distribution” on
page B-113

μ: shape ω: scale —

'nbin' or
'Negative

Binomial'

“Negative Binomial
Distribution” on page
B-115

r: number of
successes

p: probability
of success in a
single trial

—

'norm' or
'Normal'

“Normal Distribution” on
page B-130

μ: location (mean) σ: scale
(standard
deviation)

—

'poiss' or
'Poisson'

“Poisson Distribution” on
page B-138

λ: mean — —

 mle

22-2923

dist Description Parameter 1 Parameter 2 Parameter
3

'rayl' or
'Rayleigh'

“Rayleigh Distribution” on
page B-141

b: scale — —

'rician' “Rician Distribution” on
page B-144

s: noncentrality σ: scale —

'tlocationscale'“t Location-Scale
Distribution” on page
B-154

μ: location σ: scale ν: degrees
of freedom

'unif' or
'Uniform'

“Uniform Distribution
(Continuous)” on page
B-163

a: lower endpoint
(minimum)

b: upper
endpoint
(maximum)

—

'wbl' or
'Weibull'

“Weibull Distribution” on
page B-172

a: scale b: shape —

Example: 'rician'

pdf — Custom probability density function
function handle

Custom probability distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of probability density values.

For example, if the name of the custom probability density function is newpdf, then you
can specify the function handle in mle as follows.

Example: @newpdf

Data Types: function_handle

cdf — Custom cumulative distribution function
function handle

Custom cumulative distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of cumulative probability values.

22 Functions — Alphabetical List

22-2924

You must define cdf with pdf if data is censored and you use the 'censoring' name-
value pair argument. If 'censoring' is not present, you do not have to specify cdf
while using pdf.

For example, if the name of the custom cumulative distribution function is newcdf, then
you can specify the function handle in mle as follows.

Example: @newcdf

Data Types: function_handle

logpdf — Custom log probability density function
function handle

Custom log probability density function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of log probability values.

For example, if the name of the custom log probability density function is
customlogpdf, then you can specify the function handle in mle as follows.

Example: @customlogpdf

Data Types: function_handle

logsf — Custom log survival function
function handle

Custom log survival function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of log survival probability values.

You must define logsf with logpdf if data is censored and you use the 'censoring'
name-value pair argument. If 'censoring' is not present, you do not have to specify
logsf while using logpdf.

For example, if the name of the custom log survival function is logsurvival, then you
can specify the function handle in mle as follows.

Example: @logsurvival

Data Types: function_handle

 mle

22-2925

nloglf — Custom negative loglikelihood function
function handle

Custom negative loglikelihood function, specified as a function handle created using @.

This custom function accepts the following input arguments.

params Vector of distribution parameter values. mle detects the number of
parameters from the number of elements in start.

data Vector of data.
cens Boolean vector of censored values.
freq Vector of integer data frequencies.

nloglf must accept all four arguments even if you do not use the 'censoring' or
'frequency' name-value pair arguments. You can write 'nloglf' to ignore cens and
freq arguments in that case.

nloglf returns a scalar negative loglikelihood value and optionally, a negative
loglikelihood gradient vector (see the 'GradObj' field in 'options').

If the name of the custom negative log likelihood function is negloglik, then you can
specify the function handle in mle as follows.

Example: @negloglik

Data Types: function_handle

start — Initial parameter values
scalar | vector

Initial parameter values for the custom functions, specified as a scalar value or a vector
of scalar values.

Use start when you fit custom distributions, that is, when you use pdf and cdf, logpdf
and logsf, or nloglf input arguments.
Example: 0.05

Example: [100,2]

Data Types: single | double

22 Functions — Alphabetical List

22-2926

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'censoring',Cens,'alpha',0.01,'options',Opt specifies that mle
estimates the parameters for the distribution of censored data specified by array Cens,
computes the 99% confidence limits for the parameter estimates, and uses the algorithm
control parameters specified by the structure Opt.

'censoring' — Indicator for censoring
array of 0s (default) | array of 0s and 1s

Indicator for censoring, specified as the comma-separated pair consisting of
'censoring' and a Boolean array of the same size as data. Use 1 for observations
that are right censored and 0 for observations that are fully observed. The default is all
observations are fully observed.

For example, if the censored data information is in the binary array called Censored,
then you can specify the censored data as follows.
Example: 'censoring',Censored

mle supports censoring for the following distributions:

Birnbaum-Saunders
Burr
Exponential
Extreme Value
Gamma
Inverse Gaussian
Kernel
Log-Logistic

Logistic
Lognormal
Nakagami
Normal
Rician
t Location-Scale
Weibull

Data Types: logical

'frequency' — Frequency of observations
array of 1s (default) | vector of nonnegative integer counts

 mle

22-2927

Frequency of observations, specified as the comma-separated pair consisting of
'frequency' and an array containing nonnegative integer counts, which is the same
size as data. The default is one observation per element of data.

For example, if the observation frequencies are stored in an array named Freq, you can
specify the frequencies as follows.
Example: 'frequency',Freq

Data Types: single | double

'alpha' — Confidence level
0.05 (default) | scalar value in the range (0,1)

Confidence level for the confidence interval of parameter estimates, pci, specified as the
comma-separated pair consisting of 'alpha' and a scalar value in the range (0,1). The
confidence level of pci is 100(1-alpha)% . The default is 0.05 for 95% confidence.

For example, for 99% confidence limits, you can specify the confidence level as follows.
Example: 'alpha',0.01

Data Types: single | double

'ntrials' — Number of trials
scalar value | vector

Number of trials for the corresponding element of data, specified as the comma-
separated pair consisting of 'ntrials' and a scalar or a vector of the same size as data.

Applies only to binomial distribution.
Example: 'ntrials',total

Data Types: single | double

'options' — Fitting algorithm control parameters
structure

Fitting algorithm control parameters, specified as the comma-separated pair consisting of
'options' and a structure returned by statset.

Not applicable to all distributions.

Use the 'options' name-value pair argument to control details of the maximum
likelihood optimization when fitting a custom distribution. For parameter names and

22 Functions — Alphabetical List

22-2928

default values, type statset('mlecustom'). You can set the options under a new
name and use that in the name-value pair argument. mle interprets the following
statset parameters for custom distribution fitting.

Parameter Value

'GradObj' Default is 'off'.

'on' or 'off', indicating whether or not fmincon can expect
the custom function provided with the nloglf input argument to
return the gradient vector of the negative log-likelihood as a second
output.

mle ignores 'GradObj' when using fminsearch.
'DerivStep' Default is eps^(1/3).

The relative difference, specified as a scalar or a vector the same
size as start, used in finite difference derivative approximations
when using fmincon, and 'GradObj' is 'off'.

mle ignores 'DerivStep' when using fminsearch.
'FunValCheck' Default is 'on'.

'on' or 'off', indicating whether or not mle should check the
values returned by the custom distribution functions for validity.

A poor choice of starting point can sometimes cause these functions
to return NaNs, infinite values, or out-of-range values if they are
written without suitable error checking.

'TolBnd' Default is 1e-6.

An offset for upper and lower bounds when using fmincon.

mle treats upper and lower bounds as strict inequalities, that is,
open bounds. With fmincon, this is approximated by creating
closed bounds inset from the specified upper and lower bounds by
TolBnd.

Example: 'options',statset('mlecustom')

Data Types: struct

 mle

22-2929

'lowerbound' — Lower bounds for distribution parameters
– ∞ (default) | vector

Lower bounds for distribution parameters, specified as the comma-separated pair
consisting of 'lowerbound' and a vector the same size as start.

This name-value pair argument is valid only when you use the pdf and cdf, logpdf and
logcdf, or nloglf input arguments.

Example: 'lowerbound',0

Data Types: single | double

'upperbound' — Upper bounds for distribution parameters
∞ (default) | vector

Upper bounds for distribution parameters, specified as the comma-separated pair
consisting of 'upperbound' and a vector the same size as start.

This name-value pair argument is valid only when you use the pdf and cdf, logpdf and
logsf, or nloglf input arguments.
Example: 'upperbound',1

Data Types: single | double

'optimfun' — Optimization function
'fminsearch' (default) | 'fmincon'

Optimization function mle uses in maximizing the likelihood, specified as the comma-
separated pair consisting of 'optimfun' and either 'fminsearch' or 'fmincon'.

Default is 'fminsearch'.

You can only specify 'fmincon' if Optimization Toolbox is available.

The 'optimfun' name-value pair argument is valid only when you fit custom
distributions, that is, when you use the pdf and cdf, logpdf and logsf, or nloglf input
arguments.
Example: 'optimfun','fmincon'

22 Functions — Alphabetical List

22-2930

Output Arguments

phat — Parameter estimates
scalar value | row vector

Parameter estimates, returned as a scalar value or a row vector.

pci — Confidence intervals for parameter estimates
2-by-k matrix

Confidence intervals for parameter estimates, returned as a column vector or a matrix
depending on the number of parameters, hence the size of phat.

pci is a 2-by-k matrix, where k is the number of parameters mle estimates. The first and
second rows of the pci show the upper and lower confidence limits, respectively.

More About

Survival Function

The survival function is the probability of survival as a function of time. It is also
called the survivor function. It gives the probability that the survival time of an
individual exceeds a certain value. Since the cumulative distribution function, F(t), is
the probability that the survival time is less than or equal to a given point in time, the
survival function for a continuous distribution, S(t), is the complement of the cumulative
distribution function: S(t) = 1 – F(t).

Tips

When you supply distribution functions, mle computes the parameter estimates using an
iterative maximization algorithm. With some models and data, a poor choice of starting
point can cause mle to converge to a local optimum that is not the global maximizer, or to
fail to converge entirely. Even in cases for which the log-likelihood is well-behaved near
the global maximum, the choice of starting point is often crucial to convergence of the
algorithm. In particular, if the initial parameter values are far from the MLEs, underflow
in the distribution functions can lead to infinite log-likelihoods.
• “What Is Survival Analysis?” on page 12-2

See Also
fitdist | mlecov | statset

 mlecov

22-2931

mlecov
Asymptotic covariance of maximum likelihood estimators

Syntax

acov = mlecov(params,data,'pdf',pdf)

acov = mlecov(params,data,'pdf',pdf,'cdf',cdf)

acov = mlecov(params,data,'logpdf',logpdf)

acov = mlecov(params,data,'logpdf',logpdf,'logsf',logsf)

acov = mlecov(params,data,'nloglf',nloglf)

acov = mlecov(___ ,Name,Value)

Description

acov = mlecov(params,data,'pdf',pdf) returns an approximation to the
asymptotic covariance matrix of the maximum likelihood estimators of the parameters
for a distribution specified by the custom probability density function pdf.

mlecov computes a finite difference approximation to the Hessian of the log-likelihood
at the maximum likelihood estimates params, given the observed data, and returns the
negative inverse of that Hessian.

acov = mlecov(params,data,'pdf',pdf,'cdf',cdf) returns an approximation
to the asymptotic covariance matrix of the maximum likelihood estimators of the
parameters for a distribution specified by the custom probability density function pdf
and cumulative distribution function cdf.

acov = mlecov(params,data,'logpdf',logpdf) returns an approximation to the
asymptotic covariance matrix of the maximum likelihood estimators of the parameters
for a distribution specified by the custom log probability density function logpdf.

acov = mlecov(params,data,'logpdf',logpdf,'logsf',logsf) returns
an approximation to the asymptotic covariance matrix of the maximum likelihood
estimators of the parameters for a distribution specified by the custom log probability
density function logpdf and custom log survival function logsf.

22 Functions — Alphabetical List

22-2932

acov = mlecov(params,data,'nloglf',nloglf) returns an approximation to the
asymptotic covariance matrix of the maximum likelihood estimators of the parameters
for a distribution specified by the custom negative loglikelihood function nloglf.

acov = mlecov(___ ,Name,Value) also returns an approximation to the asymptotic
covariance matrix of the maximum likelihood estimators of the parameters with
additional options specified by one or more name-value pair arguments. You can use any
of the input arguments in the previous syntaxes.

Examples

Custom Probability Density Function

Load the sample data.

load carbig

The vector Weight shows the weights of 406 cars.

In the MATLAB Editor, create a function that returns the probability density function
(pdf) of a lognormal distribution. Save the file in your current working folder as
lognormpdf.m.

function newpdf = lognormpdf(data,mu,sigma)

newpdf = exp((-(log(data)-mu).^2)/(2*sigma^2))./(data*sigma*sqrt(2*pi));

Estimate the parameters, mu and sigma, of the custom-defined distribution.

phat = mle(Weight,'pdf',@lognormpdf,'start',[4.5 0.3])

phat =

 7.9600 0.2804

Compute the approximate covariance matrix of the parameter estimates.

acov = mlecov(phat,Weight,'pdf',@lognormpdf)

acov =

 1.0e-03 *

 0.1937 -0.0000

 mlecov

22-2933

 -0.0000 0.0968

Estimate the standard errors of estimates.

se = sqrt(diag(acov))

se =

 0.0139

 0.0098

The standard error of the estimates of mu and sigma are 0.0139 and 0.0098, respectively.

Custom Log Probability Density Function

In the MATLAB Editor, create a function that returns the log probability density
function of a beta distribution. Save the file in your current working folder as
betalogpdf.m.

function logpdf = betalogpdf(x,a,b)

logpdf = (a-1)*log(x)+(b-1)*log(1-x)-betaln(a,b);

Generate sample data from a beta distribution with parameters 1.23 and 3.45 and
estimate the parameters using the simulated data.

rng('default')

x = betarnd(1.23,3.45,25,1);

phat = mle(x,'dist','beta')

phat =

 1.1213 2.7182

Compute the approximate covariance matrix of the parameter estimates.

acov = mlecov(phat,x,'logpdf',@betalogpdf)

acov =

 0.0810 0.1646

 0.1646 0.6074

Custom Log pdf and Survival Function

Navigate to a folder containing sample data.

22 Functions — Alphabetical List

22-2934

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load readmissiontimes

The sample data includes ReadmissionTime, which has readmission times for 100
patients. The column vector Censored has the censorship information for each patient,
where 1 indicates a censored observation, and 0 indicates the exact readmission time is
observed. This is simulated data.

Define a custom log probability density and survival function.

custlogpdf = @(data,lambda,k) log(k)-k*log(lambda)...

 +(k-1)*log(data)-(data/lambda).^k;

custlogsf = @(data,lambda,k) -(data/lambda).^k;

Estimate the parameters, lambda and k, of the custom distribution for the censored
sample data.

phat = mle(ReadmissionTime,'logpdf',custlogpdf,...

'logsf',custlogsf,'start',[1,0.75],'Censoring',Censored)

phat =

 9.2090 1.4223

The scale and shape parameters of the custom-defined distribution are 9.2090 and
1.4223, respectively.

Compute the approximate covariance matrix of the parameter estimates.

acov = mlecov(phat,ReadmissionTime,...

'logpdf',custlogpdf,'logsf',custlogsf,'Censoring',Censored)

acov =

 0.5653 0.0102

 0.0102 0.0163

Custom Log Negative Likelihood Function

Navigate to a folder containing sample data.

 mlecov

22-2935

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load readmissiontimes

The sample data includes ReadmissionTime, which has readmission times for 100
patients. This is simulated data.

Define a negative log likelihood function.

custnloglf = @(lambda,data,cens,freq) -length(data)*log(lambda)...

+ nansum(lambda*data);

Estimate the parameters of the defined distribution.

phat = mle(ReadmissionTime,'nloglf',custnloglf,'start',0.05)

phat =

 0.1462

Compute the variance of the parameter estimate.

acov = mlecov(phat,ReadmissionTime,'nloglf',custnloglf)

acov =

 2.1374e-04

Compute the standard error.

sqrt(acov)

ans =

 0.0146

Input Arguments

params — Parameter estimates
scalar value | vector

22 Functions — Alphabetical List

22-2936

Parameter estimates, specified as a scalar value or vector of scalar values. These
parameter estimates must be maximum likelihood estimates. For example, you can
specify parameter estimates returned by mle.

Data Types: single | double

data — Sample data
vector

Sample data mle uses to estimate the distribution parameters, specified as a vector.

Data Types: single | double

pdf — Custom probability density function
function handle

Custom probability distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of probability density values.

For example, if the name of the custom probability density function is newpdf, then you
can specify the function handle in mlecov as follows.

Example: @newpdf

Data Types: function_handle

cdf — Custom cumulative distribution function
function handle

Custom cumulative distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of cumulative probability values.

You must define cdf with pdf if data is censored and you use the 'censoring' name-
value pair argument. If 'censoring' is not present, you do not have to specify cdf
while using pdf.

For example, if the name of the custom cumulative distribution function is newcdf, then
you can specify the function handle in mlecov as follows.

Example: @newcdf

 mlecov

22-2937

Data Types: function_handle

logpdf — Custom log probability density function
function handle

Custom log probability density function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of log probability values.

For example, if the name of the custom log probability density function is
customlogpdf, then you can specify the function handle in mlecov as follows.

Example: @customlogpdf

Data Types: function_handle

logsf — Custom log survival function
function handle

Custom log survival function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution
parameters as input parameters, and returns a vector of log survival probability values.

You must define logsf with logpdf if data is censored and you use the 'censoring'
name-value pair argument. If 'censoring' is not present, you do not have to specify
logsf while using logpdf.

For example, if the name of the custom log survival function is logsurvival, then you
can specify the function handle in mlecov as follows.

Example: @logsurvival

Data Types: function_handle

nloglf — Custom negative loglikelihood function
function handle

Custom negative loglikelihood function, specified as a function handle created using @.

This custom function accepts the following input arguments.

params Vector of distribution parameter values

22 Functions — Alphabetical List

22-2938

data Vector of data
cens Boolean vector of censored values
freq Vector of integer data frequencies

nloglf must accept all four arguments even if you do not use the 'censoring' or
'frequency' name-value pair arguments. You can write 'nloglf' to ignore cens and
freq arguments in that case.

nloglf returns a scalar negative loglikelihood value and optionally, a negative
loglikelihood gradient vector (see the 'GradObj' field in 'options').

If the name of the custom negative log likelihood function is negloglik, then you can
specify the function handle in mlecov as follows.

Example: @negloglik

Data Types: function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'censoring',cens,'options',opt specifies that mlecov reads the
censored data information from the vector cens and performs according to the new
options structure opt.

'censoring' — Indicator for censoring
array of 0s (default) | array of 0s and 1s

Indicator for censoring, specified as the comma-separated pair consisting of
'censoring' and a Boolean array of the same size as data. Use 1 for observations
that are right censored and 0 for observations that are fully observed. The default is all
observations are fully observed.

For censored data, you must use cdf with pdf, or logsf with logpdf, or nloglf must be
defined to account for censoring.

For example, if the censored data information is in the binary array called Censored,
then you can specify the censored data as follows.

 mlecov

22-2939

Example: 'censoring',Censored

Data Types: logical

'frequency' — Frequency of observations
array of 1s (default) | vector of nonnegative integer counts

Frequency of observations, specified as the comma-separated pair consisting of
'frequency' and an array containing nonnegative integer counts, which is the same
size as data. The default is one observation per element of data.

For example, if the observation frequencies are stored in an array named Freq, you can
specify the frequencies as follows.
Example: 'frequency',Freq

Data Types: single | double

'options' — Numerical options
structure

Numerical options for the finite difference Hessian calculation, specified as the comma-
separated pair consisting of 'options' and a structure returned by statset.

You can set the options under a new name and use it in the name-value pair argument.
The applicable statset parameters are as follows.

Parameter Value

'GradObj' Default is 'off'.

'on' or 'off', indicating whether or not the function provided
with the nloglf input argument can return the gradient vector of
the negative log-likelihood as a second output.

'DerivStep' Default is eps^(1/4).

Relative step size used in finite difference for Hessian calculations.
It can be a scalar, or the same size as params. A smaller value than
the default might be appropriate if 'GradObj' is 'on'.

Example: 'options',statset('mlecov')

Data Types: struct

22 Functions — Alphabetical List

22-2940

Output Arguments

acov — Approximation to asymptotic covariance matrix
p-by-p matrix

Approximation to asymptotic covariance matrix, returned as a p-by-p matrix, where p is
the number of parameters in params.

More About

Survival Function

The survival function is the probability of survival as a function of time. It is also
called the survivor function. It gives the probability that the survival time of an
individual exceeds a certain value. Since the cumulative distribution function, F(t), is
the probability that the survival time is less than or equal to a given point in time, the
survival function for a continuous distribution, S(t), is the complement of the cumulative
distribution function: S(t) = 1 – F(t).
• “What Is Survival Analysis?” on page 12-2

See Also
mle

 mnpdf

22-2941

mnpdf
Multinomial probability density function

Syntax

Y = mnpdf(X,PROB)

Description

Y = mnpdf(X,PROB) returns the pdf for the multinomial distribution with probabilities
PROB, evaluated at each row of X. X and PROB are m-by-k matrices or 1-by-k vectors,
where k is the number of multinomial bins or categories. Each row of PROB must sum
to one, and the sample sizes for each observation (rows of X) are given by the row
sums sum(X,2). Y is an m-by-k matrix, and mnpdf computes each row of Y using the
corresponding rows of the inputs, or replicates them if needed.

Examples

Compute the Multinomial Distribution pdf

Compute the pdf of a multinomial distribution with a sample size of n = 10. The
probabilities are p = 1/2 for outcome 1, p = 1/3 for outcome 2, and p = 1/6 for
outcome 3.

p = [1/2 1/3 1/6];

n = 10;

x1 = 0:n;

x2 = 0:n;

[X1,X2] = meshgrid(x1,x2);

X3 = n-(X1+X2);

Compute the pdf of the distribution.

Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));

Plot the pdf on a 3-dimensional figure.

22 Functions — Alphabetical List

22-2942

Y = reshape(Y,n+1,n+1);

bar3(Y)

h = gca;

h.XTickLabel = [0:n];

h.YTickLabel = [0:n];

xlabel('x_1')

ylabel('x_2')

zlabel('Probability Mass')

title('Trinomial Distribution')

 mnpdf

22-2943

Note that the visualization does not show x3, which is determined by the constraint x1 +
x2 + x3 = n.

More About
• “Multinomial Distribution” on page B-98

See Also
mnrnd

22 Functions — Alphabetical List

22-2944

mnrfit
Multinomial logistic regression

Syntax

B = mnrfit(X,Y)

B = mnrfit(X,Y,Name,Value)

[B,dev,stats] = mnrfit(___)

Description

B = mnrfit(X,Y) returns a matrix, B, of coefficient estimates for a multinomial logistic
regression of the nominal responses in Y on the predictors in X.

B = mnrfit(X,Y,Name,Value) returns a matrix, B, of coefficient estimates for a
multinomial model fit with additional options specified by one or more Name,Value pair
arguments.

For example, you can fit a nominal, an ordinal, or a hierarchical model, or change the
link function.

[B,dev,stats] = mnrfit(___) also returns the deviance of the fit, dev, and
the structure stats for any of the previous input arguments. stats contains model
statistics such as degrees of freedom, standard errors for coefficient estimates, and
residuals.

Examples

Multinomial Regression for Nominal Responses

Fit a multinomial regression for nominal outcomes and interpret the results.

Load the sample data.

load fisheriris

 mnrfit

22-2945

The column vector, species, consists of iris flowers of three different species, setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable using a categorical array.

sp = categorical(species);

Fit a multinomial regression model to predict the species using the measurements.

[B,dev,stats] = mnrfit(meas,sp);

B

B =

 13.3860 15.4492

 2.4623 1.8196

 5.2948 2.5700

 -7.4916 -4.3714

 -8.9322 -7.6467

This is a nominal model for the response category relative risks, with separate slopes on
all four predictors, that is, each category of meas. The first row of B contains the intercept
terms for the relative risk of the first two response categories, setosa and versicolor
versus the reference category, virginica. The last four rows contain the slopes for the
models for the first two categories. mnrfit accepts the third category as the reference
category.

The models for the relative risk of an iris flower being a setosa versus a virginica, and
the relative risk of an iris flower being a versicolor species versus a virginica species are
respectively

and

The coefficients express the effects of the predictor variables on the relative risk or the
log odds of being in one category versus the reference category.

22 Functions — Alphabetical List

22-2946

For example, the estimated coefficient 2.46 indicates that the probability of being species
1 (setosa) compared to the probability of being species 3 (virginica) (the relative risk of
being a setosa versus a virginica) increases exp(2.46) times for each unit increase in ,
the first measurement, given all else equal.

In terms of log odds, you can say that the relative log odds of being a setosa versus a
virginica increases 2.46 times with a one-unit increase in given all else is equal.

Check the statistical significance of the model coefficients.

stats.p

ans =

 0.2457 0.0031

 0.4543 0.1048

 0.0773 0.0815

 0.0258 0.0007

 0.1856 0.0002

The -value of 0.0258 indicates that the third measure is significant on the relative risk
of being a setosa versus a virginica (species 1 compared to species 3). The -values of
0.0007 and 0.0002 indicate that the third and fourth measures are significant on the
relative risk of being a versicolor versus a virginica (species 2 compared to species 3).

Request the standard errors of coefficient estimates.

stats.se

ans =

 11.5316 5.2201

 3.2905 1.1218

 2.9976 1.4753

 3.3609 1.2869

 6.7474 2.0846

Calculate the 95% confidence limits for the coefficients.

LL = stats.beta - 1.96.*stats.se;

 mnrfit

22-2947

UL = stats.beta + 1.96.*stats.se;

Display the confidence intervals for the coefficients of the model for the relative risk of
being a setosa versus a virginica (the first column of coefficients in B).

[LL(:,1) UL(:,1)]

ans =

 -9.2160 35.9880

 -3.9869 8.9116

 -0.5805 11.1701

 -14.0790 -0.9043

 -22.1570 4.2926

Find the confidence intervals for the coefficients of the model for the relative risk of being
a versicolor versus a virginica (the second column of coefficients in B).

[LL(:,2) UL(:,2)]

ans =

 5.2177 25.6807

 -0.3791 4.0184

 -0.3216 5.4615

 -6.8938 -1.8490

 -11.7324 -3.5610

Multinomial Regression for Ordinal Responses

Fit a multinomial regression model for categorical responses with natural ordering
among categories.

Load the sample data and define the predictor variables.

load carbig

X = [Acceleration Displacement Horsepower Weight];

The predictor variables are the acceleration, engine displacement, horsepower, and
weight of the cars. The response variable is miles per gallon (mpg).

22 Functions — Alphabetical List

22-2948

Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg by
labeling the response values in the range 9-19 as 1, 20-29 as 2, 30-39 as 3, and 40-48 as 4.

miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);

Fit an ordinal response model for the response variable miles.

[B,dev,stats] = mnrfit(X,miles,'model','ordinal');

B

B =

 -16.6895

 -11.7208

 -8.0606

 0.1048

 0.0103

 0.0645

 0.0017

The first three elements of B are the intercept terms for the models, and the last
four elements of B are the coefficients of the covariates, assumed common across all
categories. This model corresponds to parallel regression, which is also called the
proportional odds model, where there is a different intercept but common slopes among
categories. You can specify this using the 'interactions','off' name-value pair
argument, which is the default for ordinal models.

[B(1:3)'; repmat(B(4:end),1,3)]

ans =

 -16.6895 -11.7208 -8.0606

 0.1048 0.1048 0.1048

 0.0103 0.0103 0.0103

 0.0645 0.0645 0.0645

 0.0017 0.0017 0.0017

The link function in the model is logit ('link','logit'), which is the default for an
ordinal model. The coefficients express the relative risk or log odds of the mpg of a car
being less than or equal to one value versus greater than that value.

 mnrfit

22-2949

The proportional odds model in this example is

For example, the coefficient estimate of 0.1048 indicates that a unit change in
acceleration would impact the odds of the mpg of a car being less than or equal to 19
versus more than 19, or being less than or equal to 29 versus greater than 29, or being
less than or equal to 39 versus greater than 39, by a factor of exp(0.01048) given all else
is equal.

Assess the significance of the coefficients.

stats.p

ans =

 0.0000

 0.0000

 0.0000

 0.1899

 0.0350

 0.0000

 0.0118

The -values of 0.035, 0.0000, and 0.0118 for engine displacement, horsepower, and
weight of a car, respectively, indicate that these factors are significant on the odds of mpg
of a car being less than or equal to a certain value versus being greater than that value.

Hierarchical Multinomial Regression Model

Fit a hierarchical multinomial regression model.

Navigate to the folder containing sample data.

cd(matlabroot)

22 Functions — Alphabetical List

22-2950

cd('help/toolbox/stats/examples')

Load the sample data.

load smoking

The data set smoking contains five variables: sex, age, weight, and systolic and diastolic
blood pressure. Sex is a binary variable where 1 indicates female patients, and 0
indicates male patients.

Define the response variable.

Y = categorical(smoking.Smoker);

The data in Smoker has four categories:

• 0: Nonsmoker, 0 cigarettes a day
• 1: Smoker, 1–5 cigarettes a day
• 2: Smoker, 6–10 cigarettes a day
• 3: Smoker, 11 or more cigarettes a day

Define the predictor variables.

X = [smoking.Sex smoking.Age smoking.Weight...

 smoking.SystolicBP smoking.DiastolicBP];

Fit a hierarchical multinomial model.

[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');

B

B =

 43.8148 5.9571 44.0712

 1.8709 -0.0230 0.0662

 0.0188 0.0625 0.1335

 0.0046 -0.0072 -0.0130

 -0.2170 0.0416 -0.0324

 -0.2273 -0.1449 -0.4824

The first column of B includes the intercept and the coefficient estimates for the model
of the relative risk of being a nonsmoker versus a smoker. The second column includes
the parameter estimates for modeling the log odds of smoking 1–5 cigarettes a day versus

 mnrfit

22-2951

more than five cigarettes a day given that a person is a smoker. Finally, the third column
includes the parameter estimates for modeling the log odds of a person smoking 6–10
cigarettes a day versus more than 10 cigarettes a day given he/she smokes more than 5
cigarettes a day.

The coefficients differ across categories. You can specify this using the
'interactions','on' name-value pair argument, which is the default for hierarchical
models. So, the model in this example is

ln
P y

P y
X X XS A W

=()
>()

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = + + + -

0

0
43 8148 1 8709 0 0188 0 0046 00 2170 0 2273

1 5

5
5 9571 0 02

. .

ln . .

X X

P y

P y

SBP DBP-

£ £()
>()

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = - 330 0 0625 0 0072 0 0416 0 1449

6 10

X X X X X

P y

P y

S A W SBP DBP+ + + -

£ £()

. . . .

ln
>>()

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = + + - -

10
44 0712 0 0662 0 1335 0 0130 0 0324.X X X XS A W SBBP DBPX- 0 4824.

For example, the coefficient estimate of 1.8709 indicates that the likelihood of being a
smoker versus a nonsmoker increases by exp(1.8709) = 6.49 times as the gender changes
from female to male given everything else held constant.

Assess the statistical significance of the terms.

stats.p

ans =

 0.0000 0.5363 0.2149

 0.3549 0.9912 0.9835

 0.6850 0.2676 0.2313

 0.9032 0.8523 0.8514

 0.0009 0.5187 0.8165

 0.0004 0.0483 0.0545

Sex, age, or weight don’t appear significant on any level. The p-values of 0.0009 and
0.0004 indicate that both types of blood pressure are significant on the relative risk of
a person being a smoker versus a nonsmoker. The p-value of 0.0483 shows that only

22 Functions — Alphabetical List

22-2952

diastolic blood pressure is significant on the odds of a person smoking 0–5 cigarettes a
day versus more than 5 cigarettes a day. Similarly, the p-value of 0.0545 indicates that
diastolic blood pressure is significant on the odds of a person smoking 6–10 cigarettes a
day versus more than 10 cigarettes a day.

Check if any nonsignificant factors are correlated to each other. Draw a scatterplot of age
versus weight grouped by sex.

figure()

gscatter(smoking.Age,smoking.Weight,smoking.Sex)

legend('Male','Female')

xlabel('Age')

ylabel('Weight')

 mnrfit

22-2953

The range of weight of an individual seems to differ according to gender. Age does not
seem to have any obvious correlation with sex or weight. Age is insignificant and weight
seems to be correlated with sex, so you can eliminate both and reconstruct the model.

Eliminate age and weight from the model and fit a hierarchical model with sex, systolic
blood pressure, and diastolic blood pressure as the predictor variables.

X = double([smoking.Sex smoking.SystolicBP...

smoking.DiastolicBP]);

[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');

B

B =

 44.8456 5.3230 25.0248

 1.6045 0.2330 0.4982

 -0.2161 0.0497 0.0179

 -0.2222 -0.1358 -0.3092

Here, a coefficient estimate of 1.6045 indicates that the likelihood of being a nonsmoker
versus a smoker increases by exp(1.6045) = 4.97 times as sex changes from male to
female. A unit increase in the systolic blood pressure indicates an exp(–.2161) = 0.8056
decrease in the likelihood of being a nonsmoker versus a smoker. Similarly, a unit
increase in the diastolic blood pressure indicates an exp(–.2222) = 0.8007 decrease in the
relative rate of being a nonsmoker versus being a smoker.

Assess the statistical significance of the terms.

stats.p

ans =

 0.0000 0.4715 0.2325

 0.0210 0.7488 0.6362

 0.0010 0.4107 0.8899

 0.0003 0.0483 0.0718

The p-values of 0.0210, 0.0010, and 0.0003 indicate that the terms sex and both types of
blood pressure are significant on the relative risk of a person being a nonsmoker versus
a smoker, given the other terms in the model. Based on the p-value of 0.0483, diastolic
blood pressure appears significant on the relative risk of a person smoking 1–5 cigarettes
versus more than 5 cigarettes a day, given that this person is a smoker. Because none
of the p-values on the third column are less than 0.05, you can say that none of the

22 Functions — Alphabetical List

22-2954

variables are statistically significant on the relative risk of a person smoking from 6–10
cigarettes versus more than 10 cigarettes, given that this person smokes more than 5
cigarettes a day.

Input Arguments

X — Observations on predictor variables
n-by-p matrix

Observations on predictor variables, specified as an n-by-p matrix. X contains n
observations for p predictors.

Note: mnrfit automatically includes a constant term (intercept) in all models. Do not
include a column of 1s in X.

Data Types: single | double

Y — Response values
n-by-k matrix | n-by-1 column vector

Response values, specified as a column vector or a matrix. Y can be one of the following:

• An n-by-k matrix, where Y(i,j) is the number of outcomes of the multinomial
category j for the predictor combinations given by X(i,:). In this case, the number of
observations are made at each predictor combination.

• An n-by-1 column vector of scalar integers from 1 to k indicating the value of the
response for each observation. In this case, all sample sizes are 1.

• An n-by-1 categorical array indicating the nominal or ordinal value of the response for
each observation. In this case, all sample sizes are 1.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 mnrfit

22-2955

Example: 'Model','ordinal','Link','probit' specifies an ordinal model with a
probit link function.

'Model' — Type of model to fit
'nominal' (default) | 'ordinal' | 'hierarchical'

Type of model to fit, specified as the comma-separated pair consisting of 'Model' and
one of the following.

'nominal' Default. There is no ordering among the response categories.
'ordinal' There is a natural ordering among the response categories.
'hierarchical' The choice of response category is sequential/nested.

Example: 'Model','ordinal'

'Interactions' — Indicator for interaction between multinomial categories and coefficients
'on' | 'off'

Indicator for an interaction between the multinomial categories and coefficients, specified
as the comma-separated pair consisting of 'Interactions' and one of the following.

'on' Default for nominal and hierarchical models. Fit a model with different
coefficients across categories.

'off' Default for ordinal models. Fit a model with a common set of coefficients
for the predictor variables, across all multinomial categories. This is often
described as parallel regression or the proportional odds model.

In all cases, the model has different intercepts across categories. The choice of
'Interactions' determines the dimensions of the output array B.

Example: 'Interactions','off'

Data Types: logical

'Link' — Link function
'logit' (default) | 'probit' | 'comploglog' | 'loglog'

Link function to use for ordinal and hierarchical models, specified as the comma-
separated pair consisting of 'Link' and one of the following.

22 Functions — Alphabetical List

22-2956

'logit' Default. f(γ) = ln(γ/(1 –γ))
'probit' f(γ) = Φ-1(γ) — error term is normally distributed with variance

1
'comploglog' Complementary log-log

f(γ) = ln(–ln(1 – γ))
'loglog' f(γ) = ln(–ln(γ))

The link function defines the relationship between response probabilities and the linear
combination of predictors, Xβ. The link functions might be functions of cumulative or
conditional probabilities based on whether the model is for an ordinal or a sequential/
nested response. For example, for an ordinal model, γ represents the cumulative
probability of being in categories 1 to j and the model with a logit link function as follows:

ln ln
g

g

p p p

p p
b b b

1

1 2

1
0 1 1 2 2-

Ê

Ë
Á

ˆ

¯
˜ =

+ + +

+ +

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = + + +

+

L

L

L

j

j k
j X X ++ b p pX ,

where k represents the last category.

You cannot specify the 'Link' parameter for nominal models; these always use a
multinomial logit link,

ln , , , ,
p

p
b b b bj

r
j j j j j jp jpX X X j k

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = + + + + = -0 1 1 2 2 1 1L …

where π stands for a categorical probability, and r corresponds to the reference category.
mnrfit uses the last category as the reference category for nominal models.

Example: 'Link','loglog'

'EstDisp' — Indicator for estimating dispersion parameter
'off' (default) | 'on'

Indicator for estimating a dispersion parameter, specified as the comma-separated pair
consisting of 'EstDisp' and one of the following.

 mnrfit

22-2957

'off' Default. Use the theoretical dispersion value of 1.
'on' Estimate a dispersion parameter for the multinomial distribution in

computing standard errors.

Example: 'EstDisp','on'

Output Arguments

B — Coefficient estimates
vector | matrix

Coefficient estimates for a multinomial logistic regression of the responses in Y, returned
as a vector or a matrix.

• If 'Interaction' is 'off', then B is a k – 1 + p vector. The first k – 1 rows of B
correspond to the intercept terms, one for each k – 1 multinomial categories, and the
remaining p rows correspond to the predictor coefficients, which are common for all of
the first k – 1 categories.

• If 'Interaction' is 'on', then B is a (p + 1)-by-(k – 1) matrix. Each column of B
corresponds to the estimated intercept term and predictor coefficients, one for each of
the first k – 1 multinomial categories.

The estimates for the kth category are taken to be zero as mnrfit takes the last category
as the reference category.

dev — Deviance of the fit
scalar value

Deviance of the fit, returned as a scalar value. It is twice the difference between the
maximum achievable log likelihood and that attained under the fitted model. This
corresponds to the sum of deviance residuals,

dev y
y

m
rdij

ij

ij ij

k

i

n

i

i

n

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ =ÂÂ Â2* * log

� *
,

p

where rdi are the deviance residuals. For deviance residuals see stats.

22 Functions — Alphabetical List

22-2958

stats — Model statistics
structure

Model statistics, returned as a structure that contains the following fields.

beta The coefficient estimates. These are the same as B.
dfe Degrees of freedom for error

• If 'Interactions' is 'off', then degrees of
freedom is n*(k – 1) – (k – 1 + p).

• If 'Interactions' is 'on', then degrees of freedom
is (n – p + 1)*(k – 1).

sfit Estimated dispersion parameter.
s Theoretical or estimated dispersion parameter.

• If 'Estdisp' is 'off', then s is the theoretical
dispersion parameter, 1.

• If 'Estdisp' is 'on', then s is equal to the
estimated dispersion parameter, sfit.

estdisp Indicator for a theoretical or estimated dispersion
parameter.

se Standard errors of coefficient estimates, B.
coeffcorr Estimated correlation matrix for B.
covb Estimated covariance matrix for B.
t t statistics for B.
p p-values for B.
resid Raw residuals. Observed minus fitted values,

r y m
i n

j k
ij ij ij i= -

=

=

Ï
Ì
Ó

ˆ * ,
, ,

, ,
,p

1

1

L

L

where πij is the categorical, cumulative or conditional
probability, and mi is the corresponding sample size.

residp Pearson residuals, which are the raw residuals scaled by
the estimated standard deviation:

 mnrfit

22-2959

rp
r y m

m

i n

j k
ij

ij

ij

ij ij i

ij ij i

= =
-

-()
=

=

Ï
Ì
Óˆ

ˆ *

ˆ * ˆ *

,
, ,

, ,s

p

p p1

1

1

L

L

,,

where πij is the categorical, cumulative, or conditional
probability, and mi is the corresponding sample size.

residd Deviance residuals:

rd y
y

m
i ni ij

ij

ij i
j

k
=

Ê

Ë
ÁÁ

ˆ

¯
˜̃ =Â2 1* * log

� *
, , , .

p
L

where πij is the categorical, cumulative, or conditional
probability, and mi is the corresponding sample size.

More About

Algorithms

mnrfit treats NaNs in either X or Y as missing values, and ignores them.
• “Multinomial Distribution” on page B-98
• “Multinomial Models for Nominal Responses” on page 10-2
• “Multinomial Models for Ordinal Responses” on page 10-5
• “Hierarchical Multinomial Models” on page 10-9

References

[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage
Publications, 1997.

[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models.
Chapman and Hall/CRC. Taylor & Francis Group, 2008.

22 Functions — Alphabetical List

22-2960

See Also
fitglm | glmfit | glmval | mnrval

 mnrnd

22-2961

mnrnd
Multinomial random numbers

Syntax

r = mnrnd(n,p)

R = mnrnd(n,p,m)

R = mnrnd(N,P)

Description

r = mnrnd(n,p) returns random values r from the multinomial distribution with
parameters n and p. n is a positive integer specifying the number of trials (sample size)
for each multinomial outcome. p is a 1-by-k vector of multinomial probabilities, where k
is the number of multinomial bins or categories. p must sum to one. (If p does not sum to
one, r consists entirely of NaN values.) r is a 1-by-k vector, containing counts for each of
the k multinomial bins.

R = mnrnd(n,p,m) returns m random vectors from the multinomial distribution with
parameters n and p. R is a m-by-k matrix, where k is the number of multinomial bins or
categories. Each row of R corresponds to one multinomial outcome.

R = mnrnd(N,P) generates outcomes from different multinomial distributions. P is a m-
by-k matrix, where k is the number of multinomial bins or categories and each of the m
rows contains a different set of multinomial probabilities. Each row of P must sum to one.
(If any row of P does not sum to one, the corresponding row of R consists entirely of NaN
values.) N is a m-by-1 vector of positive integers or a single positive integer (replicated
by mnrnd to a m-by-1 vector). R is a m-by-k matrix. Each row of R is generated using the
corresponding rows of N and P.

Examples

Generate 2 random vectors with the same probabilities:

n = 1e3;

22 Functions — Alphabetical List

22-2962

p = [0.2,0.3,0.5];

R = mnrnd(n,p,2)

R =

 215 282 503

 194 303 503

Generate 2 random vectors with different probabilities:

n = 1e3;

P = [0.2, 0.3, 0.5; ...

 0.3, 0.4, 0.3;];

R = mnrnd(n,P)

R =

 186 290 524

 290 389 321

More About
• “Multinomial Distribution” on page B-98

See Also
mnpdf

 mnrval

22-2963

mnrval
Multinomial logistic regression values

Syntax
pihat = mnrval(B,X)

[pihat,dlow,dhi] = mnrval(B,X,stats)

[pihat,dlow,dhi] = mnrval(B,X,stats,Name,Value)

yhat = mnrval(B,X,ssize)

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats)

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value)

Description
pihat = mnrval(B,X) returns the predicted probabilities for the multinomial logistic
regression model with predictors, X, and the coefficient estimates, B.

pihat is an n-by-k matrix of predicted probabilities for each multinomial category. B is
the vector or matrix that contains the coefficient estimates returned by mnrfit. And X is
an n-by-p matrix which contains n observations for p predictors.

Note: mnrval automatically includes a constant term in all models. Do not enter a
column of 1s in X.

[pihat,dlow,dhi] = mnrval(B,X,stats) also returns 95% error bounds on the
predicted probabilities, pihat, using the statistics in the structure, stats, returned by
mnrfit.

The lower and upper confidence bounds for pihat are pihat minus dlow and pihat
plus dhi, respectively. Confidence bounds are nonsimultaneous and only apply to the
fitted curve, not to new observations.

[pihat,dlow,dhi] = mnrval(B,X,stats,Name,Value) returns the predicted
probabilities and 95% error bounds on the predicted probabilities pihat, with additional
options specified by one or more Name,Value pair arguments.

22 Functions — Alphabetical List

22-2964

For example, you can specify the model type, link function, and the type of probabilities
to return.

yhat = mnrval(B,X,ssize) returns the predicted category counts for sample sizes,
ssize.

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats) also computes 95% error bounds
on the predicted counts yhat, using the statistics in the structure, stats, returned by
mnrfit.

The lower and upper confidence bounds for yhat are yhat minus dlo and yhat plus
dhi, respectively. Confidence bounds are nonsimultaneous and they apply to the fitted
curve, not to new observations.

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value) returns the
predicted category counts and 95% error bounds on the predicted counts yhat, with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify the model type, link function, and the type of predicted
counts to return.

Examples

Estimate Category Probabilities for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category
probabilities.

Load the sample data.

load('fisheriris.mat')

The column vector, species, consists of iris flowers of three different species, setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.

sp = nominal(species);

sp = double(sp);

Now in sp, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

 mnrval

22-2965

Fit a nominal model to estimate the species using the flower measurements as the
predictor variables.

[B,dev,stats] = mnrfit(meas,sp);

Estimate the probability of being a certain kind of species for an iris flower having the
measurements (6.2, 3.7, 5.8, 0.2).

x = [6.2, 3.7, 5.8, 0.2];

pihat = mnrval(B,x);

pihat

pihat =

 0.0017 0.9982 0.0001

The probability of an iris flower having the measurements (6.2, 3.7, 5.8, 0.2) being a
setosa is 0.0017, a versicolor is 0.9982, and a virginica is 0.0001.

Estimate Upper and Lower Error Bounds for Probability Estimates of Ordinal Responses

Fit a multinomial regression model for categorical responses with natural ordering
among categories. Then estimate the upper and lower confidence bounds for the category
probability estimates.

Load the sample data and define the predictor variables.

load('carbig.mat')

X = [Acceleration Displacement Horsepower Weight];

The predictor variables are the acceleration, engine displacement, horsepower, and the
weight of the cars. The response variable is miles per gallon (MPG).

Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg.

miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);

miles = double(miles);

Now in miles, 1 indicates the cars with miles per gallon from 9 to 19, and 2 indicates the
cars with miles per gallon from 20 to 29. Similarly, 3 and 4 indicate the cars with miles
per gallon from 30 to 39 and 40 to 48, respectively.

Fit a multinomial regression model for the response variable miles. For an ordinal
model, the default 'link' is logit and the default 'interactions' is 'off'.

22 Functions — Alphabetical List

22-2966

[B,dev,stats] = mnrfit(X,miles,'model','ordinal');

Compute the probability estimates and 95% error bounds for probability confidence
intervals for miles per gallon of a car with x = (12, 113, 110, 2670).

x = [12,113,110,2670];

[pihat,dlow,hi] = mnrval(B,x,stats,'model','ordinal');

pihat

pihat =

 0.0615 0.8426 0.0932 0.0027

Calculate the confidence bounds for the category probability estimates.

LL = pihat - dlow;

UL = pihat + hi;

[LL;UL]

ans =

 0.0073 0.7829 0.0283 -0.0003

 0.1157 0.9022 0.1580 0.0057

Estimate Category Counts and Error Bounds for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category counts.

Load the sample data.

load('fisheriris.mat')

The column vector, species, consists of iris flowers of three different species, setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.

sp = nominal(species);

sp = double(sp);

Now in sp, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a nominal model to estimate the species based on the flower measurements.

 mnrval

22-2967

[B,dev,stats] = mnrfit(meas,sp);

Estimate the number in each species category for a sample of 100 iris flowers all with the
measurements (6.2, 3.7, 5.8, 0.2).

x = [6.2,3.7,5.8,0.2];

yhat = mnrval(B,x,18)

yhat =

 0.0314 17.9671 0.0016

Estimate the error bounds for the counts.

[yhat,dlow,hi] = mnrval(B,x,18,stats,'model','nominal');

Calculate the confidence bounds for the category probability estimates.

LL = yhat - dlow;

UL = yhat + hi;

[LL;UL]

ans =

 -0.7084 17.2272 -0.0115

 0.7711 18.7069 0.0146

Plot the Count Estimates

Create sample data with one predictor variable and a categorical response variable with
three categories.

x = [-3 -2 -1 0 1 2 3]';

Y = [1 11 13; 2 9 14; 6 14 5; 5 10 10;...

 5 14 6; 7 13 5; 8 11 6];

[Y x]

ans =

 1 11 13 -3

 2 9 14 -2

 6 14 5 -1

 5 10 10 0

 5 14 6 1

 7 13 5 2

22 Functions — Alphabetical List

22-2968

 8 11 6 3

There are observations on seven different values of the predictor variable x . The
response variable Y has three categories and the data shows how many of the 25
individuals are in each category of Y for each observation of x. For example, when x is -3,
1 of 25 individuals is observed in category 1, 11 observed in category 2, and 13 observed
in category 3. Similarly, when x is 1, 5 of the individuals are observed in category 1, 14
are observed in category 2, and 6 are observed in category 3.

Plot the number in each category versus the x values, on a stacked bar graph.

bar(x,Y,'stacked');

ylim([0 25]);

 mnrval

22-2969

Fit a nominal model for the individual response category probabilities, with separate
slopes on the single predictor variable, x, for each category.

betaHatNom = mnrfit(x,Y,'model','nominal',...

 'interactions','on')

betaHatNom =

 -0.6028 0.3832

 0.4068 0.1948

The first row of betaHatOrd contains the intercept terms for the first two response
categories. The second row contains the slopes. mnrfit accepts the third category as the
reference category and hence assumes the coefficients for the third category are zero.

Compute the predicted probabilities for the three response categories.

xx = linspace(-4,4)';

piHatNom = mnrval(betaHatNom,xx,'model','nominal',...

 'interactions','on');

The probability of being in the third category is simply 1 - P(= 1) - P(= 2).

Plot the estimated cumulative number in each category on the bar graph.

line(xx,cumsum(25*piHatNom,2),'LineWidth',2);

22 Functions — Alphabetical List

22-2970

The cumulative probability for the third category is always 1.

Now, fit a "parallel" ordinal model for the cumulative response category probabilities,
with a common slope on the single predictor variable, x, across all categories:

betaHatOrd = mnrfit(x,Y,'model','ordinal',...

 'interactions','off')

betaHatOrd =

 -1.5001

 0.7266

 0.2642

 mnrval

22-2971

The first two elements of betaHatOrd are the intercept terms for the first two response
categories. The last element of betaHatOrd is the common slope.

Compute the predicted cumulative probabilities for the first two response categories. The
cumulative probability for the third category is always 1.

piHatOrd = mnrval(betaHatOrd,xx,'type','cumulative',...

 'model','ordinal','interactions','off');

Plot the estimated cumulative number on the bar graph of the observed cumulative
number.

figure()

bar(x,cumsum(Y,2),'grouped');

ylim([0 25]);

line(xx,25*piHatOrd,'LineWidth',2);

22 Functions — Alphabetical List

22-2972

Input Arguments

B — Coefficient estimates
vector or matrix returned by mnrfit

Coefficient estimates for the multinomial logistic regression model, specified as a vector
or matrix returned by mnrfit. It is a vector or matrix depending on the model and
interactions.
Example: B = mnrfit(X,y); pihat = mnrval(B,X)

Data Types: single | double

 mnrval

22-2973

X — Sample data
matrix

Sample data on predictors, specified as an n-by-p. X contains n observations for p
predictors.

Note: mnrval automatically includes a constant term in all models. Do not enter a
column of 1s in X.

Example: pihat = mnrval(B,X)

Data Types: single | double

stats — Model statistics
structure returned by mnrfit

Model statistics, specified as a structure returned by mnrfit. You must use the stats
input argument in mnrval to compute the lower and upper error bounds on the category
probabilities and counts.
Example: [B,dev,stats] = mnrfit(X,y);[pihat,dlo,dhi] =
mnrval(B,X,stats)

ssize — Sample sizes
column vector of positive integers

Sample sizes to return the number of items in response categories for each combination
of the predictor variables, specified as an n-by-1 column vector of positive integers.

For example, for a response variable having three categories, if an observation of the
number of individuals in each category is y1, y2, and y3, respectively, then the sample size,
m, for that observation is m = y1 + y2 + y3.

If the sample sizes for n observations are in vector sample, then you can enter the
sample sizes as follows.
Example: yhat = mnrval(B,X,sample)

Data Types: single | double

22 Functions — Alphabetical List

22-2974

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'model','ordinal','link','probit','type','cumulative' specifies
that mnrval returns the estimates for cumulative probabilities for an ordinal model with
a probit link function.

'model' — Type of multinomial model
'nominal' (default) | 'ordinal' | 'hierarchical'

Type of multinomial model fit by mnrfit, specified as the comma-separated pair
consisting of 'model' and one of the following.

'nominal' Default. Specify when there is no ordering among the response
categories.

'ordinal' Specify when there is a natural ordering among the response categories.
'hierarchical'Specify when the choice of response category is sequential.

Example: 'model','ordinal'

'interactions' — Indicator for interaction between multinomial categories and coefficients
'on' | 'off'

Indicator for an interaction between the multinomial categories and coefficients
in the model fit by mnrfit, specified as the comma-separated pair consisting of
'interactions' and one of the following.

'on' Default for nominal and hierarchical models. Specify to fit a model with
different intercepts and coefficients across categories.

'off' Default for ordinal models. Specify to fit a model with different intercepts,
but a common set of coefficients for the predictor variables, across all
multinomial categories. This is often described as parallel regression or
proportional odds model.

Example: 'interactions','off'

 mnrval

22-2975

Data Types: logical

'link' — Link function
'logit' (default) | 'probit' | 'comploglog' | 'loglog'

Link function mnrfit uses for ordinal and hierarchical models, specified as the comma-
separated pair consisting of 'link' and one of the following.

'logit' Default. f(γ) = ln(γ/(1 – γ))
'probit' f(γ) = Φ-1(γ) — error term is normally distributed with variance

1
'comploglog' Complementary log-log

f(γ) = ln(–ln(1 –γ))
'loglog' f(γ) = ln(–ln(γ))

The link function defines the relationship between response probabilities and the linear
combination of predictors, Xβ.

γ might be cumulative or conditional probabilities based on whether the model is for an
ordinal or a sequential/nested response.

You cannot specify the 'link' parameter for nominal models; these always use a
multinomial logit link,

ln , , , ,
p

p
b b b bj

r
j j j j j jp jpX X X j k

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = + + + + = -0 1 1 2 2 1 1L …

where π stands for a categorical probability, and r corresponds to the reference category,
k is the total number of response categories, p is the number of predictor variables.
mnrfit uses the last category as the reference category for nominal models.

Example: 'link','loglog'

'type' — Type of probabilities or counts to estimate
'category' (default) | 'cumulative' | 'conditional'

Type of probabilities or counts to estimate, specified as the comma-separated pair
including 'type' and one of the following.

22 Functions — Alphabetical List

22-2976

'category' Default. Specify to return predictions and error bounds for the
probabilities (or counts) of the k multinomial categories.

'cumulative' Specify to return predictions and confidence bounds for
the cumulative probabilities (or counts) of the first k –
1 multinomial categories, as an n-by-(k – 1) matrix. The
predicted cumulative probability for the kth category is always
1.

'conditional' Specify to return predictions and error bounds in terms of the
first k – 1 conditional category probabilities (counts), i.e., the
probability (count) for category j, given an outcome in category
j or higher. When 'type' is 'conditional', and you supply
the sample size argument ssize, the predicted counts at
each row of X are conditioned on the corresponding element of
ssize, across all categories.

Example: 'type','cumulative'

'confidence' — Confidence level
0.95 (default) | Scalar value in the range (0,1)

Confidence level for the error bounds, specified as the comma-separated pair consisting of
'confidence' and a scalar value in the range (0,1).

For example, for 99% error bounds, you can specify the confidence as follows:
Example: 'confidence',0.99

Data Types: single | double

Output Arguments

pihat — Probability estimates
n-by-(k – 1) matrix

Probability estimates for each multinomial category, returned as an n-by-(k – 1) matrix,
where n is the number of observations, and k is the number of response categories.

yhat — Count estimates
n-by-k– 1 matrix

 mnrval

22-2977

Count estimates for the number in each response category, returned as an n-by-k
– 1 matrix, where n is the number of observations, and k is the number of response
categories.

dlow — Lower error bound
column vector

Lower error bound to compute the lower confidence bound for pihat or yhat, returned as a
column vector.

The lower confidence bound for pihat is pihat minus dlow. Similarly, the lower
confidence bound for yhat is yhat minus dlow. Confidence bounds are nonsimultaneous
and only apply to the fitted curve, not to new observations.

dhi — Upper error bound
column vector

Upper error bound to compute the upper confidence bound for pihat or yhat, returned as
a column vector.

The upper confidence bound for pihat is pihat plus dhi. Similarly, the upper
confidence bound for yhat is yhat plus dhi. Confidence bounds are nonsimultaneous
and only apply to the fitted curve, not to new observations.

More About
• “Multinomial Models for Nominal Responses” on page 10-2
• “Multinomial Models for Ordinal Responses” on page 10-5
• “Hierarchical Multinomial Models” on page 10-9

References

[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

See Also
fitglm | glmfit | glmval | mnrfit

22 Functions — Alphabetical List

22-2978

moment

Central moments

Syntax

m = moment(X,order)

moment(X,order,dim)

Description

m = moment(X,order) returns the central sample moment of X specified by the positive
integer order. For vectors, moment(x,order) returns the central moment of the
specified order for the elements of x. For matrices, moment(X,order) returns central
moment of the specified order for each column. For N-dimensional arrays, moment
operates along the first nonsingleton dimension of X.

moment(X,order,dim) takes the moment along dimension dim of X.

Examples

X = randn([6 5])

X =

 1.1650 0.0591 1.2460 -1.2704 -0.0562

 0.6268 1.7971 -0.6390 0.9846 0.5135

 0.0751 0.2641 0.5774 -0.0449 0.3967

 0.3516 0.8717 -0.3600 -0.7989 0.7562

 -0.6965 -1.4462 -0.1356 -0.7652 0.4005

 1.6961 -0.7012 -1.3493 0.8617 -1.3414

m = moment(X,3)

m =

 -0.0282 0.0571 0.1253 0.1460 -0.4486

 moment

22-2979

More About

Tips

Note that the central first moment is zero, and the second central moment is the variance
computed using a divisor of n rather than n – 1, where n is the length of the vector x or
the number of rows in the matrix X.

The central moment of order k of a distribution is defined as

m E xk
k

= -()m

where E(x) is the expected value of x.

See Also
kurtosis | mean | skewness | std | var

22 Functions — Alphabetical List

22-2980

mu property
Class: gmdistribution

Input matrix of means mu

Description

Input matrix of means mu.

 multcompare

22-2981

multcompare

Multiple comparison test

Syntax

c = multcompare(stats)

c = multcompare(stats,Name,Value)

[c,m] = multcompare(___)

[c,m,h] = multcompare(___)

[c,m,h,gnames] = multcompare(___)

Description

c = multcompare(stats) returns a matrix c of the pairwise comparison results
from a multiple comparison test using the information contained in the stats structure.
multcompare also displays an interactive graph of the estimates and comparison
intervals. Each group mean is represented by a symbol, and the interval is represented
by a line extending out from the symbol. Two group means are significantly different if
their intervals are disjoint; they are not significantly different if their intervals overlap.
If you use your mouse to select any group, then the graph will highlight all other groups
that are significantly different, if any.

c = multcompare(stats,Name,Value) returns a matrix of pairwise comparison
results, c, using additional options specified by one or more Name,Value pair arguments.
For example, you can specify the confidence interval, or the type of critical value to use in
the multiple comparison.

[c,m] = multcompare(___) also returns a matrix, m, which contains estimated
values of the means (or whatever statistics are being compared) for each group and the
corresponding standard errors. You can use any of the previous syntaxes.

[c,m,h] = multcompare(___) also returns a handle, h, to the comparison graph.

[c,m,h,gnames] = multcompare(___) also returns a cell array, gnames, which
contains the names of the groups.

22 Functions — Alphabetical List

22-2982

Examples

Multiple Comparison of Group Means

Load the sample data.

load carsmall

Perform a one-way analysis of variance (ANOVA) to see if there is any difference between
the mileage of the cars by origin.

[p,t,stats] = anova1(MPG,Origin,'off');

Perform a multiple comparison of the group means.

[c,m,h,nms] = multcompare(stats);

 multcompare

22-2983

multcompare displays the estimates with comparison intervals around them. You can
click the graphs of each country to compare its mean to those of other countries.

Now display the mean estimates and the standard errors with the corresponding group
names.

[nms num2cell(m)]

ans =

 'USA' [21.1328] [0.8814]

 'Japan' [31.8000] [1.8206]

 'Germany' [28.4444] [2.3504]

22 Functions — Alphabetical List

22-2984

 'France' [23.6667] [4.0711]

 'Sweden' [22.5000] [4.9860]

 'Italy' [28] [7.0513]

Multiple Comparisons for Two-Way ANOVA

Load the sample data.

load popcorn

popcorn

popcorn =

 5.5000 4.5000 3.5000

 5.5000 4.5000 4.0000

 6.0000 4.0000 3.0000

 6.5000 5.0000 4.0000

 7.0000 5.5000 5.0000

 7.0000 5.0000 4.5000

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns
of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are
popper types oil and air. In the study, researchers popped a batch of each brand three
times with each popper. The values are the yield in cups of popped popcorn.

Perform a two-way ANOVA. Also compute the statistics that you need to perform a
multiple comparison test on the main effects.

[~,~,stats] = anova2(popcorn,3,'off')

stats =

 source: 'anova2'

 sigmasq: 0.1389

 colmeans: [6.2500 4.7500 4]

 coln: 6

 rowmeans: [4.5000 5.5000]

 rown: 9

 inter: 1

 pval: 0.7462

 multcompare

22-2985

 df: 12

The stats structure includes

• The mean squared error (sigmasq)
• The estimates of the mean yield for each popcorn brand (colmeans)
• The number of observations for each popcorn brand (coln)
• The estimate of the mean yield for each popper type (rowmeans)
• The number of observations for each popper type (rown)
• The number of interactions (inter)
• The p-value that shows the significance level of the interaction term (pval)
• The error degrees of freedom (df).

Perform a multiple comparison test to see if the popcorn yield differs between pairs of
popcorn brands (columns).

c = multcompare(stats)

Note: Your model includes an interaction term. A test of main effects can be

difficult to interpret when the model includes interactions.

c =

 1.0000 2.0000 0.9260 1.5000 2.0740 0.0000

 1.0000 3.0000 1.6760 2.2500 2.8240 0.0000

 2.0000 3.0000 0.1760 0.7500 1.3240 0.0116

22 Functions — Alphabetical List

22-2986

The first two columns of c show the groups that are compared. The fourth column shows
the difference between the estimated group means. The third and fifth columns show
the lower and upper limits for 95% confidence intervals for the true mean difference.
The sixth column contains the p-value for a hypothesis test that the corresponding mean
difference is equal to zero. All p-values (0, 0, and 0.0116) are very small, which indicates
that the popcorn yield differs across all three brands.

The figure shows the multiple comparison of the means. By default, the group 1 mean is
highlighted and the comparison interval is in blue. Because the comparison intervals for
the other two groups do not intersect with the intervals for the group 1 mean, they are
highlighted in red. This lack of intersection indicates that both means are different than
group 1 mean. Select other group means to confirm that all group means are significantly
different from each other.

 multcompare

22-2987

Perform a multiple comparison test to see the popcorn yield differs between the two
popper types (rows).

c = multcompare(stats,'Estimate','row')

Note: Your model includes an interaction term. A test of main effects can be

difficult to interpret when the model includes interactions.

c =

 1.0000 2.0000 -1.3828 -1.0000 -0.6172 0.0001

22 Functions — Alphabetical List

22-2988

The small p-value of 0.0001 indicates that the popcorn yield differs between the two
popper types (air and oil). The figure shows the same results. The disjoint comparison
intervals indicate that the group means are significantly different from each other.

Multiple Comparisons for Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';

g1 = [1 2 1 2 1 2 1 2];

g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};

g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each
factor has two levels, and every observation in y is identified by a combination of factor
levels. For example, observation y(1) is associated with level 1 of factor g1, level 'hi'
of factor g2, and level 'may' of factor g3. Similarly, observation y(6) is associated with
level 2 of factor g1, level 'hi' of factor g2, and level 'june' of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required
for multiple comparison tests.

[~,~,stats] = anovan(y,{g1 g2 g3},'model','interaction',...

 'varnames',{'g1','g2','g3'});

 multcompare

22-2989

The p-value of 0.2578 indicates that the mean responses for levels 'may' and 'june' of
factor g3 are not significantly different. The p-value of 0.0347 indicates that the mean
responses for levels 1 and 2 of factor g1 are significantly different. Similarly, the p-value
of 0.0048 indicates that the mean responses for levels 'hi' and 'lo' of factor g2 are
significantly different.

Perform multiple comparison tests to find out which groups of the factors g1 and g2 are
significantly different.

22 Functions — Alphabetical List

22-2990

results = multcompare(stats,'Dimension',[1 2])

results =

 1.0000 2.0000 -6.8604 -4.4000 -1.9396 0.0280

 1.0000 3.0000 4.4896 6.9500 9.4104 0.0177

 1.0000 4.0000 6.1396 8.6000 11.0604 0.0143

 2.0000 3.0000 8.8896 11.3500 13.8104 0.0108

 2.0000 4.0000 10.5396 13.0000 15.4604 0.0095

 3.0000 4.0000 -0.8104 1.6500 4.1104 0.0745

 multcompare

22-2991

multcompare compares the combinations of groups (levels) of the two grouping variables,
g1 and g2. In the results matrix, the number 1 corresponds to the combination of level
1 of g1 and level hi of g2, the number 2 corresponds to the combination of level 2 of g1
and level hi of g2. Similarly, the number 3 corresponds to the combination of level 1 of
g1 and level lo of g2, and the number 4 corresponds to the combination of level 2 of g1
and level lo of g2. The last column of the matrix contains the p-values.

For example, the first row of the matrix shows that the combination of level 1 of g1 and
level hi of g2 has the same mean response values as the combination of level 2 of g1
and level hi of g2. The p-value corresponding to this test is 0.0280, which indicates that
the mean responses are significantly different. You can also see this result in the figure.
The blue bar shows the comparison interval for the mean response for the combination of
level 1 of g1 and level hi of g2. The red bars are the comparison intervals for the mean
response for other group combinations. None of the red bars overlap with the blue bar,
which means the mean response for the combination of level 1 of g1 and level hi of g2 is
significantly different from the mean response for other group combinations.

You can test the other groups by clicking on the corresponding comparison interval
for the group. The bar you click on turns to blue. The bars for the groups that are
significantly different are red. The bars for the groups that are not significantly different
are gray. For example, if you click on the comparison interval for the combination of
level 1 of g1 and level lo of g2, the comparison interval for the combination of level 2 of
g1 and level lo of g2 overlaps, and is therefore gray. Conversely, the other comparison
intervals are red, indicating significant difference.

Input Arguments

stats — Test data
structure

Test data, specified as a structure. You can create a structure using one of the following
functions:

• anova1 — One-way analysis of variance.
• anova2 — Two-way analysis of variance.
• anovan — N-way analysis of variance.
• aoctool — Interactive analysis of covariance tool.
• friedman — Friedman’s test.

22 Functions — Alphabetical List

22-2992

• kruskalwallis — Kruskal-Wallis test.

multcompare does not support multiple comparisons using anovan output for a model
that includes random or nested effects. The calculations for a random effects model
produce a warning that all effects are treated as fixed. Nested models are not accepted.
Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'CType','bonferroni','Display','off' computes the
Bonferroni critical values, conducts the hypothesis tests at the 1% significance level, and
omits the interactive display.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the multiple comparison test, specified as the comma-separated
pair consisting of 'Alpha' and a scalar value in the range (0,1). The value specified for
'Alpha' determines the 100 × (1 – α) confidence levels of the intervals returned in the
matrix c and in the figure.
Example: 'Alpha',0.01

Data Types: single | double

'CType' — Type of critical value
'tukey-kramer' (default) | 'hsd' | 'lsd' | 'bonferroni' | 'dunn-sidak' |
'scheffe'

Type of critical value to use for the multiple comparison, specified as the comma-
separated pair consisting of 'CType' and one of the following.

Value Description

'tukey-kramer' or
'hsd'

Tukey's honest significant difference criterion

'bonferroni' Bonferroni method

 multcompare

22-2993

Value Description

'dunn-sidak' Dunn and Sidák’s approach
'lsd' Fisher's least significant difference procedure
'scheffe' Scheffé's S procedure

Example: 'CType','bonferroni'

'Display' — Display toggle
'on' (default) | 'off'

Display toggle, specified as the comma-separated pair consisting of 'Display' and
either 'on' or 'off'. If you specify 'on', then multcompare displays a graph of the
estimates and their comparison intervals. If you specify 'off', then multcompare omits
the graph.
Example: 'Display','off'

'Dimension' — Dimension over which to calculate marginal means
1 (default) | positive integer value | vector of positive integer values

A vector specifying the dimension or dimensions over which to calculate the population
marginal means, specified as a positive integer value, or a vector of such values. Use the
'Dimension' name-value pair only if you create the input structure stats using the
function anovan.

For example, if you specify 'Dimension' as 1, then multcompare compares the means
for each value of the first grouping variable, adjusted by removing effects of the other
grouping variables as if the design were balanced. If you specify 'Dimension'as [1,3],
then multcompare computes the population marginal means for each combination of
the first and third grouping variables, removing effects of the second grouping variable.
If you fit a singular model, some cell means may not be estimable and any population
marginal means that depend on those cell means will have the value NaN.

Population marginal means are described by Milliken and Johnson (1992) and by
Searle, Speed, and Milliken (1980). The idea behind population marginal means is to
remove any effect of an unbalanced design by fixing the values of the factors specified by
'Dimension', and averaging out the effects of other factors as if each factor combination
occurred the same number of times. The definition of population marginal means does
not depend on the number of observations at each factor combination. For designed
experiments where the number of observations at each factor combination has no
meaning, population marginal means can be easier to interpret than simple means

22 Functions — Alphabetical List

22-2994

ignoring other factors. For surveys and other studies where the number of observations
at each combination does have meaning, population marginal means may be harder to
interpret.
Example: 'Dimension',[1,3]

Data Types: single | double

'Estimate' — Estimates to be compared
'column' (default) | 'row' | 'slope' | 'intercept' | 'pmm'

Estimates to be compared, specified as the comma-separated pair consisting of
'Estimate' and an allowable value. The allowable values for 'Estimate' depend on
the function used to generate the input structure stats, according to the following table.

Source Values

anova1 None. This name-value pair is ignored, and multcompare
always compares the group means.

anova2 Either 'column' to compare column means, or 'row' to
compare row means.

anovan None. This name-value pair is ignored, and multcompare
always compares the population marginal means as specified
by the 'Dimension' name-value pair argument.

aoctool Either 'slope', 'intercept', or 'pmm' to compare slopes,
intercepts, or population marginal means, respectively. If the
analysis of covariance model did not include separate slopes,
then 'slope' is not allowed. If it did not include separate
intercepts, then no comparisons are possible.

friedman None. This name-value pair is ignored, and multcompare
always compares the average column ranks.

kruskalwallis None. This name-value pair is ignored, and multcompare
always compares the average group ranks.

Example: 'Estimate','row'

Output Arguments
c — Matrix of multiple comparison results
matrix of scalar values

 multcompare

22-2995

Matrix of multiple comparison results, returned as an p-by-6 matrix of scalar values,
where p is the number of pairs of groups. Each row of the matrix contains the result
of one paired comparison test. Columns 1 and 2 contain the indices of the two samples
being compared. Column 3 contains the lower confidence interval, column 4 contains the
estimate, and column 5 contains the upper confidence interval. Column 6 contains the p-
value for the hypothesis test that the corresponding mean difference is not equal to 0.

For example, suppose one row contains the following entries.

2.0000 5.0000 1.9442 8.2206 14.4971 0.0432

These numbers indicate that the mean of group 2 minus the mean of group 5 is estimated
to be 8.2206, and a 95% confidence interval for the true difference of the means is
[1.9442, 14.4971]. The p-value for the corresponding hypothesis test that the difference of
the means of groups 2 and 5 is significantly different from zero is 0.0432.

In this example the confidence interval does not contain 0, so the difference is significant
at the 5% significance level. If the confidence interval did contain 0, the difference would
not be significant. The p-value of 0.0432 also indicates that the difference of the means of
groups 2 and 5 is significantly different from 0.

m — Matrix of estimates
matrix of scalar values

Matrix of the estimates, returned as a matrix of scalar values. The first column of m
contains the estimated values of the means (or whatever statistics are being compared)
for each group, and the second column contains their standard errors.

h — Handle to the figure
handle

Handle to the figure containing the interactive graph, returned as a handle. The title
of this graph contains instructions for interacting with the graph, and the x-axis label
contains information about which means are significantly different from the selected
mean. If you plan to use this graph for presentation, you may want to omit the title and
the x-axis label. You can remove them using interactive features of the graph window, or
you can use the following commands.

title('')

xlabel('')

gnames — Group names
cell array of strings

22 Functions — Alphabetical List

22-2996

Group names, returned as a cell array of strings. Each row of gnames contains the name
of a group.

More About

Multiple Comparison Tests

Analysis of variance compares the means of several groups to test the hypothesis that
they are all equal, against the general alternative that they are not all equal. Sometimes
this alternative may be too general. You may need information about which pairs of
means are significantly different, and which are not. A multiple comparison test can
provide this information.

When you perform a simple t-test of one group mean against another, you specify a
significance level that determines the cutoff value of the t-statistic. For example, you
can specify the value alpha = 0.05 to insure that when there is no real difference,
you will incorrectly find a significant difference no more than 5% of the time. When
there are many group means, there are also many pairs to compare. If you applied an
ordinary t-test in this situation, the alpha value would apply to each comparison, so the
chance of incorrectly finding a significant difference would increase with the number of
comparisons. Multiple comparison procedures are designed to provide an upper bound on
the probability that any comparison will be incorrectly found significant.

References

[1] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ:
John Wiley & Sons, 1987.

[2] Milliken, G. A., and D. E. Johnson. Analysis of Messy Data, Volume I: Designed
Experiments. Boca Raton, FL: Chapman & Hall/CRC Press, 1992.

[3] Searle, S. R., F. M. Speed, and G. A. Milliken. “Population marginal means in the
linear model: an alternative to least-squares means.” American Statistician.
1980, pp. 216–221.

See Also
anova1 | anova2 | anovan | aoctool | friedman | kruskalwallis

 multcompare

22-2997

multcompare
Class: RepeatedMeasuresModel

Multiple comparison of estimated marginal means

Syntax
tbl = multcompare(rm,var)

tbl = multcompare(rm,var,Name,Value)

Description
tbl = multcompare(rm,var) returns multiple comparisons of the estimated marginal
means based on the variable var in the repeated measures model rm.

tbl = multcompare(rm,var,Name,Value) returns multiple comparisons of the
estimated marginal means with additional options specified by one or more Name,Value
pair arguments.

For example, you can specify the comparison type or which variable to group by.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

var — Variables for which to compute marginal means
string

Variables for which to compute the marginal means, specified as a string representing
the name of a between- or within-subjects factor in rm. If var is a between-subjects
factor, it must be categorical.
Data Types: char | cell

22 Functions — Alphabetical List

22-2998

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range of 0 through 1

Confidence level of the confidence intervals for population marginal means, specified as
the comma-separated pair consisting of 'alpha' and a scalar value in the range of 0
through 1. The confidence level is 100*(1–alpha)%.

Example: 'alpha',0.01

Data Types: double | single

'By' — Factor to perform comparisons by
string

Factor to do the comparisons by, specified as the comma-separated pair consisting of
'By' and a string. The comparison between levels of var occurs separately for each value
of the factor you specify.

If you have more then one between-subjects factors, A, B, and C, and if you want to do
the comparisons of A levels separately for each level of C, then specify A as the var
argument and specify C using the 'By' argument as follows.

Example: 'By',C

Data Types: char

'ComparisonType' — Type of critical value to use
'tukey-kramer' (default) | 'dunn-sidak' | 'bonferroni' | 'scheffe' | 'lsd'

Type of critical value to use, specified as the comma-separated pair consisting of
'ComparisonType' and one of the following.

Comparison Type Definition

'tukey-kramer' Default. Also called Tukey’s Honest
Significant Difference procedure. It
is based on the Studentized range

 multcompare

22-2999

Comparison Type Definition

distribution. According to the unproven
Tukey-Kramer conjecture, it is also
accurate for problems where the quantities
being compared are correlated, as in
analysis of covariance with unbalanced
covariate values.

'dunn-sidak' Use critical values from the t distribution,
after an adjustment for multiple
comparisons that was proposed by Dunn
and proved accurate by Sidák. The critical
value is

t
y y

MSE
n n

t
i j

i j

v=
-

+
Ê

Ë
ÁÁ

ˆ

¯
˜̃

> -
1 1

1 2h , ,

where

h a= - -()
()

1 1

1

2

k

and ng is the number of groups (marginal
means). This procedure is similar to, but
less conservative than, the Bonferroni
procedure.

22 Functions — Alphabetical List

22-3000

Comparison Type Definition

'bonferroni' Use critical values from the t distribution,
after a Bonferroni adjustment to
compensate for multiple comparisons. The
critical value is

t
ng

va 2
2

Ê

Ë
Á

ˆ

¯
˜,

,

where ng is the number of groups
(marginal means), and v is the error
degrees of freedom. This procedure is
conservative, but usually less so than the
Scheffé procedure.

'scheffe' Use critical values from Scheffé's S
procedure, derived from the Fdistribution.
The critical value is

ng F ng v-() -1 1a , , ,

where ng is the number of groups
(marginal means), and v is the error
degrees of freedom. This procedure
provides a simultaneous confidence level
for comparisons of all linear combinations
of the means, and it is conservative for
comparisons of simple differences of pairs.

'lsd' Least significant difference. This option
uses plain t-tests. The critical value is

t va 2, ,

where v is the error degrees of freedom. It
provides no protection against the multiple
comparison problem.

Example: 'ComparisonType','dunn-sidak'

 multcompare

22-3001

Output Arguments

tbl — Results of multiple comparison
table

Results of multiple comparisons of estimated marginal means, returned as a table. tbl
has the following columns.

Column Name Description

Difference Estimated difference between the corresponding two marginal means
StdErr Standard error of the estimated difference between the corresponding

two marginal means
pValue p-value for a test that the difference between the corresponding two

marginal means is 0
Lower Lower limit of simultaneous 95% confidence intervals for the true

difference
Upper Upper limit of simultaneous 95% confidence intervals for the true

difference

Examples

Multiple Comparison of Estimated Marginal Means

Load the sample data.

load fisheriris

The column vector speciesconsists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

22 Functions — Alphabetical List

22-3002

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform a multiple comparison of the estimated marginal means of species.

tbl = multcompare(rm,'species')

tbl =

 species_1 species_2 Difference StdErr pValue Lower Upper

 ____________ ____________ __________ ________ __________ ________ ________

 'setosa' 'versicolor' -1.0375 0.060539 9.5606e-10 -1.1794 -0.89562

 'setosa' 'virginica' -1.7495 0.060539 9.5606e-10 -1.8914 -1.6076

 'versicolor' 'setosa' 1.0375 0.060539 9.5606e-10 0.89562 1.1794

 'versicolor' 'virginica' -0.712 0.060539 9.5606e-10 -0.85388 -0.57012

 'virginica' 'setosa' 1.7495 0.060539 9.5606e-10 1.6076 1.8914

 'virginica' 'versicolor' 0.712 0.060539 9.5606e-10 0.57012 0.85388

The small p-values (in the pValue field) indicate that the estimated marginal means for
the three species significantly differ from each other.

Perform Multiple Comparisons with Specified Options

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 through y8 as responses. The table within includes the
within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the
responses, and age, IQ, group, gender, and the group-gender interaction are the predictor
variables. Also specify the within-subject design matrix.

R = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Perform a multiple comparison of the estimated marginal means based on the variable
Group.

T = multcompare(R,'Group')

T =

 Group_1 Group_2 Difference StdErr pValue Lower Upper

 multcompare

22-3003

 _______ _______ __________ ______ _________ _______ _______

 A B 4.9875 5.6271 0.65436 -9.1482 19.123

 A C 23.094 5.9261 0.0021493 8.2074 37.981

 B A -4.9875 5.6271 0.65436 -19.123 9.1482

 B C 18.107 5.8223 0.013588 3.4805 32.732

 C A -23.094 5.9261 0.0021493 -37.981 -8.2074

 C B -18.107 5.8223 0.013588 -32.732 -3.4805

The small p-value of 0.0021493 indicates that there is significant difference between the
marginal means of groups A and C. The p-values of 0.65436 indicates that the difference
between the marginal means for groups A and B is not significantly different from 0.

multcompare uses the Tukey-Kramer test statistic by default. Change the comparison
type to the Scheffe procedure.

T = multcompare(R,'Group','ComparisonType','Scheffe')

T =

 Group_1 Group_2 Difference StdErr pValue Lower Upper

 _______ _______ __________ ______ _________ _______ _______

 A B 4.9875 5.6271 0.67981 -9.7795 19.755

 A C 23.094 5.9261 0.0031072 7.5426 38.646

 B A -4.9875 5.6271 0.67981 -19.755 9.7795

 B C 18.107 5.8223 0.018169 2.8273 33.386

 C A -23.094 5.9261 0.0031072 -38.646 -7.5426

 C B -18.107 5.8223 0.018169 -33.386 -2.8273

The Scheffe test produces larger p-values, but similar conclusions.

Perform multiple comparisons of estimated marginal means based on the variable Group
for each gender separately.

T = multcompare(R,'Group','By','Gender')

T =

 Gender Group_1 Group_2 Difference StdErr pValue Lower Upper

 ______ _______ _______ __________ ______ ________ _________ __________

 Female A B 4.1883 8.0177 0.86128 -15.953 24.329

 Female A C 24.565 8.2083 0.017697 3.9449 45.184

 Female B A -4.1883 8.0177 0.86128 -24.329 15.953

22 Functions — Alphabetical List

22-3004

 Female B C 20.376 8.1101 0.049957 0.0033459 40.749

 Female C A -24.565 8.2083 0.017697 -45.184 -3.9449

 Female C B -20.376 8.1101 0.049957 -40.749 -0.0033459

 Male A B 5.7868 7.9498 0.74977 -14.183 25.757

 Male A C 21.624 8.1829 0.038022 1.0676 42.179

 Male B A -5.7868 7.9498 0.74977 -25.757 14.183

 Male B C 15.837 8.0511 0.14414 -4.3881 36.062

 Male C A -21.624 8.1829 0.038022 -42.179 -1.0676

 Male C B -15.837 8.0511 0.14414 -36.062 4.3881

The results indicate that the difference between marginal means for groups A and B is
not significant from 0 for either gender (corresponding p-values are 0.86128 for females
and 0.74977 for males). The difference between marginal means for groups A and C
is significant for both genders (corresponding p-values are 0.017697 for females and
0.038022 for males). While the difference between marginal means for groups B and C
is significantly different from 0 for females (p-value is 0.049957), it is not significantly
different from 0 for males (p-value is 0.14414).

References

[1] G. A. Milliken, and Johnson, D. E. Analysis of Messy Data. Volume I: Designed
Experiments. New York, NY: Chapman & Hall, 1992.

See Also
fitrm | margmean | plotprofile

 prob.MultinomialDistribution class

22-3005

prob.MultinomialDistribution class
Package: prob
Superclasses: prob.ParametricTruncatableDistribution

Multinomial probability distribution object

Description

prob.MultinomialDistribution is an object consisting of parameters and a model
description for a multinomial probability distribution. Create a probability distribution
object with specified parameters using makedist.

Construction

pd = makedist('Multinomial') creates a multinomial probability distribution object
using the default parameter values.

pd = makedist('Multinomial','Probabilities',probabilities) creates a
multinomial distribution object using the specified parameter value.

Input Arguments

probabilities — outcome probabilities
[0.500 0.500] (default) | vector of scalar values in the range [0,1]

Outcome probabilities, specified as a vector of scalar values in the range [0,1]. Each
vector element is the probability that a multinomial trial has a particular corresponding
outcome. The values in probabilities must sum to 1.

Data Types: single | double

Properties

probabilities — outcome probabilities
vector of scalar values in the range [0,1]

22 Functions — Alphabetical List

22-3006

Outcome probabilities for the multinomial distribution, stored as a vector of scalar values
in the range [0,1]. The values in probabilities must sum to 1.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

 prob.MultinomialDistribution class

22-3007

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

22 Functions — Alphabetical List

22-3008

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution. While the
binomial distribution gives the probability of the number of “successes” in n independent
trials of a two-outcome process, the multinomial distribution gives the probability of each
combination of outcomes in n independent trials of a k-outcome process. The probability
of each outcome in any one trial is given by the fixed probabilities p1, ..., pk.

The multinomial distribution uses the following parameters.

Parameter Description Support

probabilities Outcome
probabilities

0 1 1£ () £ () =

()
Âprobabilities i probabilities i

all i

;

The probability density function (pdf) is

f x n p
n

x x
p p x n p

k

x
k

x
i

k

i

k
k| ,

!

! !
; , ,() = = =Â Â

1
1

1 1

1 1
…

L

where x = (x1,...,xk) gives the number of each k outcome in n trials of a process with fixed
probabilities p = (p1,...,pk) of individual outcomes in any one trial.

 prob.MultinomialDistribution class

22-3009

Examples

Create a Multinomial Distribution Object Using Default Parameters

Create a multinomial distribution object using the default parameter values.

pd = makedist('Multinomial')

pd =

 MultinomialDistribution

 Probabilities:

 0.5000 0.5000

Create a Multinomial Distribution Object Using Specified Parameters

Create a multinomial distribution object for a distribution with three possible outcomes.
Outcome 1 has a probability of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has
a probability of 1/6.

pd = makedist('Multinomial','probabilities',[1/2 1/3 1/6])

pd =

 MultinomialDistribution

 Probabilities:

 0.5000 0.3333 0.1667

Generate a random outcome from the distribution.

rng('default'); % for reproducibility

r = random(pd)

r =

 2

The result of this trial is outcome 2. By default, the number of trials in each experiment,
n, equals 1.

Generate random outcomes from the distribution when the number of trials in each
experiment, n, equals 1, and the experiment is repeated ten times.

rng('default'); % for reproducibility

22 Functions — Alphabetical List

22-3010

r = random(pd,10,1)

r =

 2

 3

 1

 3

 2

 1

 1

 2

 3

 3

Each element in the array is the outcome of an individual experiment that contains one
trial.

Generate random outcomes from the distribution when the number of trials in each
experiment, n, equals 5, and the experiment is repeated ten times.

rng('default'); % for reproducibility

r = random(pd,10,5)

r =

 2 1 2 2 1

 3 3 1 1 1

 1 3 3 1 2

 3 1 3 1 2

 2 2 2 1 1

 1 1 2 2 1

 1 1 2 2 1

 2 3 1 1 2

 3 2 2 3 2

 3 3 1 1 2

Each element in the resulting matrix is the outcome of one trial. The columns correspond
to the five trials in each experiment, and the rows correspond to the ten experiments. For
example, in the first experiment (corresponding to the first row), 2 of the 5 trials resulted
in outcome 1, and 3 of the 5 trials resulted in outcome 2.

See Also
makedist

 prob.MultinomialDistribution class

22-3011

More About
• “Multinomial Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-3012

multivarichart
Multivari chart for grouped data

Syntax

multivarichart(y,GROUP)

multivarichart(Y)

multivarichart(...,param1,val1,param2,val2,...)

[charthandle,AXESH] = multivarichart(...)

Description

multivarichart(y,GROUP) displays the multivari chart for the vector y grouped by
entries in the cell array GROUP. Each cell of GROUP must contain a grouping variable that
can be a categorical variable, numeric vector, character matrix, or single-column cell
array of strings. GROUP can also be a matrix whose columns represent different grouping
variables. Each grouping variable must have the same number of elements as y. The
number of grouping variables must be 2, 3, or 4.

Each subplot of the plot matrix contains a multivari chart for the first and second
grouping variables. The x-axis in each subplot indicates values of the first grouping
variable. The legend at the bottom of the figure window indicates values of the second
grouping variable. The subplot at position (i,j) is the multivari chart for the subset of
y at the ith level of the third grouping variable and the jth level of the fourth grouping
variable. If the third or fourth grouping variable is absent, it is considered to have only
one level.

multivarichart(Y) displays the multivari chart for a matrix Y. The data in different
columns represent changes in one factor. The data in different rows represent changes in
another factor.

multivarichart(...,param1,val1,param2,val2,...) specifies one or more of the
following name/value pairs:

• 'varnames' — Grouping variable names in a character matrix or a cell array of
strings, one per grouping variable. Default names are 'X1', 'X2',

 multivarichart

22-3013

• 'plotorder' — A string with the value 'sorted' or a vector containing a
permutation of the integers from 1 to the number of grouping variables.

If 'plotorder' is a string with value 'sorted', the grouping variables are
rearranged in descending order according to the number of levels in each variable.

If 'plotorder' is a vector, it indicates the order in which each grouping variable
should be plotted. For example, [2,3,1,4] indicates that the second grouping
variable should be used as the x-axis of each subplot, the third grouping variable
should be used as the legend, the first grouping variable should be used as the
columns of the plot, and the fourth grouping variable should be used as the rows of
the plot.

[charthandle,AXESH] = multivarichart(...) returns a handle charthandle to
the figure window and a matrix AXESH of handles to the subplot axes.

Examples

Multivari Chart for Grouped Data

Display a multivari chart for data with two grouping variables.

rng default; % For reproducibility

y = randn(100,1); % Randomly generate response

group = [ceil(3*rand(100,1)) ceil(2*rand(100,1))];

multivarichart(y,group)

22 Functions — Alphabetical List

22-3014

Display a multivari chart for data with four grouping variables.

y = randn(1000,1); % Randomly generate response

group = {ceil(2*rand(1000,1)),ceil(3*rand(1000,1)), ...

 ceil(2*rand(1000,1)),ceil(3*rand(1000,1))};

multivarichart(y,group)

 multivarichart

22-3015

More About
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-3016

See Also
maineffectsplot | interactionplot

 mvncdf

22-3017

mvncdf

Multivariate normal cumulative distribution function

Syntax

y = mvncdf(X)

y = mvncdf(X,mu,SIGMA)

y = mvncdf(xl,xu,mu,SIGMA)

[y,err] = mvncdf(...)

[...] = mvncdf(...,options)

Description

y = mvncdf(X) returns the cumulative probability of the multivariate normal
distribution with zero mean and identity covariance matrix, evaluated at each row
of X. Rows of the n-by-d matrix X correspond to observations or points, and columns
correspond to variables or coordinates. y is an n-by-1 vector.

y = mvncdf(X,mu,SIGMA) returns the cumulative probability of the multivariate
normal distribution with mean mu and covariance SIGMA, evaluated at each row of X.
mu is a 1-by-d vector, and SIGMA is a d-by-d symmetric, positive definite matrix. mu can
also be a scalar value, which mvncdf replicates to match the size of X. If the covariance
matrix is diagonal, containing variances along the diagonal and zero covariances off the
diagonal, SIGMA may also be specified as a 1-by-d vector containing just the diagonal.
Pass in the empty matrix [] for mu to use as its default value when you want to only
specify SIGMA.

The multivariate normal cumulative probability at X is defined as the probability
that a random vector V, distributed as multivariate normal, will fall within the semi-
infinite rectangle with upper limits defined by X, for example, Pr{V(1) ≤ X(1),V(2) ≤
X(2),...,V(d) ≤ X(d)}.

y = mvncdf(xl,xu,mu,SIGMA) returns the multivariate normal cumulative
probability evaluated over the rectangle with lower and upper limits defined by xl and
xu, respectively.

22 Functions — Alphabetical List

22-3018

[y,err] = mvncdf(...) returns an estimate of the error in y. For bivariate and
trivariate distributions, mvncdf uses adaptive quadrature on a transformation of the
t density, based on methods developed by Drezner and Wesolowsky and by Genz, as
described in the references. The default absolute error tolerance for these cases is 1e-8.
For four or more dimensions, mvncdf uses a quasi-Monte Carlo integration algorithm
based on methods developed by Genz and Bretz, as described in the references. The
default absolute error tolerance for these cases is 1e-4.

[...] = mvncdf(...,options) specifies control parameters for the numerical
integration used to compute y. This argument can be created by a call to statset.
Choices of statset parameters:

• 'TolFun' — Maximum absolute error tolerance. Default is 1e-8 when d < 4, or 1e-4
when d ≥ 4.

• 'MaxFunEvals' — Maximum number of integrand evaluations allowed when d ≥ 4.
Default is 1e7. 'MaxFunEvals' is ignored when d < 4.

• 'Display' — Level of display output. Choices are 'off' (the default), 'iter', and
'final'. 'Display' is ignored when d < 4.

Examples

Compute the Multivariate Normal cdf

Compute and plot the cdf of a multivariate normal distribution with parameters mu =
[1 -1] and SIGMA = [.9 .4; .4 .3].

mu = [1 -1];

SIGMA = [.9 .4; .4 .3];

figure;

[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');

X = [X1(:) X2(:)];

p = mvncdf(X,mu,SIGMA);

surf(X1,X2,reshape(p,25,25));

 mvncdf

22-3019

More About
• “Multivariate Normal Distribution” on page B-101

References

[1] Drezner, Z. “Computation of the Trivariate Normal Integral.” Mathematics of
Computation. Vol. 63, 1994, pp. 289–294.

22 Functions — Alphabetical List

22-3020

[2] Drezner, Z., and G. O. Wesolowsky. “On the Computation of the Bivariate Normal
Integral.” Journal of Statistical Computation and Simulation. Vol. 35, 1989, pp.
101–107.

[3] Genz, A. “Numerical Computation of Rectangular Bivariate and Trivariate Normal
and t Probabilities.” Statistics and Computing. Vol. 14, No. 3, 2004, pp. 251–260.

[4] Genz, A., and F. Bretz. “Numerical Computation of Multivariate t Probabilities with
Application to Power Calculation of Multiple Contrasts.” Journal of Statistical
Computation and Simulation. Vol. 63, 1999, pp. 361–378.

[5] Genz, A., and F. Bretz. “Comparison of Methods for the Computation of Multivariate t
Probabilities.” Journal of Computational and Graphical Statistics. Vol. 11, No. 4,
2002, pp. 950–971.

See Also
mvnpdf | mvnrnd

 mvnpdf

22-3021

mvnpdf
Multivariate normal probability density function

Syntax
y = mvnpdf(X)

y = mvnpdf(X,MU)

y = mvnpdf(X,MU,SIGMA)

Description
y = mvnpdf(X) returns the n-by-1 vector y, containing the probability density of
the multivariate normal distribution with zero mean and identity covariance matrix,
evaluated at each row of the n-by-d matrix X. Rows of X correspond to observations and
columns correspond to variables or coordinates.

y = mvnpdf(X,MU) returns the density of the multivariate normal distribution with
mean mu and identity covariance matrix, evaluated at each row of X. MU is a 1-by-d
vector, or an n-by-d matrix. If MU is a matrix, the density is evaluated for each row of X
with the corresponding row of MU. MU can also be a scalar value, which mvnpdf replicates
to match the size of X.

y = mvnpdf(X,MU,SIGMA) returns the density of the multivariate normal distribution
with mean MU and covariance SIGMA, evaluated at each row of X. SIGMA is a d-by-d
matrix, or a d-by-d-by-n array, in which case the density is evaluated for each row of X
with the corresponding page of SIGMA, i.e., mvnpdf computes y(i) using X(i,:) and
SIGMA(:,:,i). If the covariance matrix is diagonal, containing variances along the
diagonal and zero covariances off the diagonal, SIGMA may also be specified as a 1-by-d
vector or a 1-by-d-by-n array, containing just the diagonal. Specify [] for MU to use its
default value when you want to specify only SIGMA.

If X is a 1-by-d vector, mvnpdf replicates it to match the leading dimension of mu or the
trailing dimension of SIGMA.

Examples
mu = [1 -1];

22 Functions — Alphabetical List

22-3022

SIGMA = [.9 .4; .4 .3];

X = mvnrnd(mu,SIGMA,10);

p = mvnpdf(X,mu,SIGMA);

More About
• “Multivariate Normal Distribution” on page B-101

See Also
mvncdf | mvnrnd | normpdf

 mvregress

22-3023

mvregress
Multivariate linear regression

Syntax

beta = mvregress(X,Y)

beta = mvregress(X,Y,Name,Value)

[beta,Sigma] = mvregress(___)

[beta,Sigma,E,CovB,logL] = mvregress(___)

Description

beta = mvregress(X,Y) returns the estimated coefficients for a multivariate normal
regression of the d-dimensional responses in Y on the design matrices in X.

beta = mvregress(X,Y,Name,Value) returns the estimated coefficients using
additional options specified by one or more name-value pair arguments. For example,
you can specify the estimation algorithm, initial estimate values, or maximum number of
iterations for the regression.

[beta,Sigma] = mvregress(___) also returns the estimated d-by-d variance-
covariance matrix of Y, using any of the input arguments from the previous syntaxes.

[beta,Sigma,E,CovB,logL] = mvregress(___) also returns a matrix of residuals
E, estimated variance-covariance matrix of the regression coefficients CovB, and the
value of the log likelihood objective function after the last iteration logL.

Examples

Multivariate Regression Model for Panel Data with Different Intercepts

Fit a multivariate regression model to panel data, assuming different intercepts and
common slopes.

Load the sample data.

load('flu')

22 Functions — Alphabetical List

22-3024

The dataset array flu contains national CDC flu estimates, and nine separate regional
estimates based on Google query data.

Extract the response and predictor data.

Y = double(flu(:,2:end-1));

[n,d] = size(Y);

x = flu.WtdILI;

The responses in Y are the nine regional flu estimates. Observations exist for every week
over a one-year period, so n = 52. The dimension of the responses corresponds to the
regions, so d = 9. The predictors in x are the weekly national flu estimates.

Plot the flu data, grouped by region.

figure;

regions = flu.Properties.VarNames(2:end-1);

plot(x,Y,'x')

legend(regions,'Location','NorthWest')

 mvregress

22-3025

Fit the multivariate regression model

y x i n j dij j ij ij= + + = =a b e , , , ; , , ,1 1… …

with between-region concurrent correlation

COV j dij ij jj(,) , , , .e e s¢ ¢= = 1…

There are K = 10 regression coefficients to estimate: nine intercept terms and a common
slope. The input argument X should be an n-element cell array of d-by-K design matrices.

X = cell(n,1);

for i=1:n

 X{i} = [eye(d) repmat(x(i),d,1)];

end

[beta,Sigma] = mvregress(X,Y);

beta contains estimates of the K-dimensional coefficient vector

a a a b1 2 9, , , , .…()¢

Sigma contains estimates of the d-by-d variance-covariance matrix for the between-
region concurrent correlations

s s

s s

11 1 9

9 1 9 9

…

M O M

L

,

, ,

.

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Plot the fitted regression model.

B = [beta(1:d)';repmat(beta(end),1,d)];

xx = linspace(.5,3.5)';

fits = [ones(size(xx)),xx]*B;

figure;

h = plot(x,Y,'x',xx,fits,'-');

22 Functions — Alphabetical List

22-3026

for i = 1:d

 set(h(d+i),'color',get(h(i),'color'));

end

legend(regions,'Location','NorthWest');

The plot shows that each regression line has a different intercept but the same slope.
Upon visual inspection, some regression lines appear to fit the data better than others.

Multivariate Regression for Panel Data with Different Slopes

Fit a multivariate regression model to panel data using least squares, assuming different
intercepts and slopes.

Load the sample data.

load('flu');

The dataset array flu contains national CDC flu estimates, and nine separate regional
estimates based on Google queries.

 mvregress

22-3027

Extract the response and predictor data.

Y = double(flu(:,2:end-1));

[n,d] = size(Y);

x = flu.WtdILI;

The responses in Y are the nine regional flu estimates. Observations exist for every week
over a one-year period, so n = 52. The dimension of the responses corresponds to the
regions, so d = 9. The predictors in x are the weekly national flu estimates.

Fit the multivariate regression model

y x i n j dij j j ij ij= + + = =a b e , , , ; , , ,1 1… …

with between-region concurrent correlation

COV j dij ij jj(,) , , , .e e s¢ ¢= = 1…

There are K = 18 regression coefficients to estimate: nine intercept terms, and nine slope
terms. X is an n-element cell array of d-by-K design matrices.

X = cell(n,1);

for i=1:n

 X{i} = [eye(d) x(i)*eye(d)];

end

[beta,Sigma] = mvregress(X,Y,'algorithm','cwls');

beta contains estimates of the K-dimensional coefficient vector,

a a a b b b1 2 9 1 2 9, , , , , , , .… …()¢

Plot the fitted regression model.

B = [beta(1:d)';beta(d+1:end)'];

xx = linspace(.5,3.5)';

fits = [ones(size(xx)),xx]*B;

figure;

h = plot(x,Y,'x',xx,fits,'-');

for i = 1:d

22 Functions — Alphabetical List

22-3028

 set(h(d+i),'color',get(h(i),'color'));

end

regions = flu.Properties.VarNames(2:end-1);

legend(regions,'Location','NorthWest');

The plot shows that each regression line has a different intercept and slope.

Multivariate Regression With a Single Design Matrix

Fit a multivariate regression model using a single n-by-P design matrix for all response
dimensions.

Load the sample data.

load('flu');

The dataset array flu contains national CDC flu estimates, and nine separate regional
estimates based on Google queries.

 mvregress

22-3029

Extract the response and predictor data.

Y = double(flu(:,2:end-1));

[n,d] = size(Y);

x = flu.WtdILI;

The responses in Y are the nine regional flu estimates. Observations exist for every week
over a one-year period, so n = 52. The dimension of the responses corresponds to the
regions, so d = 9. The predictors in x are the weekly national flu estimates.

Create an n-by-P design matrix X. Add a column of ones to include a constant term in the
regression.

X = [ones(size(x)),x];

Fit the multivariate regression model

y x i n j dij j j ij ij= + + = =a b e , , , ; , , ,1 1… …

with between-region concurrent correlation

COV j dij ij jj(,) , , , .e e s¢ ¢= = 1…

There are 18 regression coefficients to estimate: nine intercept terms, and nine slope
terms.

[beta,Sigma,E,CovB,logL] = mvregress(X,Y);

beta contains estimates of the P-by-d coefficient matrix. Sigma contains estimates of
the d-by-d variance-covariance matrix for the between-region concurrent correlations.
E is a matrix of the residuals. CovB is the estimated variance-covariance matrix of the
regression coefficients. logL is the value of the log likelihood objective function after the
last iteration.

Plot the fitted regression model.

B = beta;

xx = linspace(.5,3.5)';

fits = [ones(size(xx)),xx]*B;

22 Functions — Alphabetical List

22-3030

figure;

h = plot(x,Y,'x', xx,fits,'-');

for i = 1:d

 set(h(d+i),'color',get(h(i),'color'));

end

regions = flu.Properties.VarNames(2:end-1);

legend(regions,'Location','NorthWest');

The plot shows that each regression line has a different intercept and slope.

• “Set Up Multivariate Regression Problems” on page 13-15
• “Multivariate General Linear Model” on page 13-29

 mvregress

22-3031

• “Fixed Effects Panel Model with Concurrent Correlation” on page 13-34
• “Longitudinal Analysis” on page 13-42

Input Arguments

X — Design matrices
matrix | cell array of matrices

Design matrices for the multivariate regression, specified as a matrix or cell array of
matrices. n is the number of observations in the data, K is the number of regression
coefficients to estimate, p is the number of predictor variables, and d is the number of
dimensions in the response variable matrix Y.

• If d = 1, then specify X as a single n-by-K design matrix.
• If d > 1 and all d dimensions have the same design matrix, then you can specify X as a

single n-by-p design matrix (not in a cell array).
• If d > 1 and all n observations have the same design matrix, then you can specify X as

a cell array containing a single d-by-K design matrix.
• If d > 1 and all n observations do not have the same design matrix, then specify X as a

cell array of length n containing d-by-K design matrices.

To include a constant term in the regression model, each design matrix should contain a
column of ones.

mvregress treats NaN values in X as missing values, and ignores rows in X with missing
values.
Data Types: single | double | cell

Y — Response variables
matrix

Response variables, specified as an n-by-d matrix. n is the number of observations in the
data, and d is the number of dimensions in the response. When d = 1, mvregress treats
the values in Y like n independent response values.

mvregress treats NaN values in Y as missing values, and handles them according to the
estimation algorithm specified using the name-value pair argument algorithm.
Data Types: single | double

22 Functions — Alphabetical List

22-3032

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'algorithm','cwls','covar0',C specifies covariance-weighted least
squares estimation using the covariance matrix C.

'algorithm' — Estimation algorithm
'mvn' | 'ecm' | 'cwls'

Estimation algorithm, specified as the comma-separated pair consisting of 'algorithm'
and one of the following.

'mvn' Ordinary multivariate normal maximum likelihood
estimation.

'ecm' Maximum likelihood estimation via the ECM algorithm.
'cwls' Covariance-weighted least squares estimation.

The default algorithm depends on the presence of missing data.

• For complete data, the default is 'mvn'.
• If there are any missing responses (indicated by NaN), the default is 'ecm', provided

the sample size is sufficient to estimate all parameters. Otherwise, the default
algorithm is 'cwls'.

Note: If algorithm has the value 'mvn', then mvregress removes observations with
missing response values before estimation.

Example: 'algorithm','ecm'

'beta0' — Initial estimates for regression coefficients
vector

Initial estimates for the regression coefficients, specified as the comma-separated pair
consisting of 'beta0' and a vector with K elements. The default value is a vector of 0s.

 mvregress

22-3033

The beta0 argument is not used if the estimation algorithm is 'mvn'.

'covar0' — Initial estimate for variance-covariance matrix
matrix

Initial estimate for the variance-covariance matrix, Sigma, specified as the comma-
separated pair consisting of 'covar0' and a symmetric, positive definite, d-by-d matrix.
The default value is the identity matrix.

If the estimation algorithm is 'cwls', then mvregress uses covar0 as the weighting
matrix at each iteration, without changing it.

'covtype' — Type of variance-covariance matrix
'full' (default) | 'diagonal'

Type of variance-covariance matrix to estimate for Y, specified as the comma-separated
pair consisting of 'covtype' and one of the following.

'full' Estimate all d(d + 1)/2 variance-covariance
elements.

'diagonal' Estimate only the d diagonal elements of the
variance-covariance matrix.

Example: 'covtype','diagonal'

'maxiter' — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations for the estimation algorithm, specified as the comma-
separated pair consisting of 'maxiter' and a positive integer.

Iterations continue until estimates are within the convergence tolerances tolbeta
and tolobj, or the maximum number of iterations specified by maxiter is reached. If
both tolbeta and tolobj are 0, then mvregress performs maxiter iterations with no
convergence tests.
Example: 'maxiter',50

'outputfcn' — Function to evaluate each iteration
function handle

22 Functions — Alphabetical List

22-3034

Function to evaluate at each iteration, specified as the comma-separated pair consisting
of 'outputfcn' and a function handle. The function must return a logical true or
false. At each iteration, mvregress evaluates the function. If the result is true,
iterations stop. Otherwise, iterations continue. For example, you could specify a function
that plots or displays current iteration results, and returns true if you close the figure.

The function must accept three input arguments, in this order:

• Vector of current coefficient estimates
• Structure containing these three fields:

Covar Current value of the variance-covariance matrix
iteration Current iteration number
fval Current value of the loglikelihood objective function

• Text string that takes these three values:

'init' When the function is called during initialization
'iter' When the function is called after an iteration
'done' When the function is called after completion

'tolbeta' — Convergence tolerance for regression coefficients
sqrt(eps) (default) | positive scalar value

Convergence tolerance for regression coefficients, specified as the comma-separated pair
consisting of 'tolbeta' and a positive scalar value.

Let b
t denote the estimate of the coefficient vector at iteration t, and tb be the tolerance

specified by tolbeta. The convergence criterion for regression coefficient estimation is

b b b
t t t

K- < +()-1
1t b ,

where K is the length of b
t and v is the norm of a vector v.

Iterations continue until estimates are within the convergence tolerances tolbeta
and tolobj, or the maximum number of iterations specified by maxiter is reached. If

 mvregress

22-3035

both tolbeta and tolobj are 0, then mvregress performs maxiter iterations with no
convergence tests.
Example: 'tolbeta',1e-5

'tolobj' — Convergence tolerance for loglikelihood objective function
eps^(3/4) (default) | positive scalar value

Convergence tolerance for the loglikelihood objective function, specified as the comma-
separated pair consisting of 'tolobj' and a positive scalar value.

Let L
t denote the value of the loglikelihood objective function at iteration t, and tl be

the tolerance specified by tolobj. The convergence criterion for the objective function is

L L L
t t t

- < +()-1
1tl .

Iterations continue until estimates are within the convergence tolerances tolbeta
and tolobj, or the maximum number of iterations specified by maxiter is reached. If
both tolbeta and tolobj are 0, then mvregress performs maxiter iterations with no
convergence tests.
Example: 'tolobj',1e-5

'varformat' — Format for parameter estimate variance-covariance matrix
'beta' (default) | 'full'

Format for the parameter estimate variance-covariance matrix, CovB, specified as the
comma-separated pair consisting of 'varformat' and one of the following.

'beta' Return the variance-covariance matrix for only the
regression coefficient estimates, beta.

'full' Return the variance-covariance matrix for both the
regression coefficient estimates, beta, and the variance-
covariance matrix estimate, Sigma.

Example: 'varformat','full'

'vartype' — Type of variance-covariance matrix for parameter estimates
'hessian' (default) | 'fisher'

22 Functions — Alphabetical List

22-3036

Type of variance-covariance matrix for parameter estimates, specified as the comma-
separated pair consisting of 'vartype' and either 'hessian' or 'fisher'.

• If the value is 'hessian', then mvregress uses the Hessian, or observed
information, matrix to compute CovB.

• If the value is 'fisher', then mvregress uses the complete-data Fisher, or expected
information, matrix to compute CovB.

The 'hessian' method takes into account the increase uncertainties due to missing
data, while the 'fisher' method does not.

Example: 'vartype','fisher'

Output Arguments

beta — Estimated regression coefficients
column vector | matrix

Estimated regression coefficients, returned as a column vector or matrix.

• If you specify X as a single n-by-K design matrix, then mvregress returns beta as a
column vector of length K. For example, if X is a 20-by-5 design matrix, then beta is a
5-by-1 column vector.

• If you specify X as a cell array containing one or more d-by-K design matrices, then
mvregress returns beta as a column vector of length K. For example, if X is a cell
array containing 2-by-10 design matrices, then beta is a 10-by-1 column vector.

• If you specify X as a single n-by-p design matrix (not in a cell array), and Y has
dimension d > 1, then mvregress returns beta as a p-by-d matrix. For example, if X
is a 20-by-5 design matrix, and Y has two dimensions such that d = 2, then beta is a 5-
by-2 matrix, and the fitted Y values are X × beta.

Sigma — Estimated variance-covariance matrix
square matrix

Estimated variance-covariance matrix for the responses in Y, returned as a d-by-d square
matrix.

Note: The estimated variance-covariance matrix, Sigma, is not the sample covariance
matrix of the residual matrix, E.

 mvregress

22-3037

E — Residuals
matrix

Residuals for the fitted regression model, returned as an n-by-d matrix.

If algorithm has the value 'ecm' or 'cwls', then mvregress computes the residual
values corresponding to missing values in Y as the difference between the conditionally
imputed values and the fitted values.

Note: If algorithm has the value 'mvn', then mvregress removes observations with
missing response values before estimation.

CovB — Parameter estimate variance-covariance matrix
square matrix

Parameter estimate variance-covariance matrix, returned as a square matrix.

• If varformat has the value 'beta' (default), then CovB is the estimated variance-
covariance matrix of the coefficient estimates in beta.

• If varformat has the value 'full', then CovB is the estimated variance-covariance
matrix of the combined estimates in beta and Sigma.

logL — Loglikelihood objective function value
scalar value

Loglikelihood objective function value after the last iteration, returned as a scalar value.

More About

Multivariate Normal Regression

Multivariate normal regression is the regression of a d-dimensional response on a
design matrix of predictor variables, with normally distributed errors. The errors can be
heteroscedastic and correlated.

The model is

y X e
i i i

i n= + =b , , , ,1…

22 Functions — Alphabetical List

22-3038

where

• y
i is a d-dimensional vector of responses.

• X
i is a design matrix of predictor variables.

• b is vector or matrix of regression coefficients.

• e
i is a d-dimensional vector of error terms, with multivariate normal distribution

e 0
i d

MVN~ (,).S

Conditionally Imputed Values

The expectation/conditional maximization ('ecm') and covariance-weighted least
squares ('cwls') estimation algorithms include imputation of missing response values.

Let %y denote missing observations. The conditionally imputed values are the expected

value of the missing observation given the observed data, E %y y| .()

The joint distribution of the missing and observed responses is a multivariate normal
distribution,

% % % %

%

y

y

X

X

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
~ ,MVN

y yy

yy y

b
b

S S

S S
..

Using properties of the multivariate normal distribution, the imputed conditional
expectation is given by

E S S% %
%y y X y X| ().() = + --b byy y

1

Note: mvregress only imputes missing response values. Observations with missing
values in the design matrix are removed.

• “Multivariate Linear Regression” on page 13-3
• “Estimation of Multivariate Regression Models” on page 13-6

 mvregress

22-3039

References

[1] Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with Missing Data.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li, and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM
Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

[3] Sexton, Joe, and A. R. Swensen. “ECM Algorithms that Converge at the Rate of EM.”
Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

[4] Dempster, A. P., N. M. Laird, and D. B. Rubin. “Maximum Likelihood from
Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society.
Series B, Vol. 39, No. 1, 1977, pp. 1–37.

See Also
manova1 | mvregresslike

22 Functions — Alphabetical List

22-3040

mvregresslike
Negative log-likelihood for multivariate regression

Syntax

nlogL = mvregresslike(X,Y,b,SIGMA,alg)

[nlogL,COVB] = mvregresslike(...)

[nlogL,COVB] = mvregresslike(...,type,format)

Description

nlogL = mvregresslike(X,Y,b,SIGMA,alg) computes the negative log-likelihood
nlogL for a multivariate regression of the d-dimensional multivariate observations in
the n-by-d matrix Y on the predictor variables in the matrix or cell array X, evaluated
for the p-by-1 column vector b of coefficient estimates and the d-by-d matrix SIGMA
specifying the covariance of a row of Y. If d = 1, X can be an n-by-p design matrix of
predictor variables. For any value of d, X can also be a cell array of length n, with
each cell containing a d-by-p design matrix for one multivariate observation. If all
observations have the same d-by-p design matrix, X can be a single cell.

NaN values in X or Y are taken as missing. Observations with missing values in X are
ignored. Treatment of missing values in Y depends on the algorithm specified by alg.

alg should match the algorithm used by mvregress to obtain the coefficient estimates
b, and must be one of the following:

• 'ecm' — ECM algorithm
• 'cwls' — Least squares conditionally weighted by SIGMA
• 'mvn' — Multivariate normal estimates computed after omitting rows with any

missing values in Y

[nlogL,COVB] = mvregresslike(...) also returns an estimated covariance matrix
COVB of the parameter estimates b.

[nlogL,COVB] = mvregresslike(...,type,format) specifies the type and format
of COVB.

 mvregresslike

22-3041

type is either:

• 'hessian' — To use the Hessian or observed information. This method takes into
account the increased uncertainties due to missing data. This is the default.

• 'fisher' — To use the Fisher or expected information. This method uses the
complete data expected information, and does not include uncertainty due to missing
data.

format is either:

• 'beta' — To compute COVB for b only. This is the default.
• 'full' — To compute COVB for both b and SIGMA.

More About
• “Multivariate Normal Distribution” on page B-101

See Also
mvregress | manova1

22 Functions — Alphabetical List

22-3042

mvnrnd
Multivariate normal random numbers

Syntax

R = mvnrnd(MU,SIGMA)

r = mvnrnd(MU,SIGMA,cases)

Description

R = mvnrnd(MU,SIGMA) returns an n-by-d matrix R of random vectors chosen from
the multivariate normal distribution with mean MU, and covariance SIGMA. MU is a
vector or n-by-d matrix, and mvnrnd generates each row of R using the corresponding
row of mu. SIGMA is a d-by-d symmetric positive semi-definite matrix, or a d-by-d-by-n
array. If SIGMA is an array, mvnrnd generates each row of R using the corresponding
page of SIGMA, i.e., mvnrnd computes R(i,:) using MU(i,:) and SIGMA(:,:,i). If
the covariance matrix is diagonal, containing variances along the diagonal and zero
covariances off the diagonal, SIGMA may also be specified as a 1-by-d vector or a 1-by-d-
by-n array, containing just the diagonal. If MU is a 1-by-d vector, mvnrnd replicates it to
match the trailing dimension of SIGMA.

r = mvnrnd(MU,SIGMA,cases) returns a cases-by-d matrix R of random vectors
chosen from the multivariate normal distribution with a common 1-by-d mean vector MU,
and a common d-by-d covariance matrix SIGMA.

Examples

Generate Multivariate Normal Random Numbers

Generate random numbers from a multivariate normal distribution with parameters mu
= [2,3] and sigma = [1,1.5;1.5,3].

mu = [2,3];

sigma = [1,1.5;1.5,3];

rng default % For reproducibility

r = mvnrnd(mu,sigma,100);

 mvnrnd

22-3043

Plot the random numbers.

figure

plot(r(:,1),r(:,2),'+')

More About
• “Multivariate Normal Distribution” on page B-101

See Also
mvnpdf | mvncdf | normrnd

22 Functions — Alphabetical List

22-3044

mvtcdf

Multivariate t cumulative distribution function

Syntax

y = mvtcdf(X,C,DF)

y = mvtcdf(xl,xu,C,DF)

[y,err] = mvtcdf(...)

[...] = mvntdf(...,options)

Description

y = mvtcdf(X,C,DF) returns the cumulative probability of the multivariate t
distribution with correlation parameters C and degrees of freedom DF, evaluated at each
row of X. Rows of the n-by-d matrix X correspond to observations or points, and columns
correspond to variables or coordinates. y is an n-by-1 vector.

C is a symmetric, positive definite, d-by-d matrix, typically a correlation matrix. If its
diagonal elements are not 1, mvtcdf scales C to correlation form. mvtcdf does not
rescale X. DF is a scalar, or a vector with n elements.

The multivariate t cumulative probability at X is defined as the probability that a
random vector T, distributed as multivariate t, will fall within the semi-infinite rectangle
with upper limits defined by X, i.e., Pr{T(1)≤X(1),T(2)≤X(2),...T(d)≤X(d)}.

y = mvtcdf(xl,xu,C,DF) returns the multivariate t cumulative probability evaluated
over the rectangle with lower and upper limits defined by xl and xu, respectively.

[y,err] = mvtcdf(...) returns an estimate of the error in y. For bivariate and
trivariate distributions, mvtcdf uses adaptive quadrature on a transformation of the t
density, based on methods developed by Genz, as described in the references. The default
absolute error tolerance for these cases is 1e-8. For four or more dimensions, mvtcdf
uses a quasi-Monte Carlo integration algorithm based on methods developed by Genz and
Bretz, as described in the references. The default absolute error tolerance for these cases
is 1e-4.

 mvtcdf

22-3045

[...] = mvntdf(...,options) specifies control parameters for the numerical
integration used to compute y. This argument can be created by a call to statset.
Choices of statset parameters are:

• 'TolFun' — Maximum absolute error tolerance. Default is 1e-8 when d < 4, or 1e-4
when d ≥ 4.

• 'MaxFunEvals' — Maximum number of integrand evaluations allowed when d ≥ 4.
Default is 1e7. 'MaxFunEvals' is ignored when d < 4.

• 'Display' — Level of display output. Choices are 'off' (the default), 'iter', and
'final'. 'Display' is ignored when d < 4.

Examples

Compute the Multivariate t Distribution cdf

Compute the cdf of a multivariate t distribution with correlation parameters C =
[1 .4; .4 1] and 2 degrees of freedom.

C = [1 .4; .4 1];

df = 2;

[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');

X = [X1(:) X2(:)];

p = mvtcdf(X,C,df);

Plot the cdf.

figure;

surf(X1,X2,reshape(p,25,25));

22 Functions — Alphabetical List

22-3046

More About
• “Multivariate t Distribution” on page B-107

References

[1] Genz, A. “Numerical Computation of Rectangular Bivariate and Trivariate Normal
and t Probabilities.” Statistics and Computing. Vol. 14, No. 3, 2004, pp. 251–260.

 mvtcdf

22-3047

[2] Genz, A., and F. Bretz. “Numerical Computation of Multivariate t Probabilities with
Application to Power Calculation of Multiple Contrasts.” Journal of Statistical
Computation and Simulation. Vol. 63, 1999, pp. 361–378.

[3] Genz, A., and F. Bretz. “Comparison of Methods for the Computation of Multivariate t
Probabilities.” Journal of Computational and Graphical Statistics. Vol. 11, No. 4,
2002, pp. 950–971.

See Also
mvtpdf | mvtrnd

22 Functions — Alphabetical List

22-3048

mvtpdf

Multivariate t probability density function

Syntax

y = mvtpdf(X,C,df)

Description

y = mvtpdf(X,C,df) returns the probability density of the multivariate t distribution
with correlation parameters C and degrees of freedom df, evaluated at each row of
X. Rows of the n-by-d matrix X correspond to observations or points, and columns
correspond to variables or coordinates. C is a symmetric, positive definite, d-by-d matrix,
typically a correlation matrix. If its diagonal elements are not 1, mvtpdf scales C to
correlation form. mvtcdf does not rescale X. df is a scalar, or a vector with n elements. y
is an n-by-1 vector.

Examples

Compute the Multivariate t Distribution pdf

Compute the pdf of a multivariate t distribution with correlation parameters C =
[1 .4; .4 1] and 2 degrees of freedom.

[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');

X = [X1(:) X2(:)];

C = [1 .4; .4 1];

df = 2;

p = mvtpdf(X,C,df);

Plot the pdf.

figure;

surf(X1,X2,reshape(p,25,25))

 mvtpdf

22-3049

More About
• “Multivariate t Distribution” on page B-107

See Also
mvtcdf | mvtrnd

22 Functions — Alphabetical List

22-3050

mvtrnd
Multivariate t random numbers

Syntax

R = mvtrnd(C,df,cases)

R = mvtrnd(C,df)

Description

R = mvtrnd(C,df,cases) returns a matrix of random numbers chosen from the
multivariate t distribution, where C is a correlation matrix. df is the degrees of freedom
and is either a scalar or is a vector with cases elements. If p is the number of columns in
C, then the output R has cases rows and p columns.

Let t represent a row of R. Then the distribution of t is that of a vector having a
multivariate normal distribution with mean 0, variance 1, and covariance matrix C,
divided by an independent chi-square random value having df degrees of freedom. The
rows of R are independent.

C must be a square, symmetric and positive definite matrix. If its diagonal elements are
not all 1 (that is, if C is a covariance matrix rather than a correlation matrix), mvtrnd
rescales C to transform it to a correlation matrix before generating the random numbers.

R = mvtrnd(C,df) returns a single random number from the multivariate t
distribution.

Examples

Generate Multivariate t Distribution Random Numbers

Generate random numbers from a multivariate t distribution with correlation
parameters SIGMA = [1 0.8;0.8 1] and 3 degrees of freedom.

rng default; % For reproducibility

SIGMA = [1 0.8;0.8 1];

R = mvtrnd(SIGMA,3,100);

 mvtrnd

22-3051

Plot the random numbers.

figure;

plot(R(:,1),R(:,2),'+')

More About
• “Multivariate t Distribution” on page B-107

See Also
mvtpdf | mvtcdf

22 Functions — Alphabetical List

22-3052

NumObservations property
Class: cvpartition

Number of observations (including observations with missing group values)

Description

Number of observations (including observations with missing group values).

 NaiveBayes class

22-3053

NaiveBayes class

Naive Bayes classifier

Description

A NaiveBayes object defines a Naive Bayes classifier. A Naive Bayes classifier assigns
a new observation to the most probable class, assuming the features are conditionally
independent given the class value.

Construction

.NaiveBayes
Create NaiveBayes object

Methods

disp
Display NaiveBayes classifier object

display
Display NaiveBayes classifier object

fit
Create Naive Bayes classifier object by
fitting training data

posterior
Compute posterior probability of each class
for test data

predict
Predict class label for test data

subsasgn
Subscripted reference for NaiveBayes
object

22 Functions — Alphabetical List

22-3054

subsref
Subscripted reference for NaiveBayes
object

Properties

CIsNonEmpty
Flag for non-empty classes

ClassLevels
Class levels

Prior
Class priors

Dist
Distribution names

NClasses
Number of classes

NDims
Number of dimensions

Params
Parameter estimates

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

Examples

Predict the class label using the Naive Bayes classifier:

load fisheriris

Use the default Gaussian distribution and a confusion matrix:

O1 = fitNaiveBayes(meas,species);

 NaiveBayes class

22-3055

C1 = O1.predict(meas);

cMat1 = confusionmat(species,C1)

This returns:

cMat1 =

 50 0 0

 0 47 3

 0 3 47

Use the Gaussian distribution for features 1 and 3 and use the kernel density estimation
for features 2 and 4:

O2 = fitNaiveBayes(meas,species,'dist',...

{'normal','kernel','normal','kernel'});

C2 = O2.predict(meas);

cMat2 = confusionmat(species,C2)

This returns:

cMat2 =

 50 0 0

 0 47 3

 0 3 47

References

[1] Mitchell, T. (1997) Machine Learning, McGraw Hill.

[2] Vangelis M., Ion A., and Geogios P. Spam Filtering with Naive Bayes - Which Naive
Bayes? (2006) Third Conference on Email and Anti-Spam.

[3] George H. John and Pat Langley. Estimating continuous distributions in bayesian
classifiers (1995) the Eleventh Conference on Uncertainty in Artificial
Intelligence.

How To
• “Naive Bayes Classification” on page 15-31
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-3056

NaiveBayes
Class: NaiveBayes

Create NaiveBayes object

Description

You cannot create a NaiveBayes classifier by calling the constructor. Use
fitNaiveBayes to create a NaiveBayes classifier by fitting the object to training data.

See Also
fitNaiveBayes

 prob.NakagamiDistribution class

22-3057

prob.NakagamiDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Nakagami probability distribution object

Description

prob.NakagamiDistribution is an object consisting of parameters, a model
description, and sample data for a Nakagami probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Nakagami') creates a Nakagami probability distribution object using
the default parameter values.

pd = makedist('Nakagami','mu',mu,'omega',omega) creates a Nakagami
probability distribution object using the specified parameter values.

Input Arguments

mu — Shape parameter
1 (default) | positive scalar value

Shape parameter for the Nakagami distribution, specified as a positive scalar value.
Data Types: single | double

omega — Scale parameter
1 (default) | positive scalar value

Scale parameter for the Nakagami distribution, specified as a positive scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-3058

Properties

mu — Shape parameter
positive scalar value

Shape parameter for the Nakagami distribution, stored as a positive scalar value.
Data Types: single | double

omega — Scale parameter
positive scalar value

Scale parameter for the Nakagami distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.

 prob.NakagamiDistribution class

22-3059

Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

22 Functions — Alphabetical List

22-3060

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

 prob.NakagamiDistribution class

22-3061

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Nakagami Distribution

The Nakagami distribution is commonly used in communication theory to model
scattered signals that reach a receiver using multiple paths.

The Nakagami distribution uses the following parameters.

Parameter Description Support

mu Shape parameter m > 0

omega Scale parameter w > 0

The probability density function (pdf) is

22 Functions — Alphabetical List

22-3062

f x x x x| , exp ; ,m w
m
w m

m
w

m
m() =

Ê

Ë
ÁÁ

ˆ

¯
˜̃

()
-Ï

Ì
Ó

¸
˝
˛

>-()
2

1
0

2 1 2

G

where G ◊() is the Gamma function.

Examples

Create a Nakagami Distribution Object Using Default Parameters

Create a Nakagami distribution object using the default parameter values.

pd = makedist('Nakagami')

pd =

 NakagamiDistribution

 Nakagami distribution

 mu = 1

 omega = 1

Create a Nakagami Distribution Object Using Specified Parameters

Create a Nakagami distribution object by specifying parameter values.

pd = makedist('Nakagami','mu',5,'omega',2)

pd =

 NakagamiDistribution

 Nakagami distribution

 mu = 5

 omega = 2

Compute the mean of the distribution.

m = mean(pd)

m =

 prob.NakagamiDistribution class

22-3063

 1.3794

See Also
dfittool | fitdist | makedist

More About
• “Nakagami Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-3064

nancov
Covariance ignoring NaN values

Syntax

Y = nancov(X)

Y = nancov(X1,X2)

Y = nancov(...,1)

Y = nancov(...,'pairwise')

Description

Y = nancov(X) is the covariance cov of X, computed after removing observations with
NaN values.

For vectors x, nancov(x) is the sample variance of the remaining elements, once
NaN values are removed. For matrices X, nancov(X) is the sample covariance of
the remaining observations, once observations (rows) containing any NaN values are
removed.

Y = nancov(X1,X2), where X1 and X2 are matrices with the same number of elements,
is equivalent to nancov(X), where X = [X1(:) X2(:)].

nancov removes the mean from each variable (column for matrix X) before calculating
Y. If n is the number of remaining observations after removing observations with NaN
values, nancov normalizes Y by either n – 1 or n , depending on whether n > 1 or n = 1,
respectively. To specify normalization by n, use Y = nancov(...,1).

Y = nancov(...,'pairwise') computes Y(i,j) using rows with no NaN values in
columns i or j. The result Y may not be a positive definite matrix.

Examples

Generate random data for two variables (columns) with random missing values:

X = rand(10,2);

 nancov

22-3065

p = randperm(numel(X));

X(p(1:5)) = NaN

X =

 0.8147 0.1576

 NaN NaN

 0.1270 0.9572

 0.9134 NaN

 0.6324 NaN

 0.0975 0.1419

 0.2785 0.4218

 0.5469 0.9157

 0.9575 0.7922

 0.9649 NaN

Establish a correlation between a third variable and the other two variables:

X(:,3) = sum(X,2)

X =

 0.8147 0.1576 0.9723

 NaN NaN NaN

 0.1270 0.9572 1.0842

 0.9134 NaN NaN

 0.6324 NaN NaN

 0.0975 0.1419 0.2394

 0.2785 0.4218 0.7003

 0.5469 0.9157 1.4626

 0.9575 0.7922 1.7497

 0.9649 NaN NaN

Compute the covariance matrix for the three variables after removing observations
(rows) with NaN values:

Y = nancov(X)

Y =

 0.1311 0.0096 0.1407

 0.0096 0.1388 0.1483

 0.1407 0.1483 0.2890

See Also
NaN | cov | var | nanvar

22 Functions — Alphabetical List

22-3066

nanmax
Maximum ignoring NaN values

Syntax

y = nanmax(X)

Y = nanmax(X1,X2)

y = nanmax(X,[],dim)

[y,indices] = nanmax(...)

Description

y = nanmax(X) is the maximum max of X, computed after removing NaN values.

For vectors x, nanmax(x) is the maximum of the remaining elements, once NaN values
are removed. For matrices X, nanmax(X) is a row vector of column maxima, once NaN
values are removed. For multidimensional arrays X, nanmax operates along the first
nonsingleton dimension.

Y = nanmax(X1,X2) returns an array Y the same size as X1 and X2 with Y(i,j) =
nanmax(X1(i,j),X2(i,j)). Scalar inputs are expanded to an array of the same size as
the other input.

y = nanmax(X,[],dim) operates along the dimension dim of X.

[y,indices] = nanmax(...) also returns the row indices of the maximum values for
each column in the vector indices.

Examples

Find column maxima and their indices for data with missing values:

X = magic(3);

X([1 6:9]) = repmat(NaN,1,5)

X =

 NaN 1 NaN

 nanmax

22-3067

 3 5 NaN

 4 NaN NaN

[y,indices] = nanmax(X)

y =

 4 5 NaN

indices =

 3 2 1

See Also
NaN | max | nanmin

22 Functions — Alphabetical List

22-3068

nanmean
Mean ignoring NaN values

Syntax

y = nanmean(X)

y = nanmean(X,dim)

Description

y = nanmean(X) is the mean of X, computed after removing NaN values.

For vectors x, nanmean(x) is the mean of the remaining elements, once NaN values
are removed. For matrices X, nanmean(X) is a row vector of column means, once NaN
values are removed. For multidimensional arrays X, nanmean operates along the first
nonsingleton dimension.

y = nanmean(X,dim) takes the mean along dimension dim of X.

Note: If X contains a vector of all NaN values along some dimension, the vector is empty
once the NaN values are removed, so the sum of the remaining elements is 0. Since the
mean involves division by 0, its value is NaN. The output NaN is not a mean of NaN values.

Examples

Find column means for data with missing values:

X = magic(3);

X([1 6:9]) = repmat(NaN,1,5)

X =

 NaN 1 NaN

 3 5 NaN

 4 NaN NaN

y = nanmean(X)

y =

 nanmean

22-3069

 3.5000 3.0000 NaN

See Also
NaN | mean | nanmedian

22 Functions — Alphabetical List

22-3070

nanmedian
Median ignoring NaN values

Syntax

y = nanmedian(X)

y = nanmedian(X,dim)

Description

y = nanmedian(X) is the median of X, computed after removing NaN values.

For vectors x, nanmedian(x) is the median of the remaining elements, once NaN values
are removed. For matrices X, nanmedian(X) is a row vector of column medians, once
NaN values are removed. For multidimensional arrays X, nanmedian operates along the
first nonsingleton dimension.

y = nanmedian(X,dim) takes the mean along dimension dim of X.

Examples

Find column medians for data with missing values:

X = magic(3);

X([1 6:9]) = repmat(NaN,1,5)

X =

 NaN 1 NaN

 3 5 NaN

 4 NaN NaN

y = nanmedian(X)

y =

 3.5000 3.0000 NaN

See Also
NaN | median | nanmean

 nanmin

22-3071

nanmin
Minimum ignoring NaN values

Syntax

y = nanmin(X)

Y = nanmin(X1,X2)

y = nanmin(X,[],dim)

[y,indices] = nanmin(...)

Description

y = nanmin(X) is the minimum min of X, computed after removing NaN values.

For vectors x, nanmin(x) is the minimum of the remaining elements, once NaN values
are removed. For matrices X, nanmin(X) is a row vector of column minima, once NaN
values are removed. For multidimensional arrays X, nanmin operates along the first
nonsingleton dimension.

Y = nanmin(X1,X2) returns an array Y the same size as X1 and X2 with Y(i,j) =
nanmin(X1(i,j),X2(i,j)). Scalar inputs are expanded to an array of the same size as
the other input.

y = nanmin(X,[],dim) operates along the dimension dim of X.

[y,indices] = nanmin(...) also returns the row indices of the minimum values for
each column in the vector indices.

Examples

Find column minima and their indices for data with missing values:

X = magic(3);

X([1 6:9]) = repmat(NaN,1,5)

X =

 NaN 1 NaN

22 Functions — Alphabetical List

22-3072

 3 5 NaN

 4 NaN NaN

[y,indices] = nanmin(X)

y =

 3 1 NaN

indices =

 2 1 1

See Also
NaN | min | nanmax

 nanstd

22-3073

nanstd
Standard deviation ignoring NaN values

Syntax

y = nanstd(X)

y = nanstd(X,1)

y = nanstd(X,flag,dim)

Description

y = nanstd(X) is the standard deviation std of X, computed after removing NaN
values.

For vectors x, nanstd(x) is the sample standard deviation of the remaining elements,
once NaN values are removed. For matrices X, nanstd(X) is a row vector of column
sample standard deviations, once NaN values are removed. For multidimensional arrays
X, nanstd operates along the first nonsingleton dimension.

If n is the number of remaining observations after removing observations with
NaN values, nanstd normalizes y by n–1. To specify normalization by n, use y =
nanstd(X,1).

y = nanstd(X,flag,dim) takes the standard deviation along the dimension dim of
X. The flag is 0 or 1 to specify normalization by n – 1 or n, respectively, where n is the
number of remaining observations after removing observations with NaN values.

Examples

Find column standard deviations for data with missing values:

X = magic(3);

X([1 6:9]) = repmat(NaN,1,5)

X =

 NaN 1 NaN

 3 5 NaN

22 Functions — Alphabetical List

22-3074

 4 NaN NaN

y = nanstd(X)

y =

 0.7071 2.8284 NaN

See Also
NaN | std | nanvar | nanmean

 nansum

22-3075

nansum
Sum ignoring NaN values

Syntax

y = nansum(X)

y = nansum(X,dim)

Description

y = nansum(X) is the sum of X, computed after removing NaN values.

For vectors x, nansum(x) is the sum of the remaining elements, once NaN values are
removed. For matrices X, nansum(X) is a row vector of column sums, once NaN values are
removed. For multidimensional arrays X, nansum operates along the first nonsingleton
dimension.

y = nansum(X,dim) takes the sum along dimension dim of X.

Note: If X contains a vector of all NaN values along some dimension, the vector is empty
once the NaN values are removed, so the sum of the remaining elements is 0. The output
0 is not a sum of NaN values.

Examples

Find column sums for data with missing values:

X = magic(3);

X([1 6:9]) = repmat(NaN,1,5)

X =

 NaN 1 NaN

 3 5 NaN

 4 NaN NaN

y = nansum(X)

y =

22 Functions — Alphabetical List

22-3076

 7 6 0

See Also
NaN | sum

 nanvar

22-3077

nanvar
Variance, ignoring NaN values

Syntax

y = nanvar(X)

y = nanvar(X,1)

y = nanvar(X,w)

y = nanvar(X,w,dim)

Description

y = nanvar(X) is the variance var of X, computed after removing NaN values.

For vectors x, nanvar(x) is the sample variance of the remaining elements, once
NaN values are removed. For matrices X, nanvar(X) is a row vector of column sample
variances, once NaN values are removed. For multidimensional arrays X, nanvar
operates along the first nonsingleton dimension.

nancov removes the mean from each variable (column for matrix X) before calculating
Y. If n is the number of remaining observations after removing observations with NaN
values, nanvar normalizes y by either n – 1 or n , depending on whether n > 1 or n = 1,
respectively. To specify normalization by n, use y = nanvar(X,1).

y = nanvar(X,w) computes the variance using the weight vector w. The length of w
must equal the length of the dimension over which nanvar operates, and its elements
must be nonnegative. Elements of X corresponding to NaN values of w are ignored.

y = nanvar(X,w,dim) takes the variance along the dimension dim of X. Set w to [] to
use the default normalization by n – 1.

Examples

Find column standard deviations for data with missing values:

X = magic(3);

22 Functions — Alphabetical List

22-3078

X([1 6:9]) = repmat(NaN,1,5)

X =

 NaN 1 NaN

 3 5 NaN

 4 NaN NaN

y = nanvar(X)

y =

 0.5000 8.0000 NaN

See Also
NaN | var | nanstd | nanmean

 nbincdf

22-3079

nbincdf
Negative binomial cumulative distribution function

Syntax

y = nbincdf(x,R,p)

y = nbincdf(x,R,p,'upper')

Description

y = nbincdf(x,R,p) computes the negative binomial cdf at each of the values in x
using the corresponding number of successes, R and probability of success in a single
trial, p. x, R, and p can be vectors, matrices, or multidimensional arrays that all have
the same size, which is also the size of y. A scalar input for x, R, or p is expanded to a
constant array with the same dimensions as the other inputs.

y = nbincdf(x,R,p,'upper') returns the complement of the negative binomial cdf
at each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities.

The negative binomial cdf is

y F x r p
r i

i
p q I i

i

x
r i= =

+ −









=
∑(| ,) ()(, ,...)

1

0
0 1

The simplest motivation for the negative binomial is the case of successive random
trials, each having a constant probability p of success. The number of extra trials you
must perform in order to observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation of the negative
binomial, nbincdf allows R to be any positive value, including nonintegers. When R
is noninteger, the binomial coefficient in the definition of the cdf is replaced by the
equivalent expression

Γ
Γ Γ

()

() ()

r i

r i

+
+1

22 Functions — Alphabetical List

22-3080

Examples

Compute Negative Binomial Distribution CDF

x = (0:15);

p = nbincdf(x,3,0.5);

stairs(x,p)

More About
• “Negative Binomial Distribution” on page B-115

 nbincdf

22-3081

See Also
cdf | nbinpdf | nbininv | nbinstat | nbinfit | nbinrnd

22 Functions — Alphabetical List

22-3082

nbinfit

Negative binomial parameter estimates

Syntax

parmhat = nbinfit(data)

[parmhat,parmci] = nbinfit(data,alpha)

[...] = nbinfit(data,alpha,options)

Description

parmhat = nbinfit(data) returns the maximum likelihood estimates (MLEs) of the
parameters of the negative binomial distribution given the data in the vector data.

[parmhat,parmci] = nbinfit(data,alpha) returns MLEs and 100(1-alpha)
percent confidence intervals. By default, alpha = 0.05, which corresponds to 95%
confidence intervals.

[...] = nbinfit(data,alpha,options) accepts a structure, options,
that specifies control parameters for the iterative algorithm the function uses to
compute maximum likelihood estimates. The negative binomial fit function accepts
an options structure which you can create using the function statset. Enter
statset('nbinfit') to see the names and default values of the parameters that
nbinfit accepts in the options structure. See the reference page for statset for more
information about these options.

Note The variance of a negative binomial distribution is greater than its mean. If the
sample variance of the data in data is less than its sample mean, nbinfit cannot
compute MLEs. You should use the poissfit function instead.

More About
• “Negative Binomial Distribution” on page B-115

 nbinfit

22-3083

See Also
nbincdf | nbininv | nbinpdf | nbinrnd | nbinstat | mle | statset

22 Functions — Alphabetical List

22-3084

nbininv

Negative binomial inverse cumulative distribution function

Syntax

X = nbininv(Y,R,P)

Description

X = nbininv(Y,R,P) returns the inverse of the negative binomial cdf with
corresponding number of successes, R and probability of success in a single trial, P. Since
the binomial distribution is discrete, nbininv returns the least integer X such that the
negative binomial cdf evaluated at X equals or exceeds Y. Y, R, and P can be vectors,
matrices, or multidimensional arrays that all have the same size, which is also the size of
X. A scalar input for Y, R, or P is expanded to a constant array with the same dimensions
as the other inputs.

The simplest motivation for the negative binomial is the case of successive random
trials, each having a constant probability P of success. The number of extra trials you
must perform in order to observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation of the negative
binomial, nbininv allows R to be any positive value, including nonintegers.

Examples

How many times would you need to flip a fair coin to have a 99% probability of having
observed 10 heads?

flips = nbininv(0.99,10,0.5) + 10

flips =

 33

Note that you have to flip at least 10 times to get 10 heads. That is why the second term
on the right side of the equals sign is a 10.

 nbininv

22-3085

More About
• “Negative Binomial Distribution” on page B-115

See Also
icdf | nbincdf | nbinpdf | nbinstat | nbinfit | nbinrnd

22 Functions — Alphabetical List

22-3086

nbinpdf

Negative binomial probability density function

Syntax

Y = nbinpdf(X,R,P)

Description

Y = nbinpdf(X,R,P) returns the negative binomial pdf at each of the values in X using
the corresponding number of successes, R and probability of success in a single trial, P.
X, R, and P can be vectors, matrices, or multidimensional arrays that all have the same
size, which is also the size of Y. A scalar input for X, R, or P is expanded to a constant
array with the same dimensions as the other inputs. Note that the density function is
zero unless the values in X are integers.

The negative binomial pdf is

y f x r p
r x

x
p q I xr x= =

+ −







(| ,) ()(, ,...)

1
0 1

The simplest motivation for the negative binomial is the case of successive random
trials, each having a constant probability P of success. The number of extra trials you
must perform in order to observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation of the negative
binomial, nbinpdf allows R to be any positive value, including nonintegers. When R
is noninteger, the binomial coefficient in the definition of the pdf is replaced by the
equivalent expression

Γ
Γ Γ

()

() ()

r x

r x

+
+ 1

 nbinpdf

22-3087

Examples

Compute the Negative Binomial Distribution pdf

Compute the pdf of a negative binomial distribution with parameters R = 3 and p =
0.5.

x = (0:10);

y = nbinpdf(x,3,0.5);

Plot the pdf.

figure;

plot(x,y,'+')

xlim([-0.5,10.5])

22 Functions — Alphabetical List

22-3088

More About
• “Negative Binomial Distribution” on page B-115

See Also
pdf | nbincdf | nbininv | nbinstat | nbinfit | nbinrnd

 nbinrnd

22-3089

nbinrnd
Negative binomial random numbers

Syntax

RND = nbinrnd(R,P)

RND = nbinrnd(R,P,m,n,...)

RND = nbinrnd(R,P,[m,n,...])

Description

RND = nbinrnd(R,P) is a matrix of random numbers chosen from a negative binomial
distribution with corresponding number of successes, R and probability of success in a
single trial, P. R and P can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of RND. A scalar input for R or P is expanded to a
constant array with the same dimensions as the other input.

RND = nbinrnd(R,P,m,n,...) or RND = nbinrnd(R,P,[m,n,...]) generates an
m-by-n-by-... array. The R, P parameters can each be scalars or arrays of the same size as
R.

The simplest motivation for the negative binomial is the case of successive random
trials, each having a constant probability P of success. The number of extra trials you
must perform in order to observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation of the negative
binomial, nbinrnd allows R to be any positive value, including nonintegers.

Examples

Suppose you want to simulate a process that has a defect probability of 0.01. How many
units might Quality Assurance inspect before finding three defective items?

r = nbinrnd(3,0.01,1,6)+3

r =

 496 142 420 396 851 178

22 Functions — Alphabetical List

22-3090

More About
• “Negative Binomial Distribution” on page B-115

See Also
random | nbinpdf | nbincdf | nbininv | nbinstat | nbinfit

 nbinstat

22-3091

nbinstat
Negative binomial mean and variance

Syntax

[M,V] = nbinstat(R,P)

Description

[M,V] = nbinstat(R,P) returns the mean of and variance for the negative binomial
distribution with corresponding number of successes, R and probability of success in a
single trial, P. R and P can be vectors, matrices, or multidimensional arrays that all have
the same size, which is also the size of M and V. A scalar input for R or P is expanded to a
constant array with the same dimensions as the other input.

The mean of the negative binomial distribution with parameters r and p is rq / p, where
q = 1 – p. The variance is rq / p2.

The simplest motivation for the negative binomial is the case of successive random
trials, each having a constant probability P of success. The number of extra trials you
must perform in order to observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation of the negative
binomial, nbinstat allows R to be any positive value, including nonintegers.

Examples
p = 0.1:0.2:0.9;

r = 1:5;

[R,P] = meshgrid(r,p);

[M,V] = nbinstat(R,P)

M =

 9.0000 18.0000 27.0000 36.0000 45.0000

 2.3333 4.6667 7.0000 9.3333 11.6667

 1.0000 2.0000 3.0000 4.0000 5.0000

 0.4286 0.8571 1.2857 1.7143 2.1429

 0.1111 0.2222 0.3333 0.4444 0.5556

22 Functions — Alphabetical List

22-3092

V =

 90.0000 180.0000 270.0000 360.0000 450.0000

 7.7778 15.5556 23.3333 31.1111 38.8889

 2.0000 4.0000 6.0000 8.0000 10.0000

 0.6122 1.2245 1.8367 2.4490 3.0612

 0.1235 0.2469 0.3704 0.4938 0.6173

More About
• “Negative Binomial Distribution” on page B-115

See Also
nbinpdf | nbincdf | nbininv | nbinfit | nbinrnd

 ncfcdf

22-3093

ncfcdf
Noncentral F cumulative distribution function

Syntax
p = ncfcdf(x,nu1,nu2,delta)

p = ncfcdf(x,nu1,nu2,delta,'upper')

Description
p = ncfcdf(x,nu1,nu2,delta) computes the noncentral F cdf at each value in x
using the corresponding numerator degrees of freedom in nu1, denominator degrees of
freedom in nu2, and positive noncentrality parameters in delta. nu1, nu2, and delta
can be vectors, matrices, or multidimensional arrays that have the same size, which
is also the size of p. A scalar input for x, nu1, nu2, or delta is expanded to a constant
array with the same dimensions as the other inputs.

p = ncfcdf(x,nu1,nu2,delta,'upper') returns the complement of the noncentral
F cdf at each value in x, using an algorithm that more accurately computes the extreme
upper tail probabilities.

The noncentral F cdf is

F x
j

e I
x

j

j

(| , ,)
!

n n d

d
n

n n

d

1 2
2

0

1

2 1

1

2=



























⋅
+

−

=

∞

∑ ⋅⋅
+









x

j
n n1 2

2 2
,

where I(x|a,b) is the incomplete beta function with parameters a and b.

Examples
Compute Noncentral F Distribution cdf

Compare the noncentral F cdf with δ = 10 to the F cdf with the same number of
numerator and denominator degrees of freedom (5 and 20 respectively).

22 Functions — Alphabetical List

22-3094

x = (0.01:0.1:10.01)';

p1 = ncfcdf(x,5,20,10);

p = fcdf(x,5,20);

plot(x,p,'-',x,p1,'-')

More About
• “Noncentral F Distribution” on page B-123

 ncfcdf

22-3095

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

See Also
cdf | ncfpdf | ncfinv | ncfstat | ncfrnd

22 Functions — Alphabetical List

22-3096

ncfinv
Noncentral F inverse cumulative distribution function

Syntax

X = ncfinv(P,NU1,NU2,DELTA)

Description

X = ncfinv(P,NU1,NU2,DELTA) returns the inverse of the noncentral F cdf with
numerator degrees of freedom NU1, denominator degrees of freedom NU2, and positive
noncentrality parameter DELTA for the corresponding probabilities in P. P, NU1, NU2,
and DELTA can be vectors, matrices, or multidimensional arrays that all have the same
size, which is also the size of X. A scalar input for P, NU1, NU2, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Examples

One hypothesis test for comparing two sample variances is to take their ratio and
compare it to an F distribution. If the numerator and denominator degrees of freedom are
5 and 20 respectively, then you reject the hypothesis that the first variance is equal to
the second variance if their ratio is less than that computed below.

critical = finv(0.95,5,20)

critical =

 2.7109

Suppose the truth is that the first variance is twice as big as the second variance. How
likely is it that you would detect this difference?

prob = 1 - ncfcdf(critical,5,20,2)

prob =

 0.1297

If the true ratio of variances is 2, what is the typical (median) value you would expect for
the F statistic?

 ncfinv

22-3097

ncfinv(0.5,5,20,2)

ans =

 1.2786

More About
• “Noncentral F Distribution” on page B-123

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ:
Wiley-Interscience, 2000.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

See Also
icdf | ncfcdf | ncfpdf | ncfstat | ncfrnd

22 Functions — Alphabetical List

22-3098

ncfpdf
Noncentral F probability density function

Syntax

Y = ncfpdf(X,NU1,NU2,DELTA)

Description

Y = ncfpdf(X,NU1,NU2,DELTA) computes the noncentral F pdf at each of the values
in X using the corresponding numerator degrees of freedom in NU1, denominator degrees
of freedom in NU2, and positive noncentrality parameters in DELTA. X, NU1, N2, and B
can be vectors, matrices, or multidimensional arrays that all have the same size, which
is also the size of Y. A scalar input for P, NU1, NU2, or DELTA is expanded to a constant
array with the same dimensions as the other inputs.

The F distribution is a special case of the noncentral F where δ = 0. As δ increases, the
distribution flattens like the plot in the example.

Examples

Compute Noncentral F Distribution pdf

Compute the pdf of a noncentral F distribution with degrees of freedom NU1 = 5 and
NU2 = 20, and noncentrality parameter DELTA = 10. For comparison, also compute the
pdf of an F distribution with the same degrees of freedom.

x = (0.01:0.1:10.01)';

p1 = ncfpdf(x,5,20,10);

p = fpdf(x,5,20);

Plot the pdf of the noncentral F distribution and the pdf of the F distribution on the same
figure.

figure;

plot(x,p1,'b-','LineWidth',2)

hold on

 ncfpdf

22-3099

plot(x,p,'g--','LineWidth',2)

legend('Noncentral F','F distribution')

More About
• “Noncentral F Distribution” on page B-123

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

22 Functions — Alphabetical List

22-3100

See Also
pdf | ncfcdf | ncfinv | ncfstat | ncfrnd

 ncfrnd

22-3101

ncfrnd
Noncentral F random numbers

Syntax

R = ncfrnd(NU1,NU2,DELTA)

R = ncfrnd(NU1,NU2,DELTA,m,n,...)

R = ncfrnd(NU1,NU2,DELTA,[m,n,...])

Description

R = ncfrnd(NU1,NU2,DELTA) returns a matrix of random numbers chosen from the
noncentral F distribution with corresponding numerator degrees of freedom in NU1,
denominator degrees of freedom in NU2, and positive noncentrality parameters in DELTA.
NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that have the
same size, which is also the size of R. A scalar input for NU1, NU2, or DELTA is expanded
to a constant matrix with the same dimensions as the other inputs.

R = ncfrnd(NU1,NU2,DELTA,m,n,...) or R = ncfrnd(NU1,NU2,DELTA,
[m,n,...]) generates an m-by-n-by-... array. The NU1, NU2, DELTA parameters can each
be scalars or arrays of the same size as R.

Examples

Compute six random numbers from a noncentral F distribution with 10 numerator
degrees of freedom, 100 denominator degrees of freedom and a noncentrality parameter,
δ, of 4.0. Compare this to the F distribution with the same degrees of freedom.

r = ncfrnd(10,100,4,1,6)

r =

 2.5995 0.8824 0.8220 1.4485 1.4415 1.4864

r1 = frnd(10,100,1,6)

r1 =

 0.9826 0.5911 1.0967 0.9681 2.0096 0.6598

22 Functions — Alphabetical List

22-3102

More About
• “Noncentral F Distribution” on page B-123

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

See Also
random | ncfpdf | ncfcdf | ncfinv | ncfstat

 ncfstat

22-3103

ncfstat
Noncentral F mean and variance

Syntax

[M,V] = ncfstat(NU1,NU2,DELTA)

Description

[M,V] = ncfstat(NU1,NU2,DELTA) returns the mean of and variance for the
noncentral F pdf with corresponding numerator degrees of freedom in NU1, denominator
degrees of freedom in NU2, and positive noncentrality parameters in DELTA. NU1, NU2,
and DELTA can be vectors, matrices, or multidimensional arrays that all have the same
size, which is also the size of M and V. A scalar input for NU1, NU2, or DELTA is expanded
to a constant array with the same dimensions as the other input.

The mean of the noncentral F distribution with parameters ν1, ν2, and δ is

n d n

n n

2 1

1 2 2

()

()

+
−

where ν2 > 2.

The variance is

2
2 2

2 4

2

1

2

1
2

1 2

2
2

2

n

n

d n d n n

n n











+ + + −

− −













() ()()

() ()

where ν2 > 4.

Examples
[m,v]= ncfstat(10,100,4)

22 Functions — Alphabetical List

22-3104

m =

 1.4286

v =

 0.4252

More About
• “Noncentral F Distribution” on page B-123

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 73–74.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

See Also
ncfpdf | ncfcdf | ncfinv | ncfrnd

 NClasses property

22-3105

NClasses property
Class: NaiveBayes

Number of classes

Description

The NClasses property specifies the number of classes in the grouping variable used to
create the Naive Bayes classifier.

22 Functions — Alphabetical List

22-3106

NumComponents property
Class: gmdistribution

Number k of mixture components

Description

The number k of mixture components.

 nctcdf

22-3107

nctcdf

Noncentral t cumulative distribution function

Syntax

p = nctcdf(x,nu,delta)

p = nctcdf(x,nu,delta,'upper')

Description

p = nctcdf(x,nu,delta) computes the noncentral t cdf at each value in x using the
corresponding degrees of freedom in nu and noncentrality parameters in delta. x, nu,
and delta can be vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of p. A scalar input for x, nu, or delta is expanded to a constant
array with the same dimensions as the other inputs.

p = nctcdf(x,nu,delta,'upper') returns the complement of the noncentral t cdf
at each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities.

Examples

Compute Noncentral t Distribution cdf

Compare the noncentral t cdf with DELTA = 1 to the t cdf with the same number of
degrees of freedom (10).

x = (-5:0.1:5)';

p1 = nctcdf(x,10,1);

p = tcdf(x,10);

plot(x,p,'-',x,p1,':')

22 Functions — Alphabetical List

22-3108

More About
• “Noncentral t Distribution” on page B-126

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

 nctcdf

22-3109

See Also
cdf | nctpdf | nctinv | nctstat | nctrnd

22 Functions — Alphabetical List

22-3110

nctinv
Noncentral t inverse cumulative distribution function

Syntax

X = nctinv(P,NU,DELTA)

Description

X = nctinv(P,NU,DELTA) returns the inverse of the noncentral t cdf with NU degrees
of freedom and noncentrality parameter DELTA for the corresponding probabilities in P.
P, NU, and DELTA can be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of X. A scalar input for P, NU, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Examples
x = nctinv([0.1 0.2],10,1)

x =

 -0.2914 0.1618

More About
• “Noncentral t Distribution” on page B-126

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

 nctinv

22-3111

See Also
icdf | nctcdf | nctpdf | nctstat | nctrnd

22 Functions — Alphabetical List

22-3112

nctpdf

Noncentral t probability density function

Syntax

Y = nctpdf(X,V,DELTA)

Description

Y = nctpdf(X,V,DELTA) computes the noncentral t pdf at each of the values in X
using the corresponding degrees of freedom in V and noncentrality parameters in DELTA.
Vector or matrix inputs for X, V, and DELTA must have the same size, which is also the
size of Y. A scalar input for X, V, or DELTA is expanded to a constant matrix with the
same dimensions as the other inputs.

Examples

Compute Noncentral t Distribution pdf

Compute the pdf of a noncentral t distribution with degrees of freedom V = 10 and
noncentrality parameter DELTA = 1. For comparison, also compute the pdf of a t
distribution with the same degrees of freedom.

x = (-5:0.1:5)';

nct = nctpdf(x,10,1);

t = tpdf(x,10);

Plot the pdf of the noncentral t distribution and the pdf of the t distribution on the same
figure.

plot(x,nct,'b-','LineWidth',2)

hold on

plot(x,t,'g--','LineWidth',2)

legend('nct','t')

 nctpdf

22-3113

More About
• “Noncentral t Distribution” on page B-126

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

22 Functions — Alphabetical List

22-3114

See Also
pdf | nctcdf | nctinv | nctstat | nctrnd

 nctrnd

22-3115

nctrnd
Noncentral t random numbers

Syntax

R = nctrnd(V,DELTA)

R = nctrnd(V,DELTA,m,n,...)

R = nctrnd(V,DELTA,[m,n,...])

Description

R = nctrnd(V,DELTA) returns a matrix of random numbers chosen from the
noncentral T distribution using the corresponding degrees of freedom in V and
noncentrality parameters in DELTA. V and DELTA can be vectors, matrices, or
multidimensional arrays. A scalar input for V or DELTA is expanded to a constant array
with the same dimensions as the other input.

R = nctrnd(V,DELTA,m,n,...) or R = nctrnd(V,DELTA,[m,n,...]) generates
an m-by-n-by-... array. The V, DELTA parameters can each be scalars or arrays of the same
size as R.

Examples
nctrnd(10,1,5,1)

ans =

 1.6576

 1.0617

 1.4491

 0.2930

 3.6297

More About
• “Noncentral t Distribution” on page B-126

22 Functions — Alphabetical List

22-3116

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

See Also
random | nctpdf | nctcdf | nctinv | nctstat

 nctstat

22-3117

nctstat
Noncentral t mean and variance

Syntax

[M,V] = nctstat(NU,DELTA)

Description

[M,V] = nctstat(NU,DELTA) returns the mean of and variance for the noncentral t
pdf with NU degrees of freedom and noncentrality parameter DELTA. NU and DELTA can
be vectors, matrices, or multidimensional arrays that all have the same size, which is
also the size of M and V. A scalar input for NU or DELTA is expanded to a constant array
with the same dimensions as the other input.

The mean of the noncentral t distribution with parameters ν and δ is

d n n

n

(/) (() /)

(/)

/
2 1 2

2

1 2Γ
Γ

−

where ν > 1.

The variance is

n

n
d

n
d

n

n−()
+ − −



2

1
2

1 2

2

2 2
2

()
(() /)

(/)

Γ
Γ

where ν > 2.

Examples
[m,v] = nctstat(10,1)

m =

22 Functions — Alphabetical List

22-3118

 1.0837

v =

 1.3255

More About
• “Noncentral t Distribution” on page B-126

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

See Also
nctpdf | nctcdf | nctinv | nctrnd

 ncx2cdf

22-3119

ncx2cdf
Noncentral chi-square cumulative distribution function

Syntax
p = ncx2cdf(x,v,delta)

p = ncx2cdf(x,v,delta,'upper')

Description
p = ncx2cdf(x,v,delta) computes the noncentral chi-square cdf at each value in x
using the corresponding degrees of freedom in v and positive noncentrality parameters
in delta. x, v, and delta can be vectors, matrices, or multidimensional arrays that
all have the same size, which is also the size of p. A scalar input for x, v, or delta is
expanded to a constant array with the same dimensions as the other inputs.

p = ncx2cdf(x,v,delta,'upper') returns the complement of the noncentral chi-
square cdf at each value in x, using an algorithm that more accurately computes the
extreme upper tail probabilities.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice
distribution.

The noncentral chi-square cdf is

F x
j

e x

j

j
j(| ,)

!
Prn d

d

c

d

n=



























≤





−

=

∞

+∑
1

2 2

0
2

2

Examples
Compute Noncentral Chi-Square cdf

Compare the noncentral chi-square cdf with DELTA = 2 to the chi-square cdf with the
same number of degrees of freedom (4):

22 Functions — Alphabetical List

22-3120

x = (0:0.1:10)';

ncx2 = ncx2cdf(x,4,2);

chi2 = chi2cdf(x,4);

plot(x,ncx2,'b-','LineWidth',2)

hold on

plot(x,chi2,'g--','LineWidth',2)

legend('ncx2','chi2','Location','NW')

More About
• “Noncentral Chi-Square Distribution” on page B-120

 ncx2cdf

22-3121

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

See Also
cdf | ncx2pdf | ncx2inv | ncx2stat | ncx2rnd

22 Functions — Alphabetical List

22-3122

ncx2inv
Noncentral chi-square inverse cumulative distribution function

Syntax

X = ncx2inv(P,V,DELTA)

Description

X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral chi-square cdf using
the corresponding degrees of freedom in V and positive noncentrality parameters in
DELTA, at the corresponding probabilities in P. P, V, and DELTA can be vectors, matrices,
or multidimensional arrays that all have the same size, which is also the size of X. A
scalar input for P, V, or DELTA is expanded to a constant array with the same dimensions
as the other inputs.

Examples
ncx2inv([0.01 0.05 0.1],4,2)

ans =

 0.4858 1.1498 1.7066

More About

Algorithms

ncx2inv uses Newton's method to converge to the solution.
• “Noncentral Chi-Square Distribution” on page B-120

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 50–52.

 ncx2inv

22-3123

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

See Also
icdf | ncx2cdf | ncx2pdf | ncx2stat | ncx2rnd

22 Functions — Alphabetical List

22-3124

ncx2pdf
Noncentral chi-square probability density function

Syntax

Y = ncx2pdf(X,V,DELTA)

Description

Y = ncx2pdf(X,V,DELTA) computes the noncentral chi-square pdf at each of the
values in X using the corresponding degrees of freedom in V and positive noncentrality
parameters in DELTA. Vector or matrix inputs for X, V, and DELTA must have the
same size, which is also the size of Y. A scalar input for X, V, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice
distribution.

Examples

Compute Noncentral Chi-Square Distribution pdf

Compute the pdf of a noncentral chi-square distribution with degrees of freedom V = 4
and noncentrality parameter DELTA = 2. For comparison, also compute the pdf of a chi-
square distribution with the same degrees of freedom.

x = (0:0.1:10)';

ncx2 = ncx2pdf(x,4,2);

chi2 = chi2pdf(x,4);

Plot the pdf of the noncentral chi-square distribution on the same figure as the pdf of the
chi-square distribution.

figure;

plot(x,ncx2,'b-','LineWidth',2)

hold on

plot(x,chi2,'g--','LineWidth',2)

 ncx2pdf

22-3125

legend('ncx2','chi2')

More About
• “Noncentral Chi-Square Distribution” on page B-120

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

22 Functions — Alphabetical List

22-3126

See Also
pdf | ncx2cdf | ncx2inv | ncx2stat | ncx2rnd

 ncx2rnd

22-3127

ncx2rnd
Noncentral chi-square random numbers

Syntax

R = ncx2rnd(V,DELTA)

R = ncx2rnd(V,DELTA,m,n,...)

R = ncx2rnd(V,DELTA,[m,n,...])

Description

R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen from the
noncentral chi-square distribution using the corresponding degrees of freedom in V and
positive noncentrality parameters in DELTA. V and DELTA can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of R. A scalar
input for V or DELTA is expanded to a constant array with the same dimensions as the
other input.

R = ncx2rnd(V,DELTA,m,n,...) or R = ncx2rnd(V,DELTA,[m,n,...]) generates
an m-by-n-by-... array. The V, DELTA parameters can each be scalars or arrays of the same
size as R.

Examples
ncx2rnd(4,2,6,3)

ans =

 6.8552 5.9650 11.2961

 5.2631 4.2640 5.9495

 9.1939 6.7162 3.8315

 10.3100 4.4828 7.1653

 2.1142 1.9826 4.6400

 3.8852 5.3999 0.9282

More About
• “Noncentral Chi-Square Distribution” on page B-120

22 Functions — Alphabetical List

22-3128

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

See Also
random | ncx2pdf | ncx2cdf | ncx2inv | ncx2stat

 ncx2stat

22-3129

ncx2stat
Noncentral chi-square mean and variance

Syntax

[M,V] = ncx2stat(NU,DELTA)

Description

[M,V] = ncx2stat(NU,DELTA) returns the mean of and variance for the noncentral
chi-square pdf with NU degrees of freedom and noncentrality parameter DELTA. NU and
DELTA can be vectors, matrices, or multidimensional arrays that all have the same size,
which is also the size of M and V. A scalar input for NU or DELTA is expanded to a constant
array with the same dimensions as the other input.

The mean of the noncentral chi-square distribution with parameters ν and δ is ν+δ, and
the variance is 2(ν+2δ).

Examples
[m,v] = ncx2stat(4,2)

m =

 6

v =

 16

More About
• “Noncentral Chi-Square Distribution” on page B-120

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 50–52.

22 Functions — Alphabetical List

22-3130

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

See Also
ncx2pdf | ncx2cdf | ncx2inv | ncx2rnd

 NumVariables property

22-3131

NumVariables property
Class: gmdistribution

Dimension d of multivariate Gaussian distributions

Description

The dimension d of the multivariate Gaussian distributions.

22 Functions — Alphabetical List

22-3132

ndims
Class: dataset

Number of dimensions of dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

n = ndims(A)

Description

n = ndims(A) returns the number of dimensions in the dataset A. The number of
dimensions in an array is always 2.

See Also
size

 ndims

22-3133

ndims
Class: qrandset

Number of dimensions in matrix

Syntax

n = ndims(p)

Description

n = ndims(p) returns the number of dimensions in the matrix that is created by the
syntax p(:,:). Since this is always a 2-D matrix, n is always equal to 2.

See Also
qrandset | size

22 Functions — Alphabetical List

22-3134

NDims property
Class: NaiveBayes

Number of dimensions

Description

The NDims property specifies the number of dimensions, which is equal to the number of
features in the training data used to create the Naive Bayes classifier.

 ne

22-3135

ne
Class: qrandstream

Not equal relation for handles

Syntax

h1 ~= h2

Description

Handles are equal if they are handles for the same object and are unequal otherwise.

h1 ~= h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and
h2 must be of the same dimensions unless one is a scalar. The result is a logical array of
the same dimensions, where each element is an element-wise ~= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar.

tf = ne(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | ge | gt | lt | eq | le

22 Functions — Alphabetical List

22-3136

prob.NegativeBinomialDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Negative binomial distribution object

Description

prob.NegativeBinomialDistribution is an object consisting of parameters, a model
description, and sample data for a negative binomial probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('NegativeBinomial') creates a negative binomial probability
distribution object using the default parameter values.

pd = makedist('NegativeBinomial','R',R,'p',p) creates a negative binomial
probability distribution object using the specified parameter values.

Input Arguments

R — Number of successes
1 (default) | positive scalar value

Number of successes for the negative binomial distribution, specified as a positive scalar
value.
Data Types: single | double

p — Probability of success
0.5 (default) | positive scalar value in the range (0,1]

Probability of success of any individual trial for the negative binomial distribution,
specified as a positive scalar value in the range (0,1].

 prob.NegativeBinomialDistribution class

22-3137

Data Types: single | double

Properties

R — Number of successes
positive scalar value

Number of successes for the negative binomial distribution, stored as a positive scalar
value.
Data Types: single | double

p — Probability of success
positive scalar value in the range (0,1]

Probability of success of any individual trial for the negative binomial distribution,
specified as a positive scalar value in the range (0,1].
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

22 Functions — Alphabetical List

22-3138

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

 prob.NegativeBinomialDistribution class

22-3139

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

22 Functions — Alphabetical List

22-3140

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Negative Binomial Distribution

The negative binomial distribution models the number of failures x before a specified
number of successes is reached in a series of independent, identical trials. This
distribution can also model count data, in which case r does not need to be an integer
value.

The negative binomial distribution uses the following parameters.

 prob.NegativeBinomialDistribution class

22-3141

Parameter Description Support

R Number of successes
r > 0

p Probability of success 0 1< £p

The probability density function (pdf) when R is an integer is

f x R p
R x

x
p q xR x| , ; , ,..., ,() =

+ +Ê

Ë
Á

ˆ

¯
˜ = •

1
1 2

where q p= -1 and
R x

x

+ +Ê

Ë
Á

ˆ

¯
˜

1
 is the binomial coefficient.

When R is not an integer, the binomial coefficient in the definition of the pdf is replaced
by the equivalent expression

G

G G

r x

r x

+()

() +()1
,

where G ◊() is the Gamma function.

Examples

Create a Negative Binomial Distribution Object Using Default Parameters

Create a negative binomial distribution object using the default parameter values.

pd = makedist('NegativeBinomial')

pd =

 NegativeBinomialDistribution

 Negative Binomial distribution

 R = 1

22 Functions — Alphabetical List

22-3142

 P = 0.5

Create a Negative Binomial Distribution Object Using Specified Parameters

Create a negative binomial distribution object by specifying the parameter values.

pd = makedist('NegativeBinomial','r',5,'p',.1)

pd =

 NegativeBinomialDistribution

 Negative Binomial distribution

 R = 5

 P = 0.1

Compute the mean of the distribution.

m = mean(pd)

m =

 45

See Also
dfittool | fitdist | makedist

More About
• “Negative Binomial Distribution”
• Class Attributes
• Property Attributes

 negloglik

22-3143

negloglik
Negative log likelihood of probability distribution

Syntax

nll = negloglik(pd)

Description

nll = negloglik(pd) returns the value of the negative loglikelihood function for the
data used to fit the probability distribution pd.

Examples

Negative Log Likelihood for a Fitted Distribution

Load the sample data.

load carsmall;

Create a Weibull distribution object by fitting it to the mile per gallon (MPG) data.

pd = fitdist(MPG,'Weibull')

pd =

 WeibullDistribution

 Weibull distribution

 A = 26.5079 [24.8333, 28.2954]

 B = 3.27193 [2.79441, 3.83104]

Compute the negative log likelihood for the fitted Weibull distribution.

wnll = negloglik(pd)

wnll =

22 Functions — Alphabetical List

22-3144

 327.4942

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

nll — Negative log likelihood
scalar value

Negative log likelihood value for the data used to fit the distribution, returned as a scalar
value.

See Also
dfittool | fitdist | makedist

 negloglik

22-3145

negloglik

Class: prob.KernelDistribution
Package: prob

Negative loglikelihood

Syntax

nll = negloglik(pd)

Description

nll = negloglik(pd) returns the value of the negative log likelihood function for the
data used to fit the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Fit a probability
distribution object to data using fitdist or the Distribution Fitting app.

Output Arguments

nll — Negative log likelihood
scalar value

Negative log likelihood value for the data used to fit the distribution, returned as a scalar
value.

22 Functions — Alphabetical List

22-3146

Examples

Negative Loglikelihood for a Kernel Distribution

Load the sample data. Fit a kernel distribution to the miles per gallon (MPG) data.

load carsmall;

pd = fitdist(MPG,'Kernel')

pd =

 KernelDistribution

 Kernel = normal

 Bandwidth = 4.11428

 Support = unbounded

Compute the negative loglikelihood.

nll = negloglik(pd)

nll =

 327.3139

See Also
dfittool | fitdist

 negloglik

22-3147

negloglik

Class: prob.ToolboxFittableParametricDistribution
Package: prob

Negative log likelihood of probability distribution object

Syntax

nll = negloglik(pd)

Description

nll = negloglik(pd) returns the value of the negative log likelihood function for the
data used to fit the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

nll — Negative log likelihood
scalar value

Negative log likelihood value for the data used to fit the distribution, returned as a scalar
value.

22 Functions — Alphabetical List

22-3148

Examples

Negative Log Likelihood for a Fitted Distribution

Load the sample data.

load carsmall;

Create a Weibull distribution object by fitting it to the mile per gallon (MPG) data.

pd = fitdist(MPG,'Weibull')

pd =

 WeibullDistribution

 Weibull distribution

 A = 26.5079 [24.8333, 28.2954]

 B = 3.27193 [2.79441, 3.83104]

Compute the negative log likelihood for the fitted Weibull distribution.

wnll = negloglik(pd)

wnll =

 327.4942

See Also
dfittool | fitdist | makedist

 net

22-3149

net
Class: qrandset

Generate quasi-random point set

Syntax

X = net(p,n)

Description

X = net(p,n) returns the first n points X from the point set p of the qrandset class. X
is n-by-d, where d is the dimension of the point set.

Objects p of the @qrandset class encapsulate properties of a specified quasi-random
sequence. Values of the point set are not generated and stored in memory until p is
accessed using net or parenthesis indexing.

Examples

Use haltonset to generate a 3-D Halton point set, skip the first 1000 values, and then
retain every 101st point:

p = haltonset(3,'Skip',1e3,'Leap',1e2)

p =

 Halton point set in 3 dimensions (8.918019e+013 points)

 Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : none

Use scramble to apply reverse-radix scrambling:

p = scramble(p,'RR2')

p =

 Halton point set in 3 dimensions (8.918019e+013 points)

 Properties:

22 Functions — Alphabetical List

22-3150

 Skip : 1000

 Leap : 100

 ScrambleMethod : RR2

Use net to generate the first four points:

X0 = net(p,4)

X0 =

 0.0928 0.6950 0.0029

 0.6958 0.2958 0.8269

 0.3013 0.6497 0.4141

 0.9087 0.7883 0.2166

Use parenthesis indexing to generate every third point, up to the 11th point:

X = p(1:3:11,:)

X =

 0.0928 0.6950 0.0029

 0.9087 0.7883 0.2166

 0.3843 0.9840 0.9878

 0.6831 0.7357 0.7923

See Also
haltonset | sobolset | qrandstream

 nLinearCoeffs

22-3151

nLinearCoeffs
Class: CompactClassificationDiscriminant

Number of nonzero linear coefficients

Syntax

ncoeffs = nLinearCoeffs(obj)

ncoeffs = nLinearCoeffs(obj,delta)

Description

ncoeffs = nLinearCoeffs(obj) returns the number of nonzero linear coefficients in
the linear discriminant model obj.

ncoeffs = nLinearCoeffs(obj,delta) returns the number of nonzero linear
coefficients for threshold parameter delta.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

delta

Scalar or vector value of the Delta parameter. See “Gamma and Delta” on page
22-3152.

Output Arguments

ncoeffs

Nonnegative integer, the number of nonzero coefficients in the discriminant analysis
model obj.

22 Functions — Alphabetical List

22-3152

If you call nLinearCoeffs with a delta argument, ncoeffs is the number of nonzero
linear coefficients for threshold parameter delta. If delta is a vector, ncoeffs is a
vector with the same number of elements.

If obj is a quadratic discriminant model, ncoeffs is the number of predictors in obj.

Definitions

Gamma and Delta

Regularization is the process of finding a small set of predictors that yield an effective
predictive model. For linear discriminant analysis, there are two parameters, γ and δ,
that control regularization as follows. cvshrink helps you select appropriate values of
the parameters.

Let Σ represent the covariance matrix of the data X, and let X̂ be the centered data (the
data X minus the mean by class). Define

D X X
T

= ()diag ˆ * ˆ .

The regularized covariance matrix %S is

%S S= -() +1 g g D.

Whenever γ ≥ MinGamma, %S is nonsingular.

Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean
vector (the mean of the rows of X). Let C be the correlation matrix of the data X, and let
%C be the regularized correlation matrix:

%C C I= -() +1 g g ,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

 nLinearCoeffs

22-3153

x x D C D
T

k

T

k-() -() = -()È
Î

˘
˚ -()È

Î
˘
˚

- - - -m m m m m m0
1

0 0
1 2 1 1 2

0
% %S / /

.

The parameter δ enters into this equation as a threshold on the final term in square

brackets. Each component of the vector %C D k
- - -()È

Î
˘
˚

1 1 2
0

/ m m is set to zero if it is smaller
in magnitude than the threshold δ. Therefore, for class k, if component j is thresholded to
zero, component j of x does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

%C D k
- - -() £1 1 2

0
/

.m m d

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use
predictor i.

Examples

Find the Number of Nonzero Coefficients in a Discriminant Analysis Classifier

Find the number of nonzero coefficients in a discriminant analysis classifier for various
Delta values.

Create a discriminant analysis classifier from the fishseriris data.

load fisheriris

obj = fitcdiscr(meas,species);

Find the number of nonzero coefficients in obj.

ncoeffs = nLinearCoeffs(obj)

ncoeffs =

 4

Find the number of nonzero coefficients for delta = 1, 2, 4, and 8.

delta = [1 2 4 8];

ncoeffs = nLinearCoeffs(obj,delta)

22 Functions — Alphabetical List

22-3154

ncoeffs =

 4

 4

 3

 0

The DeltaPredictor property gives the values of delta where the number of nonzero
coefficients changes.

ncoeffs2 = nLinearCoeffs(obj,obj.DeltaPredictor)

ncoeffs2 =

 4

 3

 1

 2

See Also
CompactClassificationDiscriminant | cvshrink | fitcdiscr

More About
• “Discriminant Analysis” on page 15-3

 nlinfit

22-3155

nlinfit
Nonlinear regression

Syntax

beta = nlinfit(X,Y,modelfun,beta0)

beta = nlinfit(X,Y,modelfun,beta0,options)

beta = nlinfit(___ ,Name,Value)

[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(___)

Description

beta = nlinfit(X,Y,modelfun,beta0) returns a vector of estimated coefficients
for the nonlinear regression of the responses in Y on the predictors in X using the model
specified by modelfun. The coefficients are estimated using iterative least squares
estimation, with initial values specified by beta0.

beta = nlinfit(X,Y,modelfun,beta0,options) fits the nonlinear regression
using the algorithm control parameters in the structure options. You can return any of
the output arguments in the previous syntaxes.

beta = nlinfit(___ ,Name,Value) uses additional options specified by one or
more name-value pair arguments. For example, you can specify observation weights
or a nonconstant error model. You can use any of the input arguments in the previous
syntaxes.

[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(___) additionally returns the
residuals, R, the Jacobian of modelfun, J, the estimated variance-covariance matrix for
the estimated coefficients, CovB, an estimate of the variance of the error term, MSE, and
a structure containing details about the error model, ErrorModelInfo.

Examples

Nonlinear Regression Model Using Default Options

Load sample data.

22 Functions — Alphabetical List

22-3156

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the initial values in beta0.

beta = nlinfit(X,y,@hougen,beta0)

beta =

 1.2526

 0.0628

 0.0400

 0.1124

 1.1914

Nonlinear Regression Using Robust Options

Generate sample data from the nonlinear regression model

y b b b x= + -{ } +1 2 3exp ,e

where b1, b2, and b3 are coefficients, and the error term is normally distributed with
mean 0 and standard deviation 0.1.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility

b = [1;3;2];

x = exprnd(2,100,1);

y = modelfun(b,x) + normrnd(0,0.1,100,1);

Set robust fitting options.

opts = statset('nlinfit');

opts.RobustWgtFun = 'bisquare';

Fit the nonlinear model using the robust fitting options.

beta0 = [2;2;2];

beta = nlinfit(x,y,modelfun,beta0,opts)

beta =

 nlinfit

22-3157

 1.0041

 3.0997

 2.1483

Nonlinear Regression Using Observation Weights

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Specify a vector of known observation weights.

W = [8 2 1 6 12 9 12 10 10 12 2 10 8]';

Fit the Hougen-Watson model to the rate data using the specified observation weights.

[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',W);

beta

beta =

 2.2068

 0.1077

 0.0766

 0.1818

 0.6516

Display the coefficient standard errors.

sqrt(diag(CovB))

ans =

 2.5721

 0.1251

 0.0950

 0.2043

 0.7735

Nonlinear Regression Using Weights Function Handle

Load sample data.

S = load('reaction');

22 Functions — Alphabetical List

22-3158

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Specify a function handle for observation weights. The function accepts the model fitted
values as input, and returns a vector of weights.

 a = 1; b = 1;

 weights = @(yhat) 1./((a + b*abs(yhat)).^2);

Fit the Hougen-Watson model to the rate data using the specified observation weights
function.

[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',weights);

beta

beta =

 0.8308

 0.0409

 0.0251

 0.0801

 1.8261

Display the coefficient standard errors.

sqrt(diag(CovB))

ans =

 0.5822

 0.0297

 0.0197

 0.0578

 1.2810

Nonlinear Regression Using Nonconstant Error Model

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error model.

 nlinfit

22-3159

[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(X,y,@hougen,beta0,'ErrorModel','combined');

beta

beta =

 1.2526

 0.0628

 0.0400

 0.1124

 1.1914

Display the error model information.

ErrorModelInfo

ErrorModelInfo =

 ErrorModel: 'combined'

 ErrorParameters: [0.1517 5.6783e-08]

 ErrorVariance: @(x)mse*(errorparam(1)+errorparam(2)*abs(model(beta,x))).^2

 MSE: 1.6245

 ScheffeSimPred: 6

 WeightFunction: 0

 FixedWeights: 0

 RobustWeightFunction: 0

Input Arguments

X — Predictor variables
matrix

Predictor variables for the nonlinear regression function, specified as a matrix. Typically,
X is a design matrix of predictor (independent variable) values, with one row for each
value in Y, and one column for each coefficient. However, X can be any array that
modelfun can accept.
Data Types: single | double

Y — Response values
vector

Response values (dependent variable) for fitting the nonlinear regression function,
specified as a vector with the same number of rows as X.

22 Functions — Alphabetical List

22-3160

Data Types: single | double

modelfun — Nonlinear regression model function
function handle

Nonlinear regression model function, specified as a function handle. modelfun must
accept two input arguments, a coefficient vector and an array X—in that order—and
return a vector of fitted response values.

For example, to specify the hougen nonlinear regression function, use the function
handle @hougen.

Data Types: function_handle

beta0 — Initial coefficient values
vector

Initial coefficient values for the least squares estimation algorithm, specified as a vector.

Note: Poor starting values can lead to a solution with large residual error.

Data Types: single | double

options — Estimation algorithm options
structure created using statset

Estimation algorithm options, specified as a structure you create using statset. The
following statset parameters are applicable to nlinfit.

DerivStep — Relative difference for finite difference gradient
eps^(1/3) (default) | positive scalar value | vector

Relative difference for the finite difference gradient calculation, specified as a positive
scalar value, or a vector the same size as beta. Use a vector to specify a different relative
difference for each coefficient.

Display — Level of output display
'off' (default) | 'iter' | 'final'

Level of output display during estimation, specified as one of 'off', 'iter', or
'final'. If you specify 'iter', output is displayed at each iteration. If you specify
'final', output is displayed after the final iteration.

 nlinfit

22-3161

FunValCheck — Indicator for whether to check for invalid values
'on' (default) | 'off'

Indicator for whether to check for invalid values such as NaN or Inf from the objective
function, specified as 'on' or 'off'.

MaxIter — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations for the estimation algorithm, specified as a positive
integer. Iterations continue until estimates are within the convergence tolerance, or the
maximum number of iterations specified by MaxIter is reached.

RobustWgtFun — Weight function
string | function handle | []

Weight function for robust fitting, specified as a valid string or function handle.

Note: RobustWgtFun must have value [] when you use observation weights, W.

The following table describes the possible string values. Let r denote normalized
residuals and w denote robust weights. The indicator function I[x] is equal to 1 if the
expression x is true, and 0 otherwise.

Weight Function Equation Default Tuning Constant

'' (default) No robust fitting —
'andrews'

w I r r r= <ÈÎ ˘̊ ¥p sin() /
1.339

'bisquare'
w I r r= <ÈÎ ˘̊ ¥ -()1 1

2
2 4.685

'cauchy'
w

r

=
+()

1

1
2

2.385

'fair'
w

r

=
+()

1

1

1.400

22 Functions — Alphabetical List

22-3162

Weight Function Equation Default Tuning Constant

'huber'
w

r

=
()

1
1max ,

1.345

'logistic'
w

r

r
=

tanh() 1.205

'talwar'
w I r= <ÈÎ ˘̊1

2.795

'welsch'
w r= -{ }exp 2 2.985

You can alternatively specify a function handle that accepts a vector of normalized
residuals as input, and returns a vector of robust weights as output. If you use a function
handle, you must provide a Tune constant.

Tune — Tuning constant
positive scalar value

Tuning constant for robust fitting, specified as a positive scalar value. The tuning
constant is used to normalize residuals before applying a robust weight function. The
default tuning constant depends on the function specified by RobustWgtFun.

If you use a function handle to specify RobustWgtFun, then you must specify a value for
Tune.

TolFun — Termination tolerance on residual sum of squares
1e-8 (default) | positive scalar value

Termination tolerance for the residual sum of squares, specified as a positive scalar
value. Iterations continue until estimates are within the convergence tolerance, or the
maximum number of iterations specified by MaxIter is reached.

TolX — Termination tolerance on estimated coefficients
1e-8 (default) | positive scalar value

Termination tolerance on the estimated coefficients, beta, specified as a positive scalar
value. Iterations continue until estimates are within the convergence tolerance, or the
maximum number of iterations specified by MaxIter is reached.

Robust — Indicator for robust fitting
'off' (default) | 'on'

 nlinfit

22-3163

Indicator for robust fitting, specified as 'off' or 'on'.

Note: Robust will be removed in a future software release. Use RobustWgtFun for
robust fitting.

WgtFun — Weight function for robust fitting
string | function handle

Weight function for robust fitting, specified as a string indicating a weight function, or a
function handle. WgtFun is valid only when Robust has value 'on'.

Note: WgtFun will be removed in a future software release. Use RobustWgtFun instead.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ErrorModel','proportional','ErrorParameters',0.5 specifies a
proportional error model, with initial value 0.5 for the error parameter estimation

'ErrorModel' — Form of error term
'constant' (default) | 'proportional' | 'combined'

Form of the error term, specified as the comma-separated pair consisting of
'ErrorModel' and one of the following strings indicating the error model. Each model
defines the error using a standard mean-zero and unit-variance variable e in combination
with independent components: the function value f, and one or two parameters a and b.

'constant' (default) y f ae= +

'proportional' y f bfe= +

'combined'
y f a b f e= + +()

The only allowed error model when using Weights is 'constant'.

22 Functions — Alphabetical List

22-3164

Note: options.RobustWgtFun must have value [] when using an error model other
than 'constant'.

'ErrorParameters' — Initial estimates for error model parameters
1 or [1,1] (default) | scalar value | two-element vector

Initial estimates for the error model parameters in the chosen ErrorModel, specified as
the comma-separated pair consisting of 'ErrorParameters' and a scalar value or two-
element vector.

Error Model Parameters Default Values

'constant' a 1

'proportional' b 1

'combined' a, b [1,1]

For example, if 'ErrorModel' has the value 'combined', you can specify the starting
value 1 for a and the starting value 2 for b as follows.
Example: 'ErrorParameters',[1,2]

You can only use the 'constant' error model when using Weights.

Note: options.RobustWgtFun must have value [] when using an error model other
than 'constant'.

Data Types: double | single

'Weights' — Observation weights
vector | function handle

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of real positive weights or a function handle. You can use observation
weights to down-weight the observations that you want to have less influence on the
fitted model.

• If W is a vector, then it must be the same size as Y.
• If W is a function handle, then it must accept a vector of predicted response values as

input, and return a vector of real positive weights as output.

 nlinfit

22-3165

Note: options.RobustWgtFun must have value [] when you use observation weights.

Data Types: double | single | function_handle

Output Arguments

beta — Estimated regression coefficients
vector

Estimated regression coefficients, returned as a vector. The number of elements in beta
equals the number of elements in beta0.

Let f Xi(,)b denote the nonlinear function specified by modelfun, where xi are the
predictors for observation i, i = 1,...,N, and b are the regression coefficients. The vector
of coefficients returned in beta minimizes the weighted least squares equation,

w y fi i ii

N
-[]

=Â (,) .x b
1

2

For unweighted nonlinear regression, all of the weight terms are equal to 1.

R — Residuals
vector

Residuals for the fitted model, returned as a vector.

• If you specify observation weights using the name-value pair argument Weights, then
R contains weighted residuals.

• If you specify an error model other than 'constant' using the name-value pair
argument ErrorModel, then you can no longer interpret R as model fit residuals.

J — Jacobian
matrix

Jacobian of the nonlinear regression model, modelfun, returned as an N-by-p matrix,
where N is the number of observations and p is the number of estimated coefficients.

• If you specify observation weights using the name-value pair argument Weights, then
J is the weighted model function Jacobian.

22 Functions — Alphabetical List

22-3166

• If you specify an error model other than 'constant' using the name-value pair
argument ErrorModel, then you can no longer interpret J as the model function
Jacobian.

CovB — Estimated variance-covariance matrix
matrix

Estimated variance-covariance matrix for the fitted coefficients, beta, returned as a p-
by-p matrix, where p is the number of estimated coefficients. If the model Jacobian, J,
has full column rank, then CovB = inv(J'*J)*MSE, where MSE is the mean squared
error.

MSE — Mean squared error
scalar value

Mean squared error (MSE) of the fitted model, returned as a scalar value. MSE is an
estimate of the variance of the error term. If the model Jacobian, J, has full column rank,
then MSE = (R'*R)/(N-p), where N is the number of observations, and p is the number
of estimated coefficients.

ErrorModelInfo — Information about error model fit
structure

Information about the error model fit, returned as a structure with the following fields:

ErrorModel Chosen error model
ErrorParameters Estimated error parameters
ErrorVariance Function handle that accepts an N-by-p matrix, X, and

returns an N-by-1 vector of error variances using the
estimated error model

MSE Mean squared error
ScheffeSimPred Scheffé parameter for simultaneous prediction

intervals when using the estimated error model
WeightFunction Logical with value true if you used a custom weight

function previously in nlinfit
FixedWeights Logical with value true if you used fixed weights

previously in nlinfit
RobustWeightFunction Logical with value true if you used robust fitting

previously in

 nlinfit

22-3167

More About

Weighted Residuals

A weighted residual is a residual multiplied by the square root of the corresponding
observation weight.

Given estimated regression coefficients, b, the residual for observation i is

r y fi i i= - (,),x b

where yi is the observed response and f i(,)x b is the fitted response at predictors xi
.

When you fit a weighted nonlinear regression with weights wi, i = 1,...,N, nlinfit
returns the weighted residuals,

r w y fi i i i
* (,) .= -()x b

Weighted Model Function Jacobian

The weighted model function Jacobian is the nonlinear model Jacobian multiplied by the
square root of the observation weight matrix.

Given estimated regression coefficients, b, the estimated model Jacobian, J, for the
nonlinear function f i(,)x b has elements

J
x b

ij
i

j

f

b
=

∂

∂

(,)
,

where bj is the jth element of b.

When you fit a weighted nonlinear regression with diagonal weights matrix W, nlinfit

returns the weighted Jacobian matrix,

J W J
*

.=
1 2

22 Functions — Alphabetical List

22-3168

Tips

• To produce error estimates on predictions, use the optional output arguments R, J,
CovB, or MSE as inputs to nlpredci.

• To produce error estimates on the estimated coefficients, beta, use the optional
output arguments R, J, CovB, or MSE as inputs to nlparci.

• If you use the robust fitting option, RobustWgtFun, you must use CovB—and might
need MSE—as inputs to nlpredci or nlparci to ensure that the confidence intervals
take the robust fit properly into account.

Algorithms

• nlinfit treats NaN values in Y or modelfun(beta0,X) as missing data, and
ignores the corresponding observations.

• For nonrobust estimation, nlinfit uses the Levenberg-Marquardt nonlinear least
squares algorithm [1].

• For robust estimation, nlinfit uses an iterative reweighted least squares algorithm
([2], [3]). At each iteration, the robust weights are recalculated based on each
observation’s residual from the previous iteration. These weights downweight
outliers, so that their influence on the fit is decreased. Iterations continue until the
weights converge.

• When you specify a function handle for observation weights, the weights depend on
the fitted model. In this case, nlinfit uses an iterative generalized least squares
algorithm to fit the nonlinear regression model.

• “Nonlinear Regression” on page 11-2

References

[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-
Interscience, 2003.

[2] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple
Regression Computing Environment.” Computer Science and Statistics:
Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American
Statistical Association, 1989.

[3] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted
Least-Squares.” Communications in Statistics: Theory and Methods, A6, 1977, pp.
813–827.

 nlinfit

22-3169

See Also
fitnlm | nlintool | nlparci | nlpredci

22 Functions — Alphabetical List

22-3170

nlintool
Interactive nonlinear regression

Syntax

nlintool(X,y,fun,beta0)

nlintool(X,y,fun,beta0,alpha)

nlintool(X,y,fun,beta0,alpha,'xname','yname')

Description

nlintool(X,y,fun,beta0) is a graphical user interface to the nlinfit function,
and uses the same input arguments. The interface displays plots of the fitted response
against each predictor, with the other predictors held fixed. The fixed values are in the
text boxes below each predictor axis. Change the fixed values by typing in a new value or
by dragging the vertical lines in the plots to new positions. When you change the value
of a predictor, all plots update to display the model at the new point in predictor space.
Dashed red curves show 95% simultaneous confidence bands for the function.

nlintool(X,y,fun,beta0,alpha) shows 100(1-alpha)% confidence bands. These
are simultaneous confidence bounds for the function value. Using the Bounds menu you
can switch between simultaneous and non-simultaneous bounds, and between bounds on
the function and bounds for predicting a new observation.

nlintool(X,y,fun,beta0,alpha,'xname','yname') labels the plots using the
string matrix 'xname' for the predictors and the string 'yname' for the response.

Examples

The data in reaction.mat are partial pressures of three chemical reactants and the
corresponding reaction rates. The function hougen implements the nonlinear Hougen-
Watson model for reaction rates. The following fits the model to the data:

load reaction

nlintool(reactants,rate,@hougen,beta,0.01,xn,yn)

 nlintool

22-3171

See Also
nlinfit | polytool | rstool

22 Functions — Alphabetical List

22-3172

nlmefit
Nonlinear mixed-effects estimation

Syntax
beta = nlmefit(X,y,group,V,fun,beta0)

[beta,PSI] = nlmefit(X,y,group,V,fun,beta0)

[beta,PSI,stats] = nlmefit(X,y,group,V,fun,beta0)

[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0)

[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0,'Name',value)

Description
beta = nlmefit(X,y,group,V,fun,beta0) fits a nonlinear mixed-effects regression
model and returns estimates of the fixed effects in beta. By default, nlmefit fits
a model in which each parameter is the sum of a fixed and a random effect, and the
random effects are uncorrelated (their covariance matrix is diagonal).

X is an n-by-h matrix of n observations on h predictors.

y is an n-by-1 vector of responses.

group is a grouping variable indicating m groups in the observations. group is a
categorical variable, a numeric vector, a character matrix with rows for group names,
or a cell array of strings. For more information on grouping variables, see “Grouping
Variables” on page 2-52.

V is an m-by-g matrix or cell array of g group-specific predictors. These are predictors
that take the same value for all observations in a group. The rows of V are assigned to
groups using grp2idx, according to the order specified by grp2idx(group). Use a cell
array for V if group predictors vary in size across groups. Use [] for V if there are no
group-specific predictors.

fun is a handle to a function that accepts predictor values and model parameters and
returns fitted values. fun has the form

yfit = modelfun(PHI,XFUN,VFUN)

The arguments are:

 nlmefit

22-3173

• PHI — A 1-by-p vector of model parameters.
• XFUN — A k-by-h array of predictors, where:

• k = 1 if XFUN is a single row of X.
• k = ni if XFUN contains the rows of X for a single group of size ni.
• k = n if XFUN contains all rows of X.

• VFUN — Group-specific predictors given by one of:

• A 1-by-g vector corresponding to a single group and a single row of V.
• An n-by-g array, where the jth row is V(I,:) if the jth observation is in group I.

If V is empty, nlmefit calls modelfun with only two inputs.
• yfit — A k-by-1 vector of fitted values

When either PHI or VFUN contains a single row, it corresponds to all rows in the other
two input arguments.

Note: If modelfun can compute yfit for more than one vector of model parameters per
call, use the 'Vectorization' parameter (described later) for improved performance.

beta0 is a q-by-1 vector with initial estimates for q fixed effects. By default, q is the
number of model parameters p.

nlmefit fits the model by maximizing an approximation to the marginal likelihood with
random effects integrated out, assuming that:

• Random effects are multivariate normally distributed and independent between
groups.

• Observation errors are independent, identically normally distributed, and
independent of the random effects.

[beta,PSI] = nlmefit(X,y,group,V,fun,beta0) also returns PSI, an r-by-r
estimated covariance matrix for the random effects. By default, r is equal to the number
of model parameters p.

[beta,PSI,stats] = nlmefit(X,y,group,V,fun,beta0) also returns stats, a
structure with fields:

• dfe — The error degrees of freedom for the model

22 Functions — Alphabetical List

22-3174

• logl — The maximized loglikelihood for the fitted model
• rmse — The square root of the estimated error variance (computed on the log scale for

the exponential error model)
• errorparam — The estimated parameters of the error variance model
• aic — The Akaike information criterion, calculated as aic = -2 * logl + 2 *

numParam, where numParam is the number of fitting parameters, including the degree
of freedom for covariance matrix of the random effects, the number of fixed effects
and the number of parameters of the error model, and logl is a field in the stats
structure

• bic — The Bayesian information criterion, calculated as bic = –2*logl + log(M) *
numParam

• M is the number of groups.
• numParam and logl are defined as in aic.

Note that some literature suggests that the computation of bic should be , bic = –
2*logl + log(N) * numParam, where N is the number of observations.

• covb — The estimated covariance matrix of the parameter estimates
• sebeta — The standard errors for beta
• ires — The population residuals (y-y_population), where y_population is the

individual predicted values
• pres — The population residuals (y-y_population), where y_population is the

population predicted values
• iwres — The individual weighted residuals
• pwres — The population weighted residuals
• cwres — The conditional weighted residuals

[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0) also returns B, an r-
by-m matrix of estimated random effects for the m groups. By default, r is equal to the
number of model parameters p.

[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0,'Name',value)

specifies one or more optional parameter name/value pairs. Specify Name inside single
quotes.

Use the following parameters to fit a model different from the default. (The default
model is obtained by setting both FEConstDesign and REConstDesign to eye(p),
or by setting both FEParamsSelect and REParamsSelect to 1:p.) Use at most one

 nlmefit

22-3175

parameter with an 'FE' prefix and one parameter with an 'RE' prefix. The nlmefit
function requires you to specify at least one fixed effect and one random effect.

Parameter Value

FEParamsSelect A vector specifying which elements of the parameter
vector PHI include a fixed effect, given as a numeric
vector of indices from 1 to p or as a 1-by-p logical
vector. If q is the specified number of elements, then
the model includes q fixed effects.

FEConstDesign A p-by-q design matrix ADESIGN, where
ADESIGN*beta are the fixed components of the p
elements of PHI.

FEGroupDesign A p-by-q-by-m array specifying a different p-by-q fixed-
effects design matrix for each of the m groups.

FEObsDesign A p-by-q-by-n array specifying a different p-by-q fixed-
effects design matrix for each of the n observations.

REParamsSelect A vector specifying which elements of the parameter
vector PHI include a random effect, given as a numeric
vector of indices from 1 to p or as a 1-by-p logical
vector. The model includes r random effects, where r is
the specified number of elements.

REConstDesign A p-by-r design matrix BDESIGN, where BDESIGN*B
are the random components of the p elements of PHI.

REGroupDesign A p-by-r-by-m array specifying a different p-by-r
random-effects design matrix for each of m groups.

REObsDesign A p-by-r-by-n array specifying a different p-
by-r random-effects design matrix for each of n
observations.

Use the following parameters to control the iterative algorithm for maximizing the
likelihood:

Parameter Value

RefineBeta0 Determines whether nlmefit makes an initial
refinement of beta0 by first fitting modelfun without
random effects and replacing beta0 with beta.

22 Functions — Alphabetical List

22-3176

Parameter Value

Choices are 'on' and 'off'. The default value is
'on'.

ErrorModel A string specifying the form of the error term. Default
is 'constant'. Each model defines the error using a
standard normal (Gaussian) variable e, the function
value f, and one or two parameters a and b. Choices
are:

• 'constant': y = f + a*e
• 'proportional': y = f + b*f*e
• 'combined': y = f + (a+b*f)*e
• 'exponential': y = f*exp(a*e), or equivalently

log(y) = log(f) + a*e

If this parameter is given, the output
stats.errorparam field has the value

• a for 'constant' and 'exponential'
• b for 'proportional'
• [a b] for 'combined'

ApproximationType The method used to approximate the likelihood of the
model. Choices are:

• 'LME' — Use the likelihood for the linear mixed-
effects model at the current conditional estimates of
beta and B. This is the default.

• 'RELME' — Use the restricted likelihood for
the linear mixed-effects model at the current
conditional estimates of beta and B.

• 'FO' — First-order Laplacian approximation
without random effects.

• 'FOCE' — First-order Laplacian approximation at
the conditional estimates of B.

 nlmefit

22-3177

Parameter Value

Vectorization Indicates acceptable sizes for the PHI, XFUN, and VFUN
input arguments to modelfun. Choices are:

• 'SinglePhi' — modelfun can only accept a
single set of model parameters at a time, so PHI
must be a single row vector in each call. nlmefit
calls modelfun in a loop, if necessary, with a single
PHI vector and with XFUN containing rows for a
single observation or group at a time. VFUN may be
a single row that applies to all rows of XFUN, or a
matrix with rows corresponding to rows in XFUN.
This is the default.

• 'SingleGroup' — modelfun can only accept
inputs corresponding to a single group in the data,
so XFUN must contain rows of X from a single group
in each call. Depending on the model, PHI is a
single row that applies to the entire group or a
matrix with one row for each observation. VFUN is a
single row.

• 'Full' — modelfun can accept inputs for multiple
parameter vectors and multiple groups in the
data. Either PHI or VFUN may be a single row that
applies to all rows of XFUN or a matrix with rows
corresponding to rows in XFUN. This option can
improve performance by reducing the number of
calls to modelfun, but may require modelfun to
perform singleton expansion on PHI or V.

CovParameterization Specifies the parameterization used internally for
the scaled covariance matrix. Choices are 'chol'
for the Cholesky factorization or 'logm' the matrix
logarithm. The default is 'logm'.

22 Functions — Alphabetical List

22-3178

Parameter Value

CovPattern Specifies an r-by-r logical or numeric matrix P that
defines the pattern of the random-effects covariance
matrix PSI. nlmefit estimates the variances along
the diagonal of PSI and the covariances specified by
nonzeros in the off-diagonal elements of P. Covariances
corresponding to zero off-diagonal elements in P are
constrained to be zero. If P does not specify a row-
column permutation of a block diagonal matrix,
nlmefit adds nonzero elements to P as needed.
The default value of P is eye(r), corresponding to
uncorrelated random effects.

Alternatively, P may be a 1-by-r vector containing
values in 1:r, with equal values specifying groups
of random effects. In this case, nlmefit estimates
covariances only within groups, and constrains
covariances across groups to be zero.

ParamTransform A vector of p-values specifying a transformation
function f() for each of the P parameters: XB =
ADESIGN*BETA + BDESIGN*B PHI = f(XB). Each
element of the vector must be one of the following
integer codes specifying the transformation for the
corresponding value of PHI:

• 0: PHI = XB (default for all parameters)
• 1: log(PHI) = XB
• 2: probit(PHI) = XB
• 3: logit(PHI) = XB

 nlmefit

22-3179

Parameter Value

Options A structure of the form returned by statset. nlmefit
uses the following statset parameters:

• 'DerivStep' — Relative difference used in finite
difference gradient calculation. May be a scalar,
or a vector whose length is the number of model
parameters p. The default is eps^(1/3).

• 'Display' — Level of iterative display during
estimation. Choices are:

• 'off' (default) — Displays no information
• 'final' — Displays information after the final

iteration
• 'iter' — Displays information at each

iteration
• 'FunValCheck' — Check for invalid values, such

as NaN or Inf, from modelfun. Choices are 'on'
and 'off'. The default is 'on'.

• 'MaxIter' — Maximum number of iterations
allowed. The default is 200.

• 'OutputFcn' — Function handle specified using
@, a cell array with function handles or an empty
array (default). The solver calls all output functions
after each iteration.

• 'TolFun' — Termination tolerance on the
loglikelihood function. The default is 1e-4.

• 'TolX' — Termination tolerance on the estimated
fixed and random effects. The default is 1e-4.

OptimFun Specifies the optimization function used in maximizing
the likelihood. Choices are 'fminsearch' to use
fminsearch or 'fminunc' to use fminunc. The
default is 'fminsearch'. You can specify 'fminunc'
only if Optimization Toolbox software is installed.

22 Functions — Alphabetical List

22-3180

Examples

Nonlinear Mixed-Effects Model

Enter and display data on the growth of five orange trees.

CIRC = [30 58 87 115 120 142 145;

 33 69 111 156 172 203 203;

 30 51 75 108 115 139 140;

 32 62 112 167 179 209 214;

 30 49 81 125 142 174 177];

time = [118 484 664 1004 1231 1372 1582];

h = plot(time,CIRC','o','LineWidth',2);

xlabel('Time (days)')

ylabel('Circumference (mm)')

title('{\bf Orange Tree Growth}')

legend([repmat('Tree ',5,1),num2str((1:5)')],...

 'Location','NW')

grid on

hold on

 nlmefit

22-3181

Use an anonymous function to specify a logistic growth model.

model = @(PHI,t)(PHI(:,1))./(1+exp(-(t-PHI(:,2))./PHI(:,3)));

Fit the model using nlmefit with default settings (that is, assuming each parameter is
the sum of a fixed and a random effect, with no correlation among the random effects):

TIME = repmat(time,5,1);

NUMS = repmat((1:5)',size(time));

beta0 = [100 100 100];

[beta1,PSI1,stats1] = nlmefit(TIME(:),CIRC(:),NUMS(:),...

 [],model,beta0)

22 Functions — Alphabetical List

22-3182

beta1 =

 191.3189

 723.7608

 346.2517

PSI1 =

 962.1533 0 0

 0 0.0000 0

 0 0 297.9880

stats1 =

 dfe: 28

 logl: -131.5457

 mse: 59.7882

 rmse: 7.9016

 errorparam: 7.7323

 aic: 277.0913

 bic: 274.3574

 covb: [3x3 double]

 sebeta: [15.2249 33.1579 26.8235]

 ires: [35x1 double]

 pres: [35x1 double]

 iwres: [35x1 double]

 pwres: [35x1 double]

 cwres: [35x1 double]

The negligible variance of the second random effect, PSI1(2,2), suggests that it can be
removed to simplify the model.

[beta2,PSI2,stats2,b2] = nlmefit(TIME(:),CIRC(:),...

 NUMS(:),[],model,beta0,'REParamsSelect',[1 3])

beta2 =

 191.3189

 723.7613

 346.2502

 nlmefit

22-3183

PSI2 =

 962.5602 0

 0 297.4975

stats2 =

 dfe: 29

 logl: -131.5457

 mse: 59.7869

 rmse: 7.7645

 errorparam: 7.7322

 aic: 275.0913

 bic: 272.7479

 covb: [3x3 double]

 sebeta: [15.2275 33.1579 26.8214]

 ires: [35x1 double]

 pres: [35x1 double]

 iwres: [35x1 double]

 pwres: [35x1 double]

 cwres: [35x1 double]

b2 =

 -28.5275 31.6066 -36.5086 39.0762 -5.6467

 9.9837 -0.7608 5.9959 -9.4449 -5.7738

The loglikelihood logl is unaffected, and both the Akaike and Bayesian information
criteria (aic and bic) are reduced, supporting the decision to drop the second random
effect from the model.

Use the estimated fixed effects in beta2 and the estimated random effects for each tree
in b2 to plot the model through the data.

PHI = repmat(beta2,1,5) + ... % Fixed effects

 [b2(1,:);zeros(1,5);b2(2,:)]; % Random effects

tplot = 0:0.1:1600;

for I = 1:5

 fitted_model=@(t)(PHI(1,I))./(1+exp(-(t-PHI(2,I))./ ...

22 Functions — Alphabetical List

22-3184

 PHI(3,I)));

 plot(tplot,fitted_model(tplot),'Color',h(I).Color, ...

 'LineWidth',2)

end

More About
• “Mixed-Effects Models” on page 11-20
• “Grouping Variables” on page 2-52

 nlmefit

22-3185

References

[1] Lindstrom, M. J., and D. M. Bates. “Nonlinear mixed-effects models for repeated
measures data.” Biometrics. Vol. 46, 1990, pp. 673–687.

[2] Davidian, M., and D. M. Giltinan. Nonlinear Models for Repeated Measurements Data.
New York: Chapman & Hall, 1995.

[3] Pinheiro, J. C., and D. M. Bates. “Approximations to the log-likelihood function in
the nonlinear mixed-effects model.” Journal of Computational and Graphical
Statistics. Vol. 4, 1995, pp. 12–35.

[4] Demidenko, E. Mixed Models: Theory and Applications. Hoboken, NJ: John Wiley &
Sons, Inc., 2004.

See Also
nlinfit | nlpredci | nlmefitsa

22 Functions — Alphabetical List

22-3186

nlmefitsa
Fit nonlinear mixed-effects model with stochastic EM algorithm

Syntax

[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0)

[BETA,PSI,STATS,B] =

nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0,'Name',Value)

Description

[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0) fits a
nonlinear mixed-effects regression model and returns estimates of the fixed effects in
BETA. By default, nlmefitsa fits a model where each model parameter is the sum of a
corresponding fixed and random effect, and the covariance matrix of the random effects is
diagonal, i.e., uncorrelated random effects.

The BETA, PSI, and other values this function returns are the result of a random
(Monte Carlo) simulation designed to converge to the maximum likelihood estimates
of the parameters. Because the results are random, it is advisable to examine the plot
of simulation to results to be sure that the simulation has converged. It may also be
helpful to run the function multiple times, using multiple starting values, or use the
'Replicates' parameter to perform multiple simulations.

[BETA,PSI,STATS,B] =

nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0,'Name',Value) accepts one or more
comma-separated parameter name/value pairs. Specify Name inside single quotes.

Input Arguments

Definitions:

In the following list of arguments, the following variable definitions apply:

• n — number of observations

 nlmefitsa

22-3187

• h — number of predictor variables
• m — number of groups
• g — number of group-specific predictor variables
• p — number of parameters
• f — number of fixed effects

X

An n-by-h matrix of n observations on h predictor variables.

Y

An n-by-1 vector of responses.

GROUP

A grouping variable indicating to which of m groups each observation belongs. GROUP
can be a categorical variable, a numeric vector, a character matrix with rows for group
names, or a cell array of strings.

V

An m-by-g matrix of g group-specific predictor variables for each of the m groups in the
data. These are predictor values that take on the same value for all observations in a
group. Rows of V are ordered according to GRP2IDX(GROUP). Use an m-by-g cell array for
V if any of the group-specific predictor values vary in size across groups. Specify [] for V
if there are no group predictors.

MODELFUN

A handle to a function that accepts predictor values and model parameters, and returns
fitted values. MODELFUN has the form YFIT = MODELFUN(PHI,XFUN,VFUN) with input
arguments

• PHI — A 1-by-p vector of model parameters.
• XFUN — An l-by-h array of predictor variables where

• l is 1 if XFUN is a single row of X
• l is ni if XFUN contains the rows of X for a single group of size ni

• l is n if XFUN contains all rows of X.

22 Functions — Alphabetical List

22-3188

• VFUN — Either

• A 1-by-g vector of group-specific predictors for a single group, corresponding to a
single row of V

• An n-by-g matrix, where the k-th row of VFUN is V(i,:) if the k-th observation is in
group i.

If V is empty, nlmefitsa calls MODELFUN with only two inputs.

MODELFUN returns an l-by-1 vector of fitted values YFIT. When either PHI or VFUN
contains a single row, that one row corresponds to all rows in the other two input
arguments. For improved performance, use the 'Vectorization' parameter name/
value pair (described below) if MODELFUN can compute YFIT for more than one vector of
model parameters in one call.

BETA0

An f-by-1 vector with initial estimates for the f fixed effects. By default, f is equal to
the number of model parameters p. BETA0 can also be an f-by-REPS matrix, and the
estimation is repeated REPS times using each column of BETA0 as a set of starting
values.

Name-Value Pair Arguments

By default, nlmefitsa fits a model where each model parameter is the sum of a
corresponding fixed and random effect. Use the following parameter name/value pairs to
fit a model with a different number of or dependence on fixed or random effects. Use at
most one parameter name with an 'FE' prefix and one parameter name with an 'RE'
prefix. Note that some choices change the way nlmefitsa calls MODELFUN, as described
further below.

'FEParamsSelect'

A vector specifying which elements of the model parameter vector PHI include a fixed
effect, as a numeric vector with elements in 1:p, or as a 1-by-p logical vector. The model
will include f fixed effects, where f is the specified number of elements.

'FEConstDesign'

A p-by-f design matrix ADESIGN, where ADESIGN*BETA are the fixed components of the p
elements of PHI.

 nlmefitsa

22-3189

'FEGroupDesign'

A p-by-f-by-m array specifying a different p-by-f fixed effects design matrix for each of the
m groups.

'REParamsSelect'

A vector specifying which elements of the model parameter vector PHI include a random
effect, as a numeric vector with elements in 1:p, or as a 1-by-p logical vector. The model
will include r random effects, where r is the specified number of elements.

'REConstDesign'

A p-by-r design matrix BDESIGN, where BDESIGN*B are the random components of the p
elements of PHI. This matrix must consist of 0s and 1s, with at most one 1 per row.

The default model is equivalent to setting both FEConstDesign and REConstDesign to
eye(p), or to setting both FEParamsSelect and REParamsSelect to 1:p.

Additional optional parameter name/value pairs control the iterative algorithm used to
maximize the likelihood:

'CovPattern'

Specifies an r-by-r logical or numeric matrix PAT that defines the pattern of the random
effects covariance matrix PSI. nlmefitsa computes estimates for the variances
along the diagonal of PSI as well as covariances that correspond to non-zeroes in
the off-diagonal of PAT. nlmefitsa constrains the remaining covariances, i.e., those
corresponding to off-diagonal zeroes in PAT, to be zero. PAT must be a row-column
permutation of a block diagonal matrix, and nlmefitsa adds non-zero elements to PAT
as needed to produce such a pattern. The default value of PAT is eye(r), corresponding
to uncorrelated random effects.

Alternatively, specify PAT as a 1-by-r vector containing values in 1:r. In this case,
elements of PAT with equal values define groups of random effects, nlmefitsa estimates
covariances only within groups, and constrains covariances across groups to be zero.

'Cov0'

Initial value for the covariance matrix PSI. Must be an r-by-r positive definite matrix. If
empty, the default value depends on the values of BETA0.

22 Functions — Alphabetical List

22-3190

'ComputeStdErrors'

true to compute standard errors for the coefficient estimates and store them in the
output STATS structure, or false (default) to omit this computation.

'ErrorModel'

A string specifying the form of the error term. Default is 'constant'. Each model
defines the error using a standard normal (Gaussian) variable e, the function value f, and
one or two parameters a and b. Choices are

• 'constant' — y = f + a*e
• 'proportional' — y = f + b*f*e
• 'combined' — y = f + (a+b*f)*e
• 'exponential' — y = f*exp(a*e), or equivalently log(y) = log(f) + a*e

If this parameter is given, the output STATS.errorparam field has the value

• a for 'constant' and 'exponential'
• b for 'proportional'
• [a b] for 'combined'

'ErrorParameters'

A scalar or two-element vector specifying starting values for parameters of the error
model. This specifies the a, b, or [a b] values depending on the ErrorModel parameter.

'LogLikMethod'

Specifies the method for approximating the loglikelihood. Choices are:

• 'is' — Importance sampling
• 'gq' — Gaussian quadrature
• 'lin' — Linearization
• 'none' — Omit the loglikelihood approximation (default)

'NBurnIn'

Number of initial burn-in iterations during which the parameter estimates are not
recomputed. Default is 5.

 nlmefitsa

22-3191

'NChains'

Number c of "chains" simulated. Default is 1. Setting c>1 causes c simulated coefficient
vectors to be computed for each group during each iteration. Default depends on the data,
and is chosen to provide about 100 groups across all chains.

'NIterations'

Number of iterations. This can be a scalar or a three-element vector. Controls how many
iterations are performed for each of three phases of the algorithm:

1 simulated annealing
2 full step size
3 reduced step size

Default is [150 150 100]. A scalar is distributed across the three phases in the same
proportions as the default.

'NMCMCIterations'

Number of Markov Chain Monte Carlo (MCMC) iterations. This can be a scalar or a
three-element vector. Controls how many of three different types of MCMC updates are
performed during each phase of the main iteration:

1 full multivariate update
2 single coordinate update
3 multiple coordinate update

Default is [2 2 2]. A scalar value is treated as a three-element vector with all elements
equal to the scalar.

'OptimFun'

Either 'fminsearch' or 'fminunc', specifying the optimization function to be used
during the estimation process. Default is 'fminsearch'. Use of 'fminunc' requires
Optimization Toolbox.

'Options'

A structure created by a call to statset. nlmefitsa uses the following statset
parameters:

22 Functions — Alphabetical List

22-3192

• 'DerivStep' — Relative difference used in finite difference gradient calculation.
May be a scalar, or a vector whose length is the number of model parameters p. The
default is eps^(1/3).

• Display — Level of display during estimation.

• 'off' (default) — Displays no information
• 'final' — Displays information after the final iteration of the estimation

algorithm
• 'iter' — Displays information at each iteration

• FunValCheck

• 'on' (sdefault) — Check for invalid values (such as NaN or Inf) from MODELFUN
• 'off' — Skip this check

• OutputFcn — Function handle specified using @, a cell array with function handles
or an empty array. nlmefitsa calls all output functions after each iteration. See
nlmefitoutputfcn.m (the default output function for nlmefitsa) for an example of
an output function.

'ParamTransform'

A vector of p-values specifying a transformation function f() for each of the p
parameters:

XB = ADESIGN*BETA + BDESIGN*B

PHI = f(XB)

Each element of the vector must be one of the following integer codes specifying the
transformation for the corresponding value of PHI:

• 0: PHI = XB (default for all parameters)
• 1: log(PHI) = XB
• 2: probit(PHI) = XB
• 3: logit(PHI) = XB

'Replicates'

Number REPS of estimations to perform starting from the starting values in the vector
BETA0. If BETA0 is a matrix, REPS must match the number of columns in BETA0. Default
is the number of columns in BETA0.

 nlmefitsa

22-3193

'Vectorization'

Determines the possible sizes of the PHI, XFUN, and VFUN input arguments to MODELFUN.
Possible values are:

• 'SinglePhi' — MODELFUN is a function (such as an ODE solver) that can only
compute YFIT for a single set of model parameters at a time, i.e., PHI must be a single
row vector in each call. nlmefitsa calls MODELFUN in a loop if necessary using a
single PHI vector and with XFUN containing rows for a single observation or group at a
time. VFUN may be a single row that applies to all rows of XFUN, or a matrix with rows
corresponding to rows in XFUN.

• 'SingleGroup' — MODELFUN can only accept inputs corresponding to a single
group in the data, i.e., XFUN must contain rows of X from a single group in each call.
Depending on the model, PHI is a single row that applies to the entire group, or a
matrix with one row for each observation. VFUN is a single row.

• 'Full' — MODELFUN can accept inputs for multiple parameter vectors and multiple
groups in the data. Either PHI or VFUN may be a single row that applies to all rows
of XFUN, or a matrix with rows corresponding to rows in XFUN. Using this option can
improve performance by reducing the number of calls to MODELFUN, but may require
MODELFUN to perform singleton expansion on PHI or V.

The default for 'Vectorization' is 'SinglePhi'. In all cases, if V is empty,
nlmefitsa calls MODELFUN with only two inputs.

Output Arguments

BETA

Estimates of the fixed effects

PSI

An r-by-r estimated covariance matrix for the random effects. By default, r is equal to the
number of model parameters p.

STATS

A structure with the following fields:

22 Functions — Alphabetical List

22-3194

• logl — The maximized loglikelihood for the fitted model; empty if the
LogLikMethod parameter has its default value of 'none'

• rmse — The square root of the estimated error variance (computed on the log scale for
the exponential error model)

• errorparam — The estimated parameters of the error variance model
• aic — The Akaike information criterion (empty if logl is empty), calculated as aic =

–2 * logl + 2 * numParam, where

• logl is the maximized loglikelihood.
• numParam is the number of fitting parameters, including the degree of freedom

for covariance matrix of the random effects, the number of fixed effects and the
number of parameters of the error model.

• bic — The Bayesian information criterion (empty if logl is empty), calculated as
bic = -2*logl + log(M) * numParam

• M is the number of groups.
• logl and numParam are defined as in aic.

Note that some literature suggests that the computation of bic should be ,
bic = -2*logl + log(N) * numParam, where N is the number of observations.
To adjust the value of the output you can redefine bic as follows: bic = bic -
numel(unique(group)) + numel(Y)

• sebeta — The standard errors for BETA (empty if the ComputeStdErrors
parameter has its default value of false)

• covb — The estimated covariance of the parameter estimates (empty if
ComputeStdErrors is false)

• dfe — The error degrees of freedom
• pres — The population residuals (y-y_population), where y_population is the

population predicted values
• ires — The population residuals (y-y_population), where y_population is the

individual predicted values
• pwres — The population weighted residuals
• cwres — The conditional weighted residuals
• iwres — The individual weighted residuals

 nlmefitsa

22-3195

Examples

Nonlinear Mixed-Effects Model with Stochastic EM Algorithm

Load the sample data.

load indomethacin

Fit a model to data on concentrations of the drug indomethacin in the bloodstream of six
subjects over eight hours.

model = @(phi,t)(phi(:,1).*exp(-phi(:,2).*t)+phi(:,3).*exp(-phi(:,4).*t));

phi0 = [1 1 1 1];

xform = [0 1 0 1]; % log transform for 2nd and 4th parameters

[beta,PSI,stats,br] = nlmefitsa(time,concentration,...

 subject,[],model,phi0,'ParamTransform',xform)

beta =

 0.8563

 -0.7950

 2.7744

 1.0772

PSI =

 0.0529 0 0 0

 0 0.0220 0 0

 0 0 0.4762 0

 0 0 0 0.0120

stats =

 logl: []

 aic: []

 bic: []

 sebeta: []

 dfe: 57

 covb: []

 errorparam: 0.0809

 rmse: 0.0775

22 Functions — Alphabetical List

22-3196

 ires: [66x1 double]

 pres: [66x1 double]

 iwres: [66x1 double]

 pwres: [66x1 double]

 cwres: [66x1 double]

br =

 -0.2255 0.0063 0.1600 0.1773 -0.3269 0.1157

 0.0350 -0.1384 0.0058 0.0431 0.0093 -0.0453

 -0.7557 -0.0550 0.8736 -0.7875 0.5304 0.1727

 -0.0010 -0.0198 0.0137 -0.0757 0.0478 -0.0076

 nlmefitsa

22-3197

Plot the data along with an overall population fit

clf

phi = [beta(1), exp(beta(2)), beta(3), exp(beta(4))];

h = gscatter(time,concentration,subject);

xlabel('Time (hours)')

ylabel('Concentration (mcg/ml)')

title('{\bf Indomethacin Elimination}')

xx = linspace(0,8);

line(xx,model(phi,xx),'linewidth',2,'color','k')

Plot individual curves based on random-effect estimates.

for j=1:6

22 Functions — Alphabetical List

22-3198

 phir = [beta(1)+br(1,j), exp(beta(2)+br(2,j)), ...

 beta(3)+br(3,j), exp(beta(4)+br(4,j))];

 line(xx,model(phir,xx),'color',get(h(j),'color'))

end

More About

Algorithms

In order to estimate the parameters of a nonlinear mixed effects model, we would like to
choose the parameter values that maximize a likelihood function. These values are called
the maximum likelihood estimates. The likelihood function can be written in the form

 nlmefitsa

22-3199

p y p y b p b db| , , | , , |b s b s2 2Σ Σ() = () ()∫

where

• y is the response data
• β is the vector of population coefficients
• σ2 is the residual variance
• ∑ is the covariance matrix for the random effects
• b is the set of unobserved random effects

Each p() function on the right-hand-side is a normal (Gaussian) likelihood function that
may depend on covariates.

Since the integral does not have a closed form, it is difficult to find parameters that
maximize it. Delyon, Lavielle, and Moulines [1] proposed to find the maximum likelihood
estimates using an Expectation-Maximization (EM) algorithm in which the E step is
replaced by a stochastic procedure. They called their algorithm SAEM, for Stochastic
Approximation EM. They demonstrated that this algorithm has desirable theoretical
properties, including convergence under practical conditions and convergence to a local
maximum of the likelihood function. Their proposal involves three steps:

1 Simulation: Generate simulated values of the random effects b from the posterior
density p(b|Σ) given the current parameter estimates.

2 Stochastic approximation: Update the expected value of the loglikelihood function
by taking its value from the previous step, and moving part way toward the average
value of the loglikelihood calculated from the simulated random effects.

3 Maximization step: Choose new parameter estimates to maximize the loglikelihood
function given the simulated values of the random effects.

• “Mixed-Effects Models” on page 11-20
• “Grouping Variables” on page 2-52

References

[1] Delyon, B., M. Lavielle, and E. Moulines, Convergence of a stochastic approximation
version of the EM algorithm, Annals of Statistics, 27, 94-128, 1999.

22 Functions — Alphabetical List

22-3200

[2] Mentré, France, and Marc Lavielle, Stochastic EM algorithms in population PKPD
analyses, 2008.

See Also
nlinfit | nlpredci | nlmefit

http://tucson2008.go-acop.org/pdfs/2-Mentre_FINAL.pdf
http://tucson2008.go-acop.org/pdfs/2-Mentre_FINAL.pdf

 NegativeLogLikelihood property

22-3201

NegativeLogLikelihood property
Class: gmdistribution

Negative of log-likelihood

Description

The negative of the log-likelihood of the data.

Note: This property applies only to gmdistribution objects constructed with
fitgmdist.

22 Functions — Alphabetical List

22-3202

NLogL property
Class: ProbDistParametric

Read-only value specifying negative log likelihood for input data to ProbDistParametric
object

Description

NLogL is a read-only property of the ProbDistParametric class. NLogL is a value
specifying the negative log likelihood for input data used to fit a distribution represented
by a ProbDistParametric object.

Values

The value is a numeric scalar for a distribution fit to input data, that is, a distribution
created using the fitdist function. This property is empty for distributions created
without fitting to data, that is, by using the ProbDistUnivParam constructor. Use this
information to view and compare the negative log likelihood for input data supplied to
create distributions.

 NLogL property

22-3203

NLogL property
Class: ProbDistUnivKernel

Read-only value specifying negative log likelihood for input data to ProbDistUnivKernel
object

Description

NLogL is a read-only property of the ProbDistUnivKernel class. NLogL is a value
specifying the negative log likelihood for input data used to fit a distribution represented
by a ProbDistUnivKernel object.

Values

The value is a numeric scalar for a distribution fit to input data, that is, a distribution
created using the fitdist function. Use this information to view and compare the
negative log likelihood for input data used to create distributions.

22 Functions — Alphabetical List

22-3204

nlparci
Nonlinear regression parameter confidence intervals

Syntax

ci = nlparci(beta,resid,'covar',sigma)

ci = nlparci(beta,resid,'jacobian',J)

ci = nlparci(...,'alpha',alpha)

Description

ci = nlparci(beta,resid,'covar',sigma) returns the 95% confidence intervals
ci for the nonlinear least squares parameter estimates beta. Before calling nlparci,
use nlinfit to fit a nonlinear regression model and get the coefficient estimates beta,
residuals resid, and estimated coefficient covariance matrix sigma.

ci = nlparci(beta,resid,'jacobian',J) is an alternative syntax that also
computes 95% confidence intervals. J is the Jacobian computed by nlinfit. If the
'robust' option is used with nlinfit, use the 'covar' input rather than the
'jacobian' input so that the required sigma parameter takes the robust fitting into
account.

ci = nlparci(...,'alpha',alpha) returns 100(1-alpha)% confidence intervals.

nlparci treats NaNs in resid or J as missing values, and ignores the corresponding
observations.

The confidence interval calculation is valid for systems where the length of resid
exceeds the length of beta and J has full column rank. When J is ill-conditioned,
confidence intervals may be inaccurate.

Examples

Fit to exponential decay

Suppose you have data, and want to fit a model of the form

 nlparci

22-3205

yi = a1 + a2exp(–a3xi) + εi.

Here the ai are the parameters you want to estimate, xi are the data points, the yi are the
responses, and the εi are noise terms.

1 Write a function handle that represents the model:

mdl = @(a,x)(a(1) + a(2)*exp(-a(3)*x));

2 Generate synthetic data with parameters a = [1;3;2], with the x data points
distributed exponentially with parameter 2, and normally distributed noise with
standard deviation 0.1:

rng(9845,'twister') % for reproducibility

a = [1;3;2];

x = exprnd(2,100,1);

epsn = normrnd(0,0.1,100,1);

y = mdl(a,x) + epsn;

3 Fit the model to data starting from the arbitrary guess a0 = [2;2;2]:

a0 = [2;2;2];

[ahat,r,J,cov,mse] = nlinfit(x,y,mdl,a0);

ahat

ahat =

 1.0153

 3.0229

 2.1070

4 Check whether [1;3;2] is in a 95% confidence interval using the Jacobian
argument in nlparci:

ci = nlparci(ahat,r,'Jacobian',J)

ci =

 0.9869 1.0438

 2.9401 3.1058

 1.9963 2.2177

5 You can obtain the same result using the covariance argument:

ci = nlparci(ahat,r,'covar',cov)

ci =

 0.9869 1.0438

 2.9401 3.1058

22 Functions — Alphabetical List

22-3206

 1.9963 2.2177

See Also
nlinfit | nlpredci

 nlpredci

22-3207

nlpredci

Nonlinear regression prediction confidence intervals

Syntax

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB)

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB,Name,Value)

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J)

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J,Name,Value)

Description

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB) returns
predictions, Ypred, and 95% confidence interval half-widths, delta, for the nonlinear
regression model modelfun at input values X. Before calling nlpredci, use nlinfit
to fit modelfun and get the estimated coefficients, beta, residuals, R, and variance-
covariance matrix, CovB.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB,Name,Value)

uses additional options specified by one or more name-value pair arguments.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J) returns
predictions, Ypred, and 95% confidence interval half-widths, delta, for the nonlinear
regression model modelfun at input values X. Before calling nlpredci, use nlinfit to
fit modelfun and get the estimated coefficients, beta, residuals, R, and Jacobian, J.

If you use a robust option with nlinfit, then you should use the Covar syntax rather
than the Jacobian syntax. The variance-covariance matrix, CovB, is required to
properly take the robust fitting into account.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J,Name,Value)

uses additional options specified by one or more name-value pair arguments.

22 Functions — Alphabetical List

22-3208

Examples

Confidence Interval for Nonlinear Regression Curve

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the initial values in beta0.

[beta,R,J] = nlinfit(X,y,@hougen,beta0);

Obtain the predicted response and 95% confidence interval half-width for the value of the
curve at average reactant levels.

[ypred,delta] = nlpredci(@hougen,mean(X),beta,R,'Jacobian',J)

ypred =

 5.4622

delta =

 0.1921

Compute the 95% confidence interval for the value of the curve.

[ypred-delta,ypred+delta]

ans =

 5.2702 5.6543

Prediction Interval for New Observation

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

 nlpredci

22-3209

Fit the Hougen-Watson model to the rate data using the initial values in beta0.

[beta,R,J] = nlinfit(X,y,@hougen,beta0);

Obtain the predicted response and 95% prediction interval half-width for a new
observation with reactant levels [100,100,100].

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...

 'PredOpt','observation')

ypred =

 1.8346

delta =

 0.5101

Compute the 95% prediction interval for the new observation.

[ypred-delta,ypred+delta]

ans =

 1.3245 2.3447

Simultaneous Confidence Intervals for Robust Fit Curve

Generate sample data from the nonlinear regression model

y b b b x= + -{ } +1 2 3exp ,e

where b1, b2, and b3 are coefficients, and the error term is normally distributed with
mean 0 and standard deviation 0.5.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility

b = [1;3;2];

x = exprnd(2,100,1);

y = modelfun(b,x) + normrnd(0,0.5,100,1);

Fit the nonlinear model using robust fitting options.

opts = statset('nlinfit');

22 Functions — Alphabetical List

22-3210

opts.RobustWgtFun = 'bisquare';

beta0 = [2;2;2];

[beta,R,J,CovB,MSE] = nlinfit(x,y,modelfun,beta0,opts);

Plot the fitted regression model and simultaneous 95% confidence bounds.

xrange = min(x):.01:max(x);

[ypred,delta] = nlpredci(modelfun,xrange,beta,R,'Covar',CovB,...

 'MSE',MSE,'SimOpt','on');

lower = ypred - delta;

upper = ypred + delta;

figure()

plot(x,y,'ko') % observed data

hold on

plot(xrange,ypred,'k','LineWidth',2)

plot(xrange,[lower;upper],'r--','LineWidth',1.5)

Confidence Interval Using Observation Weights

Load sample data.

 nlpredci

22-3211

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Specify a function handle for observation weights, then fit the Hougen-Watson model to
the rate data using the specified observation weights function.

a = 1; b = 1;

weights = @(yhat) 1./((a + b*abs(yhat)).^2);

[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',weights);

Compute the 95% prediction interval for a new observation with reactant levels
[100,100,100] using the observation weight function.

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...

 'PredOpt','observation','Weights',weights);

[ypred-delta,ypred+delta]

ans =

 1.5264 2.1033

Confidence Interval Using Nonconstant Error Model

Load sample data.

S = load('reaction');

X = S.reactants;

y = S.rate;

beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error variance model.

[beta,R,J,CovB,MSE,S] = nlinfit(X,y,@hougen,beta0,'ErrorModel','combined');

Compute the 95% prediction interval for a new observation with reactant levels
[100,100,100] using the fitted error variance model.

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...

 'PredOpt','observation','ErrorModelInfo',S);

[ypred-delta,ypred+delta]

ans =

22 Functions — Alphabetical List

22-3212

 1.3245 2.3447

Input Arguments

modelfun — Nonlinear regression model function
function handle

Nonlinear regression model function, specified as a function handle. modelfun must
accept two input arguments, a coefficient vector and an array X—in that order—and
return a vector of fitted response values.

For example, to specify the hougen nonlinear regression function, use the function
handle @hougen.

Data Types: function_handle

X — Input values for predictions
matrix

Input values for predictions, specified as a matrix. nlpredci makes a prediction for
the covariates in each row of X. There should be a column in X for each coefficient in the
model.
Data Types: single | double

beta — Estimated regression coefficients
vector returned by nlinfit

Estimated regression coefficients, specified as the vector of fitted coefficients returned by
a previous call to nlinfit.

Data Types: single | double

R — Residuals
vector returned by nlinfit

Residuals for the fitted modelfun, specified as the vector of residuals returned by a
previous call to nlinfit.

CovB — Estimated variance-covariance matrix
matrix returned by nlinfit

 nlpredci

22-3213

Estimated variance-covariance matrix for the fitted coefficients, beta, specified as the
variance-covariance matrix returned by a previous call to nlinfit.

J — Estimated Jacobian
matrix returned by nlinfit

Estimated Jacobian of the nonlinear regression model, modelfun, specified as the
Jacobian matrix returned by a previous call to nlinfit.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.1,'PredOpt','observation' specifies 90% prediction
intervals for new observations.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for the confidence interval, specified as the comma-separated pair
consisting of 'Alpha' and a scalar value in the range (0,1). If Alpha has value α, then
nlpredci returns intervals with 100×(1–α)% confidence level.

The default confidence level is 95% (α = 0.05).
Example: 'Alpha',0.1

Data Types: single | double

'ErrorModelInfo' — Information about error model fit
structure returned by nlinfit

Information about the error model fit, specified as the comma-separated pair consisting
of 'ErrorModelInfo' and a structure returned by a previous call to nlinfit.

ErrorModelInfo only has an effect on the returned prediction interval when PredOpt has
the value 'observation'. If you do not use ErrorModelInfo, then nlpredci assumes
the error variance model is 'constant'.

22 Functions — Alphabetical List

22-3214

The error model structure returned by nlinfit has the following fields:

ErrorModel Chosen error model
ErrorParameters Estimated error parameters
ErrorVariance Function handle that accepts an N-by-p matrix, X, and

returns an N-by-1 vector of error variances using the
estimated error model

MSE Mean squared error
ScheffeSimPred Scheffé parameter for simultaneous prediction

intervals when using the estimated error model
WeightFunction Logical with value true if you used a custom weight

function previously in nlinfit
FixedWeights Logical with value true if you used fixed weights

previously in nlinfit
RobustWeightFunction Logical with value true if you used robust fitting

previously in

'MSE' — Mean squared error
MSE returned by nlinfit

Mean squared error (MSE) for the fitted nonlinear regression model, specified as the
comma-separated pair consisting of 'MSE' and the MSE value returned by a previous
call to nlinfit.

If you use a robust option with nlinfit, then you must specify the MSE when predicting
new observations to properly take the robust fitting into account. If you do not specify the
MSE, then nlpredci computes the MSE from the residuals, R, and does not take the
robust fitting into account.

For example, if mse is the MSE value returned by nlinfit, then you can specify
'MSE',mse.

Data Types: single | double

'PredOpt' — Prediction interval to compute
'curve' (default) | 'observation'

Prediction interval to compute, specified as the comma-separated pair consisting of
'PredOpt' and either 'curve' or 'observation'.

 nlpredci

22-3215

• If you specify the value 'curve', then nlpredci returns confidence intervals for the
estimated curve (function value) at the observations X.

• If you specify the value 'observation', then nlpredci returns prediction intervals
for new observations at X.

If you specify 'observation' after using a robust option with nlinfit, then you must
also specify a value for MSE to provide the robust estimate of the mean squared error.
Example: 'PredOpt','observation'

Data Types: char

'SimOpt' — Indicator for specifying simultaneous bounds
'off' (default) | 'on'

Indicator for specifying simultaneous bounds, specified as the comma-separated pair
consisting of 'SimOpt' and either 'off' or 'on'. Use the value 'off' to compute
nonsimultaneous bounds, and 'on' for simultaneous bounds.

'Weights' — Observation weights
vector | function handle

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of positive scalar values or a function handle. The default is no weights.

• If you specify a vector of weights, then it must have the same number of elements as
the number of observations (rows) in X.

• If you specify a function handle for the weights, then it must accept a vector of
predicted response values as input, and return a vector of real positive weights as
output.

Given weights, W, nlpredci estimates the error variance at observation i by mse*(1/
W(i)), where mse is the mean squared error value specified using MSE.

Example: 'Weights',@WFun

Data Types: double | single | function_handle

Output Arguments

Ypred — Predicted responses
vector

22 Functions — Alphabetical List

22-3216

Predicted responses, returned as a vector with the same number of rows as X.

delta — Confidence interval half-widths
vector

Confidence interval half-widths, returned as a vector with the same number of rows as X.
By default, delta contains the half-widths for nonsimultaneous 95% confidence intervals
for modelfun at the observations in X. You can compute the lower and upper bounds of
the confidence intervals as Ypred-delta and Ypred+delta, respectively.

If 'PredOpt' has value 'observation', then delta contains the half-widths for
prediction intervals of new observations at the values in X.

More About

Confidence Intervals for Estimable Predictions

When the estimated model Jacobian is not of full rank, then it might not be possible to
construct sensible confidence intervals at all prediction points. In this case, nlpredci
still tries to construct confidence intervals for any estimable prediction points.

For example, suppose you fit the linear function f x x xi i i i(,)x b b b b= + +1 1 2 2 3 3 at the
points in the design matrix

X =

Ê

Ë

Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜̃

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

.

The estimated Jacobian at the values in X is the design matrix itself, J X= . Thus, the
Jacobian is not of full rank:

rng('default') % For reproducibility

y = randn(6,1);

linfun = @(b,x) x*b;

 nlpredci

22-3217

beta0 = [1;1;1];

X = [repmat([1 1 0],3,1); repmat([1 0 1],3,1)];

[beta,R,J] = nlinfit(X,y,linfun,beta0);

Warning: The Jacobian at the solution is ill-conditioned, and

some model parameters may not be estimated well (they are not

identifiable). Use caution in making predictions.

> In nlinfit at 283

In this example, nlpredci can only compute prediction intervals at points that satisfy
the linear relationship

x x x
i i i1 2 3

= + .

If you try to compute confidence intervals for predictions at nonidentifiable points,
nlpredci returns NaN for the corresponding interval half-widths:

xpred = [1 1 1;0 1 -1;2 1 1];

[ypred,delta] = nlpredci(linfun,xpred,beta,R,'Jacobian',J)

ypred =

 -0.0035

 0.0798

 -0.0047

delta =

 NaN

 3.8102

 3.8102

Here, the first element of delta is NaN because the first row in xpred does not satisfy
the required linear dependence, and is therefore not an estimable contrast.

Tips

• To compute confidence intervals for complex parameters or data, you need to split the
problem into its real and imaginary parts. When calling nlinfit:

1 Define your parameter vector beta as the concatenation of the real and imaginary
parts of the original parameter vector.

22 Functions — Alphabetical List

22-3218

2 Concatenate the real and imaginary parts of the response vector Y as a single
vector.

3 Modify your model function modelfun to accept X and the purely real parameter
vector, and return a concatenation of the real and imaginary parts of the fitted
values.

With the problem formulated this way, nlinfit computes real estimates, and
confidence intervals are feasible.

Algorithms

• nlpredci treats NaN values in the residuals, R, or the Jacobian, J, as missing values,
and ignores the corresponding observations.

• If the Jacobian, J, does not have full column rank, then some of the model parameters
might be nonidentifiable. In this case, nlpredci tries to construct confidence
intervals for estimable predictions, and returns NaN for those that are not.

References

[1] Lane, T. P. and W. H. DuMouchel. “Simultaneous Confidence Intervals in Multiple
Regression.” The American Statistician. Vol. 48, No. 4, 1994, pp. 315–321.

[2] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-
Interscience, 2003.

See Also
nlinfit | nlparci | NonLinearModel

 nnmf

22-3219

nnmf
Nonnegative matrix factorization

Syntax
[W,H] = nnmf(A,k)

[W,H] = nnmf(A,k,param1,val1,param2,val2,...)

[W,H,D] = nnmf(...)

Description
[W,H] = nnmf(A,k) factors the nonnegative n-by-m matrix A into nonnegative
factors W (n-by-k) and H (k-by-m). The factorization is not exact; W*H is a lower-rank
approximation to A. The factors W and H are chosen to minimize the root-mean-squared
residual D between A and W*H:

D = norm(A-W*H,'fro')/sqrt(N*M)

The factorization uses an iterative method starting with random initial values for W
and H. Because the root-mean-squared residual D may have local minima, repeated
factorizations may yield different W and H. Sometimes the algorithm converges to a
solution of lower rank than k, which may indicate that the result is not optimal.

W and H are normalized so that the rows of H have unit length. The columns of W are
ordered by decreasing length.

[W,H] = nnmf(A,k,param1,val1,param2,val2,...) specifies optional parameter
name/value pairs from the following table.

Parameter Value

'algorithm' Either 'als' (the default) to use an alternating least-squares
algorithm, or 'mult' to use a multiplicative update algorithm.

In general, the 'als' algorithm converges faster and more
consistently. The 'mult' algorithm is more sensitive to
initial values, which makes it a good choice when using
'replicates' to find W and H from multiple random starting
values.

22 Functions — Alphabetical List

22-3220

Parameter Value

'w0' An n-by-k matrix to be used as the initial value for W.
'h0' A k-by-m matrix to be used as the initial value for H.
'options' An options structure as created by the statset function. nnmf

uses the following fields of the options structure:

• Display — Level of display. Choices:

• 'off' (default) — No display
• 'final' — Display final result
• 'iter' — Iterative display of intermediate results

• MaxIter — Maximum number of iterations. Default is
100. Unlike in optimization settings, reaching MaxIter
iterations is treated as convergence.

• TolFun — Termination tolerance on change in size of the
residual. Default is 1e-4.

• TolX — Termination tolerance on relative change in the
elements of W and H. Default is 1e-4.

• UseParallel — Set to true to compute in parallel.
Default is false.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute
reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such
objects. If you do not specify Streams, nnmf uses the
default stream or streams. If you choose to specify
Streams, use a single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel
pool.

 nnmf

22-3221

Parameter Value

'replicates' The number of times to repeat the factorization, using
new random starting values for W and H, except at the first
replication if 'w0' and 'h0' are given. This is most beneficial
with the 'mult' algorithm. The default is 1.

[W,H,D] = nnmf(...) also returns D, the root mean square residual.

Examples

Nonnegative Rank-Two Approximation and Biplot

Load the sample data.

load fisheriris

Compute a nonnegative rank-two approximation of the measurements of the four
variables in Fisher's iris data.

[W,H] = nnmf(meas,2);

H

H =

 0.6943 0.2853 0.6223 0.2220

 0.8020 0.5685 0.1830 0.0147

The first and third variables in meas (sepal length and petal length, with coefficients
0.6852 and 0.6357, respectively) provide relatively strong weights to the first column of W
. The first and second variables in meas (sepal length and sepal width, with coefficients
0.8011 and 0.5740) provide relatively strong weights to the second column of W .

Create a biplot of the data and the variables in meas in the column space of W .

biplot(H','scores',W,'varlabels',{'sl','sw','pl','pw'});

axis([0 1.1 0 1.1])

xlabel('Column 1')

ylabel('Column 2')

22 Functions — Alphabetical List

22-3222

Change Algorithm

Starting from a random array X with rank 20, try a few iterations at several replicates
using the multiplicative algorithm:

X = rand(100,20)*rand(20,50);

opt = statset('MaxIter',5,'Display','final');

[W0,H0] = nnmf(X,5,'replicates',10,...

 'options',opt,...

 'algorithm','mult');

 rep iteration rms resid |delta x|

 1 5 0.560887 0.0245182

 2 5 0.66418 0.0364471

 nnmf

22-3223

 3 5 0.609125 0.0358355

 4 5 0.608894 0.0415491

 5 5 0.619291 0.0455135

 6 5 0.621549 0.0299965

 7 5 0.640549 0.0438758

 8 5 0.673015 0.0366856

 9 5 0.606835 0.0318931

 10 5 0.633526 0.0319591

Final root mean square residual = 0.560887

Continue with more iterations from the best of these results using alternating least
squares:

opt = statset('Maxiter',1000,'Display','final');

[W,H] = nnmf(X,5,'w0',W0,'h0',H0,...

 'options',opt,...

 'algorithm','als');

 rep iteration rms resid |delta x|

 1 24 0.257336 0.00271859

Final root mean square residual = 0.257336

References

[1] Berry, M. W., et al. “Algorithms and Applications for Approximate Nonnegative
Matrix Factorization.” Computational Statistics and Data Analysis. Vol. 52, No.
1, 2007, pp. 155–173.

See Also
pca | factoran | statset

22 Functions — Alphabetical List

22-3224

nodeclass
Class: classregtree

Class values of nodes of classification tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

NAME=nodeclass(T)

NAME=nodeclass(T,J)

[NAME,ID]=nodeclass(...)

Description

NAME=nodeclass(T) returns an n-element cell array with the names of the most
probable classes in each node of the tree T, where n is the number of nodes in the tree.
Every element of this array is a string equal to one of the class names returned by
classname(T). For regression trees, nodeclass returns an empty cell array.

NAME=nodeclass(T,J) takes an array J of node numbers and returns the class names
for the specified nodes.

[NAME,ID]=nodeclass(...) also returns a numeric array with the class index for
each node. The class index is determined by the order of classes classname returns.

See Also
classregtree | numnodes | classname

 nodeerr

22-3225

nodeerr
Class: classregtree

Return vector of node errors

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

e = nodeerr(t)

e = nodeerr(t,nodes)

Description

e = nodeerr(t) returns an n-element vector e of the errors of the nodes in the tree
t, where n is the number of nodes. For a regression tree, the error e(i) for node i is
the variance of the observations assigned to node i. For a classification tree, e(i) is the
misclassification probability for node i.

e = nodeerr(t,nodes) takes a vector nodes of node numbers and returns the errors
for the specified nodes.

The error e is the so-called resubstitution error computed by applying the tree to the
same data used to create the tree. This error is likely to under estimate the error you
would find if you applied the tree to new data. The test function provides options to
compute the error (or cost) using cross-validation or a test sample.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

22 Functions — Alphabetical List

22-3226

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

e = nodeerr(t)

 nodeerr

22-3227

e =

 0.6667

 0

 0.5000

 0.0926

 0.0217

 0.0208

 0.3333

 0

 0

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | test | numnodes

22 Functions — Alphabetical List

22-3228

nodemean
Class: classregtree

Mean values of nodes of regression tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

NM = nodemean(T)

NM = nodemean(T,J)

Description

NM = nodemean(T) returns an n-element numeric array with mean values in each node
of the tree T, where n is the number of nodes in the tree. Every element of this array is
computed by averaging true Y values over all observations in the node. For classification
trees, nodemean returns an empty numeric array.

NM = nodemean(T,J) takes an array J of node numbers and returns the mean values
for the specified nodes.

See Also
classregtree | numnodes

 nodeprob

22-3229

nodeprob
Class: classregtree

Node probabilities

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

p = nodeprob(t)

p = nodeprob(t,nodes)

Description

p = nodeprob(t) returns an n-element vector p of the probabilities of the nodes in
the tree t, where n is the number of nodes. The probability of a node is computed as the
proportion of observations from the original data that satisfy the conditions for the node.
For a classification tree, this proportion is adjusted for any prior probabilities assigned to
each class.

p = nodeprob(t,nodes) takes a vector nodes of node numbers and returns the
probabilities for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

22 Functions — Alphabetical List

22-3230

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

p = nodeprob(t)

p =

 1.0000

 0.3333

 nodeprob

22-3231

 0.6667

 0.3600

 0.3067

 0.3200

 0.0400

 0.3133

 0.0067

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | numnodes | nodesize

22 Functions — Alphabetical List

22-3232

nodesize
Class: classregtree

Return node size

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

sizes = nodesize(t)

sizes = nodesize(t,nodes)

Description

sizes = nodesize(t) returns an n-element vector sizes of the sizes of the nodes in
the tree t, where n is the number of nodes. The size of a node is defined as the number of
observations from the data used to create the tree that satisfy the conditions for the node.

sizes = nodesize(t,nodes) takes a vector nodes of node numbers and returns the
sizes for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

 nodesize

22-3233

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

sizes = nodesize(t)

sizes =

 150

 50

 100

 54

22 Functions — Alphabetical List

22-3234

 46

 48

 6

 47

 1

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | numnodes

 nominal

22-3235

nominal

Create nominal array

After creating a nominal array, you can use related functions to add, drop, or merge
categories, and more.

For more information, see Using nominal Objects.

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

B = nominal(X)

B = nominal(X,labels)

B = nominal(X,labels,levels)

B = nominal(X,labels,[],edges)

Description

B = nominal(X) creates a nominal array B from the array X. nominal creates the
levels of B from the sorted unique values in X, and creates default labels for them.

B = nominal(X,labels) labels the levels in B according to labels.

B = nominal(X,labels,levels) creates a nominal array with possible levels defined
by levels.

B = nominal(X,labels,[],edges) creates a nominal array by binning a numeric
array X with bin edges given by the numeric vector edges.

22 Functions — Alphabetical List

22-3236

Examples

Create and Label Nominal Arrays

Create nominal arrays from a cell array of strings and from integer data, and provide
explicit labels.

Create a nominal array from a cell array of strings with values 'r', 'g', and 'b'.
Label these levels 'red', 'green', and 'blue', respectively. Note that the labels are
specified according to the sorted (alphabetical) order of the elements in X.

X = {'r' 'b' 'g';'g' 'r' 'b';'b' 'r' 'g'}

B = nominal(X,{'blue','green','red'})

X =

 'r' 'b' 'g'

 'g' 'r' 'b'

 'b' 'r' 'g'

B =

 red blue green

 green red blue

 blue red green

Create a nominal array from integer data with values 1 to 4, merging odd and even
values into two nominal levels with labels 'odd' and 'even'. Achieve the merging by
duplicating the labels.

X = randi([1 4],5,2)

B = nominal(X,{'odd','even','odd','even'})

X =

 4 1

 4 2

 1 3

 4 4

 3 4

 nominal

22-3237

B =

 even odd

 even even

 odd odd

 even even

 odd even

• “Create Nominal and Ordinal Arrays” on page 2-4
• “Plot Data Grouped by Category” on page 2-25

Input Arguments

X — Input array
numeric | logical | character | categorical | cell array of strings

Input array to convert to nominal, specified as a numeric, logical, character, or
categorical array, or a cell array of strings. The levels of the resulting nominal array
correspond to the sorted unique values in X.

labels — Labels for the discrete levels
character array | cell array of strings

Labels for the discrete levels, specified as a character array or cell array of strings. By
default, nominal assigns the labels to the levels in B in order according to the sorted
unique values in X.

You can include duplicate labels in labels in order to merge multiple values in X into a
single level in B.
Data Types: char | cell

levels — Possible nominal levels
vector

Possible nominal levels for the output nominal array, specified as a vector whose values
can be compared to those in X using the equality operator. nominal assigns labels to
each level from the corresponding elements of labels. If X contains any values not present
in levels, the levels of the corresponding elements of B are undefined.

22 Functions — Alphabetical List

22-3238

edges — Bin edges
numeric vector

Bin edges to create a nominal array by binning a numeric array, specified as a numeric
vector. The uppermost bin includes values equal to the right-most edge. nominal assigns
labels to each level in the resulting nominal array from the corresponding elements of
labels. When you specify edges, it must have one more element than labels.

Output Arguments

B — Nominal array
nominal array object

Nominal array, returned as a nominal array object.

By default, an element of B is undefined if the corresponding element of X is NaN
(when X is numeric), an empty string (when X is a character), or undefined (when X is
categorical). nominal treats such elements as “undefined” or “missing” and does not
include entries for them among the possible levels. To create an explicit level for such
elements instead of treating them as undefined, you must use the levels input argument,
and include NaN, the empty string, or an undefined element.

More About
• Using nominal Objects

See Also
ordinal

 Using nominal Objects

22-3239

Using nominal Objects
Arrays for nominal data

Nominal data are discrete, nonnumeric values that do not have a natural ordering.
nominal array objects provide efficient storage and convenient manipulation of such
data, while also maintaining meaningful labels for the values.

You can manipulate nominal arrays much like ordinary numeric arrays, including
subscripting, concatenating, and reshaping. It can be useful to use nominal arrays as
grouping variables when the elements indicate the group an observation belongs to.

Note: The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Examples

Create and Manipulate Nominal Arrays

Create a nominal array from string data in a cell array.

colors = nominal({'r','b','g';'g','r','b';'b','r','g'},...

 {'blue','green','red'})

colors =

 red blue green

 green red blue

 blue red green

Identify the elements in colors that are members of the level 'red'. A value of 1 in
the resulting array indicates that the corresponding element of colors is a member of
'red'.

colors == 'red'

22 Functions — Alphabetical List

22-3240

ans =

 1 0 0

 0 1 0

 0 1 0

Identify the elements of colors that are members of either 'red' or 'blue'.

ismember(colors,{'red' 'blue'})

ans =

 1 1 0

 0 1 1

 1 1 0

Merge the elements of the 'red' and 'blue' levels into a new level labeled 'purple'.

colors = mergelevels(colors,{'red','blue'},'purple')

colors =

 purple purple green

 green purple purple

 purple purple green

Display the levels of colors.

getlevels(colors)

ans =

 purple green

Summarize the number of elements in each level. By default, summary returns counts for
each column of the input array.

summary(colors)

 Using nominal Objects

22-3241

 purple 2 3 1

 green 1 0 2

Create a pie chart for the data in colors.

pie(colors)

• “Create Nominal and Ordinal Arrays” on page 2-4
• “Add and Drop Category Levels” on page 2-21
• “Plot Data Grouped by Category” on page 2-25
• “Summary Statistics Grouped by Category” on page 2-38

22 Functions — Alphabetical List

22-3242

Properties

labels — Level labels
cell array of strings

Level labels, specified as a cell array of string. Access labels using getlabels.

Data Types: cell

undeflabel — Label for undefined levels
'<undefined>' (default)

Label for undefined levels, specified as '<undefined>'. You can find undefined
elements in categorical arrays using isundefined.

Object Functions
addlevels droplevelsgetlabels getlevelsislevel levelcountsmergelevels
reorderlevelssetlabels

You can also use many other MATLAB array functions with categorical arrays. The
following is a partial list. For a complete list, see “Other MATLAB Functions Supporting
Nominal and Ordinal Arrays” on page 2-3.
double histogramisequalisundefined piesummary times

Create Object

Create nominal arrays using the nominal function.

See Also
ordinal

More About
• “Advantages of Using Categorical Arrays” on page 2-44
• “Index and Search Using Categorical Arrays” on page 2-47
• “Grouping Variables” on page 2-52

 notify

22-3243

notify
Class: qrandstream

Notify listeners of event

Syntax

notify(h,'eventname')

notify(h,'eventname',data)

Description

notify(h,'eventname') notifies listeners added to the event named eventname on
handle object array h that the event is taking place. h is the array of handles to objects
triggering the event, and eventname must be a string.

notify(h,'eventname',data) provides a way of encapsulating information about an
event which can then be accessed by each registered listener. data must belong to the
event.eventdata class.

See Also
addlistener | event.EventData | events | qrandstream

22 Functions — Alphabetical List

22-3244

NonLinearModel class

Nonlinear regression model class

Description

An object comprising training data, model description, diagnostic information, and fitted
coefficients for a nonlinear regression. Predict model responses with the predict or
feval methods.

Construction

nlm = fitnlm(tbl,modelfun,beta0) or nlm = fitnlm(X,y,modelfun,beta0)
create a nonlinear model of a table or dataset array tbl, or of the responses y to a data
matrix X. For details, see fitnlm.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

 NonLinearModel class

22-3245

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

modelfun — Functional form of the model
function handle | string of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)'

Functional form of the model, specified as either of the following.

• Function handle @modelfun or @(b,x)modelfun, where

• b is a coefficient vector with the same number of elements as beta0.
• x is a matrix with the same number of columns as X or the number of predictor

variable columns of tbl.

modelfun(b,x) returns a column vector that contains the same number of rows as
x. Each row of the vector is the result of evaluating modelfun on the corresponding
row of x. In other words, modelfun is a vectorized function, one that operates on all
data rows and returns all evaluations in one function call. modelfun should return
real numbers to obtain meaningful coefficients.

• String of the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)', where f represents
a scalar function of the scalar coefficient variables b1,...,bj and the scalar data
variables x1,...,xk.

beta0 — Coefficients
numeric vector

Coefficients for the nonlinear model, specified as a numeric vector. NonLinearModel
starts its search for optimal coefficients from beta0.

22 Functions — Alphabetical List

22-3246

Data Types: single | double

Properties

CoefficientCovariance

Covariance matrix of coefficient estimates.

CoefficientNames

Cell array of strings containing a label for each coefficient.

Coefficients

Coefficient values stored as a table. Coefficients has one row for each coefficient and
these columns:

• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t statistic for a test that the coefficient is zero
• pValue — p-value for the t statistic

To obtain any of these columns as a vector, index into the property using dot notation.
For example, in mdl the estimated coefficient vector is

beta = mdl.Coefficients.Estimate

Use coefTest to perform other tests on the coefficients.

Diagnostics

Table with diagnostics helpful in finding outliers and influential observations. The table
contains the following fields.

Field Meaning Utility

Leverage Diagonal elements of
HatMatrix

Leverage indicates to what extent the predicted
value for an observation is determined by the
observed value for that observation. A value close to
1 indicates that the prediction is largely determined
by that observation, with little contribution from the

 NonLinearModel class

22-3247

Field Meaning Utility

other observations. A value close to 0 indicates the fit
is largely determined by the other observations. For
a model with P coefficients and N observations, the
average value of Leverage is P/N. An observation
with Leverage larger than 2*P/N can be regarded as
having high leverage.

CooksDistance Cook's measure of
scaled change in fitted
values

CooksDistance is a measure of scaled change in
fitted values. An observation with CooksDistance
larger than three times the mean Cook's distance can
be an outlier.

HatMatrix Projection matrix to
compute fitted from
observed responses

HatMatrix is an N-by-N matrix such that
Fitted = HatMatrix*Y, where Y is the response
vector and Fitted is the vector of fitted response
values.

DFE

Degrees of freedom for error (residuals), equal to the number of observations minus the
number of estimated coefficients.

Fitted

Vector of predicted values based on the training data. fitnlm attempts to make Fitted
as close as possible to the response data.

Formula

Object that represents the mathematical form of the model.

Iterative

Structure with information about the fitting process. Fields:

• InitialCoefs — Initial coefficient values (the beta0 vector)
• IterOpts — Options included in the Options name-value pair argument for

fitnlm.

LogLikelihood

Log likelihood of the model distribution at the response values, with mean fitted from the
model, and other parameters estimated as part of the model fit.

22 Functions — Alphabetical List

22-3248

ModelCriterion

AIC and other information criteria for comparing models. A structure with fields:

• AIC — Akaike information criterion
• AICc — Akaike information criterion corrected for sample size
• BIC — Bayesian information criterion
• CAIC — Consistent Akaike information criterion

To obtain any of these values as a scalar, index into the property using dot notation. For
example, in a model mdl, the AIC value aic is:

aic = mdl.ModelCriterion.AIC

MSE

Mean squared error, a scalar that is an estimate of the variance of the error term in the
model.

NumCoefficients

Number of coefficients in the fitted model, a scalar. NumCoefficients is
the same as NumEstimatedCoefficients for NonLinearModel objects.
NumEstimatedCoefficients is equal to the degrees of freedom for regression.

NumEstimatedCoefficients

Number of estimated coefficients in the fitted model, a scalar.
NumEstimatedCoefficients is the same as NumCoefficients for NonLinearModel
objects. NumEstimatedCoefficients is equal to the degrees of freedom for regression.

NumPredictors

Number of variables fitnlm used as predictors for fitting.

NumVariables

Number of variables in the data. NumVariables is the number of variables in the
original table or dataset, or the total number of columns in the predictor matrix and
response vector when the fit is based on those arrays. It includes variables, if any, that
are not used as predictors or as the response.

 NonLinearModel class

22-3249

ObservationInfo

Table with the same number of rows as the input data (tbl or X).

Field Description

Weights Observation weights. Default is all 1.
Excluded Logical value, 1 indicates an observation that you excluded from

the fit with the Exclude name-value pair.
Missing Logical value, 1 indicates a missing value in the input. Missing

values are not used in the fit.
Subset Logical value, 1 indicates the observation is not excluded or

missing, so is used in the fit.

ObservationNames

Cell array of strings containing the names of the observations used in the fit.

• If the fit is based on a table or dataset containing observation names,
ObservationNames uses those names.

• Otherwise, ObservationNames is an empty cell array

PredictorNames

Cell array of strings, the names of the predictors used in fitting the model.

Residuals

Table of residuals, with one row for each observation and these variables.

Field Description

Raw Observed minus fitted values.
Pearson Raw residuals divided by RMSE.
Standardized Raw residuals divided by their estimated standard deviation.
Studentized Residual divided by an independent estimate of the residual

standard deviation. The residual for observation i is divided
by an estimate of the error standard deviation based on all
observations except for observation i.

22 Functions — Alphabetical List

22-3250

To obtain any of these columns as a vector, index into the property using dot notation.
For example, in a model mdl, the ordinary raw residual vector r is:

r = mdl.Residuals.Raw

Rows not used in the fit because of missing values (in ObservationInfo.Missing)
contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded)
contain NaN values, with the following exceptions:

• raw contains the difference between the observed and predicted values.
• standardized is the residual, standardized in the usual way.
• studentized matches the standardized values because this residual is not used in

the estimate of the residual standard deviation.

ResponseName

String giving naming the response variable.

RMSE

Root mean squared error, a scalar that is an estimate of the standard deviation of the
error term in the model.

Robust

Structure that is empty unless fitnlm constructed the model using robust regression.

Field Description

WgtFun Robust weighting function, such as 'bisquare' (see
robustfit)

Tune Value specified for tuning parameter (can be [])
Weights Vector of weights used in final iteration of robust fit

Rsquared

Proportion of total sum of squares explained by the model. The ordinary R-squared value
relates to the SSR and SST properties:

 NonLinearModel class

22-3251

Rsquared = SSR/SST = 1 - SSE/SST.

For a linear or nonlinear model, Rsquared is a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients

For a generalized linear model, Rsquared is a structure with five fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients
• LLR — Log-likelihood ratio
• Deviance — Deviance
• AdjGeneralized — Adjusted generalized R-squared

To obtain any of these values as a scalar, index into the property using dot notation. For
example, the adjusted R-squared value in mdl is

r2 = mdl.Rsquared.Adjusted

SSE

Sum of squared errors (residuals).

The Pythagorean theorem implies
SST = SSE + SSR.

SSR

Regression sum of squares, the sum of squared deviations of the fitted values from their
mean.

The Pythagorean theorem implies
SST = SSE + SSR.

SST

Total sum of squares, the sum of squared deviations of y from mean(y).

The Pythagorean theorem implies
SST = SSE + SSR.

22 Functions — Alphabetical List

22-3252

VariableInfo

Table containing metadata about Variables. There is one row for each term in the
model, and the following columns.

Field Description

Class String giving variable class, such as 'double'
Range Cell array giving variable range:

• Continuous variable — Two-element vector [min,max], the
minimum and maximum values

• Categorical variable — Cell array of distinct variable values
InModel Logical vector, where true indicates the variable is in the

model
IsCategorical Logical vector, where true indicates a categorical variable

VariableNames

Cell array of strings containing names of the variables in the fit.

• If the fit is based on a table or dataset, this property provides the names of the
variables in that table or dataset.

• If the fit is based on a predictor matrix and response vector, VariableNames is the
values in the VarNames name-value pair of the fitting method.

• Otherwise the variables have the default fitting names.

Variables

Table containing the data, both observations and responses, that the fitting function used
to construct the fit. If the fit is based on a table or dataset array, Variables contains
all of the data from that table or dataset array. Otherwise, Variables is a table created
from the input data matrix X and response vector y.

Methods

coefCI
Confidence intervals of coefficient
estimates of nonlinear regression model

 NonLinearModel class

22-3253

coefTest
Linear hypothesis test on nonlinear
regression model coefficients

disp
Display nonlinear regression model

feval
Evaluate nonlinear regression model
prediction

fit
Fit nonlinear regression model

plotDiagnostics
Plot diagnostics of nonlinear regression
model

plotResiduals
Plot residuals of nonlinear regression
model

plotSlice
Plot of slices through fitted nonlinear
regression surface

predict
Predict response of nonlinear regression
model

random
Simulate responses for nonlinear
regression model

Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X and the Jacobian matrix J:

J
f

i j
j xi

,

,

=
∂

∂b
b

22 Functions — Alphabetical List

22-3254

Here f is the nonlinear model function, and β is the vector of model coefficients.

The Hat Matrix H is
H = J(JTJ)–1JT.

The diagonal elements Hii satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

where n is the number of observations (rows of X), and p is the number of coefficients in
the regression model.

Leverage

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix H.
Because the sum of the leverage values is p (the number of coefficients in the regression
model), an observation i can be considered to be an outlier if its leverage substantially
exceeds p/n, where n is the number of observations.

Cook’s Distance

The Cook’s distance Di of observation i is

D

y y

p MSE
i

j j i
j

n

=

-()
=
Â ˆ ˆ

,

()
2

1

where

• ŷ j is the jth fitted response value.

• ˆ ()y j i is the jth fitted response value, where the fit does not include observation i.

• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

 NonLinearModel class

22-3255

Cook’s distance is algebraically equivalent to the following expression:

D
r

p MSE

h

h
i

i ii

ii

=
-()

Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

2
1

,

where ei is the ith residual.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Nonlinear Model

Create a nonlinear model for auto mileage based on the carbig data. Predict the mileage
of an average car.

Load the data and create a nonlinear model.

load carbig

X = [Horsepower,Weight];

y = MPG;

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...

 b(4)*x(:,2).^b(5);

beta0 = [-50 500 -1 500 -1];

mdl = fitnlm(X,y,modelfun,beta0)

mdl =

Nonlinear regression model:

 y ~ b1 + b2*x1^b3 + b4*x2^b5

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ ________ ________

22 Functions — Alphabetical List

22-3256

 b1 -49.383 119.97 -0.41164 0.68083

 b2 376.43 567.05 0.66384 0.50719

 b3 -0.78193 0.47168 -1.6578 0.098177

 b4 422.37 776.02 0.54428 0.58656

 b5 -0.24127 0.48325 -0.49926 0.61788

Number of observations: 392, Error degrees of freedom: 387

Root Mean Squared Error: 3.96

R-Squared: 0.745, Adjusted R-Squared 0.743

F-statistic vs. constant model: 283, p-value = 1.79e-113

Find the predicted mileage of an average auto. The data contain some observations with
NaN, so compute the mean using nanmean.

Xnew = nanmean(X)

Xnew =

 1.0e+03 *

 0.1051 2.9794

MPGnew = predict(mdl,Xnew)

MPGnew =

 21.8073

• “Nonlinear Regression Workflow” on page 11-14

See Also
fitnlm | GeneralizedLinearModel | LinearModel | nlinfit |
NonLinearModel.predict

More About
• “Nonlinear Regression” on page 11-2

 prob.NormalDistribution class

22-3257

prob.NormalDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Normal probability distribution object

Description

prob.NormalDistribution is an object consisting of parameters, a model description,
and sample data for a normal probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Normal') creates a normal probability distribution object using the
default parameter values.

pd = makedist('Normal','mu',mu,'sigma',sigma) creates a normal distribution
object using the specified parameter values.

Input Arguments

mu — Mean
0 (default) | scalar value

Mean of the normal distribution, specified as a scalar value.
Data Types: single | double

sigma — Standard deviation
1 (default) | nonnegative scalar value

Standard deviation of the normal distribution, specified as a nonnegative scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-3258

Properties

mu — Mean
scalar value

Mean of the normal distribution, stored as a scalar value.
Data Types: single | double

sigma — Standard deviation
nonnegative scalar value

Standard deviation of the normal distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.

 prob.NormalDistribution class

22-3259

Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

22 Functions — Alphabetical List

22-3260

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

 prob.NormalDistribution class

22-3261

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Normal Distribution

The normal distribution, sometimes called the Gaussian distribution, is a two-parameter
family of curves. The usual justification for using the normal distribution for modeling is
the Central Limit theorem, which states (roughly) that the sum of independent samples
from any distribution with finite mean and variance converges to the normal distribution
as the sample size goes to infinity.

The normal distribution uses the following parameters.

Parameter Description Support

mu Mean -• < < •m

sigma Standard deviation s ≥ 0

22 Functions — Alphabetical List

22-3262

The probability density function (pdf) is

f x e x

x

| , , .m s
s p

m

s() = - • < < •

- -()
1

2

2

22

Examples

Create a Normal Distribution Object Using Default Parameters

Create a normal distribution object using the default parameter values.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Create a Normal Distribution Object Using Specified Parameters

Create a normal distribution object by specifying the parameter values.

pd = makedist('Normal','mu',75,'sigma',10)

pd =

 NormalDistribution

 Normal distribution

 mu = 75

 sigma = 10

Compute the interquartile range of the distribution.

r = iqr(pd)

r =

 prob.NormalDistribution class

22-3263

 13.4898

Fit a Normal Distribution Object

Load the sample data. Create a vector containing the first column of students’ exam
grades data.

load examgrades;

x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

See Also
dfittool | fitdist | makedist

More About
• “Normal Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-3264

normcdf
Normal cumulative distribution function

Syntax

p = normcdf(x)

p = normcdf(x,mu,sigma)

[p,plo,pup] = normcdf(x,mu,sigma,pcov,alpha)

[p,plo,pup] = normcdf(___ ,'upper')

Description

p = normcdf(x) returns the standard normal cdf at each value in x. The standard
normal distribution has parameters mu = 0 and sigma = 1. x can be a vector, matrix,
or multidimensional array.

p = normcdf(x,mu,sigma) returns the normal cdf at each value in x using the
specified values for the mean mu and standard deviation sigma. x, mu, and sigma can
be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other inputs. The
parameters in sigma must be positive.

[p,plo,pup] = normcdf(x,mu,sigma,pcov,alpha) returns confidence bounds for
p when the input parameters mu and sigma are estimates. pcov is the covariance matrix
of the estimated parameters. alpha specifies 100(1 - alpha)% confidence bounds. The
default value of alpha is 0.05. plo and pup are arrays of the same size as p containing
the lower and upper confidence bounds.

[p,plo,pup] = normcdf(___ ,'upper') returns the complement of the normal cdf
at each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities. You can use 'upper' with any of the previous syntaxes.

The function normcdf computes confidence bounds for p using a normal approximation
to the distribution of the estimate

X − ˆ

ˆ

m

s

 normcdf

22-3265

and then transforming those bounds to the scale of the output p. The computed bounds
give approximately the desired confidence level when you estimate mu, sigma, and pcov
from large samples, but in smaller samples other methods of computing the confidence
bounds might be more accurate.

The normal cdf is

p F x e dt

t
x

= =
− −

−∞∫(| ,)

()

m s
s p

m

s
1

2

2

22

The result, p, is the probability that a single observation from a normal distribution with
parameters µ and σ will fall in the interval (-∞ x].

The standard normal distribution has µ = 0 and σ = 1.

Examples

Compute Normal Distribution cdf

What is the probability that an observation from a standard normal distribution will fall
on the interval [-1 1]?

p = normcdf([-1 1]);

p(2)-p(1)

ans =

 0.6827

More generally, about 68% of the observations from a normal distribution fall within one
standard deviation, σ, of the mean, µ.

More About
• “Normal Distribution” on page B-130

See Also
cdf | normpdf | norminv | normstat | normfit | normlike | normrnd

22 Functions — Alphabetical List

22-3266

normfit
Normal parameter estimates

Syntax

[muhat,sigmahat] = normfit(data)

[muhat,sigmahat,muci,sigmaci] = normfit(data)

[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha)

[...] = normfit(data,alpha,censoring)

[...] = normfit(data,alpha,censoring,freq)

[...] = normfit(data,alpha,censoring,freq,options)

Description

[muhat,sigmahat] = normfit(data) returns an estimate of the mean μ in muhat,
and an estimate of the standard deviation σ in sigmahat, of the normal distribution
given the data in data.

[muhat,sigmahat,muci,sigmaci] = normfit(data) returns 95% confidence
intervals for the parameter estimates on the mean and standard deviation in the arrays
muci and sigmaci, respectively. The first row of muci contains the lower bounds of the
confidence intervals for μ the second row contains the upper bounds. The first row of
sigmaci contains the lower bounds of the confidence intervals for σ, and the second row
contains the upper bounds.

[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha) returns
100(1 - alpha) % confidence intervals for the parameter estimates, where alpha is a
value in the range [0 1] specifying the width of the confidence intervals. By default,
alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = normfit(data,alpha,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly. data must be a vector in order to pass in the
argument censoring.

[...] = normfit(data,alpha,censoring,freq) accepts a frequency vector,
freq, of the same size as data. Typically, freq contains integer frequencies for the

 normfit

22-3267

corresponding elements in data, but can contain any nonnegative values. Pass in [] for
alpha, censoring, or freq to use their default values.

[...] = normfit(data,alpha,censoring,freq,options) accepts a structure,
options, that specifies control parameters for the iterative algorithm the function
uses to compute maximum likelihood estimates when there is censoring. The normal fit
function accepts an options structure which you can create using the function statset.
Enter statset('normfit') to see the names and default values of the parameters that
normfit accepts in the options structure. See the reference page for statset for more
information about these options.

Note: With no censoring, normfit computes muhat using the sample mean and
sigmahat using the square root of the unbiased estimator of the variance. With
censoring, both muhat and sigmahat are the maximum likelihood estimates.

Examples
In this example the data is a two-column random normal matrix. Both columns have
µ = 10 and σ = 2. Note that the confidence intervals below contain the "true values."

data = normrnd(10,2,100,2);

[mu,sigma,muci,sigmaci] = normfit(data)

mu =

 10.1455 10.0527

sigma =

 1.9072 2.1256

muci =

 9.7652 9.6288

 10.5258 10.4766

sigmaci =

 1.6745 1.8663

 2.2155 2.4693

More About
• “Normal Distribution” on page B-130

See Also
mle | normlike | normpdf | normcdf | norminv | normstat | normrnd

22 Functions — Alphabetical List

22-3268

norminv
Normal inverse cumulative distribution function

Syntax

X = norminv(P,mu,sigma)

[X,XLO,XUP] = norminv(P,mu,sigma,pcov,alpha)

Description

X = norminv(P,mu,sigma) computes the inverse of the normal cdf using the
corresponding mean mu and standard deviation sigma at the corresponding probabilities
in P. P, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input is expanded to a constant array with the same dimensions
as the other inputs. The parameters in sigma must be positive, and the values in P must
lie in the interval [0 1].

[X,XLO,XUP] = norminv(P,mu,sigma,pcov,alpha) produces confidence bounds for
X when the input parameters mu and sigma are estimates. pcov is the covariance matrix
of the estimated parameters. alpha specifies 100(1 - alpha)% confidence bounds. The
default value of alpha is 0.05. XLO and XUP are arrays of the same size as X containing
the lower and upper confidence bounds.

The function norminv computes confidence bounds for P using a normal approximation
to the distribution of the estimate

ˆ ˆm s+ q

where q is the Pth quantile from a normal distribution with mean 0 and standard
deviation 1. The computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller samples other
methods of computing the confidence bounds may be more accurate.

The normal inverse function is defined in terms of the normal cdf as

x F p x F x p= = =−1 (| ,) { : (| ,) }m s m s

 norminv

22-3269

where

p F x e dt

t
x

= =
− −

−∞∫(| ,)

()

m s
s p

m

s
1

2

2

22

The result, x, is the solution of the integral equation above where you supply the desired
probability, p.

Examples

Find an interval that contains 95% of the values from a standard normal distribution.

x = norminv([0.025 0.975],0,1)

x =

 -1.9600 1.9600

Note that the interval x is not the only such interval, but it is the shortest.

xl = norminv([0.01 0.96],0,1)

xl =

 -2.3263 1.7507

The interval xl also contains 95% of the probability, but it is longer than x.

More About
• “Normal Distribution” on page B-130

See Also
icdf | normcdf | normpdf | normstat | normfit | normlike | normrnd

22 Functions — Alphabetical List

22-3270

normlike

Normal negative log-likelihood

Syntax

nlogL = normlike(params,data)

[nlogL,AVAR] = normlike(params,data)

[...] = normlike(param,data,censoring)

[...] = normlike(param,data,censoring,freq)

Description

nlogL = normlike(params,data) returns the negative of the normal log-likelihood
function. params(1) is the mean, mu, and params(2) is the standard deviation, sigma.

[nlogL,AVAR] = normlike(params,data) also returns the inverse of Fisher's
information matrix, AVAR. If the input parameter values in params are the maximum
likelihood estimates, the diagonal elements of AVAR are their asymptotic variances. AVAR
is based on the observed Fisher's information, not the expected information.

[...] = normlike(param,data,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = normlike(param,data,censoring,freq) accepts a frequency vector,
freq, of the same size as data. The vector freq typically contains integer frequencies
for the corresponding elements in data, but can contain any nonnegative values. Pass in
[] for censoring to use its default value.

normlike is a utility function for maximum likelihood estimation.

More About
• “Normal Distribution” on page B-130

 normlike

22-3271

See Also
normfit | normpdf | normcdf | norminv | normstat | normrnd

22 Functions — Alphabetical List

22-3272

normpdf
Normal probability density function

Syntax

Y = normpdf(X,mu,sigma)

Y = normpdf(X)

Y = normpdf(X,mu)

Description

Y = normpdf(X,mu,sigma) computes the pdf at each of the values in X using the
normal distribution with mean mu and standard deviation sigma. X, mu, and sigma can
be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other inputs. The
parameters in sigma must be positive.

The normal pdf is

y f x e

x

= =
− −

(| ,)

()

m s
s p

m

s
1

2

2

22

The likelihood function is the pdf viewed as a function of the parameters. Maximum
likelihood estimators (MLEs) are the values of the parameters that maximize the
likelihood function for a fixed value of x.

The standard normal distribution has µ = 0 and σ = 1.

If x is standard normal, then xσ + µ is also normal with mean µ and standard deviation
σ. Conversely, if y is normal with mean µ and standard deviation σ, then x = (y – µ) / σ is
standard normal.

Y = normpdf(X) uses the standard normal distribution (mu = 0, sigma = 1).

Y = normpdf(X,mu) uses the normal distribution with unit standard deviation
(sigma = 1).

 normpdf

22-3273

Examples
mu = [0:0.1:2];

[y i] = max(normpdf(1.5,mu,1));

MLE = mu(i)

MLE =

 1.5000

More About
• “Normal Distribution” on page B-130

See Also
pdf | normcdf | norminv | normstat | normfit | normlike | normrnd | mvnpdf

22 Functions — Alphabetical List

22-3274

normplot
Normal probability plot

Syntax

h = normplot(X)

Description

h = normplot(X) displays a normal probability plot of the data in X. For matrix X,
normplot displays a line for each column of X. h is a handle to the plotted lines.

The plot has the sample data displayed with the plot symbol '+'. Superimposed on the
plot is a line joining the first and third quartiles of each column of X (a robust linear fit
of the sample order statistics.) This line is extrapolated out to the ends of the sample to
help evaluate the linearity of the data.

The purpose of a normal probability plot is to graphically assess whether the data
in X could come from a normal distribution. If the data are normal the plot will be
linear. Other distribution types will introduce curvature in the plot. normplot uses
midpoint probability plotting positions. Use probplot when the data included censored
observations.

Examples

Generate a Normal Probability Plot

Generate random sample data from a normal distribution with mu = 10 and sigma =
1.

rng default; % For reproducibility

x = normrnd(10,1,25,1);

Create a normal probability plot of the sample data.

figure;

 normplot

22-3275

normplot(x)

The plot indicates that the data follows a normal distribution.

More About
• “Normal Distribution” on page B-130

See Also
cdfplot | wblplot | probplot | histogram | normfit | norminv | normpdf |
normspec | normstat | normcdf | normrnd | normlike

22 Functions — Alphabetical List

22-3276

normrnd

Normal random numbers

Syntax

R = normrnd(mu,sigma)

R = normrnd(mu,sigma,m,n,...)

R = normrnd(mu,sigma,[m,n,...])

Description

R = normrnd(mu,sigma) generates random numbers from the normal distribution
with mean parameter mu and standard deviation parameter sigma. mu and sigma can be
vectors, matrices, or multidimensional arrays that have the same size, which is also the
size of R. A scalar input for mu or sigma is expanded to a constant array with the same
dimensions as the other input.

R = normrnd(mu,sigma,m,n,...) or R = normrnd(mu,sigma,[m,n,...])
generates an m-by-n-by-... array. The mu, sigma parameters can each be scalars or arrays
of the same size as R.

Examples

n1 = normrnd(1:6,1./(1:6))

n1 =

 2.1650 2.3134 3.0250 4.0879 4.8607 6.2827

n2 = normrnd(0,1,[1 5])

n2 =

 0.0591 1.7971 0.2641 0.8717 -1.4462

n3 = normrnd([1 2 3;4 5 6],0.1,2,3)

n3 =

 0.9299 1.9361 2.9640

 4.1246 5.0577 5.9864

 normrnd

22-3277

More About
• “Normal Distribution” on page B-130

See Also
random | normpdf | normcdf | norminv | normstat | normfit | normlike |
mvnrnd | lognrnd

22 Functions — Alphabetical List

22-3278

normspec
Normal density plot between specifications

Syntax

normspec(specs)

normspec(specs,mu,sigma)

normspec(specs,mu,sigma,region)

p = normspec(...)

[p,h] = normspec(...)

Description

normspec(specs) plots the standard normal density, shading the portion inside the
specification limits given by the two-element vector specs. Set specs(1) to -Inf if
there is no lower limit; set specs(2) to Inf if there is no upper limit.

normspec(specs,mu,sigma) shades the portion inside the specification limits of a
normal density with parameters mu and sigma. The defaults are mu = 0 and sigma =
1.

normspec(specs,mu,sigma,region) shades the region either 'inside' or
'outside' the specification limits. The default is 'inside'.

p = normspec(...) also returns the probability, p, of the shaded area.

[p,h] = normspec(...) also returns a handle h to the line objects.

Examples

Create a Normal Density Plot

This example shows how to create a normal density plot.

A production process fills cans of paint. The average amount of paint in any can is 1
gallon, but variability in the process produces a standard deviation of 2 ounces (2/128

 normspec

22-3279

gallons). What is the probability that the cans will be filled under specification by 3 or
more ounces?

p = normspec([1-3/128,Inf],1,2/128,'outside')

p =

 0.0668

More About
• “Normal Distribution” on page B-130

22 Functions — Alphabetical List

22-3280

See Also
capaplot | histfit

 normstat

22-3281

normstat

Normal mean and variance

Syntax

[M,V] = normstat(mu,sigma)

Description

[M,V] = normstat(mu,sigma) returns the mean of and variance for the normal
distribution using the corresponding mean mu and standard deviation sigma. mu and
sigma can be vectors, matrices, or multidimensional arrays that all have the same size,
which is also the size of M and V. A scalar input for mu or sigma is expanded to a constant
array with the same dimensions as the other input.

The mean of the normal distribution with parameters µ and σ is µ, and the variance is σ2.

Examples

n = 1:5;

[m,v] = normstat(n'*n,n'*n)

m =

 1 2 3 4 5

 2 4 6 8 10

 3 6 9 12 15

 4 8 12 16 20

 5 10 15 20 25

v =

 1 4 9 16 25

 4 16 36 64 100

 9 36 81 144 225

 16 64 144 256 400

 25 100 225 400 625

22 Functions — Alphabetical List

22-3282

More About
• “Normal Distribution” on page B-130

See Also
normpdf | normcdf | norminv | normfit | normlike | normrnd

 nsegments

22-3283

nsegments
Class: piecewisedistribution

Number of segments

Syntax

n = nsegments(obj)

Description

n = nsegments(obj) returns the number of segments n in the piecewise distribution
object obj.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

n = nsegments(obj)

n =

 3

See Also
paretotails | boundary | segment

22 Functions — Alphabetical List

22-3284

NTrees property
Class: TreeBagger

Number of decision trees in ensemble

Description

The NTrees property is a scalar equal to the number of decision trees in the ensemble.

See Also
Trees

 NumParams property

22-3285

NumParams property
Class: ProbDistParametric

Read-only value specifying number of parameters of ProbDistParametric object

Description

NumParams is a read-only property of the ProbDistParametric class. NumParams
is a value specifying the number of parameters of a distribution represented by a
ProbDistParametric object.

Values

This value is an integer that counts both the specified parameters and parameters that
are fit to the data. Use this information to view and compare the number of parameters
supplied to create distributions.

22 Functions — Alphabetical List

22-3286

numel
Class: dataset

Number of elements in dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

n = numel(A)

n = numel(A, varargin)

Description

n = numel(A) returns 1. To find the number of elements, n, in the dataset array A, use
prod(size(A)) or numel(A,':',':').

n = numel(A, varargin) returns the number of subscripted elements, n, in
A(index1, index2, ..., indexn), where varargin is a cell array whose elements
are index1, index2, ... indexn.

See Also
length | size

 numnodes

22-3287

numnodes
Class: classregtree

Number of nodes

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

n = numnodes(t)

Description

n = numnodes(t) returns the number of nodes n in the tree t.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t=

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

22 Functions — Alphabetical List

22-3288

n = numnodes(t)

n =

 9

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree

 NumTestSets property

22-3289

NumTestSets property
Class: cvpartition

Number of test sets

Description

Value is the number of folds in partitions of type 'kfold' and 'leaveout'.

Value is 1 in partitions of type 'holdout' and 'resubstitution'.

22 Functions — Alphabetical List

22-3290

NVarToSample property
Class: TreeBagger

Number of variables for random feature selection

Description

The NVarToSample property specifies the number of predictor or feature variables to
select at random for each decision split. By default, it is set to the square root of the total
number of variables for classification and one third of the total number of variables for
regression. Setting this argument to any valid value except 'all' invokes Breiman's
"random forest" algorithm.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

 ObsNames property

22-3291

ObsNames property
Class: dataset

Cell array of nonempty, distinct strings giving names of observations in data set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

A cell array of nonempty, distinct strings giving the names of the observations in the
data set. This property may be empty, but if not empty, the number of strings must equal
the number of observations.

22 Functions — Alphabetical List

22-3292

optimalleaforder
Optimal leaf ordering for hierarchical clustering

Syntax

leafOrder = optimalleaforder(tree,D)

leafOrder = optimalleaforder(tree,D,Name,Value)

Description

leafOrder = optimalleaforder(tree,D) returns an optimal leaf ordering for the
hierarchical binary cluster tree, tree, using the distances, D. An optimal leaf ordering of
a binary tree maximizes the sum of the similarities between adjacent leaves by flipping
tree branches without dividing the clusters.

leafOrder = optimalleaforder(tree,D,Name,Value) returns the optimal leaf
ordering using one or more name-value pair arguments.

Examples

Plot Dendrogram With Optimal Leaf Order

Create a hierarchical binary cluster tree using linkage. Then, compare the dendrogram
plot with the default ordering to a dendrogram with an optimal leaf ordering.

Generate sample data.

rng('default') % For reproducibility

X = rand(10,2);

Create a distance vector and a hierarchical binary clustering tree. Use the distances and
clustering tree to determine an optimal leaf order.

D = pdist(X);

tree = linkage(D,'average');

leafOrder = optimalleaforder(tree,D);

 optimalleaforder

22-3293

Plot the dendrogram with the default ordering and the dendrogram with the optimal leaf
ordering.

figure()

subplot(2,1,1)

dendrogram(tree)

title('Default Leaf Order')

subplot(2,1,2)

dendrogram(tree,'reorder',leafOrder)

title('Optimal Leaf Order')

The order of the leaves in the bottom figure corresponds to the elements in leafOrder.

leafOrder

22 Functions — Alphabetical List

22-3294

leafOrder =

 1 4 9 10 2 5 8 3 7 6

Optimal Leaf Order Using Inverse Distance Similarity

Generate sample data.

rng('default') % For reproducibility

X = rand(10,2);

Create a distance vector and a hierarchical binary clustering tree.

D = pdist(X);

tree = linkage(D,'average');

Use the inverse distance similarity transformation to determine an optimal leaf order.

leafOrder = optimalleaforder(tree,D,'Transformation','inverse')

leafOrder =

 1 4 9 10 2 5 8 3 7 6

Input Arguments

tree — Hierarchical binary cluster tree
matrix returned by linkage

Hierarchical binary cluster tree, specified as an (M – 1)-by-3 matrix that you generate
using linkage, where M is the number of leaves.

D — Distances
matrix | vector

Distances for determining similarities between leaves, specified as a matrix or vector of
distances. For example, you can generate distances using pdist.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 optimalleaforder

22-3295

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Criteria','group','Transformation','inverse' specifies that the
sum of similarities be maximized between every leaf and all other leaves in adjacent
clusters, using an inverse similarity transformation.

'Criteria' — Optimization criterion
'adjacent' (default) | 'group'

Optimization criterion for determining an optimal leaf ordering, specified as the comma-
separated pair consisting of 'criteria' and one of these strings:

'adjacent' Maximize the sum of similarities between adjacent leaves.
'group' Maximize the sum of similarities between every leaf and all other

leaves in the adjacent clusters at the same level of the dendrogram.

Example: 'Criteria','group'

Data Types: char

'Transformation' — Method for transforming distances to similarities
'linear' (default) | 'inverse' | function handle

Method for transforming distances to similarities, specified as the comma-separated
pair consisting of 'Transformation' and one of 'linear', 'inverse', or a function
handle.

Let di,j and Simi,j denote the distance and similarity between leaves i and j, respectively.
The included similarity transformations are:

'linear' Simi,j = maxi,j (di,j) – di,j

'inverse' Simi,j = 1/di,j

To use a custom transformation function, specify a handle to a function that accepts a
matrix of distances, D, and returns a matrix of similarities, S. The function should be
monotonic decreasing in the range of distance values. S must have the same size as D,
with S(i,j) being the similarity computed based on D(i,j).

Example: 'Transformation',@myTransform

Data Types: char | function_handle

22 Functions — Alphabetical List

22-3296

Output Arguments

leafOrder — Optimal leaf order
vector

Optimal leaf order, returned as a length-M vector, where M is the number of leaves.
leafOrder is a permutation of the vector 1:M, giving an optimal leaf ordering based on
the specified distances and similarity transformation.

References

[1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal leaf ordering for
hierarchical clustering. Bioinformatics 17, Suppl 1:S22–9. PMID: 11472989.

See Also
dendrogram | linkage | pdist

 oobEdge

22-3297

oobEdge
Class: ClassificationBaggedEnsemble

Out-of-bag classification edge

Syntax

edge = oobEdge(ens)

edge = oobEdge(ens,Name,Value)

Description

edge = oobEdge(ens) returns out-of-bag classification edge for ens.

edge = oobEdge(ens,Name,Value) computes classification edge with additional
options specified by one or more Name,Value pair arguments. You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A classification bagged ensemble, constructed with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge
uses only these learners for calculating loss.

22 Functions — Alphabetical List

22-3298

Default: 1:NumTrained

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

Output Arguments

edge

Classification edge, a weighted average of the classification margin.

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are the
class probabilities in ens.Prior.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix ens.X.

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning.
To bag a weak learner such as a decision tree on a dataset, fitensemble generates

 oobEdge

22-3299

many bootstrap replicas of the dataset and grows decision trees on these replicas.
fitensemble obtains each bootstrap replica by randomly selecting N observations out
of N with replacement, where N is the dataset size. To find the predicted response of a
trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of
observations for each decision tree. These are "out-of-bag" observations. For each
observation, oobLoss estimates the out-of-bag prediction by averaging over predictions
from all trees in the ensemble for which this observation is out of bag. It then compares
the computed prediction against the true response for this observation. It calculates
the out-of-bag error by comparing the out-of-bag predicted responses against the true
responses for all observations used for training. This out-of-bag average is an unbiased
estimator of the true ensemble error.

Examples

Find the out-of-bag edge for a bagged ensemble from the Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'Bag',100,...

 'Tree','type','classification');

edge = oobEdge(ens)

edge =

 0.8730

See Also
oobMargin | oobPredict | oobLoss

22 Functions — Alphabetical List

22-3300

oobError
Class: TreeBagger

Out-of-bag error

Syntax

err = oobError(B)

err = oobError(B,'param1',val1,'param2',val2,...)

Description

err = oobError(B) computes the misclassification probability (for classification trees)
or mean squared error (for regression trees) for out-of-bag observations in the training
data, using the trained bagger B. err is a vector of length NTrees, where NTrees is the
number of trees in the ensemble.

err = oobError(B,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how oobError computes errors. If set to
'cumulative' (default), the method computes cumulative
errors and err is a vector of length NTrees, where the first
element gives error from trees(1), second element gives
error from trees(1:2) etc, up to trees(1:NTrees). If set to
'individual', err is a vector of length NTrees, where each
element is an error from each tree in the ensemble. If set to
'ensemble', err is a scalar showing the cumulative error for the
entire ensemble.

'trees' Vector of indices indicating what trees to include in this
calculation. By default, this argument is set to 'all' and
the method uses all trees. If 'trees' is a numeric vector, the
method returns a vector of length NTrees for 'cumulative'
and 'individual' modes, where NTrees is the number of
elements in the input vector, and a scalar for 'ensemble' mode.
For example, in the 'cumulative' mode, the first element

 oobError

22-3301

gives error from trees(1), the second element gives error from
trees(1:2) etc.

'treeweights' Vector of tree weights. This vector must have the same length as
the 'trees' vector. oobError uses these weights to combine
output from the specified trees by taking a weighted average
instead of the simple nonweighted majority vote. You cannot use
this argument in the 'individual' mode.

See Also
CompactTreeBagger.error

22 Functions — Alphabetical List

22-3302

OOBIndices property
Class: TreeBagger

Indicator matrix for out-of-bag observations

Description

The OOBIndices property is a logical array of size Nobs-by-NTrees where Nobs is the
number of observations in the training data and NTrees is the number of trees in the
ensemble. The (I,J) element is true if observation I is out-of-bag for tree J and false
otherwise. In other words, a true value means observation I was not selected for the
training data used to grow tree J.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

 OOBInstanceWeight property

22-3303

OOBInstanceWeight property
Class: TreeBagger

Count of out-of-bag trees for each observation

Description

The OOBInstanceWeight property is a numeric array of size Nobs-by-1 containing the
number of trees used for computing out-of-bag response for each observation. Nobs is the
number of observations in the training data used to create the ensemble.

22 Functions — Alphabetical List

22-3304

oobLoss
Class: ClassificationBaggedEnsemble

Out-of-bag classification error

Syntax

L = oobloss(ens)

L = oobloss(ens,Name,Value)

Description

L = oobloss(ens) returns the classification error for ens computed for out-of-bag
data.

L = oobloss(ens,Name,Value) computes error with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A classification bagged ensemble, constructed with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses
only these learners for calculating loss.

 oobLoss

22-3305

Default: 1:NumTrained

'lossfun'

Function handle or string representing a loss function. Built-in loss functions:

• 'binodeviance' — See “Loss Functions” on page 22-3306
• 'classiferror' — Fraction of misclassified data
• 'exponential' — See “Loss Functions” on page 22-3306
• 'hinge' — See “Loss Functions” on page 22-3306.
• 'mincost' — Smallest misclassification cost as given by the obj.Cost matrix. See

“Loss Functions” on page 22-3306.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-3306.

Default: 'classiferror'

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

Output Arguments

L

Classification error of the out-of-bag observations, a scalar. L can be a vector, or can
represent a different quantity, depending on the name-value settings.

22 Functions — Alphabetical List

22-3306

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning.
To bag a weak learner such as a decision tree on a dataset, fitensemble generates
many bootstrap replicas of the dataset and grows decision trees on these replicas.
fitensemble obtains each bootstrap replica by randomly selecting N observations out
of N with replacement, where N is the dataset size. To find the predicted response of a
trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of
observations for each decision tree. These are "out-of-bag" observations. For each
observation, oobLoss estimates the out-of-bag prediction by averaging over predictions
from all trees in the ensemble for which this observation is out of bag. It then compares
the computed prediction against the true response for this observation. It calculates
the out-of-bag error by comparing the out-of-bag predicted responses against the true
responses for all observations used for training. This out-of-bag average is an unbiased
estimator of the true ensemble error.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'classiferror' — Fraction of misclassified data, weighted by w.
• 'exponential' — With the same definitions as for 'binodeviance', the

exponential loss is

w y f Xn n nexp .- ()()Â

• 'hinge' — Classification error measure that has the form

 oobLoss

22-3307

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file of the form

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in tree, represented in tree.ClassNames.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in tree.ClassNames.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the posterior output from predict.
• W is a numeric vector with N elements, the observation weights.
• COST is a K-by-K numeric matrix of misclassification costs. The default

'classiferror' cost function uses a cost of 0 for correct classification, and 1 for
misclassification. In other words, 'classiferror' uses COST=ones(K)-eye(K).

• The output loss should be a scalar.

22 Functions — Alphabetical List

22-3308

Pass the function handle @lossfun as the value of the lossfun name-value pair.

Examples

Find the out-of-bag error for a bagged ensemble from the Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'Bag',100,...

 'Tree','type','classification');

L = oobLoss(ens)

L =

 0.0467

See Also
loss | oobMargin | oobPredict | oobEdge

 oobLoss

22-3309

oobLoss
Class: RegressionBaggedEnsemble

Out-of-bag regression error

Syntax

L = oobLoss(ens)

L = oobLoss(ens,Name,Value)

Description

L = oobLoss(ens) returns the mean squared error for ens computed for out-of-bag
data.

L = oobLoss(ens,Name,Value) computes error with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A regression bagged ensemble, constructed with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses
only these learners for calculating loss.

22 Functions — Alphabetical List

22-3310

Default: 1:NumTrained

'lossfun'

Function handle for loss function, or the string 'mse', meaning mean squared error. If
you pass a function handle fun, oobLoss calls it as

FUN(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length. Y is the observed response,
Yfit is the predicted response, and W is the observation weights.

Default: 'mse'

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

Output Arguments

L

Mean squared error of the out-of-bag observations, a scalar. L can be a vector, or can
represent a different quantity, depending on the name-value settings.

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning.
To bag a weak learner such as a decision tree on a dataset, fitensemble generates

 oobLoss

22-3311

many bootstrap replicas of the dataset and grows decision trees on these replicas.
fitensemble obtains each bootstrap replica by randomly selecting N observations out
of N with replacement, where N is the dataset size. To find the predicted response of a
trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of
observations for each decision tree. These are "out-of-bag" observations. For each
observation, oobLoss estimates the out-of-bag prediction by averaging over predictions
from all trees in the ensemble for which this observation is out of bag. It then compares
the computed prediction against the true response for this observation. It calculates
the out-of-bag error by comparing the out-of-bag predicted responses against the true
responses for all observations used for training. This out-of-bag average is an unbiased
estimator of the true ensemble error.

Examples

Compute the out-of-bag error for the carsmall data:

load carsmall

X = [Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'bag',100,'Tree',...

 'type','regression');

L = oobLoss(ens)

L =

 17.0665

See Also
oobPredict | loss

22 Functions — Alphabetical List

22-3312

oobMargin
Class: ClassificationBaggedEnsemble

Out-of-bag classification margins

Syntax

margin = oobMargin(ens)

margin = oobMargin(ens,Name,Value)

Description

margin = oobMargin(ens) returns out-of-bag classification margins.

margin = oobMargin(ens,Name,Value) calculates margins with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification bagged ensemble, constructed with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge
uses only these learners for calculating loss.

Default: 1:NumTrained

 oobMargin

22-3313

Output Arguments

margin

A numeric column vector of length size(ens.X,1).

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning.
To bag a weak learner such as a decision tree on a dataset, fitensemble generates
many bootstrap replicas of the dataset and grows decision trees on these replicas.
fitensemble obtains each bootstrap replica by randomly selecting N observations out
of N with replacement, where N is the dataset size. To find the predicted response of a
trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of
observations for each decision tree. These are "out-of-bag" observations. For each
observation, oobLoss estimates the out-of-bag prediction by averaging over predictions
from all trees in the ensemble for which this observation is out of bag. It then compares
the computed prediction against the true response for this observation. It calculates
the out-of-bag error by comparing the out-of-bag predicted responses against the true
responses for all observations used for training. This out-of-bag average is an unbiased
estimator of the true ensemble error.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix ens.X.

Examples

Find the out-of-bag margin for a bagged ensemble from the Fisher iris data: Find how
many elements of margin are equal to 1.

22 Functions — Alphabetical List

22-3314

load fisheriris

ens = fitensemble(meas,species,'Bag',100,...

 'Tree','type','classification');

margin = oobMargin(ens);

sum(margin == 1)

ans =

 108

See Also
oobPredict | oobLoss | oobEdge | margin

 oobMargin

22-3315

oobMargin
Class: TreeBagger

Out-of-bag margins

Syntax

mar = oobMargin(B)

mar = oobMargin(B,'param1',val1,'param2',val2,...)

Description

mar = oobMargin(B) computes an Nobs-by-NTrees matrix of classification margins
for out-of-bag observations in the training data, using the trained bagger B.

mar = oobMargin(B,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how oobMargin computes errors. If set to
'cumulative' (default), the method computes cumulative
margins and mar is an Nobs-by-NTrees matrix, where the first
column gives margins from trees(1), second column gives
margins from trees(1:2) etc, up to trees(1:NTrees). If set to
'individual', mar is an Nobs-by-NTrees matrix, where each
column gives margins from each tree in the ensemble. If set to
'ensemble', mar is a single column of length Nobs showing the
cumulative margins for the entire ensemble.

'trees' Vector of indices indicating what trees to include in this
calculation. By default, this argument is set to 'all' and the
method uses all trees. If 'trees' is a numeric vector, the method
returns an Nobs-by-NTrees matrix for 'cumulative' and
'individual' modes, where NTrees is the number of elements
in the input vector, and a single column for 'ensemble' mode.
For example, in the 'cumulative' mode, the first column gives
margins from trees(1), the second column gives margins from
trees(1:2) etc.

22 Functions — Alphabetical List

22-3316

'treeweights' Vector of tree weights. This vector must have the same length as
the 'trees' vector. oobMargin uses these weights to combine
output from the specified trees by taking a weighted average
instead of the simple nonweighted majority vote. You cannot use
this argument in the 'individual' mode.

See Also
CompactTreeBagger.margin

 oobMeanMargin

22-3317

oobMeanMargin
Class: TreeBagger

Out-of-bag mean margins

Syntax

mar = oobMeanMargin(B)

mar = oobMeanMargin(B,'param1',val1,'param2',val2,...)

Description

mar = oobMeanMargin(B) computes average classification margins for out-of-bag
observations in the training data, using the trained bagger B. oobMeanMargin averages
the margins over all out-of-bag observations. mar is a row-vector of length NTrees, where
NTrees is the number of trees in the ensemble.

mar = oobMeanMargin(B,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'mode' String indicating how oobMargin computes errors. If set to
'cumulative' (default), is a vector of length NTrees where the first
element gives mean margin from trees(1), second column gives
mean margins from trees(1:2) etc, up to trees(1:NTrees). If
set to 'individual', mar is a vector of length NTrees, where each
element is a mean margin from each tree in the ensemble . If set to
'ensemble', mar is a scalar showing the cumulative mean margin
for the entire ensemble .

'trees' Vector of indices indicating what trees to include in this calculation.
By default, this argument is set to 'all' and the method uses all
trees. If 'trees' is a numeric vector, the method returns a vector
of length NTrees for 'cumulative' and 'individual' modes,
where NTrees is the number of elements in the input vector, and a
scalar for 'ensemble' mode. For example, in the 'cumulative'
mode, the first element gives mean margin from trees(1), the
second element gives mean margin from trees(1:2) etc.

22 Functions — Alphabetical List

22-3318

'treeweights' Vector of tree weights. This vector must have the same length as
the 'trees' vector. oobMeanMargin uses these weights to combine
output from the specified trees by taking a weighted average instead
of the simple nonweighted majority vote. You cannot use this
argument in the 'individual' mode.

See Also
CompactTreeBagger.meanMargin

 OOBPermutedVarCountRaiseMargin property

22-3319

OOBPermutedVarCountRaiseMargin property
Class: TreeBagger

Variable importance for raising margin

Description

The OOBPermutedVarCountRaiseMargin property is a numeric array of size 1-
by-Nvars containing a measure of variable importance for each predictor. For any
variable, the measure is the difference between the number of raised margins and the
number of lowered margins if the values of that variable are permuted across the out-of-
bag observations. This measure is computed for every tree, then averaged over the entire
ensemble and divided by the standard deviation over the entire ensemble. This property
is empty for regression trees.

22 Functions — Alphabetical List

22-3320

OOBPermutedVarDeltaError property
Class: TreeBagger

Variable importance for prediction error

Description

The OOBPermutedVarDeltaError property is a numeric array of size 1-by-Nvars
containing a measure of importance for each predictor variable (feature). For any
variable, the measure is the increase in prediction error if the values of that variable are
permuted across the out-of-bag observations. This measure is computed for every tree,
then averaged over the entire ensemble and divided by the standard deviation over the
entire ensemble.

 OOBPermutedVarDeltaMeanMargin property

22-3321

OOBPermutedVarDeltaMeanMargin property
Class: TreeBagger

Variable importance for classification margin

Description

The OOBPermutedVarDeltaMeanMargin property is a numeric array of size 1-by-Nvars
containing a measure of importance for each predictor variable (feature). For any
variable, the measure is the decrease in the classification margin if the values of that
variable are permuted across the out-of-bag observations. This measure is computed for
every tree, then averaged over the entire ensemble and divided by the standard deviation
over the entire ensemble. This property is empty for regression trees.

22 Functions — Alphabetical List

22-3322

oobPredict
Class: ClassificationBaggedEnsemble

Predict out-of-bag response of ensemble

Syntax
[label,score] = oobPredict(ens)

[label,score] = oobPredict(ens,Name,Value)

Description
[label,score] = oobPredict(ens) returns class labels and scores for ens for out-
of-bag data.

[label,score] = oobPredict(ens,Name,Value) computes labels and scores with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification bagged ensemble, constructed with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge
uses only these learners for calculating loss.

Default: 1:NumTrained

 oobPredict

22-3323

Output Arguments

label

Classification labels of the same data type as the training data Y. There are N elements
or rows, where N is the number of training observations. The label is the class with the
highest score. In case of a tie, the label is earliest in ens.ClassNames.

score

An N-by-K numeric matrix for N observations and K classes. A high score indicates that an
observation is likely to come from this class. Scores are in the range 0 to 1.

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning.
To bag a weak learner such as a decision tree on a dataset, fitensemble generates
many bootstrap replicas of the dataset and grows decision trees on these replicas.
fitensemble obtains each bootstrap replica by randomly selecting N observations out
of N with replacement, where N is the dataset size. To find the predicted response of a
trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of
observations for each decision tree. These are "out-of-bag" observations. For each
observation, oobLoss estimates the out-of-bag prediction by averaging over predictions
from all trees in the ensemble for which this observation is out of bag. It then compares
the computed prediction against the true response for this observation. It calculates
the out-of-bag error by comparing the out-of-bag predicted responses against the true
responses for all observations used for training. This out-of-bag average is an unbiased
estimator of the true ensemble error.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

22 Functions — Alphabetical List

22-3324

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Examples

Find the out-of-bag predictions and scores for the Fisher iris data. Find the scores in
the range (0.2,0.8); these are the scores where there is notable uncertainty in the
resulting classifications.

load fisheriris

ens = fitensemble(meas,species,'Bag',100,...

 'Tree','type','classification');

[label score] = oobPredict(ens);

unsure = ((score > .2) & (score < .8));

sum(sum(unsure)) % How many uncertain predictions?

ans =

 16

See Also
oobMargin | oobPredict | oobLoss | oobEdge | predict

 oobPredict

22-3325

oobPredict
Class: RegressionBaggedEnsemble

Predict out-of-bag response of ensemble

Syntax

Yfit = oobPredict(ens)

Yfit = oobPredict(ens,Name,Value)

Description

Yfit = oobPredict(ens) returns the predicted responses for the out-of-bag data in
ens.

Yfit = oobPredict(ens,Name,Value) predicts responses with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

A regression bagged ensemble, constructed with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses
only these learners for calculating loss.

22 Functions — Alphabetical List

22-3326

Default: 1:NumTrained

Output Arguments

Yfit

A vector of predicted responses for out-of-bag data. Yfit has size(ens.X,1) elements.

You can find the indices of out-of-bag observations for weak learner L with the command

~ens.UseObsForLearner(:,L)

Definitions

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning.
To bag a weak learner such as a decision tree on a dataset, fitensemble generates
many bootstrap replicas of the dataset and grows decision trees on these replicas.
fitensemble obtains each bootstrap replica by randomly selecting N observations out
of N with replacement, where N is the dataset size. To find the predicted response of a
trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of
observations for each decision tree. These are "out-of-bag" observations. For each
observation, oobLoss estimates the out-of-bag prediction by averaging over predictions
from all trees in the ensemble for which this observation is out of bag. It then compares
the computed prediction against the true response for this observation. It calculates
the out-of-bag error by comparing the out-of-bag predicted responses against the true
responses for all observations used for training. This out-of-bag average is an unbiased
estimator of the true ensemble error.

Examples

Compute out-of-bag predictions for the carsmall data. Look at the first three terms of
the fit:

 oobPredict

22-3327

load carsmall

X = [Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'bag',100,'Tree',...

 'type','regression');

Yfit = oobPredict(ens);

Yfit(1:3) % first three terms

ans =

 15.7964

 14.7162

 14.8062

See Also
oobLoss | predict

22 Functions — Alphabetical List

22-3328

oobPredict
Class: TreeBagger

Ensemble predictions for out-of-bag observations

Syntax

Y = oobPredict(B)

Y = oobPredict(B,'param1',val1,'param2',val2,...)

Description

Y = oobPredict(B) computes predicted responses using the trained bagger B for
out-of-bag observations in the training data. The output has one prediction for each
observation in the training data. The returned Y is a cell array of strings for classification
and a numeric array for regression.

Y = oobPredict(B,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'trees' Array of tree indices to use for computation of responses. Default
is 'all'.

'treeweights' Array of NTrees weights for weighting votes from the specified
trees.

See Also
CompactTreeBagger.predict | OOBIndices

 ordinal

22-3329

ordinal

Create ordinal array

After creating an ordinal array, you can use related functions to add, drop, or merge
categories, and more.

For more information, see Using ordinal Objects.

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

B = ordinal(X)

B = ordinal(X,labels)

B = ordinal(X,labels,levels)

B = ordinal(X,labels,[],edges)

Description

B = ordinal(X) creates an ordinal array object B from the array X. ordinal creates
the levels of B from the sorted unique values in X, and creates default labels for them.

B = ordinal(X,labels) labels the levels in B according to labels.

B = ordinal(X,labels,levels) creates an ordinal array with possible levels defined
by levels.

B = ordinal(X,labels,[],edges) creates an ordinal array by binning a numeric
array X with bin edges given by the numeric vector edges.

22 Functions — Alphabetical List

22-3330

Examples

Create and Label Ordinal Arrays

Create an ordinal array from integer data, providing explicit labels.

quality = ordinal([1 2 3 3 2 1 2 1 3],...

 {'low' 'medium' 'high'})

quality =

 Columns 1 through 7

 low medium high high medium low medium

 Columns 8 through 9

 low high

Show that the first element is less than the second element (low is less than medium).

quality(1) < quality(2)

ans =

 1

Create an ordinal array by binning values between 0 and 1 into thirds with labels
'small', 'medium', and 'large'.

X = rand(5,2)

A = ordinal(X,{'small' 'medium' 'large'},[],[0 1/3 2/3 1])

X =

 0.8147 0.0975

 0.9058 0.2785

 0.1270 0.5469

 0.9134 0.9575

 ordinal

22-3331

 0.6324 0.9649

A =

 large small

 large small

 small medium

 large large

 medium large

• “Create Nominal and Ordinal Arrays” on page 2-4

Input Arguments

X — Input array
numeric | logical | character | categorical | cell array of strings

Input array to convert to ordinal, specified as a numeric, logical, character, or
categorical array, or a cell array of strings. The levels of the resulting ordinal array
correspond to the sorted unique values in X.

labels — Labels for the discrete levels
character array | cell array of strings

Labels for the discrete levels, specified as a character array or cell array of strings. By
default, ordinal assigns the labels to the levels in B in order according to the sorted
unique values in X.

You can include duplicate labels in labels in order to merge multiple values in X into a
single level in B.
Data Types: char | cell

levels — Possible ordinal levels
vector

Possible ordinal levels for the output ordinal array, specified as a vector whose values
can be compared to those in X using the equality operator. ordinal assigns labels to
each level from the corresponding elements of labels. If X contains any values not present
in levels, the levels of the corresponding elements of B are undefined.

22 Functions — Alphabetical List

22-3332

edges — Bin edges
numeric vector

Bin edges to create a ordinal array by binning a numeric array, specified as a numeric
vector. The uppermost bin includes values equal to the right-most edge. ordinal assigns
labels to each level in the resulting nominal array from the corresponding elements of
labels. When you specify edges, it must have one more element than labels.

Output Arguments

B — Ordinal array
ordinal array object

Nominal array, returned as an ordinal array object.

By default, an element of B is undefined if the corresponding element of X is NaN
(when X is numeric), an empty string (when X is a character), or undefined (when X is
categorical). nominal treats such elements as “undefined” or “missing” and does not
include entries for them among the possible levels. To create an explicit level for such
elements instead of treating them as undefined, you must use the levels input argument,
and include NaN, the empty string, or an undefined element.

More About
• Using ordinal Objects

See Also
nominal

 Using ordinal Objects

22-3333

Using ordinal Objects
Arrays for ordinal data

Ordinal data are discrete, nonnumeric values that have a natural ordering. ordinal
array objects provide efficient storage and convenient manipulation of such data, while
also maintaining meaningful labels for the values.

You can manipulate ordinal arrays much like ordinary numeric arrays, including
subscripting, concatenating, and reshaping. It can be useful to use ordinal arrays as
grouping variables when the elements indicate the group an observation belongs to.

Note: The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Examples

Create and Manipulate Ordinal Arrays

Create an ordinal array from integer data.

quality = ordinal([1 2 3; 3 2 1; 2 1 3],{'low' 'medium' 'high'})

quality =

 low medium high

 high medium low

 medium low high

Identify the elements in quality that are members of a level that is greater than or
equal to 'medium'. A value of 1 in the resulting array indicates that the corresponding
element of quality is in this category.

quality >= 'medium'

ans =

22 Functions — Alphabetical List

22-3334

 0 1 1

 1 1 0

 1 0 1

Identify the elements of quality that are members of either 'low' or 'high'.

ismember(quality,{'low' 'high'})

ans =

 1 0 1

 1 0 1

 0 1 1

Merge the elements of the 'medium' and 'high' levels into a new level labeled 'ok'.

quality = mergelevels(quality,{'medium','high'},'ok')

quality =

 low ok ok

 ok ok low

 ok low ok

Display the levels of quality.

getlevels(quality)

ans =

 low ok

Summarize the number of elements in each level. By default, summary returns counts for
each column of the input array.

summary(quality)

 low 1 1 1

 Using ordinal Objects

22-3335

 ok 2 2 2

• “Create Nominal and Ordinal Arrays” on page 2-4
• “Reorder Category Levels” on page 2-11
• “Categorize Numeric Data” on page 2-16
• “Merge Category Levels” on page 2-19
• “Sort Ordinal Arrays” on page 2-40

Properties

labels — Level labels
cell array of strings

Level labels, specified as a cell array of string. Access labels using getlabels.

Data Types: cell

undeflabel — Label for undefined levels
'<undefined>' (default)

Label for undefined levels, specified as '<undefined>'. You can find undefined
elements in categorical arrays using isundefined.

Object Functions
addlevels droplevelsgetlabels getlevelsislevel levelcountsmergelevels
reorderlevelssetlabels

You can also use many other MATLAB array functions with categorical arrays. The
following is a partial list. For a complete list, see “Other MATLAB Functions Supporting
Nominal and Ordinal Arrays” on page 2-3.
double histogramisequalisundefined piesummary times

Create Object

Create ordinal arrays using the ordinal function.

22 Functions — Alphabetical List

22-3336

See Also
nominal

More About
• “Advantages of Using Categorical Arrays” on page 2-44
• “Index and Search Using Categorical Arrays” on page 2-47
• “Grouping Variables” on page 2-52

 outlierMeasure

22-3337

outlierMeasure
Class: CompactTreeBagger

Outlier measure for data

Syntax

out = outlierMeasure(B,X)

out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)

Description

out = outlierMeasure(B,X) computes outlier measures for predictors X using trees
in the ensemble B. The method computes the outlier measure for a given observation by
taking an inverse of the average squared proximity between this observation and other
observations. outlierMeasure then normalizes these outlier measures by subtracting
the median of their distribution, taking the absolute value of this difference, and dividing
by the median absolute deviation. A high value of the outlier measure indicates that this
observation is an outlier.

You can supply the proximity matrix directly by using the 'data' parameter.

out = outlierMeasure(B,X,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'data' Flag indicating how to treat the X input argument. If set to
'predictors' (default), the method assumes X is a matrix of
predictors and uses it for computation of the proximity matrix. If
set to 'proximity', the method treats X as a proximity matrix
returned by the proximity method. If you do not supply the
proximity matrix, outlierMeasure computes it internally. If
you use the proximity method to compute a proximity matrix,
supplying it as input to outlierMeasure reduces computing time.

'labels' Vector of true class labels. True class labels can be either a numeric
vector, character matrix, or cell array of strings. When you supply
this parameter, the method performs the outlier calculation for any

22 Functions — Alphabetical List

22-3338

observations using only other observations from the same class. This
parameter must specify one label for each observation (row) in X.

See Also
proximity

 OutlierMeasure property

22-3339

OutlierMeasure property
Class: TreeBagger

Measure for determining outliers

Description

The OutlierMeasure property is a numeric array of size Nobs-by-1, where Nobs is
the number of observations in the training data, containing outlier measures for each
observation.

See Also
CompactTreeBagger.outlierMeasure

22 Functions — Alphabetical List

22-3340

parallelcoords

Parallel coordinates plot

Syntax

parallelcoords(X)

parallelcoords(X,...,'Standardize','on')

parallelcoords(X,...,'Standardize','PCA')

parallelcoords(X,...,'Standardize','PCAStd')

parallelcoords(X,...,'Quantile',alpha)

parallelcoords(X,...,'Group',group)

parallelcoords(X,...,'Labels',labels)

parallelcoords(X,...,PropertyName,PropertyValue,...)

h = parallelcoords(X,...)

parallelcoords(axes,...)

Description

parallelcoords(X) creates a parallel coordinates plot of the multivariate data in the
n-by-p matrix X. Rows of X correspond to observations, columns to variables. A parallel
coordinates plot is a tool for visualizing high dimensional data, where each observation
is represented by the sequence of its coordinate values plotted against their coordinate
indices. parallelcoords treats NaNs in X as missing values and does not plot those
coordinate values.

parallelcoords(X,...,'Standardize','on') scales each column of X to have
mean 0 and standard deviation 1 before making the plot.

parallelcoords(X,...,'Standardize','PCA') creates a parallel coordinates
plot from the principal component scores of X, in order of decreasing eigenvalues.
parallelcoords removes rows of X containing missing values (NaNs) for principal
components analysis (PCA) standardization.

parallelcoords(X,...,'Standardize','PCAStd') creates a parallel coordinates
plot using the standardized principal component scores.

 parallelcoords

22-3341

parallelcoords(X,...,'Quantile',alpha) plots only the median and the alpha
and 1-alpha quantiles of f (t) at each value of t. This is useful if X contains many
observations.

parallelcoords(X,...,'Group',group) plots the data in different groups with
different colors. Groups are defined by group, a numeric array containing a group index
for each observation. group can also be a categorical variable, character matrix, or cell
array of strings, containing a group name for each observation.

parallelcoords(X,...,'Labels',labels) labels the coordinate tick marks along
the horizontal axis using labels, a character array or cell array of strings.

parallelcoords(X,...,PropertyName,PropertyValue,...) sets properties to the
specified property values for all line graphics objects created by parallelcoords.

h = parallelcoords(X,...) returns a column vector of handles to the line objects
created by parallelcoords, one handle per row of X. If you use the 'Quantile' input
argument, h contains one handle for each of the three lines objects created. If you use
both the 'Quantile' and the 'Group' input arguments, h contains three handles for
each group.

parallelcoords(axes,...) plots into the axes with handle axes.

Examples

% Make a grouped plot of the raw data

load fisheriris

labels = {'Sepal Length','Sepal Width',...

 'Petal Length','Petal Width'};

parallelcoords(meas,'group',species,'labels',labels);

% Plot only the median and quartiles of each group

parallelcoords(meas,'group',species,'labels',labels,...

 'quantile',.25);

More About
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-3342

See Also
andrewsplot | glyphplot

 paramci

22-3343

paramci
Confidence intervals for probability distribution parameters

Syntax

ci = paramci(pd)

ci = paramci(pd,Name,Value)

Description

ci = paramci(pd) returns the array ci containing the lower and upper boundaries of
the 95% confidence interval for each parameter in probability distribution pd.

ci = paramci(pd,Name,Value) returns confidence intervals with additional options
specified by one or more name-value pair arguments. For example, you can specify a
different percentage for the confidence interval, or compute confidence intervals only for
selected parameters.

Examples

Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

22 Functions — Alphabetical List

22-3344

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the 95% confidence interval for the distribution parameters.

ci = paramci(pd)

ci =

 73.4321 7.7391

 76.5846 9.9884

Column 1 of ci contains the lower and upper 95% confidence interval boundaries for the
mu parameter, and column 2 contains the boundaries for the sigma parameter.

Change Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the 99% confidence interval for the distribution parameters.

ci = paramci(pd,'Alpha',.01)

ci =

 72.9245 7.4627

 77.0922 10.4403

 paramci

22-3345

Column 1 of ci contains the lower and upper 99% confidence interval boundaries for the
mu parameter, and column 2 contains the boundaries for the sigma parameter.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01 specifies a 99% confidence interval.

'Alpha' — Alpha level
0.05 (default) | scalar value in the range (0,1)

Alpha level for the confidence interval, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1). The default value 0.05 corresponds to a
95% confidence interval.
Example: 'Alpha',0.01

Data Types: single | double

'Parameter' — Parameter list
vector | cell array of strings

Parameter list for which to compute confidence intervals, specified as the comma-
separated pair consisting of 'Parameter' and a vector or a cell array of strings
containing the parameter names. By default, paramci computes confidence intervals for
all distribution parameters.

22 Functions — Alphabetical List

22-3346

Example: 'Parameter','mu'

Data Types: char

'Type' — Computation method
'exact' | 'Wald' | 'lr'

Computation method for the confidence intervals, specified as the comma-separated pair
consisting of 'Type' and 'exact', 'Wald', or 'lr'.

'exact' computes the confidence intervals using an exact method, and is available for
the following distributions.

Binomial Compute using the Clopper-Pearson method based on exact
probability calculations. This method does not provide exact coverage
probabilities.

Exponential Compute using a method based on a chi-square distribution. This
method provides exact coverage for complete and Type 2 censored
samples.

Normal Computation method based on t and chi-square distributions for
uncensored samples provides exact coverage for uncensored samples.
For censored samples, paramci uses the Wald method if Type is
exact.

Lognormal Computation method based on t and chi-square distributions for
uncensored samples provides exact coverage. For censored samples,
paramci uses the Wald method if Type is exact.

Poisson Computation method based on a chi-square distribution provides
exact coverage. For large degrees of freedom, the chi-square is
approximated by a normal distribution for numerical efficiency.

Rayleigh Computation method based on a chi-square distribution provides
exact coverage probabilities.

'exact' is the default when it is available. Alternatively, you can specify 'Wald'
to compute the confidence intervals using the Wald method, or 'lr' to compute the
confidence intervals using the likelihood radio method.
Example: 'Type','Wald'

'LogFlag' — Boolean flag for log scale
vector

 paramci

22-3347

Boolean flag for the log scale, specified as the comma-separated pair consisting of
'LogFlag' and a vector containing Boolean values corresponding to each distribution
parameter. The flag specifies which Wald intervals to compute on a log scale. The default
values depend on the distribution.
Example: 'LogFlag',[0,1]

Data Types: logical

Output Arguments

ci — Confidence interval
array

Confidence interval, returned as a p-by-2 array containing the lower and upper bounds of
the (1 - Alpha)% confidence interval for each distribution parameter. p is the number of
distribution parameters.

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-3348

paramci

Class: ProbDistUnivParam

Return parameter confidence intervals of ProbDistUnivParam object

Syntax

CI = paramci(PD)

CI = paramci(PD, Alpha)

Description

CI = paramci(PD) returns CI, a 2-by-N array containing 95% confidence intervals for
the parameters of the ProbDistUnivParam object PD. N is the number of parameters
in the distribution. When you create PD by specifying parameters (such as using the
ProbDistUnivParam constructor or using the fitdist function and specifying a
'binomial' or 'generalized pareto' distribution) rather than by fitting to data,
the confidence intervals have a width of 0 because the parameters are viewed as
estimates of an unknown parameter.

CI = paramci(PD, Alpha) returns 100*(1 - Alpha)% confidence intervals. Default
Alpha is 0.05, which specifies 95% confidence intervals.

Note: If you create PD with a distribution that does not support confidence intervals, then
CI contains NaN values.

Input Arguments

PD An object of the class ProbDistUnivParam.
Alpha A value between 0 and 1 that specifies a confidence interval.

Default is 0.05, which specifies 95% confidence intervals.

 paramci

22-3349

Output Arguments

CI A 2-by-N array containing 100*(1 - Alpha)% confidence
intervals for the parameters of the ProbDistUnivParam object
PD. N is the number of parameters in the distribution.

See Also
fitdist

22 Functions — Alphabetical List

22-3350

paramci
Class: prob.ToolboxFittableParametricDistribution
Package: prob

Confidence intervals for probability distribution parameters

Syntax

ci = paramci(pd)

ci = paramci(pd,Name,Value)

Description

ci = paramci(pd) returns the array ci containing the lower and upper boundaries of
the 95% confidence interval for each parameter in probability distribution pd.

ci = paramci(pd,Name,Value) returns confidence intervals with additional options
specified by one or more name-value pair arguments. For example, you can specify a
different percentage for the confidence interval, or compute confidence intervals only for
selected parameters.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 paramci

22-3351

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01 specifies a 99% confidence interval.

'Alpha' — Alpha level
0.05 (default) | scalar value in the range (0,1)

Alpha level for the confidence interval, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1). The default value 0.05 corresponds to a
95% confidence interval.
Example: 'Alpha',0.01

Data Types: single | double

'Parameter' — Parameter list
vector | cell array of strings

Parameter list for which to compute confidence intervals, specified as the comma-
separated pair consisting of 'Parameter' and a vector or a cell array of strings
containing the parameter names. By default, paramci computes confidence intervals for
all distribution parameters.
Example: 'Parameter','mu'

Data Types: char

'Type' — Computation method
'exact' | 'Wald' | 'lr'

Computation method for the confidence intervals, specified as the comma-separated pair
consisting of 'Type' and 'exact', 'Wald', or 'lr'.

'exact' computes the confidence intervals using an exact method, and is available for
the following distributions.

Binomial Compute using the Clopper-Pearson method based on exact
probability calculations. This method does not provide exact coverage
probabilities.

Exponential Compute using a method based on a chi-square distribution. This
method provides exact coverage for complete and Type 2 censored
samples.

22 Functions — Alphabetical List

22-3352

Normal Computation method based on t and chi-square distributions for
uncensored samples provides exact coverage for uncensored samples.
For censored samples, paramci uses the Wald method if Type is
exact.

Lognormal Computation method based on t and chi-square distributions for
uncensored samples provides exact coverage. For censored samples,
paramci uses the Wald method if Type is exact.

Poisson Computation method based on a chi-square distribution provides
exact coverage. For large degrees of freedom, the chi-square is
approximated by a normal distribution for numerical efficiency.

Rayleigh Computation method based on a chi-square distribution provides
exact coverage probabilities.

'exact' is the default when it is available. Alternatively, you can specify 'Wald'
to compute the confidence intervals using the Wald method, or 'lr' to compute the
confidence intervals using the likelihood radio method.
Example: 'Type','Wald'

'LogFlag' — Boolean flag for log scale
vector

Boolean flag for the log scale, specified as the comma-separated pair consisting of
'LogFlag' and a vector containing Boolean values corresponding to each distribution
parameter. The flag specifies which Wald intervals to compute on a log scale. The default
values depend on the distribution.
Example: 'LogFlag',[0,1]

Data Types: logical

Output Arguments

ci — Confidence interval
array

Confidence interval, returned as a p-by-2 array containing the lower and upper bounds of
the (1 - Alpha)% confidence interval for each distribution parameter. p is the number of
distribution parameters.

 paramci

22-3353

Examples

Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the 95% confidence interval for the distribution parameters.

ci = paramci(pd)

ci =

 73.4321 7.7391

 76.5846 9.9884

Column 1 of ci contains the lower and upper 95% confidence interval boundaries for the
mu parameter, and column 2 contains the boundaries for the sigma parameter.

Change Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

22 Functions — Alphabetical List

22-3354

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the 99% confidence interval for the distribution parameters.

ci = paramci(pd,'Alpha',.01)

ci =

 72.9245 7.4627

 77.0922 10.4403

Column 1 of ci contains the lower and upper 99% confidence interval boundaries for the
mu parameter, and column 2 contains the boundaries for the sigma parameter.

See Also
dfittool | fitdist | makedist

 ParamCov property

22-3355

ParamCov property
Class: ProbDistParametric

Read-only covariance matrix of parameter estimates of ProbDistParametric object

Description

ParamCov is a read-only property of the ProbDistParametric class. ParamCov is a
covariance matrix containing the parameter estimates of a distribution represented by a
ProbDistParametric object. ParamCov has a size of NumParams-by-NumParams.

Values

This covariance matrix includes estimates for both the specified parameters and
parameters that are fit to the data. For specified parameters, the covariance is 0,
indicating the parameter is known exactly. Use this information to view and compare the
descriptions of parameters supplied to create distributions.

22 Functions — Alphabetical List

22-3356

ParamDescription property
Class: ProbDistParametric

Read-only cell array specifying descriptions of parameters of ProbDistParametric object

Description

ParamDescription is a read-only property of the ProbDistParametric class.
ParamDescription is a cell array of strings specifying the descriptions or meanings
of the parameters of a distribution represented by a ProbDistParametric object.
ParamDescription has a length of NumParams.

Values

This cell array includes a brief description of the meaning of both the specified
parameters and parameters that are fit to the data. The description is the same
as the parameter name when no further description information is available. Use
this information to view and compare the descriptions of parameters used to create
distributions.

 ParamIsFixed property

22-3357

ParamIsFixed property
Class: ProbDistParametric

Read-only logical array specifying fixed parameters of ProbDistParametric object

Description

ParamIsFixed is a read-only property of the ProbDistParametric class.
ParamIsFixed is a logical array specifying the fixed parameters of a distribution
represented by a ProbDistParametric object. ParamIsFixed has a length of NumParams.

Values

This array specifies a 1 (true) for fixed parameters, and a 0 (false) for parameters that
are estimated from the input data. Use this information to view and compare the fixed
parameters used to create distributions.

22 Functions — Alphabetical List

22-3358

ParamNames property
Class: ProbDistParametric

Read-only cell array specifying names of parameters of ProbDistParametric object

Description

ParamNames is a read-only property of the ProbDistParametric class. ParamNames
is a cell array of strings specifying the names of the parameters of a distribution
represented by a ProbDistParametric object. ParamNames has a length of NumParams.

Values

This cell array includes the names of both the specified parameters and parameters that
are fit to the data. Use this information to view and compare the names of parameters
used to create distributions.

 Params property

22-3359

Params property
Class: NaiveBayes

Parameter estimates

Description

The Params property is an NClasses-by-NDims cell array containing the parameter
estimates, excluding the class priors. Params(i,j) contains the parameter estimates for
the jth feature in the ith class. Params(i,j) is an empty cell if the ith class is empty.

The entry in Params(i,j) depends on the distribution type used for the jth feature, as
follows:

'normal' A vector of length two. The first element is the mean, and the
second element is standard deviation.

'kernel' A ProbDistUnivKernel object
'mvmn' A vector containing the probability for each possible value of

the jth feature in the ith class. The order of the probabilities
is decided by the sorted order of all the unique values of the jth
feature.

'mn' A scalar representing the probability the jth token appearing in
the ith class, Prob(token j | class i). It is estimated as (1
+ the number of occurrence of token J in class I)/

(NDims + the total number of token occurrence in

class I).

22 Functions — Alphabetical List

22-3360

Params property
Class: ProbDistParametric

Read-only array specifying values of parameters of ProbDistParametric object

Description

Params is a read-only property of the ProbDistParametric class. Params is an array
of values specifying the values of the parameters of a distribution represented by a
ProbDistParametric object. Params has a length of NumParams.

Values

This array includes the values of both the specified parameters and parameters that are
fit to the data. Use this information to view and compare the values of parameters used
to create distributions.

 prob.ParametricTruncatableDistribution class

22-3361

prob.ParametricTruncatableDistribution class
Package: prob
Superclasses: prob.TruncatableDistribution

Parametric truncatable probability distribution object

Description

Create a probability distribution object with specified parameter values using makedist.

Methods

mean
Mean of probability distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

22 Functions — Alphabetical List

22-3362

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

See Also
makedist

More About
• Class Attributes
• Property Attributes

 parent

22-3363

parent
Class: classregtree

Parent node

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

p = parent(t)

p = parent(t,nodes)

Description

p = parent(t) returns an n-element vector p containing the number of the parent
node for each node in the tree t, where n is the number of nodes. The parent of the root
node is 0.

p = parent(t,nodes) takes a vector nodes of node numbers and returns the parent
nodes for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:

load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

22 Functions — Alphabetical List

22-3364

1 if PL<2.45 then node 2 else node 3

2 class = setosa

3 if PW<1.75 then node 4 else node 5

4 if PL<4.95 then node 6 else node 7

5 class = virginica

6 if PW<1.65 then node 8 else node 9

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

p = parent(t)

p =

 parent

22-3365

 0

 1

 1

 3

 3

 4

 4

 6

 6

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | numnodes | children

22 Functions — Alphabetical List

22-3366

paretotails class
Superclasses: piecewisedistribution

Empirical distributions with Pareto tails

Construction

.paretotails
Construct Pareto tails object

Methods

lowerparams
Lower Pareto tails parameters

upperparams
Upper Pareto tails parameters

Inherited Methods

Methods in the following table are inherited from piecewisedistribution.

boundary
Piecewise distribution boundaries

cdf
Cumulative distribution function for
piecewise distribution

disp
Display piecewisedistribution object

display
Display piecewisedistribution object

icdf
Inverse cumulative distribution function for
piecewise distribution

 paretotails class

22-3367

nsegments
Number of segments

pdf
Probability density function for piecewise
distribution

random
Random numbers from piecewise
distribution

segment
Segments containing values

Properties

Objects of the paretotails class have no properties accessible by dot indexing, get
methods, or set methods. To obtain information about a paretotails object, use the
appropriate method.

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

How To
• “Generalized Pareto Distribution”

22 Functions — Alphabetical List

22-3368

paretotails

Class: paretotails

Construct Pareto tails object

Syntax

obj = paretotails(x,pl,pu)

obj = paretotails(x,pl,pu,cdffun)

Description

obj = paretotails(x,pl,pu) creates an object obj defining a distribution consisting
of the empirical distribution of x in the center and Pareto distributions in the tails. x
is a real-valued vector of data values whose extreme observations are fit to generalized
Pareto distributions (GPDs). pl and pu identify the lower- and upper-tail cumulative
probabilities such that 100*pl and 100*(1-pu) percent of the observations in x are,
respectively, fit to a GPD by maximum likelihood. If pl is 0, or if there are not at least
two distinct observations in the lower tail, then no lower Pareto tail is fit. If pu is 1, or
if there are not at least two distinct observations in the upper tail, then no upper Pareto
tail is fit.

obj = paretotails(x,pl,pu,cdffun) uses cdffun to estimate the cdf of x between
the lower and upper tail probabilities. cdffun may be any of the following:

• 'ecdf' — Uses an interpolated empirical cdf, with data values as the midpoints in
the vertical steps in the empirical cdf, and computed by linear interpolation between
data values. This is the default.

• 'kernel' — Uses a kernel-smoothing estimate of the cdf.
• @fun — Uses a handle to a function of the form [p,xi] = fun(x) that accepts the

input data vector x and returns a vector p of cdf values and a vector xi of evaluation
points. Values in xi must be sorted and distinct but need not equal the values in x.

cdffun is used to compute the quantiles corresponding to pl and pu by inverse
interpolation, and to define the fitted distribution between these quantiles.

 paretotails

22-3369

The output object obj is a Pareto tails object with methods to evaluate the cdf, inverse
cdf, and other functions of the fitted distribution. These methods are well-suited to copula
and other Monte Carlo simulations. The pdf method in the tails is the GPD density, but
in the center it is computed as the slope of the interpolated cdf.

The paretotails class is a subclass of the piecewisedistribution class, and many
of its methods are derived from that class.

Examples

Fit Pareto Tails to a Probability Distribution

Generate sample data containing 100 random numbers from a t distribution with 3
degrees of freedom.

rng default; % For reproducibility

t = trnd(3,100,1);

Fit pareto tails to the distribution at cumulative probabilities 0.1 and 0.9.

obj = paretotails(t,0.1,0.9);

[p,q] = boundary(obj);

Plot the cdf of the Pareto tails and the cdf of the fitted t distribution on the same figure.

x = linspace(-5,5);

plot(x,cdf(obj,x),'b-','LineWidth',2)

hold on;

plot(x,tcdf(x,3),'r:','LineWidth',2)

plot(q,p,'bo','LineWidth',2,'MarkerSize',5)

legend('Pareto Tails Object','t Distribution',...

 'Location','NW')

hold off;

22 Functions — Alphabetical List

22-3370

See Also
icdf | ksdensity | cdf | ecdf | gpfit

 partialcorr

22-3371

partialcorr
Linear or rank partial correlation coefficients

Syntax
rho = partialcorr(x)

rho = partialcorr(x,z)

rho = partialcorr(x,y,z)

rho = partialcorr(___ ,Name,Value)

[rho,pval] = partialcorr(___)

Description
rho = partialcorr(x) returns the sample linear partial correlation coefficients
between pairs of variables in x, controlling for the remaining variables in x.

rho = partialcorr(x,z) returns the sample linear partial correlation coefficients
between pairs of variables in x, controlling for the variables in z.

rho = partialcorr(x,y,z) returns the sample linear partial correlation coefficients
between pairs of variables in x and y, controlling for the variables in z.

rho = partialcorr(___ ,Name,Value) returns the sample linear partial correlation
coefficients with additional options specified by one or more name-value pair arguments,
using input arguments from any of the previous syntaxes. For example, you can specify
whether to use Pearson or Spearman partial correlations, or specify how to treat missing
values.

[rho,pval] = partialcorr(___) also returns a matrix pval of p-values for testing
the hypothesis of no partial correlation against the one- or two-sided alternative that
there is a nonzero partial correlation.

Examples

Compute Partial Correlation Coefficients

Compute partial correlation coefficients between pairs of variables in the input matrix.

22 Functions — Alphabetical List

22-3372

Load the sample data. Convert the strings in hospital.Sex to numeric group
identifiers.

load hospital;

hospital.SexID = grp2idx(hospital.Sex);

Create an input matrix containing the sample data.

x = [hospital.SexID hospital.Age hospital.Smoker hospital.Weight];

Each row in x contains a patient’s gender, age, smoking status, and weight.

Compute partial correlation coefficients between pairs of variables in x, while controlling
for the effects of the remaining variables in x.

rho = partialcorr(x)

rho =

 1.0000 -0.0105 0.0273 0.9421

 -0.0105 1.0000 0.0419 0.0369

 0.0273 0.0419 1.0000 0.0451

 0.9421 0.0369 0.0451 1.0000

The matrix rho indicates, for example, a correlation of 0.9421 between gender and
weight after controlling for all other variables in x. You can return the p-values as a
second output, and examine them to confirm whether these correlations are statistically
significant.

For a clearer display, create a table with appropriate variable and row labels.

rho = array2table(rho, ...

 'VariableNames',{'SexID','Age','Smoker','Weight'},...

 'RowNames',{'SexID','Age','Smoker','Weight'});

disp('Partial Correlation Coefficients')

disp(rho)

Partial Correlation Coefficients

 SexID Age Smoker Weight

 -------- -------- -------- --------

 SexID 1 -0.01052 0.027324 0.9421

 Age -0.01052 1 0.041945 0.036873

 Smoker 0.027324 0.041945 1 0.045106

 partialcorr

22-3373

 Weight 0.9421 0.036873 0.045106 1

Test for Partial Correlations with Controlled Variables

Test for partial correlation between pairs of variables in the input matrix, while
controlling for the effects of a second set of variables.

Load the sample data. Convert the strings in hospital.Sex to numeric group
identifiers.

load hospital;

hospital.SexID = grp2idx(hospital.Sex);

Create two matrices containing the sample data.

x = [hospital.Age hospital.BloodPressure];

z = [hospital.SexID hospital.Smoker hospital.Weight];

The x matrix contains the variables to test for partial correlation. The z matrix contains
the variables to control for. The measurements for BloodPressure are contained in two
columns: The first column contains the upper (systolic) number, and the second column
contains the lower (diastolic) number. partialcorr treats each column as a separate
variable.

Test for partial correlation between pairs of variables in x, while controlling for the
effects of the variables in z. Compute the correlation coefficients.

[rho,pval] = partialcorr(x,z)

rho =

 1.0000 0.1300 0.0462

 0.1300 1.0000 0.0012

 0.0462 0.0012 1.0000

pval =

 0 0.2044 0.6532

 0.2044 0 0.9903

 0.6532 0.9903 0

The large values in pval indicate that there is no significant correlation between age
and either blood pressure measurement after controlling for gender, smoking status, and
weight.

22 Functions — Alphabetical List

22-3374

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...

 'VariableNames',{'Age','BPTop','BPBottom'},...

 'RowNames',{'SexID','Smoker','Weight'});

pval = array2table(pval, ...

 'VariableNames',{'Age','BPTop','BPBottom'},...

 'RowNames',{'SexID','Smoker','Weight'});

disp('Partial Correlation Coefficients')

disp(rho)

disp('p-values')

disp(pval)

Partial Correlation Coefficients

 Age BPTop BPBottom

 -------- --------- ---------

 SexID 1 0.13 0.046202

 Smoker 0.13 1 0.0012475

 Weight 0.046202 0.0012475 1

p-values

 Age BPTop BPBottom

 ------- ------- --------

 SexID 0 0.20438 0.65316

 Smoker 0.20438 0 0.99032

 Weight 0.65316 0.99032 0

Test for Paired Partial Correlation Coefficients

Test for partial correlation between pairs of variables in the x and y input matrices,
while controlling for the effects of a third set of variables.

Load the sample data. Convert the strings in hospital.Sex to numeric group
identifiers.

load hospital;

hospital.SexID = grp2idx(hospital.Sex);

Create three matrices containing the sample data.

x = [hospital.BloodPressure];

y = [hospital.Weight hospital.Age];

z = [hospital.SexID hospital.Smoker];

 partialcorr

22-3375

partialcorr can test for partial correlation between the pairs of variables in x (the
systolic and diastolic blood pressure measurements) and y (weight and age), while
controlling for the variables in z (gender and smoking status). The measurements
for BloodPressure are contained in two columns: The first column contains the
upper (systolic) number, and the second column contains the lower (diastolic) number.
partialcorr treats each column as a separate variable.

Test for partial correlation between pairs of variables in x and y, while controlling for the
effects of the variables in z. Compute the correlation coefficients.

[rho,pval] = partialcorr(x,y,z)

rho =

 -0.0257 0.1289

 0.0292 0.0472

pval =

 0.8018 0.2058

 0.7756 0.6442

The results in pval indicate that, after controlling for gender and smoking status, there
is no significant correlation between either of a patient’s blood pressure measurements
and that patient’s weight or age.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...

 'VariableNames',{'BPTop','BPBottom'},...

 'RowNames',{'Weight','Age'});

pval = array2table(pval, ...

 'VariableNames',{'BPTop','BPBottom'},...

 'RowNames',{'Weight','Age'});

disp('Partial Correlation Coefficients')

disp(rho)

disp('p-values')

disp(pval)

Partial Correlation Coefficients

 BPTop BPBottom

22 Functions — Alphabetical List

22-3376

 -------- --------

 Weight -0.02568 0.12893

 Age 0.029168 0.047226

p-values

 BPTop BPBottom

 ------- --------

 Weight 0.80182 0.2058

 Age 0.77556 0.64424

One-Tailed Partial Correlation Test

Test the hypothesis that pairs of variables have no correlation, against the alternative
hypothesis that the correlation is greater than 0.

Load the sample data. Convert the strings in hospital.Sex to numeric group
identifiers.

load hospital;

hospital.SexID = grp2idx(hospital.Sex);

Create three matrices containing the sample data.

x = [hospital.BloodPressure];

y = [hospital.Weight hospital.Age];

z = [hospital.SexID hospital.Smoker];

partialcorr can test for partial correlation between the pairs of variables in x (the
systolic and diastolic blood pressure measurements) and y (weight and age), while
controlling for the variables in z (gender and smoking status). The measurements
for BloodPressure are contained in two columns: The first column contains the
upper (systolic) number, and the second column contains the lower (diastolic) number.
partialcorr treats each column as a separate variable.

Compute the correlation coefficients using a right-tailed test.

[rho,pval] = partialcorr(x,y,z,'Tail','right')

rho =

 -0.0257 0.1289

 0.0292 0.0472

 partialcorr

22-3377

pval =

 0.5991 0.1029

 0.3878 0.3221

The results in pval indicate that partialcorr does not reject the null hypothesis of
nonzero correlations between the variables in x and y, after controlling for the variables
in z, when the alternative hypothesis is that the correlations are greater than 0.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...

 'VariableNames',{'BPTop','BPBottom'},...

 'RowNames',{'Weight','Age'});

pval = array2table(pval, ...

 'VariableNames',{'BPTop','BPBottom'},...

 'RowNames',{'Weight','Age'});

disp('Partial Correlation Coefficients')

disp(rho)

disp('p-values')

disp(pval)

Partial Correlation Coefficients

 BPSys BPDia

 Weight -0.02568 0.12893

 Age 0.029168 0.047226

p-values

 BPSys BPDia

 Weight 0.59909 0.1029

 Age 0.38778 0.32212

Input Arguments

x — Data matrix
matrix

Data matrix, specified as an n-by-px matrix. The rows of x correspond to observations,
and the columns correspond to variables.
Data Types: single | double

22 Functions — Alphabetical List

22-3378

y — Data matrix
matrix

Data matrix, specified as an n-by-py matrix. The rows of y correspond to observations,
and the columns correspond to variables.
Data Types: single | double

z — Data matrix
matrix

Data matrix, specified as an n-by-pz matrix. The rows of z correspond to observations,
and columns correspond to variables.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Type','Spearman','Rows','complete' computes Spearman partial
correlations using only the data in rows that contain no missing values.

'Type' — Type of partial correlations
'Pearson' (default) | 'Spearman'

Type of partial correlations to compute, specified as the comma-separated pair consisting
of 'Type' and one of the following.

'Pearson' Compute Pearson (linear) partial
correlations.

'Spearman' Compute Spearman (rank) partial
correlations.

Example: 'Type','Spearman'

'Rows' — Rows to use in computation
'all' (default) | 'complete' | 'pairwise'

 partialcorr

22-3379

Rows to use in computation, specified as the comma-separated pair consisting of 'Rows'
and one of the following.

'all' Use all rows regardless of missing (NaN)
values.

'complete' Use only rows with no missing values.
'pairwise' Compute rho(i,j) using rows with no

missing values in column i or j.

Using 'pairwise' can produce a rho that is not positive definite. 'complete' always
produces a positive definite rho, but when data is missing, the estimates are generally
based on fewer observations.
Example: 'Rows','complete'

'Tail' — Alternative hypothesis
'both' (default) | 'right' | 'left'

Alternative hypothesis to test against, specified as the comma-separated pair consisting
of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the
correlation is not 0.

'right' Test the alternative hypothesis that the
correlation is greater than 0.

'left' Test the alternative hypothesis that the
correlation is less than 0.

Example: 'Tail','right'

Output Arguments

rho — Sample linear partial correlation coefficients
matrix

Sample linear partial correlation coefficients, returned as a matrix.

• If you input only an x matrix, rho is a symmetric px-by-px matrix. The (i,j)th entry is
the sample linear partial correlation between the i-th and j-th columns in x.

22 Functions — Alphabetical List

22-3380

• If you input x and z matrices, rho is a symmetric px-by-px matrix. The (i,j)th entry is
the sample linear partial correlation between the ith and jth columns in x, controlled
for the variables in z.

• If you input x, y, and z matrices, rho is a px-by-py matrix, where the (i,j)th entry is the
sample linear partial correlation between the ith column in x and the jth column in y,
controlled for the variables in z.

If the covariance matrix of [x,z] is

S
S S

S S

xx xz

xz
T

zz

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ ,

then the partial correlation matrix of x, controlling for z, can be defined formally as a
normalized version of the covariance matrix Sxy = Sxx – (SxzSzz

–1Sxz
T)

pval — p-values
matrix

p-values, returned as a matrix. Each element of pval is the p-value for the corresponding
element of rho.

If pval(i,j) is small, then the corresponding partial correlation rho(i,j) is
statistically significantly different from 0.

partialcorr computes p-values for linear and rank partial correlations using a
Student's t distribution for a transformation of the correlation. This is exact for linear
partial correlation when x and z are normal, but is a large-sample approximation
otherwise.

See Also
corr | corrcoef | partialcorri | tiedrank

 partialcorri

22-3381

partialcorri
Partial correlation coefficients adjusted for internal variables

Syntax

rho = partialcorri(y,x)

rho = partialcorri(y,x,z)

rho = partialcorri(___ ,Name,Value)

[rho,pval] = partialcorri(___)

Description

rho = partialcorri(y,x) returns the sample linear partial correlation coefficients
between pairs of variables in y and x, adjusting for the remaining variables in x.

rho = partialcorri(y,x,z) returns the sample linear partial correlation coefficients
between pairs of variables in y and x, adjusting for the remaining variables in x, after
first controlling both x and y for the variables in z.

rho = partialcorri(___ ,Name,Value) returns the sample linear partial
correlation coefficients with additional options specified by one or more name-value pair
arguments, using input arguments from any of the previous syntaxes. For example, you
can specify whether to use Pearson or Spearman partial correlations, or specify how to
treat missing values.

[rho,pval] = partialcorri(___) also returns a matrix pval of p-values for testing
the hypothesis of no partial correlation against the one- or two-sided alternative that
there is a nonzero partial correlation.

Examples

Compute Partial Correlation Coefficients

Compute partial correlation coefficients for each pair of variables in the x and y input
matrices, while controlling for the effects of the remaining variables in x.

22 Functions — Alphabetical List

22-3382

Load the sample data.

load carsmall;

The data contains measurements from cars manufactured in 1970, 1976, and 1982.
It includes MPG and Acceleration as performance measures, and Displacement,
Horsepower, and Weight as design variables. Acceleration is the time required to
accelerate from 0 to 60 miles per hour, so a high value for Acceleration corresponds to
a vehicle with low acceleration.

Define the input matrices. The y matrix includes the performance measures, and the x
matrix includes the design variables.

y = [MPG,Acceleration];

x = [Displacement,Horsepower,Weight];

Compute the correlation coefficients. Include only rows with no missing values in the
computation.

rho = partialcorri(y,x,'Rows','complete')

rho =

 -0.0537 -0.1520 -0.4856

 -0.3994 -0.4008 0.4912

The results suggest, for example, a 0.4912 correlation between weight and acceleration
after controlling for the effects of displacement and horsepower. You can return the p-
values as a second output, and examine them to confirm whether these correlations are
statistically significant.

For a clearer display, create a table with appropriate variable and row labels.

rho = array2table(rho, ...

 'VariableNames',{'Displacement','Horsepower','Weight'}, ...

 'RowNames',{'MPG','Acceleration'});

disp('Partial Correlation Coefficients')

disp(rho)

Partial Correlation Coefficients

 Displacement Horsepower Weight

 ------------ ---------- --------

 MPG -0.053684 -0.15199 -0.48563

 partialcorri

22-3383

 Acceleration -0.39941 -0.40075 0.49123

Test Partial Correlations While Controlling for Additional Variables

Test for partial correlation between pairs of variables in the x and y input matrices,
while controlling for the effects of the remaining variables in x plus additional variables
in matrix z.

Load the sample data.

load carsmall;

The data contains measurements from cars manufactured in 1970, 1976, and 1982.
It includes MPG and Acceleration as performance measures, and Displacement,
Horsepower, and Weight as design variables. Acceleration is the time required to
accelerate from 0 to 60 miles per hour, so a high value for Acceleration corresponds to
a vehicle with low acceleration.

Create a new variable Headwind, and randomly generate data to represent the notion of
an average headwind along the performance measurement route.

rng('default); % For reproducibility

Headwind = (10:-0.2:-9.8)' + 5*randn(100,1);

Since headwind can affect the performance measures, control for its effects when testing
for partial correlation between the remaining variables.

Define the input matrices. The y matrix includes the performance measures, and the
x matrix includes the design variables. The z matrix contains additional variables to
control for when computing the partial correlations, such as headwind.

y = [MPG,Acceleration];

x = [Displacement,Horsepower,Weight];

z = Headwind;

Compute the partial correlation coefficients. Include only rows with no missing values in
the computation.

[rho,pval] = partialcorri(y,x,z,'Rows','complete')

rho =

 0.0572 -0.1055 -0.5736

 -0.3845 -0.3966 0.4674

22 Functions — Alphabetical List

22-3384

pval =

 0.5923 0.3221 0.0000

 0.0002 0.0001 0.0000

The small returned p-value of 0.001 in pval indicates, for example, a significant negative
correlation between horsepower and acceleration, after controlling for displacement,
weight, and headwind.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...

 'VariableNames',{'Displacement','Horsepower','Weight'}, ...

 'RowNames',{'MPG','Acceleration'});

pval = array2table(pval, ...

 'VariableNames',{'Displacement','Horsepower','Weight'}, ...

 'RowNames',{'MPG','Acceleration'});

disp('Partial Correlation Coefficients, Accounting for Headwind')

disp(rho)

disp('p-values, Accounting for Headwind')

disp(pval)

Partial Correlation Coefficients, Accounting for Headwind

 Displacement Horsepower Weight

 ------------ ---------- --------

 MPG 0.057197 -0.10555 -0.57358

 Acceleration -0.38452 -0.39658 0.4674

P-values, Accounting for Headwind

 Displacement Horsepower Weight

 ------------ ---------- ----------

 MPG 0.59233 0.32212 3.4401e-09

 Acceleration 0.00018272 0.00010902 3.4091e-06

Input Arguments

x — Data matrix
matrix

Data matrix, specified as an n-by-px matrix. The rows of x correspond to observations,
and the columns correspond to variables.

 partialcorri

22-3385

Data Types: single | double

y — Data matrix
matrix

Data matrix, specified as an n-by-py matrix. The rows of y correspond to observations,
and the columns correspond to variables.
Data Types: single | double

z — Data matrix
matrix

Data matrix, specified as an n-by-pz matrix. The rows of z correspond to observations,
and the columns correspond to variables.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Type','Spearman','Rows','complete' computes Spearman partial
correlations using only the data in rows that contain no missing values.

'Type' — Type of partial correlations
'Pearson' (default) | 'Spearman'

Type of partial correlations to compute, specified as the comma-separated pair
consisting of 'Type' and either 'Pearson' or 'Spearman'. Pearson computes the
Pearson (linear) partial correlations. Spearman computes the Spearman (rank) partial
correlations.
Example: 'Type','Spearman'

'Rows' — Rows to use in computation
'all' (default) | 'complete' | 'pairwise'

Rows to use in computation, specified as the comma-separated pair consisting of 'Rows'
and one of the following.

22 Functions — Alphabetical List

22-3386

'all' Use all rows regardless of missing (NaN) values.
'complete' Use only rows with no missing values.
'pairwise' Use all available values in each column of y when

computing the partial correlation coefficients and
p-values corresponding to that column. For each
column of y, rows will be dropped corresponding to
missing values in x (and/or z, if supplied). However,
remaining rows with valid values in that column of
y are used, even if there are missing values in other
columns of y.

Example: 'Rows','complete'

'Tail' — Alternative hypothesis
'both' (default) | 'right' | 'left'

Alternative hypothesis to test against, specified as the comma-separated pair consisting
of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the correlation
is not zero.

'right' Test the alternative hypothesis that the correlation
is greater than 0.

'left' Test the alternative hypothesis that the correlation
is less than 0.

Example: 'Tail','right'

Output Arguments

rho — Sample linear partial correlation coefficients
matrix

Sample linear partial correlation coefficients, returned as a py-by-px matrix.

• If you input x and y matrices, the (i,j)th entry is the sample linear partial correlation
between the ith column in y and the jth column in x, controlled for all the columns of x
except column j.

 partialcorri

22-3387

• If you input x, y, and z matrices, the (i,j)th entry is the sample linear partial
correlation between the ith column in y and the jth column in x, adjusted for all the
columns of x except column j, after first controlling both x and y for the variables in z.

pval — p-values
matrix

p-values, returned as a matrix. Each element of pval is the p-value for the corresponding
element of rho. If pval(i,j) is small, then the corresponding partial correlation
rho(i,j) is statistically significantly different from zero.

partialcorri computes p-values for linear and rank partial correlations using a
Student's t distribution for a transformation of the correlation. This is exact for linear
partial correlation when x and z are normal, but is a large-sample approximation
otherwise.

See Also
corr | partialcorr

22 Functions — Alphabetical List

22-3388

pca
Principal component analysis of raw data

Syntax

coeff = pca(X)

coeff = pca(X,Name,Value)

[coeff,score,latent] = pca(___)

[coeff,score,latent,tsquared] = pca(___)

[coeff,score,latent,tsquared,explained,mu] = pca(___)

Description

coeff = pca(X) returns the principal component coefficients, also known as loadings,
for the n-by-p data matrix X. Rows of X correspond to observations and columns
correspond to variables. The coefficient matrix is p-by-p. Each column of coeff contains
coefficients for one principal component, and the columns are in descending order of
component variance. By default, pca centers the data and uses the singular value
decomposition (SVD) algorithm.

coeff = pca(X,Name,Value) returns any of the output arguments in the previous
syntaxes using additional options for computation and handling of special data types,
specified by one or more Name,Value pair arguments.

For example, you can specify the number of principal components pca returns or an
algorithm other than SVD to use.

[coeff,score,latent] = pca(___) also returns the principal component scores in
score and the principal component variances in latent. You can use any of the input
arguments in the previous syntaxes.

Principal component scores are the representations of X in the principal component
space. Rows of score correspond to observations, and columns correspond to
components.

The principal component variances are the eigenvalues of the covariance matrix of X.

 pca

22-3389

[coeff,score,latent,tsquared] = pca(___) also returns the Hotelling's T-
squared statistic for each observation in X.

[coeff,score,latent,tsquared,explained,mu] = pca(___) also returns
explained, the percentage of the total variance explained by each principal component
and mu, the estimated mean of each variable in X.

Examples

Principal Components of a Data Set

Load the sample data set.

load hald

The ingredients data has 13 observations for 4 variables.

Find the principal components for the ingredients data.

 coeff = pca(ingredients)

 coeff =

 -0.0678 -0.6460 0.5673 0.5062

 -0.6785 -0.0200 -0.5440 0.4933

 0.0290 0.7553 0.4036 0.5156

 0.7309 -0.1085 -0.4684 0.4844

The rows of coeff contain the coefficients for the four ingredient variables, and its
columns correspond to four principal components.

PCA in the Presence of Missing Data

Find the principal component coefficients when there are missing values in a data set.

Load the sample data set.

load imports-85

Data matrix X has 13 continuous variables in columns 3 to 15: wheel-base, length, width,
height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm,
city-mpg, and highway-mpg. The variables bore and stroke are missing four values in

22 Functions — Alphabetical List

22-3390

rows 56 to 59, and the variables horsepower and peak-rpm are missing two values in
rows 131 and 132.

Perform principal component analysis.

coeff = pca(X(:,3:15));

By default, pca performs the action specified by the 'Rows','complete' name-value
pair argument. This option removes the observations with NaN values before calculation.
Rows of NaNs are reinserted into score and tsquared at the corresponding locations,
namely rows 56 to 59, 131, and 132.

Use 'pairwise' to perform the principal component analysis.

coeff = pca(X(:,3:15),'Rows','pairwise');

In this case, pca computes the (i,j) element of the covariance matrix using the rows with
no NaN values in the columns i or j of X. Note that the resulting covariance matrix might
not be positive definite. This option applies when the algorithm pca uses is eigenvalue
decomposition. When you don’t specify the algorithm, as in this example, pca sets it to
'eig'. If you require 'svd' as the algorithm, with the 'pairwise' option, then pca
returns a warning message, sets the algorithm to 'eig' and continues.

If you use the 'Rows','all' name-value pair argument, pca terminates because this
option assumes there are no missing values in the data set.

coeff = pca(X(:,3:15),'Rows','all');

Error using pca (line 180)

Raw data contains NaN missing value while 'Rows' option is set to 'all'. Consider using 'complete' or pairwise' option instead.

Weighted PCA

Use the inverse variable variances as weights while performing the principal components
analysis.

Load the sample data set.

load hald

Perform the principal component analysis using the inverse of variances of the
ingredients as variable weights.

 [wcoeff,~,latent,~,explained] = pca(ingredients,...

 pca

22-3391

'VariableWeights','variance')

wcoeff =

 -2.7998 2.9940 -3.9736 1.4180

 -8.7743 -6.4411 4.8927 9.9863

 2.5240 -3.8749 -4.0845 1.7196

 9.1714 7.5529 3.2710 11.3273

latent =

 2.2357

 1.5761

 0.1866

 0.0016

explained =

 55.8926

 39.4017

 4.6652

 0.0406

Note that the coefficient matrix, wcoeff, is not orthonormal.

Calculate the orthonormal coefficient matrix.

coefforth = inv(diag(std(ingredients)))* wcoeff

coefforth =

 -0.4760 0.5090 -0.6755 0.2411

 -0.5639 -0.4139 0.3144 0.6418

 0.3941 -0.6050 -0.6377 0.2685

 0.5479 0.4512 0.1954 0.6767

Check orthonormality of the new coefficient matrix, coefforth.

 coefforth*coefforth'

ans =

 1.0000 0.0000 -0.0000 -0.0000

 0.0000 1.0000 -0.0000 -0.0000

 -0.0000 -0.0000 1.0000 0

22 Functions — Alphabetical List

22-3392

 -0.0000 -0.0000 0 1.0000

PCA Using ALS for Missing Data

Find the principal components using the alternating least squares (ALS) algorithm when
there are missing values in the data.

Load the sample data.

load hald

The ingredients data has 13 observations for 4 variables.

Perform principal component analysis using the ALS algorithm and display the
component coefficients.

[coeff,score,latent,tsquared,explained] = pca(ingredients);

coeff

coeff =

 -0.0678 -0.6460 0.5673 0.5062

 -0.6785 -0.0200 -0.5440 0.4933

 0.0290 0.7553 0.4036 0.5156

 0.7309 -0.1085 -0.4684 0.4844

Introduce missing values randomly.

y = ingredients;

rng('default'); % for reproducibility

ix = random('unif',0,1,size(y))<0.30;

y(ix) = NaN

y =

 7 26 6 NaN

 1 29 15 52

 NaN NaN 8 20

 11 31 NaN 47

 7 52 6 33

 NaN 55 NaN NaN

 NaN 71 NaN 6

 1 31 NaN 44

 2 NaN NaN 22

 21 47 4 26

 pca

22-3393

 NaN 40 23 34

 11 66 9 NaN

 10 68 8 12

Approximately 30% of the data has missing values now, indicated by NaN.

Perform principal component analysis using the ALS algorithm and display the
component coefficients.

[coeff1,score1,latent,tsquared,explained,mu1] = pca(y,...

'algorithm','als');

coeff1

coeff1 =

 -0.0362 0.8215 -0.5252 0.2190

 -0.6831 -0.0998 0.1828 0.6999

 0.0169 0.5575 0.8215 -0.1185

 0.7292 -0.0657 0.1261 0.6694

Display the estimated mean.

mu1

mu1 =

 8.9956 47.9088 9.0451 28.5515

Reconstruct the observed data.

t = score1*coeff1' + repmat(mu1,13,1)

t =

 7.0000 26.0000 6.0000 51.5250

 1.0000 29.0000 15.0000 52.0000

10.7819 53.0230 8.0000 20.0000

11.0000 31.0000 13.5500 47.0000

 7.0000 52.0000 6.0000 33.0000

10.4818 55.0000 7.8328 17.9362

 3.0982 71.0000 11.9491 6.0000

 1.0000 31.0000 -0.5161 44.0000

 2.0000 53.7914 5.7710 22.0000

21.0000 47.0000 4.0000 26.0000

21.5809 40.0000 23.0000 34.0000

11.0000 66.0000 9.0000 5.7078

22 Functions — Alphabetical List

22-3394

10.0000 68.0000 8.0000 12.0000

The ALS algorithm estimates the missing values in the data.

Another way to compare the results is to find the angle between the two spaces spanned
by the coefficient vectors. Find the angle between the coefficients found for complete data
and data with missing values using ALS.

subspace(coeff,coeff1)

ans =

 2.2925e-16

This is a small value. It indicates that the results if you use pca with
'Rows','complete' name-value pair argument when there is no missing data and
if you use pca with 'algorithm','als' name-value pair argument when there is
missing data are close to each other.

Perform the principal component analysis using 'Rows','complete' name-value pair
argument and display the component coefficients.

[coeff2,score2,latent,tsquared,explained,mu2] = pca(y,...

'Rows','complete');

coeff2

coeff2 =

 -0.2054 0.8587 0.0492

 -0.6694 -0.3720 0.5510

 0.1474 -0.3513 -0.5187

 0.6986 -0.0298 0.6518

In this case, pca removes the rows with missing values, and y has only four rows with
no missing values. pca returns only three principal components. You cannot use the
'Rows','pairwise' option because the covariance matrix is not positive semidefinite
and pca returns an error message.

Find the angle between the coefficients found for complete data and data with missing
values using listwise deletion (when 'Rows','complete').

subspace(coeff(:,1:3),coeff2)

ans =

 pca

22-3395

 0.3576

The angle between the two spaces is substantially larger. This indicates that these two
results are different.

Display the estimated mean.

mu2

mu2 =

 7.8889 46.9091 9.8750 29.6000

In this case, the mean is just the sample mean of y.

Reconstruct the observed data.

score2*coeff2'

ans =

 NaN NaN NaN NaN

 -7.5162 -18.3545 4.0968 22.0056

 NaN NaN NaN NaN

 NaN NaN NaN NaN

 -0.5644 5.3213 -3.3432 3.6040

 NaN NaN NaN NaN

 NaN NaN NaN NaN

 NaN NaN NaN NaN

 NaN NaN NaN NaN

 12.8315 -0.1076 -6.3333 -3.7758

 NaN NaN NaN NaN

 NaN NaN NaN NaN

 1.4680 20.6342 -2.9292 -18.0043

This shows that deleting rows containing NaN values does not work as well as the ALS
algorithm. Using ALS is better when the data has too many missing values.

Principal Component Coefficients, Scores, and Variances

Find the coefficients, scores, and variances of the principal components.

Load the sample data set.

22 Functions — Alphabetical List

22-3396

load hald

The ingredients data has 13 observations for 4 variables.

Find the principal component coefficients, scores, and variances of the components for the
ingredients data.

[coeff,score,latent] = pca(ingredients)

coeff =

 -0.0678 -0.6460 0.5673 0.5062

 -0.6785 -0.0200 -0.5440 0.4933

 0.0290 0.7553 0.4036 0.5156

 0.7309 -0.1085 -0.4684 0.4844

score =

 36.8218 -6.8709 -4.5909 0.3967

 29.6073 4.6109 -2.2476 -0.3958

 -12.9818 -4.2049 0.9022 -1.1261

 23.7147 -6.6341 1.8547 -0.3786

 -0.5532 -4.4617 -6.0874 0.1424

 -10.8125 -3.6466 0.9130 -0.1350

 -32.5882 8.9798 -1.6063 0.0818

 22.6064 10.7259 3.2365 0.3243

 -9.2626 8.9854 -0.0169 -0.5437

 -3.2840 -14.1573 7.0465 0.3405

 9.2200 12.3861 3.4283 0.4352

 -25.5849 -2.7817 -0.3867 0.4468

 -26.9032 -2.9310 -2.4455 0.4116

latent =

 517.7969

 67.4964

 12.4054

 0.2372

Each column of score corresponds to one principal component. The vector, latent,
stores the variances of the four principal components.

Reconstruct the centered ingredients data.

 pca

22-3397

Xcentered = score*coeff'

Xcentered =

 -0.4615 -22.1538 -5.7692 30.0000

 -6.4615 -19.1538 3.2308 22.0000

 3.5385 7.8462 -3.7692 -10.0000

 3.5385 -17.1538 -3.7692 17.0000

 -0.4615 3.8462 -5.7692 3.0000

 3.5385 6.8462 -2.7692 -8.0000

 -4.4615 22.8462 5.2308 -24.0000

 -6.4615 -17.1538 10.2308 14.0000

 -5.4615 5.8462 6.2308 -8.0000

 13.5385 -1.1538 -7.7692 -4.0000

 -6.4615 -8.1538 11.2308 4.0000

 3.5385 17.8462 -2.7692 -18.0000

 2.5385 19.8462 -3.7692 -18.0000

The new data in Xcentered is the original ingredients data centered by subtracting the
column means from corresponding columns.

T-Squared Statistic

Find the Hotelling’s T-squared statistic values.

Load the sample data set.

load hald

The ingredients data has 13 observations for 4 variables.

Perform the principal component analysis and request the T-squared values.

[coeff,score,latent,tsquared] = pca(ingredients);

tsquared

tsquared =

 5.6803

 3.0758

 6.0002

 2.6198

 3.3681

 0.5668

 3.4818

22 Functions — Alphabetical List

22-3398

 3.9794

 2.6086

 7.4818

 4.1830

 2.2327

 2.7216

Request only the first two principal components and compute the T-squared values in the
reduced space of requested principal components.

[coeff,score,latent,tsquared] = pca(ingredients,'NumComponents',2);

tsquared

tsquared =

 5.6803

 3.0758

 6.0002

 2.6198

 3.3681

 0.5668

 3.4818

 3.9794

 2.6086

 7.4818

 4.1830

 2.2327

 2.7216

Note that even when you specify a reduced component space, pca computes the T-
squared values in the full space, using all four components.

The T-squared value in the reduced space corresponds to the Mahalanobis distance in the
reduced space.

tsqreduced = mahal(score,score)

tsqreduced =

 3.3179

 2.0079

 0.5874

 1.7382

 0.2955

 0.4228

 pca

22-3399

 3.2457

 2.6914

 1.3619

 2.9903

 2.4371

 1.3788

 1.5251

Calculate the T-squared values in the discarded space by taking the difference of the T-
squared values in the full space and Mahalanobis distance in the reduced space.

tsqdiscarded = tsquared - tsqreduced

tsqdiscarded =

 2.3624

 1.0679

 5.4128

 0.8816

 3.0726

 0.1440

 0.2362

 1.2880

 1.2467

 4.4915

 1.7459

 0.8539

 1.1965

Percent Variability Explained by Principal Components

Find the percent variability explained by the principal components.

Load the sample data set.

load imports-85

Data matrix X has 13 continuous variables in columns 3 to 15: wheel-base, length, width,
height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm,
city-mpg, and highway-mpg.

Find the percent variability explained by principal components of these variables.

[coeff,score,latent,tsquared,explained] = pca(X(:,3:15));

22 Functions — Alphabetical List

22-3400

explained

explained =

 64.3429

 35.4484

 0.1550

 0.0379

 0.0078

 0.0048

 0.0013

 0.0011

 0.0005

 0.0002

 0.0002

 0.0000

 0.0000

The first two components explain 99.79% of all variability.

To skip any of the outputs, you can use ~ instead in the corresponding element. For
example, if you don’t want to get the T-squared values, specify

[coeff,score,latent,~,explained] = pca(X(:,3:15));

• “Quality of Life in U.S. Cities” on page 13-76

Input Arguments

X — Input data
matrix

Input data for which to compute the principal components, specified as an n-by-p matrix.
Rows of X correspond to observations and columns to variables.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 pca

22-3401

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Algorithm','eig','Centered',false,'Rows','all','NumComponents',3

specifies that pca uses eigenvalue decomposition algorithm, not center the data, use all
of the observations, and return only the first three principal components.

'Algorithm' — Principal component algorithm
'svd' (default) | 'eig' | 'als'

Principal component algorithm that pca uses to perform the principal component
analysis, specified as the comma-separated pair consisting of 'Algorithm' and one of
the following.

'svd' Default. Singular value decomposition (SVD) of X.
'eig' Eigenvalue decomposition (EIG) of the covariance matrix. The EIG

algorithm is faster than SVD when the number of observations, n, exceeds
the number of variables, p, but is less accurate because the condition
number of the covariance is the square of the condition number of X.

'als' Alternating least squares (ALS) algorithm. This algorithm finds the best
rank-k approximation by factoring X into a n-by-k left factor matrix, L,
and a p-by-k right factor matrix, R, where k is the number of principal
components. The factorization uses an iterative method starting with
random initial values.

ALS is designed to better handle missing values. It is preferable to pairwise
deletion ('Rows','pairwise') and deals with missing values without
listwise deletion ('Rows','complete'). It can work well for data sets with
a small percentage of missing data at random, but might not perform well on
sparse data sets.

Example: 'Algorithm','eig'

Data Types: char

'Centered' — Indicator for centering columns
true (default) | false

Indicator for centering the columns, specified as the comma-separated pair consisting of
'Centered' and one of these logical expressions.

22 Functions — Alphabetical List

22-3402

true Default. pca centers X by subtracting column means before computing
singular value decomposition or eigenvalue decomposition. If X contains
NaN missing values, nanmean is used to find the mean with any available
data. You can reconstruct the centered data using score*coeff'.

false In this case pca does not center the data. You can reconstruct the original
data using score*coeff'.

Example: 'Centered',false

Data Types: logical

'Economy' — Indicator for economy size output
true (default) | false

Indicator for the economy size output when the degrees of freedom, d, is smaller than the
number of variables, p, specified as the comma-separated pair consisting of 'Economy'
and one of these logical expressions.

true Default. pca returns only the first d elements of latent and the
corresponding columns of coeff and score.

This option can be significantly faster when the number of variables p is
much larger than d.

false pca returns all elements of latent. The columns of coeff and score
corresponding to zero elements in latent are zeros.

Note that when d < p, score(:,d+1:p) and latent(d+1:p) are necessarily zero, and
the columns of coeff(:,d+1:p) define directions that are orthogonal to X.

Example: 'Economy',false

Data Types: logical

'NumComponents' — Number of components requested
number of variables (default) | scalar integer

Number of components requested, specified as the comma-separated pair consisting of
'NumComponents' and a scalar integer k satisfying 0 < k ≤ p, where p is the number
of original variables in X. When specified, pca returns the first k columns of coeff and
score.

 pca

22-3403

Example: 'NumComponents',3

Data Types: single | double

'Rows' — Action to take for NaN values
'complete' (default) | 'pairwise' | 'all'

Action to take for NaN values in the data matrix X, specified as the comma-separated pair
consisting of 'Rows' and one of the following.

'complete'Default. Observations with NaN values are removed before calculation.
Rows of NaNs are reinserted into score and tsquared at the
corresponding locations.

'pairwise'This option only applies when the algorithm is 'eig'. If you don’t
specify the algorithm along with 'pairwise', then pca sets it to
'eig'. If you specify 'svd' as the algorithm, along with the option
'Rows','pairwise', then pca returns a warning message, sets the
algorithm to 'eig' and continues.

When you specify the 'Rows','pairwise' option, pca computes the (i,j)
element of the covariance matrix using the rows with no NaN values in the
columns i or j of X.

Note that the resulting covariance matrix might not be positive definite. In
that case, pca terminates with an error message.

'all' X is expected to have no missing values. pca uses all of the data and
terminates if any NaN value is found.

Example: 'Rows','pairwise'

Data Types: char

'Weights' — Observation weights
ones (default) | row vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of length n containing all positive elements.
Data Types: single | double

'VariableWeights' — Variable weights
row vector | 'variance'

22 Functions — Alphabetical List

22-3404

Variable weights, specified as the comma-separated pair consisting of
'VariableWeights' and one of the following.

Vector of length p containing all positive elements.
The string 'variance'. The variable weights are the inverse of sample variance. If you
also assign weights to observations using 'Weights', then the variable weights become
the inverse of weighted sample variance.

If 'Centered' is set to true at the same time, the data matrix X is centered and
standardized. In this case, pca returns the principal components based on the
correlation matrix.

Example: 'VariableWeights','variance'

Data Types: single | double | char

'Coeff0' — Initial value for coefficients
matrix of random values (default) | p-by-k matrix

Initial value for the coefficient matrix coeff, specified as the comma-separated pair
consisting of 'Coeff0' and a p-by-k matrix, where p is the number of variables, and k is
the number of principal components requested.

Note: You can use this name-value pair only when 'algorithm' is 'als'.

Data Types: single | double

'Score0' — Initial value for scores
matrix of random values (default) | k-by-m matrix

Initial value for scores matrix score, specified as a comma-separated pair consisting of
'Score0' and an n-by-k matrix, where n is the number of observations and k is the
number of principal components requested.

Note: You can use this name-value pair only when 'algorithm' is 'als'.

Data Types: single | double

 pca

22-3405

'Options' — Options for iterations
structure

Options for the iterations, specified as a comma-separated pair consisting of 'Options'
and a structure created by the statset function. pca uses the following fields in the
options structure.

'Display' Level of display output. Choices are 'off', 'final', and
'iter'.

'MaxIter' Maximum number steps allowed. The default is 1000. Unlike in
optimization settings, reaching the MaxIter value is regarded as
convergence.

'TolFun' Positive number giving the termination tolerance for the cost
function. The default is 1e-6.

'TolX' Positive number giving the convergence threshold for the relative
change in the elements of the left and right factor matrices, L and
R, in the ALS algorithm. The default is 1e-6.

Note: You can use this name-value pair only when 'algorithm' is 'als'.

You can change the values of these fields and specify the new structure in pca using the
'Options' name-value pair argument.

Example: opt = statset('pca'); opt.MaxIter = 2000; coeff =
pca(X,'Options',opt);

Data Types: struct

Output Arguments

coeff — Principal component coefficients
matrix

Principal component coefficients, returned as a p-by-p matrix. Each column of coeff
contains coefficients for one principal component. The columns are in the order of
descending component variance, latent.

22 Functions — Alphabetical List

22-3406

score — Principal component scores
matrix

Principal component scores, returned as a matrix. Rows of score correspond to
observations, and columns to components.

latent — Principal component variances
column vector

Principal component variances, that is the eigenvalues of the covariance matrix of X,
returned as a column vector.

tsquared — Hotelling’s T-squared statistic
column vector

“Hotelling’s T-Squared Statistic” on page 22-3406, which is the sum of squares of the
standardized scores for each observation, returned as a column vector.

explained — Percentage of total variance explained
column vector

Percentage of the total variance explained by each principal component, returned as a
column vector.

mu — Estimated means
row vector

Estimated means of the variables in X, returned as a row vector. When 'algorithm'
is 'als', this is estimated by ALS algorithm. When 'algorithm' is not 'als', mu is
equal to the sample mean of X.

More About

Hotelling’s T-Squared Statistic

Hotelling’s T-squared statistic is a statistical measure of the multivariate distance of
each observation from the center of the data set.

Even when you request fewer components than the number of variables, pca uses all
principal components to compute the T-squared statistic (computes it in the full space).
If you want the T-squared statistic in the reduced or the discarded space, do one of the
following:

 pca

22-3407

• For the T-squared statistic in the reduced space, use mahal(score,score).
• For the T-squared statistic in the discarded space, first compute the

T-squared statistic using [coeff,score,latent,tsquared] =
pca(X,'NumComponents',k,...), compute the T-squared statistic in the reduced
space using tsqreduced = mahal(score,score), and then take the difference:
tsquared - tsqreduced.

Degrees of Freedom

The degrees of freedom, d, is equal to n – 1, if data is centered and n otherwise, where:

• n is the number of rows without any NaNs if you use 'Rows','complete'.
• n is the number of rows without any NaNs in the column pair that has the maximum

number of rows without NaNs if you use 'Rows','pairwise'.

Variable Weights

Note that when variable weights are used, the coefficient matrix is not orthonormal.
Suppose the variable weights vector you used is called varwei, and the principal
component coefficients vector pca returned is wcoeff. You can then calculate the
orthonormal coefficients using the transformation diag(sqrt(varwei))*wcoeff.
• “Principal Component Analysis (PCA)” on page 13-75

References

[1] Jolliffe, I. T. Principal Component Analysis. 2nd ed., Springer, 2002.

[2] Krzanowski, W. J. Principles of Multivariate Analysis. Oxford University Press, 1988.

[3] Seber, G. A. F. Multivariate Observations. Wiley, 1984.

[4] Jackson, J. E. A. User's Guide to Principal Components. Wiley, 1988.

[5] Roweis, S. “EM Algorithms for PCA and SPCA.” In Proceedings of the 1997 Conference
on Advances in Neural Information Processing Systems. Vol.10 (NIPS 1997),
Cambridge, MA, USA: MIT Press, 1998, pp. 626–632.

[6] Ilin, A., and T. Raiko. “Practical Approaches to Principal Component Analysis in the
Presence of Missing Values.” J. Mach. Learn. Res.. Vol. 11, August 2010, pp.
1957–2000.

22 Functions — Alphabetical List

22-3408

See Also
barttest | biplot | canoncorr | factoran | pcacov | pcares | ppca |
rotatefactors

 pcacov

22-3409

pcacov
Principal component analysis on covariance matrix

Syntax

COEFF = pcacov(V)

[COEFF,latent] = pcacov(V)

[COEFF,latent,explained] = pcacov(V)

Description

COEFF = pcacov(V) performs principal components analysis on the p-by-p covariance
matrix V and returns the principal component coefficients, also known as loadings.
COEFF is a p-by-p matrix, with each column containing coefficients for one principal
component. The columns are in order of decreasing component variance.

pcacov does not standardize V to have unit variances. To perform principal components
analysis on standardized variables, use the correlation matrix R = V./(SD*SD'), where
SD = sqrt(diag(V)), in place of V. To perform principal components analysis directly
on the data matrix, use pca.

[COEFF,latent] = pcacov(V) returns latent, a vector containing the principal
component variances, that is, the eigenvalues of V.

[COEFF,latent,explained] = pcacov(V) returns explained, a vector containing
the percentage of the total variance explained by each principal component.

Examples
load hald

covx = cov(ingredients);

[COEFF,latent,explained] = pcacov(covx)

COEFF =

 0.0678 -0.6460 0.5673 -0.5062

 0.6785 -0.0200 -0.5440 -0.4933

 -0.0290 0.7553 0.4036 -0.5156

22 Functions — Alphabetical List

22-3410

 -0.7309 -0.1085 -0.4684 -0.4844

latent =

 517.7969

 67.4964

 12.4054

 0.2372

explained =

 86.5974

 11.2882

 2.0747

 0.0397

References

[1] Jackson, J. E. A User's Guide to Principal Components. Hoboken, NJ: John Wiley and
Sons, 1991.

[2] Jolliffe, I. T. Principal Component Analysis. 2nd ed., New York: Springer-Verlag,
2002.

[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New
York: Oxford University Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also
barttest | biplot | factoran | pcares | pca | rotatefactors

 pcares

22-3411

pcares
Residuals from principal component analysis

Syntax

residuals = pcares(X,ndim)

[residuals,reconstructed] = pcares(X,ndim)

Description

residuals = pcares(X,ndim) returns the residuals obtained by retaining ndim
principal components of the n-by-p matrix X. Rows of X correspond to observations,
columns to variables. ndim is a scalar and must be less than or equal to p. residuals is
a matrix of the same size as X. Use the data matrix, not the covariance matrix, with this
function.

pcares does not normalize the columns of X. To perform the principal components
analysis based on standardized variables, that is, based on correlations, use
pcares(zscore(X), ndim). You can perform principal components analysis directly
on a covariance or correlation matrix, but without constructing residuals, by using
pcacov.

[residuals,reconstructed] = pcares(X,ndim) returns the reconstructed
observations; that is, the approximation to X obtained by retaining its first ndim
principal components.

Examples

This example shows the drop in the residuals from the first row of the Hald data as the
number of component dimensions increases from one to three.

load hald

r1 = pcares(ingredients,1);

r2 = pcares(ingredients,2);

r3 = pcares(ingredients,3);

22 Functions — Alphabetical List

22-3412

r11 = r1(1,:)

r11 =

 2.0350 2.8304 -6.8378 3.0879

r21 = r2(1,:)

r21 =

 -2.4037 2.6930 -1.6482 2.3425

r31 = r3(1,:)

r31 =

 0.2008 0.1957 0.2045 0.1921

References

[1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002.

[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New
York: Oxford University Press, 1988.

[4] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc.,
1984.

See Also
factoran | pcacov | pca

 ppca

22-3413

ppca
Probabilistic principal component analysis

Syntax
[coeff,score,pcvar] = ppca(Y,K)

[coeff,score,pcvar] = ppca(Y,K,Name,Value)

[coeff,score,pcvar,mu] = ppca(___)

[coeff,score,pcvar,mu,v,S] = ppca(___)

Description
[coeff,score,pcvar] = ppca(Y,K) returns the principal component coefficients for
the n-by-p data matrix Y based on a probabilistic principal component analysis (PPCA).
It also returns the principal component scores, which are the representations of Y in
the principal component space, and the principal component variances, which are the
eigenvalues of the covariance matrix of Y, in pcvar.

Each column of coeff contains coefficients for one principal component, and the
columns are in descending order of component variance. Rows of score correspond
to observations, and columns correspond to components. Rows of Y correspond to
observations and columns correspond to variables.

Probabilistic principal component analysis might be preferable to other algorithms that
handle missing data, such as the alternating least squares algorithm when any data
vector has one or more missing values. It assumes that the values are missing at random
through the data set. An expectation-maximization algorithm is used for both complete
and missing data.

[coeff,score,pcvar] = ppca(Y,K,Name,Value) returns the principal component
coefficients, scores, and variances using additional options for computation and handling
of special data types, specified by one or more Name,Value pair arguments.

For example, you can introduce initial values for the residual variance, v, or change the
termination criteria.

[coeff,score,pcvar,mu] = ppca(___) also returns the estimated mean of each
variable in Y. You can use any of the input arguments in the previous syntaxes.

22 Functions — Alphabetical List

22-3414

[coeff,score,pcvar,mu,v,S] = ppca(___) also returns the isotropic residual
variance in v and the final results at convergence in structure S.

Examples

Perform Probabilistic Principal Component Analysis

Load the sample data.

load fisheriris

The double matrix meas consists of four types of measurements on the flowers, which,
respectively, are the length and width of sepals and petals.

Introduce missing values randomly.

y = meas;

rng('default'); % for reproducibility

ix = random('unif',0,1,size(y))<0.20;

y(ix) = NaN;

Now, approximately 20% of the data is missing, indicated by NaN.

Perform probabilistic principal component analysis and request the component
coefficients and variances.

[coeff,score,pcvar,mu] = ppca(y,3);

coeff

coeff =

 0.3562 0.6709 -0.5518

 -0.0765 0.7121 0.6332

 0.8592 -0.1596 0.0596

 0.3592 -0.1318 0.5395

pcvar

pcvar =

 4.0912

 0.2126

 0.0617

 ppca

22-3415

Perform principal component analysis using the alternating least squares algorithm and
request the component coefficients and variances.

[coeff2,score2,pcvar2,mu2] = pca(y,'algorithm','als',...

'NumComponents',3);

coeff2

coeff2 =

 0.3376 0.4955 0.7404

 -0.0731 0.8607 -0.4479

 0.8657 -0.1169 -0.1231

 0.3623 -0.0087 -0.4859

pcvar2

pcvar2 =

 4.0734

 0.2651

 0.1221

The coefficients and the variances of the first two principal components are similar.

Another way to compare the results is to find the angle between the two spaces spanned
by the coefficient vectors.

subspace(coeff,coeff2)

ans =

 0.0881

The angle between the two spaces is pretty small. This indicates that these two results
are close to each other.

Change the Termination Criteria for Probabilistic Principal Component Analysis

Load the sample data set.

load imports-85

Data matrix X has 13 continuous variables in columns 3 to 15: wheel-base, length, width,
height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm,
city-mpg, and highway-mpg. The variables bore and stroke are missing four values in

22 Functions — Alphabetical List

22-3416

rows 56 to 59, and the variables horsepower and peak-rpm are missing two values in
rows 131 and 132.

Perform probabilistic principal component analysis and display the first three principal
components.

[coeff,score,pcvar] = ppca(X(:,3:15),3);

Warning: Maximum number of iterations 1000 reached'.

> In ppca at 249

Change the termination tolerance for the cost function to 0.01.

opt = statset('ppca');

opt.TolFun = 0.01;

Perform probabilistic principal component analysis.

[coeff,score,pcvar] = ppca(X(:,3:15),3,'Options',opt);

ppca now terminates before the maximum number of iterations is reached because it
meets the tolerance for the cost function.

Reconstruct Observations

Load the sample data.

load hald

y = ingredients;

The ingredients data has 13 observations for 4 variables.

Introduce missing values to the data.

y(2:16:end) = NaN;

Every 16th value is NaN. This corresponds to 7.69% of the data.

Find the first three principal components of data using PPCA and display the
reconstructed observations.

[coeff,score,pcvar,mu,v,S] = ppca(y,3);

S.Recon

ans =

 ppca

22-3417

 6.8533 25.8675 5.8388 59.8755

 1.0431 28.9690 14.9652 51.9758

 11.5770 56.5080 8.6352 20.5062

 11.0833 31.0707 8.0920 47.0764

 7.0684 52.2539 6.0753 33.0597

 11.0486 55.0442 9.0534 22.0410

 2.8494 70.8719 16.8338 5.8624

 1.0331 31.0267 19.6906 44.0321

 2.0401 54.0364 18.0440 22.0337

 20.7823 46.8096 3.7603 25.8075

 0.9540 39.9590 22.9495 31.1540

 10.8251 65.8498 8.8072 11.8420

 9.9174 67.9309 7.9087 11.9230

You can also reconstruct the observations using the principal components and the
estimated mean.

t = score*coeff' + repmat(mu,13,1);

Results at Convergence

Load the sample data.

load hald

Here, ingredients is a real-valued matrix of predictor variables.

Perform the probabilistic principal components analysis and display coefficients.

[coeff,score,pcvariance,mu,v,S] = ppca(ingredients,3);

coeff

coeff =

 -0.0693 -0.6459 0.5673

 -0.6786 -0.0184 -0.5440

 0.0308 0.7552 0.4036

 0.7306 -0.1102 -0.4684

Display the algorithm results at convergence of the PPCA.

S

S =

 W: [4x3 double]

22 Functions — Alphabetical List

22-3418

 Xexp: [13x3 double]

 Recon: [13x4 double]

 v: 0.2372

 NumIter: 1000

 RMSResid: 0.2340

 nloglk: 149.3388

Display the matrix W.

S.W

ans =

 0.5624 2.0279 5.4075

 4.8320 -10.3894 5.9202

 -3.7521 -3.0555 -4.1552

 -1.5144 11.7122 -7.2564

Orthogonalizing W recovers the coefficients.

orth(S.W)

ans =

 -0.0693 0.6459 0.5673

 -0.6786 0.0184 -0.5440

 0.0308 -0.7552 0.4036

 0.7306 0.1102 -0.4684

Input Arguments

Y — Input data
n-by-p matrix

Input data for which to compute the principal components, specified as an n-by-p matrix.
Rows of Y correspond to observations and columns correspond to variables.

Data Types: single | double

K — Number of principal components
positive integer value less than rank

Number of principal components to return, specified as an integer value less than
the rank of data. The maximum possible rank is min(n,p), where n is the number of

 ppca

22-3419

observations and p is the number of variables. However, if the data is correlated, the
rank might be smaller than min(n,p).

ppca orders the components based on their variance.

If K is min(n,p), ppca sets K equal to min(n,p) – 1, and 'W0' is truncated to min(p,n) – 1
columns if you specify a p-by-p W0 matrix.

For example, you can request only the first three components, based on the component
variance as follows.
Example: coeff = ppca(Y,3)

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'W0',init,'Options',opt specifies that the initial values for 'W0' are in
matrix init and ppca uses the options defined by opt.

'W0' — Initial value of W
matrix of random values (default) | p-by-k matrix

Initial value of W in the probabilistic principal component analysis algorithm, specified
as a comma-separated pair consisting of 'W0' and a p-by-k matrix.

Data Types: single | double

'v0' — Initial value of residual variance
random number (default) | positive scalar value

Initial value of residual variance, specified as the comma-separated pair consisting of
'v0' and a positive scalar value.

Data Types: single | double

'Options' — Options for iterations
structure

22 Functions — Alphabetical List

22-3420

Options for the iterations, specified as a comma-separated pair 'Options' and a
structure created by the statset function. ppca uses the following fields in the options
structure.

'Display' Level of display output. Choices are 'off', 'final', and
'iter'.

'MaxIter' Maximum number of steps allowed. The default is 1000. Unlike in
optimization settings, reaching the MaxIter value is regarded as
convergence.

'TolFun' Positive integer stating the termination tolerance for the cost
function. The default is 1e-6.

'TolX' Positive integer stating the convergence threshold for the relative
change in the elements of W. The default is 1e-6.

You can change the values of these fields and specify the new structure in ppca using the
'Options' name-value pair argument.

Example: opt = statset('ppca'); opt.MaxIter = 2000; coeff =
ppca(Y,3,'Options',opt);

Data Types: struct

Output Arguments

coeff — Principal component coefficients
p-by-k matrix

Principal component coefficients, returned as a p-by-k matrix. Each column of coeff
contains coefficients for one principal component. The columns are in the order of
descending component variance, pcvar.

score — Principal component scores
n-by-k matrix

Principal component scores, returned as an n-by-k matrix. Rows of score correspond to
observations, and columns correspond to components.

pcvar — Principal component variances
column vector

 ppca

22-3421

Principal component variances, which are the eigenvalues of the covariance matrix of Y,
returned as a column vector.

mu — Estimated mean
row vector

Estimated mean of each variable in Y, returned as a row vector.

v — Isotropic residual variance
scalar value

Isotropic residual variance, returned as a scalar value.

S — Final results at convergence
structure

Final results at convergence, returned as a structure containing the following fields.

W W at convergence.
Xexp Conditional expectation of the estimated latent variable x.
Recon Reconstructed observations using k principal components.

This is a low dimension approximation of the input data Y,
and is equal to mu + score*coeff'.

v Residual variance.
RMSResid Root mean square of residuals.
NumIter Number of iteration counts.
nloglk Negative loglikelihood function value.

More About

Probabilistic Principal Component Analysis

Probabilistic principal component analysis (PPCA) is a method to estimate the principal
axes when any data vector has one or more missing values.

PPCA is based on an isotropic error model. It seeks to relate a p-dimensional observation
vector y to a corresponding k-dimensional vector of latent (or unobserved) variable x,
which is normal with mean zero and covariance I(k). The relationship is

22 Functions — Alphabetical List

22-3422

y W xT T
= * + +m e ,

where y is the row vector of observed variable, x is the row vector of latent variables, and
ε is the isotropic error term. ε is Gaussian with mean zero and covariance of v*I(k), where
v is the residual variance. Here, k needs to be smaller than the rank for the residual
variance to be greater than 0 (v>0). Standard principal component analysis, where the
residual variance is zero, is the limiting case of PPCA. The observed variables, y, are
conditionally independent given the values of the latent variables, x. So, the latent
variables explain the correlations between the observation variables and the error
explains the variability unique to a particular yi. The p-by-k matrix W relates the latent
and observation variables, and the vector μ permits the model to have a nonzero mean.
PPCA assumes that the values are missing at random through the data set. This means
that whether a data value is missing or not does not depend on the latent variable given
the observed data values.

Under this model,

y N W W v I kT~ , * * .m + ()()

There is no closed-form analytical solution for W and v, so their estimates are determined
by iterative maximization of the corresponding loglikelihood using an expectation-
maximization (EM) algorithm. This EM algorithm handles missing values by treating
them as additional latent variables. At convergence, the columns of W spans the
subspace, but they are not orthonormal. ppca obtains the orthonormal coefficients,
coeff, for the components by orthogonalization of W.

References

[1] Tipping, M. E., and C. M. Bishop. Probabilistic Principal Component Analysis.
Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol.
61, No.3, 1999, pp. 611–622.

[2] Roweis, S. “EM Algorithms for PCA and SPCA.” In Proceedings of the 1997 Conference
on Advances in Neural Information Processing Systems. Vol.10 (NIPS 1997),
Cambridge, MA, USA: MIT Press, 1998, pp. 626–632.

[3] Ilin, A., and T. Raiko. “Practical Approaches to Principal Component Analysis in the
Presence of Missing Values.” J. Mach. Learn. Res.. Vol. 11, August, 2010, pp.
1957–2000.

 ppca

22-3423

See Also
barttest | biplot | canoncorr | factoran | pca | pcacov | pcares |
rotatefactors

22 Functions — Alphabetical List

22-3424

ComponentProportion property
Class: gmdistribution

Input vector of mixing proportions

Description

Optional input vector of mixing proportions p, or its default value.

 pdf

22-3425

pdf
Probability density functions

Syntax

y = pdf('name',x,A)

y = pdf('name',x,A,B)

y = pdf('name',x,A,B,C)

y = pdf(pd,x)

Description

y = pdf('name',x,A) returns the probability density function (pdf) for the one-
parameter distribution family specified by 'name', evaluated at the values in x. A contains
the parameter value for the distribution.

y = pdf('name',x,A,B) returns the pdf for the two-parameter distribution family
specified by 'name', evaluated at the values in x. A and B contain the parameter values
for the distribution.

y = pdf('name',x,A,B,C) returns the pdf for the three-parameter distribution family
specified by 'name', evaluated at the values in x. A, B, and C contain the parameter
values for the distribution.

y = pdf(pd,x) returns the probability density function of the probability distribution
object, pd, evaluated at the values in x.

Examples

Compute the Normal Distribution pdf

Create a standard normal distribution object with the mean equal to 0 and the
standard deviation equal to 1.

mu = 0;

sigma = 1;

22 Functions — Alphabetical List

22-3426

pd = makedist('Normal',mu,sigma);

Define the input vector x to contain the values at which to calculate the pdf.

x = [-2 -1 0 1 2];

Compute the pdf values for the standard normal distribution at the values in x.

y = pdf(pd,x)

y =

 0.0540 0.2420 0.3989 0.2420 0.0540

Each value in y corresponds to a value in the input vector x. For example, at the value x
equal to 1, the corresponding pdf value y is equal to 0.2420.

Alternatively, you can compute the same pdf values without creating a probability
distribution object. Use the pdf function, and specify a standard normal distribution
using the same parameter values for and .

y2 = pdf('Normal',x,mu,sigma)

y2 =

 0.0540 0.2420 0.3989 0.2420 0.0540

The pdf values are the same as those computed using the probability distribution object.

Compute the Poisson Distribution pdf

Create a Poisson distribution object with the rate parameter, , equal to 2.

lambda = 2;

pd = makedist('Poisson',lambda);

Define the input vector x to contain the values at which to calculate the pdf.

x = [0 1 2 3 4];

Compute the pdf values for the Poisson distribution at the values in x.

y = pdf(pd,x)

 pdf

22-3427

y =

 0.1353 0.2707 0.2707 0.1804 0.0902

Each value in y corresponds to a value in the input vector x. For example, at the value x
equal to 3, the corresponding pdf value in y is equal to 0.1804.

Alternatively, you can compute the same pdf values without creating a probability
distribution object. Use the pdf function, and specify a Poisson distribution using the
same value for the rate parameter, .

y2 = pdf('Poisson',x,lambda)

y2 =

 0.1353 0.2707 0.2707 0.1804 0.0902

The pdf values are the same as those computed using the probability distribution object.

Input Arguments

'name' — Probability distribution name
probability distribution name string

Probability distribution name, specified as one of the following probability distribution
name strings.

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Beta' “Beta Distribution” on page
B-4

a: first
shape
parameter

b: second
shape
parameter

—

'Binomial' “Binomial Distribution” on page
B-9

n: number of
trials

p: probability
of success for
each trial

—

'BirnbaumSaunders'“Birnbaum-Saunders Distribution”
on page B-13

β: scale
parameter

γ: shape
parameter

—

22 Functions — Alphabetical List

22-3428

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Burr' “Burr Type XII Distribution” on
page B-15

α: scale
parameter

c: first shape
parameter

k: second
shape
parameter

'Chisquare' “Chi-Square Distribution” on page
B-29

ν: degrees of
freedom

— —

'Exponential' “Exponential Distribution” on page
B-35

μ: mean — —

'Extreme

Value'

“Extreme Value Distribution” on
page B-39

μ: location
parameter

σ: scale
parameter

—

'F' “F Distribution” on page B-45 ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

—

'Gamma' “Gamma Distribution” on page
B-48

a: shape
parameter

b: scale
parameter

—

'Generalized

Extreme

Value'

“Generalized Extreme Value
Distribution” on page B-54

k: shape
parameter

σ: scale
parameter

μ: location
parameter

'Generalized

Pareto'

“Generalized Pareto Distribution”
on page B-60

k: tail index
(shape)
parameter

σ: scale
parameter

μ: threshold
(location)
parameter

'Geometric' “Geometric Distribution” on page
B-65

p:
probability
parameter

— —

'Hypergeometric'“Hypergeometric Distribution” on
page B-74

m: size
of the
population

k: number of
items with
the desired
characteristic
in the
population

n: number
of samples
drawn

'InverseGaussian'“Inverse Gaussian Distribution” on
page B-77

μ: scale
parameter

λ: shape
parameter

—

 pdf

22-3429

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'Logistic' “Logistic Distribution” on page
B-91

μ: mean σ: scale
parameter

—

'LogLogistic' “Loglogistic Distribution” on page
B-93

μ: log mean σ: log scale
parameter

—

'Lognormal' “Lognormal Distribution” on page
B-95

μ: log mean σ: log
standard
deviation

—

'Nakagami' “Nakagami Distribution” on page
B-113

μ: shape
parameter

ω: scale
parameter

—

'Negative

Binomial'

“Negative Binomial Distribution”
on page B-115

r: number of
successes

p: probability
of success in
a single trial

—

'Noncentral

F'

“Noncentral F Distribution” on
page B-123

ν1:
numerator
degrees of
freedom

ν2:
denominator
degrees of
freedom

δ:
noncentrality
parameter

'Noncentral

t'

“Noncentral t Distribution” on page
B-126

ν: degrees of
freedom

δ:
noncentrality
parameter

—

'Noncentral

Chi-square'

“Noncentral Chi-Square
Distribution” on page B-120

ν: degrees of
freedom

δ:
noncentrality
parameter

—

'Normal' “Normal Distribution” on page
B-130

μ: mean σ: standard
deviation

—

'Poisson' “Poisson Distribution” on page
B-138

λ: mean — —

'Rayleigh' “Rayleigh Distribution” on page
B-141

b: scale
parameter

— —

'Rician' “Rician Distribution” on page
B-144

s:
noncentrality
parameter

σ: scale
parameter

—

22 Functions — Alphabetical List

22-3430

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

'T' “Student's t Distribution” on page
B-146

ν: degrees of
freedom

— —

'tLocationScale'“t Location-Scale Distribution” on
page B-154

μ: location
parameter

σ: scale
parameter

ν: shape
parameter

'Uniform' “Uniform Distribution
(Continuous)” on page B-163

a: lower
endpoint
(minimum)

b: upper
endpoint
(maximum)

—

'Discrete

Uniform'

“Uniform Distribution (Discrete)”
on page B-169

n: maximum
observable
value

— —

'Weibull' “Weibull Distribution” on page
B-172

a: scale
parameter

b: shape
parameter

—

x — Values at which to evaluate pdf
scalar value | array of scalar values

Values at which to evaluate the pdf, specified as a scalar value, or an array of scalar
values.

• If x is a scalar value, and if you specify distribution parameters A, B, or C as arrays,
then cdf expands x into a constant matrix the same size as A and B.

• If x is an array, and if you specify distribution parameters A, B, or C as arrays, then x,
A, B, and C must all be the same size.

Example: [0.1,0.25,0.5,0.75,0.9]

Data Types: single | double

A — First probability distribution parameter
scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value, or an array of scalar
values.

If x and A are arrays, they must be the same size. If x is a scalar, then cdf expands it
into a constant matrix the same size as A. If A is a scalar, then cdf expands it into a
constant matrix the same size as x.

 pdf

22-3431

Data Types: single | double

B — Second probability distribution parameter
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value, or an array of
scalar values.

If x, A, and B are arrays, they must be the same size. If x is a scalar, then cdf expands it
into a constant matrix the same size as A and B. If A or B are scalars, then cdf expands
them into constant matrices the same size as x
Data Types: single | double

C — Third probability distribution parameter
scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value, or an array of scalar
values.

If x, A, B, and C are arrays, they must be the same size. If x is a scalar, then cdf expands
it into a constant matrix the same size as A, B, and C. If any of A, B or C are scalars,
then cdf expands them into constant matrices the same size as x.

Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object created using one of
the following.

makedist Create a probability distribution object
using specified parameter values.

fitdist Fit a probability distribution object to
sample data.

dfittool Fit a probability distribution object
to sample data using the interactive
Distribution Fitting app.

paretotails Create a Pareto tails object.

22 Functions — Alphabetical List

22-3432

gmdistribution Create a Gaussian mixture distribution
object.

Output Arguments

y — Probability density function
array

Probability density function of the specified probability distribution, returned as an
array.

• If you specify distribution parameters A, B, or C, then y is the common size of x, A, B,
and C after any necessary scalar expansion.

• If you specify a probability distribution object, pd, then y has the same dimensions as
x.

See Also
cdf | icdf | mle | random

 pdf

22-3433

pdf

Class: gmdistribution

Probability density function for Gaussian mixture distribution

Syntax

y = pdf(obj,X)

Description

y = pdf(obj,X) returns a vector y of length n containing the values of the probability
density function (pdf) for the gmdistribution object obj, evaluated at the n-by-d data
matrix X, where n is the number of observations and d is the dimension of the data. obj
is an object created by gmdistribution or fitgmdist. y(I) is the pdf of observation I.

Examples

Construct a Gaussian Mixture Distribution

Create a gmdistribution distribution defining a two-component mixture of bivariate
Gaussian distributions.

mu = [1 2;-3 -5];

sigma = cat(3,[2 0;0 .5],[1 0;0 1]);

p = ones(1,2)/2;

obj = gmdistribution(mu,sigma,p);

ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])

22 Functions — Alphabetical List

22-3434

See Also
gmdistribution | fitgmdist | cdf | mvnpdf

 pdf

22-3435

pdf
Class: piecewisedistribution

Probability density function for piecewise distribution

Syntax

P = pdf(obj,X)

Description

P = pdf(obj,X) returns an array P of values of the probability density function for the
piecewise distribution object obj, evaluated at the values in the array X.

Note: For a Pareto tails object, the pdf is computed using the generalized Pareto
distribution in the tails. In the center, the pdf is computed using the slopes of the cdf,
which are interpolated between a set of discrete values. Therefore the pdf in the center
is piecewise constant. It is noisy for a cdffun specified in paretotails via the 'ecdf'
option, and somewhat smoother for the 'kernel' option, but generally not a good
estimate of the underlying density of the original data.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

[p,q] = boundary(obj)

p =

 0.1000

 0.9000

q =

 -1.7766

 1.8432

22 Functions — Alphabetical List

22-3436

pdf(obj,q)

ans =

 0.2367

 0.1960

See Also
paretotails | cdf

 pdf

22-3437

pdf
Class: ProbDist

Return probability density function (PDF) for ProbDist object

Syntax

Y = pdf(PD, X)

Description

Y = pdf(PD, X) returns Y, an array containing the probability density function (PDF)
for the ProbDist object PD, evaluated at values in X.

Input Arguments

PD An object of the class ProbDistUnivParam or
ProbDistUnivKernel.

X A numeric array of values where you want to evaluate the PDF.

Output Arguments

Y An array containing the probability density function (PDF) for the
ProbDist object PD.

See Also
pdf

22 Functions — Alphabetical List

22-3438

pdf
Class: prob.TruncatableDistribution
Package: prob

Probability density function of probability distribution object

Syntax
y = pdf(pd,x)

Description
y = pdf(pd,x) returns the probability density function (pdf) of the continuous
probability distribution pd at the values in x. For discrete distributions, pdf returns the
probability mass function.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

x — Values at which to calculate pdf
array

Values at which to calculate pdf, specified as an array.
Data Types: single | double

Output Arguments
y — Probability density function
array

 pdf

22-3439

Probability density function of pd, evaluated at the values in data vector x, returned as a
array. y has the same dimensions as input x.

Examples

Plot the pdf of a Standard Normal Distribution

Create a standard normal distribution object.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Specify the x values and compute the pdf.

x = -3:.1:3;

pdf_normal = pdf(pd,x);

Plot the pdf.

plot(x,pdf_normal,'LineWidth',2)

22 Functions — Alphabetical List

22-3440

Plot the pdf of a Weibull Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

Specify the x values and compute the pdf.

 pdf

22-3441

x = 0:.1:15;

y = pdf(pd,x);

Plot the pdf.

plot(x,y,'LineWidth',2)

See Also
cdf | dfittool | fitdist | icdf | makedist | pdf

22 Functions — Alphabetical List

22-3442

pdist
Pairwise distance between pairs of objects

Syntax

D = pdist(X)

D = pdist(X,distance)

Description

D = pdist(X) computes the Euclidean distance between pairs of objects in m-by-n data
matrix X. Rows of X correspond to observations, and columns correspond to variables.
D is a row vector of length m(m–1)/2, corresponding to pairs of observations in X. The
distances are arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ..., (m,m–1)). D is
commonly used as a dissimilarity matrix in clustering or multidimensional scaling.

To save space and computation time, D is formatted as a vector. However, you can
convert this vector into a square matrix using the squareform function so that element
i, j in the matrix, where i < j, corresponds to the distance between objects i and j in the
original data set.

D = pdist(X,distance) computes the distance between objects in the data matrix,
X, using the method specified by distance, which can be any of the following character
strings.

Metric Description

'euclidean' Euclidean distance (default).
'seuclidean' Standardized Euclidean distance. Each coordinate difference

between rows in X is scaled by dividing by the corresponding
element of the standard deviation S=nanstd(X). To specify
another value for S, use D=pdist(X,'seuclidean',S).

'cityblock' City block metric.
'minkowski' Minkowski distance. The default exponent is 2. To specify a

different exponent, use D = pdist(X,'minkowski',P),
where P is a scalar positive value of the exponent.

 pdist

22-3443

Metric Description

'chebychev' Chebychev distance (maximum coordinate difference).
'mahalanobis' Mahalanobis distance, using the sample covariance of X

as computed by nancov. To compute the distance with a
different covariance, use D = pdist(X,'mahalanobis',C),
where the matrix C is symmetric and positive definite.

'cosine' One minus the cosine of the included angle between points
(treated as vectors).

'correlation' One minus the sample correlation between points (treated as
sequences of values).

'spearman' One minus the sample Spearman's rank correlation between
observations (treated as sequences of values).

'hamming' Hamming distance, which is the percentage of coordinates
that differ.

'jaccard' One minus the Jaccard coefficient, which is the percentage of
nonzero coordinates that differ.

custom distance function A distance function specified using @:
D = pdist(X,@distfun)

A distance function must be of form

d2 = distfun(XI,XJ)

taking as arguments a 1-by-n vector XI, corresponding to a
single row of X, and an m2-by-n matrix XJ, corresponding to
multiple rows of X. distfun must accept a matrix XJ with
an arbitrary number of rows. distfun must return an m2-
by-1 vector of distances d2, whose kth element is the distance
between XI and XJ(k,:).

The output D is arranged in the order of ((2,1),(3,1),..., (m,1),(3,2),...(m,2),.....(m,m–1)),
i.e. the lower left triangle of the full m-by-m distance matrix in column order. To get
the distance between the ith and jth observations (i < j), either use the formula D((i–
1)*(m–i/2)+j–i), or use the helper function Z = squareform(D), which returns an m-
by-m square symmetric matrix, with the (i,j) entry equal to distance between observation
i and observation j.

22 Functions — Alphabetical List

22-3444

Metrics

Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x1, x2, ..., xm,
the various distances between the vector xs and xt are defined as follows:

• Euclidean distance

d x x x x
st s t s t

2 = − − ′()()

Notice that the Euclidean distance is a special case of the Minkowski metric, where p
= 2.

• Standardized Euclidean distance

d x x V x x
st s t s t

2 1= − − ′−
() ()

where V is the n-by-n diagonal matrix whose jth diagonal element is S(j)2, where S is
the vector of standard deviations.

• Mahalanobis distance

d x x C x xst s t s t
2 1= − − ′−

() ()

where C is the covariance matrix.
• City block metric

d x xst sj tj

j

n

= −
=
∑

1

Notice that the city block distance is a special case of the Minkowski metric, where
p=1.

• Minkowski metric

d x xst sj tj

p

j

n

p= −
=
∑

1

 pdist

22-3445

Notice that for the special case of p = 1, the Minkowski metric gives the city block
metric, for the special case of p = 2, the Minkowski metric gives the Euclidean
distance, and for the special case of p = ∞, the Minkowski metric gives the Chebychev
distance.

• Chebychev distance

d x xst j sj tj= −{ }max

Notice that the Chebychev distance is a special case of the Minkowski metric, where p
= ∞.

• Cosine distance

d
x x

x x x x
st

s t

s s t t

= −
′

′() ′()
1

• Correlation distance

d
x x x x

x x x x x x x x

st

s s t t

s s s s t t t t

= −
−() −()′

−() −()′ −() −()′
1

where

x
n

xs sj

j

= ∑1 and x
n

xt tj

j

= ∑1

• Hamming distance

d x x nst sj tj= ≠(#() /)

• Jaccard distance

d
x x x x

x x
st

sj tj sj tj

sj tj

=
≠() ∩ ≠() ∪ ≠()()





≠() ∪ ≠()





#

#

0 0

0 0

22 Functions — Alphabetical List

22-3446

• Spearman distance

d
r r r r

r r r r r r r r

st

s s t t

s s s s t t t t

= −
−() −()′

−() −()′ −() −()′
1

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmj, as computed by tiedrank
• rs and rt are the coordinate-wise rank vectors of xs and xt, i.e., rs = (rs1, rs2, ... rsn)
•

r
n

r
n

s sj

j

= =
+()∑1 1

2

•
r

n
r

n
t tj

j

= =
+()∑1 1

2

Examples

Generate random data and find the unweighted Euclidean distance and then find the
weighted distance using two different methods:

% Compute the ordinary Euclidean distance.

X = randn(100, 5);

D = pdist(X,'euclidean'); % euclidean distance

% Compute the Euclidean distance with each coordinate

% difference scaled by the standard deviation.

Dstd = pdist(X,'seuclidean');

% Use a function handle to compute a distance that weights

% each coordinate contribution differently.

Wgts = [.1 .3 .3 .2 .1]; % coordinate weights

weuc = @(XI,XJ,W)(sqrt(bsxfun(@minus,XI,XJ).^2 * W'));

Dwgt = pdist(X, @(Xi,Xj) weuc(Xi,Xj,Wgts));

 pdist

22-3447

See Also
cluster | clusterdata | cmdscale | cophenet | dendrogram | inconsistent |
linkage | pdist2 | silhouette | squareform

22 Functions — Alphabetical List

22-3448

pdist2
Pairwise distance between two sets of observations

Syntax

D = pdist2(X,Y)

D = pdist2(X,Y,distance)

D = pdist2(X,Y,'minkowski',P)

D = pdist2(X,Y,'mahalanobis',C)

D = pdist2(X,Y,distance,'Smallest',K)

D = pdist2(X,Y,distance,'Largest',K)

[D,I] = pdist2(X,Y,distance,'Smallest',K)

[D,I] = pdist2(X,Y,distance,'Largest',K)

Description

D = pdist2(X,Y) returns a matrix D containing the Euclidean distances between each
pair of observations in the mx-by-n data matrix X and my-by-n data matrix Y. Rows of
X and Y correspond to observations, columns correspond to variables. D is an mx-by-my
matrix, with the (i,j) entry equal to distance between observation i in X and observation j
in Y. The (i,j) entry will be NaN if observation i in X or observation j in Y contain NaNs.

D = pdist2(X,Y,distance) computes D using distance. Choices are:

Metric Description

'euclidean' Euclidean distance (default).
'seuclidean' Standardized Euclidean distance. Each coordinate difference

between rows in X and Y is scaled by dividing by the
corresponding element of the standard deviation computed
from X, S=nanstd(X). To specify another value for S, use D =
PDIST2(X,Y,'seuclidean',S).

'cityblock' City block metric.
'minkowski' Minkowski distance. The default exponent is 2. To

compute the distance with a different exponent, use D =

 pdist2

22-3449

Metric Description

pdist2(X,Y,'minkowski',P), where the exponent P is a scalar
positive value.

'chebychev' Chebychev distance (maximum coordinate difference).
'mahalanobis' Mahalanobis distance, using the sample covariance of X as

computed by nancov. To compute the distance with a different
covariance, use D = pdist2(X,Y,'mahalanobis',C) where the
matrix C is symmetric and positive definite.

'cosine' One minus the cosine of the included angle between points (treated
as vectors).

'correlation' One minus the sample correlation between points (treated as
sequences of values).

'spearman' One minus the sample Spearman's rank correlation between
observations, treated as sequences of values.

'hamming' Hamming distance, the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of nonzero

coordinates that differ.
function A distance function specified using @:

D = pdist2(X,Y,@distfun).

A distance function must be of the form

function D2 = distfun(ZI, ZJ)

taking as arguments a 1-by-n vector ZI containing a single
observation from X or Y, an m2-by-n matrix ZJ containing multiple
observations from X or Y, and returning an m2-by-1 vector of
distances D2, whose Jth element is the distance between the
observations ZI and ZJ(J,:).

If your data is not sparse, generally it is faster to use a built-in
distance than to use a function handle.

D = pdist2(X,Y,distance,'Smallest',K) returns a K-by-my matrix D
containing the K smallest pairwise distances to observations in X for each observation
in Y. pdist2 sorts the distances in each column of D in ascending order. D =
pdist2(X,Y,distance,'Largest',K) returns the K largest pairwise distances sorted
in descending order. If K is greater than mx, pdist2 returns an mx-by-my distance

22 Functions — Alphabetical List

22-3450

matrix. For each observation in Y, pdist2 finds the K smallest or largest distances by
computing and comparing the distance values to all the observations in X.

[D,I] = pdist2(X,Y,distance,'Smallest',K) returns a K-by-my matrix I
containing indices of the observations in X corresponding to the K smallest pairwise
distances in D. [D,I] = pdist2(X,Y,distance,'Largest',K) returns indices
corresponding to the K largest pairwise distances.

Metrics

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ...,
xmx, and my-by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy,
the various distances between the vector xs and yt are defined as follows:

• Euclidean distance

d x y x yst s t s t
2 = − − ′()()

Notice that the Euclidean distance is a special case of the Minkowski metric, where
p=2.

• Standardized Euclidean distance

d x y V x yst s t s t
2 1= − − ′−

() ()

where V is the n-by-n diagonal matrix whose jth diagonal element is S(j)2, where S is
the vector of standard deviations.

• Mahalanobis distance

d x y C x yst s t s t
2 1= − − ′−

() ()

where C is the covariance matrix.
• City block metric

d x yst sj tj

j

n

= −
=
∑

1

 pdist2

22-3451

Notice that the city block distance is a special case of the Minkowski metric, where
p=1.

• Minkowski metric

d x yst sj tj

p

j

n

p= −
=
∑

1

Notice that for the special case of p = 1, the Minkowski metric gives the City Block
metric, for the special case of p = 2, the Minkowski metric gives the Euclidean
distance, and for the special case of p=∞, the Minkowski metric gives the Chebychev
distance.

• Chebychev distance

d x yst j sj tj= −{ }max

Notice that the Chebychev distance is a special case of the Minkowski metric, where
p=∞.

• Cosine distance

d
x y

x x y y
st

s t

s s t t

= −
′

′() ′()












1

• Correlation distance

d
x x y y

x x x x y y y y
st

s s t t

s s s s t t t t

= −
−() −()′

−() −()′ −() −()′
1

where

x
n

xs sj

j

= ∑1 and

22 Functions — Alphabetical List

22-3452

y
n

yt tj

j

= ∑1

• Hamming distance

d x y nst sj tj= ≠(#() /)

• Jaccard distance

d
x y x y

x y
st

sj tj sj tj

sj tj

=
≠() ∩ ≠() ∪ ≠()()





≠() ∪ ≠()





#

#

0 0

0 0

• Spearman distance

d
r r r r

r r r r r r r r

st

s s t t

s s s s t t t t

= −
−() −()′

−() −()′ −() −()′
1

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank
• rs and rt are the coordinate-wise rank vectors of xs and yt, i.e. rs = (rs1, rs2, ... rsn) and

rt = (rt1, rt2, ... rtn)
•

r
n

r
n

s sj

j

= =
+()∑1 1

2

•
r

n
r

n
t tj

j

= =
+()∑1 1

2

 pdist2

22-3453

Examples

Generate random data and find the unweighted Euclidean distance, then find the
weighted distance using two different methods:

% Compute the ordinary Euclidean distance

X = randn(100, 5);

Y = randn(25, 5);

D = pdist2(X,Y,'euclidean'); % euclidean distance

% Compute the Euclidean distance with each coordinate

% difference scaled by the standard deviation

Dstd = pdist2(X,Y,'seuclidean');

% Use a function handle to compute a distance that weights

% each coordinate contribution differently.

Wgts = [.1 .3 .3 .2 .1];

weuc = @(XI,XJ,W)(sqrt(bsxfun(@minus,XI,XJ).^2 * W'));

Dwgt = pdist2(X,Y, @(Xi,Xj) weuc(Xi,Xj,Wgts));

See Also
pdist | createns | knnsearch | KDTreeSearcher | ExhaustiveSearcher

22 Functions — Alphabetical List

22-3454

pearsrnd
Pearson system random numbers

Syntax

r = pearsrnd(mu,sigma,skew,kurt,m,n)

r = pearsrnd(mu,sigma,skew,kurt)

r = pearsrnd(mu,sigma,skew,kurt,m,n,...)

r = pearsrnd(mu,sigma,skew,kurt,[m,n,...])

[r,type] = pearsrnd(...)

[r,type,coefs] = pearsrnd(...)

Description

r = pearsrnd(mu,sigma,skew,kurt,m,n) returns an m-by-n matrix of random
numbers drawn from the distribution in the Pearson system with mean mu, standard
deviation sigma, skewness skew, and kurtosis kurt. The parameters mu, sigma, skew,
and kurt must be scalars.

Note: Because r is a random sample, its sample moments, especially the skewness and
kurtosis, typically differ somewhat from the specified distribution moments.

pearsrnd uses the definition of kurtosis for which a normal distribution has a kurtosis
of 3. Some definitions of kurtosis subtract 3, so that a normal distribution has a kurtosis
of 0. The pearsrnd function does not use this convention.

Some combinations of moments are not valid; in particular, the kurtosis must be greater
than the square of the skewness plus 1. The kurtosis of the normal distribution is defined
to be 3.

r = pearsrnd(mu,sigma,skew,kurt) returns a scalar value.

r = pearsrnd(mu,sigma,skew,kurt,m,n,...) or r =
pearsrnd(mu,sigma,skew,kurt,[m,n,...]) returns an m-by-n-by-... array.

 pearsrnd

22-3455

[r,type] = pearsrnd(...) returns the type of the specified distribution within the
Pearson system. type is a scalar integer from 0 to 7. Set m and n to 0 to identify the
distribution type without generating any random values.

The seven distribution types in the Pearson system correspond to the following
distributions:

• 0 — Normal distribution
• 1 — Four-parameter beta distribution
• 2 — Symmetric four-parameter beta distribution
• 3 — Three-parameter gamma distribution
• 4 — Not related to any standard distribution. The density is proportional to:

(1 + ((x – a)/b)2)–c exp(–d arctan((x – a)/b)).
• 5 — Inverse gamma location-scale distribution
• 6 — F location-scale distribution
• 7 — Student's t location-scale distribution

[r,type,coefs] = pearsrnd(...) returns the coefficients coefs of the quadratic
polynomial that defines the distribution via the differential equation

d

dx
p x

a x

c c x c x
log(())

()

() () ()
.=

− +

+ +0 1 2 2

Examples

Generate random values from the standard normal distribution:

r = pearsrnd(0,1,0,3,100,1); % Equivalent to randn(100,1)

Determine the distribution type:

[r,type] = pearsrnd(0,1,1,4,0,0);

r =

 []

type =

 1

22 Functions — Alphabetical List

22-3456

References

[1] Johnson, N.L., S. Kotz, and N. Balakrishnan (1994) Continuous Univariate
Distributions, Volume 1, Wiley-Interscience, Pg 15, Eqn 12.33.

See Also
random | johnsrnd

 perfcurve

22-3457

perfcurve
Receiver operating characteristic (ROC) curve or other performance curve for classifier
output

Syntax

[X,Y] = perfcurve(labels,scores,posclass)

[X,Y,T] = perfcurve(labels,scores,posclass)

[X,Y,T,AUC] = perfcurve(labels,scores,posclass)

[X,Y,T,AUC,OPTROCPT] = perfcurve(labels,scores,posclass)

[X,Y,T,AUC,OPTROCPT,SUBY] = perfcurve(labels,scores,posclass)

[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,

posclass)

[___] = perfcurve(labels,scores,posclass,Name,Value)

Description

[X,Y] = perfcurve(labels,scores,posclass) returns the X and Y coordinates of
an ROC curve for a vector of classifier predictions, scores, given true class labels, labels,
and the positive class label, posclass. You can visualize the performance curve using
plot(X,Y).

[X,Y,T] = perfcurve(labels,scores,posclass) returns an array of thresholds
on classifier scores for the computed values of X and Y.

[X,Y,T,AUC] = perfcurve(labels,scores,posclass) returns the area under the
curve for the computed values of X and Y.

[X,Y,T,AUC,OPTROCPT] = perfcurve(labels,scores,posclass) returns the
optimal operating point of the ROC curve.

[X,Y,T,AUC,OPTROCPT,SUBY] = perfcurve(labels,scores,posclass) returns
the Y values for negative subclasses.

[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,

posclass) returns the negative class names.

22 Functions — Alphabetical List

22-3458

[___] = perfcurve(labels,scores,posclass,Name,Value) returns the
coordinates of a ROC curve and any other output argument from the previous syntaxes,
with additional options specified by one or more Name,Value pair arguments.

For example, you can provide a list of negative classes, change the X or Y criterion,
compute pointwise confidence bounds using cross validation or bootstrap, specify the
misclassification cost, or compute the confidence bounds in parallel.

Examples

Plot ROC Curve for Classification by Logistic Regression

Load the sample data.

load fisheriris

Use only the first two features as predictor variables. Define a binary classification
problem by using only the measurements that correspond to the species versicolor and
virginica.

pred = meas(51:end,1:2);

Define the binary response variable.

resp = (1:100)'>50; % Versicolor = 0, virginica = 1

Fit a logistic regression model.

mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');

Compute the ROC curve. Use the probability estimates from the logistic regression model
as scores.

scores = mdl.Fitted.Probability;

[X,Y,T,AUC] = perfcurve(species(51:end,:),scores,'virginica');

perfcurve stores the threshold values in the array T.

Display the area under the curve.

AUC

 perfcurve

22-3459

AUC =

 0.7918

The area under the curve is 0.7918. The maximum AUC is 1, which corresponds to a
perfect classifier. Larger AUC values indicate better classifier performance.

Plot the ROC curve.

plot(X,Y)

xlabel('False positive rate')

ylabel('True positive rate')

title('ROC for Classification by Logistic Regression')

22 Functions — Alphabetical List

22-3460

Compare Classification Methods Using ROC Curve

Load the sample data.

load ionosphere

X is a 351x34 real-valued matrix of predictors. Y is a character array of class labels: 'b'
for bad radar returns and 'g' for good radar returns.

Reformat the response to fit a logistic regression. Use the predictor variables 3 through
34.

resp = strcmp(Y,'b'); % resp = 1, if Y = 'b', or 0 if Y = 'g'

 perfcurve

22-3461

pred = X(:,3:34);

Fit a logistic regression model to estimate the posterior probabilities for an iris to be a
virginica.

mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');

score_log = mdl.Fitted.Probability; % Probability estimates

Compute the standard ROC curve using the probabilities for scores.

[Xlog,Ylog,Tlog,AUClog] = perfcurve(resp,score_log,'true');

Train an SVM classifier on the same sample data. Standardize the data.

mdlSVM = fitcsvm(pred,resp,'Standardize',true);

Compute the posterior probabilities (scores).

mdlSVM = fitPosterior(mdlSVM);

[~,score_svm] = resubPredict(mdlSVM);

The second column of score_svm contains the posterior probabilities of bad radar
returns.

Compute the standard ROC curve using the scores from the SVM model.

[Xsvm,Ysvm,Tsvm,AUCsvm] = perfcurve(resp,score_svm(:,mdlSVM.ClassNames),'true');

Fit a naive Bayes classifier on the same sample data.

mdlNB = fitcnb(pred,resp);

Compute the posterior probabilities (scores).

[~,score_nb] = resubPredict(mdlNB);

Compute the standard ROC curve using the scores from the naive Bayes classification.

[Xnb,Ynb,Tnb,AUCnb] = perfcurve(resp,score_nb(:,mdlNB.ClassNames),'true');

Plot the ROC curves on the same graph.

plot(Xlog,Ylog)

hold on

22 Functions — Alphabetical List

22-3462

plot(Xsvm,Ysvm)

plot(Xnb,Ynb)

legend('Logistic Regression','Support Vector Machines','Naive Bayes','Location','Best')

xlabel('False positive rate'); ylabel('True positive rate');

title('ROC Curves for Logistic Regression, SVM, and Naive Bayes Classification')

hold off

Although SVM produces better ROC values for higher thresholds, logistic regression
is usually better at distinguishing the bad radar returns from the good ones. The ROC
curve for naive Bayes is generally lower than the other two ROC curves, which indicates
worse in-sample performance than the other two classifier methods.

Compare the area under the curve for all three classifiers.

 perfcurve

22-3463

AUClog

AUCsvm

AUCnb

AUClog =

 0.9659

AUCsvm =

 0.9488

AUCnb =

 0.9393

Logistic regression has the highest AUC measure for classification and naive Bayes has
the lowest. This result suggests that logistic regression has better in-sample average
performance for this sample data.

Determine the Parameter Value for Custom Kernel Function

Generate a random set of points within the unit circle.

rng(1); % For reproducibility

n = 100; % Number of points per quadrant

r1 = sqrt(rand(2*n,1)); % Random radii

t1 = [pi/2*rand(n,1); (pi/2*rand(n,1)+pi)]; % Random angles for Q1 and Q3

X1 = [r1.*cos(t1) r1.*sin(t1)]; % Polar-to-Cartesian conversion

r2 = sqrt(rand(2*n,1));

t2 = [pi/2*rand(n,1)+pi/2; (pi/2*rand(n,1)-pi/2)]; % Random angles for Q2 and Q4

X2 = [r2.*cos(t2) r2.*sin(t2)];

Define the predictor variables. Label points in the first and third quadrants as belonging
to the positive class, and those in the second and fourth quadrants in the negative class.

pred = [X1; X2];

22 Functions — Alphabetical List

22-3464

resp = ones(4*n,1);

resp(2*n + 1:end) = -1; % Labels

Create the function mysigmoid.m, which accepts two matrices in the feature space as
inputs, and transforms them into a Gram matrix using the sigmoid kernel.

function G = mysigmoid(U,V)

% Sigmoid kernel function with slope gamma and intercept c

gamma = 1;

c = -1;

G = tanh(gamma*U*V' + c);

end

Train an SVM classifier using the sigmoid kernel function. It is good practice to
standardize the data.

SVMModel1 = fitcsvm(pred,resp,'KernelFunction','mysigmoid',...

 'Standardize',true);

SVMModel1 = fitPosterior(SVMModel1);

[~,scores1] = resubPredict(SVMModel1);

Set gamma = 0.5; within mysigmoid.m. Then, train an SVM classifier using the
adjusted sigmoid kernel.

SVMModel2 = fitcsvm(pred,resp,'KernelFunction','mysigmoid',...

 'Standardize',true);

SVMModel2 = fitPosterior(SVMModel2);

[~,scores2] = resubPredict(SVMModel2);

Compute the ROC curves and the area under the curve (AUC) for both models.

[x1,y1,~,auc1] = perfcurve(resp,scores1(:,2),1);

[x2,y2,~,auc2] = perfcurve(resp,scores2(:,2),1);

Plot the ROC curves.

plot(x1,y1)

hold on

plot(x2,y2)

hold off

legend('gamma = 1','gamma = 0.5','Location','SE');

xlabel('False positive rate'); ylabel('True positive rate');

title('ROC for classification by SVM');

 perfcurve

22-3465

The kernel function with the gamma parameter set to 0.5 gives better in-sample results.

Compare the AUC measures.

auc1

auc2

auc1 =

 0.9518

auc2 =

 0.9985

The area under the curve for gamma set to 0.5 is higher than that for gamma set to 1.
This also confirms that gamma parameter value of 0.5 produces better results. For visual

22 Functions — Alphabetical List

22-3466

comparison of the classification performance with these two gamma parameter values,
see “Train SVM Classifiers Using a Custom Kernel” on page 16-183.

Plot ROC Curve for Classification Tree

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species: setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers: sepal length, sepal width, petal length, and petal width. All measures are in
centimeters.

Train a classification tree using the sepal length and width as the predictor variables. It
is a good practice to specify the class names.

Model = fitctree(meas(:,1:2),species,...

 'ClassNames',{'setosa','versicolor','virginica'});

Predict the class labels and scores for the species based on the tree Model.

[~,score] = resubPredict(Model);

The scores are the posterior probabilities that an observation (a row in the data
matrix) belongs to a class. The columns of score correspond to the classes specified by
'ClassNames'. So, the first column corresponds to setosa, the second corresponds to
versicolor, and the third column corresponds to virginica.

Compute the ROC curve for the predictions that an observation belongs to versicolor,
given the true class labels species. Also compute the optimal operating point and y
values for negative subclasses. Return the names of the negative classes.

[X,Y,T,~,OPTROCPT,suby,subnames] = perfcurve(species,...

 score(:,2),'versicolor');

X, by default, is the false positive rate (fallout or 1-specificity) and Y, by default, is the
true positive rate (recall or sensitivity). The positive class label is versicolor. Because
a negative class is not defined, perfcurve assumes that the observations that do not
belong to the positive class are in one class. The function accepts it as the negative class.

OPTROCPT

 perfcurve

22-3467

suby

subnames

OPTROCPT =

 0.1000 0.8000

suby =

 0 0

 0.1800 0.1800

 0.4800 0.4800

 0.5800 0.5800

 0.6200 0.6200

 0.8000 0.8000

 0.8800 0.8800

 0.9200 0.9200

 0.9600 0.9600

 0.9800 0.9800

 1.0000 1.0000

 1.0000 1.0000

subnames =

 'setosa' 'virginica'

Plot the ROC curve and the optimal operating point on the ROC curve.

plot(X,Y)

hold on

plot(OPTROCPT(1),OPTROCPT(2),'ro')

xlabel('False positive rate')

ylabel('True positive rate')

title('ROC Curve for Classification by Classification Trees')

hold off

22 Functions — Alphabetical List

22-3468

Find the threshold that corresponds to the optimal operating point.

T((X==OPTROCPT(1))&(Y==OPTROCPT(2)))

ans =

 0.6429

Specify virginica as the negative class and compute and plot the ROC curve for
versicolor.

[X,Y,~,~,OPTROCPT] = perfcurve(species,score(:,2),...

 perfcurve

22-3469

 'versicolor','negClass','virginica');

OPTROCPT

plot(X,Y)

hold on

plot(OPTROCPT(1),OPTROCPT(2),'ro')

xlabel('False positive rate')

ylabel('True positive rate')

title('ROC Curve for Classification by Classification Trees')

hold off

OPTROCPT =

 0.1800 0.8000

22 Functions — Alphabetical List

22-3470

Compute Pointwise Confidence Intervals for ROC Curve

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers: sepal length, sepal width, petal length, and petal width. All measures are in
centimeters.

Use only the first two features as predictor variables. Define a binary problem by using
only the measurements that correspond to the versicolor and virginica species.

 perfcurve

22-3471

pred = meas(51:end,1:2);

Define the binary response variable.

resp = (1:100)'>50; % Versicolor = 0, virginica = 1

Fit a logistic regression model.

mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');

Compute the pointwise confidence intervals on the true positive rate (TPR) by vertical
averaging (VA) and sampling using bootstrap.

[X,Y,T] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...

 'virginica','NBoot',1000,'XVals',[0:0.05:1]);

'NBoot',1000 sets the number of bootstrap replicas to 1000. 'XVals','All' prompts
perfcurve to return X, Y, and T values for all scores, and average the Y values (true
positive rate) at all X values (false positive rate) using vertical averaging. If you do
not specify XVals, then perfcurve computes the confidence bounds using threshold
averaging by default.

Plot the pointwise confidence intervals.

errorbar(X,Y(:,1),Y(:,1)-Y(:,2),Y(:,3)-Y(:,1));

xlim([-0.02,1.02]); ylim([-0.02,1.02]);

xlabel('False positive rate')

ylabel('True positive rate')

title('ROC Curve with Pointwise Confidence Bounds')

legend('PCBwVA','Location','Best')

22 Functions — Alphabetical List

22-3472

It might not always be possible to control the false positive rate (FPR, the X value in
this example). So you might want to compute the pointwise confidence intervals on true
positive rates (TPR) by threshold averaging.

[X1,Y1,T1] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...

 'virginica','NBoot',1000);

If you set 'TVals' to 'All', or if you do not specify 'TVals' or 'Xvals', then
perfcurve returns X, Y, and T values for all scores and computes pointwise confidence
bounds for X and Y using threshold averaging.

Plot the confidence bounds.

figure()

 perfcurve

22-3473

errorbar(X1(:,1),Y1(:,1),Y1(:,1)-Y1(:,2),Y1(:,3)-Y1(:,1));

xlim([-0.02,1.02]); ylim([-0.02,1.02]);

xlabel('False positive rate')

ylabel('True positive rate')

title('ROC Curve with Pointwise Confidence Bounds')

legend('PCBwTA','Location','Best')

Specify the threshold values to fix and compute the ROC curve. Then plot the curve.

[X1,Y1,T1] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...

 'virginica','NBoot',1000,'TVals',0:0.05:1);

figure()

errorbar(X1(:,1),Y1(:,1),Y1(:,1)-Y1(:,2),Y1(:,3)-Y1(:,1));

xlim([-0.02,1.02]); ylim([-0.02,1.02]);

22 Functions — Alphabetical List

22-3474

xlabel('False positive rate')

ylabel('True positive rate')

title('ROC Curve with Pointwise Confidence Bounds')

legend('PCBwTA','Location','Best')

Input Arguments

labels — True class labels
numeric vector | logical vector | character matrix | cell array of strings | categorical
array

 perfcurve

22-3475

True class labels, specified as a numeric vector, a logical vector, a character matrix, a cell
array of strings, or a categorical array. For more information, see “Grouping Variables”
on page 2-52.
Example: {'hi','mid','hi','low',...,'mid'}

Example: ['H','M','H','L',...,'M']

Data Types: single | double | logical | char | cell

scores — Scores returned by a classifier
vector of floating points

Scores returned by a classifier for some sample data, specified as a vector of floating
points. scores must have the same number of elements as labels.
Data Types: single | double

posclass — Positive class label
numeric value | logical value | character array | cell array of strings | categorical value

Positive class label, specified as a numeric value, a logical value, a character array, or a
cell array of strings. The positive class must be a member of the input labels. The value
of posclass that you can specify depends on the value of labels.

labels value posclass value

Numeric vector Numeric scalar
Logical vector Logical scalar
Character matrix Character string
Cell array of strings Character string or cell containing

character string
Categorical vector Categorical scalar

For example, in a cancer diagnosis problem, if a malignant tumor is the positive class,
then specify posclass as 'malignant'.

Data Types: single | double | logical | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-3476

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'NegClass','versicolor','XCrit','fn','NBoot',1000,'BootType','per'

specifies the species versicolor as the negative class, the criterion for the X-coordinate
as false negative, the number of bootstrap samples as 1000. It also specifies that the
pointwise confidence bounds are computed using the percentile method.

'NegClass' — List of negative classes
'all' (default) | numeric array | categorical array

List of negative classes, specified as the comma-separated pair consisting of
'NegClass', and a numeric array or a categorical array. By default, perfcurve sets
NegClass to 'all' and considers all nonpositive classes found in the input array of
labels to be negative.

If NegClass is a subset of the classes found in the input array of labels, then perfcurve
discards the instances with labels that do not belong to either positive or negative
classes.
Example: 'nNegClass',{'versicolor','setosa'}

Data Types: single | double

'XCrit' — Criterion to compute for X
'fpr' (default) | 'fnr' | 'tnr' | 'ppv' | 'ecost' | ...

Criterion to compute for X, specified as the comma-separated pair consisting of 'XCrit'
and one of the following.

Criterion Description

tp Number of true positive instances
fn Number of false negative instances.
fp Number of false positive instances.
tn Number of true negative instances.
tp+fp Sum of true positive and false positive instances.
rpp Rate of positive predictions.

rpp = (tp+fp)/(tp+fn+fp+tn)

rnp Rate of negative predictions.

 perfcurve

22-3477

Criterion Description

rnp = (tn+fn)/(tp+fn+fp+tn)

accu Accuracy.
accu = (tp+tn)/(tp+fn+fp+tn)

tpr, or sens, or reca True positive rate, or sensitivity, or recall.
tpr= sens = reca = tp/(tp+fn)

fnr, or miss False negative rate, or miss.
fnr = miss = fn/(tp+fn)

fpr, or fall False positive rate, or fallout, or 1 – specificity.
fpr = fall = fp/(tn+fp)

tnr, or spec True negative rate, or specificity.
tnr = spec = tn/(tn+fp)

ppv, or prec Positive predictive value, or precision.
ppv = prec = tp/(tp+fp)

npv Negative predictive value.
npv = tn/(tn+fn)

ecost Expected cost.
ecost = (tp*Cost(P|P)+fn*Cost(N|P)+fp*

Cost(P|N)+tn*Cost(N|N))/(tp+fn+fp+tn)

Custom criterion A custom-defined function with the input arguments
(C,scale,cost), where C is a 2-by-2 confusion
matrix, scale is a 2-by-1 array of class scales, and
cost is a 2-by-2 misclassification cost matrix.

Caution Some of these criteria return NaN values at one of the two special thresholds,
'reject all' and 'accept all'.

Example: 'XCrit','ecost'

'YCrit' — Criterion to compute for Y
tpr (default) | same criteria options for X

Criterion to compute for Y, specified as the comma-separated pair consisting of 'YCrit'
and one of the same criteria options as for X. This criterion does not have to be a
monotone function of the positive class score.

22 Functions — Alphabetical List

22-3478

Example: 'YCrit','ecost'

'XVals' — Values for the X criterion
'all' (default) | numeric array

Values for the X criterion, specified as the comma-separated pair consisting of 'XVals'
and a numeric array.

• If you specify XVals, then perfcurve computes X and Y and the pointwise
confidence bounds for Y (when applicable) only for the specified XVals.

• If you do not specify XVals, then perfcurve, computes X and Y and the values for all
scores by default.

Note: You cannot set XVals and TVals at the same time.

Example: 'XVals',[0:0.05:1]

Data Types: single | double

'TVals' — Thresholds for the positive class score
'all' (default) | numeric array

Thresholds for the positive class score, specified as the comma-separated pair consisting
of 'TVals' and either 'all' or a numeric array.

• If TVals is set to 'all' or not specified, and XVals is not specified, then perfcurve
returns X, Y, and T values for all scores and computes pointwise confidence bounds
for X and Y using threshold averaging.

• If TVals is set to a numeric array, then perfcurve returns X, Y, and T values for the
specified thresholds and computes pointwise confidence bounds for X and Y at these
thresholds using threshold averaging.

Note: You cannot set XVals and TVals at the same time.

Example: 'TVals',[0:0.05:1]

Data Types: single | double

 perfcurve

22-3479

'UseNearest' — Indicator to use the nearest values in the data
'on' (default) | 'off'

Indicator to use the nearest values in the data instead of the specified numeric XVals or
TVals, specified as the comma-separated pair consisting of 'UseNearest' and either
'on' or 'off'.

• If you specify numeric XVals and set UseNearest to 'on', then perfcurve returns
the nearest unique X values found in the data, and it returns the corresponding
values of Y and T.

• If you specify numeric XVals and set UseNearest to 'off', then perfcurve returns
the sorted XVals.

• If you compute confidence bounds by cross validation or bootstrap, then this
parameter is always 'off'.

Example: 'UseNearest','off'

'ProcessNaN' — perfcurve method for processing NaN scores
'ignore' (default) | 'addtofalse'

perfcurve method for processing NaN scores, specified as the comma-separated pair
consisting of 'ProcessNaN' and 'ignore' or 'addtofalse'.

• If ProcessNaN is 'ignore', then perfcurve removes observations with NaN scores
from the data.

• If ProcessNaN is 'addtofalse', then perfcurve adds instances with NaN scores
to false classification counts in the respective class. That is, perfcurve always
counts instances from the positive class as false negative (FN), and it always counts
instances from the negative class as false positive (FP).

Example: 'ProcessNaN','addtofalse'

'Prior' — Prior probabilities for positive and negative classes
'empirical' (default) | 'uniform' | array with two elements

Prior probabilities for positive and negative classes, specified as the comma-separated
pair consisting of 'Prior' and 'empirical', 'uniform', or an array with two
elements.

If Prior is 'empirical', then perfcurve derives prior probabilities from class
frequencies.

22 Functions — Alphabetical List

22-3480

If Prior is 'uniform' , then perfcurve sets all prior probabilities to be equal.

Example: 'Prior',[0.3,0.7]

Data Types: single | double | char

'Cost' — Misclassification costs
[0 0.5;0.5 0] (default) | 2-by-2 matrix

Misclassification costs, specified as the comma-separated pair consisting of 'Cost' and a
2-by-2 matrix, containing [Cost(P|P),Cost(N|P);Cost(P|N),Cost(N|N)].

Cost(N|P) is the cost of misclassifying a positive class as a negative class. Cost(P|
N) is the cost of misclassifying a negative class as a positive class. Usually, Cost(P|P)
= 0 and Cost(N|N) = 0, but perfcurve allows you to specify nonzero costs for correct
classification as well.
Example: 'Cost',[0 0.7;0.3 0]

Data Types: single | double

'Alpha' — Confidence level
0.05 (default) | scalar value in the range 0 through 1

Confidence level for the confidence bounds, specified as the comma-separated pair
consisting of 'Alpha' and a scalar value in the range 0 through 1. perfcurve computes
100*(1 – α) percent pointwise confidence bounds for X, Y, T, and AUC for a confidence
level of α.
Example: 'Alpha',0.01 specifies 99% confidence bounds

Data Types: single | double

'Weights' — Observation weights
(default) | vector of nonnegative scalar values | cell array of vectors of nonnegative
scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of nonnegative scalar values. This vector must have as many elements as
scores or labels do.

If scores and labels are in cell arrays and you need to supply Weights, the weights must
be in a cell array as well. In this case, every element in Weights must be a numeric
vector with as many elements as the corresponding element in scores. For example,
numel(weights{1}) == numel(scores{1}).

 perfcurve

22-3481

When perfcurve computes the X, Y and T or confidence bounds using cross-validation,
it uses these observation weights instead of observation counts.

When perfcurve computes confidence bounds using bootstrap, it samples N out
of N observations with replacement, using these weights as multinomial sampling
probabilities.
Data Types: single | double | cell

'NBoot' — Number of bootstrap replicas
0 (default) | positive integer

Number of bootstrap replicas for computation of confidence bounds, specified as the
comma-separated pair consisting of 'NBoot' and a positive integer. The default value 0
means the confidence bounds are not computed.

If labels and scores are cell arrays, this parameter must be 0 because perfcurve can use
either cross-validation or bootstrap to compute confidence bounds.
Example: 'NBoot',500

Data Types: single | double

'BootType' — Confidence interval type for bootci
'bca' (default) | 'norm | 'per' | 'cper' | 'stud'

Confidence interval type for bootci to use to compute confidence bounds, specified as
the comma-separated pair consisting of 'BootType' and one of the following:

• 'bca' — Bias corrected and accelerated percentile method
• 'norm or 'normal' — Normal approximated interval with bootstrapped bias and

standard error
• 'per' or 'percentile' — Percentile method
• 'cper' or 'corrected percentile' — Bias corrected percentile method
• 'stud' or 'student' — Studentized confidence interval

Example: 'BootType','cper'

'BootArg' — Optional input arguments for bootci
[] (default) |

22 Functions — Alphabetical List

22-3482

Optional input arguments for bootci to compute confidence bounds, specified as the
comma-separated pair consisting of 'BootArg' and one of the inputs or name-value pair
arguments that bootci accepts.

Example: 'BootArg',{'stderr',stderr} specifies the standard error of the
bootstrap statistics

'Options' — Options for controlling the computation of confidence intervals
[] (default) | structure array returned by statset

Options for controlling the computation of confidence intervals, specified as the comma-
separated pair consisting of 'Options' and a structure array returned by statset.
These options require Parallel Computing Toolbox. perfcurve uses this argument for
computing pointwise confidence bounds only. To compute these bounds, you must pass
cell arrays for labels and scores or set NBoot to a positive integer.

This table summarizes the available options.

Option Description

'UseParallel' • false — Serial computation (default).
• true — Parallel computation. You need

Parallel Computing Toolbox for this
option to work.

'UseSubstreams' • false — Do not use a separate
substream for each iteration (default).

• true — Use a separate substream for
each iteration to compute in parallel
in a reproducible fashion. To compute
reproducibly, set Streams to a type
allowing substreams: 'mlfg6331_64'
or 'mrg32k3a'.

'Streams' A RandStream object, or a cell array of
such objects. If you specify Streams, use a
single object, except when:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

 perfcurve

22-3483

Option Description

In that case, use a cell array of the same
size as the parallel pool. If a parallel pool
is not open, then Streams must supply a
single random number stream.

If 'UseParallel' is true and 'UseSubstreams' is false, then the length of
'Streams' must equal the number of workers used by perfcurve. If a parallel
pool is already open, then the length of 'Streams' is the size of the parallel pool.
If a parallel pool is not already open, then MATLAB might open a pool for you,
depending on your installation and preferences. To ensure more predictable results, use
parpool and explicitly create a parallel pool before invoking perfcurve and setting
'Options',statset('UseParallel',true).

Example: 'Options',statset('UseParallel',true)

Data Types: struct

Output Arguments

X — x-coordinates for the performance curve
vector, fpr (default) | m-by-3 matrix

x-coordinates for the performance curve, returned as a vector or an m-by-3 matrix. By
default, X values are the false positive rate, FPR (fallout or 1 – specificity). To change X,
use the XCrit name-value pair argument.

• If perfcurve does not compute the pointwise confidence bounds, or if it computes
them using vertical averaging, then X is a vector.

• If perfcurve computes the confidence bounds using threshold averaging, then X is
an m-by-3 matrix, where m is the number of fixed threshold values. The first column
of X contains the mean value. The second and third columns contain the lower bound
and the upper bound, respectively, of the pointwise confidence bounds.

Y — y-coordinates for the performance curve
vector, tpr (default) | m-by-3 matrix

y-coordinates for the performance curve, returned as a vector or an m-by-3 matrix. By
default, Y values are the true positive rate, TPR (recall or sensitivity). To change Y, use
YCrit name-value pair argument.

22 Functions — Alphabetical List

22-3484

• If perfcurve does not compute the pointwise confidence bounds, then Y is a vector.
• If perfcurve computes the confidence bounds, then Y is an m-by-3 matrix, where

m is the number of fixed X values or thresholds (T values). The first column of Y
contains the mean value. The second and third columns contain the lower bound and
the upper bound, respectively, of the pointwise confidence bounds.

T — Thresholds on classifier scores
vector | m-by-3 matrix

Thresholds on classifier scores for the computed values of X and Y, returned as a vector
or m-by-3 matrix.

• If perfcurve does not compute the pointwise confidence bounds, or computes them
using threshold averaging, then T is a vector.

• If perfcurve computes the confidence bounds using vertical averaging, T is an m-
by-3 matrix, where m is the number of fixed X values. The first column of T contains
the mean value. The second and third columns contain the lower bound, and the
upper bound, respectively, of the pointwise confidence bounds.

For each threshold, TP is the count of true positive observations with scores greater than
or equal to this threshold, and FP is the count of false positive observations with scores
greater than or equal to this threshold. perfcurve defines negative counts, TN and FN,
in a similar way. The function then sorts the thresholds in the descending order that
corresponds to the ascending order of positive counts.

For the m distinct thresholds found in the array of scores, perfcurve returns the X,
Y and T arrays with m + 1 rows. perfcurve sets elements T(2:m+1) to the distinct
thresholds, and T(1) replicates T(2). By convention, T(1) represents the highest
'reject all' threshold, and perfcurve computes the corresponding values of X and
Y for TP = 0 and FP = 0. The T(end) value is the lowest 'accept all' threshold for
which TN = 0 and FN = 0.

AUC — Area under the curve
scalar value | 3-by-1 vector

Area under the curve (AUC) for the computed values of X and Y, returned as a scalar
value or a 3-by-1 vector.

• If perfcurve does not compute the pointwise confidence bounds, AUC is a scalar
value.

 perfcurve

22-3485

• If perfcurve computes the confidence bounds using vertical averaging, AUC is a 3-
by-1 vector. The first column of AUC contains the mean value. The second and third
columns contain the lower bound and the upper bound, respectively, of the confidence
bound.

For a perfect classifier, AUC = 1. For a classifier that randomly assigns observations to
classes, AUC = 0.5.

If you set XVals to 'all' (default), then perfcurve computes AUC using the returned
X and Y values.

If XVals is a numeric array, then perfcurve computes AUC using X and Y values
from all distinct scores in the interval, which are specified by the smallest and largest
elements of XVals. More precisely, perfcurve finds X values for all distinct thresholds
as if XVals were set to 'all', and then uses a subset of these (with corresponding Y
values) between min(XVals) and max(XVals) to compute AUC.

perfcurve uses trapezoidal approximation to estimate the area. If the first or last value
of X or Y are NaNs, then perfcurve removes them to allow calculation of AUC. This
takes care of criteria that produce NaNs for the special 'reject all' or 'accept all'
thresholds, for example, positive predictive value (PPV) or negative predictive value
(NPV).

OPTROCPT — Optimal operating point of the ROC curve
1-by-2 array

Optimal operating point of the ROC curve, returned as a 1-by-2 array with false positive
rate (FPR) and true positive rate (TPR) values for the optimal ROC operating point.

perfcurve computes OPTROCPT for the standard ROC curve only, and sets to NaNs
otherwise. To obtain the optimal operating point for the ROC curve, perfcurve first
finds the slope, S, using

S
P N N N

N P P P

N

P
=

-

-

Cost Cost

Cost Cost

(|) (|)

(|) (|)
*

• Cost(N|P) is the cost of misclassifying a positive class as a negative class. Cost(P|N)
is the cost of misclassifying a negative class as a positive class.

• P = TP + FN and N = TN + FP. They are the total instance counts in the positive and
negative class, respectively.

22 Functions — Alphabetical List

22-3486

perfcurve then finds the optimal operating point by moving the straight line with slope
S from the upper left corner of the ROC plot (FPR = 0, TPR = 1) down and to the right,
until it intersects the ROC curve.

SUBY — Values for negative subclasses
array

Values for negative subclasses, returned as an array.

• If you specify only one negative class, then SUBY is identical to Y.
• If you specify k negative classes, then SUBY is a matrix of size m-by-k, where m is

the number of returned values for X and Y, and k is the number of negative classes.
perfcurve computes Y values by summing counts over all negative classes.

SUBY gives values of the Y criterion for each negative class separately. For each
negative class, perfcurve places a new column in SUBY and fills it with Y values for
true negative (TN) and false positive (FP) counted just for this class.

SUBYNAMES — Negative class names
cell array

Negative class names, returned as a cell array.

• If you provide an input array of negative class names, , NegClass, then perfcurve
copies names into SUBYNAMES.

• If you do not provide NegClass, then perfcurve extracts SUBYNAMES from the
input labels. The order of SUBYNAMES is the same as the order of columns in SUBY.
That is, SUBY(:,1) is for negative class SUBYNAMES{1}, SUBY(:,2) is for negative
class SUBYNAMES{2}, and so on.

More About

Algorithms

Pointwise Confidence Bounds

If you supply cell arrays for labels and scores, or if you set NBoot to a positive integer,
then perfcurve returns pointwise confidence bounds for X,Y,T, and AUC. You cannot

 perfcurve

22-3487

supply cell arrays for labels and scores and set NBoot to a positive integer at the same
time.

perfcurve resamples data to compute confidence bounds using either cross validation or
bootstrap.

• Cross-validation — If you supply cell arrays for labels and scores, then perfcurve
uses cross-validation and treats elements in the cell arrays as cross-validation folds.
labels can be a cell array of numeric vectors, logical vectors, character matrices,
cell arrays of strings, or categorical vectors. All elements in labels must have the
same type. scores can be a cell array of numeric vectors. The cell arrays for labels
and scores must have the same number of elements. The number of labels in cell j
of labels must be equal to the number of scores in cell j of scores for any j in the
range from 1 to the number of elements in scores.

• Bootstrap — If you set NBoot to a positive integer n, perfcurve generates n
bootstrap replicas to compute pointwise confidence bounds. If you use XCrit or YCrit
to set the criterion for X or Y to an anonymous function, perfcurve can compute
confidence bounds only using bootstrap.

perfcurve estimates the confidence bounds using one of two methods:

• Vertical averaging (VA) — perfcurve estimates confidence bounds on Y and T at
fixed values of X. That is, perfcurve takes samples of the ROC curves for fixed
X values, averages the corresponding Y and T values, and computes the standard
errors. You can use the XVals name-value pair argument to fix the X values for
computing confidence bounds. If you do not specify XVals, then perfcurve computes
the confidence bounds at all X values.

• Threshold averaging (TA) — perfcurve takes samples of the ROC curves at fixed
thresholds T for the positive class score, averages the corresponding X and Y values,
and estimates the confidence bounds. You can use the TVals name-value pair
argument to use this method for computing confidence bounds. If you set TVals to
'all' or do not specify TVals or XVals, then perfcurve returns X, Y, and T values
for all scores and computes pointwise confidence bounds for Y and X using threshold
averaging.

When you compute the confidence bounds, Y is an m-by-3 array, where m is the number
of fixed X values or thresholds (T values). The first column of Y contains the mean
value. The second and third columns contain the lower bound and the upper bound,
respectively, of the pointwise confidence bounds. AUC is a row vector with three
elements, following the same convention. If perfcurve computes the confidence bounds

22 Functions — Alphabetical List

22-3488

using VA, then T is an m-by-3 matrix, and X is a column vector. If perfcurve uses TA,
then X is an m-by-3 matrix and T is a column-vector.

perfcurve returns pointwise confidence bounds. It does not return a simultaneous
confidence band for the entire curve.
• “Performance Curves” on page 15-35

References

[1] T. Fawcett. “ROC Graphs: Notes and Practical Considerations for Researchers”, 2004.

[2] Zweig, M., and G. Campbell. “Receiver-Operating Characteristic (ROC) Plots: A
Fundamental Evaluation Tool in Clinical Medicine.” Clin. Chem. 1993, 39/4, pp.
561–577 .

[3] Davis, J., and M. Goadrich. “The Relationship Between Precision-Recall and ROC
Curves.” Proceedings of ICML ’06, 2006, pp. 233–240.

[4] Moskowitz, C., and M. Pepe. “Quantifying and comparing the predictive accuracy
of continuous prognostic factors for binary outcomes.” Biostatistics, 2004, 5, pp.
113–127.

[5] Huang, Y., M. Pepe, and Z. Feng. “Evaluating the Predictiveness of a Continuous
Marker.” U. Washington Biostatistics Paper Series, 2006, 250–261.

[6] Briggs, W., and R. Zaretzki. “The Skill Plot: A Graphical Technique for Evaluating
Continuous Diagnostic Tests.” Biometrics, 2008, 63, pp. 250 – 261.

[7] R. Bettinger. “Cost-Sensitive Classifier Selection Using the ROC Convex Hull
Method.” SAS Institute.

See Also
bootci | classify | fitcnb | fitctree | fitrtree | glmfit | mnrfit

 perms

22-3489

perms
Enumeration of permutations

Syntax

P = perms(v)

Description

P = perms(v), where v is a row vector of length n, creates a matrix whose rows consist
of all possible permutations of the n elements of v. The matrix P contains n! rows and n
columns.

perms is only practical when n is less than about 11 (for n = 11, the output takes over 3
gigabytes).

Examples
perms([2 4 6])

ans =

 6 4 2

 6 2 4

 4 6 2

 4 2 6

 2 4 6

 2 6 4

See Also

combnk

22 Functions — Alphabetical List

22-3490

piecewisedistribution class

Piecewise-defined distributions

Construction

piecewisedistribution is an abstract class. To construct a
piecewisedistribution object, use the subclass constructor, paretotails.

Methods

boundary
Piecewise distribution boundaries

cdf
Cumulative distribution function for
piecewise distribution

disp
Display piecewisedistribution object

display
Display piecewisedistribution object

icdf
Inverse cumulative distribution function for
piecewise distribution

nsegments
Number of segments

pdf
Probability density function for piecewise
distribution

random
Random numbers from piecewise
distribution

segment
Segments containing values

 piecewisedistribution class

22-3491

Properties

Objects of the piecewisedistribution class have no properties accessible
by dot indexing, get methods, or set methods. To obtain information about a
piecewisedistribution object, use the appropriate method.

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

22 Functions — Alphabetical List

22-3492

piecewisedistribution
Class: piecewisedistribution

Create piecewise distribution object

Description

piecewisedistribution is an abstract class, and you cannot create instances of it
directly. You can create paretotails objects that are derived from this class.

See Also
paretotails

 prob.PiecewiseLinearDistribution class

22-3493

prob.PiecewiseLinearDistribution class
Package: prob
Superclasses: prob.ParametricTruncatableDistribution

Piecewise linear probability distribution object

Description

prob.PiecewiseLinearDistribution is an object consisting of a model description
for a piecewise linear probability distribution. Create a probability distribution object
with specified parameters using makedist.

Construction

pd = makedist('PiecewiseLinear') creates a piecewise linear probability
distribution object using the default parameter values.

pd = makedist('PiecewiseLinear','x',x,'Fx',Fx) creates a piecewise linear
probability distribution object using the specified values.

Input Arguments

x — Data values
1 (default) | vector of scalar values

Data values at which the cumulative distribution function (cdf) changes slope, specified
as a vector of scalar values.
Data Types: single | double

Fx — cdf value
1 (default) | vector of scalar values

cdf value at each value in x, specified as a vector of scalar values. x and Fx must be the
same size. The first value in the vector Fx must be 0, and the last element must be 1. Fx
increases linearly between x(j) and x(j+1), for all j.

Data Types: single | double

22 Functions — Alphabetical List

22-3494

Properties

x — Data values
vector of scalar values

Data values at which the cumulative distribution function (cdf) changes slope, stored as a
vector of scalar values.
Data Types: single | double

Fx — cdf value
vector of scalar values

cdf value at each value in x, stored as a vector of scalar values.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

 prob.PiecewiseLinearDistribution class

22-3495

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

22 Functions — Alphabetical List

22-3496

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Piecewise Linear Distribution

The piecewise linear distribution is a nonparametric probability distribution created
using a piecewise linear representation of the cumulative distribution function (cdf). The
options specified for the piecewise linear distribution specify the form of the cdf. The
probability density function (pdf) is a step function.

Examples

Create a Piecewise Linear Distribution Object Using Default Parameters

Create a piecewise linear distribution object using the default parameter values.

pd = makedist('PiecewiseLinear')

pd =

 prob.PiecewiseLinearDistribution class

22-3497

 PiecewiseLinearDistribution

F(0) = 0

F(1) = 1

Create a Piecewise Linear Distribution Object Using Specified Parameters

Load the sample data. Visualize the patient weight data using a histogram.

load hospital

histogram(hospital.Weight)

The histogram shows that the data has two modes, one for female patients and one for
male patients.

22 Functions — Alphabetical List

22-3498

Compute the empirical cumulative distribution function (ecdf) for the data.

[f,x] = ecdf(hospital.Weight);

Construct a piecewise linear approximation to the ecdf and plot both functions.

f = f(1:5:end); % keep a less dense grid of points

x = x(1:5:end);

figure;

ecdf(hospital.Weight)

hold on

plot(x,f,'ro','MarkerFace','r') % overlay grid

plot(x,f,'k') % show interpolation

 prob.PiecewiseLinearDistribution class

22-3499

Create a piecewise linear probability distribution object using the piecewise
approximation of the ecdf.

pd = makedist('PiecewiseLinear','x',x,'Fx',f)

pd =

 PiecewiseLinearDistribution

F(111) = 0

F(118) = 0.05

F(124) = 0.13

F(130) = 0.25

F(135) = 0.37

F(142) = 0.5

F(163) = 0.55

F(171) = 0.61

F(178) = 0.7

F(183) = 0.82

F(189) = 0.94

F(202) = 1

Generate 100 random numbers from the distribution.

rng default % For reproducibility

rw = random(pd,100,1);

Plot the random numbers to visually compare their distribution to the original data.

figure;

histogram(rw)

22 Functions — Alphabetical List

22-3500

The random numbers generated from the piecewise linear distribution have the same
bimodal distribution as the original data.

See Also
makedist

More About
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Supported Distributions” on page 5-17

 prob.PiecewiseLinearDistribution class

22-3501

• “Piecewise Linear Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-3502

plot

Class: clustering.evaluation.ClusterCriterion
Package: clustering.evaluation

Plot clustering evaluation object criterion values

Syntax

plot(eva)

h = plot(eva)

Description

plot(eva) displays a plot of the criterion values versus the number of clusters, based on
the values stored in the clustering evaluation object eva.

h = plot(eva) returns a handle to the plot line.

Input Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, specified as a clustering evaluation object. Create a
clustering evaluation object using evalclusters.

Output Arguments

h — Handle to plot line
scalar value

Handle to the plot line, returned as a scalar value.

 plot

22-3503

Examples

Plot the Clustering Evaluation Criterion Values

Plot the criterion values versus the number of clusters for each clustering solution stored
in a clustering evaluation object.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Create a clustering evaluation object. Cluster the data using kmeans, and evaluate the
optimal number of clusters using the Calinski-Harabasz criterion.

rng('default'); % For reproducibility

eva = evalclusters(meas,'kmeans','CalinskiHarabasz','KList',[1:6]);

Plot the Calinski-Harabasz criterion values for each number of clusters tested.

figure;

plot(eva);

22 Functions — Alphabetical List

22-3504

The plot shows that the highest Calinski-Harabasz value occurs at three clusters,
suggesting that the optimal number of clusters is three.

See Also
evalclusters

 plot

22-3505

plot
Class: LinearModel

Scatter plot or added variable plot of linear model

Syntax

plot(mdl)

h = plot(mdl)

Description

plot(mdl) creates a plot of the fitted linear model. The plot type depends on the number
of predictor variables.

• If there is just one predictor variable, plot creates a scatter plot of the data along
with a fitted curve and confidence bounds.

• If there are multiple predictor variables, plot creates an added variable plot.
• If there are no predictors, plot creates a histogram of the residuals.

h = plot(mdl) returns handles to the lines in the plot.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

Output Arguments

h

Vector of handles to lines or patches in the plot.

22 Functions — Alphabetical List

22-3506

Definitions

Added Variable Plot, Adjusted Response

An added variable plot illustrates the incremental effect on the response of specified
terms by removing the effects of all other terms. The slope of the fitted line is the
coefficient of the linear combination of the specified terms projected onto the best-fitting
direction. The adjusted response includes the constant (intercept) terms, and averages
out all other terms.

Examples

Create an Added Variable Plot

Create a model of car mileage as a function of weight and model year. Then create a plot
to see the significance of the model.

Create a linear model of mileage from the carsmall data.

load carsmall

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create an added variable plot.

plot(mdl)

 plot

22-3507

The plot illustrates that the model is significant—a horizontal line does not fit between
the confidence bounds.

Alternatives

Use plotAdded to select particular predictors for an added variable plot.

See Also
plotAdded | LinearModel

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3508

plot

Class: RepeatedMeasuresModel

Plot data with optional grouping

Syntax

plot(rm)

plot(rm,Name,Value)

H = plot(___)

Description

plot(rm) plots the measurements in the repeated measures model rm for each subject
as a function of time. If there is a single numeric within-subjects factor, plot uses the
values of that factor as the time values. Otherwise, plot uses the discrete values 1
through r as the time values, where r is the number of repeated measurements.

plot(rm,Name,Value) also plots the measurements in the repeated measures model
rm, with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the factors to group by or change the line colors.

H = plot(___) returns handles, H, to the plotted lines.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

 plot

22-3509

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Group' — Name of between-subject factor or factors
string | cell array of strings

Name of between-subject factor or factors, specified as the comma-separated pair
consisting of 'Group' and a string or cell array of strings. This name-value pair
argument groups the lines according to the factor values.

For example, if you have two between-subject factors, drug and sex, and you want to
group the lines in the plot according to them, you can specify these factors as follows.
Example: 'Group',{'Drug','Sex'}

Data Types: char | cell

'Marker' — Marker to use for each group
cell array of strings

Marker to use for each group, specified as the comma-separated pair consisting of
'Marker' and a cell array of strings.

For example, if you have two between-subject factors, drug and sex, with each having two
groups, you can specify o as the marker for the groups of drug and x as the marker for
the groups of sex as follows.
Example: 'Marker',{'o','o','x','x'}

Data Types: cell

'Color' — Color for each group
string | cell array of strings | rows of a three-column RGB matrix

Color for each group, specified as the comma-separated pair consisting of 'Color' and a
string, cell array of strings, or rows of a three-column RGB matrix.

For example, if you have two between-subject factors, drug and sex, with each having two
groups, you can specify red as the color for the groups of drug and blue as the color for
the groups of sex as follows.

22 Functions — Alphabetical List

22-3510

Example: 'Color','rrbb'

Data Types: single | double | cell

'LineStyle' — Line style for each group
cell array of strings

Line style for each group, specified as the comma-separated pair consisting of
'LineStyle' and a cell array of strings.

For example, if you have two between-subject factors, drug and sex, with each having
two groups, you can specify - as the line style of one group and : as the line style for the
other group as follows.
Example: 'LineStyle',{'-' ':' '-' ':'}

Data Types: cell

Output Arguments

H — Handle to plotted lines
handle

Handle to plotted lines, returned as a handle.

Examples

Plot Data by Group

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

 plot

22-3511

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Plot data grouped by the factor species.

plot(rm,'group','species')

Change the line style for each group.

plot(rm,'group','species','LineStyle',{'-','--',':'})

22 Functions — Alphabetical List

22-3512

Plot Data Grouped by Two Factors

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 through y8 as responses. The table within includes the
within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the
responses, and age, IQ, group, gender, and the group-gender interaction are the predictor
variables. Also specify the within-subject design matrix.

 plot

22-3513

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Plot data with Group coded by color and Gender coded by line type.

plot(R,'group',{'Group' 'Gender'},'Color','rrbbgg',...

 'LineStyle',{'-' ':' '-' ':' '-' ':'},'Marker','.')

See Also
fitrm | multcompare | plotprofile

22 Functions — Alphabetical List

22-3514

plotAdded
Class: LinearModel

Added variable plot or leverage plot for linear model

Syntax

plotAdded(mdl)

plotAdded(mdl,coef)

h = plotAdded(mdl,...)

h = plotAdded(mdl,coef,Name,Value)

Description

plotAdded(mdl) produces a generalized added variable plot for all terms in mdl except
the constant term.

plotAdded(mdl,coef) produces an added variable plot for the coef terms in mdl,
after adjusting for all other terms.

h = plotAdded(mdl,...) returns handles to the lines in the plot.

h = plotAdded(mdl,coef,Name,Value) plots with additional options specified by
one or more Name,Value pair arguments.

Tips
• For many plots, the Data Cursor tool in the figure window displays the x and y values

for any data point, along with the observation name or number.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

 plotAdded

22-3515

coef

Coefficients in mdl. Represent as:

• String giving a single coefficient name
• Vector of coefficient numbers in the mdl.CoefficientNames property

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

Default: 0.5

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

22 Functions — Alphabetical List

22-3516

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

Output Arguments

h

Vector of handles to lines or patches in the plot.

Definitions

Added Variable Plot, Adjusted Response

An added variable plot illustrates the incremental effect on the response of specified
terms by removing the effects of all other terms. The slope of the fitted line is the
coefficient of the linear combination of the specified terms projected onto the best-fitting
direction. The adjusted response includes the constant (intercept) terms, and averages
out all other terms.

Examples

Create an Added Variable Plot

Create a model of car mileage as a function of weight and model year. Then create a plot
to see the significance of the model.

Create a linear model of mileage from the carsmall data.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

mdl = fitlm(ds,'MPG ~ Year + Weight^2');

Create an added variable plot.

plotAdded(mdl)

 plotAdded

22-3517

The plot illustrates that the model is significant—a horizontal line does not fit between
the confidence bounds.

Create an Added Variable Plot for Particular Variables

Create a model of car mileage as a function of weight and model year. Then create a plot
to see the effect of the weight terms (Weight and Weight^2).

Create a linear model of mileage from the carsmall data.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

mdl = fitlm(ds,'MPG ~ Year + Weight^2');

Find the terms in the model corresponding to the Weight and Weight^2.

mdl.CoefficientNames

22 Functions — Alphabetical List

22-3518

ans =

 '(Intercept)' 'Weight' 'Year_76' 'Year_82' 'Weight^2'

The weight terms are 2 and 5.

Create an added variable plot with the weight terms.

coef = [2 5];

plotAdded(mdl,coef)

The plot illustrates that the weight terms are significant—a horizontal line does not fit
between the confidence bounds.

• “Plots to Understand Terms Effects” on page 9-33

See Also
plot | LinearModel

 plotAdded

22-3519

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3520

plotAdjustedResponse
Class: LinearModel

Adjusted response plot for linear regression model

Syntax

plotAdjustedResponse(mdl,var)

h = plotAdjustedResponse(mdl,var)

h = plotAdjustedResponse(mdl,var,Name,Value)

Description

plotAdjustedResponse(mdl,var) gives an adjusted response plot for the variable
var in the mdl regression model.

h = plotAdjustedResponse(mdl,var) returns handles to the lines in the plot.

h = plotAdjustedResponse(mdl,var,Name,Value) plots with additional options
specified by one or more Name,Value pair arguments.

Tips

• For many plots, the Data Cursor tool in the figure window displays the x and y values
for any data point, along with the observation name or number.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

var

Variable name, or scalar index of variable in mdl.CoefficientNames.

 plotAdjustedResponse

22-3521

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

Default: 0.5

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

22 Functions — Alphabetical List

22-3522

Output Arguments

h

Vector of handles to lines or patches in the plot.

Definitions

Adjusted Response Plot

The adjusted response plot shows the fitted response as a function of var, with the other
predictors averaged out by averaging the fitted values over the data used in the fit.
Adjusted data points are computed by adding the residual to the adjusted fitted value for
each observation.

Examples

Plot Adjusted Responses

Plot the adjusted responses of a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model
year, weight, and weight squared.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

mdl = fitlm(ds,'MPG ~ Year + Weight^2');

Plot the effect of 'Weight' averaged over Year values.

plotAdjustedResponse(mdl,'Weight')

 plotAdjustedResponse

22-3523

Plot the effect of Year averaged over 'Weight' values. Include the h output.

h = plotAdjustedResponse(mdl,'Year');

22 Functions — Alphabetical List

22-3524

Change the adjusted data to black x instead of red o.

set(h(1),'Marker','x','Color','k')

 plotAdjustedResponse

22-3525

See Also
plotAdded | LinearModel | plotEffects | plotInteraction

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3526

plotDiagnostics
Class: GeneralizedLinearModel

Plot diagnostics of generalized linear regression model

Syntax

plotDiagnostics(mdl)

plotDiagnostics(mdl,plottype)

h = plotDiagnostics(...)

h = plotDiagnostics(mdl,plottype,Name,Value)

Description

plotDiagnostics(mdl) plots diagnostics from the mdl linear model using leverage as
the plot type.

plotDiagnostics(mdl,plottype) plots diagnostics from the mdl generalized linear
model in a plot of type plottype.

h = plotDiagnostics(...) returns handles to the lines in the plot.

h = plotDiagnostics(mdl,plottype,Name,Value) plots with additional options
specified by one or more Name,Value pair arguments.

Tips
• For many plots, the Data Cursor tool in the figure window displays the x and y values

for any data point, along with the observation name or number.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

 plotDiagnostics

22-3527

plottype

String specifying the type of plot:

'contour' Residual vs. leverage with overlayed Cook's contours
'cookd' Cook's distance
'leverage' Leverage (diagonal of Hat matrix)

Default: 'leverage'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

Default: 0.5

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

22 Functions — Alphabetical List

22-3528

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

Output Arguments

h

Vector of handles to lines or patches in the plot.

Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X and a diagonal weight matrix
W:
H = X(XTWX)–1XTWT.

W has diagonal elements wi:

w
g

V
i

i

i

=
¢()

()

m

m
,

where

• g is the link function mapping yi to xib.
• ¢g is the derivative of the link function g.

• V is the variance function.

 plotDiagnostics

22-3529

• μi is the ith mean.

The diagonal elements Hii satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

where n is the number of observations (rows of X), and p is the number of coefficients in
the regression model.

Leverage

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix H.
Because the sum of the leverage values is p (the number of coefficients in the regression
model), an observation i can be considered to be an outlier if its leverage substantially
exceeds p/n, where n is the number of observations.

Cook’s Distance

The Cook’s distance Di of observation i is

D w
e

p

h

h
i i

i ii

ii

=
-()

2

2
1ˆ

,
j

where

• ĵ is the dispersion parameter (estimated or theoretical).

• ei is the linear predictor residual, g y xi i() - b̂ , where

• g is the link function.
• yi is the observed response.
• xi is the observation.

22 Functions — Alphabetical List

22-3530

• b̂ is the estimated coefficient vector.

• p is the number of coefficients in the regression model.
• hii is the ith diagonal element of the Hat Matrix H.

Examples

Diagnostic Plots for Generalized Linear Models

Create leverage and Cook’s distance plots of a fitted generalized linear model.

Generate artificial data for the model, Poisson random numbers with two underlying
predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,...

 'y ~ x1 + x2','distr','poisson');

Create a leverage plot.

plotDiagnostics(mdl)

 plotDiagnostics

22-3531

Create a contour plot with Cook’s distance.

plotDiagnostics(mdl,'contour')

22 Functions — Alphabetical List

22-3532

• “Diagnostic Plots” on page 10-25

References

[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear
Statistical Models, Fourth Edition. Irwin, Chicago, 1996.

See Also
GeneralizedLinearModel

More About
• “Generalized Linear Models” on page 10-12

 plotDiagnostics

22-3533

plotDiagnostics
Class: LinearModel

Plot diagnostics of linear regression model

Syntax

plotDiagnostics(mdl)

plotDiagnostics(mdl,plottype)

h = plotDiagnostics(...)

h = plotDiagnostics(mdl,plottype,Name,Value)

Description

plotDiagnostics(mdl) plots diagnostics from the mdl linear model using scaled
delete-1 fitted values.

plotDiagnostics(mdl,plottype) plots diagnostics in a plot of type plottype.

h = plotDiagnostics(...) returns handles to the lines in the plot.

h = plotDiagnostics(mdl,plottype,Name,Value) plots with additional options
specified by one or more Name,Value pair arguments.

Tips

• For many plots, the Data Cursor tool in the figure window displays the x and y values
for any data point, along with the observation name or number.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

22 Functions — Alphabetical List

22-3534

plottype

String specifying the type of plot:

'contour' Residual vs. leverage with overlayed Cook's contours
'cookd' Cook's distance
'covratio' Delete-1 ratio of determinant of covariance
'dfbetas' Scaled delete-1 coefficient estimates
'dffits' Scaled delete-1 fitted values
'leverage' Leverage
's2_i' Delete-1 variance estimate

Delete-1 means compute a new model without the current observation. If the delete-1
calculation differs significantly from the model using all observations, then the
observation is influential.

Default: 'leverage'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

 plotDiagnostics

22-3535

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

Default: 0.5

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

Output Arguments

h

Vector of handles to lines or patches in the plot.

Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X:
H = X(XTX)–1XT.

The diagonal elements Hii satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

22 Functions — Alphabetical List

22-3536

where n is the number of observations (rows of X), and p is the number of coefficients in
the regression model.

Leverage

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix H.
Because the sum of the leverage values is p (the number of coefficients in the regression
model), an observation i can be considered to be an outlier if its leverage substantially
exceeds p/n, where n is the number of observations.

Cook’s Distance

Cook’s distance is the scaled change in fitted values. Each element in CooksDistance is
the normalized change in the vector of coefficients due to the deletion of an observation.
The Cook’s distance, Di, of observation i is

D

y y

p MSE
i

j j i
j

n

=

-()
=
Â ˆ ˆ

,

()
2

1

where

• ŷ j is the jth fitted response value.

• ˆ ()y j i is the jth fitted response value, where the fit does not include observation i.

• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

D
r

p MSE

h

h
i

i ii

ii

=
-()

Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

2
1

,

where ri is the ith residual, and hii is the ith leverage value.

CooksDistance is an n-by-1 column vector in the Diagnostics table of the
LinearModel object.

 plotDiagnostics

22-3537

Examples

Leverage Plot of Linear Model

Plot the leverage values of observations in a fitted model.

Load the carsmall data and fit a linear model of the mileage as a function of model
year, weight, and weight squared.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

mdl = fitlm(ds,'MPG ~ Year + Weight^2');

Plot the leverage values.

plotDiagnostics(mdl)

22 Functions — Alphabetical List

22-3538

Plot the Cook’s distance.

plotDiagnostics(mdl,'cookd')

The two diagnostic plots give different results.

• “Diagnostic Plots” on page 9-22

References

[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear
Statistical Models, Fourth Edition. Irwin, Chicago, 1996.

 plotDiagnostics

22-3539

Alternatives

The mdl.Diagnostics property contains the information that plotDiagnostics uses
to create plots.

See Also
LinearModel

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3540

plotDiagnostics
Class: NonLinearModel

Plot diagnostics of nonlinear regression model

Syntax

plotDiagnostics(mdl)

plotDiagnostics(mdl,plottype)

h = plotDiagnostics(...)

h = plotDiagnostics(mdl,plottype,Name,Value)

Description

plotDiagnostics(mdl) plots diagnostics from the mdl linear model using leverage as
the plot type.

plotDiagnostics(mdl,plottype) plots diagnostics in a plot of type plottype.

h = plotDiagnostics(...) returns handles to the lines in the plot.

h = plotDiagnostics(mdl,plottype,Name,Value) plots with additional options
specified by one or more Name,Value pair arguments.

Tips

• For many plots, the Data Cursor tool in the figure window displays the x and y values
for any data point, along with the observation name or number.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

 plotDiagnostics

22-3541

plottype

String specifying the type of plot:

'contour' Residual vs. leverage with overlayed Cook's contours
'cookd' Cook's distance
'leverage' Leverage (diagonal of Hat matrix)

Default: 'leverage'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

Default: 0.5

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

22 Functions — Alphabetical List

22-3542

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

Output Arguments

h

Vector of handles to lines or patches in the plot.

Definitions

Hat Matrix

The hat matrix H is defined in terms of the data matrix X and the Jacobian matrix J:

J
f

i j
j xi

,

,

=
∂

∂b
b

Here f is the nonlinear model function, and β is the vector of model coefficients.

The Hat Matrix H is
H = J(JTJ)–1JT.

The diagonal elements Hii satisfy

0 1

1

£ £

=

=

Â

h

h p

ii

ii
i

n

,

where n is the number of observations (rows of X), and p is the number of coefficients in
the regression model.

 plotDiagnostics

22-3543

Leverage

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix H.
Because the sum of the leverage values is p (the number of coefficients in the regression
model), an observation i can be considered to be an outlier if its leverage substantially
exceeds p/n, where n is the number of observations.

Cook’s Distance

The Cook’s distance Di of observation i is

D

y y

p MSE
i

j j i
j

n

=

-()
=
Â ˆ ˆ

,

()
2

1

where

• ŷ j is the jth fitted response value.

• ˆ ()y j i is the jth fitted response value, where the fit does not include observation i.

• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

D
r

p MSE

h

h
i

i ii

ii

=
-()

Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

2
1

,

where ei is the ith residual.

Examples

Nonlinear Model Leverage Plot

Create a leverage plot of a fitted nonlinear model, and find the points with high leverage.

22 Functions — Alphabetical List

22-3544

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction

mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);

Create a leverage plot of the fitted model.

plotDiagnostics(mdl)

To examine the observation with high leverage, activate the Data Cursor and click the
observation.

 plotDiagnostics

22-3545

Alternatively, find the high-leverage observation at the command line.

find(mdl.Diagnostics.Leverage > 0.8)

ans =

 6

• “Examine Quality and Adjust the Fitted Nonlinear Model” on page 11-7
• “Nonlinear Regression Workflow” on page 11-14

References

[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear
Statistical Models, Fourth Edition. Irwin, Chicago, 1996.

22 Functions — Alphabetical List

22-3546

See Also
NonLinearModel | plotResiduals

More About
• “Nonlinear Regression” on page 11-2

 plotEffects

22-3547

plotEffects

Class: LinearModel

Plot main effects of each predictor in linear regression model

Syntax

plotEffects(mdl)

h = plotEffects(mdl)

Description

plotEffects(mdl) produces an effects plot for the predictors in the mdl regression
model. The plot shows the estimated effect on the response from changing each predictor
value, averaging out the effects of the other predictors. plotEffects chooses values to
produce a relatively large effect on the response.

h = plotEffects(mdl) returns handles to the lines in the plot.

Tips

• For many plots, the Data Cursor tool in the figure window displays the x and y values
for any data point, along with the observation name or number.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

22 Functions — Alphabetical List

22-3548

Output Arguments

h

Vector of handles to lines or patches in plot. h(1) is a handle to the circles that represent
the main effect estimates. h(j+1) is a handle to the line that defines the confidence
interval for the effect of predictor j.

Examples

Effects Plot

Plot the effects of two predictors in a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model
year, weight, and weight squared.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

mdl = fitlm(ds,'MPG ~ Year + Weight^2');

Create an effects plot.

plotEffects(mdl)

 plotEffects

22-3549

The width of each horizontal line in the figure shows a confidence interval for the
effect on the response of the listed change in each predictor. The estimated effect of
changing Year from 70 to 82 is an increase of about 8, and is between 6 and 10 with 95%
confidence.

• “Plots to Understand Predictor Effects” on page 9-28

Alternatives

Use plotInteraction for an effects plot of the interactions of two specified variables.

See Also
LinearModel | plotAdjustedResponse | plotInteraction

22 Functions — Alphabetical List

22-3550

How To
• “Linear Regression” on page 9-11

 plotInteraction

22-3551

plotInteraction
Class: LinearModel

Plot interaction effects of two predictors in linear regression model

Syntax
plotInteraction(mdl,var1,var2)

plotInteraction(mdl,var1,var2,ptype)

h = plotInteraction(...)

Description
plotInteraction(mdl,var1,var2) creates a plot of the interaction effects of the
predictors var1 and var2 in mdl. The plot shows the estimated effect on the response
from changing each predictor value, averaging out the effects of the other predictors.
The plot also shows the estimated effect with the other predictor fixed at certain values.
plotInteraction chooses values to produce a relatively large effect on the response.
The plot lets you examine whether the effect of one predictor depends on the value of the
other predictor.

plotInteraction(mdl,var1,var2,ptype) returns a plot of the type specified in
ptype.

h = plotInteraction(...) returns handles to the lines in the plot.

Tips
• For many plots, the Data Cursor tool in the figure window displays the x and y values

for any data point, along with the observation name or number.

Input Arguments
mdl

Linear model, as constructed by fitlm or stepwiselm.

22 Functions — Alphabetical List

22-3552

var1

String naming the variable for plot. plotInteraction chooses values of var1 to create
relatively large changes in the response. When you set ptype = 'predictions', the
plot shows curves as a function of var2 with various fixed values of var1.

var2

String naming the variable for plot. plotInteraction chooses values of var2 to create
relatively large changes in the response. When you set ptype = 'predictions', the
plot shows curves as a function of var2 various fixed values of var1.

ptype

String naming the plot type.

• 'effects' — The plot shows each effect as a circle, with a horizontal bar
showing the confidence interval for the estimated effect. plotInteraction
computes the effect values from the adjusted response curve, as shown by the
plotAdjustedResponse function.

• 'predictions' — The plot shows the adjusted response curve as a function of var2,
with var1 fixed at certain values.

Default: 'effects'

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Interaction Plot

Create a model of car mileage as a function of weight and model year. Then create a plot
to see if the predictors have interactions.

Create a linear model of mileage from the carsmall data.

load carsmall

 plotInteraction

22-3553

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

var1 = 'Year';

var2 = 'Weight';

mdl = fitlm(ds,'MPG ~ Year * Weight^2');

Create an interaction plot.

plotInteraction(mdl,var1,var2)

The plot might show an interaction, because the groups of points are not perfectly
vertical. But the error bars seem large enough that a vertical line could pass within all of
the confidence intervals for each group, possibly indicating no interaction.

Prediction Curve Interaction Plot

Create a model of car mileage as a function of weight and model year. Then create an
interaction curve plot to see if the predictors have interactions.

22 Functions — Alphabetical List

22-3554

Create a linear model of mileage from the carsmall data.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

var1 = 'Year';

var2 = 'Weight';

mdl = fitlm(ds,'MPG ~ Year * Weight^2');

Create an interaction plot with type 'predictions'.

plotInteraction(mdl,var1,var2,'predictions')

The curves are not parallel. This indicates interactions between the predictors. The effect
is subtle enough not to definitively indicate a interaction.

• “Plots to Understand Predictor Effects” on page 9-28

 plotInteraction

22-3555

Alternatives

Use plotEffects for an effects plot showing separate effects for all predictors.

See Also
plotEffects | LinearModel | plotAdjustedResponse

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3556

plotprofile
Class: RepeatedMeasuresModel

Plot expected marginal means with optional grouping

Syntax

plotprofile(rm,X)

plotprofile(rm,Name,Value)

H = plotprofile(___)

Description

plotprofile(rm,X) plots the expected marginal means computed from the repeated
measures model rm as a function of the variable X.

plotprofile(rm,Name,Value) plots the expected marginal means computed from
the repeated measures model rm with additional options specified by one or more
Name,Value pair arguments.

For example, you can specify the factors to group by or change the line colors.

H = plotprofile(___) returns handles, H, to the plotted lines.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

X — Name of between-subjects or within-subjects factor
string

Name of a between-subjects or within-subjects factor, specified as a string.

 plotprofile

22-3557

For example, if you want to plot the marginal means as a function of the groups of a
between-subjects variable drug, you can specify it as follows.
Example: 'Drug'

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Group' — Name of between-subject factor or factors
string | cell array of strings

Name of between-subject factor or factors, specified as the comma-separated pair
consisting of 'Group' and a string or cell array of strings. This name-value pair
argument groups the lines according to the factor values.

For example, if you have two between-subject factors, drug and sex, and you want to
group the lines in the plot according to them, you can specify these factors as follows.
Example: 'Group',{'Drug','Sex'}

Data Types: char | cell

'Marker' — Marker to use for each group
cell array of strings

Marker to use for each group, specified as the comma-separated pair consisting of
'Marker' and a cell array of strings.

For example, if you have two between-subject factors, drug and sex, with each having two
groups, you can specify o as the marker for the groups of drug and x as the marker for
the groups of sex as follows.
Example: 'Marker',{'o','o','x','x'}

Data Types: cell

'Color' — Color for each group
string | cell array of strings | rows of a three-column RGB matrix

22 Functions — Alphabetical List

22-3558

Color for each group, specified as the comma-separated pair consisting of 'Color' and a
string, cell array of strings, or rows of a three-column RGB matrix.

For example, if you have two between-subject factors, drug and sex, with each having two
groups, you can specify red as the color for the groups of drug and blue as the color for
the groups of sex as follows.
Example: 'Color','rrbb'

Data Types: single | double | cell

'LineStyle' — Line style for each group
cell array of strings

Line style for each group, specified as the comma-separated pair consisting of
'LineStyle' and a cell array of strings.

For example, if you have two between-subject factors, drug and sex, with each having
two groups, you can specify - as the line style of one group and : as the line style for the
other group as follows.
Example: 'LineStyle',{'-' ':' '-' ':'}

Data Types: cell

Output Arguments
H — Handle to plotted lines
handle

Handle to plotted lines, returned as a handle.

Examples
Plot Expected Marginal Means

Load the sample data.

load fisheriris

The column vector speciesconsists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

 plotprofile

22-3559

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform data grouped by the factor species.

plotprofile(rm,'species')

22 Functions — Alphabetical List

22-3560

The estimated marginal means seem to differ with group. You can compute the standard
error and the 95% confidence intervals for the marginal means using the margmean
method.

Plot Marginal Means for Two Groups

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 through y8 as responses. The table within includes the
within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the
responses, and age, IQ, group, gender, and the group-gender interaction are the predictor
variables. Also specify the within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Plot the estimated marginal means based on the factors Group and Gender.

ax1 = subplot(1,2,1);

plotprofile(R,'Group')

ax2 = subplot(1,2,2);

plotprofile(R,'Gender')

linkaxes([ax1 ax2],'y')

 plotprofile

22-3561

Plot the estimated marginal means based on the factor Group and grouped by Gender.

figure()

plotprofile(R,'Group','Group','Gender')

22 Functions — Alphabetical List

22-3562

See Also
fitrm | margmean | plot

 plotResiduals

22-3563

plotResiduals
Class: GeneralizedLinearModel

Plot residuals of generalized linear regression model

Syntax

plotResiduals(mdl)

plotResiduals(mdl,plottype)

h = plotResiduals(...)

h = plotResiduals(mdl,plottype,Name,Value)

Description

plotResiduals(mdl) gives a histogram plot of the residuals of the mdl nonlinear
model.

plotResiduals(mdl,plottype) plots residuals in a plot of type plottype.

h = plotResiduals(...) returns handles to the lines in the plot.

h = plotResiduals(mdl,plottype,Name,Value) plots with additional options
specified by one or more Name,Value pair arguments.

Tips

• For many plots, the Data Cursor tool in the figure window displays the x and y values
for any data point, along with the observation name or number.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

22 Functions — Alphabetical List

22-3564

plottype

String specifying the type of plot:

'caseorder' Residuals vs. case (row) order
'fitted' Residuals vs. fitted values
'histogram' Histogram
'lagged' Residuals vs. lagged residual (r(t) vs. r(t–1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Default: 'histogram'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

 plotResiduals

22-3565

Default: 0.5

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

'ResidualType'

String giving type of residual used in the plot.

'Raw' Observed minus fitted values
'LinearPredictor' Residuals on the linear predictor scale, equal to

the adjusted response value minus the fitted linear
combination of the predictors

'Pearson' Raw residuals divided by RMSE
'Anscombe' Residuals defined on transformed data with the

transformation chosen to remove skewness
'Deviance' Residuals based on the contribution of each observation to

the deviance

Default: 'Raw'

Output Arguments

h

Vector of handles to lines or patches in the plot.

22 Functions — Alphabetical List

22-3566

Definitions

Deviance

Deviance is twice the log likelihood of the model. Because this overall log likelihood is a
sum of log likelihoods for each observation, the residual plot of deviance type shows the
log likelihood per observation.

Examples

Residual Plots for Generalized Linear Models

Create residual plots of a fitted generalized linear model.

Generate artificial data for the model, Poisson random numbers with two underlying
predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');

Create a default residuals plot.

plotResiduals(mdl)

 plotResiduals

22-3567

Create a probability plot.

plotResiduals(mdl,'probability')

22 Functions — Alphabetical List

22-3568

The residuals do not match a normal distribution in the tails—they are more spread out.

Create a plot of the fitted residuals of Anscombe type.

 plotResiduals

22-3569

• “Residuals — Model Quality for Training Data” on page 10-27

See Also
GeneralizedLinearModel

More About
• “Generalized Linear Models” on page 10-12

22 Functions — Alphabetical List

22-3570

plotResiduals
Class: GeneralizedLinearMixedModel

Plot residuals of generalized linear mixed-effects model

Syntax

plotResiduals(glme,plottype)

plotResiduals(glme,plottype,Name,Value)

h = plotResiduals(___)

Description

plotResiduals(glme,plottype) plots the raw conditional residuals of the
generalized linear mixed-effects model glme in a plot of the type specified by plottype.

plotResiduals(glme,plottype,Name,Value) plots the conditional residuals of
glme using additional options specified by one or more Name,Value pair arguments. For
example, you can specify to plot the Pearson residuals.

h = plotResiduals(___) returns a handle, h, to the lines or patches in the plot of
residuals.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

plottype — Type of residual plot
'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' |
'symmetry'

 plotResiduals

22-3571

Type of residual plot, specified as one of the following strings.

'histogram' Histogram of residuals
'caseorder' Residuals versus case order. Case order is

the same as the row order used in the input
data tbl when fitting the model using
fitglme.

'fitted' Residuals versus fitted values
'lagged' Residuals versus lagged residual (r(t)

versus r(t – 1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Example: plotResiduals(glme,'lagged')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ResidualType' — Residual type
'raw' (default) | 'Pearson'

Residual type, specified by the comma-separated pair consisting of ResidualType and
one of the following.

Residual Type Formula

'raw'
r y g x z bci i i

T
i
T

i= - + +()-1 ˆ ˆb d

'Pearson'
r

r

w
v b

ci
pearson ci

i
i i

=

()()s
m b

2¶

ˆ, ˆ

22 Functions — Alphabetical List

22-3572

In each of these equations:

• yi is the ith element of the n-by-1 response vector, y, where i = 1, ..., n.
• g-1 is the inverse link function for the model.
• xi

T is the ith row of the fixed-effects design matrix X.
• zi

T is the ith row of the random-effects design matrix Z.
• δi is the ith offset value.
• σ2 is the dispersion parameter.
• wi is the ith observation weight.
• vi is the variance term for the ith observation.
• μi is the mean of the response for the ith observation.
•

b̂ and ˆb are estimated values of β and b.

Raw residuals from a generalized linear mixed-effects model have nonconstant variance.
Pearson residuals are expected to have an approximately constant variance, and are
generally used for analysis.
Example: 'ResidualType','Pearson'

Output Arguments

h — Handle to residual plot
graphics object

Handle to the residual plot, returned as a graphics object. You can use dot notation to
change certain property values of the object, including face color for a histogram, and
marker style and color for a scatterplot. For more information, see “Access Property
Values”.

Examples

Create Plots of Residuals

Navigate to the folder containing the sample data. Load the sample data.

 plotResiduals

22-3573

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

22 Functions — Alphabetical List

22-3574

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Create diagnostic plots using Pearson residuals to test the model assumptions.

Plot a histogram to visually confirm that the mean of the Pearson residuals is equal to 0.
If the model is correct, we expect the Pearson residuals to be centered at 0.

plotResiduals(glme,'histogram','ResidualType','Pearson')

 plotResiduals

22-3575

The histogram shows that the Pearson residuals are centered at 0.

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant
variance among the residuals (heteroscedasticity). We expect the conditional Pearson
residuals to have a constant variance. Therefore, a plot of conditional Pearson residuals
versus conditional fitted values should not reveal any systematic dependence on the
conditional fitted values.

plotResiduals(glme,'fitted','ResidualType','Pearson')

22 Functions — Alphabetical List

22-3576

The plot does not show a systematic dependence on the fitted values, so there are no
signs of nonconstant variance among the residuals.

Plot the Pearson residuals versus lagged residuals, to check for correlation among
the residuals. The conditional independence assumption in GLME implies that the
conditional Pearson residuals are approximately uncorrelated.

plotResiduals(glme,'lagged','ResidualType','Pearson')

 plotResiduals

22-3577

There is no pattern to the plot, so there are no signs of correlation among the residuals.

See Also
GeneralizedLinearMixedModel | fitglme | fitted | plot | residuals

22 Functions — Alphabetical List

22-3578

plotResiduals
Class: LinearModel

Plot residuals of linear regression model

Syntax
plotResiduals(mdl)

plotResiduals(mdl,plottype)

h = plotResiduals(...)

h = plotResiduals(mdl,plottype,Name,Value)

Description
plotResiduals(mdl) gives a histogram plot of the residuals of the mdl linear model.

plotResiduals(mdl,plottype) plots residuals in a plot of type plottype.

h = plotResiduals(...) returns handles to the lines in the plot.

h = plotResiduals(mdl,plottype,Name,Value) plots with additional options
specified by one or more Name,Value pair arguments.

Tips
• For many plots, the Data Cursor tool in the figure window displays the x and y values

for any data point, along with the observation name or number.

Input Arguments
mdl

Linear model, as constructed by fitlm or stepwiselm.

plottype

String specifying the type of plot:

 plotResiduals

22-3579

'caseorder' Residuals vs. case (row) order
'fitted' Residuals vs. fitted values
'histogram' Histogram
'lagged' Residuals vs. lagged residual (r(t) vs. r(t–1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Default: 'histogram'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

Default: 0.5

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

22 Functions — Alphabetical List

22-3580

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

'ResidualType'

Type of residual used in the plot:

'Raw' Observed minus fitted values
'Pearson' Raw residuals divided by RMSE
'Standardized' Raw residuals divided by their estimated standard

deviation
'Studentized' Raw residuals divided by an independent (delete-1)

estimate of their standard deviation

Default: 'Raw'

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Linear Residuals Plot

Plot the residuals of a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model
year, weight, and weight squared.

load carsmall

 plotResiduals

22-3581

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Plot the raw residuals.

plotResiduals(mdl)

Residual Probability Plot

Create a normal probability plot of the residuals of a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model
year, weight, and weight squared.

load carsmall

X = [Weight,Model_Year];

mdl = fitlm(X,MPG,...

 'y ~ x2 + x1^2','Categorical',2);

22 Functions — Alphabetical List

22-3582

Create a normal probability plot of the residuals of the fitted model.

plotResiduals(mdl,'probability')

• “Residuals — Model Quality for Training Data” on page 9-23
• “Linear Regression Workflow” on page 9-41
• “Compare large and small stepwise models” on page 9-124
• “Robust Regression versus Standard Least-Squares Fit” on page 9-128

Alternatives

The mdl.Residuals table contains the information in residual plots.

See Also
LinearModel | plotDiagnostics

 plotResiduals

22-3583

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3584

plotResiduals
Class: LinearMixedModel

Plot residuals of linear mixed-effects model

Syntax

plotResiduals(lme,plottype)

plotResiduals(lme,plottype,Name,Value)

h = plotResiduals(___)

Description

plotResiduals(lme,plottype) plots the raw conditional residuals of the linear
mixed-effects model lme in a plot of the type specified by plottype.

plotResiduals(lme,plottype,Name,Value) also plots the residuals of the linear
mixed-effects model lme with additional options specified by one or more name-value
pair arguments. For example, you can specify the residual type to plot.

plotResiduals also accepts some other name-value pair arguments that specify the
properties of the primary line in the plot. For those name-value pairs, see plot.

h = plotResiduals(___) returns a handle, h, to the lines or patches in the plot of
residuals.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

 plotResiduals

22-3585

plottype — Type of residual plot
'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' |
'symmetry'

Type of residual plot, specified as one of the following strings.

'histogram' Default. Histogram of residuals
'caseorder' Residuals versus case (row) order
'fitted' Residuals versus fitted values
'lagged' Residuals versus lagged residual (r(t)

versus r(t – 1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Example: plotResiduals(lme,'lagged')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ResidualType' — Residual type
'Raw' (default) | 'Pearson' | 'Standardized'

Residual type, specified by the comma-separated pair consisting of ResidualType and
one of the following.

Residual Type Conditional Marginal

'Raw'
r y X Zbi

C

i
= - -È

Î
˘
˚

ˆ ˆb r y Xi
M

i
= -È

Î
˘
˚b̂

'Pearson'

pr
r

Var y X Zb
i
C i

C

y b
ii

=
- -()È

Î
˘
˚

·
, b

pr
r

Var y X
i
M i

M

y
ii

=
-()È

Î
˘
˚

· b

22 Functions — Alphabetical List

22-3586

Residual Type Conditional Marginal

'Standardized'

st
r

Var r
i
C i

C

y
C

ii

=

()È
ÎÍ

˘
˚̇

·

st
r

Var r
i
M i

M

y
M

ii

=

()È
ÎÍ

˘
˚̇

·

For more information on the conditional and marginal residuals and residual variances,
see Definitions at the end of this page.

Example: 'ResidualType','Standardized'

Output Arguments

h — Handle to residual plot
handle

Handle to the residual plot, returned as a handle.

Examples

Examine Residuals

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

 plotResiduals

22-3587

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Plot the histogram of the raw residuals.

plotResiduals(lme)

Plot the residuals versus the fitted values.

figure();

plotResiduals(lme,'fitted')

22 Functions — Alphabetical List

22-3588

There is no obvious pattern, so there are no immediate signs of heteroscedasticity.

Create the normal probability plot of residuals.

figure();

plotResiduals(lme,'probability')

 plotResiduals

22-3589

Data appears to be normal.

Find the observation number for the data that appears to be an outlier to the right of the
plot.

find(residuals(lme)>0.25)

ans =

 101

Create a box plot of the raw, Pearson, and standardized residuals.

r = residuals(lme);

22 Functions — Alphabetical List

22-3590

pr = residuals(lme,'ResidualType','Pearson');

st = residuals(lme,'ResidualType','Standardized');

X = [r pr st];

boxplot(X,'labels',{'Raw','Pearson','Standardized'});

All three box plots point out the outlier on the right tail of the distribution. The box plots
of raw and Pearson residuals also point out a second possible outlier on the left tail. Find
the corresponding observation number.

find(pr<-2)

ans =

 10

 plotResiduals

22-3591

Plot the raw residuals versus lagged residuals.

plotResiduals(lme,'lagged')

There is no obvious pattern in the graph. The residuals do not appear to be correlated.

See Also
fitted | LinearMixedModel | residuals

22 Functions — Alphabetical List

22-3592

plotResiduals
Class: NonLinearModel

Plot residuals of nonlinear regression model

Syntax

plotResiduals(mdl)

plotResiduals(mdl,plottype)

h = plotResiduals(...)

h = plotResiduals(mdl,plottype,Name,Value)

Description

plotResiduals(mdl) gives a histogram plot of the residuals of the mdl nonlinear
model.

plotResiduals(mdl,plottype) plots residuals in a plot of type plottype.

h = plotResiduals(...) returns handles to the lines in the plot.

h = plotResiduals(mdl,plottype,Name,Value) plots with additional options
specified by one or more Name,Value pair arguments.

Tips

• For many plots, the Data Cursor tool in the figure window displays the x and y values
for any data point, along with the observation name or number.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

 plotResiduals

22-3593

plottype

String specifying the type of plot:

'caseorder' Residuals vs. case (row) order
'fitted' Residuals vs. fitted values
'histogram' Histogram
'lagged' Residuals vs. lagged residual (r(t) vs. r(t–1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Default: 'histogram'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note: The plot property name-value pairs apply to the first returned handle h(1).

'Color'

Color of the line or marker, a string or ColorSpec specification. For details, see
linespec.

'LineStyle'

Type of line, a string or Chart Line Properties specification. For details, see linespec.

'LineWidth'

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72
inch.

Default: 0.5

22 Functions — Alphabetical List

22-3594

'MarkerEdgeColor'

Color of the marker or edge color for filled markers, a string or ColorSpec specification.
For details, see linespec.

'MarkerFaceColor'

Color of the marker face for filled markers, a string or ColorSpec specification. For
details, see linespec.

'MarkerSize'

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

'ResidualType'

Type of residual used in the plot:

'Raw' Observed minus fitted values
'Pearson' Raw residuals divided by RMSE
'Standardized' Raw residuals divided by their estimated standard

deviation
'Studentized' Raw residuals divided by an independent (delete-1)

estimate of their standard deviation

Default: 'Raw'

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Residual Plot

Plot the residuals of a fitted nonlinear model.

 plotResiduals

22-3595

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction

mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);

Plot the residuals of the fitted model.

plotResiduals(mdl)

Residual Probability Plot

Create a normal probability plot of the residuals of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction

mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);

Create a normal probability plot of the residuals of the fitted model.

22 Functions — Alphabetical List

22-3596

plotResiduals(mdl,'probability')

• “Examine Quality and Adjust the Fitted Nonlinear Model” on page 11-7
• “Nonlinear Regression Workflow” on page 11-14

See Also
NonLinearModel | plotDiagnostics

More About
• “Nonlinear Regression” on page 11-2

 plotSlice

22-3597

plotSlice

Class: GeneralizedLinearModel

Plot of slices through fitted generalized linear regression surface

Syntax

plotSlice(mdl)

h = plotSlice(mdl)

Description

plotSlice(mdl) creates a new figure containing a series of plots, each representing a
slice through the regression surface predicted by mdl. For each plot, the surface slice is
shown as a function of a single predictor variable, with the other predictor variables held
constant.

h = plotSlice(mdl) returns handles to the lines in the plot.

Tips

• If there are more than eight predictors, plotSlice selects the first five for plotting.
Use the Predictors menu to control which predictors are plotted.

• The Bounds menu lets you choose between simultaneous or non-simultaneous
bounds, and between bounds on the function or bounds on a new observation.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

22 Functions — Alphabetical List

22-3598

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Slice Plot of Generalized Linear Regression Model

Create a slice plot of a Poisson generalized linear model.

Generate artificial data for the model using Poisson random numbers with two
underlying predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');

Create the slice plot.

plotSlice(mdl)

 plotSlice

22-3599

Drag the x1 prediction line to the right and view the changes in the prediction and the
response curve for the x2 predictor.

• “Diagnostic Plots” on page 10-25
• “Plots to Understand Predictor Effects and How to Modify a Model” on page 10-30

22 Functions — Alphabetical List

22-3600

See Also
GeneralizedLinearModel | predict

More About
• “Generalized Linear Models” on page 10-12

 plotSlice

22-3601

plotSlice

Class: LinearModel

Plot of slices through fitted linear regression surface

Syntax

plotSlice(mdl)

h = plotSlice(mdl)

Description

plotSlice(mdl) creates a new figure containing a series of plots, each representing a
slice through the regression surface predicted by mdl. For each plot, the surface slice is
shown as a function of a single predictor variable, with the other predictor variables held
constant.

h = plotSlice(mdl) returns handles to the lines in the plot.

Tips

• If there are more than eight predictors, plotSlice selects the first five for plotting.
Use the Predictors menu to control which predictors are plotted.

• The Bounds menu lets you choose between simultaneous or non-simultaneous
bounds, and between bounds on the function or bounds on a new observation.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

22 Functions — Alphabetical List

22-3602

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Slice Plot

Plot the slices through a fitted linear model.

Load the carsmall data and fit a linear model of the mileage as a function of model
year, weight, and weight squared.

load carsmall

tbl = table(MPG,Weight);

tbl.Year = ordinal(Model_Year);

mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create a slice plot.

plotSlice(mdl)

 plotSlice

22-3603

Drag the Weight prediction line to the right and observe the change in the predicted MPG
and the response curve for Year.

• “Plots to Understand Predictor Effects” on page 9-28

See Also
predict | LinearModel

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3604

plotSlice

Class: NonLinearModel

Plot of slices through fitted nonlinear regression surface

Syntax

plotSlice(mdl)

h = plotSlice(mdl)

Description

plotSlice(mdl) creates a new figure containing a series of plots, each representing a
slice through the regression surface predicted by mdl. For each plot, the surface slice is
shown as a function of a single predictor variable, with the other predictor variables held
constant.

h = plotSlice(mdl) returns handles to the lines in the plot.

Tips

• If there are more than eight predictors, plotSlice selects the first five for plotting.
Use the Predictors menu to control which predictors are plotted.

• The Bounds menu lets you choose between simultaneous or non-simultaneous
bounds, and between bounds on the function or bounds on a new observation.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

 plotSlice

22-3605

Output Arguments

h

Vector of handles to lines or patches in the plot.

Examples

Slice Plot

Plot slices of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction

mdl = fitnlm(reactants,...

 rate,@hougen,[1 .05 .02 .1 2]);

Create a slice plot

plotSlice(mdl)

22 Functions — Alphabetical List

22-3606

Drag the X1 prediction line to the right, and observe the change in the predicted response
y and in the predicted response curves to X2 and X3.

 plotSlice

22-3607

• “Examine Quality and Adjust the Fitted Nonlinear Model” on page 11-7
• “Predict or Simulate Responses Using a Nonlinear Model” on page 11-10
• “Nonlinear Regression Workflow” on page 11-14

See Also
NonLinearModel | predict

More About
• “Nonlinear Regression” on page 11-2

22 Functions — Alphabetical List

22-3608

plsregress

Partial least-squares regression

Syntax

[XL,YL] = plsregress(X,Y,ncomp)

[XL,YL,XS] = plsregress(X,Y,ncomp)

[XL,YL,XS,YS] = plsregress(X,Y,ncomp)

[XL,YL,XS,YS,BETA] = PLSREGRESS(X,Y,ncomp,...)

[XL,YL,XS,YS,BETA,PCTVAR] = plsregress(X,Y,ncomp)

[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(X,Y,ncomp)

[XL,YL,XS,YS,BETA,PCTVAR,MSE] =

plsregress(...,param1,val1,param2,val2,...)

[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = PLSREGRESS(X,Y,ncomp,...)

Description

[XL,YL] = plsregress(X,Y,ncomp) computes a partial least-squares (PLS)
regression of Y on X, using ncomp PLS components, and returns the predictor and
response loadings in XL and YL, respectively. X is an n-by-p matrix of predictor
variables, with rows corresponding to observations and columns to variables. Y is an
n-by-m response matrix. XL is a p-by-ncomp matrix of predictor loadings, where each
row contains coefficients that define a linear combination of PLS components that
approximate the original predictor variables. YL is an m-by-ncomp matrix of response
loadings, where each row contains coefficients that define a linear combination of PLS
components that approximate the original response variables.

[XL,YL,XS] = plsregress(X,Y,ncomp) returns the predictor scores XS, that is, the
PLS components that are linear combinations of the variables in X. XS is an n-by-ncomp
orthonormal matrix with rows corresponding to observations and columns to components.

[XL,YL,XS,YS] = plsregress(X,Y,ncomp) returns the response scores YS,
that is, the linear combinations of the responses with which the PLS components XS
have maximum covariance. YS is an n-by-ncomp matrix with rows corresponding to
observations and columns to components. YS is neither orthogonal nor normalized.

 plsregress

22-3609

plsregress uses the SIMPLS algorithm, first centering X and Y by subtracting off
column means to get centered variables X0 and Y0. However, it does not rescale the
columns. To perform PLS with standardized variables, use zscore to normalize X and Y.

If ncomp is omitted, its default value is min(size(X,1)-1,size(X,2)).

The relationships between the scores, loadings, and centered variables X0 and Y0 are:

XL = (XS\X0)' = X0'*XS,

YL = (XS\Y0)' = Y0'*XS,

XL and YL are the coefficients from regressing X0 and Y0 on XS, and XS*XL' and XS*YL'
are the PLS approximations to X0 and Y0.

plsregress initially computes YS as:

YS = Y0*YL = Y0*Y0'*XS,

By convention, however, plsregress then orthogonalizes each column of YS with
respect to preceding columns of XS, so that XS'*YS is lower triangular.

[XL,YL,XS,YS,BETA] = PLSREGRESS(X,Y,ncomp,...) returns the PLS regression
coefficients BETA. BETA is a (p+1)-by-m matrix, containing intercept terms in the first
row:

Y = [ones(n,1),X]*BETA + Yresiduals,

Y0 = X0*BETA(2:end,:) + Yresiduals. Here Yresiduals is the vector of response
residuals.

[XL,YL,XS,YS,BETA,PCTVAR] = plsregress(X,Y,ncomp) returns a 2-by-ncomp
matrix PCTVAR containing the percentage of variance explained by the model. The
first row of PCTVAR contains the percentage of variance explained in X by each PLS
component, and the second row contains the percentage of variance explained in Y.

[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(X,Y,ncomp) returns a 2-
by-(ncomp+1) matrix MSE containing estimated mean-squared errors for PLS models
with 0:ncomp components. The first row of MSE contains mean-squared errors for
the predictor variables in X, and the second row contains mean-squared errors for the
response variable(s) in Y.

22 Functions — Alphabetical List

22-3610

[XL,YL,XS,YS,BETA,PCTVAR,MSE] =

plsregress(...,param1,val1,param2,val2,...) specifies optional parameter
name/value pairs from the following table to control the calculation of MSE.

Parameter Value

'cv' The method used to compute MSE.

• When the value is a positive integer k, plsregress uses k-fold cross-
validation.

• When the value is an object of the cvpartition class, other forms of cross-
validation can be specified.

• When the value is 'resubstitution', plsregress uses X and Y both to fit
the model and to estimate the mean-squared errors, without cross-validation.

The default is 'resubstitution'.
'mcreps' A positive integer indicating the number of Monte-Carlo repetitions for cross-

validation. The default value is 1. The value must be 1 if the value of 'cv' is
'resubstitution'.

options A structure that specifies whether to run in parallel, and specifies the random
stream or streams. Create the options structure with statset. Option fields:

• UseParallel — Set to true to compute in parallel. Default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible

fashion. Default is false. To compute reproducibly, set Streams to a type
allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array consisting of one such object. If
you do not specify Streams, plsregress uses the default stream.

[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = PLSREGRESS(X,Y,ncomp,...)

returns a structure stats with the following fields:

• W — A p-by-ncomp matrix of PLS weights so that XS = X0*W.
• T2 — The T2 statistic for each point in XS.
• Xresiduals — The predictor residuals, that is, X0-XS*XL'.
• Yresiduals — The response residuals, that is, Y0-XS*YL'.

 plsregress

22-3611

Examples

Perform Partial Least-Squares Regression

Load data on near infrared (NIR) spectral intensities of 60 samples of gasoline at 401
wavelengths, and their octane ratings.

load spectra

X = NIR;

y = octane;

Perform PLS regression with ten components.

[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);

Plot the percent of variance explained in the response variable as a function of the
number of components.

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');

xlabel('Number of PLS components');

ylabel('Percent Variance Explained in y');

22 Functions — Alphabetical List

22-3612

Compute the fitted response and display the residuals.

yfit = [ones(size(X,1),1) X]*beta;

residuals = y - yfit;

stem(residuals)

xlabel('Observation');

ylabel('Residual');

 plsregress

22-3613

References

[1] de Jong, S. “SIMPLS: An Alternative Approach to Partial Least Squares Regression.”
Chemometrics and Intelligent Laboratory Systems. Vol. 18, 1993, pp. 251–263.

[2] Rosipal, R., and N. Kramer. “Overview and Recent Advances in Partial Least
Squares.” Subspace, Latent Structure and Feature Selection: Statistical and
Optimization Perspectives Workshop (SLSFS 2005), Revised Selected Papers
(Lecture Notes in Computer Science 3940). Berlin, Germany: Springer-Verlag,
2006, pp. 34–51.

22 Functions — Alphabetical List

22-3614

See Also
regress | sequentialfs

 PointOrder property

22-3615

PointOrder property
Class: sobolset

Point generation method

Description

The PointOrder property contains a string that specifies the order in which the Sobol
sequence points are produced. The property value must be one of 'standard' or
'graycode'. When set to 'standard' the points produced match the original Sobol
sequence implementation. When set to 'graycode', the sequence is generated using an
implementation that uses the Gray code of the index instead of the index itself.

22 Functions — Alphabetical List

22-3616

PointSet property
Class: qrandstream

Point set from which stream is drawn

Description

The PointSet property contains a copy of the point set from which the stream is
providing points. The point set is specified during construction of a quasi-random stream
and cannot subsequently be altered.

Examples
Q = qrandstream('sobol', 5, 'Skip', 8);

% Create a new stream based on the same sequence as that in Q

Q2 = qrandstream(Q.PointSet);

u1 = qrand(Q, 10)

u2 = qrand(Q2, 10) % contains exactly the same values as u1

 poisscdf

22-3617

poisscdf
Poisson cumulative distribution function

Syntax

p = poisscdf(x,lambda)

p = poisscdf(x,lambda,'upper')

Description

p = poisscdf(x,lambda) returns the Poisson cdf at each value in x using the
corresponding mean parameters in lambda. x and lambda can be vectors, matrices,
or multidimensional arrays that have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other input. The parameters in lambda
must be positive.

p = poisscdf(x,lambda,'upper') returns the complement of the Poisson cdf at each
value in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

The Poisson cdf is

p F x e
i

i

i

floor x

= = −

=
∑(|)

!

()

l
ll

0

Examples

Compute Poisson Distribution cdf

For example, consider a Quality Assurance department that performs random tests
of individual hard disks. Their policy is to shut down the manufacturing process if an
inspector finds more than four bad sectors on a disk. What is the probability of shutting
down the process if the mean number of bad sectors (λ) is two?

probability = 1-poisscdf(4,2)

22 Functions — Alphabetical List

22-3618

probability =

 0.0527

About 5% of the time, a normally functioning manufacturing process produces more than
four flaws on a hard disk.

Suppose the average number of flaws (λ) increases to four. What is the probability of
finding fewer than five flaws on a hard drive?

probability = poisscdf(4,4)

probability =

 0.6288

This means that this faulty manufacturing process continues to operate after this first
inspection almost 63% of the time.

More About
• “Poisson Distribution” on page B-138

See Also
cdf | poisspdf | poissinv | poisstat | poissfit | poissrnd

 poissfit

22-3619

poissfit
Poisson parameter estimates

Syntax

lambdahat = poissfit(data)

[lambdahat,lambdaci] = poissfit(data)

[lambdahat,lambdaci] = poissfit(data,alpha)

Description

lambdahat = poissfit(data) returns the maximum likelihood estimate (MLE) of the
parameter of the Poisson distribution, λ, given the data data.

[lambdahat,lambdaci] = poissfit(data) also gives 95% confidence intervals in
lamdaci.

[lambdahat,lambdaci] = poissfit(data,alpha) gives 100(1 - alpha)%
confidence intervals. For example alpha = 0.001 yields 99.9% confidence intervals.

The sample mean is the MLE of λ.

l̂ =
=
∑1

1
n

x
i

i

n

Examples
r = poissrnd(5,10,2);

[l,lci] = poissfit(r)

l =

 7.4000 6.3000

lci =

 5.8000 4.8000

 9.1000 7.9000

22 Functions — Alphabetical List

22-3620

More About
• “Poisson Distribution” on page B-138

See Also
mle | poisspdf | poisscdf | poissinv | poisstat | poissrnd

 poissinv

22-3621

poissinv
Poisson inverse cumulative distribution function

Syntax

X = poissinv(P,lambda)

Description

X = poissinv(P,lambda) returns the smallest value X such that the Poisson cdf
evaluated at X equals or exceeds P, using mean parameters in lambda. P and lambda
can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other input.

Examples

If the average number of defects (λ) is two, what is the 95th percentile of the number of
defects?

poissinv(0.95,2)

ans =

 5

What is the median number of defects?

median_defects = poissinv(0.50,2)

median_defects =

 2

More About
• “Poisson Distribution” on page B-138

See Also
icdf | poisscdf | poisspdf | poisstat | poissfit | poissrnd

22 Functions — Alphabetical List

22-3622

prob.PoissonDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Poisson probability distribution object

Description

prob.PoissonDistribution is an object consisting of parameters, a model description,
and sample data for a Poisson probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Poisson') creates a Poisson probability distribution object using the
default parameter values.

pd = makedist('Poisson','lambda',lambda) creates a Poisson distribution object
using the specified parameter value.

Input Arguments

lambda — Mean
1 (default) | nonnegative scalar value

Mean of the Poisson distribution, specified as a nonnegative scalar value.
Data Types: single | double

Properties

lambda — Mean
nonnegative scalar value

Mean of the Poisson distribution, stored as a nonnegative scalar value.

 prob.PoissonDistribution class

22-3623

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between

22 Functions — Alphabetical List

22-3624

the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.

 prob.PoissonDistribution class

22-3625

Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

22 Functions — Alphabetical List

22-3626

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Poisson Distribution

The Poisson distribution is appropriate for applications that involve counting the number
of times a random event occurs in a given amount of time, distance, area, etc. If the
number of counts follows the Poisson distribution, then the interval between individual
counts follows the exponential distribution.

The Poisson distribution uses the following parameters.

Parameter Description Support

lambda Mean l ≥ 0

The probability density function of the Poisson distribution is

f x
x

e x
x

|
!

; , , ,..., .l
l l() = = •- 0 1 2

Examples

Create a Poisson Distribution Object Using Default Parameters

Create a Poisson distribution object using the default parameter values.

pd = makedist('Poisson')

 prob.PoissonDistribution class

22-3627

pd =

 PoissonDistribution

 Poisson distribution

 lambda = 1

Create a Poisson Distribution Object Using Specified Parameters

Create a Poisson distribution object by specifying the parameter values.

pd = makedist('Poisson','lambda',5)

pd =

 PoissonDistribution

 Poisson distribution

 lambda = 5

Compute the variance of the distribution.

v = var(pd)

v =

 5

For the Poisson distribution, both the mean and variance are equal to the parameter
lambda.

See Also
dfittool | fitdist | makedist

More About
• “Poisson Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-3628

poisspdf
Poisson probability density function

Syntax

Y = poisspdf(X,lambda)

Description

Y = poisspdf(X,lambda) computes the Poisson pdf at each of the values in
X using mean parameters in lambda. X and lambda can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other input. The parameters in lambda
must all be positive.

The Poisson pdf is

f x
x

e x
x

(|)
!

; , , , , .l
l l

= = •
- 0 1 2…

The density function is zero unless x is an integer.

Examples

A computer hard disk manufacturer has observed that flaws occur randomly in the
manufacturing process at the average rate of two flaws in a 4 GB hard disk and has
found this rate to be acceptable. What is the probability that a disk will be manufactured
with no defects?

In this problem, λ = 2 and x = 0.

p = poisspdf(0,2)

p =

 0.1353

 poisspdf

22-3629

More About
• “Poisson Distribution” on page B-138

See Also
pdf | poisscdf | poissinv | poisstat | poissfit | poissrnd

22 Functions — Alphabetical List

22-3630

poissrnd
Poisson random numbers

Syntax

R = poissrnd(lambda)

R = poissrnd(lambda,m,n,...)

R = poissrnd(lambda,[m,n,...])

Description

R = poissrnd(lambda) generates random numbers from the Poisson distribution with
mean parameter lambda. lambda can be a vector, a matrix, or a multidimensional array.
The size of R is the size of lambda.

R = poissrnd(lambda,m,n,...) or R = poissrnd(lambda,[m,n,...]) generates
an m-by-n-by-... array. The lambda parameter can be a scalar or an array of the same size
as R.

Examples

Generate a random sample of 10 pseudo-observations from a Poisson distribution with λ
= 2.

lambda = 2;

random_sample1 = poissrnd(lambda,1,10)

random_sample1 =

 1 0 1 2 1 3 4 2 0 0

random_sample2 = poissrnd(lambda,[1 10])

random_sample2 =

 1 1 1 5 0 3 2 2 3 4

random_sample3 = poissrnd(lambda(ones(1,10)))

random_sample3 =

 poissrnd

22-3631

 3 2 1 1 0 0 4 0 2 0

More About
• “Poisson Distribution” on page B-138

See Also
random | poisspdf | poisscdf | poissinv | poisstat | poissfit

22 Functions — Alphabetical List

22-3632

poisstat
Poisson mean and variance

Syntax

M = poisstat(lambda)

[M,V] = poisstat(lambda)

Description

M = poisstat(lambda) returns the mean of the Poisson distribution using mean
parameters in lambda. The size of M is the size of lambda.

[M,V] = poisstat(lambda) also returns the variance V of the Poisson distribution.

For the Poisson distribution with parameter λ, both the mean and variance are equal
to λ.

Examples

Find the mean and variance for the Poisson distribution with λ = 2.

[m,v] = poisstat([1 2; 3 4])

m =

 1 2

 3 4

v =

 1 2

 3 4

More About
• “Poisson Distribution” on page B-138

See Also
poisspdf | poisscdf | poissinv | poissfit | poissrnd

 polyconf

22-3633

polyconf
Polynomial confidence intervals

Syntax

Y = polyconf(p,X)

[Y,DELTA] = polyconf(p,X,S)

[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...)

Description

Y = polyconf(p,X) evaluates the polynomial p at the values in X. p is a vector of
coefficients in descending powers.

[Y,DELTA] = polyconf(p,X,S) takes outputs p and S from polyfit and generates
95% prediction intervals Y ± DELTA for new observations at the values in X.

[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs chosen from the following list.

Parameter Value

'alpha' A value between 0 and 1 specifying a confidence level of 100*(1-
alpha)%. The default is 0.05.

'mu' A two-element vector containing centering and scaling parameters.
With this option, polyconf uses (X-mu(1))/mu(2) in place of X.

'predopt' Either 'observation' (the default) to compute prediction
intervals for new observations at the values in X, or 'curve' to
compute confidence intervals for the fit evaluated at the values in
X. See below.

'simopt' Either 'off' (the default) for nonsimultaneous bounds, or 'on' for
simultaneous bounds. See below.

The 'predopt' and 'simopt' parameters can be understood in terms of the following
functions:

22 Functions — Alphabetical List

22-3634

• p(x) — the unknown mean function estimated by the fit
• l(x) — the lower confidence bound
• u(x) — the upper confidence bound

Suppose you make a new observation yn+1 at xn+1, so that
yn+1(xn+1) = p(xn+1) + εn+1

By default, the interval [ln+1(xn+1), un+1(xn+1)] is a 95% confidence bound on yn+1(xn+1).

The following combinations of the 'predopt' and 'simopt' parameters allow you to
specify other bounds.

'simopt' 'predopt' Bounded Quantity

'off' 'observation' yn+1(xn+1) (default)
'off' 'curve' p(xn+1)
'on' 'observation' yn+1(x), for all x
'on' 'curve' p(x), for all x

In general, 'observation' intervals are wider than 'curve' intervals, because of the
additional uncertainty of predicting a new response value (the curve plus random errors).
Likewise, simultaneous intervals are wider than nonsimultaneous intervals, because of
the additional uncertainty of bounding values for all predictors x.

 polyconf

22-3635

Examples

This example uses code from the documentation example function polydemo, and calls
the documentation example function polystr to convert the coefficient vector p into
a string for the polynomial expression displayed in the figure title. It combines the
functions polyfit, polyval, roots, and polyconf to produce a formatted display of
data with a polynomial fit.

22 Functions — Alphabetical List

22-3636

Note: Statistics and Machine Learning Toolbox documentation example files are located
in the \help\toolbox\stats\examples subdirectory of your MATLAB root folder
(matlabroot). This subdirectory is not on the MATLAB path at installation. To use the
files in this subdirectory, either add the subdirectory to the MATLAB path (addpath) or
make the subdirectory your current working folder (cd).

Display simulated data with a quadratic trend, a fitted quadratic polynomial, and 95%
prediction intervals for new observations:

xdata = -5:5;

ydata = xdata.^2 - 5*xdata - 3 + 5*randn(size(xdata));

degree = 2; % Degree of the fit

alpha = 0.05; % Significance level

% Compute the fit and return the structure used by

% POLYCONF.

[p,S] = polyfit(xdata,ydata,degree);

% Compute the real roots and determine the extent of the

% data.

r = roots(p)'; % Roots as a row vector.

real_r = r(imag(r) == 0); % Real roots.

% Assure that the data are row vectors.

xdata = reshape(xdata,1,length(xdata));

ydata = reshape(ydata,1,length(ydata));

% Extent of the data.

mx = min([real_r,xdata]);

Mx = max([real_r,xdata]);

my = min([ydata,0]);

My = max([ydata,0]);

% Scale factors for plotting.

sx = 0.05*(Mx-mx);

sy = 0.05*(My-my);

% Plot the data, the fit, and the roots.

hdata = plot(xdata,ydata,'md','MarkerSize',5,...

 'LineWidth',2);

hold on

xfit = mx-sx:0.01:Mx+sx;

 polyconf

22-3637

yfit = polyval(p,xfit);

hfit = plot(xfit,yfit,'b-','LineWidth',2);

hroots = plot(real_r,zeros(size(real_r)),...

 'bo','MarkerSize',5,...

 'LineWidth',2,...

 'MarkerFaceColor','b');

grid on

plot(xfit,zeros(size(xfit)),'k-','LineWidth',2)

axis([mx-sx Mx+sx my-sy My+sy])

% Add prediction intervals to the plot.

[Y,DELTA] = polyconf(p,xfit,S,'alpha',alpha);

hconf = plot(xfit,Y+DELTA,'b--');

plot(xfit,Y-DELTA,'b--')

% Display the polynomial fit and the real roots.

approx_p = round(100*p)/100; % Round for display.

htitle = title(['{\bf Fit: }',...

 texlabel(polystr(approx_p))]);

set(htitle,'Color','b')

approx_real_r = round(100*real_r)/100; % Round for display.

hxlabel = xlabel(['{\bf Real Roots: }',...

 num2str(approx_real_r)]);

set(hxlabel,'Color','b')

% Add a legend.

legend([hdata,hfit,hroots,hconf],...

 'Data','Fit','Real Roots of Fit',...

 '95% Prediction Intervals')

22 Functions — Alphabetical List

22-3638

See Also
polyfit | polytool | polyval

 polytool

22-3639

polytool
Interactive polynomial fitting

Syntax

polytool(x,y)

polytool(x,y,n)

polytool(x,y,n,alpha)

polytool(x,y,n,alpha,xname,yname)

h = polytool(...)

Description

polytool(x,y) fits a line to the vectors x and y and displays an interactive plot of
the result in a graphical interface. You can use the interface to explore the effects of
changing the parameters of the fit and to export fit results to the workspace.

polytool(x,y,n) initially fits a polynomial of degree n. The default is 1, which
produces a linear fit.

polytool(x,y,n,alpha) initially plots 100(1 - alpha)% confidence intervals on the
predicted values. The default is 0.05 which results in 95% confidence intervals.

polytool(x,y,n,alpha,xname,yname) labels the x and y values on the graphical
interface using the strings xname and yname. Specify n and alpha as [] to use their
default values.

h = polytool(...) outputs a vector of handles, h, to the line objects in the plot. The
handles are returned in the degree: data, fit, lower bounds, upper bounds.

Examples

Interactive polynomial fitting

This example shows how to start an interactive fitting session with polytool.

22 Functions — Alphabetical List

22-3640

Generate data from a quadratic curve with added noise.

rng('default') % for reproducibility

x = -5:5;

y = x.^2 - 5*x - 3 + 5*randn(size(x));

Fit a quadratic (degree-2) model with 0.90 confidence intervals.

n = 2;

alpha = 0.1;

polytool(x,y,n,alpha)

See Also
polyfit | polyconf | invpred | polyval

 posterior

22-3641

posterior

Class: gmdistribution

Posterior probabilities of components

Syntax

P = posterior(obj,X)

[P,nlogl] = posterior(obj,X)

Description

P = posterior(obj,X) returns the posterior probabilities of each of the k components
in the Gaussian mixture distribution defined by obj for each observation in the data
matrix X. X is n-by-d, where n is the number of observations and d is the dimension of
the data. obj is an object created by gmdistribution or fitgmdist. P is n-by-k, with
P(I,J) the probability of component J given observation I.

posterior treats NaN values as missing data. Rows of X with NaN values are excluded
from the computation.

[P,nlogl] = posterior(obj,X) also returns nlogl, the negative log-likelihood of
the data.

Examples

Compute Posterior Probabilities for Gaussian Mixture Variates

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd
function.

MU1 = [2 2];

SIGMA1 = [2 0; 0 1];

MU2 = [-2 -1];

22 Functions — Alphabetical List

22-3642

SIGMA2 = [1 0; 0 1];

rng(1); % For reproducibility

X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];

scatter(X(:,1),X(:,2),10,'.')

hold on

Fit a two-component Gaussian mixture model.

obj = fitgmdist(X,2);

h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

 posterior

22-3643

Compute posterior probabilities of the components.

P = posterior(obj,X);

delete(h)

scatter(X(:,1),X(:,2),10,P(:,1))

hb = colorbar;

ylabel(hb,'Component 1 Probability')

22 Functions — Alphabetical List

22-3644

See Also
gmdistribution | mahal | fitgmdist | cluster

 posterior

22-3645

posterior
Class: NaiveBayes

Compute posterior probability of each class for test data

Syntax

post = posterior(nb,test)

[post,cpre] = posterior(nb,test)

[post,cpre,logp] = posterior(nb,test)

[...] = posterior(..., 'HandleMissing',val)

Description

post = posterior(nb,test) returns the posterior probability of the observations
in test according to the NaiveBayes object nb. test is a N-by-nb.ndims matrix,
where N is the number of observations in the test data. Rows of test correspond to
points, columns of test correspond to features. post is a N-by-nb.nclasses matrix
containing the posterior probability of each observation for each class. post(i,j) is
the posterior probability of point I belonging to class j. Classes are ordered the same as
nb.clevels, i.e., column j of post corresponds to the jth class in nb.clevels. The
posterior probabilities corresponding to any empty classes are NaN.

[post,cpre] = posterior(nb,test) returns cpre, an N-by-1 vector, containing
the class to which each row of test has been assigned. cpre has the same type as
nb.CLevels.

[post,cpre,logp] = posterior(nb,test) returns logp, an N-by-1 vector
containing estimates of the log of the probability density function (PDF). logp(i) is
the log of the PDF of point i. The PDF value of point i is the sum of Prob(point I |
class J) * Pr{class J} taken over all classes.

[...] = posterior(..., 'HandleMissing',val) specifies how posterior treats
NaN (missing values). val can be one of the following:

'off' (default) Observations with NaN in any of the columns are not classified into
any class. The corresponding rows in post and logp are NaN. The

22 Functions — Alphabetical List

22-3646

corresponding rows in cpre are NaN (if obj.clevels is numeric
or logical), empty strings (if obj.clevels is char or cell array of
strings) or <undefined> (if obj.clevels is categorical).

'on' For observations having NaN in some (but not all) columns, post
and cpre are computed using the columns with non-NaN values.
Corresponding logp values are NaN.

See Also
NaiveBayes | fitNaiveBayes | predict

 prctile

22-3647

prctile
Percentiles of a data set

Syntax

Y = prctile(X,p)

Y = prctile(X,p,dim)

Description

Y = prctile(X,p) returns percentiles of the values in a data vector or matrix X for the
percentages p in the interval [0,100].

• If X is a vector, then Y is a scalar or a vector with the same length as the number of
percentiles required (length(p)). Y(i) contains the p(i) percentile.

• If X is a matrix, then Y is a row vector or a matrix, where the number of rows of Y is
equal to the number of percentiles required (length(p)). The ith row of Y contains
the p(i) percentiles of each column of X.

• For multidimensional arrays, prctile operates along the first nonsingleton
dimension of X.

Y = prctile(X,p,dim) returns percentiles along dimension dim.

Examples

Percentiles of a Data Vector

Generate a data set of size 10.

rng('default'); % for reproducibility

x = normrnd(5,2,1,10)

x =

 6.0753 8.6678 0.4823 6.7243 5.6375 2.3846 4.1328 5.6852 12.1568 10.5389

Calculate the 42nd percentile.

22 Functions — Alphabetical List

22-3648

Y = prctile(x,42)

Y =

 5.6709

Percentiles of a Data Matrix

Calculate the percentiles along the columns and rows of a data matrix for specified
percentages.

Generate a 5-by-5 data matrix.

X = (1:5)'*(2:6)

X =

 2 3 4 5 6

 4 6 8 10 12

 6 9 12 15 18

 8 12 16 20 24

 10 15 20 25 30

Calculate the 25th, 50th, and 75th percentiles along the columns of X.

Y = prctile(X,[25 50 75],1)

Y =

 3.5000 5.2500 7.0000 8.7500 10.5000

 6.0000 9.0000 12.0000 15.0000 18.0000

 8.5000 12.7500 17.0000 21.2500 25.5000

The rows of Y correspond to the percentiles of columns of X. For example, the 25th,
50th, and 75th percentiles of the third column of X with elements (4, 8, 12, 16, 20) are 7,
12, and 17, respectively. Y = prctile(X,[25 50 75]) returns the same percentile
matrix.

Calculate the 25th, 50th, and 75th percentiles along the rows of X.

Y = prctile(X,[25 50 75],2)

Y =

 2.7500 4.0000 5.2500

 5.5000 8.0000 10.5000

 8.2500 12.0000 15.7500

 11.0000 16.0000 21.0000

 prctile

22-3649

 13.7500 20.0000 26.2500

The rows of Y correspond to the percentiles of rows of X. For example, the 25th, 50th, and
75th percentiles of the first row of X with elements (2, 3, 4, 5, 6) are 2.75, 4, and 5.25,
respectively.

Input Arguments

X — Input data
vector | array

Input data, specified as a vector or array.
Data Types: double | single

p — Percentages
scalar | vector

Percentages for which to compute percentiles, returned as a scalar or vector of scalars
from 0 to 100.
Example: 25
Example: [25, 50, 75]
Data Types: double | single

dim — Dimension
1 (default) | positive integer

Dimension along which the percentiles of X are required, specified as a positive integer.
For example, for a matrix X, when dim = 1, prctile returns the quantile(s) of the
columns of X and when dim = 2, quantile returns the quantile(s) of the rows of X. For a
multidimensional array X, the length of the dimth dimension of Y is equal to the length of
p.

Data Types: double

Output Arguments

Y — Percentiles
scalar | array

22 Functions — Alphabetical List

22-3650

Percentiles of a data vector or array, specified as a scalar or array for one or more
percentage values.

• If X is a vector, then Y is a scalar or a vector with the same length as the number of
percentiles required (length(p)). Y(i) contains the p(i)th percentile.

• If X is a matrix, then Y is a vector or a matrix with the length of the dimth dimension
equal to the number percentiles required (length(p)). When dim = 1, for example,
the ith row of Y contains the p(i)th percentiles of columns of X.

• If X is an array of dimension d, then Y is an array with the length of the dimth
dimension equal to the number of percentiles required (length(p)).

More About

Multidimensional Array

A multidimensional array is an array with more than two dimensions. For example, if X
is a 1-by-3-by-4 array, then X is a 3-D array.

Nonsingleton Dimension

A first nonsingleton dimension is the first dimension of an array whose size is not equal
to 1. For example, if X is a 1-by-2-by-3-by-4 array, then the second dimension is the first
nonsingleton dimension of X.

Linear Interpolation

Linear interpolation uses linear polynomials to find yi = f(xi), the values of the underlying
function Y = f(X) at the points in the vector or array x. Given the data points (x1, y1)
and (x2, y2), where y1 = f(x1) and y2 = f(x2), linear interpolation finds y = f(x) for a given x
between x1 and x2 as follows:

y f x y
x x

x x
y y= = +

-()

-()
-()() .1

1

2 1
2 1

Similarly, if the 100(1.5/n)th percentile is y1.5/n and the 100(2.5/n)th percentile is y2.5/n,
then linear interpolation finds the 100(2.3/n)th percentile, y2.3/n as:

 prctile

22-3651

y y
n n

n n

y y

n n n n

2 3 1 5 2 5 1 5

2 3 1 5

2 5 1 5
. . . .

. .

. .
= +

-Ê
ËÁ

ˆ
¯̃

-Ê
Ë
Á

ˆ
¯
˜

-
Ê

Ë

Á
Á

ˆ

¯̄

˜
˜
.

Algorithms

For an n-element vector X, prctile returns percentiles as follows:

1 The sorted values in X are taken as the 100(0.5/n)th, 100(1.5/n)th, ..., 100([n –
0.5]/n)th percentiles. For example:

• For a data vector of five elements such as {6, 3, 2, 10, 1}, the sorted elements
{1, 2, 3, 6, 10} respectively correspond to the 10th, 30th, 50th, 70th, and 90th
percentiles.

• For a data vector of six elements such as {6, 3, 2, 10, 8, 1}, the sorted elements
{1, 2, 3, 6, 8, 10} respectively correspond to the (50/6)th, (150/6)th, (250/6)th,
(350/6)th, (450/6)th, and (550/6)th percentiles.

2 prctile uses linear interpolation to compute percentiles for percentages between
100(0.5/n) and 100([n – 0.5]/n).

3 prctile assigns the minimum or maximum values in X to the percentiles
corresponding to the percentages outside that range.

prctile treats NaNs as missing values and removes them.
• “Quantiles and Percentiles” on page 3-7

References

[1] Langford, E. “Quartiles in Elementary Statistics”, Journal of Statistics Education.
Vol. 14, No. 3, 2006.

See Also
iqr | median | quantile

22 Functions — Alphabetical List

22-3652

predict
Class: ClassificationKNN

Predict k-nearest neighbor classification

Syntax

label = predict(mdl,Xnew)

[label,score] = predict(mdl,Xnew)

[label,score,cost] = predict(mdl,Xnew)

Description

label = predict(mdl,Xnew) returns a vector of predicted class labels for a matrix
Xnew, based on mdl, a ClassificationKNN model.

[label,score] = predict(mdl,Xnew) returns a matrix of scores, indicating the
likelihood that a label comes from a particular class.

[label,score,cost] = predict(mdl,Xnew) returns a matrix of costs; label is the
vector of minimal costs for each row of cost

Input Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

 predict

22-3653

Xnew — Prediction points
matrix

Points at which mdl predicts classifications. Each row of Xnew is one point. The number
of columns in Xnew must equal the number of predictors in mdl.

If you specified to standardize the predictor data, that is, mdl.Mu and mdl.Sigma are
not empty ([]), then predict standardizes Xnew before predicting labels.

Output Arguments

label

Predicted class labels for the points in Xnew, a vector with length equal to the number
of rows of Xnew. The label is the class with minimal expected cost. See “Predicted Class
Label” on page 22-3653.

score

Numeric matrix of size N-by-K, where N is the number of observations (rows) in Xnew,
and K is the number of classes (in mdl.ClassNames). score(i,j) is the posterior
probability that row i of Xnew is of class j. See “Posterior Probability” on page 22-3654.

cost

Matrix of expected costs of size N-by-K, where N is the number of observations (rows) in
Xnew, and K is the number of classes (in mdl.ClassNames). cost(i,j) is the cost of
classifying row i of X as class j. See “Expected Cost” on page 22-3655.

Definitions

Predicted Class Label

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

22 Functions — Alphabetical List

22-3654

• ŷ is the predicted classification.

• K is the number of classes.
• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

Posterior Probability

For a vector (single query point) Xnew and model mdl, let:

• K be the number of nearest neighbors used in prediction, mdl.NumNeighbors
• nbd(mdl,Xnew) be the K nearest neighbors to Xnew in mdl.X
• Y(nbd) be the classifications of the points in nbd(mdl,Xnew), namely mdl.Y(nbd)
• W(nbd) be the weights of the points in nbd(mdl,Xnew)
• prior be the priors of the classes in mdl.Y

If there is a vector of prior probabilities, then the observation weights W are normalized
by class to sum to the priors. This might involve a calculation for the point Xnew, because
weights can depend on the distance from Xnew to the points in mdl.X.

The posterior probability p(j|Xnew) is

p j

W i

W i

Y X i j

i

i

|

()

()
.

(())

Xnew nbd

nbd

() =

=

Œ

Œ

Â

Â

1

Here, 1Y X i j(())=
 means 1 when mdl.Y(i) = j, and 0 otherwise.

True Misclassification Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when
you run fitcknn. Cost(i,j) is the cost of classifying an observation into class j if its

 predict

22-3655

true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other
words, the cost is 0 for correct classification, and 1 for incorrect classification.

Expected Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation. The third output of
predict is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier
mdl. Suppose you have K classes. You place the observations into a matrix Xnew with one
observation per row. The command

[label,score,cost] = predict(mdl,Xnew)

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost
matrix contains the expected (average) cost of classifying the observation into each of the
K classes. cost(n,k) is

ˆ | () | ,P i Xnew n C k i

i

K

() ()
=
Â

1

where

• K is the number of classes.
• ˆ | ()P i Xnew n() is the posterior probability of class i for observation Xnew(n).

• C k i|() is the true misclassification cost of classifying an observation as k when its
true class is i.

Examples

k-Nearest Neighbor Classification Predictions

Construct a k-nearest neighbor classifier for Fisher's iris data, where k = 5. Evaluate
some model predictions on new data.

Load the data.

22 Functions — Alphabetical List

22-3656

load fisheriris

X = meas;

Y = species;

Construct a classifier for 5-nearest neighbors. It is good practice to standardize non-
categorical predictor data.

mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1);

Predict the classifications for flowers with minimum, mean, and maximum
characteristics.

Xnew = [min(X);mean(X);max(X)];

[label,score,cost] = predict(mdl,Xnew)

label =

 'versicolor'

 'versicolor'

 'virginica'

score =

 0.4000 0.6000 0

 0 1.0000 0

 0 0 1.0000

cost =

 0.6000 0.4000 1.0000

 1.0000 0 1.0000

 1.0000 1.0000 0

The classifications have binary values for the score and cost matrices, meaning all five
nearest neighbors of each of the three points have identical classifications.

• “Predict Classification Based on a KNN Classifier” on page 16-30

See Also
ClassificationKNN | fitcknn

 predict

22-3657

More About
• “Classification Using Nearest Neighbors” on page 16-8

22 Functions — Alphabetical List

22-3658

predict

Class: CompactClassificationDiscriminant

Predict classification

Syntax

label = predict(obj,X)

[label,score] = predict(obj,X)

[label,score,cost] = predict(obj,X)

Description

label = predict(obj,X) returns a vector of predicted class labels for a matrix X,
based on obj, a trained full or compact classifier.

[label,score] = predict(obj,X) returns a matrix of scores (posterior
probabilities).

[label,score,cost] = predict(obj,X) returns a matrix of costs; label is the
vector of minimal costs for each row of cost.

Input Arguments

obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in obj.

 predict

22-3659

Output Arguments

label

Vector of class labels of the same type as the response data used in training obj. Each
entry of labels corresponds to a predicted class label for the corresponding row of X; see
“Predicted Class Label” on page 22-3660.

score

Numeric matrix of size N-by-K, where N is the number of observations (rows) in X, and K
is the number of classes (in obj.ClassNames). score(i,j) is the posterior probability
that row i of X is of class j; see “Posterior Probability” on page 22-3659.

cost

Matrix of expected costs of size N-by-K. cost(i,j) is the cost of classifying row i of X as
class j. See “Cost” on page 22-3660.

Definitions

Posterior Probability

The posterior probability that a point z belongs to class j is the product of the prior
probability and the multivariate normal density. The density function of the multivariate
normal with mean μj and covariance Σj at a point z is

P x k x x

k

kk

T

k| exp ,
/

() = - -() -()Ê
Ë
Á

ˆ
¯
˜

()
-1

2

1

21 2
1

p
m m

S
S

where Sk
 is the determinant of Σk, and Sk

-1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an
observation x is of class k is

ˆ |
|

,P k x
P x k P k

P x
() =

() ()

()

22 Functions — Alphabetical List

22-3660

where P(x) is a normalization constant, the sum over k of P(x|k)P(k).

Prior Probability

The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is one over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of

class k divided by the total number of training samples.
• Custom — The prior probability of class k is the kth element of the prior vector. See

fitcdiscr.

After creating a classifier obj, you can set the prior using dot notation:

obj.Prior = v;

where v is a vector of positive elements representing the frequency with which each
element occurs. You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 15-8.

Predicted Class Label

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

• ŷ is the predicted classification.

• K is the number of classes.
• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

 predict

22-3661

Examples

Examine predictions for a few rows in the Fisher iris data:

load fisheriris

obj = fitcdiscr(meas,species);

X = meas(99:102,:); % take four rows

[label score cost] = predict(obj,X)

label =

 'versicolor'

 'versicolor'

 'virginica'

 'virginica'

score =

 0.0000 1.0000 0.0000

 0.0000 0.9999 0.0001

 0.0000 0.0000 1.0000

 0.0000 0.0011 0.9989

cost =

 1.0000 0.0000 1.0000

 1.0000 0.0001 0.9999

 1.0000 1.0000 0.0000

 1.0000 0.9989 0.0011

See Also
ClassificationDiscriminant | fitcdiscr | edge | loss | margin

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-3662

predict
Class: CompactClassificationECOC

Predict labels for error-correcting output code multiclass classifiers

Syntax

label = predict(Mdl,X)

label = predict(Mdl,X,Name,Value)

[label,NegLoss,PBScore] = predict(___)

[label,NegLoss,PBScore,Posterior] = predict(___)

Description

label = predict(Mdl,X) returns a vector of predicted class labels for the predictor
data, based on the full or compact, trained error-correcting output code multiclass
classifier Mdl. Each row of X is an observation.

The software predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest
average binary loss).

label = predict(Mdl,X,Name,Value) returns predicted class labels with additional
options specified by one or more Name,Value pair arguments.

For example, specify the posterior probability estimation method, decoding scheme, or
verbosity level.

[label,NegLoss,PBScore] = predict(___) additionally returns negated average
binary loss per class (NegLoss) for observations, and positive-class scores (PBScore) for
the observations classified by each binary learner.

[label,NegLoss,PBScore,Posterior] = predict(___) additionally returns
posterior class probability estimates for observations (Posterior).

To obtain posterior class probabilities, you must set 'FitPosterior',1 when training
the ECOC model using fitcecoc. Otherwise, predict throws an error.

 predict

22-3663

Input Arguments

Mdl — ECOC multiclass classifier
ClassificationECOC model | CompactClassificationECOC model

ECOC multiclass classifier, specified as a ClassificationECOC or
CompactClassificationECOC model. You can create a:

• ClassificationECOC model by training the ECOC classifier using fitcecoc
• CompactClassificationECOC model by passing a ClassificationECOC classifier

to compact

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also called an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
composing the columns of X should be the same as the variables that trained the Mdl
classifier.

If you trained Mdl specifying to standardize the predictor data, then the software
standardizes the columns of X using the corresponding means and standard
deviations that the software stored in Mdl.BinaryLearner{j}.Mu and
Mdl.BinaryLearner{j}.Sigma for learner j.

Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

22 Functions — Alphabetical List

22-3664

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.
• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

 predict

22-3665

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'NumKLInitializations' — Number of random initial values
0 (default) | nonnegative integer

Number of random initial values for fitting posterior probabilities by Kullback-
Leibler divergence minimization, specified as the comma-separated pair consisting of
'NumKLInitializations' and a nonnegative integer.

If you do not request the fourth output argument (Posterior) and set
'PosteriorMethod','kl' (the default), then the software ignores the value of
NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page
22-3679.
Example: 'NumKLInitializations',5

Data Types: single | double

'Options' — Estimation options
[] (default) | structure array returned by statset

22 Functions — Alphabetical List

22-3666

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'PosteriorMethod' — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair
consisting of 'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior
probabilities by minimizing the Kullback-Leibler divergence between the predicted
and expected posterior probabilities returned by binary learners. For details, see
“Posterior Estimation Using Kullback-Leibler Divergence”.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior
probabilities by solving a least-squares problem using quadratic programming. You
need an Optimization Toolbox license to use this option. For details, see “Posterior
Estimation Using Quadratic Programming”.

• If you do not request the fourth output argument (Posterior), then the software
ignores the value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Data Types: char

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

 predict

22-3667

Output Arguments

label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Predicted class labels, returned as a categorical or character array, logical or numeric
vector, or cell array of strings.

label:

• Is the same data type as the Mdl.ClassNames
• Has length equal to the number of rows of X

The software predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest
average binary loss).

NegLoss — Negated average binary losses
numeric matrix

Negated, average binary losses, returned as a numeric matrix. NegLoss is an n-by-K
matrix, where n is the number of observations (size(X,1)) and K is the number of
unique classes (size(Mdl.ClassNames,1)).

PBScore — Positive-class scores
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. PBScore
is an n-by-L matrix, where n is the number of observations (size(X,1)) and L is the
number of binary learners (size(Mdl.CodingMatrix,2)).

Posterior — Posterior class probabilities
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an n-by-K
matrix, where n is the number of observations (size(X,1)) and K is the number of
unique classes (size(Mdl.ClassNames,1)).

You must set 'FitPosterior',1 when training the ECOC model using fitcecoc to
request Posterior. Otherwise, the software throws an error.

22 Functions — Alphabetical List

22-3668

Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

 predict

22-3669

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Predict Test-Sample Labels of Training Data Using ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

classOrder = unique(Y);

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample.
It is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

22 Functions — Alphabetical List

22-3670

CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

Predict the test-sample labels. Print a random subset of true and predicted labels.

labels = predict(CMdl,XTest);

idx = randsample(sum(testInds),10);

table(YTest(idx),labels(idx),...

 'VariableNames',{'TrueLabels','PredictedLabels'})

ans =

 TrueLabels PredictedLabels

 __________ _______________

 setosa setosa

 versicolor virginica

 setosa setosa

 virginica virginica

 versicolor versicolor

 setosa setosa

 virginica virginica

 virginica virginica

 setosa setosa

 setosa setosa

Mdl correctly labeled all except one of the test-sample observations with indices idx.

Predict Test-Sample Labels of ECOC Models Using Custom Binary Loss Function

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

 predict

22-3671

classOrder = unique(Y); % Class order

K = numel(classOrder); % Number of classes

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample.
It is good practice to standardize the predictors and define the class order. Specify to
standardize the predictors using an SVM template.

t = templateSVM('Standardize',1);

CVMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

SVM scores are signed distances from the observation to the decision boundary.
Therefore, the domain is . Create a custom binary loss function that:

• Maps the coding design matrix (M) and positive-class classification scores (s) for each
learner to the binary loss for each observation

• Uses linear loss
• Aggregates the binary learner loss using the median.

You can create a separate function for the binary loss function, and then save it on the
MATLAB® path. Or, you can specify an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

Predict test-sample labels and estimate the median binary loss per class. Print the
median negative binary losses per class for a random set of 10 test-sample observations.

[label,NegLoss] = predict(CMdl,XTest,'BinaryLoss',customBL);

idx = randsample(sum(testInds),10);

classOrder

table(YTest(idx),label(idx),NegLoss(idx,:),'VariableNames',...

 {'TrueLabel','PredictedLabel','NegLoss'})

22 Functions — Alphabetical List

22-3672

classOrder =

 setosa

 versicolor

 virginica

ans =

 TrueLabel PredictedLabel NegLoss

 __________ ______________ __________________________________

 setosa versicolor 0.1857 1.9878 -3.6735

 versicolor virginica -1.3316 -0.12333 -0.045053

 setosa versicolor 0.13898 1.9261 -3.5651

 virginica virginica -1.5133 -0.38263 0.39592

 versicolor versicolor -0.87209 0.74777 -1.3757

 setosa versicolor 0.48381 1.9972 -3.981

 virginica virginica -1.9364 -0.67508 1.1114

 virginica virginica -1.579 -0.83339 0.91235

 setosa versicolor 0.51001 2.1208 -4.1308

 setosa versicolor 0.36119 2.0594 -3.9206

The order of the columns corresponds to the elements of classOrder. The software
predicts the label based on the maximum negated loss. The results seem to indicate that
the median of the linear losses might not perform as well as other losses.

Estimate Posterior Probabilities Using ECOC Classifiers

Load Fisher's iris data set. Train the classifier using the petal dimensions as predictors.

load fisheriris

X = meas(:,3:4);

Y = species;

rng(1); % For reproducibility

Create an SVM template, and specify the Gaussian kernel. It is good practice to
standardize the predictors.

t = templateSVM('Standardize',1,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the
ECOC classifier, it sets the applicable properties to their default values.

 predict

22-3673

Train the ECOC classifier using the SVM template. Transform classification scores to
class posterior probabilities (which are returned by predict or resubPredict) using
the 'FitPosterior' name-value pair argument. Display diagnostic messages during
the training using the 'Verbose' name-value pair argument. It is good practice to
specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',1,...

 'ClassNames',{'setosa','versicolor','virginica'},...

 'Verbose',2);

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 2

Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).

Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 3

Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).

Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 3

Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary
learner, but you can adjust options for each binary learner by passing in a cell vector of
templates.

Predict the in-sample labels and class posterior probabilities. Display diagnostic
messages during the computation of labels and class posterior probabilities using the
'Verbose' name-value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);

Mdl.BinaryLoss

Predictions from all learners have been computed.

Loss for all observations has been computed.

Computing posterior probabilities...

ans =

quadratic

22 Functions — Alphabetical List

22-3674

The software assigns an observation to the class that yields the smallest average binary
loss. Since all binary learners are computing posterior probabilities, the binary loss
function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);

Mdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),...

 'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 TrueLabel PredLabel Posterior

 ____________ ____________ ______________________________________

 'virginica' 'virginica' 0.0039321 0.0039869 0.99208

 'virginica' 'virginica' 0.017067 0.018263 0.96467

 'virginica' 'virginica' 0.014948 0.015856 0.9692

 'versicolor' 'versicolor' 2.2197e-14 0.87317 0.12683

 'setosa' 'setosa' 0.999 0.00025091 0.00074639

 'versicolor' 'virginica' 2.2195e-14 0.059429 0.94057

 'versicolor' 'versicolor' 2.2194e-14 0.97001 0.029986

 'setosa' 'setosa' 0.999 0.0002499 0.00074741

 'versicolor' 'versicolor' 0.0085646 0.98259 0.008849

 'setosa' 'setosa' 0.999 0.00025013 0.00074718

The columns of Posterior correspond to the class order of Mdl.ClassNames.

Define a grid of values in the observed predictor space. Predict the posterior probabilities
for each instance in the grid.

xMax = max(X);

 predict

22-3675

xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));

x2Pts = linspace(xMin(2),xMax(2));

[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);

[~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

For each coordinate on the grid, plot the maximum class posterior probability among all
classes.

figure;

contourf(x1Grid,x2Grid,...

 reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));

h = colorbar;

h.YLabel.String = 'Maximum posterior';

h.YLabel.FontSize = 15;

hold on

gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);

gh(2).LineWidth = 2;

gh(3).LineWidth = 2;

title 'Iris Petal Measurements and Maximum Posterior';

xlabel 'Petal length (cm)';

ylabel 'Petal width (cm)';

axis tight

legend(gh,'Location','NorthWest')

hold off

22 Functions — Alphabetical List

22-3676

Estimate Test-Sample Posterior Probabilities Using Parallel Computing

Train an error-correcting output codes, multiclass model and estimate posterior
probabilities using parallel computing.

Load the arrhythmia data set.

load arrhythmia

Y = categorical(Y);

tabulate(Y)

n = numel(Y);

K = numel(unique(Y));

 Value Count Percent

 predict

22-3677

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

Several classes are not represented in the data, and many of the other classes have low
relative frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak,
classification tree learners.

t = templateEnsemble('GentleBoost',50,'Tree');

t is a template object. Most of the options are empty ([]). The software uses default
values for all empty options during training.

Since there are many classes, specify a sparse random coding design.

rng(1); % For reproducibility

Coding = designecoc(K,'sparserandom');

Train an ECOC model using parallel computing. Specify to hold out 15% of the data and
fit posterior probabilities.

pool = parpool; % Invokes workers

options = statset('UseParallel',1);

CVMdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...

 'FitPosterior',1,'Holdout',0.15);

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testInds = test(CVMdl.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

22 Functions — Alphabetical List

22-3678

CVMdl is a ClassificationPartitionedECOC model. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationECOC model
that the software trained using the training set.

The pool invokes four workers. The number of workers might vary among systems.

Estimate posterior probabilities, and display the posterior probability of being classified
as not having arrhythmia (class 1) given the data for a random set of test-sample
observations.

[~,~,~,posterior] = predict(CMdl,XTest,'Options',options);

idx = randsample(sum(testInds),10);

table(idx,YTest(idx),posterior(idx,1),...

 'VariableNames',{'TestSampleIndex','TrueLabel','PosteriorNoArrhythmia'})

ans =

 TestSampleIndex TrueLabel PosteriorNoArrhythmia

 _______________ _________ ____________________

 11 6 0.60631

 41 4 0.23674

 51 2 0.13802

 33 10 0.43831

 12 1 0.94332

 8 1 0.97278

 37 1 0.62807

 24 10 0.96876

 56 16 0.29375

 30 1 0.64512

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Algorithms

The software can estimate class posterior probabilities using quadratic programming
or by minimizing the Kullback-Leibler divergence. For the following descriptions of the
posterior estimation algorithms, let:

• mkj be the element (k,j) of the coding design matrix M.

 predict

22-3679

• I be the indicator function.
• p̂k be the class posterior probability estimate for class k of an observation, k = 1,...,K.

• rj be the positive-class posterior probability for binary learner j. That is, rj is the
probability that binary learner j classifies an observation into the positive class, given
the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class
posterior probabilities. The Kullback-Leibler divergence between the expected and
observed positive-class posterior probabilities is

D(, �) log
�

log
�

,r r w
r

r
r

r
r r

j

j

L

j
j

j
j

j

j

= + -()
-

-

È

Î
Í
Í

˘

˚
˙
˙=

Â
1

1
1

1

where w wj i
S j

=
*

Â is the weight for binary learner j with Sj the set of observation

indices that binary learner j is trained on and w
i

* is the weight of observation i. The
software minimizes the divergence iteratively. The first step is to choose initial values
ˆ ; ,...,()p k Kk

0 1= for the class posterior probabilities.

• If you do not specify NumKLIterations, then the software uses both sets of
deterministic initial values described next, and uses the one that minimizes Δ.

•
ˆ / ; ,..., .()p K k Kk

0 1 1= =

•
ˆ ; ,...,()p k Kk

0 1= is the solution of the system

M p r01
0ˆ ,()

=

where M01 is M with all mkj = -1 replaced with 0, and r is a vector of positive-class
posterior probabilities returned by the L binary learners [2]. The software uses
lsqnonneg to solve the system.

22 Functions — Alphabetical List

22-3680

• If you specify 'NumKLIterations',c, where c is a natural number, then the
software does the following to choose ˆ ; ,...,()p k Kk

0 1= , and uses the one that
minimizes Δ.

• The software chooses both sets of deterministic initial values as described
previously.

• The software randomly generates c vectors of length K using rand, and then
normalizes each vector to sum to 1.

At iteration t, the software:

1 Computes

ˆ

ˆ ()

ˆ ()

.
()

()

()

r

p I m

p I m m

j
t

k
t

k

K

kj

k
t

k

K

kj kj

=

= +

= + » = -

=

=

Â

Â

1

1

1

1 1

2 Estimates the next class posterior probability using

ˆ ˆ() ()p p

w r I I

w

m r m

k
t

k
t

j

j

L

j kj j kj

j
j

+ =

=

=

() + -() ()È
Î

˘
˚= + = -Â

1 1

1

1 11

LL

j
t

kj j
t

kjr I r Im mÂ = + = -() + -() ()È
ÎÍ

˘
˚̇

ˆ ˆ

.

() ()
1 11

3 Normalizes ˆ ,...,;()p k Kk
t+

=
1 1 so that they sum to 1.

4 Checks for convergence.

For more details, see [5] and [7].

Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization
Toolbox license. To estimate posterior probabilities for an observation using this method,
the software:

 predict

22-3681

1 Estimates the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.

2 Using the relationship between rj and p̂k
 [6], minimizes

j

L

j k

k

K

kj j k

k

K

kjr p I m r p I m

= = =
Â Â Â-

È

Î
Í
Í

˘

˚
˙
˙

= -() + -() = +()
1 1 1

2

1 1 1ˆ ˆ

with respect to p̂k
 and the restrictions

0 1

1

£ £

=Â

ˆ

ˆ .

p

p

k

k
k

The software performs minimization using quadprog.

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Dietterich, T., and G. Bakiri. “Solving Multiclass Learning Problems Via Error-
Correcting Output Codes.” Journal of Artificial Intelligence Research. Vol. 2,
1995, pp. 263–286.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[4] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[5] Hastie, T., and R. Tibshirani. “Classification by Pairwise Coupling.” Annals of
Statistics. Vol. 26, Issue 2, 1998, pp. 451–471.

22 Functions — Alphabetical List

22-3682

[6] Wu, T. F., C. J. Lin, and R. Weng. “Probability Estimates for Multi-Class
Classification by Pairwise Coupling.” Journal of Machine Learning Research. Vol.
5, 2004, pp. 975–1005.

[7] Zadrozny, B. “Reducing Multiclass to Binary by Coupling Probability Estimates.”
NIPS 2001: Proceedings of Advances in Neural Information Processing Systems
14, 2001, pp. 1041–1048.

See Also
ClassificationECOC | CompactClassificationECOC | fitcecoc | quadprog |
resubPredict | statset

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

 predict

22-3683

predict
Class: CompactClassificationEnsemble

Predict classification

Syntax
labels = predict(ens,X)

[labels,score] = predict(ens,X)

[labels,...] = predict(ens,X,Name,Value)

Description
labels = predict(ens,X) returns a vector of predicted class labels for a matrix X,
based on ens, a trained full or compact classification ensemble.

[labels,score] = predict(ens,X) also returns scores for all classes.

[labels,...] = predict(ens,X,Name,Value) predicts classifications with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification ensemble created by fitensemble, or a compact classification ensemble
created by compact.

X

A matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-3684

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners predict uses for computation of responses, a numeric vector.

Default: 1:T, where T is the number of weak learners in ens

'UseObsForLearner'

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row
i of X.

Default: true(N,T)

Output Arguments
labels

Vector of classification labels. labels has the same data type as the labels used in
training ens.

score

A matrix with one row per observation and one column per class. For each observation
and each class, the score generated by each tree is the probability of this observation
originating from this class computed as the fraction of observations of this class in a tree
leaf. predict averages these scores over all trees in the ensemble.

Definitions

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

 predict

22-3685

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Examples

Train a boosting ensemble for the ionosphere data, and predict the classification of the
mean of the data:

load ionosphere;

ada = fitensemble(X,Y,'AdaBoostM1',100,'tree');

Xbar = mean(X);

[ypredict score] = predict(ada,Xbar)

ypredict =

 'g'

score =

 -2.9460 2.9460

See Also
margin | edge | loss

22 Functions — Alphabetical List

22-3686

predict
Class: CompactClassificationNaiveBayes

Predict classification for naive Bayes models

Syntax
label = predict(Mdl,X)

[label,Posterior,Cost] = predict(Mdl,X)

Description
label = predict(Mdl,X) returns a vector of predicted class labels for predictor data
(X), based on the trained, full or compact naive Bayes classifier Mdl.

[label,Posterior,Cost] = predict(Mdl,X) additionally returns posterior
probabilities (Posterior) and predicted (expected) misclassification costs (Cost)
corresponding to the observations (rows) in X.

Input Arguments
Mdl — Naive Bayes classifier
ClassificationNaiveBayes model | CompactClassificationNaiveBayes model

Naive Bayes classifier, specified as a ClassificationNaiveBayes model or
CompactClassificationNaiveBayes model returned by fitcnb or compact,
respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained Mdl.

The length of Y and the number of rows of X must be equal.

 predict

22-3687

Data Types: double | single

Notes:

• If Mdl.DistributionNames is 'mn', then the software returns NaNs corresponding
to rows of X containing at least one NaN.

• If Mdl.DistributionNames is not 'mn', then the software ignores NaN values
when estimating misclassification costs and posterior probabilities. Specifically, the
software computes the conditional density of the predictors given the class by leaving
out the factors corresponding to missing predictor values.

• For predictor distribution specified as 'mvmn', if X contains levels that are not
represented in the training data (i.e., not in Mdl.CategoricalLevels for that
predictor), then the conditional density of the predictors given the class is 0. For those
observations, the software returns the corresponding value of Posterior as a NaN.
The software determines the class label for such observations using the class prior
probability, stored in Mdl.Prior.

Output Arguments

label — Predicted class labels
categorical vector | character array | logical vector | numeric vector | cell vector of
strings

Predicted class labels, returned as a categorical vector, character array, logical or
numeric vector, or cell vector of strings.

label:

• Is the same data type as the observed class labels (Mdl.Y) that trained Mdl
• Has length equal to the number of rows of Mdl.X
• Is the class yielding the lowest expected misclassification cost (Cost)

Posterior — Class posterior probabilities
numeric matrix

Class posterior probabilities, returned as a numeric matrix. Posterior has rows equal
to the number of rows of X and columns equal to the number of distinct classes in the
training data (size(Mdl.ClassNames,1)).

22 Functions — Alphabetical List

22-3688

Posterior(j,k) is the predicted posterior probability of class k (i.e., in class
Mdl.ClassNames(k)) given the observation in row j of X.

Data Types: double

Cost — Expected misclassification costs
numeric matrix

Expected misclassification costs, returned as a numeric matrix. Cost has rows equal
to the number of rows of X and columns equal to the number of distinct classes in the
training data (size(Mdl.ClassNames,1)).

Cost(j,k) is the expected misclassification cost of the observation in row j of X being
predicted into class k (i.e., in class Mdl.ClassNames(k)).

Definitions

Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into
the wrong class.

There are two types of misclassification costs: true and expected. Let K be the number of
classes.

• True misclassification cost — A K-by-K matrix, where element (i,j) indicates the
misclassification cost of predicting an observation into class j if its true class is i.
The software stores the misclassification cost in the property Mdl.Cost, and used in
computations. By default, Mdl.Cost(i,j) = 1 if i ≠ j, and Mdl.Cost(i,j) = 0 if
i = j. In other words, the cost is 0 for correct classification, and 1 for any incorrect
classification.

• Expected misclassification cost — A K-dimensional vector, where element k is the
weighted average misclassification cost of classifying an observation into class k,
weighted by the class posterior probabilities. In other words,

c Y j xP xk

j

K

jkP= =()
=

Â ˆ ,...,| .
1

1 Cost

 predict

22-3689

the software classifies observations to the class corresponding with the lowest expected
misclassification cost.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Examples

Label Test Sample Observations of Naive Bayes Classifiers

Load Fisher's iris data set.

22 Functions — Alphabetical List

22-3690

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1);

Train a naive Bayes classifier and specify to holdout 30% of the data for a test sample.
It is good practice to specify the class order. Assume that each predictor is conditionally,
normally distributed given its label.

CVMdl = fitcnb(X,Y,'Holdout',0.30,...

 'ClassNames',{'setosa','versicolor','virginica'});

CMdl = CVMdl.Trained{1}; % Extract trained, compact classifier

testIdx = test(CVMdl.Partition); % Extract the test indices

XTest = X(testIdx,:);

YTest = Y(testIdx);

CVMdl is a ClassificationPartitionedModel classifier. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationNaiveBayes
classifier that the software trained using the training set.

Label the test sample observations. Display the results for a random set of 10
observations in the test sample.

idx = randsample(sum(testIdx),10);

label = predict(CMdl,XTest);

table(YTest(idx),label(idx),'VariableNames',...

 {'TrueLabel','PredictedLabel'})

ans =

 TrueLabel PredictedLabel

 ____________ ______________

 'setosa' 'setosa'

 'versicolor' 'versicolor'

 'setosa' 'setosa'

 'virginica' 'virginica'

 'versicolor' 'versicolor'

 'setosa' 'setosa'

 'virginica' 'virginica'

 'virginica' 'virginica'

 'setosa' 'setosa'

 'setosa' 'setosa'

 predict

22-3691

Estimate Posterior Probabilities and Misclassification Costs

A goal of classification is to estimate posterior probabilities of new observations using a
trained algorithm. Many applications train algorithms on large data sets, which can use
resources that are better used elsewhere. This example shows how to efficiently estimate
posterior probabilities of new observations using a Naive Bayes classifier.

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1);

Partition the data set into two sets: one in the training set, and the other is new
unobserved data. Reserve 10 observations for the new data set.

n = size(X,1);

newInds = randsample(n,10);

inds = ~ismember(1:n,newInds);

XNew = X(newInds,:);

YNew = Y(newInds);

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label. Conserve memory by
reducing the size of the trained SVM classifier.

Mdl = fitcnb(X(inds,:),Y(inds),...

 'ClassNames',{'setosa','versicolor','virginica'});

CMdl = compact(Mdl);

whos('Mdl','CMdl')

 Name Size Bytes Class Attributes

 CMdl 1x1 4772 classreg.learning.classif.CompactClassificationNaiveBayes

 Mdl 1x1 12541 ClassificationNaiveBayes

The CompactClassificationNaiveBayes classifier (CMdl) uses less space than the
ClassificationNaiveBayes classifier (Mdl) because the latter stores the data.

Predict the labels, posterior probabilities, and expected class misclassification costs.
Since true labels are available, compare them with the predicted labels.

22 Functions — Alphabetical List

22-3692

CMdl.ClassNames

[labels,PostProbs,MisClassCost] = predict(CMdl,XNew);

table(YNew,labels,PostProbs,'VariableNames',...

 {'TrueLabels','PredictedLabels',...

 'PosteriorProbabilities'})

MisClassCost

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 TrueLabels PredictedLabels PosteriorProbabilities

 ____________ _______________ ___

 'setosa' 'setosa' 1 4.1259e-16 1.1846e-23

 'versicolor' 'versicolor' 1.0373e-60 0.99999 5.8053e-06

 'virginica' 'virginica' 4.8708e-211 0.00085645 0.99914

 'setosa' 'setosa' 1 1.4053e-19 2.2672e-26

 'versicolor' 'versicolor' 2.9308e-75 0.99987 0.00012869

 'setosa' 'setosa' 1 2.629e-18 4.4297e-25

 'versicolor' 'versicolor' 1.4238e-67 0.99999 9.733e-06

 'versicolor' 'versicolor' 2.0667e-110 0.94237 0.057625

 'setosa' 'setosa' 1 4.3779e-19 3.5139e-26

 'setosa' 'setosa' 1 1.1792e-17 2.2912e-24

MisClassCost =

 0.0000 1.0000 1.0000

 1.0000 0.0000 1.0000

 1.0000 0.9991 0.0009

 0.0000 1.0000 1.0000

 1.0000 0.0001 0.9999

 0.0000 1.0000 1.0000

 1.0000 0.0000 1.0000

 1.0000 0.0576 0.9424

 0.0000 1.0000 1.0000

 0.0000 1.0000 1.0000

 predict

22-3693

PostProbs and MisClassCost are 15-by- 3 numeric matrices, where each row
corresponds to a new observation and each column corresponds to a class. The order of
the columns corresponds to the order of CMdl.ClassNames.

Plot Posterior Probability Regions for Naive Bayes Classifiers

Load Fisher's iris data set. Train the classifier using the petal lengths and widths.

load fisheriris

X = meas(:,3:4);

Y = species;

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,...

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationNaiveBayes model. You can access its properties using dot
notation.

Define a grid of values in the observed predictor space. Predict the posterior probabilities
for each instance in the grid.

xMax = max(X);

xMin = min(X);

h = 0.01;

[x1Grid,x2Grid] = meshgrid(xMin(1):h:xMax(1),xMin(2):h:xMax(2));

[~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

Plot the posterior probability regions and the training data.

figure;

% Plot posterior regions

scatter(x1Grid(:),x2Grid(:),1,PosteriorRegion);

% Adjust color bar options

h = colorbar;

h.Ticks = [0 0.5 1];

h.TickLabels = {'setosa','versicolor','virginica'};

h.YLabel.String = 'Posterior';

h.YLabel.Position = [-0.5 0.5 0];

% Adjust color map options

d = 1e-2;

cmap = zeros(201,3);

cmap(1:101,1) = 1:-d:0;

22 Functions — Alphabetical List

22-3694

cmap(1:201,2) = [0:d:1 1-d:-d:0];

cmap(101:201,3) = 0:d:1;

colormap(cmap);

% Plot data

hold on

gh = gscatter(X(:,1),X(:,2),Y,'k','dx*');

title 'Iris Petal Measurements and Posterior Probabilities';

xlabel 'Petal length (cm)';

ylabel 'Petal width (cm)';

axis tight

legend(gh,'Location','Best')

hold off

 predict

22-3695

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb |
loss | resubPredict

More About
• “Naive Bayes Classification” on page 15-31

22 Functions — Alphabetical List

22-3696

• “Grouping Variables” on page 2-52

 predict

22-3697

predict
Class: CompactClassificationSVM

Predict labels for support vector machine classifiers

Syntax

label = predict(SVMModel,X)

[label,Score] = predict(SVMModel,X)

Description

label = predict(SVMModel,X) returns a vector of predicted class labels for predictor
data X, based on the full or compact, trained SVM classifier SVMModel.

[label,Score] = predict(SVMModel,X) additionally returns class likelihood
measures, i.e., either scores or posterior probabilities.

Input Arguments

SVMModel — SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier

SVM classifier, specified as a ClassificationSVM classifier or
CompactClassificationSVM classifier returned by fitcsvm or compact, respectively.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a feature). The variables
making up the columns of X should be the same as the variables that trained the
SVMModel classifier.

22 Functions — Alphabetical List

22-3698

The length of Y and the number of rows of X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software
standardizes the columns of X using the corresponding means in SVMModel.Mu and
standard deviations in SVMModel.Sigma.

Data Types: double | single

Output Arguments

label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Predicted class labels, returned as a categorical or character array, logical or numeric
vector, or cell array of strings.

label:

• Is the same data type as the observed class labels (Y) that trained SVMModel
• Has length equal to the number of rows of X

For one-class learning, the elements of label are the one class represented in the
observed class labels.

Score — Predicted class scores or posterior probabilities
numeric column vector | numeric matrix

Predicted class scores or posterior probabilities, returned as a numeric column vector or
numeric matrix.

• For one-class learning, Score is a column vector with the same number of rows
as the training observations (X). The elements are the positive class scores for the
corresponding observations. You cannot obtain posterior probabilities for one-class
learning.

• For two-class learning, Score is a two column matrix with the same number of rows
as X.

• If you fit the optimal score-to-posterior probability transformation function using
fitPosterior or fitSVMPosterior, then Score contains class posterior

 predict

22-3699

probabilities. That is, if the value of SVMModel.ScoreTransform is not none,
then the elements of the first and second columns of Score are the negative class
(SVMModel.ClassNames{1}) and positive class (SVMModel.ClassNames{2})
posterior probabilities for the corresponding observations, respectively.

• Otherwise, the elements of the first column are the negative class scores and the
elements of the second column are the positive class scores for the corresponding
observations.

If SVMModel.KernelParameters.Function is 'linear', then the software
estimates the classification score for the observation x using

f x x s b() = () ¢ +/ .b

SVMModel stores β, b, s in the properties Beta, Bias, and KernelParameters.Scale,
respectively.

Data Types: double | single

Definitions

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

22 Functions — Alphabetical List

22-3700

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x x s b() = () ¢ +/ .b

s is the kernel scale and β is the vector of fitted linear coefficients.

Posterior Probability

The probability that an observation belongs in a particular class, given the data.

For SVM, the posterior probability is a function of the score, P(s), that observation j is in
class k = {-1,1}.

• For separable classes, the posterior probability is the step function

P s

s s

s s s

s

j j

j

y
k

y
k

y
k

y

k

k k

k

() =

<

>

£ £

=-

=- =+

=+

0

1

1

1 1

; max

max min

min

;

;

p

11
sk

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

,

where:

• sj is the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

• For inseparable classes, the posterior probability is the sigmoid function

P s
As B

j
j

()
exp()

,=

+ +

1

1

where the parameters A and B are the slope and intercept parameters.

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

 predict

22-3701

Examples

Label Test Sample Observations of SVM Classifiers

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing. It is good practice to
specify the class order and standardize the data.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...

 'Standardize',true);

CompactSVMModel = CVSVMModel.Trained{1}; % Extract trained, compact classifier

testInds = test(CVSVMModel.Partition); % Extract the test indices

XTest = X(testInds,:);

YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the
property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM
classifier that the software trained using the training set.

Label the test sample observations. Display the results for the first 10 observations in
the test sample.

[label,score] = predict(CompactSVMModel,XTest);

table(YTest(1:10),label(1:10),score(1:10,2),'VariableNames',...

 {'TrueLabel','PredictedLabel','Score'})

ans =

 TrueLabel PredictedLabel Score

 _________ ______________ ________

 'b' 'b' -1.7177

 'g' 'g' 2.0003

 'b' 'b' -9.6841

 'g' 'g' 2.5618

 'b' 'b' -1.548

 'g' 'g' 2.0984

 'b' 'b' -2.7018

22 Functions — Alphabetical List

22-3702

 'b' 'b' -0.66291

 'g' 'g' 1.6046

 'g' 'g' 1.7731

Predict Labels and Posterior Probabilities of SVM Classifiers

A goal of classification is to predict labels of new observations using a trained algorithm.
Many applications train algorithms on large data sets, which can use resources that are
better used elsewhere. This example shows how to efficiently label new observations
using an SVM classifier.

Load the ionosphere data set. Suppose that the last 10 observations become available
after training the SVM classifier.

load ionosphere

n = size(X,1); % Training sample size

isInds = 1:(n-10); % In-sample indices

oosInds = (n-9):n; % Out-of-sample indices

Train an SVM classifier. It is good practice to standardize the predictors and specify the
order of the classes. Conserve memory by reducing the size of the trained SVM classifier.

SVMModel = fitcsvm(X(isInds,:),Y(isInds),'Standardize',true,...

 'ClassNames',{'b','g'});

CompactSVMModel = compact(SVMModel);

whos('SVMModel','CompactSVMModel')

 Name Size Bytes Class Attributes

 CompactSVMModel 1x1 29576 classreg.learning.classif.CompactClassificationSVM

 SVMModel 1x1 137550 ClassificationSVM

The positive class is 'g'. The CompactClassificationSVM classifier
(CompactSVMModel) uses less space than the ClassificationSVM classifier
(SVMModel) because the latter stores the data.

Estimate the optimal score-to-posterior-probability-transformation function.

CompactSVMModel = fitPosterior(CompactSVMModel,...

 X(isInds,:),Y(isInds))

 predict

22-3703

CompactSVMModel =

 classreg.learning.classif.CompactClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: '@(S)sigmoid(S,-1.968452e+00,3.121267e-01)'

 Alpha: [88x1 double]

 Bias: -0.2143

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 SupportVectors: [88x34 double]

 SupportVectorLabels: [88x1 double]

The optimal score transformation function (CompactSVMModel.ScoreTransform) is
the sigmoid function because the classes are inseparable.

Predict the out-of-sample labels and positive class posterior probabilities. Since true
labels are available, compare them with the predicted labels.

[labels,PostProbs] = predict(CompactSVMModel,X(oosInds,:));

table(Y(oosInds),labels,PostProbs(:,2),'VariableNames',...

 {'TrueLabels','PredictedLabels','PosClassPosterior'})

ans =

 TrueLabels PredictedLabels PosClassPosterior

 __________ _______________ _________________

 'g' 'g' 0.98419

 'g' 'g' 0.95545

 'g' 'g' 0.67792

 'g' 'g' 0.94448

 'g' 'g' 0.98744

 'g' 'g' 0.92482

 'g' 'g' 0.97111

 'g' 'g' 0.96986

 'g' 'g' 0.97803

 'g' 'g' 0.94361

22 Functions — Alphabetical List

22-3704

PostProbs is a 10-by-2 matrix; its first column is the negative class posterior
probabilities, and second column is the positive class posterior probabilities
corresponding to the new observations.

• “Plot Posterior Probability Regions for SVM Classification Models” on page 16-201
• “Train SVM Classifiers Using a Custom Kernel” on page 16-183
• “Analyze Images Using Linear Support Vector Machines” on page 16-204

Algorithms

• By default, the software computes optimal posterior probabilities using Platt’s method
[1]:

1 Performing 10-fold cross validation
2 Fitting the sigmoid function parameters to the scores returned from the cross

validation
3 Estimating the posterior probabilities by entering the cross-validation scores into

the fitted sigmoid function
• The software incorporates prior probabilities in the SVM objective function during

training.
• For SVM, predict classifies observations into the class yielding the largest score

(i.e., the largest posterior probability). The software accounts for misclassification
costs by applying the average-cost correction before training the classifier. That is,
given the class prior vector P, misclassification cost matrix C, and observation weight
vector w, the software defines a new vector of observation weights (W) such that

W w P Cj j j jk
k

K

=

=

Â
1

.

References

[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods.” In Advances in Large Margin Classifiers. MIT
Press, 1999, pages 61–74.

 predict

22-3705

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm |
fitSVMPosterior | loss

More About
• “Support Vector Machines (SVM)” on page 16-170

22 Functions — Alphabetical List

22-3706

predict
Class: CompactClassificationTree

Predict classification

Syntax

label = predict(tree,X)

[label,score] = predict(tree,X)

[label,score,node] = predict(tree,X)

[label,score,node,cnum] = predict(tree,X)

[label,...] = predict(tree,X,Name,Value)

Description

label = predict(tree,X) returns a vector of predicted class labels for a matrix X,
based on tree, a trained full or compact classification tree.

[label,score] = predict(tree,X) returns a matrix of scores, indicating the
likelihood that a label comes from a particular class.

[label,score,node] = predict(tree,X) returns a vector of predicted node
numbers for the classification, based on tree.

[label,score,node,cnum] = predict(tree,X) returns a vector of predicted class
number for the classification, based on tree.

[label,...] = predict(tree,X,Name,Value) returns labels with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

tree

A classification tree created by fitctree, or a compact classification tree created by
compact.

 predict

22-3707

X

A matrix where each row represents an observation, and each column represents a
predictor. The number of columns in X must equal the number of predictors in tree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then CompactClassificationTree.predict operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

CompactClassificationTree.predict prunes tree to each level indicated in
Subtrees, and then estimates the corresponding output arguments. The size of
Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

Output Arguments

label

Vector of class labels of the same type as the response data used in training tree. Each
entry of label corresponds to the class with minimal expected cost for the corresponding
row of X. See “Predicted Class Label” on page 22-3708.

22 Functions — Alphabetical List

22-3708

If Subtrees has T elements, and X has N rows, then labels is an N-by-T matrix. The ith
column of labels contains the fitted values produced by the Subtrees(I) subtree.

score

Numeric matrix of size N-by-K, where N is the number of observations (rows) in X, and K
is the number of classes (in tree.ClassNames). score(i,j) is the posterior probability
that row i of X is of class j.

If Subtrees has T elements, and X has N rows, then score is an N-by-K-by-T array, and
node and cnum are N-by-T matrices.

node

Numeric vector of node numbers for the predicted classes. Each entry corresponds to the
predicted node in tree for the corresponding row of X.

cnum

Numeric vector of class numbers corresponding to the predicted labels. Each entry of
cnum corresponds to a predicted class number for the corresponding row of X.

Definitions

Predicted Class Label

predict classifies so as to minimize the expected classification cost:

ˆ argmin ˆ | | ,
,...,

y P k x C y k
y K k

K

= () ()
= =

Â
1 1

where

• ŷ is the predicted classification.

• K is the number of classes.

 predict

22-3709

• ˆ |P k x() is the posterior probability of class k for observation x.

• C y k|() is the cost of classifying an observation as y when its true class is k.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

22 Functions — Alphabetical List

22-3710

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

 predict

22-3711

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

22 Functions — Alphabetical List

22-3712

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

True Misclassification Cost

There are two costs associated with classification: the true misclassification cost per
class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair
when you create the classifier using the fitctree method. Cost(i,j) is the cost of
classifying an observation into class j if its true class is i. By default, Cost(i,j)=1 if
i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for correct classification,
and 1 for incorrect classification.

Expected Cost

There are two costs associated with classification: the true misclassification cost per
class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier.
Suppose you have K classes. You place the observations into a matrix Xnew with one
observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected
(average) cost of classifying the observation into each of the K classes. CE(n,k) is

 predict

22-3713

ˆ | () | ,P i Xnew n C k i

i

K

() ()
=
Â

1

where

• K is the number of classes.
• ˆ | ()P i Xnew n() is the posterior probability of class i for observation Xnew(n).

• C k i|() is the true misclassification cost of classifying an observation as k when its
true class is i.

Predictive Measure of Association

The predictive measure of association between the optimal split on variable i and a
surrogate split on variable j is:

li j

L R L L R R

L R

P P P P

P P

i j i j

,

,

,
.=

() - - -()
()

min

min

1

Here

• PL and PR are the node probabilities for the optimal split of node i into Left and Right
nodes respectively.

• PL Li j
 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Left.
• PR Ri j

 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Right.

Clearly, λi,j lies from –∞ to 1. Variable j is a worthwhile surrogate split for variable i if
λi,j > 0.

22 Functions — Alphabetical List

22-3714

Examples

Predict Labels Using a Classification Tree

Examine predictions for a few rows in a data set left out of training.

Load Fisher's iris data set.

load fisheriris

Partition the data into training (50%) and validation (50%) sets.

n = size(meas,1);

rng(1) % For reproducibility

idxTrn = false(n,1);

idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices

idxVal = idxTrn == false; % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

Predict labels for the validation data. Count the number of misclassified observations.

label = predict(Mdl,meas(idxVal,:));

label(randsample(numel(label),5)) % Display several predicted labels

numMisclass = sum(~strcmp(label,species(idxVal)))

ans =

 'setosa'

 'setosa'

 'setosa'

 'virginica'

 'versicolor'

numMisclass =

 3

 predict

22-3715

The software misclassifies three out-of-sample observations.

Estimate Class Posterior Probabilities Using a Classification Tree

Load Fisher's iris data set.

load fisheriris

Partition the data into training (50%) and validation (50%) sets.

n = size(meas,1);

rng(1) % For reproducibility

idxTrn = false(n,1);

idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices

idxVal = idxTrn == false; % Validation set logical indices

Grow a classification tree using the training set, and then view it.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

view(Mdl,'Mode','graph')

22 Functions — Alphabetical List

22-3716

The resulting tree has four levels.

Estimate posterior probabilities for the test set using subtrees pruned to levels 1 and 3.

[~,Posterior] = predict(Mdl,meas(idxVal,:),'SubTrees',[1 3]);

Mdl.ClassNames

Posterior(randsample(size(Posterior,1),5),:,:),...

 % Display several posterior probabilities

ans =

 predict

22-3717

 'setosa'

 'versicolor'

 'virginica'

ans(:,:,1) =

 1.0000 0 0

 1.0000 0 0

 1.0000 0 0

 0 0 1.0000

 0 0.8571 0.1429

ans(:,:,2) =

 0.3733 0.3200 0.3067

 0.3733 0.3200 0.3067

 0.3733 0.3200 0.3067

 0.3733 0.3200 0.3067

 0.3733 0.3200 0.3067

The elements of Posterior are class posterior probabilities:

• Rows correspond to observations in the validation set.
• Columns correspond to the classes as listed in Mdl.ClassNames.
• Pages correspond to the subtrees.

The subtree pruned to level 1 is more sure of its predictions than the subtree pruned to
level 3 (i.e., the root node).

Algorithms

predict generates predictions by following the branches of tree until it reaches a leaf
node or a missing value. If predict reaches a leaf node, it returns the classification of
that node.

If predict reaches a node with a missing value for a predictor, its behavior depends on
the setting of the Surrogate name-value pair when fitctree constructs tree.

22 Functions — Alphabetical List

22-3718

• Surrogate = 'off' (default) — predict returns the label with the largest number
of training samples that reach the node.

• Surrogate = 'on' — predict uses the best surrogate split at the node. If all
surrogate split variables with positive predictive measure of association are missing,
predict returns the label with the largest number of training samples that reach the
node. For a definition, see “Predictive Measure of Association” on page 22-3713.

See Also
fitctree | compact | loss | margin | prune | edge

 predict

22-3719

predict
Class: CompactRegressionEnsemble

Predict response of ensemble

Syntax

Yfit = predict(ens,Xdata)

Yfit = predict(ens,Xdata,Name,Value)

Description

Yfit = predict(ens,Xdata) returns predicted responses to the data in Xdata, based
on the ens regression ensemble model.

Yfit = predict(ens,Xdata,Name,Value) predicts with additional options specified
by one or more Name,Value pair arguments.

Input Arguments

ens

Regression ensemble created by fitensemble, or by the compact method.

Xdata

Numeric array with the same number of columns as the array used for creating ens.
Each row of Xdata corresponds to one data point, and each column corresponds to one
predictor.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-3720

'learners'

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge
uses only these learners for calculating loss.

Default: 1:NumTrained

'UseObsForLearner'

A logical matrix of size N-by-NumTrained, where N is the number of
observations in ens.X, and NumTrained is the number of weak learners. When
UseObsForLearner(I,J) is true, predict uses learner J in predicting observation I.

Default: true(N,NumTrained)

Output Arguments

Yfit

A numeric column vector with the same number of rows as Xdata. Each row of Yfit
gives the predicted response to the corresponding row of Xdata, based on the ens
regression model.

Examples

Find the predicted mileage for a four-cylinder car, with 200 cubic inch engine
displacement, 150 horsepower, weighing 3000 lbs, based on the carsmall data:

load carsmall

X = [Cylinders Displacement Horsepower Weight];

rens = fitensemble(X,MPG,'LSBoost',100,'Tree');

Mileage = predict(rens,[4 200 150 3000])

Mileage =

 20.4982

See Also
loss | fitensemble

 predict

22-3721

predict

Class: CompactRegressionTree

Predict response of regression tree

Syntax

Yfit = predict(tree,Xdata)

[Yfit,node] = predict(tree,Xdata)

[Yfit,node] = predict(tree,Xdata,Name,Value)

Description

Yfit = predict(tree,Xdata) returns predicted responses to the data in Xdata,
based on the tree regression tree.

[Yfit,node] = predict(tree,Xdata) returns the predicted node numbers of tree
in response to Xdata.

[Yfit,node] = predict(tree,Xdata,Name,Value) predicts response with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

tree

Regression tree created by fitrtree, or by the compact method.

Xdata

Numeric array with the same number of columns as the array used for creating tree.
Each row of Xdata corresponds to one data point, and each column corresponds to one
predictor.

22 Functions — Alphabetical List

22-3722

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then CompactRegressionTree.predict operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

CompactRegressionTree.predict prunes tree to each level indicated in Subtrees,
and then estimates the corresponding output arguments. The size of Subtrees
determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

Output Arguments

Yfit

A numeric column vector with the same number of rows as Xdata. Each row of Yfit
gives the predicted response to the corresponding row of Xdata, based on the tree
regression model.

node

Numeric vector of node numbers for the predictions. Each entry corresponds to the
predicted leaf node in tree for the corresponding row of Xdata.

 predict

22-3723

Examples

Predict a Response Using a Regression Tree

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG);

Predict the MPG for a car with 200 cubic inch engine displacement, 150 horsepower, and
that weighs 3000 lbs.

X0 = [200 150 3000];

MPG0 = predict(Mdl,X0)

MPG0 =

 21.9375

The regression tree predicts the car's efficiency to be 21.94 mpg.

• “Predict Out-of-Sample Responses of Subtrees” on page 16-41

See Also
compact | fitrtree | loss

More About
• “What Are Classification Trees and Regression Trees?” on page 16-33
• “Predicting Responses With Classification and Regression Trees” on page 16-40

22 Functions — Alphabetical List

22-3724

predict
Class: CompactTreeBagger

Predict response

Syntax

YFIT = predict(B,X)

[YFIT,stdevs] = predict(B,X)

[YFIT,scores] = predict(B,X)

[YFIT,scores,stdevs] = predict(B,X)

Y = predict(B,X,'param1',val1,'param2',val2,...)

Description

YFIT = predict(B,X) computes the predicted response of the trained ensemble B
for predictors X. By default, predict takes a democratic (nonweighted) average vote
from all trees in the ensemble. In X, rows represent observations and columns represent
variables. YFIT is a cell array of strings for classification and a numeric array for
regression.

For regression, [YFIT,stdevs] = predict(B,X) also returns standard deviations of
the computed responses over the ensemble of the grown trees.

For classification, [YFIT,scores] = predict(B,X) returns scores for all classes.
scores is a matrix with one row per observation and one column per class. For each
observation and each class, the score generated by each tree is the probability of this
observation originating from this class computed as the fraction of observations of this
class in a tree leaf. predict averages these scores over all trees in the ensemble.

[YFIT,scores,stdevs] = predict(B,X)also returns standard deviations of the
computed scores for classification. stdevs is a matrix with one row per observation and
one column per class, with standard deviations taken over the ensemble of the grown
trees.

Y = predict(B,X,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

 predict

22-3725

'trees' Array of tree indices to use for computation of responses. Default
is 'all'.

'treeweights' Array of NTrees weights for weighting votes from the specified
trees.

'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees to
use to make predictions for each observation. By default all trees
are used for all observations.

See Also
RegressionTree.predict | ClassificationTree.predict |
TreeBagger.predict

22 Functions — Alphabetical List

22-3726

predict
Class: GeneralizedLinearModel

Predict response of generalized linear regression model

Syntax

ypred = predict(mdl,Xnew)

[ypred,yci] = predict(mdl,Xnew)

[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description

ypred = predict(mdl,Xnew) returns the predicted response of the mdl generalized
linear regression model to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean
responses.

[ypred,yci] = predict(mdl,Xnew,Name,Value) predicts responses with additional
options specified by one or more Name,Value pair arguments.

Tips

• For predictions with added noise, use random.
• For a syntax that can be easier to use with models created from dataset arrays, try

feval.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

 predict

22-3727

Xnew

Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns)

as was used to create mdl. Furthermore, all variables used in creating mdl must be
numeric.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'alpha'

Positive scalar from 0 to 1. Confidence level of yci is 100(1 – alpha)%.

Default: 0.05, meaning a 95% confidence interval.

'BinomialSize'

Value of the binomial n parameter for each row in the training data. BinomialSize can
be a vector the same length as Xnew, or a scalar that applies to each row. The default
value 1 produces ypred values that are predicted proportions. Use BinomialSize only
if mdl is fit to a binomial distribution.

Default: 1

'Offset'

Value of the offset for each row in Xnew. Offset can be a vector the same length as
Xnew, or a scalar that applies to each row. The offset is used as an additional predictor
with a coefficient value fixed at 1. In other words, if b is the fitted coefficient vector, and
link is the link function,
link(ypred) = Offset + Xnew * b.

Default: zeros(size(Xnew,1))

22 Functions — Alphabetical List

22-3728

'Simultaneous'

Logical value specifying whether the confidence bounds are for all predictor values
simultaneously (true), or hold for each individual predictor value (false). Simultaneous
bounds are wider than separate bounds, because it is more stringent to require that the
entire curve be within the bounds than to require that the curve at a single predictor
value be within the bounds.

For details, see polyconf.

Default: false

Output Arguments

ypred

Vector of predicted mean values at Xnew.

yci

Confidence intervals, a two-column matrix with each row providing one interval. The
meaning of the confidence interval depends on the settings of the name-value pairs.

Examples

Generalized Linear Model Predictions

Create a generalized linear model, and predict its response to new data.

Generate artificial data for the model using Poisson random numbers with two
underlying predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson');

 predict

22-3729

Create points for prediction.

[Xtest1 Xtest2] = meshgrid(-1:.5:3,-2:.5:2);

Xnew = [Xtest1(:),Xtest2(:)];

Predict responses at the new points.

ypred = predict(mdl,Xnew);

Plot the predictions.

surf(Xtest1,Xtest2,reshape(ypred,9,9))

Create confidence intervals on the predictions.

[ypred yci] = predict(mdl,Xnew);

• “predict” on page 10-34

22 Functions — Alphabetical List

22-3730

• “Generalized Linear Model Workflow” on page 10-39

Alternatives

feval gives the same predictions, but uses separate input arrays for each predictor,
instead of one input array containing all predictors.

random predicts with added noise.

See Also
GeneralizedLinearModel | random

More About
• “Generalized Linear Models” on page 10-12

 predict

22-3731

predict
Class: GeneralizedLinearMixedModel

Predict response of generalized linear mixed-effects model

Syntax

ypred = predict(glme)

ypred = predict(glme,tblnew)

ypred = predict(___ ,Name,Value)

[ypred,ypredCI] = predict(___)

[ypred,ypredCI,DF] = predict(___)

Description

ypred = predict(glme) returns the predicted conditional means of the response,
ypred, using the original predictor values used to fit the generalized linear mixed-effects
model glme.

ypred = predict(glme,tblnew) returns the predicted conditional means using the
new predictor values specified in tblnew.

If a grouping variable in tblnew has levels that are not in the original data, then the
random effects for that grouping variable do not contribute to the 'Conditional'
prediction at observations where the grouping variable has new levels.

ypred = predict(___ ,Name,Value) returns the predicted conditional means of the
response using additional options specified by one or more Name,Value pair arguments.
For example, you can specify the confidence level, simultaneous confidence bounds, or
contributions from only fixed effects. You can use any of the input arguments in the
previous syntaxes.

[ypred,ypredCI] = predict(___) also returns 95% point-wise confidence intervals,
ypredCI, for each predicted value.

[ypred,ypredCI,DF] = predict(___) also returns the degrees of freedom, DF,
used to compute the confidence intervals.

22 Functions — Alphabetical List

22-3732

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be continuous
or grouping variables. tblnew must have the same variables as the original table or
dataset array used in fitglme to fit the generalized linear mixed-effects model glme.

Data Types: single | double | logical | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'Conditional' — Indicator for conditional predictions
true (default) | false

Indicator for conditional predictions, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

 predict

22-3733

true Contributions from both fixed effects and
random effects (conditional)

false Contribution from only fixed effects
(marginal)

Example: 'Conditional',false

'DFMethod' — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated
pair consisting of 'DFMethod' and one of the following.

'residual' The degrees of freedom are assumed to
be constant and equal to n – p, where n is
the number of observations and p is the
number of fixed effects.

'none' All degrees of freedom are set to infinity.

Example: 'DFMethod','none'

'Offset' — Model offset
zeros(m,1) (default) | m-by-1 vector of scalar values

Model offset, specified as a vector of scalar values of length m, where m is the number of
rows in tblnew. The offset is used as an additional predictor and has a coefficient value
fixed at 1.

'Simultaneous' — Type of confidence bounds
false (default) | true

Type of confidence bounds, specified as the comma-separated pair consisting of
'Simultaneous' and either false or true.

• If 'Simultaneous' is false, then predict computes nonsimultaneous confidence
bounds.

• If 'Simultaneous' is true, predict returns simultaneous confidence bounds.

Example: 'Simultaneous',true

22 Functions — Alphabetical List

22-3734

Output Arguments

ypred — Predicted responses
vector

Predicted responses, returned as a vector. If the 'Conditional' name-value pair argument
is specified as true, ypred contains predictions for the conditional means of the
responses given the random effects. Conditional predictions include contributions from
both fixed and random effects. Marginal predictions include only contributions from fixed
effects.

To compute marginal predictions, predict computes conditional predictions, but
substitutes a vector of zeros in place of the empirical Bayes predictors (EBPs) of the
random effects.

ypredCI — Point-wise confidence intervals
two-column matrix

Point-wise confidence intervals for the predicted values, returned as a two-column
matrix. The first column of ypredCI contains the lower bound, and the second column
contains the upper bound. By default, ypredCI contains the 95% nonsimultaneous
confidence intervals for the predictions. You can change the confidence level using the
Alpha name-value pair argument, and make them simultaneous using the Simultaneous
name-value pair argument.

When fitting a GLME model using fitglme and one of the maximum likelihood fit
methods ('Laplace' or 'ApproximateLaplace'), predict computes the confidence
intervals using the conditional mean squared error of prediction (CMSEP) approach
conditional on the estimated covariance parameters and the observed response.
Alternatively, you can interpret the confidence intervals as approximate Bayesian
credible intervals conditional on the estimated covariance parameters and the observed
response.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods
('MPL' or 'REMPL'), predict bases the computations on the fitted linear mixed-effects
model from the final pseudo likelihood iteration.

DF — Degrees of freedom
vector | scalar value

Degrees of freedom used in computing the confidence intervals, returned as a vector or a
scalar value.

 predict

22-3735

• If 'Simultaneous' is false, then DF is a vector.
• If 'Simultaneous' is true, then DF is a scalar value.

Examples

Predict Responses at Original Design Values

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the

22 Functions — Alphabetical List

22-3736

appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Predict the response values at the original design values. Display the first ten predictions
along with the observed response values.

ypred = predict(glme);

[ypred(1:10),mfr.defects(1:10)]

ans =

 4.9883 6.0000

 predict

22-3737

 5.9423 7.0000

 5.1318 6.0000

 5.6295 5.0000

 5.3499 6.0000

 5.2134 5.0000

 4.6430 4.0000

 4.5342 4.0000

 5.3903 9.0000

 4.6529 4.0000

Column 1 contains the predicted response values at the original design values. Column 2
contains the observed response values.

Predict Responses at Values in New Table

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

22 Functions — Alphabetical List

22-3738

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Predict the response values at the original design values.

ypred = predict(glme);

Create a new table by copying the first 10 rows of mfr into tblnew.

 predict

22-3739

tblnew = mfr(1:10,:);

The first 10 rows of mfr include data collected from trials 1 through 5 for factories 1
and 2. Both factories used the old process for all of their trials during the experiment, so
newprocess = 0 for all 10 observations.

Change the value of newprocess to 1 for the observations in tblnew.

tblnew.newprocess = ones(height(tblnew),1);

Compute predicted response values and nonsimultaneous 99% confidence intervals using
tblnew. Display the first 10 rows of the predicted values based on tblnew, the predicted
values based on mfr, and the observed response values.

[ypred_new,ypredCI] = predict(glme,tblnew,'Alpha',0.01);

[ypred_new,ypred(1:10),mfr.defects(1:10)]

ans =

 3.4536 4.9883 6.0000

 4.1142 5.9423 7.0000

 3.5530 5.1318 6.0000

 3.8976 5.6295 5.0000

 3.7040 5.3499 6.0000

 3.6095 5.2134 5.0000

 3.2146 4.6430 4.0000

 3.1393 4.5342 4.0000

 3.7320 5.3903 9.0000

 3.2214 4.6529 4.0000

Column 1 contains predicted response values based on the data in tblnew, where
newprocess = 1. Column 2 contains predicted response values based on the original
data in mfr, where newprocess = 0. Column 3 contains the observed response values
in mfr. Based on these results, if all other predictors retain their original values, the
predicted number of defects appears to be smaller when using the new process.

Display the 99% confidence intervals for rows 1 through 10 corresponding to the new
predicted response values.

ypredCI(1:10,1:2)

 1.6983 7.0235

 1.9191 8.8201

 1.8735 6.7380

22 Functions — Alphabetical List

22-3740

 2.0149 7.5395

 1.9034 7.2079

 1.8918 6.8871

 1.6776 6.1597

 1.5404 6.3976

 1.9574 7.1154

 1.6892 6.1436

References

[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear
Mixed Models.” Journal of the American Statistical Association, Vol. 93, 1998, pp.
262–272.

See Also
GeneralizedLinearMixedModel | fitglme | fitted | random

 predict

22-3741

predict
Class: LinearModel

Predict response of linear regression model

Syntax

ypred = predict(mdl,Xnew)

[ypred,yci] = predict(mdl,Xnew)

[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description

ypred = predict(mdl,Xnew) returns the predicted response of the mdl linear
regression model to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean
responses.

[ypred,yci] = predict(mdl,Xnew,Name,Value) predicts responses with additional
options specified by one or more Name,Value pair arguments.

Tips

• For predictions with added noise, use random.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

Xnew

Points at which mdl predicts responses.

22 Functions — Alphabetical List

22-3742

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns)

as was used to create mdl. Furthermore, all variables used in creating mdl must be
numeric.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'alpha'

Positive scalar from 0 to 1. Confidence level of yci is 100(1 – alpha)%.

Default: 0.05, meaning a 95% confidence interval.

'Prediction'

String specifying the type of prediction:

• 'curve' — predict predicts confidence bounds for the fitted mean values.
• 'observation' — predict predicts confidence bounds for the new observations.

This results in wider bounds because the error in a new observation is equal to the
error in the estimated mean value, plus the variability in the observation from the
true mean.

For details, see polyconf.

Default: 'curve'

'Simultaneous'

Logical value specifying whether the confidence bounds are for all predictor values
simultaneously (true), or hold for each individual predictor value (false). Simultaneous
bounds are wider than separate bounds, because it is more stringent to require that the
entire curve be within the bounds than to require that the curve at a single predictor
value be within the bounds.

 predict

22-3743

For details, see polyconf.

Default: false

Output Arguments

ypred

Vector of predicted mean values at Xnew.

yci

Confidence intervals, a two-column matrix with each row providing one interval. The
meaning of the confidence interval depends on the settings of the name-value pairs.

Examples

Predict Response to Data

Create a model of car mileage as a function of weight, and predict the response.

Create a quadratic model of car mileage as a function of weight from the carsmall data.

load carsmall

X = Weight;

y = MPG;

mdl = fitlm(X,y,'quadratic');

Create predicted responses to the data.

Xnew = X;

ypred = predict(mdl,Xnew);

Plot the original responses and the predicted responses to see how they differ.

plot(X,y,'o',Xnew,ypred,'x')

legend('Data','Predictions')

22 Functions — Alphabetical List

22-3744

• “predict” on page 9-37
• “Linear Regression Workflow” on page 9-41

Alternatives

feval gives the same predictions, but uses multiple input arrays with one component in
each input argument. feval can be simpler to use with a model created from a table or
dataset array tbl. feval does not give confidence intervals on its predictions.

random predicts with added noise.

See Also
random | stepwiselm | feval | LinearModel | fitlm

 predict

22-3745

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-3746

predict
Class: LinearMixedModel

Predict response of linear mixed-effects model

Syntax

ypred = predict(lme)

ypred = predict(lme,tblnew)

ypred = predict(lme,Xnew,Znew)

ypred = predict(lme,Xnew,Znew,Gnew)

ypred = predict(___ ,Name,Value)

[ypred,ypredCI] = predict(___)

[ypred,ypredCI,DF] = predict(___)

Description

ypred = predict(lme) returns a vector of conditional predicted responses ypred at
the original predictors used to fit the linear mixed-effects model lme.

ypred = predict(lme,tblnew) returns a vector of conditional predicted responses
ypred from the fitted linear mixed-effects model lme at the values in the new table or
dataset array tblnew. Use a table or dataset array for predict if you use a table or
dataset array for fitting the model lme.

If a particular grouping variable in tblnew has levels that are not in the original
data, then the random effects for that grouping variable do not contribute to the
'Conditional' prediction at observations where the grouping variable has new levels.

ypred = predict(lme,Xnew,Znew) returns a vector of conditional predicted
responses ypred from the fitted linear mixed-effects model lme at the values in the new
fixed- and random-effects design matrices, Xnew and Znew, respectively. Znew can also be
a cell array of matrices. In this case, the grouping variable G is ones(n,1), where n is
the number of observations used in the fit.

Use the matrix format for predict if using design matrices for fitting the model lme.

 predict

22-3747

ypred = predict(lme,Xnew,Znew,Gnew) returns a vector of conditional predicted
responses ypred from the fitted linear mixed-effects model lme at the values in the
new fixed- and random-effects design matrices, Xnew and Znew, respectively, and the
grouping variable Gnew.

Znew and Gnew can also be cell arrays of matrices and grouping variables, respectively.

ypred = predict(___ ,Name,Value) returns a vector of predicted responses ypred
from the fitted linear mixed-effects model lme with additional options specified by one or
more Name,Value pair arguments.

For example, you can specify the confidence level, simultaneous confidence bounds, or
contributions from only fixed effects.

[ypred,ypredCI] = predict(___) also returns confidence intervals ypredCI for
the predictions ypred for any of the input arguments in the previous syntaxes.

[ypred,ypredCI,DF] = predict(___) also returns the degrees of freedom DF used
in computing the confidence intervals for any of the input arguments in the previous
syntaxes.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be continuous
or grouping variables. tblnew must have the same variables as in the original table or
dataset array used to fit the linear mixed-effects model lme.

Data Types: single | double | logical | char

22 Functions — Alphabetical List

22-3748

Xnew — New fixed-effects design matrix
n-by-p matrix

New fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of
observations and p is the number of fixed predictor variables. Each row of X corresponds
to one observation and each column of X corresponds to one variable.

Data Types: single | double

Znew — New random-effects design
n-by-q matrix | cell array of length R

New random-effects design, specified as an n-by-q matrix or a cell array of R design
matrices Z{r}, where r = 1, 2, ..., R. If Znew is a cell array, then each Z{r} is an n-
by-q(r) matrix, where n is the number of observations, and q(r) is the number of random
predictor variables.
Data Types: single | double | logical | char | cell

Gnew — New grouping variable or variables
vector | cell array of grouping variables of length R

New grouping variable or variables, specified as a vector or a cell array, of length R, of
grouping variables with the same levels or groups as the original grouping variables used
to fit the linear mixed-effects model lme.
Data Types: single | double | logical | char | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.

 predict

22-3749

Example: 'Alpha',0.01

Data Types: single | double

'Conditional' — Indicator for conditional predictions
True (default) | False

Indicator for conditional predictions, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

True Contributions from both fixed effects and
random effects (conditional)

False Contribution from only fixed effects
(marginal)

Example: 'Conditional,'False'

'DFMethod' — Method for computing approximate degrees of freedom
'Residual' (default) | 'Satterthwaite' | 'None'

Method for computing approximate degrees of freedom to use in the confidence interval
computation, specified as the comma-separated pair consisting of 'DFMethod' and one of
the following.

'Residual' Default. The degrees of freedom are
assumed to be constant and equal to n – p,
where n is the number of observations and
p is the number of fixed effects.

'Satterthwaite' Satterthwaite approximation.
'None' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','Satterthwaite'

'Simultaneous' — Type of confidence bounds
false (default) | true

Type of confidence bounds, specified as the comma-separated pair consisting of
'Simultaneous' and one of the following.

22 Functions — Alphabetical List

22-3750

false Default. Nonsimultaneous bounds.
true Simultaneous bounds.

Example: 'Simultaneous',true

'Prediction' — Type of prediction
'curve' (default) | 'observation'

Type of prediction, specified as the comma-separated pair consisting of 'Prediction'
and one of the following.

'curve' Default. Confidence bounds for the
predictions based on the fitted function.

'observation' Variability due to observation error for
the new observations is also included in
the confidence bound calculations and this
results in wider bounds.

Example: 'Prediction','observation'

Output Arguments

ypred — Predicted responses
vector

Predicted responses, returned as a vector. ypred can contain the conditional or marginal
responses, depending on the value choice of the 'Conditional' name-value pair argument.
Conditional predictions include contributions from both fixed and random effects.

ypredCI — Point-wise confidence intervals
two-column matrix

Point-wise confidence intervals for the predicted values, returned as a two-column
matrix. The first column of yCI contains the lower bounds, and the second column
contains the upper bound. By default, yCI contains the 95% confidence intervals for
the predictions. You can change the confidence level using the Alpha name-value pair

 predict

22-3751

argument, make them simultaneous using the Simultaneous name-value pair argument,
and also make them for a new observation rather than for the curve using the Prediction
name-value pair argument.

DF — Degrees of freedom
vector | scalar value

Degrees of freedom used in computing the confidence intervals, returned as a vector or a
scalar value.

• If the 'Simultaneous' name-value pair argument is false, then DF is a vector.
• If the 'Simultaneous' name-value pair argument is true, then DF is a scalar value.

Examples

Predict Responses at the Original Design Values

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

22 Functions — Alphabetical List

22-3752

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Predict the response values at the original design values. Display the first five
predictions with the observed response values.

yhat = predict(lme);

[yhat(1:5) ds.Yield(1:5)]

ans =

 115.4788 104.0000

 135.1455 136.0000

 152.8121 158.0000

 160.4788 174.0000

 58.0839 57.0000

Plot Predictions vs. Observed Responses

Load the sample data.

load carsmall

Fit a linear mixed-effects model, with a fixed effect for Weight, and a random intercept
grouped by Model_Year. First, store the data in a table.

tbl = table(MPG,Weight,Model_Year);

lme = fitlme(tbl,'MPG ~ Weight + (1|Model_Year)');

Create predicted responses to the data.

yhat = predict(lme,tbl);

Plot the original responses and the predicted responses to see how they differ. Group
them by model year.

figure()

gscatter(Weight,MPG,Model_Year)

hold on

gscatter(Weight,yhat,Model_Year,[],'o+x')

legend('70-data','76-data','82-data','70-pred','76-pred','82-pred')

hold off

 predict

22-3753

Predict Responses at Values in a New Dataset Array

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and

22 Functions — Alphabetical List

22-3754

plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Create a new dataset array with design values. The new dataset array must have the
same variables as the original dataset array you use for fitting the model lme.

dsnew = dataset();

dsnew.Soil = nominal({'Sandy';'Silty'});

dsnew.Tomato = nominal({'Cherry';'Vine'});

dsnew. Fertilizer = nominal([2;2]);

Predict the conditional and marginal responses at the original design points.

yhatC = predict(lme,dsnew);

yhatM = predict(lme,dsnew,'Conditional',false);

[yhatC yhatM]

ans =

 92.7505 111.6667

 87.5891 82.6667

Predict Responses at the Values in New Design Matrices

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower, and cylinders, and potentially correlated random effects for
intercept and acceleration grouped by model year.

 predict

22-3755

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];

Z = [ones(406,1) Acceleration];

Model_Year = nominal(Model_Year);

G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping
variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'});

Create the design matrices that contain the data at which to predict the response values.
Xnew must have three columns as in X. The first column must be a column of 1s. And the
values in the last two columns must correspond to Acceleration and Horsepower,
respectively. The first column of Znew must be a column of 1s, and the second column
must contain the same Acceleration values as in Xnew. The original grouping variable
in G is the model year. So, Gnew must contain values for the model year. Note that Gnew
must contain nominal values.

Xnew = [1,13.5,185; 1,17,205; 1,21.2,193];

Znew = [1,13.5; 1,17; 1,21.2]; % alternatively Znew = Xnew(:,1:2);

Gnew = nominal([73 77 82]);

Predict the responses for the data in the new design matrices.

yhat = predict(lme,Xnew,Znew,Gnew)

yhat =

 8.7063

 5.4423

 12.5384

Now, repeat the same for a linear mixed-effects model with uncorrelated random-effects
terms for intercept and acceleration. First, change the original random effects design and
the random effects grouping variables. Then, refit the model.

Z = {ones(406,1),Acceleration};

G = {Model_Year,Model_Year};

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

22 Functions — Alphabetical List

22-3756

{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'})

Now, recreate the new random effects design, Znew, and the grouping variable design,
Gnew, using which to predict the response values.

Znew = {[1;1;1],[13.5;17;21.2]};

MY = nominal([73 77 82]);

Gnew = {MY,MY};

Predict the responses using the new design matrices.

yhat = predict(lme,Xnew,Znew,Gnew)

yhat =

 8.6365

 5.9199

 12.1247

Compute Confidence Intervals for Predictions

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower, and cylinders, and potentially correlated random effects for
intercept and acceleration grouped by model year. First, store the variables in a table.

tbl = table(MPG,Acceleration,Horsepower,Model_Year);

Now, fit the model using fitlme with the defined design matrices and grouping
variables.

lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Create the new data and store it in a new table.

tblnew = table();

tblnew.Acceleration = linspace(8,25)';

tblnew.Horsepower = linspace(nanmin(Horsepower),nanmax(Horsepower))';

tblnew.Model_Year = repmat(70,100,1);

linspace creates 100 equally distanced values between the lower and the upper input
limits. Model_Year is fixed at 70. You can repeat this for any model year.

 predict

22-3757

Compute and plot the predicted values and 95% confidence limits (nonsimultaneous).

[ypred,yCI,DF] = predict(lme,tblnew);

figure();

h1 = line(tblnew.Acceleration,ypred);

hold on;

h2 = plot(tblnew.Acceleration,yCI,'g-.');

Display the degrees of freedom.

DF(1)

ans =

 389

Compute and plot the simultaneous confidence bounds.

[ypred,yCI,DF] = predict(lme,tblnew,'Simultaneous',true);

h3 = plot(tblnew.Acceleration,yCI,'r--');

Display the degrees of freedom.

DF

DF =

 389

Compute the simultaneous confidence bounds using the Satterthwaite method to
compute the degrees of freedom.

[ypred,yCI,DF] = predict(lme,tblnew,'Simultaneous',true,'DFMethod','Satterthwaite');

h4 = plot(tblnew.Acceleration,yCI,'k:');

hold off

xlabel('Acceleration')

ylabel('Response')

ylim([-50,60])

xlim([8,25])

legend([h1,h2(1),h3(1),h4(1)],'Predicted response','95%','95% Sim',...

'95% Sim-Satt','Location','Best')

22 Functions — Alphabetical List

22-3758

Display the degrees of freedom.

DF

DF =

 predict

22-3759

 3.6001

Definitions

Conditional and Marginal Predictions

A conditional prediction includes contributions from both fixed and random effects,
whereas a marginal model includes contribution from only fixed effects.

Suppose the linear mixed-effects model lme has an n-by-p fixed-effects design matrix X
and an n-by-q random-effects design matrix Z. Also, suppose the estimated p-by-1 fixed-

effects vector is b̂ , and the q-by-1 estimated best linear unbiased predictor (BLUP)

vector of random effects is ˆb . The predicted conditional response is

ˆ ˆ ˆ,y X ZbCond = +b

which corresponds to the 'Conditional','true' name-value pair argument.

The predicted marginal response is

ˆ ˆ,y XMar = b

which corresponds to the 'Conditional','false' name-value pair argument.

When making predictions, if a particular grouping variable has new levels (1s that
were not in the original data), then the random effects for the grouping variable do
not contribute to the 'Conditional' prediction at observations where the grouping
variable has new levels.

See Also
fitted | LinearMixedModel | random

22 Functions — Alphabetical List

22-3760

predict
Class: NaiveBayes

Predict class label for test data

Syntax

cpre = predict(nb,test)

cpre = predict(...,'HandleMissing',val)

Description

cpre = predict(nb,test) classifies each row of data in test into one of the classes
according to the NaiveBayes classifier nb, and returns the predicted class level cpre.
test is an N-by-nb.ndims matrix, where N is the number of observations in the test
data. Rows of test correspond to points, columns of test correspond to features. cpre
is an N-by-1 vector of the same type as nb.CLevels, and it indicates the class to which
each row of test has been assigned.

cpre = predict(...,'HandleMissing',val) specifies how predict treats NaN
(missing values). val can be one of the following:

'off' (default) Observations with NaN in any of the columns are not classified
into any class. The corresponding rows in cpre are NaN
(if obj.clevels is numeric or logical), empty strings (if
obj.clevels is char or cell array of strings) or <undefined> (if
obj.clevels is categorical).

'on' For observations having NaN in some (but not all) columns,
predict computes cpre using the columns with non-NaN values.
Corresponding cpre values are NaN.

See Also
NaiveBayes | fitNaiveBayes | posterior

 predict

22-3761

predict
Class: NonLinearModel

Predict response of nonlinear regression model

Syntax

ypred = predict(mdl,Xnew)

[ypred,yci] = predict(mdl,Xnew)

[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description

ypred = predict(mdl,Xnew) returns the predicted response of the mdl nonlinear
regression model to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean
responses.

[ypred,yci] = predict(mdl,Xnew,Name,Value) predicts responses with additional
options specified by one or more Name,Value pair arguments.

Tips

• For predictions with added noise, use random.
• For a syntax that can be easier to use with models created from tables or dataset

arrays, try feval.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

22 Functions — Alphabetical List

22-3762

Xnew

Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns)

as was used to create mdl. Furthermore, all variables used in creating mdl must be
numeric.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'alpha'

Positive scalar from 0 to 1. Confidence level of yci is 100(1 – alpha)%.

Default: 0.05, meaning a 95% confidence interval.

'Prediction'

String specifying the type of prediction:

• 'curve' — predict predicts confidence bounds for the fitted mean values.
• 'observation' — predict predicts confidence bounds for the new observations.

This results in wider bounds because the error in a new observation is equal to the
error in the estimated mean value, plus the variability in the observation from the
true mean.

For details, see polyconf.

Default: 'curve'

'Simultaneous'

Logical value specifying whether the confidence bounds are for all predictor values
simultaneously (true), or hold for each individual predictor value (false). Simultaneous
bounds are wider than separate bounds, because it is more stringent to require that the
entire curve be within the bounds than to require that the curve at a single predictor
value be within the bounds.

 predict

22-3763

For details, see polyconf.

Default: false

'Weights'

Vector of real, positive value weights or a function handle.

• If you specify a vector, then it must have the same number of elements as the number
of observations (or rows) in Xnew.

• If you specify a function handle, then the function must accept a vector of predicted
response values as input, and return a vector of real positive weights as output.

Given weights, W, predict estimates the error variance at observation i by MSE*(1/
W(i)), where MSE is the mean squared error.

Default: No weights

Output Arguments

ypred

Vector of predicted mean values at Xnew.

yci

Confidence intervals, a two-column matrix with each row providing one interval. The
meaning of the confidence interval depends on the settings of the name-value pairs.

Examples

Predict Responses

Create a nonlinear model of car mileage as a function of weight, and predict the response.

Create an exponential model of car mileage as a function of weight from the carsmall
data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall

X = Weight;

22 Functions — Alphabetical List

22-3764

y = MPG;

modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';

beta0 = [1 1 1];

mdl = fitnlm(X,y,modelfun,beta0);

Create predicted responses to the data.

Xnew = X;

ypred = predict(mdl,Xnew);

Plot the original responses and the predicted responses to see how they differ.

plot(X,y,'o',X,ypred,'x')

legend('Data','Predicted')

Confidence Intervals for Predictions

Create a nonlinear model of car mileage as a function of weight, and examine confidence
intervals of some responses.

 predict

22-3765

Create an exponential model of car mileage as a function of weight from the carsmall
data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall

X = Weight;

y = MPG;

modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';

beta0 = [1 1 1];

mdl = fitnlm(X,y,modelfun,beta0);

Create predicted responses to the smallest, mean, and largest data points.

Xnew = [min(X);mean(X);max(X)];

[ypred,yci] = predict(mdl,Xnew)

ypred =

 34.9469

 22.6868

 10.0617

yci =

 32.5212 37.3726

 21.4061 23.9674

 7.0148 13.1086

Simultaneous Confidence Intervals for Robust Fit Curve

Generate sample data from the nonlinear regression model

y b b b x= + -{ } +1 2 3exp ,e

where b1, b2, and b3 are coefficients, and the error term is normally distributed with
mean 0 and standard deviation 0.5.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility

b = [1;3;2];

x = exprnd(2,100,1);

y = modelfun(b,x) + normrnd(0,0.5,100,1);

Fit the nonlinear model using robust fitting options.

opts = statset('nlinfit');

opts.RobustWgtFun = 'bisquare';

22 Functions — Alphabetical List

22-3766

b0 = [2;2;2];

mdl = fitnlm(x,y,modelfun,b0,'Options',opts);

Plot the fitted regression model and simultaneous 95% confidence bounds.

xrange = [min(x):.01:max(x)]';

[ypred,yci] = predict(mdl,xrange,'Simultaneous',true);

figure()

plot(x,y,'ko') % observed data

hold on

plot(xrange,ypred,'k','LineWidth',2)

plot(xrange,yci','r--','LineWidth',1.5)

Confidence Interval Using Observation Weights

Load sample data.

S = load('reaction');

X = S.reactants;

 predict

22-3767

y = S.rate;

beta0 = S.beta;

Specify a function handle for observation weights, then fit the Hougen-Watson model to
the rate data using the specified observation weights function.

a = 1; b = 1;

weights = @(yhat) 1./((a + b*abs(yhat)).^2);

mdl = fitnlm(X,y,@hougen,beta0,'Weights',weights);

Compute the 95% prediction interval for a new observation with reactant levels
[100,100,100] using the observation weight function.

[ypred,yci] = predict(mdl,[100,100,100],'Prediction','observation',...

 'Weights',weights)

ypred =

 1.8149

yci =

 1.5264 2.1033

• “Predict or Simulate Responses Using a Nonlinear Model” on page 11-10
• “Nonlinear Regression Workflow” on page 11-14

References

[1] Lane, T. P. and W. H. DuMouchel. “Simultaneous Confidence Intervals in Multiple
Regression.” The American Statistician. Vol. 48, No. 4, 1994, pp. 315–321.

[2] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-
Interscience, 2003.

See Also
NonLinearModel | random

More About
• “Nonlinear Regression” on page 11-2

22 Functions — Alphabetical List

22-3768

predict
Class: RepeatedMeasuresModel

Compute predicted values given predictor values

Syntax

ypred = predict(rm,tnew)

ypred = predict(rm,tnew,Name,Value)

[ypred,yci] = predict(___)

Description

ypred = predict(rm,tnew) returns the predicted values from the repeated measures
model rm using the predictor values from the table t.

ypred = predict(rm,tnew,Name,Value) returns the predicted values from
the repeated measures model rm with additional options specified by one or more
Name,Value pair arguments.

For example, you can specify the within-subjects design matrix.

[ypred,yci] = predict(___) also returns the 95% confidence interval for the
predicted values.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

tnew — New data
table used to create rm (default) | table

 predict

22-3769

New data including the values of the response variables and the between-subject factors
used as predictors in the repeated measures model, rm, specified as a table. tnew must
contain all of the between-subject factors used to create rm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range of 0 through 1

Confidence level of the confidence intervals for the predicted values, specified as the
comma-separated pair consisting of 'alpha' and a scalar value in the range of 0 to 1.
The confidence level is 100*(1–alpha)%.

Example: 'alpha',0.01

Data Types: double | single

'WithinModel' — Model for within-subject factors
'separatemeans' | 'orthogonalcontrats' | text string

Model for the within-subject factors, specified as the comma-separated pair consisting of
'WithinModel' and one of the following:

• 'separatemeans' — Compute a separate mean for each group.
• 'orthogonalcontrasts' — Valid when the within-subject design consists of a

single numeric factor T. This specifies a model consisting of orthogonal polynomials
up to order T(r-1), where r is the number of repeated measures.

• A string that defines a model specification in the within-subject factors.

Example: 'WithinModel','orthogonalcontrasts'

'WithinDesign' — Design for within-subject factors
vector | matrix | table

Design for within-subject factors, specified as the comma-separated pair consisting of
'WithinDesign' and a vector, matrix, or a table. It provides the values of the within-
subject factors in the same form as the RM.WithinDesign property.

22 Functions — Alphabetical List

22-3770

Example: 'WithinDesign','Time'

Data Types: single | double | table

Output Arguments

ypred — Predicted values
n-by-r matrix

Predicted values from the repeated measures model rm, returned as an n-by-r matrix,
where n is the number of rows in tnew and r is the number of repeated measures in rm.

yci — Confidence intervals for predicted values
n-by-r-by-2 matrix

Confidence intervals for predicted values from the repeated measures model rm, returned
as an n-by-r-by-2 matrix.

These are nonsimultaneous intervals for predicting the mean response at the specified
predictor values. For predicted value ypred(i,j), the lower limit of the interval is
yci(i,j,1) and the upper limit is yci(i,j,2).

Examples

Predict Response Values

Load the sample data.

load fisheriris

The column vector,speciesconsists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

 predict

22-3771

 rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Predict responses for the three species.

Y = predict(rm,t([1 51 101],:))

Y =

 5.0060 3.4280 1.4620 0.2460

 5.9360 2.7700 4.2600 1.3260

 6.5880 2.9740 5.5520 2.0260

Predict Response Values and Plot Predictions

Navigate to the folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load('longitudinalData')

The matrix Y contains response data for 16 individuals. The response is the blood level of
a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds
to an individual, and each column corresponds to a time point. The first eight subjects
are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to perform repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...

'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where the blood levels are the responses and gender is
the predictor variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Predict the responses at intermediate times.

22 Functions — Alphabetical List

22-3772

time = linspace(0,8)';

Y = predict(rm,t([1 5 8 12],:), ...

 'WithinModel','orthogonalcontrasts','WithinDesign',time);

Plot the predictions along with the estimated marginal means.

plotprofile(rm,'Time','Group',{'Gender'})

hold on;

plot(time,Y,'Color','r','LineStyle',':');

hold off

Compute and Plot Confidence Intervals

Navigate to the folder containing sample data.

 predict

22-3773

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load('longitudinalData')

The matrix Y contains response data for 16 individuals. The response is the blood level of
a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds
to an individual, and each column corresponds to a time point. The first eight subjects
are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to perform repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...

'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where the blood levels are the responses and gender is
the predictor variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Predict the responses at intermediate times.

time = linspace(0,8)';

[ypred,ypredci] = predict(rm,t([1 5 8 12],:), ...

 'WithinModel','orthogonalcontrasts','WithinDesign',time);

Plot the predictions and the confidence intervals for predictions along with the estimated
marginal means.

plotprofile(rm,'Time','Group',{'Gender'})

hold on;

plot(time,ypred,'Color','r','LineStyle',':');

plot(time,ypredci(:,:,1))

plot(time,ypredci(:,:,2))

hold off

22 Functions — Alphabetical List

22-3774

See Also
fitrm | random

 predict

22-3775

predict
Class: TreeBagger

Predict response

Syntax
Y = predict(B,X)

[Y,stdevs] = predict(B,X)

[Y,scores] = predict(B,X)

[Y,scores,stdevs] = predict(B,X)

Y = predict(B,X,'param1',val1,'param2',val2,...)

Description
Y = predict(B,X) computes predicted response of the trained ensemble B for data X.
The output has one prediction for each row of X. The returned Y is a cell array of strings
for classification and a numeric array for regression.

For regression, [Y,stdevs] = predict(B,X) also returns standard deviations of the
computed responses over the ensemble of the grown trees.

For classification, [Y,scores] = predict(B,X) returns scores for all classes. scores
is a matrix with one row per observation and one column per class. For each observation
and each class, the score generated by each tree is the probability of this observation
originating from this class computed as the fraction of observations of this class in a tree
leaf. predict averages these scores over all trees in the ensemble.

[Y,scores,stdevs] = predict(B,X) also returns standard deviations of the
computed scores for classification. stdevs is a matrix with one row per observation and
one column per class, with standard deviations taken over the ensemble of the grown
trees.

Y = predict(B,X,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'trees' Array of tree indices to use for computation of responses. Default
is 'all'.

22 Functions — Alphabetical List

22-3776

'treeweights' Array of NTrees weights for weighting votes from the specified
trees.

'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees to
use to make predictions for each observation. By default all trees
are used for all observations.

See Also
CompactTreeBagger.predict

 predictorImportance

22-3777

predictorImportance
Class: CompactClassificationEnsemble

Estimates of predictor importance

Syntax

imp = predictorImportance(ens)

[imp,ma] = predictorImportance(ens)

Description

imp = predictorImportance(ens) computes estimates of predictor importance for
ens by summing these estimates over all weak learners in the ensemble. imp has one
element for each input predictor in the data used to train this ensemble. A high value
indicates that this predictor is important for ens.

[imp,ma] = predictorImportance(ens) returns a P-by-P matrix with predictive
measures of association for P predictors, when the learners in ens contain surrogate
splits. See “Definitions” on page 22-3778.

Input Arguments

ens

A classification ensemble created by fitensemble, or by the compact method.

Output Arguments

imp

A row vector with the same number of elements as the number of predictors (columns)
in ens.X. The entries are the estimates of predictor importance, with 0 representing the
smallest possible importance.

22 Functions — Alphabetical List

22-3778

ma

A P-by-P matrix of predictive measures of association for P predictors. Element ma(I,J)
is the predictive measure of association averaged over surrogate splits on predictor J for
which predictor I is the optimal split predictor. predictorImportance averages this
predictive measure of association over all trees in the ensemble.

Definitions

Predictor Importance

predictorImportance computes estimates of predictor importance for ens by summing
changes in the risk due to splits on every predictor and dividing the sum by the number
of branch nodes. If ens is grown without surrogate splits, this sum is taken over best
splits found at each branch node. If ens is grown with surrogate splits, this sum is taken
over all splits at each branch node including surrogate splits. imp has one element for
each input predictor in the data used to train ens. Predictor importance associated with
this split is computed as the difference between the risk for the parent node and the total
risk for the two children.

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion
name-value pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1 2
- Â p i

i

(),

where the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node. A node with just one class (a pure node) has
Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of
node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the
deviance of a node is

 predictorImportance

22-3779

-Â p i p i

i

() log ().

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a

different measure for deciding how to split a node. Let L(i) denote the fraction of
members of class i in the left child node after a split, and R(i) denote the fraction of
members of class i in the right child node after a split. Choose the split criterion to
maximize

P L P R L i R i

i

() () () () ,-
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

2

where P(L) and P(R) are the fractions of observations that split to the left and
right respectively. If the expression is large, the split made each child node purer.
Similarly, if the expression is small, the split made each child node similar to each
other, and hence similar to the parent node, and so the split did not increase node
purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is
the class with the largest number of training samples at a node, the node error is
1 – p(j).

Predictive Measure of Association

The predictive measure of association between the optimal split on variable i and a
surrogate split on variable j is:

li j

L R L L R R

L R

P P P P

P P

i j i j

,

,

,
.=

() - - -()
()

min

min

1

Here

• PL and PR are the node probabilities for the optimal split of node i into Left and Right
nodes respectively.

22 Functions — Alphabetical List

22-3780

• PL Li j
 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Left.
• PR Ri j

 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Right.

Clearly, λi,j lies from –∞ to 1. Variable j is a worthwhile surrogate split for variable i if
λi,j > 0.

Element ma(i,j) is the predictive measure of association averaged over surrogate
splits on predictor j for which predictor i is the optimal split predictor. This average
is computed by summing positive values of the predictive measure of association over
optimal splits on predictor i and surrogate splits on predictor j and dividing by the total
number of optimal splits on predictor i, including splits for which the predictive measure
of association between predictors i and j is negative.

Examples

Estimate the predictor importance for all variables in the Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

imp = predictorImportance(ens)

imp =

 0.0001 0.0005 0.0384 0.0146

The first two predictors are not very important in ens.

Estimate the predictor importance for all variables in the Fisher iris data for an
ensemble where the trees contain surrogate splits:

load fisheriris

surrtree = templateTree('Surrogate','on');

ens2 = fitensemble(meas,species,'AdaBoostM2',100,surrtree);

[imp2,ma] = predictorImportance(ens2)

imp2 =

 0.0224 0.0142 0.0525 0.0508

ma =

 predictorImportance

22-3781

 1.0000 0 0.0001 0.0001

 0.0115 1.0000 0.0023 0.0054

 0.2810 0.1747 1.0000 0.5372

 0.0789 0.0463 0.2339 1.0000

The first two predictors show much more importance than in the previous example.

See Also
predictorImportance | templateTree

22 Functions — Alphabetical List

22-3782

predictorImportance

Class: CompactClassificationTree

Estimates of predictor importance

Syntax

imp = predictorImportance(tree)

Description

imp = predictorImportance(tree) computes estimates of predictor importance for
tree by summing changes in the risk due to splits on every predictor and dividing the
sum by the number of branch nodes.

Input Arguments

tree

A classification tree created by fitctree, or by the compact method.

Output Arguments

imp

A row vector with the same number of elements as the number of predictors (columns)
in tree.X. The entries are the estimates of predictor importance, with 0 representing the
smallest possible importance.

 predictorImportance

22-3783

Definitions

Predictor Importance

predictorImportance computes estimates of predictor importance for tree by
summing changes in the risk due to splits on every predictor and dividing the sum by
the number of branch nodes. If tree is grown without surrogate splits, this sum is taken
over best splits found at each branch node. If tree is grown with surrogate splits, this
sum is taken over all splits at each branch node including surrogate splits. imp has one
element for each input predictor in the data used to train tree. Predictor importance
associated with this split is computed as the difference between the risk for the parent
node and the total risk for the two children.

Estimates of predictor importance do not depend on the order of predictors if you use
surrogate splits, but do depend on the order if you do not use surrogate splits.

If you use surrogate splits, predictorImportance computes estimates before the
tree is reduced by pruning or merging leaves. If you do not use surrogate splits,
predictorImportance computes estimates after the tree is reduced by pruning or
merging leaves. Therefore, reducing the tree by pruning affects the predictor importance
for a tree grown without surrogate splits, and does not affect the predictor importance for
a tree grown with surrogate splits.

Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion
name-value pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1 2
- Â p i

i

(),

where the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node. A node with just one class (a pure node) has
Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of
node impurity.

22 Functions — Alphabetical List

22-3784

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the
deviance of a node is

-Â p i p i

i

() log ().

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a

different measure for deciding how to split a node. Let L(i) denote the fraction of
members of class i in the left child node after a split, and R(i) denote the fraction of
members of class i in the right child node after a split. Choose the split criterion to
maximize

P L P R L i R i

i

() () () () ,-
Ê

Ë
ÁÁ

ˆ

¯
˜̃Â

2

where P(L) and P(R) are the fractions of observations that split to the left and
right respectively. If the expression is large, the split made each child node purer.
Similarly, if the expression is small, the split made each child node similar to each
other, and hence similar to the parent node, and so the split did not increase node
purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is
the class with the largest number of training samples at a node, the node error is
1 – p(j).

Examples

Estimate the predictor importance for all variables in the Fisher iris data:

load fisheriris

tree = fitctree(meas,species);

imp = predictorImportance(tree)

imp =

 0 0 0.0403 0.0303

The first two elements of imp are zero. Therefore, the first two predictors do not enter
into tree calculations for classifying irises.

 predictorImportance

22-3785

Estimate the predictor importance for all variables in the Fisher iris data for a tree
grown with surrogate splits:

tree2 = fitctree(meas,species,...

 'Surrogate','on');

imp2 = predictorImportance(tree2)

imp2 =

 0.0287 0.0136 0.0560 0.0556

In this case, all predictors have some importance. As you expect by comparing to the first
example, the first two predictors are less important than the final two.

Estimates of predictor importance do not depend on the order of predictors if you use
surrogate splits, but do depend on the order if you do not use surrogate splits. For
example, permute the order of the data columns in the previous example:

load fisheriris

meas3 = meas(:,[4 1 3 2]);

tree3 = fitctree(meas3,species);

imp3 = predictorImportance(tree2)

imp3 =

 0.0674 0 0.0033 0

The estimates of predictor importance are not a permutation of imp from the first
example.

Estimate the predictor importance using surrogate splits.

tree4 = fitctree(meas3,species,...

 'Surrogate','on');

imp4 = predictorImportance(tree4)

imp4 =

 0.0556 0.0287 0.0560 0.0136

imp4 is a permutation of imp2, demonstrating that estimates of predictor importance do
not depend on the order of predictors with surrogate splits.

See Also
predictorImportance | fitctree

22 Functions — Alphabetical List

22-3786

predictorImportance
Class: CompactRegressionEnsemble

Estimates of predictor importance

Syntax

imp = predictorImportance(ens)

[imp,ma] = predictorImportance(ens)

Description

imp = predictorImportance(ens) computes estimates of predictor importance for
ens by summing these estimates over all weak learners in the ensemble. imp has one
element for each input predictor in the data used to train this ensemble. A high value
indicates that this predictor is important for ens.

[imp,ma] = predictorImportance(ens) returns a P-by-P matrix with predictive
measures of association for P predictors.

Input Arguments

ens

A regression ensemble created by fitensemble, or by the compact method.

Output Arguments

imp

A row vector with the same number of elements as the number of predictors (columns)
in ens.X. The entries are the estimates of predictor importance, with 0 representing the
smallest possible importance.

 predictorImportance

22-3787

ma

A P-by-P matrix of predictive measures of association for P predictors. Element ma(I,J)
is the predictive measure of association averaged over surrogate splits on predictor J for
which predictor I is the optimal split predictor. predictorImportance averages this
predictive measure of association over all trees in the ensemble.

Definitions

Predictor Importance

predictorImportance computes estimates of predictor importance for tree by
summing changes in the mean squared error (MSE) due to splits on every predictor and
dividing the sum by the number of branch nodes. If the tree is grown without surrogate
splits, this sum is taken over best splits found at each branch node. If the tree is grown
with surrogate splits, this sum is taken over all splits at each branch node including
surrogate splits. imp has one element for each input predictor in the data used to train
this tree. At each node, MSE is estimated as node error weighted by the node probability.
Variable importance associated with this split is computed as the difference between
MSE for the parent node and the total MSE for the two children.

Predictive Measure of Association

The predictive measure of association between the optimal split on variable i and a
surrogate split on variable j is:

li j

L R L L R R

L R

P P P P

P P

i j i j

,

,

,
.=

() - - -()
()

min

min

1

Here

• PL and PR are the node probabilities for the optimal split of node i into Left and Right
nodes respectively.

• PL Li j
 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Left.

22 Functions — Alphabetical List

22-3788

• PR Ri j
 is the probability that both (optimal) node i and (surrogate) node j send an

observation to the Right.

Clearly, λi,j lies from –∞ to 1. Variable j is a worthwhile surrogate split for variable i if
λi,j > 0.

Element ma(i,j) is the predictive measure of association averaged over surrogate
splits on predictor j for which predictor i is the optimal split predictor. This average
is computed by summing positive values of the predictive measure of association over
optimal splits on predictor i and surrogate splits on predictor j and dividing by the total
number of optimal splits on predictor i, including splits for which the predictive measure
of association between predictors i and j is negative.

Examples

Estimate the predictor importance for all numeric variables in the carsmall data:

load carsmall

X = [Acceleration Cylinders Displacement ...

 Horsepower Model_Year Weight];

ens = fitensemble(X,MPG,'LSBoost',100,'Tree');

imp = predictorImportance(ens)

imp =

 0.0082 0 0.0049 0.0133 0.0142 0.1737

The weight (last predictor) has the most impact on mileage (MPG). The second predictor
has importance 0; this means the number of cylinders has no impact on predictions made
with ens.

Estimate the predictor importance for all variables in the carsmall data for an
ensemble where the trees contain surrogate splits:

load carsmall

surrtree = templateTree('Surrogate','on');

X = [Acceleration Cylinders Displacement ...

 Horsepower Model_Year Weight];

ens2 = fitensemble(X,MPG,'LSBoost',100,surrtree);

[imp2,ma] = predictorImportance(ens2)

imp2 =

 predictorImportance

22-3789

 0.0725 0.1342 0.1425 0.1397 0.1380 0.1855

ma =

 1.0000 0.0414 0.0607 0.0782 0.0102 0.0322

 0 1.0000 0 0 0 0

 0.0441 0.0704 1.0000 0.0883 0.0175 0.0913

 0.0944 0.1166 0.1400 1.0000 0.0390 0.1308

 0.0121 0.0139 0.0127 0.0127 1.0000 0.0113

 0.0818 0.1317 0.2072 0.1878 0.0340 1.0000

While weight (last predictor) still has the most impact on mileage (MPG), this estimate
has the second predictor (number of cylinders) is essentially tied for third most important
predictor.

See Also
predictorImportance | templateTree

22 Functions — Alphabetical List

22-3790

predictorImportance

Class: CompactRegressionTree

Estimates of predictor importance

Syntax

imp = predictorImportance(tree)

Description

imp = predictorImportance(tree) computes estimates of predictor importance for
tree by summing changes in the mean squared error due to splits on every predictor and
dividing the sum by the number of branch nodes.

Input Arguments

tree

A regression tree created by fitrtree, or by the compact method.

Output Arguments

imp

A row vector with the same number of elements as the number of predictors (columns)
in tree.X. The entries are the estimates of predictor importance, with 0 representing the
smallest possible importance.

 predictorImportance

22-3791

Definitions

Predictor Importance

predictorImportance computes estimates of predictor importance for tree by
summing changes in the mean squared error (MSE) due to splits on every predictor and
dividing the sum by the number of branch nodes. If the tree is grown without surrogate
splits, this sum is taken over best splits found at each branch node. If the tree is grown
with surrogate splits, this sum is taken over all splits at each branch node including
surrogate splits. imp has one element for each input predictor in the data used to train
this tree. At each node, MSE is estimated as node error weighted by the node probability.
Variable importance associated with this split is computed as the difference between
MSE for the parent node and the total MSE for the two children.

Estimates of predictor importance do not depend on the order of predictors if you use
surrogate splits, but do depend on the order if you do not use surrogate splits.

If you use surrogate splits, predictorImportance computes estimates before the
tree is reduced by pruning or merging leaves. If you do not use surrogate splits,
predictorImportance computes estimates after the tree is reduced by pruning or
merging leaves. Therefore, reducing the tree by pruning affects the predictor importance
for a tree grown without surrogate splits, and does not affect the predictor importance for
a tree grown with surrogate splits.

Examples

Find predictor importance for the carsmall data. Use just the numeric predictors:

load carsmall

X = [Acceleration Cylinders Displacement ...

 Horsepower Model_Year Weight];

tree = fitrtree(X,MPG);

imp = predictorImportance(tree)

imp =

 0.0315 0 0.1082 0.0686 0.1629 1.2924

The weight (last predictor) has the most impact on mileage (MPG). The second predictor
has importance 0; this means the number of cylinders has no impact on predictions made
with tree.

22 Functions — Alphabetical List

22-3792

Estimate the predictor importance for all variables in the carsmall data for a tree
grown with surrogate splits:

load carsmall

X = [Acceleration Cylinders Displacement ...

 Horsepower Model_Year Weight];

tree2 = fitrtree(X,MPG,...

 'Surrogate','on');

imp2 = predictorImportance(tree2)

imp2 =

 0.5287 1.1977 1.2400 0.7059 1.0677 1.4106

While weight (last predictor) still has the most impact on mileage (MPG), this estimate
has the second predictor (number of cylinders) as the third most important predictor.

See Also
predictorImportance | fitrtree

 princomp

22-3793

princomp
Principal component analysis (PCA) on data

Compatibility

princomp will be removed in a future release. Use pca instead.

Syntax

[COEFF,SCORE] = princomp(X)

[COEFF,SCORE,latent] = princomp(X)

[COEFF,SCORE,latent,tsquare] = princomp(X)

[...] = princomp(X,'econ')

Description

COEFF = princomp(X) performs principal components analysis (PCA) on the n-by-p
data matrix X, and returns the principal component coefficients, also known as loadings.
Rows of X correspond to observations, columns to variables. COEFF is a p-by-p matrix,
each column containing coefficients for one principal component. The columns are in
order of decreasing component variance.

princomp centers X by subtracting off column means, but does not rescale the columns of
X. To perform principal components analysis with standardized variables, that is, based
on correlations, use princomp(zscore(X)). To perform principal components analysis
directly on a covariance or correlation matrix, use pcacov.

[COEFF,SCORE] = princomp(X) returns SCORE, the principal component scores; that
is, the representation of X in the principal component space. Rows of SCORE correspond to
observations, columns to components.

[COEFF,SCORE,latent] = princomp(X) returns latent, a vector containing the
eigenvalues of the covariance matrix of X.

[COEFF,SCORE,latent,tsquare] = princomp(X) returns tsquare, which contains
Hotelling's T2 statistic for each data point.

22 Functions — Alphabetical List

22-3794

The scores are the data formed by transforming the original data into the space of the
principal components. The values of the vector latent are the variance of the columns of
SCORE. Hotelling's T2 is a measure of the multivariate distance of each observation from
the center of the data set.

When n <= p, SCORE(:,n:p) and latent(n:p) are necessarily zero, and the columns
of COEFF(:,n:p) define directions that are orthogonal to X.

[...] = princomp(X,'econ') returns only the elements of latent that are not
necessarily zero, and the corresponding columns of COEFF and SCORE, that is, when n <=
p, only the first n-1. This can be significantly faster when p is much larger than n.

Examples

Compute principal components for the ingredients data in the Hald data set, and the
variance accounted for by each component.

load hald;

[pc,score,latent,tsquare] = princomp(ingredients);

pc,latent

pc =

 -0.0678 -0.6460 0.5673 0.5062

 -0.6785 -0.0200 -0.5440 0.4933

 0.0290 0.7553 0.4036 0.5156

 0.7309 -0.1085 -0.4684 0.4844

latent =

 517.7969

 67.4964

 12.4054

 0.2372

The following command and plot show that two components account for 98% of the
variance:

cumsum(latent)./sum(latent)

ans =

 princomp

22-3795

 0.86597

 0.97886

 0.9996

 1

biplot(pc(:,1:2),'Scores',score(:,1:2),'VarLabels',...

 {'X1' 'X2' 'X3' 'X4'})

For a more detailed example and explanation of this analysis method, see “Principal
Component Analysis (PCA)” on page 13-75.

More About
• “Principal Component Analysis (PCA)” on page 13-75

22 Functions — Alphabetical List

22-3796

References

[1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons, 1991, p.
592.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd edition, Springer, 2002.

[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New
York: Oxford University Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also
barttest | biplot | canoncorr | factoran | pca | pcacov | pcares |
rotatefactors

 Prior property

22-3797

Prior property
Class: TreeBagger

Prior class probabilities

Description

The Prior property is a vector with prior probabilities for classes. This property is empty
for ensembles of regression trees.

See Also
ClassificationTree | TreeBagger | fitctree

22 Functions — Alphabetical List

22-3798

ProbDist class

Object representing probability distribution

Compatibility

ProbDist will be removed in a future release. To create and fit probability distribution
objects, use makedist and fitdist instead.

Description

ProbDist is an abstract class representing a probability distribution.

Construction

ProbDist is an abstract class. You cannot create instances of this class directly.
You can construct an object in a subclass, such as ProbDistUnivParam or
ProbDistUnivKernel, by calling the subclass constructors (ProbDistUnivParam or
ProbDistUnivKernel).

Methods

cdf
Return cumulative distribution function
(CDF) for ProbDist object

pdf
Return probability density function (PDF)
for ProbDist object

random
Generate random number drawn from
ProbDist object

 ProbDist class

22-3799

Properties

DistName
Read-only string containing probability
distribution name of ProbDist object

InputData
Read-only structure containing information
about input data to ProbDist object

Support
Read-only structure containing information
about support of ProbDist object

Copy Semantics

Value. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
ProbDistParametric | ProbDistUnivParam | ProbDistUnivKernel |
ProbDistUnivParam | ProbDistKernel | ProbDistUnivKernel

22 Functions — Alphabetical List

22-3800

ProbDistKernel class
Superclasses: ProbDist

Object representing nonparametric probability distribution defined by kernel smoothing

Compatibility

ProbDistKernel will be removed in a future release. To create and fit probability
distribution objects, use makedist and fitdist instead.

Description

ProbDistKernel is an abstract class defining the properties and methods of a
nonparametric distribution defined by a kernel smoothing function.

Construction

ProbDistKernel is an abstract class. You cannot create instances of this class directly.
You can construct an object in a subclass, ProbDistUnivKernel by calling the subclass
constructor, ProbDistUnivKernel.

Methods

cdf
Return cumulative distribution function
(CDF) for ProbDist object

pdf
Return probability density function (PDF)
for ProbDist object

random
Generate random number drawn from
ProbDist object

 ProbDistKernel class

22-3801

Note: The above methods are inherited from the ProbDist class.

Properties

BandWidth
Read-only value specifying bandwidth
of kernel smoothing function for
ProbDistKernel object

DistName
Read-only string containing probability
distribution name of ProbDist object

InputData
Read-only structure containing information
about input data to ProbDist object

Kernel
Read-only string specifying name of kernel
smoothing function for ProbDistKernel
object

Support
Read-only structure containing information
about support of ProbDist object

Note: Some of the above properties are inherited from the ProbDist class.

Copy Semantics

Value. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
ProbDist | ProbDistUnivKernel | ProbDistUnivKernel

22 Functions — Alphabetical List

22-3802

ProbDistParametric class
Superclasses: ProbDist

Object representing parametric probability distribution

Compatibility

ProbDistParametric will be removed in a future release. To create and fit probability
distribution objects, use makedist and fitdist instead.

Description

ProbDistParametric is an abstract class defining the properties and methods of a
parametric probability distribution.

Construction

ProbDistParametric is an abstract class. You cannot create instances of this class
directly. You can construct an object in its subclass, ProbDistUnivParam, by calling the
subclass constructor, ProbDistUnivParam.

Methods

cdf
Return cumulative distribution function
(CDF) for ProbDist object

pdf
Return probability density function (PDF)
for ProbDist object

random
Generate random number drawn from
ProbDist object

 ProbDistParametric class

22-3803

Note: The above methods are inherited from the ProbDist class.

Properties

DistName
Read-only string containing probability
distribution name of ProbDist object

InputData
Read-only structure containing information
about input data to ProbDist object

NLogL
Read-only value specifying negative
log likelihood for input data to
ProbDistParametric object

NumParams
Read-only value specifying number of
parameters of ProbDistParametric object

ParamCov
Read-only covariance matrix of parameter
estimates of ProbDistParametric object

ParamDescription
Read-only cell array specifying descriptions
of parameters of ProbDistParametric object

ParamIsFixed
Read-only logical array specifying fixed
parameters of ProbDistParametric object

ParamNames
Read-only cell array specifying names of
parameters of ProbDistParametric object

Params
Read-only array specifying values of
parameters of ProbDistParametric object

Support
Read-only structure containing information
about support of ProbDist object

22 Functions — Alphabetical List

22-3804

Note: Some of the above properties are inherited from the ProbDist class.

Copy Semantics

Value. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
ProbDist | ProbDistUnivParam | ProbDistUnivParam

 ProbDistUnivKernel class

22-3805

ProbDistUnivKernel class
Superclasses: ProbDistKernel

Object representing univariate kernel probability distribution

Compatibility

ProbDistUnivKernel will be removed in a future release. To create and fit probability
distribution objects, use makedist and fitdist instead.

Description

A ProbDistUnivKernel object represents a univariate nonparametric probability
distribution defined by kernel smoothing. You create this object using the
ProbDistUnivKernel function to fit the distribution to data.

Construction

Methods

cdf
Return cumulative distribution function
(CDF) for ProbDist object

icdf
Return inverse cumulative distribution
function (ICDF) for ProbDistUnivKernel
object

iqr
Return interquartile range (IQR) for
ProbDistUnivKernel object

median
Return median of ProbDistUnivKernel
object

22 Functions — Alphabetical List

22-3806

pdf
Return probability density function (PDF)
for ProbDist object

random
Generate random number drawn from
ProbDist object

Note: Some of the above methods are inherited from the ProbDistKernel class.

Properties

BandWidth
Read-only value specifying bandwidth
of kernel smoothing function for
ProbDistKernel object

DistName
Read-only string containing probability
distribution name of ProbDist object

InputData
Read-only structure containing information
about input data to ProbDist object

Kernel
Read-only string specifying name of kernel
smoothing function for ProbDistKernel
object

NLogL
Read-only value specifying negative
log likelihood for input data to
ProbDistUnivKernel object

Support
Read-only structure containing information
about support of ProbDist object

Note: Some of the above properties are inherited from the ProbDistKernel class.

 ProbDistUnivKernel class

22-3807

Copy Semantics

Value. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

References

[1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis.
New York: Oxford University Press, 1997.

See Also
fitdist | ksdensity | ProbDist | ProbDistUnivKernel | ProbDistKernel

22 Functions — Alphabetical List

22-3808

ProbDistUnivKernel
Class: ProbDistUnivKernel

Construct ProbDistUnivKernel object

Syntax
PD = ProbDistUnivKernel(X)

PD = ProbDistUnivKernel(X, param1, val1, param2, val2, ...)

Description
PD = ProbDistUnivKernel(X) creates PD, a ProbDistUnivKernel object, which
represents a nonparametric probability distribution, based on a normal kernel smoothing
function.

PD = ProbDistUnivKernel(X, param1, val1, param2, val2, ...) specifies
optional parameter name/value pairs, as described in the Parameter/Values table.
Parameter and value names are case insensitive.

Compatibility
ProbDistUnivKernel will be removed in a future release. To create and fit probability
distribution objects, use makedist and fitdist instead.

Input Arguments
X A column vector of data.

Note: Any NaN values in X are ignored by the fitting calculations.

Parameter Values

'censoring' A Boolean vector the same size as X, containing 1s when the
corresponding elements in X are right-censored observations and 0s

 ProbDistUnivKernel

22-3809

Parameter Values

when the corresponding elements are exact observations. Default is a
vector of 0s.

Note: Any NaN values in this censoring vector are ignored by the
fitting calculations.

'frequency' A vector the same size as X, containing nonnegative integers specifying
the frequencies for the corresponding elements in X. Default is a vector
of 1s.

Note: Any NaN values in this frequency vector are ignored by the
fitting calculations.

'kernel' A string specifying the type of kernel smoother to use. Choices are:

• 'normal' (default)
• 'box'

• 'triangle'

• 'epanechnikov'

'support' Any of the following to specify the support:

• 'unbounded' — Default. If the density can extend over the whole
real line.

• 'positive' — To restrict it to positive values.
• A two-element vector giving finite lower and upper limits for the

support of the density.
'width' A value specifying the bandwidth of the kernel smoothing window. The

default is optimal for estimating normal densities, but you may want to
choose a smaller value to reveal features such as multiple modes.

Output Arguments
PD An object in the ProbDistUnivKernel class, which is derived

from the ProbDist class. It represents a nonparametric
probability distribution.

22 Functions — Alphabetical List

22-3810

References

[1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis.
New York: Oxford University Press, 1997.

See Also
fitdist | ksdensity

 ProbDistUnivParam class

22-3811

ProbDistUnivParam class
Superclasses: ProbDistParametric

Object representing univariate parametric probability distribution

Compatibility

ProbDistUnivParam will be removed in a future release. To create and fit probability
distribution objects, use makedist and fitdist instead.

Description

A ProbDistUnivParam object represents a univariate parametric probability
distribution. You create this object by using the constructor (ProbDistUnivParam) and
supplying parameter values.

Construction

.ProbDistUnivParam
Construct ProbDistUnivParam object

Methods

cdf
Return cumulative distribution function
(CDF) for ProbDist object

icdf
Return inverse cumulative distribution
function (ICDF) for ProbDistUnivParam
object

iqr
Return interquartile range (IQR) for
ProbDistUnivParam object

22 Functions — Alphabetical List

22-3812

mean
Return mean of ProbDistUnivParam object

median
Return median of ProbDistUnivParam
object

paramci
Return parameter confidence intervals of
ProbDistUnivParam object

pdf
Return probability density function (PDF)
for ProbDist object

random
Generate random number drawn from
ProbDist object

std
Return standard deviation of
ProbDistUnivParam object

var
Return variance of ProbDistUnivParam
object

Note: Some of the above methods are inherited from the ProbDistParametric class.

Properties

DistName
Read-only string containing probability
distribution name of ProbDist object

InputData
Read-only structure containing information
about input data to ProbDist object

NLogL
Read-only value specifying negative
log likelihood for input data to
ProbDistParametric object

 ProbDistUnivParam class

22-3813

NumParams
Read-only value specifying number of
parameters of ProbDistParametric object

ParamCov
Read-only covariance matrix of parameter
estimates of ProbDistParametric object

ParamDescription
Read-only cell array specifying descriptions
of parameters of ProbDistParametric object

ParamIsFixed
Read-only logical array specifying fixed
parameters of ProbDistParametric object

ParamNames
Read-only cell array specifying names of
parameters of ProbDistParametric object

Params
Read-only array specifying values of
parameters of ProbDistParametric object

Support
Read-only structure containing information
about support of ProbDist object

Note: The above properties are inherited from the ProbDistParametric class.

Note: Parameter values are also properties. For example, if you create PD, a univariate
parametric probability distribution object that represents a normal distribution,
then PD.mu and PD.sigma are properties that give the values of the mu and sigma
parameters.

Copy Semantics

Value. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

22 Functions — Alphabetical List

22-3814

References

[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.

See Also
ProbDist | ProbDistUnivParam | ProbDistParametric

How To
• Appendix B

 ProbDistUnivParam

22-3815

ProbDistUnivParam
Class: ProbDistUnivParam

Construct ProbDistUnivParam object

Syntax

PD = ProbDistUnivParam(DistName, Params)

Description

PD = ProbDistUnivParam(DistName, Params) creates PD, a ProbDistUnivParam
object, which represents a probability distribution. This distribution is defined by the
parametric distribution specified by DistName, with parameters specified by the numeric
vector Params.

Compatibility

ProbDistUnivParam will be removed in a future release. To create and fit probability
distribution objects, use makedist and fitdist instead.

Input Arguments

DistName A string specifying a distribution. Choices are:

• 'beta'

• 'binomial'

• 'birnbaumsaunders'

• 'exponential'

• 'extreme value' or ev'
• 'gamma'

• 'generalized extreme value' or 'gev'

22 Functions — Alphabetical List

22-3816

• 'generalized pareto' or 'gp'
• 'inversegaussian'

• 'logistic'

• 'loglogistic'

• 'lognormal'

• 'nakagami'

• 'negative binomial' or 'nbin'
• 'normal'

• 'poisson'

• 'rayleigh'

• 'rician'

• 'tlocationscale'

• 'weibull' or 'wbl'

For more information on these parametric distributions, see
Appendix B.

Params Numeric vector of distribution parameters. The number and
type of parameters depends on the distribution you specify with
DistName. For information on parameters for each distribution
type, see Appendix B.

Output Arguments

PD An object in the ProbDistUnivParam class, which is derived
from the ProbDist class. It represents a parametric probability
distribution.

Examples

1 Create an object representing a normal distribution with a mean of 100 and a
standard deviation of 10.

pd = ProbDistUnivParam('normal',[100 10])

 ProbDistUnivParam

22-3817

pd =

normal distribution

 mu = 100

 sigma = 10

2 Generate a 4-by-5 matrix of random values from this distribution.

random(pd,4,5)

ans =

 105.3767 103.1877 135.7840 107.2540 98.7586

 118.3389 86.9231 127.6944 99.3695 114.8970

 77.4115 95.6641 86.5011 107.1474 114.0903

 108.6217 103.4262 130.3492 97.9503 114.1719

References

[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.

See Also
fitdist

How To
• Appendix B

22 Functions — Alphabetical List

22-3818

probplot
Probability plots

Syntax

probplot(Y)

probplot(distribution,Y)

probplot(Y,cens,freq)

probplot(ax,Y)

probplot(...,'noref')

probplot(ax,PD)

probplot(ax,fun,params)

h = probplot(...)

Description

probplot(Y) produces a normal probability plot comparing the distribution of the data
Y to the normal distribution. Y can be a single vector, or a matrix with a separate sample
in each column. The plot includes a reference line useful for judging whether the data
follow a normal distribution.

probplot uses midpoint probability plotting positions. The ith sorted value from a
sample of size N is plotted against the midpoint in the jump of the empirical CDF on the
y axis. With uncensored data, that midpoint is (i–0.5)/N. With censored data (see below),
the y value is more complicated to compute.

probplot(distribution,Y) creates a probability plot for the distribution specified by
distribution. Acceptable strings for distribution are:

• 'exponential' — Exponential probability plot (nonnegative values)
• 'extreme value' — Extreme value probability plot (all values)
• 'lognormal' — Lognormal probability plot (positive values)
• 'normal' — Normal probability plot (all values)
• 'rayleigh' — Rayleigh probability plot (positive values)
• 'weibull' — Weibull probability plot (positive values)

 probplot

22-3819

The y axis scale is based on the selected distribution. The x axis has a log scale for the
Weibull and lognormal distributions, and a linear scale for the others.

Not all distributions are appropriate for all data sets, and probplot will error when
asked to create a plot with a data set that is inappropriate for a specified distribution.
Appropriate data ranges for each distribution are given parenthetically in the list above.

probplot(Y,cens,freq) or probplot(distname,Y,cens,freq) requires a vector
Y. cens is a vector of the same size as Y and contains 1 for observations that are right-
censored and 0 for observations that are observed exactly. freq is a vector of the same
size as Y, containing integer frequencies for the corresponding elements in Y.

probplot(ax,Y) takes a handle ax to an existing probability plot, and adds additional
lines for the samples in Y. ax is a handle for a set of axes.

probplot(...,'noref') omits the reference line.

probplot(ax,PD) takes a probability distribution object, PD, and adds a fitted line to
the axes specified by ax to represent the probability distribution specified by PD. PD is a
ProbDist object of the ProbDistUnivParam class or ProbDistUnivKernel class.

probplot(ax,fun,params) takes a function fun and a set of parameters, params,
and adds fitted lines to the axes of an existing probability plot specified by ax. fun is
a function handle to a cdf function, specified with @ (for example, @wblcdf). params is
the set of parameters required to evaluate fun, and is specified as a cell array or vector.
The function must accept a vector of X values as its first argument, then the optional
parameters, and must return a vector of cdf values evaluated at X.

h = probplot(...) returns handles to the plotted lines.

Examples

Test Data for Weibull Distribution Using probplot

Generate sample data. The sample x1 contains 100 random numbers from a Weibull
distribution with scale parameter A = 3 and shape parameter B = 3. The sample x2
contains 100 random numbers from a Rayleigh distribution with scale parameter B = 3.

rng('default'); % For reproducibility

x1 = wblrnd(3,3,100,1);

x2 = raylrnd(3,100,1);

22 Functions — Alphabetical List

22-3820

Create a probability plot to assess whether the data in x1 and x2 comes from a Weibull
distribution.

figure;

probplot('weibull',[x1 x2])

legend('Weibull Sample','Rayleigh Sample','Location','NW')

The probability plot shows that the data in x1 comes from a Weibull distribution, while
the data in x2 does not.

Test Data for Normal Distribution Using probplot

Generate sample data containing about 20% outliers in the tails. The left tail of the
sample data contains 10 values randomly generated from an exponential distribution

 probplot

22-3821

with parameter mu = 1. The right tail contains 10 values randomly generated from an
exponential distribution with parameter mu = 5. The center of the sample data contains
80 values randomly generated from a standard normal distribution.

rng default % For reproducibility

left_tail = -exprnd(1,10,1);

right_tail = exprnd(5,10,1);

center = randn(80,1);

data = [left_tail;center;right_tail];

Create a probability plot to assess whether the data in data comes from a normal
distribution. Plot a t location-scale curve on the same figure to compare with data.

figure;

probplot(data);

p = mle(data,'dist','tlo');

t = @(data,mu,sig,df)cdf('tlocationscale',data,mu,sig,df);

h = probplot(gca,t,p);

h.Color = 'r';

h.LineStyle = '-';

title('{\bf Probability Plot}')

legend('Data','Normal','t','Location','NW')

22 Functions — Alphabetical List

22-3822

The plot shows that neither the normal line nor the t location-scale curve fit the tails
very well because of the outliers.

See Also
normplot | ecdf | wblplot

 procrustes

22-3823

procrustes

Procrustes analysis

Syntax

d = procrustes(X,Y)

[d,Z] = procrustes(X,Y)

[d,Z,transform] = procrustes(X,Y)

[...] = procrustes(...,'scaling',flag)

[...] = procrustes(...,'reflection',flag)

Description

d = procrustes(X,Y) determines a linear transformation (translation, reflection,
orthogonal rotation, and scaling) of the points in matrix Y to best conform them to
the points in matrix X. The goodness-of-fit criterion is the sum of squared errors.
procrustes returns the minimized value of this dissimilarity measure in d. d is
standardized by a measure of the scale of X, given by:

sum(sum((X-repmat(mean(X,1),size(X,1),1)).^2,1))

That is, the sum of squared elements of a centered version of X. However, if X comprises
repetitions of the same point, the sum of squared errors is not standardized.

X and Y must have the same number of points (rows), and procrustes matches Y(i) to
X(i). Points in Y can have smaller dimension (number of columns) than those in X. In
this case, procrustes adds columns of zeros to Y as necessary.

[d,Z] = procrustes(X,Y) also returns the transformed Y values.

[d,Z,transform] = procrustes(X,Y) also returns the transformation that maps Y
to Z. transform is a structure array with fields:

• c — Translation component
• T — Orthogonal rotation and reflection component

22 Functions — Alphabetical List

22-3824

• b — Scale component

That is:

c = transform.c;

T = transform.T;

b = transform.b;

Z = b*Y*T + c;

[...] = procrustes(...,'scaling',flag), when flag is false, allows you to
compute the transformation without a scale component (that is, with b equal to 1). The
default flag is true.

[...] = procrustes(...,'reflection',flag), when flag is false, allows
you to compute the transformation without a reflection component (that is, with
det(T) equal to 1). The default flag is 'best', which computes the best-fitting
transformation, whether or not it includes a reflection component. A flag of true forces
the transformation to be computed with a reflection component (that is, with det(T)
equal to -1)

Examples

Procrustes Analysis

Generate the sample data in two dimensions.

rng('default')

n = 10;

X = normrnd(0,1,[n 2]);

Rotate, scale, translate, and add some noise to sample points.

S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];

Y = normrnd(0.5*X*S+2,0.05,n,2);

Conform Y to X using procrustes analysis.

[d,Z,tr] = procrustes(X,Y);

Plot the original X and Y with the transformed Y .

 procrustes

22-3825

plot(X(:,1),X(:,2),'rx',Y(:,1),Y(:,2),'b.',Z(:,1),Z(:,2),'bx');

References

[1] Kendall, David G. “A Survey of the Statistical Theory of Shape.” Statistical Science.
Vol. 4, No. 2, 1989, pp. 87–99.

[2] Bookstein, Fred L. Morphometric Tools for Landmark Data. Cambridge, UK:
Cambridge University Press, 1991.

[3] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc.,
1984.

22 Functions — Alphabetical List

22-3826

See Also
cmdscale | factoran

 proflik

22-3827

proflik

Profile likelihood function for probability distribution

Syntax

[ll,param] = proflik(pd,pnum)

[ll,param] = proflik(pd,pnum,'Display',display)

[ll,param] = proflik(pd,pnum,setparam)

[ll,param] = proflik(pd,pnum,setparam,'Display',display)

[ll,param,other] = proflik(___)

Description

[ll,param] = proflik(pd,pnum) returns a vector ll of log likelihood values and
a vector param of corresponding parameter values for the parameter in the position
indicated by pnum.

[ll,param] = proflik(pd,pnum,'Display',display) returns the log likelihood
values and corresponding parameter values, and plots the profile likelihood overlaid on
an approximation of the log likelihood.

[ll,param] = proflik(pd,pnum,setparam) returns the log likelihood values and
corresponding parameter values as specified by setparam.

[ll,param] = proflik(pd,pnum,setparam,'Display',display) returns the log
likelihood values and corresponding parameter values as specified by setparam, and plots
the profile likelihood overlaid on an approximation of the log likelihood.

[ll,param,other] = proflik(___) also returns a matrix other containing the
values of the other parameters that maximize the likelihood, using any of the input
arguments from the previous syntaxes.

22 Functions — Alphabetical List

22-3828

Examples

Profile Likelihood of a Distribution Parameter

Load the sample data. Create a probability distribution object by fitting a Weibull
distribution to the miles per gallon (MPG) data.

load carsmall;

pd = fitdist(MPG,'Weibull')

pd =

 WeibullDistribution

 Weibull distribution

 A = 26.5079 [24.8333, 28.2954]

 B = 3.27193 [2.79441, 3.83104]

View the parameter names for the distribution.

pd.ParameterNames

ans =

 'A' 'B'

For the Weibull distribution, A is in position 1, and B is in position 2.

Compute the profile likelihood for B, which is in position pnum = 2.

[ll,param] = proflik(pd,2);

Display the loglikelihood values for the estimated values of B.

[ll',param']

ans =

 -329.9688 2.7132

 -329.4312 2.7748

 -328.9645 2.8365

 -328.5661 2.8981

 -328.2340 2.9597

 -327.9658 3.0213

 proflik

22-3829

 -327.7596 3.0830

 -327.6135 3.1446

 -327.5256 3.2062

 -327.4943 3.2678

 -327.5178 3.3295

 -327.5946 3.3911

 -327.7233 3.4527

 -327.9023 3.5143

 -328.1303 3.5760

 -328.4060 3.6376

 -328.7281 3.6992

 -329.0956 3.7608

 -329.5071 3.8224

 -329.9617 3.8841

 -330.4583 3.9457

These results show that the profile log likelihood is maximized between the estimated
B values of 3.2678 and 3.3295, which correspond to loglikelihood values -327.4943 and
-327.5178. From the earlier fit, the MLE of B is 3.27193, which is in this interval as
expected.

Profile Likelihood With Restricted Parameter Values

Load the sample data. Create a probability distribution object by fitting a generalized
extreme value distribution to the miles per gallon (MPG) data.

load carsmall;

pd = fitdist(MPG,'GeneralizedExtremeValue')

pd =

 GeneralizedExtremeValueDistribution

 Generalized Extreme Value distribution

 k = -0.207765 [-0.381674, -0.0338564]

 sigma = 7.49674 [6.31755, 8.89603]

 mu = 20.6233 [18.8859, 22.3606]

View the parameter names for the distribution.

pd.ParameterNames

ans =

 'k' 'sigma' 'mu'

22 Functions — Alphabetical List

22-3830

For the generalized extreme value distribution, k is in position 1, sigma is in position 2,
and mu is in position 3.

Compute the profile likelihood for mu, which is in position pnum = 3. Restrict the
computation to parameter values from 20 to 22, and display the plot.

[ll,param,other] = proflik(pd,3,20:.1:22,'display','on');

The plot shows the estimated value for the parameter mu that maximizes the
loglikelihood.

Display the loglikelihood values for the estimated values of mu, and the values of the
other distribution parameters that maximize the corresponding loglikelihood.

 proflik

22-3831

[ll',param',other]

ans =

 -327.5706 20.0000 -0.1803 7.4087

 -327.4971 20.1000 -0.1846 7.4218

 -327.4364 20.2000 -0.1890 7.4354

 -327.3887 20.3000 -0.1934 7.4493

 -327.3538 20.4000 -0.1978 7.4636

 -327.3317 20.5000 -0.2023 7.4783

 -327.3223 20.6000 -0.2067 7.4932

 -327.3257 20.7000 -0.2112 7.5084

 -327.3418 20.8000 -0.2156 7.5240

 -327.3706 20.9000 -0.2201 7.5399

 -327.4119 21.0000 -0.2245 7.5560

 -327.4659 21.1000 -0.2289 7.5723

 -327.5324 21.2000 -0.2333 7.5889

 -327.6113 21.3000 -0.2378 7.6057

 -327.7027 21.4000 -0.2422 7.6228

 -327.8065 21.5000 -0.2465 7.6400

 -327.9227 21.6000 -0.2509 7.6575

 -328.0511 21.7000 -0.2553 7.6751

 -328.1917 21.8000 -0.2596 7.6930

 -328.3446 21.9000 -0.2639 7.7111

 -328.5095 22.0000 -0.2682 7.7293

The first column contains the log likelihood value that corresponds to the estimate of
mu in the second column. The log likelihood is maximized between the parameter values
20.6000 and 20.7000, corresponding to log likelihood values -327.3223 and -327.3257. The
third column contains the value of k that maximizes the corresponding log likelihood for
mu. The fourth column contains the value of sigma that maximizes the corresponding log
likelihood for mu.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

22 Functions — Alphabetical List

22-3832

pnum — Parameter number
positive integer value

Parameter number for which to compute the profile likelihood, specified as a positive
integer value corresponding to the position of the desired parameter in the parameter
name vector. For example, a Weibull distribution has a parameter name vector
{'A','B'}, so specify pnum as 2 to compute the profile likelihood for B.

Data Types: single | double

setparam — Parameter value restriction
scalar value | vector of scalar values

Parameter value restriction, specified as a scalar value or a vector of such values. If you
do not specify setparam, proflik chooses the values for output vector param based
on the default confidence interval method for the probability distribution pd. If the
parameter can take only restricted values, and if the confidence interval violates that
restriction, you can use setparam to specify valid values.

Example: [3,3.5,4]

display — Display toggle
'off' (default) | 'on'

Display toggle, specified as either 'on' or 'off'. Specify 'on' to display a plot of the
profile log likelihood overlaid on an approximation of the log likelihood. Specify 'off'
to omit the display. The approximation is based on a Taylor series expansion around
the estimated parameter value, as a function of the parameter in position pnum or its
logarithm. The intersection of the curves with the horizontal dotted line marks the
endpoints of 95% confidence intervals.

Output Arguments

ll — Log likelihood values
vector

Log likelihood values, returned as a vector. The log likelihood is the value of the
likelihood with the parameter in position pnum set to the values in param, maximized
over the remaining parameters.

param — Parameter values
vector

 proflik

22-3833

Parameter values corresponding to the loglikelihood values in ll, returned as a vector. If
you specify parameter values using setparam, then param is equal to setparam.

other — Other parameter values
matrix

Other parameter values that maximize the likelihood, returned as a matrix. Each row of
other contains the values for all parameters except the parameter in position pnum.

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-3834

proflik

Class: prob.ToolboxFittableParametricDistribution
Package: prob

Profile likelihood function for probability distribution object

Syntax

[ll,param] = proflik(pd,pnum)

[ll,param] = proflik(pd,pnum,'Display',display)

[ll,param] = proflik(pd,pnum,setparam)

[ll,param] = proflik(pd,pnum,setparam,'Display',display)

[ll,param,other] = proflik(___)

Description

[ll,param] = proflik(pd,pnum) returns a vector ll of loglikelihood values and
a vector param of corresponding parameter values for the parameter in the position
indicated by pnum.

[ll,param] = proflik(pd,pnum,'Display',display) returns the loglikelihood
values and corresponding parameter values, and plots the profile likelihood overlaid on
an approximation of the loglikelihood.

[ll,param] = proflik(pd,pnum,setparam) returns the loglikelihood values and
corresponding parameter values as specified by setparam.

[ll,param] = proflik(pd,pnum,setparam,'Display',display) returns the
loglikelihood values and corresponding parameter values as specified by setparam, and
plots the profile likelihood overlaid on an approximation of the loglikelihood.

[ll,param,other] = proflik(___) also returns a matrix other containing the
values of the other parameters that maximize the likelihood, using any of the input
arguments from the previous syntaxes.

 proflik

22-3835

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

pnum — Parameter number
positive integer value

Parameter number for which to compute the profile likelihood, specified as a positive
integer value corresponding to the position of the desired parameter in the parameter
name vector. For example, a Weibull distribution has a parameter name vector
{'A','B'}, so specify pnum as 2 to compute the profile likelihood for B.

Data Types: single | double

setparam — Parameter value restriction
scalar value | vector of scalar values

Parameter value restriction, specified as a scalar value or a vector of such values. If you
do not specify setparam, proflik chooses the values for output vector param based
on the default confidence interval method for the probability distribution pd. If the
parameter can take only restricted values, and if the confidence interval violates that
restriction, you can use setparam to specify valid values.

Example: [3,3.5,4]

display — Display toggle
'off' (default) | 'on'

Display toggle, specified as either 'on' or 'off'. Specify 'on' to display a plot of the
profile loglikelihood overlaid on an approximation of the loglikelihood. Specify 'off'
to omit the display. The approximation is based on a Taylor series expansion around
the estimated parameter value, as a function of the parameter in position pnum or its
logarithm. The intersection of the curves with the horizontal dotted line marks the
endpoints of 95% confidence intervals.

22 Functions — Alphabetical List

22-3836

Output Arguments
ll — Loglikelihood values
vector

Loglikelihood values, returned as a vector. The loglikelihood is the value of the likelihood
with the parameter in position pnum set to the values in param, maximized over the
remaining parameters.

param — Parameter values
vector

Parameter values corresponding to the loglikelihood values in ll, returned as a vector. If
you specify parameter values using setparam, then param is equal to setparam.

other — Other parameter values
matrix

Other parameter values that maximize the likelihood, returned as a matrix. Each row of
other contains the values for all parameters except the parameter in position pnum.

Examples
Profile Likelihood of a Distribution Parameter

Load the sample data. Create a probability distribution object by fitting a Weibull
distribution to the miles per gallon (MPG) data.

load carsmall;

pd = fitdist(MPG,'Weibull')

pd =

 WeibullDistribution

 Weibull distribution

 A = 26.5079 [24.8333, 28.2954]

 B = 3.27193 [2.79441, 3.83104]

View the parameter names for the distribution.

pd.ParameterNames

ans =

 proflik

22-3837

 'A' 'B'

For the Weibull distribution, A is in position 1, and B is in position 2.

Compute the profile likelihood for B, which is in position pnum = 2.

[ll,param] = proflik(pd,2);

Display the loglikelihood values for the estimated values of B.

[ll',param']

ans =

 -329.9688 2.7132

 -329.4312 2.7748

 -328.9645 2.8365

 -328.5661 2.8981

 -328.2340 2.9597

 -327.9658 3.0213

 -327.7596 3.0830

 -327.6135 3.1446

 -327.5256 3.2062

 -327.4943 3.2678

 -327.5178 3.3295

 -327.5946 3.3911

 -327.7233 3.4527

 -327.9023 3.5143

 -328.1303 3.5760

 -328.4060 3.6376

 -328.7281 3.6992

 -329.0956 3.7608

 -329.5071 3.8224

 -329.9617 3.8841

 -330.4583 3.9457

These results show that the profile loglikelihood is maximized between the estimated
B values of 3.2678 and 3.3295, which correspond to loglikelihood values -327.4943 and
-327.5178. From the earlier fit, the MLE of B is 3.27193, which is in this interval as
expected.

Profile Likelihood With Restricted Parameter Values

Load the sample data. Create a probability distribution object by fitting a generalized
extreme value distribution to the miles per gallon (MPG) data.

22 Functions — Alphabetical List

22-3838

load carsmall;

pd = fitdist(MPG,'GeneralizedExtremeValue')

pd =

 GeneralizedExtremeValueDistribution

 Generalized Extreme Value distribution

 k = -0.207765 [-0.381674, -0.0338564]

 sigma = 7.49674 [6.31755, 8.89603]

 mu = 20.6233 [18.8859, 22.3606]

View the parameter names for the distribution.

pd.ParameterNames

ans =

 'k' 'sigma' 'mu'

For the generalized extreme value distribution, k is in position 1, sigma is in position 2,
and mu is in position 3.

Compute the profile likelihood for mu, which is in position pnum = 3. Restrict the
computation to parameter values from 20 to 22, and display the plot.

[ll,param,other] = proflik(pd,3,20:.1:22,'display','on');

 proflik

22-3839

The plot shows the estimated value for the parameter mu that maximizes the
loglikelihood.

Display the loglikelihood values for the estimated values of mu, and the values of the
other distribution parameters that maximize the corresponding loglikelihood.

[ll',param',other]

ans =

 -327.5706 20.0000 -0.1803 7.4087

 -327.4971 20.1000 -0.1846 7.4218

 -327.4364 20.2000 -0.1890 7.4354

 -327.3887 20.3000 -0.1934 7.4493

22 Functions — Alphabetical List

22-3840

 -327.3538 20.4000 -0.1978 7.4636

 -327.3317 20.5000 -0.2023 7.4783

 -327.3223 20.6000 -0.2067 7.4932

 -327.3257 20.7000 -0.2112 7.5084

 -327.3418 20.8000 -0.2156 7.5240

 -327.3706 20.9000 -0.2201 7.5399

 -327.4119 21.0000 -0.2245 7.5560

 -327.4659 21.1000 -0.2289 7.5723

 -327.5324 21.2000 -0.2333 7.5889

 -327.6113 21.3000 -0.2378 7.6057

 -327.7027 21.4000 -0.2422 7.6228

 -327.8065 21.5000 -0.2465 7.6400

 -327.9227 21.6000 -0.2509 7.6575

 -328.0511 21.7000 -0.2553 7.6751

 -328.1917 21.8000 -0.2596 7.6930

 -328.3446 21.9000 -0.2639 7.7111

 -328.5095 22.0000 -0.2682 7.7293

The first column contains the loglikelihood value that corresponds to the estimate of
mu in the second column. The loglikelihood is maximized between the parameter values
20.6000 and 20.7000, corresponding to loglikelihood values -327.3223 and -327.3257. The
third column contains the value of k that maximizes the corresponding loglikelihood for
mu. The fourth column contains the value of sigma that maximizes the corresponding
loglikelihood for mu.

See Also
dfittool | fitdist | makedist

 proximity

22-3841

proximity
Class: CompactTreeBagger

Proximity matrix for data

Syntax

prox = proximity(B,X)

Description

prox = proximity(B,X) computes a numeric matrix of size Nobs-by-Nobs of
proximities for data X, where Nobs is the number of observations (rows) in X. Proximity
between any two observations in the input data is defined as a fraction of trees in the
ensemble B for which these two observations land on the same leaf. This is a symmetric
matrix with ones on the diagonal and off-diagonal elements ranging from 0 to 1.

22 Functions — Alphabetical List

22-3842

Proximity property
Class: TreeBagger

Proximity matrix for observations

Description

The Proximity property is a numeric matrix of size Nobs-by-Nobs, where Nobs is
the number of observations in the training data, containing measures of the proximity
between observations. For any two observations, their proximity is defined as the fraction
of trees for which these observations land on the same leaf. This is a symmetric matrix
with 1s on the diagonal and off-diagonal elements ranging from 0 to 1.

See Also
ClassificationTree | proximity | fitctree | fitrtree | RegressionTree |
TreeBagger

 prune

22-3843

prune

Class: ClassificationTree

Produce sequence of subtrees by pruning

Syntax

tree1 = prune(tree)

tree1 = prune(tree,Name,Value)

Description

tree1 = prune(tree) creates a copy of the classification tree tree with its optimal
pruning sequence filled in.

tree1 = prune(tree,Name,Value) creates a pruned tree with additional options
specified by one Name,Value pair argument. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Tips

• tree1 = prune(tree) returns the decision tree tree1 that is the full, unpruned
tree, but with optimal pruning information added. This is useful only if you created
tree by pruning another tree, or by using the fitctree function with pruning set
'off'. If you plan to prune a tree multiple times along the optimal pruning sequence,
it is more efficient to create the optimal pruning sequence first.

Input Arguments

tree

A classification tree created with fitctree.

22 Functions — Alphabetical List

22-3844

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha'

A numeric scalar. prune prunes tree to the specified value of the pruning cost.

'Level'

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree
max(tree.PruneList). prune returns the tree pruned to this level.

'Nodes'

A numeric vector with elements from 1 to tree.NumNodes. Any tree branch nodes listed
in nodes become leaf nodes in tree1, unless their parent nodes are also pruned.

Output Arguments

tree1

A classification tree.

Examples

Prune and Display a Classification Tree

Construct and display a full classification tree for Fisher's iris data.

load fisheriris;

varnames = {'SL' 'SW' 'PL' 'PW'};

t1 = fitctree(meas,species,...

 'minparent',5,'predictornames',varnames);

view(t1,'mode','graph');

 prune

22-3845

Construct and display the next largest tree from the optimal pruning sequence.

t2 = prune(t1,'level',1);

view(t2,'mode','graph');

22 Functions — Alphabetical List

22-3846

See Also
fitctree

 prune

22-3847

prune
Class: classregtree

Prune tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

t2 = prune(t1,'level',level)

t2 = prune(t1,'nodes',nodes)

t2 = prune(t1)

Description

t2 = prune(t1,'level',level) takes a decision tree t1 and a pruning level level,
and returns the decision tree t2 pruned to that level. If level is 0, there is no pruning.
Trees are pruned based on an optimal pruning scheme that first prunes branches giving
less improvement in error cost.

t2 = prune(t1,'nodes',nodes) prunes the nodes listed in the nodes vector from
the tree. Any t1 branch nodes listed in nodes become leaf nodes in t2, unless their
parent nodes are also pruned. Use view to display the node numbers for any node you
select.

t2 = prune(t1) returns the decision tree t2 that is the full, unpruned t1, but with
optimal pruning information added. This is useful only if t1 is created by pruning
another tree, or by using the classregtree function with the 'prune' parameter set to
'off'. If you plan to prune a tree multiple times along the optimal pruning sequence, it
is more efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes into leaf nodes
and removing the leaf nodes under the original branch.

22 Functions — Alphabetical List

22-3848

Examples

Prune a Decision Tree

Display the full tree for Fisher's iris data:

load fisheriris;

t1 = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'},...

 'minparent',5)

view(t1)

t1 =

Decision tree for classification

 1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

 2 class = setosa

 3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

 4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

 5 class = virginica

 6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

 7 if PW<1.55 then node 10 elseif PW>=1.55 then node 11 else virginica

 8 class = versicolor

 9 class = virginica

10 class = virginica

11 class = versicolor

 prune

22-3849

Display the next largest tree from the optimal pruning sequence:

t2 = prune(t1,'level',1)

view(t2)

t2 =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

22 Functions — Alphabetical List

22-3850

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 class = versicolor

7 class = virginica

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

 prune

22-3851

See Also
classregtree | view | test

22 Functions — Alphabetical List

22-3852

prune

Class: RegressionTree

Produce sequence of subtrees by pruning

Syntax

tree1 = prune(tree)

tree1 = prune(tree,Name,Value)

Description

tree1 = prune(tree) creates a copy of the regression tree tree with its optimal
pruning sequence filled in.

tree1 = prune(tree,Name,Value) creates a pruned tree with additional options
specified by one Name,Value pair argument. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Tips

• tree1 = prune(tree) returns the decision tree tree1 that is the full, unpruned
tree, but with optimal pruning information added. This is useful only if you created
tree by pruning another tree, or by using fitrtree with pruning set 'off'. If you
plan to prune a tree multiple times along the optimal pruning sequence, it is more
efficient to create the optimal pruning sequence first.

Input Arguments

tree

A regression tree created with fitrtree.

 prune

22-3853

Name-Value Pair Arguments

Optional comma-separated pair of Name,Value arguments, where Name is the argument
name and Value is the corresponding value. Name must appear inside single quotes ('').
You can specify only one name-value pair argument.

'Alpha'

A numeric scalar from 0 (no pruning) to 1 (prune to one node). Prunes to minimize the
sum of (Alpha times the number of leaf nodes) and a cost (mean squared error).

'Level'

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree
max(tree.PruneList). prune returns the tree pruned to this level.

'Nodes'

A numeric vector with elements from 1 to tree.NumNodes. Any tree branch nodes listed
in Nodes become leaf nodes in tree1, unless their parent nodes are also pruned.

Output Arguments

tree1

A regression tree.

Examples

Display a full tree for the carsmall data, as well as the tree pruned to level 10:

load carsmall;

varnames = {'Weight' 'Horsepower'};

t1 = fitrtree([Weight Horsepower],MPG,...

 'predictornames',varnames)

view(t1,'Mode','graph');

22 Functions — Alphabetical List

22-3854

t2 = prune(t1,'Level',10);

view(t2,'Mode','graph');

See Also
fitrtree

 Prune property

22-3855

Prune property
Class: TreeBagger

Flag to prune trees

Description

The Prune property is true if decision trees are pruned and false if they are not. Pruning
decision trees is not recommended for ensembles. The default value is false.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

22 Functions — Alphabetical List

22-3856

prunelist
Class: classregtree

Pruning levels for decision tree nodes

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

P = prunelist(T)

P = prunelist(T,J)

Description

P = prunelist(T) returns an n-element numeric vector with the pruning
levels in each node of the tree T, where n is the number of nodes. When you call
prune(T,'level',level), nodes with the pruning levels below level are pruned, and
nodes with the pruning levels greater or equal to level are not pruned.

P = prunelist(T,J) takes an array J of node numbers and returns the pruning levels
for the specified nodes.

See Also
classregtree | numnodes

 qrand

22-3857

qrand
Class: qrandstream

Generate quasi-random points from stream

Syntax

x = qrand(q)

X = qrand(q,n)

Description

x = qrand(q) returns the next value x in the quasi-random number stream q of the
qrandstream class. x is a 1-by-d vector, where d is the dimension of the stream. The
command sets q.State to the index in the underlying point set of the next value to be
returned.

X = qrand(q,n) returns the next n values X in an n-by-d matrix.

Objects q of the qrandstream class encapsulate properties of a specified quasi-random
number stream. Values of the stream are not generated and stored in memory until q is
accessed using qrand.

Examples

Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the
first 1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)

q =

 Halton quasi-random stream in 3 dimensions

 Point set properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : none

22 Functions — Alphabetical List

22-3858

nextIdx = q.State

nextIdx =

 1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)

X1 =

 0.0928 0.3475 0.0051

 0.6958 0.2035 0.2371

 0.3013 0.8496 0.4307

 0.9087 0.5629 0.6166

nextIdx = q.State

nextIdx =

 5

X2 = qrand(q,4)

X2 =

 0.2446 0.0238 0.8102

 0.5298 0.7540 0.0438

 0.3843 0.5112 0.2758

 0.8335 0.2245 0.4694

nextIdx = q.State

nextIdx =

 9

Use reset to reset the stream, then generate another sample:

reset(q)

nextIdx = q.State

nextIdx =

 1

X = qrand(q,4)

X =

 0.0928 0.3475 0.0051

 0.6958 0.2035 0.2371

 0.3013 0.8496 0.4307

 0.9087 0.5629 0.6166

See Also
qrandstream | reset

 qrandset class

22-3859

qrandset class

Quasi-random point sets

Description

qrandset is a base class that encapsulates a sequence of multi- dimensional quasi-
random numbers. This base class is abstract and cannot be instantiated directly.
Concrete subclasses include sobolset and haltonset.

Construction

.qrandset
Abstract quasi-random point set class

Methods

disp
Display qrandset object

end
Last index in indexing expression for point
set

length
Length of point set

ndims
Number of dimensions in matrix

net
Generate quasi-random point set

scramble
Scramble quasi-random point set

size
Number of dimensions in matrix

22 Functions — Alphabetical List

22-3860

subsref
Subscripted reference for qrandset

Properties

Dimensions
Number of dimensions

Leap
Interval between points

ScrambleMethod
Settings that control scrambling

Skip
Number of initial points to omit from
sequence

Type
Name of sequence on which point set P is
based

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

See Also
haltonset | sobolset

How To
• “Quasi-Random Point Sets” on page 6-17

 qrandset

22-3861

qrandset
Class: qrandset

Abstract quasi-random point set class

Description

qrandset is an abstract class, and you cannot create instances of it directly. You must
use haltonset or sobolset to create a qrandset object.

See Also
haltonset | sobolset

22 Functions — Alphabetical List

22-3862

qrandstream class

Quasi-random number streams

Construction

.qrandstream
Construct quasi-random number stream

Methods

addlistener
Add listener for event

delete
Delete handle object

disp
Display qrandstream object

eq
Test handle equality

findobj
Find objects matching specified conditions

findprop
Find property of MATLAB handle object

ge
Greater than or equal relation for handles

gt
Greater than relation for handles

isvalid
Test handle validity

le
Less than or equal relation for handles

lt
Less than relation for handles

 qrandstream class

22-3863

ne
Not equal relation for handles

notify
Notify listeners of event

qrand
Generate quasi-random points from stream

rand
Generate quasi-random points from stream

reset
Reset state

Properties

PointSet
Point set from which stream is drawn

State
Current state of the stream

Copy Semantics

Handle. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

22 Functions — Alphabetical List

22-3864

qrandstream
Class: qrandstream

Construct quasi-random number stream

Syntax

q = qrandstream(type,d)

q = qrandstream(type,d,prop1,val1,prop2,val2,...)

q = qrandstream(p)

Description

q = qrandstream(type,d) constructs a d-dimensional quasi-random number
stream q of the qrandstream class, of type specified by the string type. type is either
'halton' or 'sobol', and q is based on a point set from either the haltonset class or
sobolset class, respectively, with default property settings.

q = qrandstream(type,d,prop1,val1,prop2,val2,...) specifies property name/
value pairs for the point set on which the stream is based. Applicable properties depend
on type.

q = qrandstream(p) constructs a stream based on the specified point set p. p must be
a point set from either the haltonset class or sobolset class.

Examples

Construct a 3-D Halton stream, based on a point set that skips the first 1000 values and
then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)

q =

 Halton quasi-random stream in 3 dimensions

 Point set properties:

 Skip : 1000

 Leap : 100

 qrandstream

22-3865

 ScrambleMethod : none

nextIdx = q.State

nextIdx =

 1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)

X1 =

 0.0928 0.3475 0.0051

 0.6958 0.2035 0.2371

 0.3013 0.8496 0.4307

 0.9087 0.5629 0.6166

nextIdx = q.State

nextIdx =

 5

X2 = qrand(q,4)

X2 =

 0.2446 0.0238 0.8102

 0.5298 0.7540 0.0438

 0.3843 0.5112 0.2758

 0.8335 0.2245 0.4694

nextIdx = q.State

nextIdx =

 9

Use reset to reset the stream, and then generate another sample:

reset(q)

nextIdx = q.State

nextIdx =

 1

X = qrand(q,4)

X =

 0.0928 0.3475 0.0051

 0.6958 0.2035 0.2371

 0.3013 0.8496 0.4307

 0.9087 0.5629 0.6166

See Also
haltonset | reset | sobolset | qrand

22 Functions — Alphabetical List

22-3866

qqplot

Quantile-quantile plot

Syntax

qqplot(X)

qqplot(X,Y)

qqplot(X,PD)

qqplot(X,Y,pvec)

h = qqplot(X,Y,pvec)

Description

qqplot(X) displays a quantile-quantile plot of the sample quantiles of X versus
theoretical quantiles from a normal distribution. If the distribution of X is normal, the
plot will be close to linear.

qqplot(X,Y) displays a quantile-quantile plot of two samples. If the samples do come
from the same distribution, the plot will be linear.

qqplot(X,PD) makes an empirical quantile-quantile plot of the quantiles of the data in
the vector X versus the quantiles of the distribution specified by PD, a ProbDist object of
the ProbDistUnivParam class or ProbDistUnivKernel class.

For matrix X and Y, qqplot displays a separate line for each pair of columns. The plotted
quantiles are the quantiles of the smaller data set.

The plot has the sample data displayed with the plot symbol '+'. Superimposed on the
plot is a line joining the first and third quartiles of each distribution (this is a robust
linear fit of the order statistics of the two samples). This line is extrapolated out to the
ends of the sample to help evaluate the linearity of the data.

Use qqplot(X,Y,pvec) to specify the quantiles in the vector pvec.

h = qqplot(X,Y,pvec) returns handles to the lines in h.

 qqplot

22-3867

Examples

Quantile-Quantile Plot With Two Samples

This example shows how to create a quantile-quantile plot using two sets of sample data.

Generate random numbers from two Poisson distributions. The vector x contains 50
random numbers from a Poisson distribution with lambda = 10. The vector y contains
100 random numbers from a Poisson distribution with lambda = 5.

rng default; % For reproducibility

x = poissrnd(10,50,1);

y = poissrnd(5,100,1);

Create a quantile-quantile plot using the two sets of sample data.

qqplot(x,y);

22 Functions — Alphabetical List

22-3868

The solid line in the plot joins the first and third quartiles. The dashed line extrapolates
the solid line.

More About
• normplot

 quantile

22-3869

quantile

Quantiles of a data set

Syntax

Y = quantile(X,p)

Y = quantile(X,p,dim)

Y = quantile(X,N)

Y = quantile(X,N,dim)

Description

Y = quantile(X,p) returns quantiles of the values in data vector or matrix X for the
cumulative probability or probabilities p in the interval [0,1].

• If X is a vector, then Y is a scalar or a vector having the same length as p.
• If X is a matrix, then Y is a row vector or a matrix where the number of rows of Y is

equal to the length of p.
• For multidimensional arrays, quantile operates along the first nonsingleton

dimension of X.

Y = quantile(X,p,dim) returns quantiles along dimension dim.

Y = quantile(X,N) returns quantiles for N evenly spaced cumulative probabilities (1/
(N + 1), 2/(N + 1), ..., N/(N + 1)) for integer N>1.

• If X is a vector, then Y is a scalar or a vector with length N.
• If X is a matrix, then Y is a matrix where the number of rows of Y is equal to N.
• For multidimensional arrays, quantile operates along the first nonsingleton

dimension of X.

Y = quantile(X,N,dim) returns quantiles at the N evenly-spaced cumulative
probabilities (1/(N+1), 2/(N+1), ..., N/(N+1)) for integer N>1 along dimension dim.

22 Functions — Alphabetical List

22-3870

Examples

Quantiles for Given Probabilities

Calculate the quantiles of a data set for specified probabilities.

Generate a data set of size 10.

rng('default'); % for reproducibility

x = normrnd(0,1,1,10)

x =

 0.5377 1.8339 -2.2588 0.8622 0.3188 -1.3077 -0.4336 0.3426 3.5784 2.7694

Calculate the 0.3 quantile.

y = quantile(x,0.30)

y =

 -0.0574

Calculate the quantiles for the cumulative probabilities 0.025, 0.25, 0.5, 0.75, and 0.975.

y = quantile(x,[0.025 0.25 0.50 0.75 0.975])

y =

 -2.2588 -0.4336 0.4401 1.8339 3.5784

Quantiles of a Matrix for Given Probabilities

Calculate the quantiles along the columns and rows of a data matrix for specified
probabilities.

Generate a 4-by-6 data matrix.

rng('default'); % for reproducibility

X = normrnd(0,1,4,6)

X =

 0.5377 0.3188 3.5784 0.7254 -0.1241 0.6715

 1.8339 -1.3077 2.7694 -0.0631 1.4897 -1.2075

 -2.2588 -0.4336 -1.3499 0.7147 1.4090 0.7172

 0.8622 0.3426 3.0349 -0.2050 1.4172 1.6302

 quantile

22-3871

Calculate the 0.3 quantile for each column of X (dim = 1).

y = quantile(x,0.3,1)

y =

 -0.3013 -0.6958 1.5336 -0.1056 0.9491 0.1078

quantile returns a row vector y when calculating one quantile for each column of a
matrix. For example, -0.3013 is the 0.3 quantile of the first column of X with elements
(0.5377, 1.8339, -2.2588, 0.8622). y = quantile(X,0.3) returns the same answer
because the default value of dim is 1.

Calculate the 0.3 quantile for each row of X (dim = 2).

y = quantile(x,0.3,2)

y =

 0.3844

 -0.8642

 -1.0750

 0.4985

quantile returns a column vector y when calculating one quantile for each row of
a matrix. For example 0.3844 is the 0.3 quantile of the first row of X with elements
(0.5377, 0.3188, 3.5784, 0.7254, -0.1241, 0.6715).

Quantiles for N Evenly Spaced Cumulative Probabilities

Calculate the quantiles of a data set for a given number of quantiles.

Generate a data set of size 10.

rng('default'); % for reproducibility

x = normrnd(0,1,1,10)

x =

 0.5377 1.8339 -2.2588 0.8622 0.3188 -1.3077 -0.4336 0.3426 3.5784 2.7694

Calculate four evenly spaced quantiles.

y = quantile(x,4)

y =

 -0.8706 0.3307 0.6999 2.3017

22 Functions — Alphabetical List

22-3872

Using y = quantile(x,[0.2,0.4,0.6,0.8]) is another way to return the four
evenly spaced quantiles.

Quantiles of a Matrix for Given Number of Quantiles

Calculate the N evenly spaced quantiles along the columns and rows of a data matrix.

Generate a 6-by-10 data matrix.

rng('default'); % for reproducibility

X = unidrnd(10,6,7)

X =

 9 3 10 8 7 8 7

 10 6 5 10 8 1 4

 2 10 9 7 8 3 10

 10 10 2 1 4 1 1

 7 2 5 9 7 1 5

 1 10 10 10 2 9 4

Calculate three evenly spaced quantiles for each column of X (dim = 1).

y = quantile(X,3,1)

y =

 2.0000 3.0000 5.0000 7.0000 4.0000 1.0000 4.0000

 8.0000 8.0000 7.0000 8.5000 7.0000 2.0000 4.5000

 10.0000 10.0000 10.0000 10.0000 8.0000 8.0000 7.0000

Each column of matrix y corresponds to the three evenly spaced quantiles of each column
of matrix X. For example, the first column of y with elements (2, 8, 10) has the quantiles
for the first column of X with elements (9, 10, 2, 10, 7, 1). y = quantile(X,3) returns
the same answer because the default value of dim is 1.

Calculate three evenly spaced quantiles for each row of X (dim = 2).

y = quantile(X,3,2)

y =

 7.0000 8.0000 8.7500

 4.2500 6.0000 9.5000

 4.0000 8.0000 9.7500

 quantile

22-3873

 1.0000 2.0000 8.5000

 2.7500 5.0000 7.0000

 2.5000 9.0000 10.0000

Each row of matrix y corresponds to the three evenly spaced quantiles of each row of
matrix X. For example, the first row of y with elements (7, 8, 8.75) has the quantiles for
the first column of X with elements (9, 3, 10, 8, 7, 8, 7).

Median and Quartiles for Even Number of Data Elements

Find median and quartiles of a vector, x, with even number of elements.

Enter the data.

x = [2 5 6 10 11 13]

x =

 2 5 6 10 11 13

Calculate the median of x.

y = quantile(x,0.50)

y =

 8

Calculate the quartiles of x.

y = quantile(x,[0.25, 0.5, 0.75])

y =

 5 8 11

Using y = quantile(x,3) is another way to compute the quartiles of x.

These results might be different than the textbook definitions because quantile uses
linear interpolation to find the median and quartiles.

Median and Quartiles for Odd Number of Data Elements

Find median and quartiles of a vector, x, with odd number of elements.

Enter the data.

x = [2 4 6 8 10 12 14]

22 Functions — Alphabetical List

22-3874

x =

 2 4 6 8 10 12 14

Find the median of x.

y = quantile(x,0.50)

y =

 8

Find the quartiles of x.

y = quantile(x,[0.25, 0.5, 0.75])

y =

 4.5000 8.0000 11.5000

Using y = quantile(x,3) is another way to compute the quartiles of x.

These results might be different than the textbook definitions because quantile uses
linear interpolation to find the median and quartiles.

Input Arguments

X — Input data
vector | array

Input data, specified as a vector or array.
Data Types: double | single

p — Cumulative probabilities
scalar | vector

Cumulative probabilities, for which to compute the quantiles, specified as a scalar or
vector of scalars from 0 to 1.
Example: 0.3
Example: [0.25, 0.5, 0.75]
Example: (0:0.25:1)
Data Types: double | single

 quantile

22-3875

N — Number of quantiles
positive integer

Number of quantiles to compute, specified as a positive integer. quantile returns N
quantiles that divide the data set into evenly distributed N+1 segments.

Data Types: double | single

dim — Dimension
1 (default) | positive integer

Dimension along which the quantiles of a matrix X are required, specified as a positive
integer. For example, for a matrix X, when dim = 1, quantile returns the quantile(s) of
the columns of X and when dim = 2, quantile returns the quantile(s) of the rows of X. For
a multidimensional array X, the length of the dimth dimension of Y is same as length of
p.

Output Arguments

Y — Quantiles
scalar | array

Quantiles of a data vector or matrix, returned as a scalar or array for one or multiple
values of cumulative probabilities.

• If X is a vector, then Y is a scalar or a vector with the same length as the number of
quantiles required (N or length(p)). Y(i) contains the p(i) quantile.

• If X is a matrix, then Y is a vector or a matrix with the length of dimth dimension
equal to the number of quantiles required (N or length(p)). When dim = 1, for
example, the ith row of Y contains the p(i) quantiles of columns of X.

• If X is an array of dimension d, then Y is an array with the length of dimth dimension
equal to the number of quantiles required (N or length(p)).

More About

Multidimensional Array

A multidimensional array is an array with more than two dimensions. For example, if X
is a 1-by-3-by-4 array, then X is a 3-D array.

22 Functions — Alphabetical List

22-3876

First Nonsingleton Dimension

A first nonsingleton dimension is the first dimension of an array whose size is not equal
to 1. For example, if X is a 1-by-2-by-3-by-4 array, then the second dimension is the first
nonsingleton dimension of X.

Linear Interpolation

Linear interpolation uses linear polynomials to find yi = f(xi), the values of the underlying
function Y = f(X) at the points in the vector or array x. Given the data points (x1, y1)
and (x2, y2), where y1 = f(x1) and y2 = f(x2), linear interpolation finds y = f(x) for a given x
between x1 and x2 as follows:

y f x y
x x

x x
y y= = +

-()

-()
-()() .1

1

2 1
2 1

Similarly, if the 1.5/n quantile is y1.5/n and the 2.5/n quantile is y2.5/n, then linear
interpolation finds the 2.3/n quantile y2.3/n as

y y
n n

n n

y y

n n n n

2 3 1 5 2 5 1 5

2 3 1 5

2 5 1 5
. . . .

. .

. .
= +

-Ê
ËÁ

ˆ
¯̃

-Ê
Ë
Á

ˆ
¯
˜

-
Ê

Ë

Á
Á

ˆ

¯̄

˜
˜
.

Algorithms

For an n-element vector X, quantile computes quantiles as follows:

1 The sorted values in X are taken as the (0.5/n), (1.5/n), ..., ([n – 0.5]/n) quantiles. For
example:

• For a data vector of five elements such as {6, 3, 2, 10, 1}, the sorted elements {1, 2,
3, 6, 10} respectively correspond to the 0.1, 0.3, 0.5, 0.7, 0.9 quantiles.

• For a data vector of six elements such as {6, 3, 2, 10, 8, 1}, the sorted elements {1,
2, 3, 6, 8, 10} respectively correspond to the (0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6),
(5.5/6) quantiles.

2 quantile uses Linear interpolation to compute quantiles for probabilities between
(0.5/n) and ([n – 0.5]/n).

 quantile

22-3877

3 For the quantiles corresponding to the probabilities outside that range, quantile
assigns the minimum or maximum values in X.

quantile treats NaNs as missing values and removes them.
• “Quantiles and Percentiles” on page 3-7

See Also
iqr | median | prctile

22 Functions — Alphabetical List

22-3878

rand

Class: qrandstream

Generate quasi-random points from stream

Syntax

rand

rand(q,n)

rand(q)

rand(q,m,n)

rand(q,[m,n])

rand(q,m,n,p,...)

rand(q,[m,n,p,...])

Description

rand returns a matrix of quasi-random values and is intended to allow objects of the
qrandstream class to be used in code that contains calls to the rand method of the
MATLAB pseudo-random randstream class. Due to the multidimensional nature of
quasi-random numbers, only some syntaxes of rand are supported by the qrandstream
class.

rand(q,n) returns an n-by-n matrix only when n is equal to the number of dimensions.
Any other value of n produces an error.

rand(q) returns a scalar only when the stream is in one dimension. Having more than
one dimension in q produces an error.

rand(q,m,n) or rand(q,[m,n]) returns an m-by-n matrix only when n is equal to the
number of dimensions in the stream. Any other value of n produces an error.

rand(q,m,n,p,...) or rand(q,[m,n,p,...]) produces an error unless p and all
following dimensions sizes are equal to one.

 rand

22-3879

Examples

Generate the first 256 points from a 5-D Sobol sequence:

q = qrandstream('sobol',5);

X = rand(q,256,5);

See Also
qrandstream | qrand | rand

22 Functions — Alphabetical List

22-3880

randg
Gamma random numbers with unit scale

Syntax

Y = randg

Y = randg(A)

Y = randg(A,m)

Y = randg(A,m,n,p,...)

Y = randg(A,[m,n,p,...])

Description

Y = randg returns a scalar random value chosen from a gamma distribution with unit
scale and shape.

Y = randg(A) returns a matrix of random values chosen from gamma distributions
with unit scale. Y is the same size as A, and randg generates each element of Y using a
shape parameter equal to the corresponding element of A.

Y = randg(A,m) returns an m-by-m matrix of random values chosen from gamma
distributions with shape parameters A. A is either an m-by-m matrix or a scalar. If A is a
scalar, randg uses that single shape parameter value to generate all elements of Y.

Y = randg(A,m,n,p,...) or Y = randg(A,[m,n,p,...]) returns an m-by-n-by-p-
by-... array of random values chosen from gamma distributions with shape parameters
A. A is either an m-by-n-by-p-by-... array or a scalar.

randg produces pseudo-random numbers using the MATLAB functions rand and randn.
The sequence of numbers generated is determined by the settings of the uniform random
number generator that underlies rand and randn. Control that shared random number
generator using rng. See the rng documentation for more information.

Note: To generate gamma random numbers and specify both the scale and shape
parameters, you should call gamrnd.

 randg

22-3881

Examples

Example 1

Generate a 100-by-1 array of values drawn from a gamma distribution with shape
parameter 3.

r = randg(3,100,1);

Example 2

Generate a 100-by-2 array of values drawn from gamma distributions with shape
parameters 3 and 2.

A = [ones(100,1)*3,ones(100,1)*2];

r = randg(A,[100,2]);

Example 3

To create reproducible output from randg, reset the random number generator used
by rand and randn to its default startup settings. This way randg produces the same
random numbers as if you restarted MATLAB.

rng('default')

randg(3,1,5)

ans =

 6.9223 4.3369 1.0505 3.2662 11.3269

Example 4

Save the settings for the random number generator used by rand and randn, generate 5
values from randg, restore the settings, and repeat those values.

s = rng; % Obtain the current state of the random stream

r1 = randg(10,1,5)

r1 =

22 Functions — Alphabetical List

22-3882

 9.4719 9.0433 15.0774 14.7763 6.3775

rng(s); % Reset the stream to the previous state

r2 = randg(10,1,5)

r2 =

 9.4719 9.0433 15.0774 14.7763 6.3775

r2 contains exactly the same values as r1.

Example 5

Reinitialize the random number generator used by rand and randn with a seed based
on the current time. randg returns different values each time you do this. Note that it is
usually not necessary to do this more than once per MATLAB session.

rng('shuffle');

randg(2,1,5);

References

[1] Marsaglia, G., and W. W. Tsang. “A Simple Method for Generating Gamma
Variables.” ACM Transactions on Mathematical Software. Vol. 26, 2000, pp. 363–
372.

See Also
gamrnd

 random

22-3883

random
Random numbers

Syntax

Y = random(pd)

Y = random(pd,m,n,...)

Y = random(pd,[m,n,...])

Y = random(name,A)

Y = random(name,A,B)

Y = random(name,A,B,C)

Y = random(name,A,m,n,...)

Y = random(name,A,[m,n,...])

Y = random(name,A,B,m,n,...)

Y = random(name,A,B,[m,n,...])

Y = random(name,A,B,C,m,n,...)

Y = random(name,A,B,C,[m,n,...])

Description

Y = random(pd) returns a random number Y from the distribution specified by the
probability distribution object pd. You can create a probability distribution object with
specified parameter values using makedist, or fit a probability distribution object to
sample data using fitdist.

Y = random(pd,m,n,...) or Y = random(pd,[m,n,...]) returns an m-by-n-by...
matrix of random numbers from the probability distribution specified by pd.

Y = random(name,A) where name is the name of a distribution that takes a single
parameter, returns random numbers Y from the one-parameter family of distributions
specified by name. Parameter values for the distribution are given in A.

Y is the same size as A.

Y = random(name,A,B) returns random numbers Y from a two-parameter family of
distributions. Parameter values for the distribution are given in A and B.

22 Functions — Alphabetical List

22-3884

If A and B are arrays, they must be the same size. If either A or B are scalars, they are
expanded to constant matrices of the same size.

Y = random(name,A,B,C) returns random numbers Y from a three-parameter family
of distributions. Parameter values for the distribution are given in A, B, and C.

If A, B, and C are arrays, they must be the same size. If any of A, B, or C are scalars, they
are expanded to constant matrices of the same size.

Y = random(name,A,m,n,...) or Y = random(name,A,[m,n,...]) returns an m-
by-n-by... matrix of random numbers.

Similarly, Y = random(name,A,B,m,n,...) or Y = random(name,A,B,[m,n,...])
returns an m-by-n-by... matrix of random numbers for distributions that require two
parameters. Y = random(name,A,B,C,m,n,...) or Y = random(name,A,B,C,
[m,n,...]) returns an m-by-n-by... matrix of random numbers for distributions that
require three parameters.

If any of A, B, or C are arrays, then the specified dimensions must match the common
dimensions of A, B, and C after any necessary scalar expansion.

The following table denotes the acceptable strings for name, as well as the parameters for
that distribution:

name Distribution Input Parameter A Input Parameter B Input Parameter C

'beta' or 'Beta' “Beta Distribution”
on page B-4

a b —

'bino' or
'Binomial'

“Binomial
Distribution” on
page B-9

n: number of
trials

p: probability of
success for each
trial

—

'birnbaumsaunders'“Birnbaum-
Saunders
Distribution” on
page B-13

β γ —

'burr' or 'Burr' “Burr Type XII
Distribution” on
page B-15

α: scale
parameter

c: shape
parameter

k: shape
parameter

'chi2' or
'Chisquare'

“Chi-Square
Distribution” on
page B-29

ν: degrees of
freedom

— —

 random

22-3885

name Distribution Input Parameter A Input Parameter B Input Parameter C

'exp' or
'Exponential'

“Exponential
Distribution” on
page B-35

μ: mean — —

'ev' or 'Extreme
Value'

“Extreme Value
Distribution” on
page B-39

μ: location
parameter

σ: scale parameter —

'f' or 'F' “F Distribution” on
page B-45

ν1: numerator
degrees of
freedom

ν2: denominator
degrees of freedom

—

'gam' or 'Gamma' “Gamma
Distribution” on
page B-48

a: shape
parameter

b: scale parameter —

'gev' or
'Generalized

Extreme Value'

“Generalized
Extreme Value
Distribution” on
page B-54

k: shape
parameter

σ: scale parameter μ: location
parameter

'gp' or
'Generalized

Pareto'

“Generalized
Pareto
Distribution” on
page B-60

k: tail index
(shape)
parameter

σ: scale parameter μ: threshold
(location)
parameter

'geo' or
'Geometric'

“Geometric
Distribution” on
page B-65

p: probability
parameter

— —

'hyge' or
'Hypergeometric'

“Hypergeometric
Distribution” on
page B-74

M: size of the
population

K: number of items
with the desired
characteristic in
the population

n: number of
samples drawn

'inversegaussian'“Inverse Gaussian
Distribution” on
page B-77

μ λ —

'logistic' “Logistic
Distribution” on
page B-91

μ σ —

22 Functions — Alphabetical List

22-3886

name Distribution Input Parameter A Input Parameter B Input Parameter C

'loglogistic' “Loglogistic
Distribution” on
page B-93

μ σ —

'logn' or
'Lognormal'

“Lognormal
Distribution” on
page B-95

μ σ —

'nakagami' “Nakagami
Distribution” on
page B-113

μ ω —

'nbin' or
'Negative

Binomial'

“Negative Binomial
Distribution” on
page B-115

r: number of
successes

p: probability of
success in a single
trial

—

'ncf' or
'Noncentral F'

“Noncentral F
Distribution” on
page B-123

ν1: numerator
degrees of
freedom

ν2: denominator
degrees of freedom

δ: noncentrality
parameter

'nct' or
'Noncentral t'

“Noncentral t
Distribution” on
page B-126

ν: degrees of
freedom

δ: noncentrality
parameter

—

'ncx2' or
'Noncentral

Chi-square'

“Noncentral
Chi-Square
Distribution” on
page B-120

ν: degrees of
freedom

δ: noncentrality
parameter

—

'norm' or
'Normal'

“Normal
Distribution” on
page B-130

μ: mean σ: standard
deviation

—

'poiss' or
'Poisson'

“Poisson
Distribution” on
page B-138

λ: mean — —

'rayl' or
'Rayleigh'

“Rayleigh
Distribution” on
page B-141

b: scale
parameter

— —

'rician' “Rician
Distribution” on
page B-144

s: noncentrality
parameter

σ: scale parameter —

 random

22-3887

name Distribution Input Parameter A Input Parameter B Input Parameter C

't' or 'T' “Student's t
Distribution” on
page B-146

ν: degrees of
freedom

— —

'tlocationscale'“t Location-Scale
Distribution” on
page B-154

μ: location
parameter

σ: scale parameter ν: shape
parameter

'unif' or
'Uniform'

“Uniform
Distribution
(Continuous)” on
page B-163

a: lower endpoint
(minimum)

b: upper endpoint
(maximum)

—

'unid' or
'Discrete

Uniform'

“Uniform
Distribution
(Discrete)” on page
B-169

N: maximum
observable value

— —

'wbl' or
'Weibull'

“Weibull
Distribution” on
page B-172

a: scale
parameter

b: shape
parameter

—

Examples

Generate a 2-by-4 array of random values from the normal distribution with mean 0 and
standard deviation 1:

x1 = random('Normal',0,1,2,4)

x1 =

 1.1650 0.0751 -0.6965 0.0591

 0.6268 0.3516 1.6961 1.7971

The order of the parameters is the same as for normrnd.

Generate a single random value from Poisson distributions with rate parameters 1, 2, ...,
6, respectively:

x2 = random('Poisson',1:6,1,6)

x2 = random('Poisson',1:6,1,6)

x2 =

22 Functions — Alphabetical List

22-3888

 0 0 1 2 5 7

See Also
cdf | pdf | icdf | mle | makedist | fitdist

 random

22-3889

random
Class: GeneralizedLinearModel

Simulate responses for generalized linear regression model

Syntax
ysim = random(mdl,Xnew)

ysim = random(mdl,Xnew,Name,Value)

Description
ysim = random(mdl,Xnew) simulates responses from the mdl generalized linear model
to the data in Xnew.

ysim = random(mdl,Xnew,Name,Value) simulates responses with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

Xnew

Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns)

as was used to create mdl. Furthermore, all variables used in creating mdl must be
numeric.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-3890

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinomialSize'

The value of the binomial n parameter for each row in the training data. BinomialSize
can be a vector the same length as Xnew, or a scalar that applies to each row. The default
value 1 produces ysim values that are predicted proportions. Use BinomialSize only if
mdl is fit to a binomial distribution.

Default: 1

'Offset'

Value of the offset for each row in Xnew. Offset can be a vector the same length as
Xnew, or a scalar that applies to each row. The offset is used as an additional predictor
with a coefficient value fixed at 1. In other words, if b is the fitted coefficient vector, and
link is the link function,
link(ysim) = Offset + Xnew * b.

Default: zeros(size(Xnew,1))

Output Arguments

ysim

Vector of simulated values at Xnew.

random generates ysim using random values with mean given by the fitted model, and
with the distribution used in mdl. The values in ysim are independent conditional on
the predictors. For binomial and Poisson fits, random generates ysim with the specified
distribution with no adjustment for any estimated dispersion.

Examples

Generalized Linear Model Simulation

Create a generalized linear model, and simulate its response to new data.

 random

22-3891

Generate artificial data for the model, Poisson random numbers with one underlying
predictors X.

rng('default') % reproducible

X = rand(20,1);

mu = exp(1 + 2*X);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1','distr','poisson');

Create points for prediction.

Xnew = (0:.05:1)';

Simulate responses at the new points.

ysim = random(mdl,Xnew);

Plot the simulated values along with the original values.

plot(X,y,'rx',Xnew,ysim,'bo',...

 Xnew,feval(mdl,Xnew),'g-')

legend('Data','Simulated','Fitted Mean',...

 'Location','best')

22 Functions — Alphabetical List

22-3892

• “random” on page 10-37

Alternatives

For predictions without random noise, use predict or feval.

See Also
GeneralizedLinearModel | predict

More About
• “Generalized Linear Models” on page 10-12

 random

22-3893

random

Class: GeneralizedLinearMixedModel

Generate random responses from fitted generalized linear mixed-effects model

Syntax

ysim = random(glme)

ysim = random(glme,tblnew)

ysim = random(___ ,Name,Value)

Description

ysim = random(glme) returns simulated responses, ysim, from the fitted generalized
linear mixed-effects model glme, at the original design points.

ysim = random(glme,tblnew) returns simulated responses using new input values
specified in the table or dataset array, tblnew.

ysim = random(___ ,Name,Value) returns simulated responses using additional
options specified by one or more Name,Value pair arguments, using any of the previous
syntaxes. For example, you can specify observation weights, binomial sizes, or offsets for
the model.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

tblnew — New input data
table | dataset array

22 Functions — Alphabetical List

22-3894

New input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be continuous
or grouping variables. tblnew must contain the same variables as the original table or
dataset array, tbl, used to fit the generalized linear mixed-effects model glme.

Data Types: single | double | logical | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinomialSize' — Number of trials for binomial distribution
ones(m,1) (default) | m-by-1 vector of positive integer values

Number of trials for binomial distribution, specified as the comma-separated pair
consisting of 'BinomialSize' and an m-by-1 vector of positive integer values, where m is
the number of rows in tblnew. The 'BinomialSize' name-value pair applies only to the
binomial distribution. The value specifies the number of binomial trials when generating
the random response values.
Data Types: single | double

'Offset' — Model offset
zeros(m,1) (default) | vector of scalar values

Model offset, specified as a vector of scalar values of length m, where m is the number of
rows in tblnew. The offset is used as an additional predictor and has a coefficient value
fixed at 1.

'Weights' — Observation weights
m-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and
an m-by-1 vector of nonnegative scalar values, where m is the number of rows in tblnew.
If the response distribution is binomial or Poisson, then 'Weights' must be a vector of
positive integers.
Data Types: single | double

 random

22-3895

Output Arguments

ysim — Simulated response values
m-by-1 vector

Simulated response values, returned as an m-by-1 vector, where m is the number of
rows in tblnew. random creates ysim by first generating the random-effects vector based
on its fitted prior distribution. random then generates ysim from its fitted conditional
distribution given the random effects. random takes into account the effect of observation
weights specified when fitting the model using fitglme, if any.

Definitions

Conditional Distribution Method

random generates random data from the fitted generalized linear mixed-effects model as
follows:

• Sample b P bsim ∼ | �, �q s 2() , where P b| �, �q s 2() is the estimated prior distribution of

random effects, and q̂ is a vector of estimated covariance parameters, and ŝ 2 is the
estimated dispersion parameter.

• Given bsim, for i = 1 to m, sample y P y bsim i new i sim_ _ | , � , � , �∼ b q s 2() , where

P y bnew i sim_ | , � , � , �b q s 2() is the conditional distribution of the ith new response ynew_i

given bsim and the model parameters.

Examples

Simulate Random Responses From a GLME Model

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

22 Functions — Alphabetical List

22-3896

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

 random

22-3897

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Use random to simulate a new response vector from the fitted model.

rng(0,'twister'); % For reproducibility

ynew = random(glme);

Display the first 10 rows of the simulated response vector.

ynew(1:10)

ans =

 3

 3

 1

 7

 5

 8

 7

 9

 5

 9

Simulate a new response vector using new input values. Create a new table by copying
the first 10 rows of mfr into tblnew.

22 Functions — Alphabetical List

22-3898

tblnew = mfr(1:10,:);

The first 10 rows of mfr include data collected from trials 1 through 5 for factories 1
and 2. Both factories used the old process for all of their trials during the experiment, so
newprocess = 0 for all 10 observations.

Change the value of newprocess to 1 for the observations in tblnew.

tblnew.newprocess = ones(height(tblnew),1);

Simulate new responses using the new input values in tblnew.

ynew2 = random(glme,tblnew)

ynew2 =

 2

 3

 5

 4

 2

 2

 2

 1

 2

 0

See Also
GeneralizedLinearMixedModel | fitglme | fitted | predict

 random

22-3899

random
Class: gmdistribution

Random numbers from Gaussian mixture distribution

Syntax

y = random(obj)

Y = random(obj,n)

[Y,idx] = random(obj,n)

Description

y = random(obj) generates a 1-by-d vector y drawn at random from the d-
dimensional Gaussian mixture distribution defined by obj. obj is an object created by
gmdistribution or fitgmdist.

Y = random(obj,n) generates an n-by-d matrix Y of n d-dimensional random samples.

[Y,idx] = random(obj,n) also returns an n-by-1 vector idx, where idx(I) is the
index of the component used to generate Y(I,:).

Examples

Generate Gaussian Mixture Variates

Create a gmdistribution object defining a two-component mixture of bivariate
Gaussian distributions.

MU = [1 2;-3 -5];

SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);

p = ones(1,2)/2;

obj = gmdistribution(MU,SIGMA,p);

ezcontour(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])

hold on

22 Functions — Alphabetical List

22-3900

Generate 1000 random values.

rng(1); % For reproducibility

Y = random(obj,1000);

scatter(Y(:,1),Y(:,2),10,'.')

 random

22-3901

See Also
gmdistribution | mvnrnd | fitgmdist

22 Functions — Alphabetical List

22-3902

random

Class: LinearModel

Simulate responses for linear regression model

Syntax

ysim = random(mdl)

ysim = random(mdl,Xnew)

Description

ysim = random(mdl) simulates responses from the fitted linear model mdl at the
original design points.

ysim = random(mdl,Xnew) simulates responses from the mdl linear model to the data
in Xnew, adding random noise.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

Xnew

Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns)

as was used to create mdl. Furthermore, all variables used in creating mdl must be
numeric.

 random

22-3903

Output Arguments

ysim

Vector of predicted mean values at Xnew, perturbed by random noise. The noise is
independent, normally distributed, with mean zero, and variance equal to the estimated
error variance of the model.

Examples

Simulate Response Data

Create a model of car mileage as a function of weight, and simulate the response.

Create a quadratic model of car mileage as a function of weight from the carsmall data.

load carsmall

X = Weight;

y = MPG;

mdl = fitlm(X,y,'quadratic');

Create simulated responses to the data.

Xnew = X;

ysim = random(mdl,Xnew);

Plot the original responses and the simulated responses to see how they differ.

plot(X,y,'o',X,ysim,'x')

legend('Data','Simulated')

22 Functions — Alphabetical List

22-3904

• “random” on page 9-39

Alternatives

For predictions without random noise, use predict or feval.

See Also
predict | feval | LinearModel

How To
• “Linear Regression” on page 9-11

 random

22-3905

random
Class: LinearMixedModel

Generate random responses from fitted linear mixed-effects model

Syntax

ysim = random(lme)

ysim = random(lme,tblnew)

ysim = random(lme,Xnew,Znew)

ysim = random(lme,Xnew,Znew,Gnew)

Description

ysim = random(lme) returns a vector of simulated responses ysim from the fitted
linear mixed-effects model lme at the original fixed- and random-effects design points,
used to fit lme.

random simulates new random-effects vector and new observation errors. So, the
simulated response is

y X Zbsim = + +ˆ ˆ ,b e

where b̂ is the estimated fixed-effects coefficients, ˆb is the new random effects, and ε is
the new observation error.

random also accounts for the effect of observation weights, if you use any when fitting
the model.

ysim = random(lme,tblnew) returns a vector of simulated responses ysim from the
fitted linear mixed-effects model lme at the values in the new table or dataset array
tblnew. Use a table or dataset array for random if you use a table or dataset array for
fitting the model lme.

ysim = random(lme,Xnew,Znew) returns a vector of simulated responses ysim from
the fitted linear mixed-effects model lme at the values in the new fixed- and random-

22 Functions — Alphabetical List

22-3906

effects design matrices, Xnew and Znew, respectively. Znew can also be a cell array of
matrices. Use the matrix format for random if you use design matrices for fitting the
model lme.

ysim = random(lme,Xnew,Znew,Gnew) returns a vector of simulated responses
ysim from the fitted linear mixed-effects model lme at the values in the new fixed- and
random-effects design matrices, Xnew and Znew, respectively, and the grouping variable
Gnew.

Znew and Gnew can also be cell arrays of matrices and grouping variables, respectively.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping
variables, specified as a table or dataset array. The predictor variables can be continuous
or grouping variables. tblnew must have the same variables as in the original table or
dataset array used to fit the linear mixed-effects model lme.

Data Types: single | double | logical | char

Xnew — New fixed-effects design matrix
n-by-p matrix

New fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of
observations and p is the number of fixed predictor variables. Each row of X corresponds
to one observation and each column of X corresponds to one variable.

Data Types: single | double

Znew — New random-effects design
n-by-q matrix | cell array of length R

 random

22-3907

New random-effects design, specified as an n-by-q matrix or a cell array of R design
matrices Z{r}, where r = 1, 2, ..., R. If Znew is a cell array, then each Z{r} is an n-
by-q(r) matrix, where n is the number of observations, and q(r) is the number of random
predictor variables.
Data Types: single | double | logical | char | cell

Gnew — New grouping variable or variables
vector | cell array of grouping variables of length R

New grouping variable or variables, specified as a vector or a cell array, of length R, of
grouping variables used to fit the linear mixed-effects model, lme.

random treats all levels of each grouping variable as new levels. It draws an independent
random effects vector for each level of each grouping variable.
Data Types: single | double | logical | char | cell

Output Arguments

ysim — Simulated response values
n-by-1 vector

Simulated response values, returned as an n-by-1 vector, where n is the number of
observations.

Examples

Generate Random Responses at the Original Design Values

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into

22 Functions — Alphabetical List

22-3908

five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Generate random response values at the original design points. Display the first five
values.

rng(123,'twister') % For reproducibility

ysim = random(lme);

ysim(1:5)

ans =

 114.8785

 134.2018

 154.2818

 169.7554

 84.6089

Plot Randomly Generated vs. Observed Response Values

Load the sample data.

load carsmall

Fit a linear mixed-effects model, with a fixed-effects for Weight, and a random intercept
grouped by Model_Year. First, store the data in a table.

tbl = table(MPG,Weight,Model_Year);

lme = fitlme(tbl,'MPG ~ Weight + (1|Model_Year)');

 random

22-3909

Randomly generate responses using the original data.

rng(123,'twister') % For reproducibility

ysim = random(lme,tbl);

Plot the original and the randomly generated responses to see how they differ. Group
them by model year.

figure()

gscatter(Weight,MPG,Model_Year)

hold on

gscatter(Weight,ysim,Model_Year,[],'o+x')

legend('70-data','76-data','82-data','70-sim','76-sim','82-sim')

hold off

22 Functions — Alphabetical List

22-3910

Note that the simulated random response values for year 82 are lower than the original
data for that year. This might be due to a lower simulated random effect for year 82 than
the estimated random effect in the original data.

Generate Responses Using a New Dataset Array

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and
plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Create a new dataset array with design values. The new dataset array must have the
same variables as the original dataset array you use for fitting the model lme.

dsnew = dataset();

dsnew.Soil = nominal({'Sandy';'Silty';'Silty'});

dsnew.Tomato = nominal({'Cherry';'Vine';'Plum'});

dsnew.Fertilizer = nominal([2;2;4]);

 random

22-3911

Generate random responses at the new points.

rng(123,'twister') % For reproducibility

ysim = random(lme,dsnew)

ysim =

 99.6006

 101.9911

 161.4026

Generate Random Responses Using New Design Matrices

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower, and cylinders, and potentially correlated random effect for
intercept and acceleration grouped by model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];

Z = [ones(406,1) Acceleration];

Model_Year = nominal(Model_Year);

G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping
variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'});

Create the design matrices that contain the data at which to predict the response values.
Xnew must have three columns as in X. The first column must be a column of 1s. And the
values in the last two columns must correspond to Acceleration and Horsepower,
respectively. The first column of Znew must be a column of 1s, and the second column
must contain the same Acceleration values as in Xnew. The original grouping variable
in G is the model year. So, Gnew must contain values for the model year. Note that Gnew
must contain nominal values.

Xnew = [1,13.5,185; 1,17,205; 1,21.2,193];

Znew = [1,13.5; 1,17; 1,21.2];

22 Functions — Alphabetical List

22-3912

Gnew = nominal([73 77 82]);

Generate random responses for the data in the new design matrices.

rng(123,'twister') % For reproducibility

ysim = random(lme,Xnew,Znew,Gnew)

ysim =

 15.7416

 10.6085

 6.8796

Now, repeat the same for a linear mixed-effects model with uncorrelated random-effects
terms for intercept and acceleration. First, change the original random effects design and
the random effects grouping variables. Then, fit the model.

Z = {ones(406,1),Acceleration};

G = {Model_Year,Model_Year};

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....

{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...

{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'});

Now, recreate the new random effects design, Znew, and the grouping variable design,
Gnew, using which to predict the response values.

Znew = {[1;1;1],[13.5;17;21.2]};

MY = nominal([73 77 82]);

Gnew = {MY,MY};

Generate random responses using the new design matrices.

rng(123,'twister') % For reproducibility

ysim = random(lme,Xnew,Znew,Gnew)

ysim =

 16.8280

 10.4375

 4.1027

See Also
fitlme | fitlmematrix | LinearMixedModel | predict

 random

22-3913

random
Class: NonLinearModel

Simulate responses for nonlinear regression model

Syntax

ysim = random(mdl)

ysim = random(mdl,Xnew)

ysim = random(mdl,Xnew,'Weights',W)

Description

ysim = random(mdl) simulates responses from the fitted nonlinear model mdl at the
original design points.

ysim = random(mdl,Xnew) simulates responses from the fitted nonlinear model mdl
to the data in Xnew, adding random noise.

ysim = random(mdl,Xnew,'Weights',W) simulates responses using the observation
weights, W.

Input Arguments

mdl

Nonlinear regression model, constructed by fitnlm.

Xnew

Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns)

as was used to create mdl. Furthermore, all variables used in creating mdl must be
numeric.

22 Functions — Alphabetical List

22-3914

W

Vector of real, positive value weights or a function handle.

• If you specify a vector, then it must have the same number of elements as the number
of observations (or rows) in Xnew.

• If you specify a function handle, the function must accept a vector of predicted
response values as input, and returns a vector of real positive weights as output.

Given weights, W, random estimates the error variance at observation i by MSE*(1/
W(i)), where MSE is the mean squared error.

Default: No weights

Output Arguments

ysim

Vector of predicted mean values at Xnew, perturbed by random noise. The noise is
independent, normally distributed, with mean zero, and variance equal to the estimated
error variance of the model.

Examples

Simulate Responses

Create a nonlinear model of car mileage as a function of weight, and simulate the
response.

Create an exponential model of car mileage as a function of weight from the carsmall
data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall

X = Weight;

y = MPG;

modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';

beta0 = [1 1 1];

mdl = fitnlm(X,y,modelfun,beta0);

Create simulated responses to the data.

 random

22-3915

Xnew = X;

ysim = random(mdl,Xnew);

Plot the original responses and the simulated responses to see how they differ.

plot(X,y,'o',X,ysim,'x')

legend('Data','Simulated')

• “Predict or Simulate Responses Using a Nonlinear Model” on page 11-10

Alternatives

For predictions without added noise, use predict.

See Also
feval | NonLinearModel | predict

22 Functions — Alphabetical List

22-3916

More About
• “Nonlinear Regression” on page 11-2

 random

22-3917

random
Class: piecewisedistribution

Random numbers from piecewise distribution

Syntax

r = random(obj)

R = random(obj,n)

R = random(obj,m,n)

R = random(obj,[m,n])

R = random(obj,m,n,p,...)

R = random(obj,[m,n,p,...])

Description

r = random(obj) generates a pseudo-random number r drawn from the piecewise
distribution object obj.

R = random(obj,n) generates an n-by-n matrix of pseudo-random numbers R.

R = random(obj,m,n) or R = random(obj,[m,n]) generates an m-by-n matrix of
pseudo-random numbers R.

R = random(obj,m,n,p,...) or R = random(obj,[m,n,p,...]) generates an m-
by-n-by-p-by-... array of pseudo-random numbers R.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

r = random(obj)

r =

22 Functions — Alphabetical List

22-3918

 0.8285

See Also
paretotails | icdf | cdf

 random

22-3919

random
Class: ProbDist

Generate random number drawn from ProbDist object

Syntax

Y = random(PD)

Y = random(PD, N)

Y = random(PD, N, M, ...)

Description

Y = random(PD) generates a random number drawn from the distribution specified by
PD, a ProbDist object.

Y = random(PD, N) generates an N-by-N array of random numbers drawn from the
distribution specified by PD, a ProbDist object.

Y = random(PD, N, M, ...) generates an N-by-M-by... array of random numbers
drawn from the distribution specified by PD, a ProbDist object.

Input Arguments

PD An object of the class ProbDistUnivParam or
ProbDistUnivKernel.

N A positive integer.
M A positive integer.

Output Arguments

Y A random number drawn from the distribution specified by PD.

22 Functions — Alphabetical List

22-3920

See Also
random

 random

22-3921

random
Class: RepeatedMeasuresModel

Generate new random response values given predictor values

Syntax

ysim = random(rm,tnew)

Description

ysim = random(rm,tnew) generates random response values from the repeated
measures model rm using the predictor variables from table tnew.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

tnew — New data
table used to create rm (default) | table

New data including the values of the response variables and the between-subject factors
used as predictors in the repeated measures model, rm, specified as a table. tnew must
contain all of the between-subject factors used to create rm.

Output Arguments

ysim — Random response values
n-by-r matrix

22 Functions — Alphabetical List

22-3922

Random response values random generates, returned as an n-by-r matrix, where n is the
number of rows in tnew, and r is the number of repeated measures in rm.

Examples

Randomly Generate New Response Values

Load the sample data.

load fisheriris

The column vector speciesconsists of iris flowers of three different species: setosa,
versicolor, and virginica. The double matrix meas consists of four types of measurements
on the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

 rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Randomly generate new response values.

ysim = random(rm);

random uses the predictor values in the original sample data you use to fit the repeated
measures model rm in table t.

Randomly Generate Response Values Using New Data

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 through y8 as responses. The table within includes the
within-subject variables w1 and w2. This is simulated data.

 random

22-3923

Fit a repeated measures model, where the repeated measures y1 through y8 are the
responses, and age, IQ, group, gender, and the group-gender interaction are the predictor
variables. Also specify the within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Define a table with new values for the predictor variables.

tnew = table(16,93,{'B'},{'Male'},'VariableNames',{'Age','IQ','Group','Gender'})

tnew =

 Age IQ Group Gender

 ___ __ _____ ______

 16 93 'B' 'Male'

Randomly generate new response values using the values in the new table tnew.

ysim = random(rm,tnew)

ysim =

 159.0920 114.8927 -6.5618 46.9944 38.6707 -5.6725 70.8690 11.7813

Algorithms

random computes ysim by creating predicted values and adding random noise values.
For each row, the noise has a multivariate normal distribution with covariance the same
as rm.Covariance.

See Also
fitrm | predict

22 Functions — Alphabetical List

22-3924

random
Class: prob.TruncatableDistribution
Package: prob

Generate random numbers from probability distribution object

Syntax
r = random(pd)

r = random(pd,sz1,...,szN)

r = random(pd,[sz1,...,szN])

Description
r = random(pd) generates a random number r from the probability distribution pd.

r = random(pd,sz1,...,szN) generates a sz1-by-...-by-szN array of random numbers
from the probability distribution pd.

r = random(pd,[sz1,...,szN]) generates a sz1-by-...-by-szN array of random
numbers from the probability distribution pd.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

sz1,...,szN — Size of each dimension
two or more integer values | vector of integer values

Size of each dimension, specified as two or more integer values, or a vector of such values.
For example, specifying 5,3,2 or [5,3,2] generates a 5-by-3-by-2 array of random
numbers from the probability distribution pd.

 random

22-3925

Data Types: single | double

Output Arguments

r — Random number
scalar value | array of values

Random number generated from the probability distribution, returned as a scalar value
or an array of scalar values with the dimensions specified by sz1,...,szN.

Examples

Generate One Random Number

Create a standard normal probability distribution object.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Generate one random number from the distribution.

r = random(pd)

r =

 0.5377

Generate Multiple Random Numbers

Create a Weibull probability distribution object using the default parameter values.

pd = makedist('Weibull')

pd =

 WeibullDistribution

22 Functions — Alphabetical List

22-3926

 Weibull distribution

 A = 1

 B = 1

Generate random numbers from distribution and visualize with a histogram.

rng default % For reproducibility

r = random(pd,10000,1);

histogram(r,100)

Generate a Multidimensional Array of Random Numbers

Create a standard normal probability distribution object.

 random

22-3927

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Generate a 2-by-3-by-2 array of random numbers from the distribution.

r = random(pd,[2,3,2])

random_make_array(:,:,1) =

 -1.0689 -2.9443 0.3252

 -0.8095 1.4384 -0.7549

random_make_array(:,:,2) =

 1.3703 -0.1022 0.3192

 -1.7115 -0.2414 0.3129

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-3928

randomEffects
Class: GeneralizedLinearMixedModel

Estimates of random effects and related statistics

Syntax

B = randomEffects(glme)

[B,BNames] = randomEffects(glme)

[B,BNames,stats] = randomEffects(glme)

[B,BNames,stats] = randomEffects(glme,Name,Value)

Description

B = randomEffects(glme) returns the estimates of the empirical Bayes predictors
(EPBs) of random effects in the generalized linear mixed-effects model glme conditional
on the estimated covariance parameters and the observed response.

[B,BNames] = randomEffects(glme) also returns the names of the coefficients,
BNames. Each name corresponds to a coefficient in B.

[B,BNames,stats] = randomEffects(glme) also returns related statistics, stats, for
the estimated EBPs of random effects in glme.

[B,BNames,stats] = randomEffects(glme,Name,Value) returns any of the above
output arguments using additional options specified by one or more Name,Value pair
arguments. For example, you can specify the confidence interval level, or the method for
computing the approximate degrees of freedom.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

 randomEffects

22-3929

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range [0,1]

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'DFMethod' — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated
pair consisting of 'DFMethod' and one of the following.

'residual' The degrees of freedom are assumed to
be constant and equal to n – p, where n is
the number of observations and p is the
number of fixed effects.

'none' All degrees of freedom are set to infinity.

Example: 'DFMethod','none'

Output Arguments

B — Estimated empirical Bayes predictors for the random effects
column vector

Estimated empirical Bayes predictors (EBPs) for the random effects in the generalized
linear mixed-effects model glme, returned as a column vector. The EBPs in B are

22 Functions — Alphabetical List

22-3930

approximated by the mode of the empirical posterior distribution of the random effects
given the estimated covariance parameters and the observed response.

Suppose glme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR,
respectively. Also suppose q1, q2, ..., qR are the lengths of the random-effects vectors that
are associated with g1, g2, ..., gR, respectively. Then, B is a column vector of length q1*m1
+ q2*m2 + ... + qR*mR.

randomEffects creates B by concatenating the empirical Bayes predictors of random-
effects vectors corresponding to each level of each grouping variable as [g1level1;
g1level2; ...; g1levelm1; g2level1; g2level2; ...; g2levelm2; ...;

gRlevel1; gRlevel2; ...; gRlevelmR]'.

BNames — Names of random-effects coefficients
table

Names of random-effects coefficients in B, returned as a table.

stats — Estimated empirical Bayes predictors and related statistics
table

Estimated empirical Bayes predictors (EBPs) and related statistics for the random effects
in the generalized linear mixed-effects model glme, returned as a table. stats has one row
for each of the random effects, and one column for each of the following statistics.

Group Grouping variable associated with the
random effect

Level Level within the grouping variable
corresponding to the random effect

Name Name of the random-effect coefficient
Estimate Empirical Bayes predictor (EBP) of random

effect
SEPred Square root of the conditional mean

squared error of prediction (CMSEP) given
covariance parameters and response

tStat t-statistic for a test that the random-effects
coefficient is equal to 0

DF Estimated degrees of freedom for the t-
statistic

 randomEffects

22-3931

pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for

the random-effects coefficient
Upper Upper limit of a 95% confidence interval for

the random-effects coefficient

randomEffects computes the confidence intervals using the conditional mean
squared error of prediction (CMSEP) approach conditional on the estimated covariance
parameters and the observed response. An alternative interpretation of the confidence
intervals is that they are approximate Bayesian credible intervals conditional on the
estimated covariance parameters and the observed response.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods
('MPL' or 'REMPL'), randomEffects computes confidence intervals and related
statistics based on the fitted linear mixed-effects model from the final pseudo likelihood
iteration.

Examples

Compute and Plot Estimated Random Effects

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)

22 Functions — Alphabetical List

22-3932

• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

 randomEffects

22-3933

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compute and display the names and estimated values of the empirical Bayes predictors
(EBPs) for the random effects.

[B,BNames] = randomEffects(glme)

B =

 0.2913

 0.1542

 -0.2633

 -0.4257

 0.5453

 -0.1069

 0.3040

 -0.1653

 -0.1458

 -0.0816

 0.0145

 0.1771

 0.2487

 0.2115

 0.2777

 -0.2518

 -0.1351

 -0.1627

 -0.3208

 0.0584

Bnames =

 Group Level Name

 _________ _____ _____________

 'factory' '1' '(Intercept)'

 'factory' '2' '(Intercept)'

 'factory' '3' '(Intercept)'

 'factory' '4' '(Intercept)'

 'factory' '5' '(Intercept)'

 'factory' '6' '(Intercept)'

22 Functions — Alphabetical List

22-3934

 'factory' '7' '(Intercept)'

 'factory' '8' '(Intercept)'

 'factory' '9' '(Intercept)'

 'factory' '10' '(Intercept)'

 'factory' '11' '(Intercept)'

 'factory' '12' '(Intercept)'

 'factory' '13' '(Intercept)'

 'factory' '14' '(Intercept)'

 'factory' '15' '(Intercept)'

 'factory' '16' '(Intercept)'

 'factory' '17' '(Intercept)'

 'factory' '18' '(Intercept)'

 'factory' '19' '(Intercept)'

 'factory' '20' '(Intercept)'

Each row of B contains the estimated EPB for the random-effects coefficient named in
the corresponding row of Bnames. For example, the value –0.2633 in row 3 of B is the
estimated EPB for '(Intercept)' for level '3' of factory.

Compute 99% Confidence Intervals for Random Effects

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)

 randomEffects

22-3935

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

22 Functions — Alphabetical List

22-3936

Compute and display the 99% confidence intervals for the random-effects coefficients.

[B,BNames,stats] = randomEffects(glme,'Alpha',0.01);

stats

stats =

 Random effect coefficients: DFMethod = 'residual', Alpha = 0.01

 Group Level Name Estimate

 'factory' '1' '(Intercept)' 0.29131

 'factory' '2' '(Intercept)' 0.15423

 'factory' '3' '(Intercept)' -0.26325

 'factory' '4' '(Intercept)' -0.42568

 'factory' '5' '(Intercept)' 0.5453

 'factory' '6' '(Intercept)' -0.10692

 'factory' '7' '(Intercept)' 0.30404

 'factory' '8' '(Intercept)' -0.16527

 'factory' '9' '(Intercept)' -0.14577

 'factory' '10' '(Intercept)' -0.081632

 'factory' '11' '(Intercept)' 0.014529

 'factory' '12' '(Intercept)' 0.17706

 'factory' '13' '(Intercept)' 0.24872

 'factory' '14' '(Intercept)' 0.21145

 'factory' '15' '(Intercept)' 0.2777

 'factory' '16' '(Intercept)' -0.25175

 'factory' '17' '(Intercept)' -0.13507

 'factory' '18' '(Intercept)' -0.1627

 'factory' '19' '(Intercept)' -0.32083

 'factory' '20' '(Intercept)' 0.058418

 SEPred tStat DF pValue Lower Upper

 0.19163 1.5202 94 0.13182 -0.21251 0.79514

 0.19216 0.80259 94 0.42423 -0.351 0.65946

 0.21249 -1.2389 94 0.21846 -0.82191 0.29541

 0.21667 -1.9646 94 0.052408 -0.99534 0.14398

 0.17963 3.0356 94 0.0031051 0.073019 1.0176

 0.20133 -0.53105 94 0.59664 -0.63625 0.42241

 0.18397 1.6527 94 0.10173 -0.17964 0.78771

 0.20505 -0.80597 94 0.42229 -0.70438 0.37385

 0.203 -0.71806 94 0.4745 -0.67949 0.38795

 0.20256 -0.403 94 0.68786 -0.61419 0.45093

 0.21421 0.067826 94 0.94607 -0.54866 0.57772

 randomEffects

22-3937

 0.20721 0.85446 94 0.39502 -0.36774 0.72185

 0.20522 1.212 94 0.22857 -0.29083 0.78827

 0.20678 1.0226 94 0.30913 -0.33221 0.75511

 0.20345 1.365 94 0.17552 -0.25719 0.81259

 0.22568 -1.1156 94 0.26746 -0.84509 0.34158

 0.22301 -0.60568 94 0.54619 -0.7214 0.45125

 0.22269 -0.73061 94 0.46684 -0.74817 0.42278

 0.23294 -1.3773 94 0.17168 -0.93325 0.29159

 0.21481 0.27195 94 0.78626 -0.50635 0.62319

The first three columns of stats contain the group name, level, and random-effects
coefficient name. Column 4 contains the estimated EBP of the random-effects coefficient.
The last two columns of stats, Lower and Upper, contain the lower and upper
bounds of the 99% confidence interval, respectively. For example, for the coefficient for
'(Intercept)' for level 3 of factory, the estimated EBP is –0.26325, and the 99%
confidence interval is [-0.82191,0.29541].

References

[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear
Mixed Models.” Journal of the American Statistical Association, Vol. 93, 1998, pp.
262–272.

See Also
GeneralizedLinearMixedModel | coefCI | coefTest | fixedEffects

22 Functions — Alphabetical List

22-3938

randomEffects
Class: LinearMixedModel

Estimates of random effects and related statistics

Syntax

B = randomEffects(lme)

[B,Bnames] = randomEffects(lme)

[B,Bnames,stats] = randomEffects(lme)

[B,Bnames,stats] = randomEffects(lme,Name,Value)

Description

B = randomEffects(lme) returns the estimates of the best linear unbiased predictors
(BLUPs) of random effects in the linear mixed-effects model lme.

[B,Bnames] = randomEffects(lme) also returns the names of the coefficients in
Bnames. Each name corresponds to a coefficient in B.

[B,Bnames,stats] = randomEffects(lme) also returns the estimated BLUPs of
random effects in the linear mixed-effects model lme and related statistics.

[B,Bnames,stats] = randomEffects(lme,Name,Value) also returns the BLUPs
of random effects in the linear mixed-effects model lme and related statistics with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

 randomEffects

22-3939

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Alpha' — Confidence level
0.05 (default) | scalar value in the range 0 to 1

Confidence level, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01

Data Types: single | double

'DFMethod' — Method for computing approximate degrees of freedom
'Residual' (default) | 'Satterthwaite' | 'None'

Method for computing approximate degrees of freedom for the t-statistics that test the
random-effects coefficients against 0, specified as the comma-separated pair consisting of
'DFMethod' and one of the following.

'Residual' Default. The degrees of freedom are
assumed to be constant and equal to n – p,
where n is the number of observations and
p is the number of fixed effects.

'Satterthwaite' Satterthwaite approximation.
'None' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','Satterthwaite'

Output Arguments

B — Estimated best linear unbiased predictors of random effects
column vector

22 Functions — Alphabetical List

22-3940

Estimated best linear unbiased predictors of random effects of linear mixed-effects model
lme, returned as a column vector.

Suppose lme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR,
respectively. Also suppose q1, q2, ..., qR are the lengths of the random-effects vectors that
are associated with g1, g2, ..., gR, respectively. Then, B is a column vector of length q1*m1
+ q2*m2 + ... + qR*mR.

randomEffects creates B by concatenating the best linear unbiased predictors
of random-effects vectors corresponding to each level of each grouping variable
as [g1level1; g1level2; ...; g1levelm1; g2level1; g2level2; ...;
g2levelm2; ...; gRlevel1; gRlevel2; ...; gRlevelmR]'.

Bnames — Names of random-effects coefficients
table

Names of random-effects coefficients in B, returned as a table.

stats — Estimates of random effects BLUPs and related statistics
dataset array

Estimates of random effects BLUPs and related statistics, returned as a dataset array
that has one row for each of the fixed effects and one column for each of the following
statistics.

Group Grouping variable associated with the
random effect

Level Level within the grouping variable
corresponding to the random effect

Name Name of the random-effect coefficient
Estimate Best linear unbiased predictor (BLUP) of

random effect
SEPred Standard error of the estimate (BLUP

minus random effect)
tStat t-statistic for a test that the random effect

is zero
DF Estimated degrees of freedom for the t-

statistic

 randomEffects

22-3941

pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for

the random effect
Upper Upper limit of a 95% confidence interval for

the random effect

Examples
Display Random-Effects Estimates and Coefficient Names

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration and horsepower, and potentially correlated random effects for intercept and
acceleration, grouped by the model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the BLUPs of the random-effects coefficients and display the names of the
corresponding random effects.

[B,Bnames] = randomEffects(lme)

B =

 3.1270

 -0.2426

 -1.6532

 -0.0086

 1.2075

 -0.2179

 4.4107

 -0.4887

 -1.3103

 -0.0208

 2.8029

 -0.3790

22 Functions — Alphabetical List

22-3942

 0.0865

 -0.1280

 0.4216

 -0.0259

 -2.3889

 0.1634

 0.9618

 0.0117

 -2.2345

 0.5020

 -2.1332

 0.3254

 -3.2979

 0.5090

Bnames =

 Group Level Name

 'Model_Year' '70' '(Intercept)'

 'Model_Year' '70' 'Acceleration'

 'Model_Year' '71' '(Intercept)'

 'Model_Year' '71' 'Acceleration'

 'Model_Year' '72' '(Intercept)'

 'Model_Year' '72' 'Acceleration'

 'Model_Year' '73' '(Intercept)'

 'Model_Year' '73' 'Acceleration'

 'Model_Year' '74' '(Intercept)'

 'Model_Year' '74' 'Acceleration'

 'Model_Year' '75' '(Intercept)'

 'Model_Year' '75' 'Acceleration'

 'Model_Year' '76' '(Intercept)'

 'Model_Year' '76' 'Acceleration'

 'Model_Year' '77' '(Intercept)'

 'Model_Year' '77' 'Acceleration'

 'Model_Year' '78' '(Intercept)'

 'Model_Year' '78' 'Acceleration'

 'Model_Year' '79' '(Intercept)'

 'Model_Year' '79' 'Acceleration'

 'Model_Year' '80' '(Intercept)'

 'Model_Year' '80' 'Acceleration'

 'Model_Year' '81' '(Intercept)'

 'Model_Year' '81' 'Acceleration'

 'Model_Year' '82' '(Intercept)'

 randomEffects

22-3943

 'Model_Year' '82' 'Acceleration'

Since intercept and acceleration have potentially correlated random effects, grouped
by model year of the cars, randomEffects creates a separate row for intercept and
acceleration at each level of the grouping variable.

Compute the covariance parameters of the random effects.

[~,~,stats] = covarianceParameters(lme)

stats{1}

ans =

 Covariance Type: FullCholesky

 Group Name1 Name2 Type Estimate Lower Upper

 Model_Year '(Intercept)' '(Intercept)' 'std' 6.6672 3.0377 14.633

 Model_Year 'Weight' '(Intercept)' 'corr' -1 -1 NaN

 Model_Year 'Weight' 'Weight' 'std' 0.0014668 0.00057348 0.0037515

The correlation value suggests that random effects seem negatively correlated. Plot the
random effects for intercept versus acceleration to confirm this.

plot(B(1:2:end),B(2:2:end),'r*')

22 Functions — Alphabetical List

22-3944

Compute Random-Effects Estimates and Related Statistics

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load fertilizer

The dataset array includes data from a split-plot experiment, where soil is divided into
three blocks based on the soil type: sandy, silty, and loamy. Each block is divided into
five plots, where five different types of tomato plants (cherry, heirloom, grape, vine, and

 randomEffects

22-3945

plum) are randomly assigned to these plots. The tomato plants in the plots are then
divided into subplots, where each subplot is treated by one of four fertilizers. This is
simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato,
Soil, and Fertilizer as categorical variables.

ds = fertilizer;

ds.Tomato = nominal(ds.Tomato);

ds.Soil = nominal(ds.Soil);

ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects
variables, and the mean yield varies by the block (soil type), and the plots within blocks
(tomato types within soil types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Compute the BLUPs and related statistics for random effects.

[~,~,stats] = randomEffects(lme)

stats =

 Random effect coefficients: DFMethod = 'Residual', Alpha = 0.05

 Group Level Name Estimate SEPred tStat DF pValue Lower Upper

 'Soil' 'Loamy' '(Intercept)' 1.0061 2.3374 0.43044 40 0.66918 -3.718 5.7303

 'Soil' 'Sandy' '(Intercept)' -1.5236 2.3374 -0.65181 40 0.51825 -6.2477 3.2006

 'Soil' 'Silty' '(Intercept)' 0.51744 2.3374 0.22137 40 0.82593 -4.2067 5.2416

 'Soil:Tomato' 'Loamy Cherry' '(Intercept)' 12.46 7.1765 1.7362 40 0.090224 -2.0443 26.964

 'Soil:Tomato' 'Loamy Grape' '(Intercept)' -2.6429 7.1765 -0.36827 40 0.71461 -17.147 11.861

 'Soil:Tomato' 'Loamy Heirloom' '(Intercept)' 16.681 7.1765 2.3244 40 0.025269 2.1766 31.185

 'Soil:Tomato' 'Loamy Plum' '(Intercept)' -5.0172 7.1765 -0.69911 40 0.48853 -19.522 9.4872

 'Soil:Tomato' 'Loamy Vine' '(Intercept)' -4.6874 7.1765 -0.65316 40 0.51739 -19.192 9.8169

 'Soil:Tomato' 'Sandy Cherry' '(Intercept)' -17.393 7.1765 -2.4235 40 0.019987 -31.897 -2.8882

 'Soil:Tomato' 'Sandy Grape' '(Intercept)' -7.3679 7.1765 -1.0267 40 0.31075 -21.872 7.1364

 'Soil:Tomato' 'Sandy Heirloom' '(Intercept)' -8.621 7.1765 -1.2013 40 0.23671 -23.125 5.8833

 'Soil:Tomato' 'Sandy Plum' '(Intercept)' 7.669 7.1765 1.0686 40 0.29165 -6.8353 22.173

 'Soil:Tomato' 'Sandy Vine' '(Intercept)' 0.28246 7.1765 0.039359 40 0.9688 -14.222 14.787

 'Soil:Tomato' 'Silty Cherry' '(Intercept)' 4.9326 7.1765 0.68732 40 0.49585 -9.5718 19.437

 'Soil:Tomato' 'Silty Grape' '(Intercept)' 10.011 7.1765 1.3949 40 0.17073 -4.4935 24.515

 'Soil:Tomato' 'Silty Heirloom' '(Intercept)' -8.0599 7.1765 -1.1231 40 0.2681 -22.564 6.4444

22 Functions — Alphabetical List

22-3946

 'Soil:Tomato' 'Silty Plum' '(Intercept)' -2.6519 7.1765 -0.36952 40 0.71369 -17.156 11.852

 'Soil:Tomato' 'Silty Vine' '(Intercept)' 4.405 7.1765 0.6138 40 0.54282 -10.099 18.909

The first three rows contain the random-effects estimates and the statistics for the three
levels, Loamy, Sandy, and Silty of the grouping variable Soil. The corresponding
p-values 0.66918, 0.51825, and 0.82593 indicate that these random-effects are not
significantly different from 0. The following 15 rows include the BLUPS of random-effects
estimates for the intercept, grouped by the variable Tomato nested in Soil, i.e. interaction
of Tomato and Soil.

Compute Confidence Intervals with Specified Options

Load the sample data.

load carsmall

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);

shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator, to assess if
there is a significant difference in the performance according to the time of the shift. Use
the restricted maximum likelihood method.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the 99% confidence intervals for random effects using the residuals option to
compute the degrees of freedom. This is the default method.

[~,~,stats] = randomEffects(lme,'alpha',0.01)

stats =

 Random effect coefficients: DFMethod = 'Residual', Alpha = 0.01

 Group Level Name Estimate SEPred tStat DF pValue Lower Upper

 'Operator' '1' '(Intercept)' 0.57753 0.90378 0.63902 12 0.53482 -2.1831 3.3382

 'Operator' '2' '(Intercept)' 1.1757 0.90378 1.3009 12 0.21772 -1.5849 3.9364

 'Operator' '3' '(Intercept)' -2.1715 0.90378 -2.4027 12 0.033352 -4.9322 0.58909

 'Operator' '4' '(Intercept)' 2.3655 0.90378 2.6174 12 0.022494 -0.39511 5.1261

 'Operator' '5' '(Intercept)' -1.9472 0.90378 -2.1546 12 0.052216 -4.7079 0.81337

 randomEffects

22-3947

Compute the 99% confidence intervals for random effects using the Satterthwaite
approximation to compute the degrees of freedom.

[~,~,stats] = randomEffects(lme,'DFMethod','Satterthwaite','alpha',0.01)

stats =

 Random effect coefficients: DFMethod = 'Satterthwaite', Alpha = 0.01

 Group Level Name Estimate SEPred tStat DF pValue Lower Upper

 'Operator' '1' '(Intercept)' 0.57753 0.90378 0.63902 6.4253 0.5449 -2.684 3.839

 'Operator' '2' '(Intercept)' 1.1757 0.90378 1.3009 6.4253 0.23799 -2.0858 4.4372

 'Operator' '3' '(Intercept)' -2.1715 0.90378 -2.4027 6.4253 0.050386 -5.433 1.09

 'Operator' '4' '(Intercept)' 2.3655 0.90378 2.6174 6.4253 0.037302 -0.89598 5.627

 'Operator' '5' '(Intercept)' -1.9472 0.90378 -2.1546 6.4253 0.071626 -5.2087 1.3142

The Satterhwaite method usually produces smaller values for the degrees of freedom
(DF), which results in larger p-values (pValue) and larger confidence intervals (Lower
and Upper) for the random-effects estimates.

See Also
coefCI | coefTest | fitlme | fixedEffects | LinearMixedModel

22 Functions — Alphabetical List

22-3948

randsample
Random sample

Syntax

y = randsample(n,k)

y = randsample(population,k)

y = randsample(n,k,replacement)

y = randsample(population,k,replacement)

y = randsample(n,k,true,w)

y = randsample(population,k,true,w)

y = randsample(s,...)

Description

y = randsample(n,k) returns a k-by-1 vector y of values sampled uniformly at
random, without replacement, from the integers 1 to n.

y = randsample(population,k) returns a vector of k values sampled uniformly
at random, without replacement, from the values in the vector population. The
orientation of y (row or column) is the same as population.

y = randsample(n,k,replacement) or y =
randsample(population,k,replacement) returns a sample taken with replacement
if replacement is true, or without replacement if replacement is false. The default
is false.

y = randsample(n,k,true,w) or y = randsample(population,k,true,w)
returns a weighted sample taken with replacement, using a vector of positive weights w,
whose length is n. The probability that the integer i is selected for an entry of y is w(i)/
sum(w). Usually, w is a vector of probabilities. randsample does not support weighted
sampling without replacement.

y = randsample(s,...) uses the stream s for random number generation. s is a
member of the RandStream class. Default is the MATLAB default random number
stream.

 randsample

22-3949

Examples

Draw a single value from the integers 1 through 10:

n = 10;

x = randsample(n,1);

Draw a single value from the population 1 through n, where n > 1:

y = randsample(1:n,1);

Note: If population is a numeric vector containing only nonnegative integer values,
and population can have length 1, use

y = population(randsample(length(population),k))

instead of y = randsample(population,k).

Generate a random sequence of the characters A, C, G, and T, with replacement, according
to the specified probabilities.

R = randsample('ACGT',48,true,[0.15 0.35 0.35 0.15])

More About

Tips

• To randomly sample data, with or without replacement, use datasample.

See Also
rand | randperm | datasample | RandStream

22 Functions — Alphabetical List

22-3950

randtool

Interactive random number generation

Syntax

randtool

Description

randtool opens the Random Number Generation Tool.

The Random Number Generation Tool is a graphical user interface that generates
random samples from specified probability distributions and displays the samples as
histograms. Use the tool to explore the effects of changing parameters and sample size on
the distributions.

 randtool

22-3951

Choose distribution Sample size

Parameter
bounds

Histogram

Parameter
value

Parameter
control Additional

parameters
Sample again
from the same
distribution

Export to
workspace

Start by selecting a distribution, then enter the desired sample size.

22 Functions — Alphabetical List

22-3952

You can also

• Use the controls at the bottom of the window to set parameter values for the
distribution and to change their upper and lower bounds.

• Draw another sample from the same distribution, with the same size and parameters.
• Export the current sample to your workspace. A dialog box enables you to provide a

name for the sample.

See Also
disttool | dfittool

 range

22-3953

range
Range of values

Syntax

range(X)

y = range(X,dim)

Description

range(X) returns the difference between the maximum and the minimum of a sample.
For vectors, range(x) is the range of the elements. For matrices, range(X) is a row
vector containing the range of each column of X. For N-dimensional arrays, range
operates along the first nonsingleton dimension of X.

y = range(X,dim) operates along the dimension dim of X.

range treats NaNs as missing values and ignores them.

The range is an easily-calculated estimate of the spread of a sample. Outliers have an
undue influence on this statistic, which makes it an unreliable estimator.

Examples

The range of a large sample of standard normal random numbers is approximately six.
This is the motivation for the process capability indices Cp and Cpk in statistical quality
control applications.

rv = normrnd(0,1,1000,5);

near6 = range(rv)

near6 =

 6.1451 6.4986 6.2909 5.8894 7.0002

See Also
std | iqr | mad

22 Functions — Alphabetical List

22-3954

rangesearch

Find all neighbors within specified distance using exhaustive search or Kd-tree

Syntax

Idx = rangesearch(Mdl,Y,r)

Idx = rangesearch(Mdl,Y,r,Name,Value)

[Idx,D] = rangesearch(___)

Description

Idx = rangesearch(Mdl,Y,r) searches for all neighbors (i.e., points, rows, or
observations) in Mdl.X within radius r of each point (i.e., row or observation) in the
query data Y using an exhaustive search or a Kd-tree. rangesearch returns Idx, which
is a column vector of the indices of Mdl.X within r units.

Idx = rangesearch(Mdl,Y,r,Name,Value) returns the indices of the observation
in Mdl.X within radius r of each observation in Y with additional options specified by
one or more Name,Value pair arguments. For example, you can specify to use a different
distance metric than is stored in Mdl.Distance or a different distance metric parameter
than is stored in Mdl.DistParameter.

[Idx,D] = rangesearch(___) additionally returns the matrix D using any of
the input arguments in the previous syntaxes. D contains the distances between the
observations in Mdl.X within radius r of each observation in Y. The function arranges
the columns of D in ascending order by closeness, with respect to the distance metric.

Examples

Search for Neighbors Within A Radius Using a K d-tree and Exhaustive Search

rangesearch accepts ExhaustiveSearcher or KDTreeSearcher model
objects to search the training data for the nearest neighbors to the query data. An

 rangesearch

22-3955

ExhaustiveSearcher model invokes the exhaustive searcher algorithm, and a
KDTreeSearcher model defines a K d-tree, which rangesearch uses to search for
nearest neighbors.

Load Fisher's iris data set. Randomly reserve five observations from the data for query
data. Focus on the petal dimensions.

load fisheriris

rng(1); % For reproducibility

n = size(meas,1);

idx = randsample(n,5);

X = meas(~ismember(1:n,idx),3:4); % Training data

Y = meas(idx,3:4); % Query data

Grow a default two-dimensional K d-tree.

MdlKDT = KDTreeSearcher(X)

MdlKDT =

 KDTreeSearcher with properties:

 BucketSize: 50

 Distance: 'euclidean'

 DistParameter: []

 X: [145x2 double]

MdlKDT is a KDTreeSearcher model object. You can alter its writable properties using
dot notation.

Prepare an exhaustive nearest neighbors searcher.

MdlES = ExhaustiveSearcher(X)

MdlES =

 ExhaustiveSearcher with properties:

 Distance: 'euclidean'

 DistParameter: []

 X: [145x2 double]

22 Functions — Alphabetical List

22-3956

MdlKDT is an ExhaustiveSearcher model object. It contains the options, such as the
distance metric, to use to find nearest neighbors.

Alternatively, you can grow a K d-tree or prepare an exhaustive nearest neighbors
searcher using createns.

Search training data for the nearest neighbor indices that correspond to each query
observation that are within a 0.5 cm radius. Conduct both types of searches and use the
default settings.

r = 0.15; % Search radius

IdxKDT = rangesearch(MdlKDT,Y,r);

IdxES = rangesearch(MdlES,Y,r);

[IdxKDT IdxES]

ans =

 [1x27 double] [1x27 double]

 [13] [13]

 [1x27 double] [1x27 double]

 [1x2 double] [1x2 double]

 [1x0 double] [1x0 double]

IdxKDT and IdxES are cell arrays of vectors corresponding to the indices of X that are
within 0.15 cm of the observations in Y. Each row of the index matrices corresponds to a
query observation.

Compare the results between the methods.

cellfun(@isequal,IdxKDT,IdxES)

ans =

 1

 1

 1

 1

 1

 rangesearch

22-3957

In this case, the results are the same.

Plot the results for the setosa irises.

setosaIdx = strcmp(species(~ismember(1:n,idx)),'setosa');

XSetosa = X(setosaIdx,:);

ySetosaIdx = strcmp(species(idx),'setosa');

YSetosa = Y(ySetosaIdx,:);

figure;

plot(XSetosa(:,1),XSetosa(:,2),'.k');

hold on;

plot(YSetosa(:,1),YSetosa(:,2),'*r');

for j = 1:sum(ySetosaIdx);

 c = YSetosa(j,:);

 circleFun = @(x1,x2)r^2 - (x1 - c(1)).^2 - (x2 - c(2)).^2;

 ezplot(circleFun,[c(1) + [-1 1]*r, c(2) + [-1 1]*r])

end

xlabel 'Petal length (cm)';

ylabel 'Petal width (cm)';

title 'Setosa Petal Measurements';

legend('Observations','Query Data','Search Radius');

axis equal

hold off

22 Functions — Alphabetical List

22-3958

Search for Neighbors Within a Radius Using the Mahalanobis Distance

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

X = meas(~ismember(1:n,qIdx),:);

Y = meas(qIdx,:);

Prepare a default exhaustive nearest neighbors searcher.

 rangesearch

22-3959

Mdl = ExhaustiveSearcher(X)

Mdl =

 ExhaustiveSearcher with properties:

 Distance: 'euclidean'

 DistParameter: []

 X: [145x4 double]

Mdl is an ExhaustiveSearcher model.

Find the indices of the training data (X) that are within 0.15 cm of each point in the
query data (Y). Specify that the distances are with respect to the Mahalanobis metric.

r = 1;

Idx = rangesearch(Mdl,Y,r,'Distance','mahalanobis')

Idx{3}

Idx =

 [1x15 double]

 [1x5 double]

 [1x6 double]

 [84]

 [69]

ans =

 1 34 33 22 24 2

Each cell of Idx corresponds to a query data observation and contains in X a vector of
indices of the neighbors within 0.15cm of the query data. rangesearch arranges the
indices in ascending order by distance. For example, using thre Mahalanobis distance,
the second nearest neighbor of Y(3,:) is X(34,:).

Compute Distances of Neighbors Within a Radius

Load Fisher's iris data set.

22 Functions — Alphabetical List

22-3960

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(4); % For reproducibility

n = size(meas,1); % Sample size

qIdx = randsample(n,5); % Indices of query data

X = meas(~ismember(1:n,qIdx),:);

Y = meas(qIdx,:);

Grow a four-dimensional K d-tree using the training data. Specify to use the Minkowski
distance for finding nearest neighbors later.

Mdl = KDTreeSearcher(X);

Mdl is a KDTreeSearcher model. By default, the distance metric for finding nearest
neighbors is the Euclidean metric.

Find the indices of the training data (X) that are within 0.5 cm from each point in the
query data (Y).

r = 0.5;

[Idx,D] = rangesearch(Mdl,Y,r);

Idx and D are five-element cell arrays of vectors. The vector values in Idx are the indices
in X. The X indices represent the observations that are within 0.5 cm of the query data, Y.
D contains the distances that correspond to the observations.

Display the results for query observation 3.

Idx{3}

D{3}

ans =

 127 122

ans =

 0.2646 0.4359

 rangesearch

22-3961

The closest observation to Y(3,:) is X(127,:), which is 0.2646 cm away. The next
closest is X(122,:), which is 0.4359 cm away. All other observations are greater than
0.5 cm away from Y(5,:).

Input Arguments

Mdl — Nearest neighbors searcher
ExhaustiveSearcher model object | KDTreeSearcher model object

Nearest neighbors searcher, specified as an ExhaustiveSearcher or KDTreeSearcher
model object, respectively. To create Mdl, with the appropriate mode creator. You can
also use createns.

If Mdl is an ExhaustiveSearcher model, then rangesearch searches for nearest
neighbors using an exhaustive search. Otherwise, rangesearch uses the grown Kd-tree
to search for nearest neighbors.

Y — Query data
numeric matrix

Query data, specified as a numeric matrix.

Y is an m-by-K matrix. Rows of Y correspond to observations (i.e., examples), and columns
correspond to predictors (i.e., variables or features). Y must have the same number of
columns as the training data stored in Mdl.X.

r — Search radius
nonnegative scalar

Search radius around each point in the query data, specified as a nonnegative scalar.

rangesearch finds all observations in Mdl.X that are within distance r of each
observation in Y. The property Mdl.Distance stores the distance.

Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-3962

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Distance','minkowski','P',3 specifies to find all observations in Mdl.X
within distance r of each observation in Y, using the Minkowski distance metric with
exponent 3.

For Both Nearest Neighbor Searchers

'Distance' — Distance metric
Mdl.Distance (default) | 'cityblock' | 'euclidean' | 'mahalanobis' |
'minkowski' | 'seuclidean' | function handle | ...

Distance metric used to find neighbors of the training data to the query observations,
specified as the comma-separated pair consisting of 'Distance' and a string or function
handle.

For both types of nearest neighbor searchers, Mdl supports these distance metrics.

Value Description

'chebychev' Chebychev distance (maximum coordinate
difference)

'cityblock' City block distance
'euclidean' Euclidean distance
'minkowski' Minkowski distance

If Mdl is an ExhaustiveSearcher model object, then rangesearch supports these
distance metrics.

Value Description

'correlation' One minus the sample linear correlation
between observations (treated as sequences
of values)

'cosine' One minus the cosine of the included angle
between observations (row vectors)

 rangesearch

22-3963

Value Description

'hamming' Hamming distance, which is the percentage
of coordinates that differ.

'jaccard' One minus the Jaccard coefficient, which is
the percentage of nonzero coordinates that
differ

'mahalanobis' Mahalanobis distance
'seuclidean' Standardized Euclidean distance
'spearman' One minus the sample Spearman's rank

correlation between observations (treated
as sequences of values)

If Mdl is an ExhaustiveSearcher model object, then you can also specify a function
handle for a custom distance metric using @ (for example, @distfun). The custom
distance function must:

• Have the form function D2 = distfun(ZI, ZJ)
• Take as arguments:

• A 1-by-K vector ZI containing a single row from X or from the query points Y
• An m-by-K matrix ZJ containing multiple rows of X or Y

• Return an m-by-1 vector of distances D2, whose jth element is the distance between
the observations ZI and ZJ(j,:)

For more details, see “Distance Metrics”.
Example: 'Distance','minkowski'

Data Types: char | function_handle

'P' — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated
pair consisting of 'P' and a positive scalar. If you specify P and do not specify
'Distance','minkowski', then the software throws an error.

Example: 'P',3

Data Types: double | single

22 Functions — Alphabetical List

22-3964

For Exhaustive, Nearest Neighbor Searchers

'Cov' — Covariance matrix for Mahalanobis distance metric
nancov(X) (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-
separated pair consisting of 'Cov' and a positive definite matrix. Cov is a K-by-K
matrix, where K is the number of columns of X. If you specify Cov and do not specify
'Distance','mahalanobis', then rangesearch throws an error.

Example: 'Cov',eye(3)

Data Types: double | single

'Scale' — Scale parameter value for standard Euclidean distance metric
nanstd(X) (default) | nonnegative numeric vector

Scale parameter value for the standard Euclidean distance metric, specified as the
comma-separated pair consisting of 'Scale' and a nonnegative numeric vector. Scale
has length K, where K is the number of columns of X.

The software scales each difference between the training and query data using
the corresponding element of Scale. If you specify Scale and do not specify
'Distance','seuclidean', then rangesearch throws an error.

Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)

Data Types: double | single

Note: If you specify 'Distance', 'Cov', 'P', or 'Scale', then Mdl.Distance and
Mdl.DistParameter do not change value.

Output Arguments

Idx — Training data indices of nearest neighbors
cell array of numeric vectors

Training data indices of nearest neighbors, returned as a cell array of numeric vectors.

Idx is an m-by-1 cell array such that cell j (Idx{j}) contains an mj-dimensional vector
of indices of the observations in Mdl.X that are within r units to the query observation

 rangesearch

22-3965

Y(j,:). rangesearch arranges the elements of the vectors in ascending order by
distance.

D — Distances of nearest neighbors to the query data
cell array of numeric vectors

Distances of the neighbors to the query data, returned as a numeric matrix or cell array
of numeric vectors.

D is an m-by-1 cell array such that cell j (D{j}) contains an mj-dimensional vector of
the distances that the observations in Mdl.X are from the query observation Y(j,:). All
elements of the vector are less than r. The function arranges the elements of the vectors
in ascending order.

Alternatives

rangesearch is an object function of that requires an ExhaustiveSearcher or a
KDTreeSearcher model object, query data, and a distance. Under equivalent conditions,
rangesearch returns the same results as rangesearch when you specify the name-
value pair argument 'NSMethod','exhaustive' or 'NSMethod','kdtree',
respectively.

More About

Algorithms

For positive integer K, knnsearch finds the K points in Mdl.X that are nearest each Y
point. In contrast, for positive scalar r, rangesearch finds all the points in Mdl.X that
are within a distance r of each Y point.
• Using ExhaustiveSearcher Objects
• Using KDTreeSearcher Objects
• “k-Nearest Neighbor Search and Radius Search” on page 16-11
• “Distance Metrics”

See Also
createns | ExhaustiveSearcher | KDTreeSearcher | knnsearch | rangesearch

22 Functions — Alphabetical List

22-3966

Introduced in R2011b

 rangesearch

22-3967

rangesearch
Find all neighbors within specified distance

Syntax

idx = rangesearch(X,Y,r)

[idx,D]= rangesearch(X,Y,r)

[idx,D]= rangesearch(X,Y,r,Name,Value)

Description

idx = rangesearch(X,Y,r) finds all the X points that are within distance r of the Y
points. Rows of X and Y correspond to observations, and columns correspond to variables.

[idx,D]= rangesearch(X,Y,r) returns the distances between each row of Y and the
rows of X that are r or less distant.

[idx,D]= rangesearch(X,Y,r,Name,Value) finds nearby points with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

X

mx-by-n numeric matrix, where each row represents one n-dimensional point. The
number of columns n must equal as the number of columns in Y.

Y

my-by-n numeric matrix, where each row represents one n-dimensional point. The
number of columns n must equal as the number of columns in X.

r

Search radius, a scalar. rangesearch finds all X points (rows) that are within distance r
of each Y point. The meaning of distance depends on the Distance name-value pair.

22 Functions — Alphabetical List

22-3968

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BucketSize'

Maximum number of data points in the leaf node of the kd-tree. This argument is only
meaningful when kd-tree is used for finding nearest neighbors.

Default: 50

'Cov'

Positive definite matrix indicating the covariance matrix when computing the
Mahalanobis distance. This argument is only valid when the Distance name-value pair
argument is 'mahalanobis'.

Default: nancov(X)

'Distance'

String or function handle specifying the distance metric.

Value Description

'euclidean' Euclidean distance.
'seuclidean' Standardized Euclidean distance. Each coordinate

difference between X and a query point is scaled, meaning
divided by a scale value S. The default value of S is the
standard deviation computed from X, S = nanstd(X). To
specify another value for S, use the Scale name-value pair
argument.

'mahalanobis' Mahalanobis distance, computed using a positive definite
covariance matrix C. The default value of C is the sample
covariance matrix of X, as computed by nancov(X). To
specify a different value for C, use the 'Cov' name-value
pair argument.

'cityblock' City block distance.

 rangesearch

22-3969

Value Description

'minkowski' Minkowski distance. The default exponent is 2. To specify a
different exponent, use the 'P' name-value pair argument.

'chebychev' Chebychev distance (maximum coordinate difference).
'cosine' One minus the cosine of the included angle between

observations (treated as vectors).
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'hamming' Hamming distance, the percentage of coordinates that

differ.
'jaccard' One minus the Jaccard coefficient, the percentage of

nonzero coordinates that differ.
'spearman' One minus the sample Spearman's rank correlation

between observations (treated as sequences of values).
@distfun Distance function handle. distfun has the form

function D2 = DISTFUN(ZI,ZJ)

...

where

• ZI is a 1-by-N vector containing one row of X or Y.
• ZJ is an M2-by-N matrix containing multiple rows of X or

Y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the

distance between the observations ZI and ZJ(J,:).

For definitions, see “Distance Metrics”.

Default: NS.Distance

'NSMethod'

Nearest neighbors search method.

Value Meaning

'kdtree' Creates and uses a kd-tree to find nearest neighbors.
'kdtree' is only valid when the distance metric is one of:

22 Functions — Alphabetical List

22-3970

Value Meaning

• 'chebychev'

• 'cityblock'

• 'euclidean'

• 'minkowski'

'exhaustive' Uses the exhaustive search algorithm. The distances from
all X points to each Y point are computed to find nearest
neighbors.

Default: 'kdtree' when the number of columns of X is not greater than 10, X is not
sparse, and the distance metric is one of the valid 'kdtree' metrics. Otherwise, the
default is 'exhaustive'.

'P'

Positive scalar indicating the exponent of Minkowski distance. This argument is only
valid when the Distance name-value pair argument is 'minkowski'.

Default: 2

'Scale'

Vector S containing nonnegative values, with length equal to the number of columns in
X. Each coordinate difference between X and a query point is scaled by the corresponding
element of S. This argument is only valid when the Distance name-value pair argument
is 'seuclidean'.

Default: nanstd(X)

Output Arguments

idx

my-by-1 cell array, where my is the number of rows in Y. idx{I} contains the indices
of points (rows) in X whose distances to Y(I,:) are not greater than r. The entries in
idx{I} are in ascending order of distance.

 rangesearch

22-3971

D

my-by-1 cell array, where my is the number of rows in Y. D{I} contains the distance
values between Y(I,:) and the corresponding points in idx{I}.

Examples

Find the X points that are within a Euclidean distance 1.5 of each Y point. Both X and Y
are samples of 5-D normally distributed variables.

rng('default') % for reproducibility

X = randn(100,5);

Y = randn(10,5);

[idx, dist] = rangesearch(X,Y,1.5)

idx =

 [1x7 double]

 [1x2 double]

 [1x11 double]

 [1x2 double]

 [1x12 double]

 [1x9 double]

 [89]

 [1x0 double]

 [1x0 double]

 [1x0 double]

dist =

 [1x7 double]

 [1x2 double]

 [1x11 double]

 [1x2 double]

 [1x12 double]

 [1x9 double]

 [1.1739]

 [1x0 double]

 [1x0 double]

 [1x0 double]

In this case, the last three Y points are more than 1.5 distant from any X point. X(89,:)
is 1.1739 distant from Y(7,:), and there is no other X point that is within distance 1.5
of Y(7,:). There are 12 points in X within distance 1.5 of Y(5,:).

22 Functions — Alphabetical List

22-3972

Alternatives

rangesearch is the ExhaustiveSearcher function for distance search. It is equivalent
to the rangesearch function with the NSMethod name-value pair set to 'exhaustive'.

rangesearch is the KDTreeSearcher function for distance search. It is equivalent to
the rangesearch function with the NSMethod name-value pair set to 'kdtree'.

More About

Distance Metrics

For definitions, see “Distance Metrics”.

Tips

• For a fixed positive integer K, knnsearch finds K points in X that are nearest each Y
point. In contrast, for a fixed positive real value r, rangesearch finds all the X points
that are within a distance r of each Y point.

Algorithms

For an overview of the kd-tree algorithm, see “k-Nearest Neighbor Search Using a Kd-
Tree” on page 16-13.

The exhaustive search algorithm finds the distance of each point in X to each point in Y.
• “k-Nearest Neighbor Search and Radius Search” on page 16-11

See Also
createns | ExhaustiveSearcher | KDTreeSearcher | knnsearch | pdist2

 ranksum

22-3973

ranksum
Wilcoxon rank sum test

Syntax

p = ranksum(x,y)

[p,h] = ranksum(x,y)

[p,h,stats] = ranksum(x,y)

[___] = ranksum(x,y,Name,Value)

Description

p = ranksum(x,y) returns the p-value of a two-sided Wilcoxon rank sum test.
ranksum tests the null hypothesis that data in x and y are samples from continuous
distributions with equal medians, against the alternative that they are not. The test
assumes that the two samples are independent. x and y can have different lengths.

This test is equivalent to a Mann-Whitney U-test.

[p,h] = ranksum(x,y) also returns a logical value indicating the test decision. The
result h = 1 indicates a rejection of the null hypothesis, and h = 0 indicates a failure to
reject the null hypothesis at the 5% significance level.

[p,h,stats] = ranksum(x,y) also returns the structure stats with information
about the test statistic.

[___] = ranksum(x,y,Name,Value) returns any of the output arguments in the
previous syntaxes, for a rank sum test with additional options specified by one or more
Name,Value pair arguments.

Examples

Test for Equal Median of Two Populations

Test the hypothesis of equal medians for two independent unequal-sized samples.

Generate sample data.

22 Functions — Alphabetical List

22-3974

rng('default') % for reproducibility

x = unifrnd(0,1,10,1);

y = unifrnd(0.25,1.25,15,1);

These samples come from populations with identical distributions except for a shift of
0.25 in the location.

Test the equality of medians of x and y.

p = ranksum(x,y)

p =

 0.0375

The p-value of 0.0375 indicates that ranksum rejects the null hypothesis of equal
medians at the default 5% significance level.

Statistics of the Test for Two Population Medians

Obtain the statistics of the test for the equality of two population medians.

Load the sample data.

load mileage

Test if the mileage per gallon is the same for the first and second type of cars.

[p,h,stats] = ranksum(mileage(:,1),mileage(:,2))

p =

 0.0043

h =

 1

stats =

 ranksum: 21.5000

Both the p-value, 0.043, and h = 1 indicate the rejection of the null hypothesis of equal
medians at the default 5% significance level. Because the sample sizes are small (six
each), ranksum calculates the p-value using the exact method. The structure stats
includes only the value of the rank sum test statistic.

Increase in the Median

Test the hypothesis of an increase in the population median.

 ranksum

22-3975

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weather

The weather data shows the daily high temperatures taken in the same month in two
consecutive years.

Perform a left-sided test to assess the increase in the median at the 1% significance level.

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...

'tail','left')

p =

 0.1271

h =

 0

stats =

 zval: -1.1403

 ranksum: 837.5000

Both the p-value of 0.1271 and h = 0 indicate that there is not enough evidence to reject
the null hypothesis and conclude that there is a positive shift in the median of observed
high temperatures in the same month from year 1 to year 2 at the 1% significance level.
Notice that ranksum uses the approximate method to calculate the p-value due to the
large sample sizes.

Use the exact method to calculate the p-value.

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...

'tail','left','method','exact')

p =

22 Functions — Alphabetical List

22-3976

 0.1273

h =

 0

stats =

 ranksum: 837.5000

The results of the approximate and exact methods are consistent with each other.

Input Arguments

x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. The length of y does not have to be the same as the
length of x.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'alpha',0.01,'method','approximate','tail','right' specifies a
right-tailed rank sum test with 1% significance level, which returns the approximate p-
value.

 ranksum

22-3977

'alpha' — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level of the decision of a hypothesis test, specified as the comma-separated
pair consisting of 'alpha' and a scalar value in the range 0 to 1. The significance level
of h is 100 * alpha%.

Example: 'alpha', 0.01

Data Types: double | single

'method' — Computation method of the p-value
'exact' | 'approximate'

Computation method of the p-value, p, specified as the comma-separated pair consisting
of 'method' and one of the following:

'exact' Exact computation of the p-value, p.
'approximate' Normal approximation while computing the p-value, p.

When 'method' is unspecified, the default is:

• 'exact' if min(nx,ny) < 10 and nx + ny < 20
• 'approximate' otherwise

nx and ny are the sizes of the samples in x and y, respectively.

Example: 'method','exact'

Data Types: char

'tail' — Type of test
'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the
following:

'both' Two-sided hypothesis test, where the alternative hypothesis states that x
and y have different medians. Default test type if 'tail' is not specified.

'right' Right-tailed hypothesis test, where the alternative hypothesis states that
the median of x is greater than the median of y.

'left' Left-tailed hypothesis test, where the alternative hypothesis states that
the median of x is less than the median of y.

22 Functions — Alphabetical List

22-3978

Example: 'tail','left'

Data Types: char

Output Arguments

p — p-value of the test
nonnegative scalar

p-value of the test, returned as a positive scalar from 0 to 1. p is the probability of
observing a test statistic as or more extreme than the observed value under the null
hypothesis. ranksum computes the two-sided p-value by doubling the most significant
one-sided value.

h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.

• If h = 1, this indicates rejection of the null hypothesis at the 100 * alpha%
significance level.

• If h = 0, this indicates a failure to reject the null hypothesis at the 100 * alpha%
significance level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in stats are:

• ranksum : Value of the rank sum test statistic
• zval: Value of the z-statistic (computed when 'method' is 'approximate')

More About

Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a nonparametric test for two populations when samples
are independent. If X and Y are independent samples with different sample sizes, the test
statistic which ranksum returns is the rank sum of the first sample.

 ranksum

22-3979

The Wilcoxon rank sum test is equivalent to the Mann-Whitney U-test. The Mann-
Whitney U-test is a nonparametric test for equality of population medians of two
independent samples X and Y.

The Mann-Whitney U-test statistic, U, is the number of times a y precedes an x in an
ordered arrangement of the elements in the two independent samples X and Y. It is
related to the Wilcoxon rank sum statistic in the following way: If X is a sample of size
nX, then

U W
n nX X

= -
+()1

2
.

z-Statistic

For large samples, ranksum uses a z-statistic to compute the approximate p-value of the
test.

If X and Y are two independent samples of size nX and nY, where nX < nY the z-statistic is

z
W E W

V W

W
n n n n

sign W E W

n n n

X Y X X

X Y X

=
- ()

=

-
+ +()È

Î
Í

˘

˚
˙ - * -

()

. (())
1

2
0 5

++ +() -n tiescorY 1

12

,

with continuity correction and tie adjustment. Here tiescor is given by

tiescor
tieadj

n n n nX Y X Y

=
*

+() + -()

2

1
,

where ranksum uses [ranks,tieadj] = tiedrank(x,y) to obtain tie adjustments.
The standard normal distribution gives the p-value for this z-statistic.

Algorithms

ranksum treats NaNs in x and y as missing values and ignores them.

For a two-sided test of medians with unequal sample sizes, the test statistic that
ranksum returns is the rank sum of the first sample.

22 Functions — Alphabetical List

22-3980

References

[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed., Boca
Raton, FL: Chapman & Hall/CRC Press, Taylor & Francis Group, 2011.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ:
John Wiley & Sons, Inc., 1999.

See Also
kruskalwallis | signrank | signtest | ttest2

 ranova

22-3981

ranova
Class: RepeatedMeasuresModel

Repeated measures analysis of variance

Syntax

ranovatbl = ranova(rm)

ranovatbl = ranova(rm,'WithinModel',WM)

[ranovatbl,A,C,D] = ranova(___)

Description

ranovatbl = ranova(rm) returns the results of repeated measures analysis of
variance for a repeated measures model rm in table ranovatbl.

ranovatbl = ranova(rm,'WithinModel',WM) returns the results of repeated
measures analysis of variance using the responses specified by the within-subject model
WM.

[ranovatbl,A,C,D] = ranova(___) also returns arrays A, C, and D for the
hypotheses tests of the form A*B*C = D, where D is zero.

Input Arguments

rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

WM — Model specifying responses
'separatemeans' (default) | r-by-nc contrast matrix | string that defines a model
specification

22 Functions — Alphabetical List

22-3982

Model specifying the responses, specified as one of the following:

• 'separatemeans' — Compute a separate mean for each group.
• C — r-by-nc contrast matrix specifying the nc contrasts among the r repeated

measures. If Y represents a matrix of repeated measures, ranova tests the hypothesis
that the means of Y*C are zero.

• A string that defines a model specification in the within-subject factors. You can
define the model based on the rules for the terms in the modelspec argument of
fitrm. Also see “Model Specification for Repeated Measures Models” on page 8-77.

For example, if there are three within-subject factors w1, w2, and w3, then you can specify
a model for the within-subject factors as follows.
Example: 'WithinModel','w1+w2+w2*w3'

Data Types: single | double

Output Arguments

ranovatbl — Results of repeated measures anova
table

Results of repeated measures anova, returned as a table.

ranovatbl includes a term represents all differences across the within-subjects factors.
This term has either the name of the within-subjects factor if specified while fitting the
model, or the name Time if the name of the within-subjects factor is not specified while
fitting the model or there are more than one within-subjects factors. ranovatbl also
includes all interactions between the terms in the within-subject model and all between-
subject model terms. It contains the following columns.

Column Name Definition

SumSq Sum of squares.
DF Degrees of freedom.
MeanSq Mean squared error.
F F-statistic.
pValue p-value for the corresponding F-statistic. A small

p-value indicates significant term effect.

 ranova

22-3983

Column Name Definition

pValueGG p-value with Greenhouse-Geisser adjustment.
pValueHF p-value with Huynh-Feldt adjustment.
pValueLB p-value with Lower bound adjustment.

The last three p-values are the adjusted p-values for use when the compound symmetry
assumption is not satisfied. For details, see “Compound Symmetry Assumption and
Epsilon Corrections” on page 8-79. The mauchy method tests for sphericity (hence,
compound symmetry) and epsilon method returns the epsilon adjustment values.

A — Specification based on between-subjects model
matrix | cell array

Specification based on the between-subjects model, returned as a matrix or a cell array.
It permits the hypothesis on the elements within given columns of B (within time
hypothesis). If ranovatbl contains multiple hypothesis tests, A might be a cell array.
Data Types: single | double | cell

C — Specification based on within-subjects model
matrix | cell array

Specification based on the within-subjects model, returned as a matrix or a cell array.
It permits the hypotheses on the elements within given rows of B (between time
hypotheses). If ranovatbl contains multiple hypothesis tests, C might be a cell array.
Data Types: single | double | cell

D — Hypothesis value
0

Hypothesis value, returned as 0.

Examples

Repeated Measures Analysis of Variance

Load the sample data.

load fisheriris

22 Functions — Alphabetical List

22-3984

The column vector speciesconsists of iris flowers of three different species: setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ans =

 SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

 ______ ___ ________ ______ ___________ ___________ ___________ ___________

 (Intercept):Measurements 1656.3 3 552.09 6873.3 0 9.4491e-279 4.5457e-287 2.5871e-125

 species:Measurements 282.47 6 47.078 586.1 1.4271e-206 4.9313e-156 1.1811e-160 9.0151e-71

 Error(Measurements) 35.423 441 0.080324

There are four measurements, three types of species, and 150 observations. So, degrees
of freedom for measurements is (4–1) = 3, for species-measurements interaction it
is (4–1)*(3–1) = 6, and for error it is (150–4)*(3–1) = 441. ranova computes the last
three p-values using Greenhouse-Geisser, Huynh-Feldt, and Lower bound corrections,
respectively. You can check the compound symmetry (sphericity) assumption using the
mauchly method, and display the epsilon corrections using the epsilon method.

Longitudinal Data

Navigate to the folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load('longitudinalData')

 ranova

22-3985

The matrix Y contains response data for 16 individuals. The response is the blood level of
a drug measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds
to an individual, and each column corresponds to a time point. The first eight subjects
are female, and the second eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to do repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...

'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where the blood levels are the responses and gender is
the predictor variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl =

 SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

 ______ __ ______ _______ __________ __________ __________ __________

 (Intercept):Time 881.7 4 220.43 37.539 3.0348e-15 4.7325e-09 6.2859e-11 2.6198e-05

 Gender:Time 17.65 4 4.4125 0.75146 0.56126 0.4877 0.515 0.40063

 Error(Time) 328.83 56 5.872

There are 5 time points, 2 genders, and 16 observations. So, the degrees of freedom for
time is (5–1) = 4, for gender-time interaction it is (5–1)*(2–1) = 4, and for error it is (16–
2)*(5–1) = 56. The small p-value of 2.6198e–05 indicates that there is a significant effect
of time on blood pressure. The p -value of 0.40063 indicates that there is no significant
gender-time interaction.

Specify the Within-Subjects Model

Load the sample data.

22 Functions — Alphabetical List

22-3986

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and
eight repeated measures y1 through y8 as responses. The table within includes the
within-subject variables w1 and w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the
responses, and age, IQ, group, gender, and the group-gender interaction are the predictor
variables. Also specify the within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl =

 SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

 ______ ___ ______ _______ _________ ________ _________ ________

 (Intercept):Time 6645.2 7 949.31 2.2689 0.031674 0.071235 0.03862 0.14621

 Age:Time 5824.3 7 832.05 1.9887 0.059978 0.10651 0.069029 0.17246

 IQ:Time 5188.3 7 741.18 1.7715 0.096749 0.14492 0.10684 0.19683

 Group:Time 15800 14 1128.6 2.6975 0.0014425 0.011884 0.0024199 0.089594

 Gender:Time 4455.8 7 636.55 1.5214 0.16381 0.20533 0.17329 0.23042

 Group:Gender:Time 4247.3 14 303.38 0.72511 0.74677 0.663 0.7297 0.49549

 Error(Time) 64433 154 418.39

Specify the model for the within-subject factors. Also display the matrices used in the
hypothesis test.

[ranovatbl,A,C,D] = ranova(rm,'WithinModel','w1+w2')

ranovatbl =

 SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

 ______ __ ______ ________ _________ _________ _________ _________

 (Intercept) 3141.7 1 3141.7 2.5034 0.12787 0.12787 0.12787 0.12787

 Age 537.48 1 537.48 0.42828 0.51962 0.51962 0.51962 0.51962

 IQ 2975.9 1 2975.9 2.3712 0.13785 0.13785 0.13785 0.13785

 Group 20836 2 10418 8.3012 0.0020601 0.0020601 0.0020601 0.0020601

 Gender 3036.3 1 3036.3 2.4194 0.13411 0.13411 0.13411 0.13411

 Group:Gender 211.8 2 105.9 0.084385 0.91937 0.91937 0.91937 0.91937

 ranova

22-3987

 Error 27609 22 1255

 (Intercept):w1 146.75 1 146.75 0.23326 0.63389 0.63389 0.63389 0.63389

 Age:w1 942.02 1 942.02 1.4974 0.23402 0.23402 0.23402 0.23402

 IQ:w1 11.563 1 11.563 0.01838 0.89339 0.89339 0.89339 0.89339

 Group:w1 4481.9 2 2240.9 3.562 0.045697 0.045697 0.045697 0.045697

 Gender:w1 270.65 1 270.65 0.4302 0.51869 0.51869 0.51869 0.51869

 Group:Gender:w1 240.37 2 120.19 0.19104 0.82746 0.82746 0.82746 0.82746

 Error(w1) 13841 22 629.12

 (Intercept):w2 3663.8 3 1221.3 3.8381 0.013513 0.020339 0.013513 0.062894

 Age:w2 1199.9 3 399.95 1.2569 0.2964 0.29645 0.2964 0.27432

 IQ:w2 3650.1 3 1216.7 3.8237 0.013744 0.020636 0.013744 0.063351

 Group:w2 5963.8 6 993.96 3.1237 0.0093493 0.015434 0.0093493 0.063955

 Gender:w2 2173.1 3 724.38 2.2765 0.087813 0.10134 0.087813 0.14557

 Group:Gender:w2 3339.6 6 556.6 1.7492 0.12345 0.14 0.12345 0.19724

 Error(w2) 21001 66 318.2

A =

 [1x8 double]

 [1x8 double]

 [1x8 double]

 [2x8 double]

 [1x8 double]

 [2x8 double]

C =

 [8x1 double] [8x1 double] [8x3 double]

D =

 0

Display the contents of A.

[A{1};A{2};A{3};A{4};A{5};A{6}]

ans =

 1 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0

 0 0 1 0 0 0 0 0

22 Functions — Alphabetical List

22-3988

 0 0 0 1 0 0 0 0

 0 0 0 0 1 0 0 0

 0 0 0 0 0 1 0 0

 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 0 1

Display the contents of C.

[C{1} C{2} C{3}]

ans =

 1 1 1 0 0

 1 1 0 1 0

 1 1 0 0 1

 1 1 -1 -1 -1

 1 -1 1 0 0

 1 -1 0 1 0

 1 -1 0 0 1

 1 -1 -1 -1 -1

Algorithms

ranova computes the regular p-value (in the pValue column of the rmanova table) using
the F-statistic cumulative distribution function:
p-value = 1 – fcdf(F,v1,v2).

When the compound symmetry assumption is not satisfied, ranova uses a correction
factor epsilon, ε, to compute the corrected p-values as follows:
p-value_corrected = 1 – fcdf(F,ε*v1,ε*v2).

The mauchly method tests for sphericity (hence, compound symmetry) and epsilon
method returns the epsilon adjustment values.

See Also
anova | epsilon | fitrm | manova | mauchly

More About
• “Model Specification for Repeated Measures Models” on page 8-77
• “Compound Symmetry Assumption and Epsilon Corrections” on page 8-79

 ranova

22-3989

• “Mauchly’s Test of Sphericity” on page 8-81

22 Functions — Alphabetical List

22-3990

raylcdf
Rayleigh cumulative distribution function

Syntax

p = raylcdf(x,b)

p = raylcdf(x,b,'upper')

Description

p = raylcdf(x,b) returns the Rayleigh cdf at each value in x using the corresponding
scale parameter, b. x and b can be vectors, matrices, or multidimensional arrays that
all have the same size. A scalar input for x or b is expanded to a constant array with the
same dimensions as the other input.

p = raylcdf(x,b,'upper') returns the complement of the Rayleigh cdf at each
value in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

The Rayleigh cdf is

y F x b
t

b
e dt

x
t

b= = ∫
−









(|)
20

2

2

2

Examples

Compute and Plot Rayleigh Distribution cdf

Compute the cdf of a Rayleigh distribution with parameter B = 1.

x = 0:0.1:3;

p = raylcdf(x,1);

Plot the cdf.

 raylcdf

22-3991

figure;

plot(x,p)

More About
• “Rayleigh Distribution” on page B-141

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ:
Wiley-Interscience, 2000. pp. 134–136.

22 Functions — Alphabetical List

22-3992

See Also
cdf | raylpdf | raylinv | raylstat | raylfit | raylrnd

 prob.RayleighDistribution class

22-3993

prob.RayleighDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Rayleigh probability distribution object

Description

prob.RayleighDistribution is an object consisting of parameters, a model
description, and sample data for a normal probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Rayleigh') creates a Rayleigh probability distribution object using
the default parameter values.

pd = makedist('Rayleigh','b',b) creates a Rayleigh probability distribution
object using the specified parameter value.

Input Arguments

b — Defining parameter
1 (default) | positive scalar value

Defining parameter for the Rayleigh distribution, specified as a positive scalar value.
Data Types: single | double

Properties

b — Defining parameter
positive scalar value

Defining parameter for the Rayleigh distribution, stored as a positive scalar value.

22 Functions — Alphabetical List

22-3994

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between

 prob.RayleighDistribution class

22-3995

the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.

22 Functions — Alphabetical List

22-3996

Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

 prob.RayleighDistribution class

22-3997

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Rayleigh Distribution

The Rayleigh distribution is a special case of the Weibull distribution. It is often used in
communication theory to model scattered signals that reach a receiver by multiple paths.

The Rayleigh distribution uses the following parameter.

Parameter Description Support

b Defining parameter b > 0

The probability density function (pdf) is

f x b
x

b

x

b
x| exp ; .() =

-Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
≥

2

2

22
0

Examples

Create a Rayleigh Distribution Object Using Default Parameters

Create a Rayleigh distribution object using the default parameter values.

pd = makedist('Rayleigh')

pd =

22 Functions — Alphabetical List

22-3998

 RayleighDistribution

 Rayleigh distribution

 B = 1

Create a Rayleigh Distribution Object Using Specified Parameters

Create a Rayleigh distribution object by specifying the parameter values.

pd = makedist('Rayleigh','b',3)

pd =

 RayleighDistribution

 Rayleigh distribution

 B = 3

Compute the mean of the distribution.

m = mean(pd)

m =

 3.7599

See Also
dfittool | fitdist | makedist

More About
• “Rayleigh Distribution”
• Class Attributes
• Property Attributes

 raylfit

22-3999

raylfit
Rayleigh parameter estimates

Syntax

raylfit(data,alpha)

[phat,pci] = raylfit(data,alpha)

Description

raylfit(data,alpha) returns the maximum likelihood estimates of the parameter of
the Rayleigh distribution given the data in the vector data.

[phat,pci] = raylfit(data,alpha) returns the maximum likelihood estimate and
100(1 - alpha)% confidence interval given the data. The default value of the optional
parameter alpha is 0.05, corresponding to 95% confidence intervals.

More About
• “Rayleigh Distribution” on page B-141

See Also
mle | raylpdf | raylcdf | raylinv | raylstat | raylrnd

22 Functions — Alphabetical List

22-4000

raylinv
Rayleigh inverse cumulative distribution function

Syntax

X = raylinv(P,B)

Description

X = raylinv(P,B) returns the inverse of the Rayleigh cumulative distribution function
using the corresponding scale parameter, B at the corresponding probabilities in P. P and
B can be vectors, matrices, or multidimensional arrays that all have the same size. A
scalar input for P or B is expanded to a constant array with the same dimensions as the
other input.

Examples
x = raylinv(0.9,1)

x =

 2.1460

More About
• “Rayleigh Distribution” on page B-141

See Also
raylcdf | raylpdf | raylrnd | raylstat

 raylpdf

22-4001

raylpdf

Rayleigh probability density function

Syntax

Y = raylpdf(X,B)

Description

Y = raylpdf(X,B) computes the Rayleigh pdf at each of the values in X using the
corresponding scale parameter, B. X and B can be vectors, matrices, or multidimensional
arrays that all have the same size, which is also the size of Y. A scalar input for X or B is
expanded to a constant array with the same dimensions as the other input.

The Rayleigh pdf is

y f x b
x

b
e

x

b= =

−









(|)
2

2

2

2

Examples

Compute and Plot Rayleigh Distribution pdf

Compute the pdf of a Rayleigh distribution with parameter B = 0.5.

x = [0:0.01:2];

p = raylpdf(x,0.5);

Plot the pdf.

figure;

plot(x,p)

22 Functions — Alphabetical List

22-4002

More About
• “Rayleigh Distribution” on page B-141

See Also
pdf | raylcdf | raylinv | raylstat | raylfit | raylrnd

 raylrnd

22-4003

raylrnd
Rayleigh random numbers

Syntax

R = raylrnd(B)

R = raylrnd(B,v)

R = raylrnd(B,m,n)

Description

R = raylrnd(B) returns a matrix of random numbers chosen from the Rayleigh
distribution with scale parameter, B. B can be a vector, a matrix, or a multidimensional
array. The size of R is the size of B.

R = raylrnd(B,v) returns a matrix of random numbers chosen from the Rayleigh
distribution with parameter B, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = raylrnd(B,m,n) returns a matrix of random numbers chosen from the Rayleigh
distribution with parameter B, where scalars m and n are the row and column dimensions
of R.

Examples
r = raylrnd(1:5)

r =

 1.7986 0.8795 3.3473 8.9159 3.5182

More About
• “Rayleigh Distribution” on page B-141

See Also
random | raylpdf | raylcdf | raylinv | raylstat | raylfit

22 Functions — Alphabetical List

22-4004

raylstat
Rayleigh mean and variance

Syntax

[M,V] = raylstat(B)

Description

[M,V] = raylstat(B) returns the mean of and variance for the Rayleigh distribution
with scale parameter B.

The mean of the Rayleigh distribution with parameter b is b p / 2 and the variance is

4

2

2−p

b

Examples
[mn,v] = raylstat(1)

mn =

 1.2533

v =

 0.4292

More About
• “Rayleigh Distribution” on page B-141

See Also
raylpdf | raylcdf | raylinv | raylfit | raylrnd

 rcoplot

22-4005

rcoplot

Residual case order plot

Syntax

rcoplot(r,rint)

Description

rcoplot(r,rint) displays an errorbar plot of the confidence intervals on the residuals
from a regression. The residuals appear in the plot in case order. Inputs r and rint are
outputs from the regress function.

Examples

The following plots residuals and prediction intervals from a regression of a linearly
additive model to the data in moore.mat:

load moore

X = [ones(size(moore,1),1) moore(:,1:5)];

y = moore(:,6);

alpha = 0.05;

[betahat,Ibeta,res,Ires,stats] = regress(y,X,alpha);

rcoplot(res,Ires)

22 Functions — Alphabetical List

22-4006

The interval around the first residual, shown in red, does not contain zero. This indicates
that the residual is larger than expected in 95% of new observations, and suggests the
data point is an outlier.

See Also
regress

 refcurve

22-4007

refcurve
Add reference curve to plot

Syntax

refcurve(p)

refcurve

hcurve = refcurve(...)

Description

refcurve(p) adds a polynomial reference curve with coefficients p to the current axes.
If p is a vector with n+1 elements, the curve is:

y = p(1)*x^n + p(2)*x^(n-1) + ... + p(n)*x + p(n+1)

refcurve with no input arguments adds a line along the x axis.

hcurve = refcurve(...) returns the handle hcurve to the curve.

Examples

Add Population and Fitted Mean Functions

Generate data with a polynomial trend.

p = [1 -2 -1 0];

t = 0:0.1:3;

rng default % For reproducibility

y = polyval(p,t) + 0.5*randn(size(t));

Plot data and add the population mean function using refcurve .

plot(t,y,'ro')

h = refcurve(p);

h.Color = 'r';

22 Functions — Alphabetical List

22-4008

Also add the fitted mean function.

q = polyfit(t,y,3);

refcurve(q)

legend('Data','Population Mean','Fitted Mean',...

 'Location','NW')

 refcurve

22-4009

Plot Trajectories of a Batted Baseball Using refcurve

Introduce the relevant physical constants.

M = 0.145; % Mass (kg)

R = 0.0366; % Radius (m)

A = pi*R^2; % Area (m^2)

rho = 1.2; % Density of air (kg/m^3)

C = 0.5; % Drag coefficient

D = rho*C*A/2; % Drag proportional to the square of the speed

g = 9.8; % Acceleration due to gravity (m/s^2)

Simulate the trajectory with drag proportional to the square of the speed, assuming
constant acceleration in each time interval.

22 Functions — Alphabetical List

22-4010

dt = 1e-2; % Simulation time interval (s)

r0 = [0 1]; % Initial position (m)

s0 = 50; % Initial speed (m/s)

alpha0 = 35; % Initial angle (deg)

v0 = s0*[cosd(alpha0) sind(alpha0)]; % Initial velocity (m/s)

r = r0;

v = v0;

trajectory = r0;

while r(2) > 0

 a = [0 -g] - (D/M)*norm(v)*v;

 v = v + a*dt;

 r = r + v*dt + (1/2)*a*(dt^2);

 trajectory = [trajectory;r];

end

Plot trajectory and use refcurve to add the drag-free parabolic trajectory (found
analytically) to the plot of trajectory.

figure

plot(trajectory(:,1),trajectory(:,2),'m','LineWidth',2)

xlim([0,250])

h = refcurve([-g/(2*v0(1)^2),...

 (g*r0(1)/v0(1)^2) + (v0(2)/v0(1)),...

 (-g*r0(1)^2/(2*v0(1)^2)) - (v0(2)*r0(1)/v0(1)) + r0(2)]);

h.Color = 'c';

h.LineWidth = 2;

axis equal

ylim([0,50])

grid on

xlabel('Distance (m)')

ylabel('Height (m)')

title('{\bf Baseball Trajectories}')

legend('With Drag','Without Drag')

 refcurve

22-4011

See Also
refline | lsline | gline | polyfit

22 Functions — Alphabetical List

22-4012

refit
Class: GeneralizedLinearMixedModel

Refit generalized linear mixed-effects model

Syntax

glmenew = refit(glme,ynew)

Description

glmenew = refit(glme,ynew) returns a refitted generalized linear mixed-effects
model, glmenew, based on the input model glme, using a new response vector, ynew.

Tips
• You can use refit and random to conduct a simulated likelihood ratio test or

parametric bootstrap.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

ynew — New response vector
n-by-1 vector of scalar values

New response vector, specified as an n-by-1 vector of scalar values, where n is the
number of observations used to fit glme.

For an observation i with prior weights wi
p and binomial size ni (when applicable), the

response values yi contained in ynew can have the following values.

 refit

22-4013

Distribution Permitted Values Notes

Binomial

0
1 2

1, , ,. ,
w n w n

i
p

i i
p

i

…

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

wi
p and ni are integer values

> 0

Poisson

0
1 2

1, , , ,
w w

i
p

i
p
L

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

wi
p is an integer value > 0

Gamma (0,∞) wi
p ≥ 0

InverseGaussian (0,∞) wi
p ≥ 0

Normal (–∞,∞) wi
p ≥ 0

You can access the prior weights property wi
p using dot notation.

glme.ObservationInfo.Weights

Data Types: single | double

Output Arguments

glmenew — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, returned as a GeneralizedLinearMixedModel
object. glmenew is an updated version of the generalized linear mixed-effects model glme,
refit to the values in the response vector ynew.

For properties and methods of this object, see GeneralizedLinearMixedModel.

Examples

Refit Model to New Response Vector

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

22 Functions — Alphabetical List

22-4014

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The
company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

 refit

22-4015

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Use random to simulate a new response vector from the fitted model.

rng(0,'twister'); % For reproducibility

ynew = random(glme);

Refit the model using the new response vector.

glme = refit(glme,ynew)

glme =

Generalized linear mixed-effects model fit by ML

Model information:

 Number of observations 100

 Fixed effects coefficients 6

 Random effects coefficients 20

 Covariance parameters 1

 Distribution Poisson

 Link Log

 FitMethod Laplace

Formula:

 defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

22 Functions — Alphabetical List

22-4016

Model fit statistics:

 AIC BIC LogLikelihood Deviance

 469.24 487.48 -227.62 455.24

Fixed effects coefficients (95% CIs):

 Name Estimate SE tStat DF pValue

 '(Intercept)' 1.5738 0.18674 8.4276 94 4.0158e-13

 'newprocess' -0.21089 0.2306 -0.91455 94 0.36277

 'time_dev' -0.13769 0.77477 -0.17772 94 0.85933

 'temp_dev' 0.24339 0.84657 0.2875 94 0.77436

 'supplier_C' -0.12102 0.07323 -1.6526 94 0.10175

 'supplier_B' 0.098254 0.066943 1.4677 94 0.14551

 Lower Upper

 1.203 1.9445

 -0.66875 0.24696

 -1.676 1.4006

 -1.4375 1.9243

 -0.26642 0.024381

 -0.034662 0.23117

Random effects covariance parameters:

Group: factory (20 Levels)

 Name1 Name2 Type Estimate

 '(Intercept)' '(Intercept)' 'std' 0.46587

Group: Error

 Name Estimate

 'sqrt(Dispersion)' 1

See Also
GeneralizedLinearMixedModel | designMatrix | fitted | residuals

 refline

22-4017

refline
Add reference line to plot

Syntax

refline(m,b)

refline(coeffs)

refline

refline(ax, ___)

hline = refline(___)

Description

refline(m,b) adds a reference line with slope m and intercept b to the current axes.

refline(coeffs), where coeffs is a two-element coefficient vector, adds the line

 y = coeffs(1)*x + coeffs(2)

to the figure.

refline with no input arguments is equivalent to lsline.

refline(ax, ___) adds a reference line to the plot in the axis specified by ax, using
any of the previous syntaxes.

hline = refline(___) returns the handle hline to the line.

Examples

Add a Reference Line at the Mean

Generate sample data for independent variable x and a dependent variable y .

x = 1:10;

22 Functions — Alphabetical List

22-4018

y = x + randn(1,10);

Create a scatter plot of x and y .

scatter(x,y,25,'b','*')

Superimpose a least-squares line on the scatter plot.

lsline

 refline

22-4019

Add a reference line at the mean of the scatter and its least-squares line.

mu = mean(y);

hline = refline([0 mu]);

hline.Color = 'r';

22 Functions — Alphabetical List

22-4020

The red line shows the reference line at the mean of data.

Specify Axes for Least-Squares and Reference Lines

Define the x-variable and two different y-variables to use for the plots.

rng default % For reproducibility

x = 1:10;

y1 = x + randn(1,10);

y2 = 2*x + randn(1,10);

Define ax1 as the top half of the figure, and ax2 as the bottom half of the figure. Create
the first scatter plot on the top axis using y1, and the second scatter plot on the bottom
axis using y2.

 refline

22-4021

figure

ax1 = subplot(2,1,1);

ax2 = subplot(2,1,2);

scatter(ax1,x,y1)

scatter(ax2,x,y2)

Superimpose a least-squares line on the top plot, and a reference line at the mean of the
y2 values in the bottom plot.

lsline(ax1)

mu = mean(y2);

refline(ax2,[0 mu])

22 Functions — Alphabetical List

22-4022

See Also
refcurve | lsline | gline

 regress

22-4023

regress

Multiple linear regression

Syntax

b = regress(y,X)

[b,bint] = regress(y,X)

[b,bint,r] = regress(y,X)

[b,bint,r,rint] = regress(y,X)

[b,bint,r,rint,stats] = regress(y,X)

[...] = regress(y,X,alpha)

Description

b = regress(y,X) returns a p-by-1 vector b of coefficient estimates for a multilinear
regression of the responses in y on the predictors in X. X is an n-by-p matrix of p
predictors at each of n observations. y is an n-by-1 vector of observed responses.

regress treats NaNs in X or y as missing values, and ignores them.

If the columns of X are linearly dependent, regress obtains a basic solution by setting
the maximum number of elements of b to zero.

[b,bint] = regress(y,X) returns a p-by-2 matrix bint of 95% confidence intervals
for the coefficient estimates. The first column of bint contains lower confidence bounds
for each of the p coefficient estimates; the second column contains upper confidence
bounds.

If the columns of X are linearly dependent, regress returns zeros in elements of bint
corresponding to the zero elements of b.

[b,bint,r] = regress(y,X) returns an n-by-1 vector r of residuals.

[b,bint,r,rint] = regress(y,X) returns an n-by-2 matrix rint of intervals
that can be used to diagnose outliers. If the interval rint(i,:) for observation i does

22 Functions — Alphabetical List

22-4024

not contain zero, the corresponding residual is larger than expected in 95% of new
observations, suggesting an outlier.

In a linear model, observed values of y are random variables, and so are their residuals.
Residuals have normal distributions with zero mean but with different variances at
different values of the predictors. To put residuals on a comparable scale, they are
“Studentized,” that is, they are divided by an estimate of their standard deviation that
is independent of their value. Studentized residuals have t distributions with known
degrees of freedom. The intervals returned in rint are shifts of the 95% confidence
intervals of these t distributions, centered at the residuals.

[b,bint,r,rint,stats] = regress(y,X) returns a 1-by-4 vector stats that
contains, in order, the R2 statistic, the F statistic and its p value, and an estimate of the
error variance.

Note: When computing statistics, X should include a column of 1s so that the model
contains a constant term. The F statistic and its p value are computed under this
assumption, and they are not correct for models without a constant.

The F statistic is the test statistic of the F-test on the regression model, for a significant
linear regression relationship between the response variable and the predictor variables.

The R2 statistic can be negative for models without a constant, indicating that the model
is not appropriate for the data.

[...] = regress(y,X,alpha) uses a 100*(1-alpha)% confidence level to compute
bint and rint.

Examples

Estimate Multiple Linear Regression Coefficients

This example shows how to estimate the coefficients of a multiple linear regression.

Load the sample data. Identify weight and horsepower as predictors, and mileage as the
response.

load carsmall

 regress

22-4025

x1 = Weight;

x2 = Horsepower; % Contains NaN data

y = MPG;

Compute the regression coefficients for a linear model with an interaction term.

X = [ones(size(x1)) x1 x2 x1.*x2];

b = regress(y,X) % Removes NaN data

b =

 60.7104

 -0.0102

 -0.1882

 0.0000

Plot the data and the model.

scatter3(x1,x2,y,'filled')

hold on

x1fit = min(x1):100:max(x1);

x2fit = min(x2):10:max(x2);

[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);

YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT + b(4)*X1FIT.*X2FIT;

mesh(X1FIT,X2FIT,YFIT)

xlabel('Weight')

ylabel('Horsepower')

zlabel('MPG')

view(50,10)

22 Functions — Alphabetical List

22-4026

• “Interpret Linear Regression Results” on page 9-63
• “Linear Regression Workflow” on page 9-41

References

[1] Chatterjee, S., and A. S. Hadi. “Influential Observations, High Leverage Points, and
Outliers in Linear Regression.” Statistical Science. Vol. 1, 1986, pp. 379–416.

See Also
fitlm | LinearModel | mvregress | rcoplot | stepwiselm

 RegressionBaggedEnsemble class

22-4027

RegressionBaggedEnsemble class
Superclasses: RegressionEnsemble

Regression ensemble grown by resampling

Description

RegressionBaggedEnsemble combines a set of trained weak learner models and data
on which these learners were trained. It can predict ensemble response for new data by
aggregating predictions from its weak learners.

Construction

ens = fitensemble(X,Y,'bag',nlearn,learners,'type','regression')

creates a bagged regression ensemble. For more information on the syntax, see the
fitensemble function reference page.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CombineWeights

A string describing how the ensemble combines learner predictions.

FitInfo

A numeric array of fit information. The FitInfoDescription property describes the
content of this array.

FitInfoDescription

String describing the meaning of the FitInfo array.

22 Functions — Alphabetical List

22-4028

FResample

A numeric scalar between 0 and 1. FResample is the fraction of training data
fitensemble resampled at random for every weak learner when constructing the
ensemble.

LearnerNames

Cell array of strings with names of the weak learners in the ensemble. The name of
each learner appears just once. For example, if you have an ensemble of 100 trees,
LearnerNames is {'Tree'}.

Method

A string with the name of the algorithm fitensemble used for training the ensemble.

ModelParameters

Parameters used in training ens.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrained

Number of trained learners in the ensemble, a positive scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ReasonForTermination

A string describing the reason fitensemble stopped adding weak learners to the
ensemble.

Regularization

A structure containing the result of the regularize method. Use Regularization
with shrink to lower resubstitution error and shrink the ensemble.

 RegressionBaggedEnsemble class

22-4029

Replace

Boolean flag indicating if training data for weak learners in this ensemble were sampled
with replacement. Replace is true for sampling with replacement, false otherwise.

ResponseName

A string with the name of the response variable Y.

ResponseTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.

TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes
predicted response by aggregating weighted predictions from its learners.

UseObsForLearner

A logical matrix of size N-by-NumTrained, where N is the number of rows (observations)
in the training data X, and NumTrained is the number of trained weak learners.
UseObsForLearner(I,J) is true if observation I was used for training learner J, and
is false otherwise.

W

The scaled weights, a vector with length n, the number of rows in X. The sum of the
elements of W is 1.

X

The matrix of predictor values that trained the ensemble. Each column of X represents
one variable, and each row represents one observation.

22 Functions — Alphabetical List

22-4030

Y

The numeric column vector with the same number of rows as X that trained the
ensemble. Each entry in Y is the response to the data in the corresponding row of X.

Methods

oobLoss
Out-of-bag regression error

oobPredict
Predict out-of-bag response of ensemble

Inherited Methods

compact
Create compact regression ensemble

crossval
Cross validate ensemble

cvshrink
Cross validate shrinking (pruning)
ensemble

regularize
Find weights to minimize resubstitution
error plus penalty term

resubLoss
Regression error by resubstitution

resubPredict
Predict response of ensemble by
resubstitution

resume
Resume training ensemble

shrink
Prune ensemble

loss
Regression error

 RegressionBaggedEnsemble class

22-4031

predict
Predict response of ensemble

predictorImportance
Estimates of predictor importance

removeLearners
Remove members of compact regression
ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a bagged regression ensemble to predict the mileage of cars in the carsmall data
set based on their engine displacement, horsepower, and weight:

load carsmall

X = [Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'bag',100,'Tree',...

 'type','regression')

ens =

classreg.learning.regr.RegressionBaggedEnsemble:

 PredictorNames: {'x1' 'x2' 'x3'}

 CategoricalPredictors: []

 ResponseName: 'Y'

 ResponseTransform: 'none'

 NumObservations: 94

 NumTrained: 100

 Method: 'Bag'

 LearnerNames: {'Tree'}

 ReasonForTermination: [1x77 char]

 FitInfo: []

 FitInfoDescription: 'None'

 Regularization: []

 FResample: 1

22 Functions — Alphabetical List

22-4032

 Replace: 1

 UseObsForLearner: [94x100 logical]

Predict the mileage of a car whose characteristics are the average of those of the first 10
cars:

car10 = mean(X(1:10,:));

predict(ens,car10)

ans =

 14.6569

See Also
RegressionEnsemble | fitensemble

 RegressionEnsemble class

22-4033

RegressionEnsemble class
Superclasses: CompactRegressionEnsemble

Ensemble regression

Description

RegressionEnsemble combines a set of trained weak learner models and data on
which these learners were trained. It can predict ensemble response for new data by
aggregating predictions from its weak learners.

Construction

ens = fitensemble(X,Y,method,nlearn,learners) returns an ensemble model
that can predict responses to data. The ensemble consists of models listed in learners.
For more information on the syntax, see the fitensemble function reference page.

ens = fitensemble(X,Y,method,nlearn,learners,Name,Value) returns an
ensemble model with additional options specified by one or more Name,Value pair
arguments. For more information on the syntax, see the fitensemble function reference
page.

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CombineWeights

A string describing how the ensemble combines learner predictions.

FitInfo

A numeric array of fit information. The FitInfoDescription property describes the
content of this array.

22 Functions — Alphabetical List

22-4034

FitInfoDescription

String describing the meaning of the FitInfo array.

LearnerNames

Cell array of strings with names of the weak learners in the ensemble. The name of
each learner appears just once. For example, if you have an ensemble of 100 trees,
LearnerNames is {'Tree'}.

Method

A string with the name of the algorithm fitensemble used for training the ensemble.

ModelParameters

Parameters used in training ens.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrained

Number of trained learners in the ensemble, a positive scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ReasonForTermination

A string describing the reason fitensemble stopped adding weak learners to the
ensemble.

Regularization

A structure containing the result of the regularize method. Use Regularization
with shrink to lower resubstitution error and shrink the ensemble.

ResponseName

A string with the name of the response variable Y.

 RegressionEnsemble class

22-4035

ResponseTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.

TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes
predicted response by aggregating weighted predictions from its learners.

W

The scaled weights, a vector with length n, the number of rows in X. The sum of the
elements of W is 1.

X

The matrix of predictor values that trained the ensemble. Each column of X represents
one variable, and each row represents one observation.

Y

The numeric column vector with the same number of rows as X that trained the
ensemble. Each entry in Y is the response to the data in the corresponding row of X.

Methods
compact

Create compact regression ensemble
crossval

Cross validate ensemble
cvshrink

Cross validate shrinking (pruning)
ensemble

22 Functions — Alphabetical List

22-4036

regularize
Find weights to minimize resubstitution
error plus penalty term

resubLoss
Regression error by resubstitution

resubPredict
Predict response of ensemble by
resubstitution

resume
Resume training ensemble

shrink
Prune ensemble

Inherited Methods

loss
Regression error

predict
Predict response of ensemble

predictorImportance
Estimates of predictor importance

removeLearners
Remove members of compact regression
ensemble

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create a boosted regression ensemble to predict the mileage of cars in the carsmall
data set based on their weights and numbers of cylinders:

 RegressionEnsemble class

22-4037

load carsmall

learner = templateTree('MinParent',20);

ens = fitensemble([Weight, Cylinders],MPG,...

 'LSBoost',100,learner,'PredictorNames',{'W','C'},...

 'categoricalpredictors',2)

ens =

classreg.learning.regr.RegressionEnsemble:

 PredictorNames: {'W' 'C'}

 CategoricalPredictors: 2

 ResponseName: 'Response'

 ResponseTransform: 'none'

 NumObservations: 94

 NumTrained: 100

 Method: 'LSBoost'

 LearnerNames: {'Tree'}

 ReasonForTermination: [1x77 char]

 FitInfo: [100x1 double]

 FitInfoDescription: [2x83 char]

 Regularization: []

Predict the mileage of 4,000-pound cars with 4, 6, and 8 cylinders:

mileage4K = predict(ens,[4000 4; 4000 6; 4000 8])

mileage4K =

 20.0294

 19.4206

 15.5000

See Also
CompactRegressionEnsemble | ClassificationEnsemble | fitensemble |
templateTree

22 Functions — Alphabetical List

22-4038

RegressionPartitionedEnsemble class
Superclasses: RegressionPartitionedModel

Cross-validated regression ensemble

Description

RegressionPartitionedEnsemble is a set of regression ensembles trained on cross-
validated folds. Estimate the quality of classification by cross validation using one
or more “kfold” methods: kfoldfun, kfoldLoss, or kfoldPredict. Every “kfold”
method uses models trained on in-fold observations to predict response for out-of-fold
observations. For example, suppose you cross validate using five folds. In this case,
every training fold contains roughly 4/5 of the data and every test fold contains roughly
1/5 of the data. The first model stored in Trained{1} was trained on X and Y with
the first 1/5 excluded, the second model stored in Trained{2} was trained on X and
Y with the second 1/5 excluded, and so on. When you call kfoldPredict, it computes
predictions for the first 1/5 of the data using the first model, for the second 1/5 of data
using the second model and so on. In short, response for every observation is computed by
kfoldPredict using the model trained without this observation.

Construction

cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression
ensemble. For syntax details, see the crossval method reference page.

cvens = fitensemble(X,Y,method,nlearn,learners,name,value) creates
a cross-validated ensemble when name is one of 'crossval', 'kfold', 'holdout',
'leaveout', or 'cvpartition'. For syntax details, see the fitensemble function
reference page.

Input Arguments

ens

A regression ensemble constructed with fitensemble.

 RegressionPartitionedEnsemble class

22-4039

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CrossValidatedModel

Name of the cross-validated model, a string.

Kfold

Number of folds used in a cross-validated tree, a positive integer.

ModelParameters

Object holding parameters of tree.

NumObservations

Numeric scalar containing the number of observations in the training data.

NTrainedPerFold

Vector of Kfold elements. Each entry contains the number of trained learners in this
cross-validation fold.

Partition

The partition of class cvpartition used in creating the cross-validated ensemble.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ResponseName

Name of the response variable Y, a string.

ResponseTransform

Function handle for transforming scores, or string representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

22 Functions — Alphabetical List

22-4040

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

Trainable

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning
it contains its training data and weights.

Trained

Cell array of compact ensembles trained on cross-validation folds.

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the
response to the data in the corresponding row of X.

Methods

kfoldLoss
Cross-validation loss of partitioned
regression ensemble

resume
Resume training ensemble

Inherited Methods

kfoldfun
Cross validate function

 RegressionPartitionedEnsemble class

22-4041

kfoldLoss
Cross-validation loss of partitioned
regression model

kfoldPredict
Predict response for observations not used
for training.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a partitioned regression ensemble, and examine the cross-validation losses for
the folds:

load carsmall

XX = [Cylinders Displacement Horsepower Weight];

YY = MPG;

rens = fitensemble(XX,YY,'LSBoost',100,'Tree');

cvrens = crossval(rens);

L = kfoldLoss(cvrens,'mode','individual')

L =

 42.4468

 12.3158

 65.9432

 39.0019

 30.5908

 16.6225

 17.3071

 46.1769

 8.0561

 12.9689

See Also
ClassificationPartitionedEnsemble | RegressionEnsemble |
RegressionPartitionedModel

22 Functions — Alphabetical List

22-4042

RegressionPartitionedModel class

Cross-validated regression model

Description

RegressionPartitionedModel is a set of regression models trained on cross-validated
folds. Estimate the quality of regression by cross validation using one or more “kfold”
methods: kfoldPredict, kfoldLoss, and kfoldfun. Every “kfold” method uses models
trained on in-fold observations to predict response for out-of-fold observations. For
example, suppose you cross validate using five folds. In this case, every training fold
contains roughly 4/5 of the data and every test fold contains roughly 1/5 of the data. The
first model stored in Trained{1} was trained on X and Y with the first 1/5 excluded,
the second model stored in Trained{2} was trained on X and Y with the second 1/5
excluded, and so on. When you call kfoldPredict, it computes predictions for the first
1/5 of the data using the first model, for the second 1/5 of data using the second model
and so on. In short, response for every observation is computed by kfoldPredict using
the model trained without this observation.

Construction

cvmodel = crossval(tree) creates a cross-validated classification model from a
regression tree. For syntax details, see the crossval method reference page.

cvmodel = fitrtree(X,Y,Name,Value) creates a cross-validated model when name
is one of 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. For
syntax details, see the fitrtree function reference page.

Input Arguments

tree

A regression tree constructed with fitrtree.

 RegressionPartitionedModel class

22-4043

Properties

CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices
from 1 to p, where p is the number of columns of X.

CrossValidatedModel

Name of the cross-validated model, a string.

Kfold

Number of folds used in a cross-validated tree, a positive integer.

ModelParameters

Object holding parameters of tree.

Partition

The partition of class cvpartition used in the cross-validated model.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ResponseName

Name of the response variable Y, a string.

ResponseTransform

Function handle for transforming the raw response values (mean squared error). The
function handle should accept a matrix of response values and return a matrix of the
same size. The default string 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

ctree.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.

22 Functions — Alphabetical List

22-4044

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the
response to the data in the corresponding row of X.

Methods

kfoldfun
Cross validate function

kfoldLoss
Cross-validation loss of partitioned
regression model

kfoldPredict
Predict response for observations not used
for training.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Evaluate Cross-Validation Error

Load the sample data. Create a variable X containing the Horsepower and Weight data.

load carsmall

 RegressionPartitionedModel class

22-4045

X = [Horsepower Weight];

Construct a regression tree using the sample data.

tree = fitrtree(X,MPG);

Evaluate the cross-validation error of the carsmall data using Horsepower and
Weight as predictor variables for mileage (MPG).

L = kfoldLoss(cvtree)

L =

 26.4414

See Also
RegressionPartitionedEnsemble | ClassificationPartitionedModel

22 Functions — Alphabetical List

22-4046

RegressionTree class
Superclasses: CompactRegressionTree

Regression tree

Description

A decision tree with binary splits for regression. An object of class RegressionTree can
predict responses for new data with the predict method. The object contains the data
used for training, so can compute resubstitution predictions.

Construction

tree = fitrtree(x,y) returns a regression tree based on the input variables (also
known as predictors, features, or attributes) x and output (response) y. tree is a binary
tree where each branching node is split based on the values of a column of x.

tree = fitrtree(x,y,Name,Value) fits a tree with additional options specified by
one or more Name,Value pair arguments.

Input Arguments

x

A matrix of predictor values. Each column of x represents one variable, and each row
represents one observation.

fitrtree considers NaN values in x as missing values. fitrtree does not use
observations with all missing values for x the fit. fitrtree uses observations with some
missing values for x to find splits on variables for which these observations have valid
values.

y

A numeric column vector with the same number of rows as x. Each entry in y is the
response to the data in the corresponding row of x.

 RegressionTree class

22-4047

fitrtree considers NaN values in y to be missing values. fitrtree does not use
observations with missing values for y in the fit.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CategoricalPredictors' — Categorical predictors list
numeric or logical vector | cell array of strings | character matrix | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following.

• A numeric vector with indices from 1 to p, where p is the number of columns of x.
• A logical vector of length p, where a true entry means that the corresponding column

of x is a categorical variable.
• A cell array of strings, where each element in the array is the name of a predictor

variable. The names must match entries in the PredictorNames property.
• A character matrix, where each row of the matrix is a name of a predictor variable.

Pad the names with extra blanks so each row of the character matrix has the same
length.

• 'all', meaning all predictors are categorical.

Data Types: single | double | logical | char | cell

'CrossVal' — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal'
and either 'on' or 'off'.

If 'on', fitrtree grows a cross-validated decision tree with 10 folds. You can override
this cross-validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or
'CVPartition' name-value pair arguments. Note that you can only use one of these
four options ('KFold', 'Holdout', 'Leaveout', or 'CVPartition') at a time when
creating a cross-validated tree.

Alternatively, cross-validate tree later using the crossval method.

22 Functions — Alphabetical List

22-4048

Example: 'CrossVal','on'

'CVPartition' — Partition for cross-validation tree
cvpartition object

Partition for cross-validated tree, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition.

Note that if you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout',
or 'Leaveout' name-value pair arguments.

'Holdout' — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout' and a scalar value in the range [0,1]. Holdout validation tests
the specified fraction of the data, and uses the rest of the data for training.

Note that if you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold',
or 'Leaveout' name-value pair arguments.

Example: 'Holdout',0.1

Data Types: single | double

'KFold' — Number of folds
10 (default) | positive integer value

Number of folds to use in a cross-validated tree, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value.

Note that if you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout',
or 'Leaveout' name-value pair arguments.

Example: 'KFold',8

Data Types: single | double

'Leaveout' — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout' and either 'on' or 'off. Use leave-one-out cross validation by setting to
'on'.

 RegressionTree class

22-4049

Note that if you use 'Leaveout', you cannot use any of the 'CVPartition',
'Holdout', or 'KFold' name-value pair arguments.

Example: 'Leaveout','on'

'MergeLeaves' — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves'
and 'on' or 'off'.

If MergeLeaves is 'on', then RegressionTree:

• Merges leaves that originate from the same parent node, and that yields a sum of risk
values greater or equal to the risk associated with the parent node

• Estimates the optimal sequence of pruned subtrees, but does not prune the regression
tree

Otherwise, RegressionTree does not merge leaves.

Example: 'MergeLeaves','off'

'MinLeafSize' — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair
consisting of 'MinLeafSize' and a positive integer value. Each leaf has at least
MinLeafSize observations per tree leaf. If you supply both MinParentSize and
MinLeafSize, fitrtree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

Example: 'MinLeafSize',3

Data Types: single | double

'MinParentSize' — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair
consisting of 'MinParentSize' and a positive integer value. Each branch node in the
tree has at least MinParentSize observations. If you supply both MinParentSize and
MinLeafSize, fitrtree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

22 Functions — Alphabetical List

22-4050

Example: 'MinParentSize',8

Data Types: single | double

'NumVariablesToSample' — Number of predictors for split
'all' (default) | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated
pair consisting of 'NumVariablesToSample' and a positive integer value. You can also
specify 'all' to use all available predictors.

Example: 'NumVariablesToSample',3

Data Types: single | double

'PredictorNames' — Predictor variable names
{'x1','x2',...} (default) | cell array of strings

Predictor variable names, specified as the comma-separated pair consisting of
'PredictorNames' and a cell array of strings containing the names for the predictor
variables, in the order in which they appear in x.
Data Types: cell

'Prune' — Flag to estimate optimal sequence of pruned subtrees
'on' (default) | 'off'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-
separated pair consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then RegressionTree grows the regression tree and estimates the
optimal sequence of pruned subtrees, but does not prune the regression tree. Otherwise,
RegressionTree grows the regression tree without estimating the optimal sequence of
pruned subtrees.

To prune a trained regression tree, pass the regression tree to prune.

Example: 'Prune','off'

'PruneCriterion' — Pruning criterion
'error' (default)

Pruning criterion, specified as the comma-separated pair consisting of
'PruneCriterion' and 'error'.

 RegressionTree class

22-4051

Example: 'PruneCriterion','error'

'QuadraticErrorTolerance' — Quadratic error tolerance
1e-6 (default) | positive scalar value

Quadratic error tolerance per node, specified as the comma-separated pair consisting of
'QuadraticErrorTolerance' and a positive scalar value. Splitting nodes stops when
quadratic error per node drops below QuadraticErrorTolerance*QED, where QED is
the quadratic error for the entire data computed before the decision tree is grown.
Example: 'QuadraticErrorTolerance',1e-4

'ResponseName' — Response variable name
'Y' (default) | string

Response variable name, specified as the comma-separated pair consisting of
'ResponseName' and a string containing the name of the response variable in y.

Example: 'ResponseName','Response'

Data Types: char

'ResponseTransform' — Response transform function
'none' (default) | function handle

Response transform function for transforming the raw response values, specified as
the comma-separated pair consisting of 'ResponseTransform' and either a function
handle or 'none'. The function handle should accept a matrix of response values
and return a matrix of the same size. The default string 'none' means @(x)x, or no
transformation.

Add or change a ResponseTransform function using dot notation:

tree.ResponseTransform = @function

Data Types: function_handle

'SplitCriterion' — Split criterion
'MSE' (default)

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion'
and 'MSE', meaning mean squared error.

Example: 'SplitCriterion','MSE'

22 Functions — Alphabetical List

22-4052

'Surrogate' — Surrogate decision splits flag
'off' | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of
'Surrogate' and 'on', 'off', 'all', or a positive integer value.

• When 'on', fitrtree finds at most 10 surrogate splits at each branch node.
• When set to a positive integer value, fitrtree finds at most the specified number of

surrogate splits at each branch node.
• When set to 'all', fitrtree finds all surrogate splits at each branch node. The

'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also enables you to compute measures of predictive association between
predictors.
Example: 'Surrogate','on'

Data Types: single | double

'Weights' — Observation weights
ones(size(X,1),1) (default) | vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a vector of scalar values. The length of Weights is the number of rows in x.

Data Types: single | double

Properties

CategoricalPredictors

List of categorical predictors, a numeric vector with indices from 1 to p, where p is the
number of columns of X.

CategoricalSplits

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplits gives left and right values for a categorical split. For each branch
node with categorical split j based on a categorical predictor variable z, the left child
is chosen if z is in CategoricalSplits(j,1) and the right child is chosen if z is in

 RegressionTree class

22-4053

CategoricalSplits(j,2). The splits are in the same order as nodes of the tree. Nodes
for these splits can be found by running cuttype and selecting 'categorical' cuts
from top to bottom.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n
is the number of nodes. Leaf nodes have child node 0.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of
nodes. For each branch node i based on a categorical predictor variable x, the left child
is chosen if x is among the categories listed in CutCategories{i,1}, and the right
child is chosen if x is among those listed in CutCategories{i,2}. Both columns of
CutCategories are empty for branch nodes based on continuous predictors and for leaf
nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of
nodes. For each branch node i based on a continuous predictor variable x, the left child is
chosen if x<CutPoint(i) and the right child is chosen if x>=CutPoint(i). CutPoint
is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the
number of nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut
point v.

• 'categorical' — If the cut is defined by whether a variable x takes a value in a set
of categories.

• '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

22 Functions — Alphabetical List

22-4054

CutPredictor

An n-element cell array of the names of the variables used for branching in each node
in tree, where n is the number of nodes. These variables are sometimes known as cut
variables. For leaf nodes, CutPredictor contains an empty string.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains
the set of categories.

IsBranchNode

An n-element logical vector ib that is true for each branch node and false for each leaf
node of tree.

ModelParameters

Object holding parameters of tree.

NumObservations

Number of observations in the training data, a numeric scalar. NumObservations can
be less than the number of rows of input data X when there are missing values in X or
response Y.

NodeError

An n-element vector e of the errors of the nodes in tree, where n is the number of nodes.
e(i) is the misclassification probability for node i.

NodeMean

An n-element numeric array with mean values in each node of tree, where n is the
number of nodes in the tree. Every element in NodeMean is the average of the true Y
values over all observations in the node.

NodeProbability

An n-element vector p of the probabilities of the nodes in tree, where n is the number of
nodes. The probability of a node is computed as the proportion of observations from the
original data that satisfy the conditions for the node. This proportion is adjusted for any
prior probabilities assigned to each class.

 RegressionTree class

22-4055

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes.
The risk for each node is the node error weighted by the node probability.

NodeSize

An n-element vector sizes of the sizes of the nodes in tree, where n is the number of
nodes. The size of a node is defined as the number of observations from the data used to
create the tree that satisfy the conditions for the node.

NumNodes

The number of nodes n in tree.

Parent

An n-element vector p containing the number of the parent node for each node in tree,
where n is the number of nodes. The parent of the root node is 0.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to
M, then PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is
for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is
the number of nodes. The pruning levels range from 0 (no pruning) to M, where M is the
distance between the deepest leaf and the root node.

ResponseName

Name of the response variable Y, a string.

ResponseTransform

Function handle for transforming the raw response values (mean squared error). The
function handle should accept a matrix of response values and return a matrix of the
same size. The default string 'none' means @(x)x, or no transformation.

22 Functions — Alphabetical List

22-4056

Add or change a ResponseTransform function using dot notation:

tree.ResponseTransform = @function

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrogateCutCategories{k} is a cell
array. The length of SurrogateCutCategories{k} is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutCategories{k} is either
an empty string for a continuous surrogate predictor, or is a two-element cell array with
categories for a categorical surrogate predictor. The first element of this two-element cell
array lists categories assigned to the left child by this surrogate split, and the second
element of this two-element cell array lists categories assigned to the right child by this
surrogate split. The order of the surrogate split variables at each node is matched to the
order of variables in SurrogateCutPredictor. The optimal-split variable at this node
does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an
empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in
tree, where n is the number of nodes in tree. For each node k, SurrogateCutFlip{k}
is a numeric vector. The length of SurrogateCutFlip{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogateCutFlip{k}
is either zero for a categorical surrogate predictor, or a numeric cut assignment for a
continuous surrogate predictor. The numeric cut assignment can be either –1 or +1. For
every surrogate split with a numeric cut C based on a continuous predictor variable Z,
the left child is chosen if Z < C and the cut assignment for this surrogate split is +1,
or if Z ≥ C and the cut assignment for this surrogate split is –1. Similarly, the right
child is chosen if Z ≥ C and the cut assignment for this surrogate split is +1, or if Z < C
and the cut assignment for this surrogate split is –1. The order of the surrogate split
variables at each node is matched to the order of variables in SurrogateCutPredictor.
The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes,
SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric
vector. The length of SurrogateCutPoint{k} is equal to the number of surrogate
predictors found at this node. Every element of SurrogateCutPoint{k} is either

 RegressionTree class

22-4057

NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate
predictor. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this surrogate
split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly,
the right child is chosen if Z ≥ C and SurrogateCutFlip for this surrogate split is
+1, or if Z < C and SurrogateCutFlip for this surrogate split is –1. The order of the
surrogate split variables at each node is matched to the order of variables returned
by SurrCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPoint contains an empty cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n
is the number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array
with the types of the surrogate split variables at this node. The variables are sorted
by the predictive measure of association with the optimal predictor in the descending
order, and only variables with the positive predictive measure are included. The order
of the surrogate split variables at each node is matched to the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z < V for a variable Z
and cut point V or 'categorical' if the cut is defined by whether Z takes a value in a
set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits
in each node in tree, where n is the number of nodes in tree. Every element of
SurrogateCutPredictor is a cell array with the names of the surrogate split variables
at this node. The variables are sorted by the predictive measure of association with the
optimal predictor in the descending order, and only variables with the positive predictive
measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate
splits in tree, where n is the number of nodes in tree. For each node k,
SurrogatePredictorAssociation{k} is a numeric vector. The length of
SurrogatePredictorAssociation{k} is equal to the number of surrogate predictors
found at this node. Every element of SurrogatePredictorAssociation{k} gives

22 Functions — Alphabetical List

22-4058

the predictive measure of association between the optimal split and this surrogate
split. The order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the
response to the data in the corresponding row of X.

Methods

compact
Compact regression tree

crossval
Cross-validated decision tree

cvloss
Regression error by cross validation

prune
Produce sequence of subtrees by pruning

resubLoss
Regression error by resubstitution

resubPredict
Predict resubstitution response of tree

Inherited Methods

loss
Regression error

 RegressionTree class

22-4059

surrogateAssociation
Mean predictive measure of association for
surrogate splits in decision tree

predict
Predict response of regression tree

predictorImportance
Estimates of predictor importance

view
View tree

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a Regression Tree

Load the sample data.

load carsmall;

Construct a regression tree using the sample data.

tree = fitrtree([Weight, Cylinders],MPG,...

 'categoricalpredictors',2,'MinParentSize',20,...

 'PredictorNames',{'W','C'})

tree =

 RegressionTree

 PredictorNames: {'W' 'C'}

 ResponseName: 'Y'

 ResponseTransform: 'none'

 CategoricalPredictors: 2

 NumObservations: 94

22 Functions — Alphabetical List

22-4060

Predict the mileage of 4,000-pound cars with 4, 6, and 8 cylinders.

mileage4K = predict(tree,[4000 4; 4000 6; 4000 8])

mileage4K =

 19.2778

 19.2778

 14.3889

• “Classification Trees and Regression Trees” on page 16-33

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
RegressionEnsemble | predict | ClassificationTree | fitrtree |
CompactRegressionTree

 regstats

22-4061

regstats
Regression diagnostics

Syntax

regstats(y,X,model)

stats = regstats(...)

stats = regstats(y,X,model,whichstats)

Description

regstats(y,X,model) performs a multilinear regression of the responses in y on the
predictors in X. X is an n-by-p matrix of p predictors at each of n observations. y is an n-
by-1 vector of observed responses.

Note: By default, regstats adds a first column of 1s to X, corresponding to a constant
term in the model. Do not enter a column of 1s directly into X.

The optional input model controls the regression model. By default, regstats uses
a linear additive model with a constant term. model can be any one of the following
strings:

• 'linear' — Constant and linear terms (the default)
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

Alternatively, model can be a matrix of model terms accepted by the x2fx function.
See x2fx for a description of this matrix and for a description of the order in which
terms appear. You can use this matrix to specify other models including ones without a
constant term.

With this syntax, the function displays a graphical user interface (GUI) with a list of
diagnostic statistics, as shown in the following figure.

22 Functions — Alphabetical List

22-4062

When you select check boxes corresponding to the statistics you want to compute and
click OK, regstats returns the selected statistics to the MATLAB workspace. The
names of the workspace variables are displayed on the right-hand side of the interface.

 regstats

22-4063

You can change the name of the workspace variable to any valid MATLAB variable
name.

stats = regstats(...) creates the structure stats, whose fields contain all of the
diagnostic statistics for the regression. This syntax does not open the GUI. The fields of
stats are listed in the following table.

Field Description

Q Q from the QR decomposition of the design matrix
R R from the QR decomposition of the design matrix
beta Regression coefficients
covb Covariance of regression coefficients
yhat Fitted values of the response data
r Residuals
mse Mean squared error
rsquare R2 statistic
adjrsquare Adjusted R2 statistic
leverage Leverage
hatmat Hat matrix
s2_i Delete-1 variance
beta_i Delete-1 coefficients
standres Standardized residuals
studres Studentized residuals
dfbetas Scaled change in regression coefficients
dffit Change in fitted values
dffits Scaled change in fitted values
covratio Change in covariance
cookd Cook's distance
tstat t statistics and p-values for coefficients
fstat F statistic and p-value
dwstat Durbin-Watson statistic and p-value

22 Functions — Alphabetical List

22-4064

Note that the fields names of stats correspond to the names of the variables returned to
the MATLAB workspace when you use the GUI. For example, stats.beta corresponds
to the variable beta that is returned when you select Coefficients in the GUI and click
OK.

stats = regstats(y,X,model,whichstats) returns only the statistics that you
specify in whichstats. whichstats can be a single string such as 'leverage' or a cell
array of strings such as {'leverage' 'standres' 'studres'}. Set whichstats to
'all' to return all of the statistics.

Note: The F statistic is computed under the assumption that the model contains a
constant term. It is not correct for models without a constant. The R2 statistic can be
negative for models without a constant, which indicates that the model is not appropriate
for the data.

Examples

Open the regstats GUI using data from hald.mat:

load hald

regstats(heat,ingredients,'linear');

Select Fitted Values and Residuals in the GUI:

Click OK to export the fitted values and residuals to the MATLAB workspace in
variables named yhat and r, respectively.

You can create the same variables using the stats output, without opening the GUI:

whichstats = {'yhat','r'};

stats = regstats(heat,ingredients,'linear',whichstats);

yhat = stats.yhat;

r = stats.r;

 regstats

22-4065

References

[1] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics. Hoboken, NJ: John
Wiley & Sons, Inc., 1980.

[2] Chatterjee, S., and A. S. Hadi. “Influential Observations, High Leverage Points, and
Outliers in Linear Regression.” Statistical Science. Vol. 1, 1986, pp. 379–416.

[3] Cook, R. D., and S. Weisberg. Residuals and Influence in Regression. New York:
Chapman & Hall/CRC Press, 1983.

[4] Goodall, C. R. “Computation Using the QR Decomposition.” Handbook in Statistics.
Vol. 9, Amsterdam: Elsevier/North-Holland, 1993.

See Also
fitlm | LinearModel | stepwiselm

22 Functions — Alphabetical List

22-4066

regularize
Class: RegressionEnsemble

Find weights to minimize resubstitution error plus penalty term

Syntax
ens1 = regularize(ens)

ens1 = regularize(ens,Name,Value)

Description
ens1 = regularize(ens) finds optimal weights for learners in ens by lasso
regularization. regularize returns a regression ensemble identical to ens, but with a
populated Regularization property.

ens1 = regularize(ens,Name,Value) computes optimal weights with additional
options specified by one or more Name,Value pair arguments. You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A regression ensemble, created by fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'lambda'

Vector of nonnegative regularization parameter values for lasso. For the default setting
of lambda, regularize calculates the smallest value lambda_max for which all optimal

 regularize

22-4067

weights for learners are 0. The default value of lambda is a vector including 0 and nine
exponentially-spaced numbers from lambda_max/1000 to lambda_max.

Default: [0 logspace(log10(lambda_max/1000),log10(lambda_max),9)]

'npass'

Maximal number of passes for lasso optimization, a positive integer.

Default: 10

'reltol'

Relative tolerance on the regularized loss for lasso, a numeric positive scalar.

Default: 1e-3

'verbose'

Verbosity level, either 0 or 1. When set to 1, regularize displays more information as it
runs.

Default: 0

Output Arguments

ens1

A regression ensemble. Usually you set ens1 to the same name as ens.

Definitions

Lasso

The lasso algorithm finds an optimal set of learner weights αt that minimize

n

N

n

t

T

t t n n

t

T

tw g h x y

= = =
Â Â Â()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
1 1 1

a l a, .

22 Functions — Alphabetical List

22-4068

Here

• λ ≥ 0 is a parameter you provide, called the lasso parameter.
• ht is a weak learner in the ensemble trained on N observations with predictors xn,

responses yn, and weights wn.
• g(f,y) = (f – y)2 is the squared error.

Examples

Regularize an ensemble of bagged trees:

X = rand(2000,20);

Y = repmat(-1,2000,1);

Y(sum(X(:,1:5),2)>2.5) = 1;

bag = fitensemble(X,Y,'Bag',300,'Tree',...

 'type','regression');

bag = regularize(bag,'lambda',[0.001 0.1],'verbose',1);

regularize reports on its progress.

To see the resulting regularization structure:

bag.Regularization

ans =

 Method: 'Lasso'

 TrainedWeights: [300x2 double]

 Lambda: [1.0000e-003 0.1000]

 ResubstitutionMSE: [0.0616 0.0812]

 CombineWeights: @classreg.learning.combiner.WeightedSum

See how many learners in the regularized ensemble have positive weights (so would be
included in a shrunken ensemble):

sum(bag.Regularization.TrainedWeights > 0)

ans =

 116 91

To shrink the ensemble using the weights from Lambda = 0.1:

cmp = shrink(bag,'weightcolumn',2)

 regularize

22-4069

cmp =

classreg.learning.regr.CompactRegressionEnsemble:

 PredictorNames: {1x20 cell}

 CategoricalPredictors: []

 ResponseName: 'Y'

 ResponseTransform: 'none'

 NumTrained: 91

There are 91 members in the regularized ensemble, which is less than 1/3 of the original
300.

See Also
shrink | cvshrink | lasso

22 Functions — Alphabetical List

22-4070

RegularizationValue property
Class: gmdistribution

Value of 'Regularize' parameter

Description

The value of the parameter 'Regularize'.

Note: This property applies only to gmdistribution objects constructed with
fitgmdist.

 relieff

22-4071

relieff
Importance of attributes (predictors) using ReliefF algorithm

Syntax

[RANKED,WEIGHT] = relieff(X,Y,K)

[RANKED,WEIGHT] = relieff(X,Y,K,'PARAM1',val1,'PARAM2',val2,...)

Description

[RANKED,WEIGHT] = relieff(X,Y,K) computes ranks and weights of attributes
(predictors) for input data matrix X and response vector Y using the ReliefF algorithm
for classification or RReliefF for regression with K nearest neighbors. For classification,
relieff uses K nearest neighbors per class. RANKED are indices of columns in X ordered
by attribute importance, meaning RANKED(1) is the index of the most important
predictor. WEIGHT are attribute weights ranging from -1 to 1 with large positive weights
assigned to important attributes.

If Y is numeric, relieff by default performs RReliefF analysis for regression. If Y is
categorical, logical, a character array, or a cell array of strings, relieff by default
performs ReliefF analysis for classification.

Attribute ranks and weights computed by relieff usually depend on K. If you set K
to 1, the estimates computed by relieff can be unreliable for noisy data. If you set K
to a value comparable with the number of observations (rows) in X, relieff can fail to
find important attributes. You can start with K = 10 and investigate the stability and
reliability of relieff ranks and weights for various values of K.

[RANKED,WEIGHT] = relieff(X,Y,K,'PARAM1',val1,'PARAM2',val2,...)

specifies optional parameter name/value pairs.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-4072

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'method'

Either 'regression' (default if Y is numeric) or 'classification' (default if Y is not
numeric).

'prior'

Prior probabilities for each class, specified as a string ('empirical' or 'uniform') or
as a vector (one value for each distinct group name) or as a structure S with two fields:

• S.group containing the group names as a categorical variable, character array, or
cell array of strings

• S.prob containing a vector of corresponding probabilities

If the input value is 'empirical' (default), class probabilities are determined from
class frequencies in Y. If the input value is 'uniform', all class probabilities are set
equal.

'updates'

Number of observations to select at random for computing the weight of every attribute.
By default all observations are used.

'categoricalx'

'on' or 'off', 'off' by default. If 'on', treat all predictors in X as categorical. If
'off', treat all predictors in X as numerical. You cannot mix numerical and categorical
predictors.

'sigma'

Distance scaling factor. For observation i, influence on the attribute weight from its
nearest neighbor j is multiplied by exp((-rank(i,j)/sigma)^2), where rank(i,j) is the
position of j in the list of nearest neighbors of i sorted by distance in the ascending order.
Default is Inf (all nearest neighbors have the same influence) for classification and 50
for regression.

 relieff

22-4073

Examples

Rank Predictors by Importance

Load the sample data.

load ionosphere;

Rank the predictors based on importance.

[ranked,weights] = relieff(X,Y,10);

Create a bar plot of predictor importance weights.

bar(weights(ranked));

xlabel('Predictor rank');

ylabel('Predictor importance weight');

22 Functions — Alphabetical List

22-4074

Determine the Important Predictors

Load the sample data.

load fisheriris

Find the important predictors.

[ranked,weight] = relieff(meas,species,10)

ranked =

 4 3 1 2

 relieff

22-4075

weight =

 0.1399 0.1226 0.3590 0.3754

The fourth predictor is the most important, and the second predictor is the least
important.

References

[1] Kononenko, I., Simec, E., & Robnik-Sikonja, M. (1997). Overcoming the myopia of
inductive learning algorithms with RELIEFF. Retrieved from CiteSeerX: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4740

[2] Robnik-Sikonja, M., & Kononenko, I. (1997). An adaptation of Relief for attribute
estimation in regression. Retrieved from CiteSeerX: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.34.8381

[3] Robnik-Sikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of
ReliefF and RReliefF. Machine Learning , 53, 23–69.

See Also
knnsearch | pdist2

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4740
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4740
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8381
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8381

22 Functions — Alphabetical List

22-4076

removeLearners
Class: CompactClassificationEnsemble

Remove members of compact classification ensemble

Syntax

cens1 = removeLearners(cens,idx)

Description

cens1 = removeLearners(cens,idx) creates a compact classification ensemble
identical to cens only without the ensemble members in the idx vector.

Tips

• Typically, set cens1 equal to cens to retain just one ensemble.
• Removing learners reduces the memory used by the ensemble and speeds up its

predictions.

Input Arguments

cens

Compact classification ensemble, constructed with compact.

idx

Vector of positive integers with entries from 1 to cens.NumTrained, where
cens.NumTrained is the number of members in cens. cens1 contains all members of
cens except those with indices in idx.

Typically, you set idx = j:cens.NumTrained for some positive integer j.

 removeLearners

22-4077

Output Arguments

cens1

Compact classification ensemble, identical to cens except cens1 does not contain those
members of cens with indices in idx.

Examples

Remove Learners from an Ensemble

Create a compact classification ensemble. Compact it further by removing members of
the ensemble.

Create a compact classification ensemble for the ionosphere data.

load ionosphere

ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree');

cens = compact(ens);

Remove the last 50 members of the ensemble.

idx = cens.NumTrained-49:cens.NumTrained;

cens1 = removeLearners(cens,idx);

• “Classification with Imbalanced Data” on page 16-84

See Also
CompactClassificationEnsemble

22 Functions — Alphabetical List

22-4078

removeLearners
Class: CompactRegressionEnsemble

Remove members of compact regression ensemble

Syntax

cens1 = removeLearners(cens,idx)

Description

cens1 = removeLearners(cens,idx) creates a compact regression ensemble
identical to cens only without the ensemble members in the idx vector.

Tips

• Typically, set cens1 equal to cens to retain just one ensemble.
• Removing learners reduces the memory used by the ensemble and speeds up its

predictions.

Input Arguments

cens

Compact regression ensemble, constructed with compact.

idx

Vector of positive integers with entries from 1 to cens.NumTrained, where
cens.NumTrained is the number of members in cens. cens1 contains the members of
cens except those with indices in idx.

Typically, you set idx = j:cens.NumTrained for some positive integer j.

 removeLearners

22-4079

Output Arguments

cens1

Compact regression ensemble, identical to cens except cens1 does not contain members
of cens with indices in idx.

Examples

Remove Learners from an Ensemble

Create a compact regression ensemble. Compact it further by removing members of the
ensemble.

Create a compact regression ensemble for the carsmall data.

load carsmall

X = [Weight Cylinders];

ens = fitensemble(X,MPG,'LSBoost',100,'Tree','categorical',2);

cens = compact(ens);

Remove the last 50 members of the ensemble.

idx = cens.NumTrained-49:cens.NumTrained;

cens1 = removeLearners(cens,idx);

See Also
CompactRegressionEnsemble

22 Functions — Alphabetical List

22-4080

removeTerms

Class: GeneralizedLinearModel

Remove terms from generalized linear model

Syntax

mdl1 = removeTerms(mdl,terms)

Description

mdl1 = removeTerms(mdl,terms) returns a linear model the same as mdl but with
fewer terms.

Input Arguments

mdl

Generalized linear model, as constructed by fitglm or stepwiseglm.

terms

Terms to remove from the mdl regression model. Specify as either a:

• Text string representing one or more terms to remove. For details, see “Wilkinson
Notation” on page 22-4081.

• Row or rows in the terms matrix (see modelspec in fitglm). For example, if there
are three variables A, B, and C:

[0 0 0] represents a constant term or intercept

[0 1 0] represents B; equivalently, A^0 * B^1 * C^0

[1 0 1] represents A*C

[2 0 0] represents A^2

[0 1 2] represents B*(C^2)

 removeTerms

22-4081

Output Arguments

mdl1

Generalized linear model, the same as mdl but without the terms given in terms. You
can set mdl1 equal to mdl to overwrite mdl.

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

For details, see Wilkinson and Rogers [1].

22 Functions — Alphabetical List

22-4082

Examples

Remove a Term from a Generalized Linear Regression Model

This example makes a model using two predictors, then removes one.

Generate artificial data for the model, Poisson random numbers with two underlying
predictors X(1) and X(2).

rng('default') % for reproducibility

rndvars = randn(100,2);

X = [2+rndvars(:,1),rndvars(:,2)];

mu = exp(1 + X*[1;2]);

y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','distr','poisson')

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x2

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.0405 0.022122 47.034 0

 x1 0.9968 0.003362 296.49 0

 x2 1.987 0.0063433 313.24 0

100 observations, 97 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Remove the second predictor from the model.

mdl1 = removeTerms(mdl,'x2')

mdl1 =

 removeTerms

22-4083

Generalized Linear regression model:

 log(y) ~ 1 + x1

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 2.7784 0.014043 197.85 0

 x1 1.1732 0.0033653 348.6 0

100 observations, 98 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0

• “Plots to Understand Predictor Effects and How to Modify a Model” on page 10-30
• “Generalized Linear Model Workflow” on page 10-39

References

[1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for
analysis of variance. J. Royal Statistics Society 22, pp. 392–399, 1973.

Alternatives

step adds or removes terms from a model using a greedy one-step algorithm.

See Also
addTerms | GeneralizedLinearModel | step | stepwiseglm

More About
• “Generalized Linear Models” on page 10-12

22 Functions — Alphabetical List

22-4084

removeTerms

Class: LinearModel

Remove terms from linear model

Syntax

mdl1 = removeTerms(mdl,terms)

Description

mdl1 = removeTerms(mdl,terms) returns a linear model the same as mdl but with
terms removed.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

terms

Terms to remove from the mdl regression model. Specify as either a:

• Text string representing one or more terms to remove. For details, see “Wilkinson
Notation” on page 22-4085.

• Row or rows in the terms matrix (see modelspec in fitlm). For example, if there are
three variables A, B, and C:

[0 0 0] represents a constant term or intercept

[0 1 0] represents B; equivalently, A^0 * B^1 * C^0

[1 0 1] represents A*C

[2 0 0] represents A^2

[0 1 2] represents B*(C^2)

 removeTerms

22-4085

Output Arguments

mdl1

Linear model, the same as mdl but with terms removed. You can set mdl1 equal to mdl
to overwrite mdl.

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

For details, see Wilkinson and Rogers [1].

22 Functions — Alphabetical List

22-4086

Examples

Remove Terms from Model

Construct a default linear model of the Hald data. Remove terms with high p-values.

Load the data.

load hald

X = ingredients; % predictor variables

y = heat; % response

Fit a default linear model to the data.

mdl = fitlm(X,y)

mdl =

Linear regression model:

 y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 62.405 70.071 0.8906 0.39913

 x1 1.5511 0.74477 2.0827 0.070822

 x2 0.51017 0.72379 0.70486 0.5009

 x3 0.10191 0.75471 0.13503 0.89592

 x4 -0.14406 0.70905 -0.20317 0.84407

Number of observations: 13, Error degrees of freedom: 8

Root Mean Squared Error: 2.45

R-squared: 0.982, Adjusted R-Squared 0.974

F-statistic vs. constant model: 111, p-value = 4.76e-07

Remove the x3 and x4 terms because their p-values are so high.

terms = 'x3 + x4'; % terms to remove

mdl1 = removeTerms(mdl, terms)

mdl1 =

Linear regression model:

 y ~ 1 + x1 + x2

 removeTerms

22-4087

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 52.577 2.2862 22.998 5.4566e-10

 x1 1.4683 0.1213 12.105 2.6922e-07

 x2 0.66225 0.045855 14.442 5.029e-08

Number of observations: 13, Error degrees of freedom: 10

Root Mean Squared Error: 2.41

R-squared: 0.979, Adjusted R-Squared 0.974

F-statistic vs. constant model: 230, p-value = 4.41e-09

The new model has the same adjusted R-Squared value (0.974) as the previous model,
meaning it is about as good a fit. All the terms in the new model have extremely low p-
values.

• “Change Models” on page 9-35

References

[1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for
analysis of variance. J. Royal Statistics Society 22, pp. 392–399, 1973.

Alternatives

Use stepwiselm to select a model from a starting model, continuing until no single step
is beneficial.

Use addTerms to add particular terms.

Use step to optimally improve the model by adding or removing terms.

See Also
addTerms | LinearModel | step | stepwiselm

How To
• “Linear Regression” on page 9-11

22 Functions — Alphabetical List

22-4088

reorderlevels
Reorder levels of nominal or ordinal arrays

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

B = reorderlevels(A,newlevels)

Description

B = reorderlevels(A,newlevels) returns a nominal or ordinal array object the
same as A but with levels in the new order specified by newlevels.

For ordinal arrays, the order of the levels has significance for relational operators,
minimum and maximum, and for sorting.

Examples
• “Reorder Category Levels” on page 2-11
• “Sort Ordinal Arrays” on page 2-40

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

 reorderlevels

22-4089

newlevels — New order of levels
cell array of strings | 2-D character matrix

New order of levels, specified as a cell array of strings or 2-D character matrix. newlevels
must be a reordering of the labels returned by getlabels.

Data Types: char | cell

Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

More About
• Using nominal Objects
• Using ordinal Objects

See Also
addlevels | droplevels | getlabels | nominal | ordinal | reorderlevels

22 Functions — Alphabetical List

22-4090

repartition
Class: cvpartition

Repartition data for cross-validation

Syntax

cnew = repartition(c)

Description

cnew = repartition(c) constructs an object cnew of the cvpartition class defining
a random partition of the same type as c, where c is also an object of the cvpartition
class.

Repartitioning is useful for Monte-Carlo repetitions of cross-validation analyses.
repartition is called by crossval when the 'mcreps' parameter is specified.

Examples

Partition and repartition 100 observations for 3-fold cross-validation:

c = cvpartition(100,'kfold',3)

c =

K-fold cross validation partition

 N: 100

 NumTestSets: 3

 TrainSize: 67 66 67

 TestSize: 33 34 33

cnew = repartition(c)

cnew =

K-fold cross validation partition

 N: 100

 NumTestSets: 3

 TrainSize: 67 66 67

 TestSize: 33 34 33

 repartition

22-4091

Check for equality of the test data in the first fold:

isequal(test(c,1),test(cnew,1))

ans =

 0

See Also
cvpartition

22 Functions — Alphabetical List

22-4092

RepeatedMeasuresModel class

Repeated measures model class

Description

A RepeatedMeasuresModel object represents a model fitted to data with multiple
measurements per subject. The object comprises data, fitted coefficients, covariance
parameters, design matrix, error degrees of freedom, and between- and within-subjects
factor names for a repeated measures model. You can predict model responses using
the predict method and generate random data at new design points using the random
method.

Construction

You can fit a repeated measures model using fitrm(t,modelspec).

Input Arguments

t — Input data
table

Input data, which includes the values of the response variables and the between-subject
factors to use as predictors in the repeated measures model, specified as a table.
Data Types: table

modelspec — Formula for model specification
string of the form 'y1-yk ~ terms'

Formula for model specification, specified as a string of the form 'y1-yk ~ terms'.
Specify the terms using Wilkinson notation. fitrm treats the variables used in model
terms as categorical if they are categorical (nominal or ordinal), logical, char arrays, or a
cell array of strings.
Example: 'y1-y4 ~ x1 + x2 * x3'

 RepeatedMeasuresModel class

22-4093

Properties

BetweenDesign — Design for between-subject factors
table

Design for between-subject factors and values of repeated measures, stored as a table.
Data Types: table

BetweenModel — Model for between-subjects factors
string

Model for between-subjects factors, stored as a string. This string is the text
representation to the right of the tilde in the model specification you provide when fitting
the repeated measures model using fitrm.

Data Types: char

BetweenFactorNames — Names of variables used as between-subject factors
cell array of strings

Names of variables used as between-subject factors in the repeated measures model, rm,
stored as a cell array of strings.
Data Types: cell

ResponseNames — Names of variables used as response variables
cell array of strings

Names of variables used as response variables in the repeated measures model, rm,
stored as a cell array of strings.
Data Types: cell

WithinDesign — Values of within-subject factors
table

Values of the within-subject factors, stored as a table.
Data Types: table

WithinModel — Model for within-subjects factors
string

Model for within-subjects factors, stored as a string.

22 Functions — Alphabetical List

22-4094

Data Types: char

WithinFactorNames — Names of within-subject factors
cell array of strings

Names of the within-subject factors, stored as a cell array of strings.
Data Types: cell

Coefficients — Values of estimated coefficients
table

Values of the estimated coefficients for fitting the repeated measures as a function of the
terms in the between-subjects model, stored as a table.

fitrm' defines the coefficients for a categorical term using 'effects' coding, which means
coefficients sum to 0. There is one coefficient for each level except the first. The implied
coefficient for the first level is the sum of the other coefficients for the term.

You can display the coefficient values as a matrix rather than a table using coef =
r.Coefficients{:,:}.

You can display marginal means for all levels using the margmean method.

Data Types: table

Covariance — Estimated response covariances
table

Estimated response covariances, that is, covariance of the repeated measures, stored as a
table. fitrm computes the covariances around the mean returned by the fitted repeated
measures model rm.

You can display the covariance values as a matrix rather than a table using coef =
r.Covariance{:,:}.

Data Types: table

DFE — Error degrees of freedom
scalar value

Error degrees of freedom, stored as a scalar value. DFE is the number of observations
minus the number of estimated coefficients in the between-subjects model.

 RepeatedMeasuresModel class

22-4095

Data Types: double

Methods

anova
Analysis of variance for between-subject
effects

epsilon
Epsilon adjustment for repeated measures
anova

grpstats
Compute descriptive statistics of repeated
measures data by group

manova
Multivariate analysis of variance

margmean
Estimate marginal means

mauchly
Mauchly’s test for sphericity

multcompare
Multiple comparison of estimated marginal
means

plot
Plot data with optional grouping

plotprofile
Plot expected marginal means with
optional grouping

predict
Compute predicted values given predictor
values

random
Generate new random response values
given predictor values

ranova
Repeated measures analysis of variance

22 Functions — Alphabetical List

22-4096

Definitions

Wilkinson Notation

Wilkinson notation describes the factors present in models. It does not describe the
multipliers (coefficients) of those factors.

Use these rules to specify the responses in modelspec.

Wilkinson Notation Description

Y1,Y2,Y3 Specific list of variables
Y1-Y5 All table variables from Y1 through Y5

Use these rules to specify terms in modelspec.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1*X2
X1:X2 X1*X2 only
-X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

Examples
Fit a Repeated Measures Model

Load the sample data.

 RepeatedMeasuresModel class

22-4097

load fisheriris

The column vector, species, consists of iris flowers of three different species: setosa,
versicolor, virginica. The double matrix meas consists of four types of measurements on
the flowers: the length and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...

'VariableNames',{'species','meas1','meas2','meas3','meas4'});

Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the
species is the predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)

rm =

 RepeatedMeasuresModel with properties:

 Between Subjects:

 BetweenDesign: [150x5 table]

 ResponseNames: {'meas1' 'meas2' 'meas3' 'meas4'}

 BetweenFactorNames: {'species'}

 BetweenModel: '1 + species'

 Within Subjects:

 WithinDesign: [4x1 table]

 WithinFactorNames: {'Measurements'}

 WithinModel: 'separatemeans'

 Estimates:

 Coefficients: [3x4 table]

 Covariance: [4x4 table]

Display the coefficients.

rm.Coefficients

ans =

 meas1 meas2 meas3 meas4

 ________ ________ ______ ________

22 Functions — Alphabetical List

22-4098

 (Intercept) 5.8433 3.0573 3.758 1.1993

 species_setosa -0.83733 0.37067 -2.296 -0.95333

 species_versicolor 0.092667 -0.28733 0.502 0.12667

fitrm uses the 'effects' contrasts, which means that the coefficients sum to 0.
The rm.DesignMatrix has one column of 1s for the intercept, and two other columns
species_setosa and species_versicolor, which are as follows:

species_setosa =

-

Ï

Ì
Ô

Ó
Ô

1

0

1

,

,

,

if setosa

if versicolor

if virginica

aand species_versicolor =

-

0

1

1

,

,

,

if setosa

if versicolor

if virginiica

Ï

Ì
Ô

Ó
Ô

Display the covariance matrix.

rm.Covariance

ans =

 meas1 meas2 meas3 meas4

 ________ ________ ________ ________

 meas1 0.26501 0.092721 0.16751 0.038401

 meas2 0.092721 0.11539 0.055244 0.03271

 meas3 0.16751 0.055244 0.18519 0.042665

 meas4 0.038401 0.03271 0.042665 0.041882

Display the error degrees of freedom.

rm.DFE

ans =

 147

The error degrees of freedom is the number of observations minus the number of
estimated coefficients in the between-subjects model, e.g. 150 – 3 = 147.

See Also
fitrm

More About
• Class Attributes

 RepeatedMeasuresModel class

22-4099

• Property Attributes

22 Functions — Alphabetical List

22-4100

replacedata
Class: dataset

Replace dataset variables

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

B = replacedata(A,X)

B = replacedata(A,X,vars)

B = replacedata(A,fun)

B = replacedata(A,fun,vars)

Description

B = replacedata(A,X) creates a dataset array B with the same variables as the
dataset array A, but with the data for those variables replaced by the data in the array
X. replacedata creates each variable in B using one or more columns from X, in order.
X must have as many columns as the total number of columns in all of the variables in A,
and as many rows as A has observations.

B = replacedata(A,X,vars) creates a dataset array B with the same variables as
the dataset array A, but with the data for the variables specified in vars replaced by
the data in the array X. The remaining variables in B are copies of the corresponding
variables in A. vars is a positive integer, a vector of positive integers, a variable name, a
cell array containing one or more variable names, or a logical vector. Each variable in B
has as many columns as the corresponding variable in A. X must have as many columns
as the total number of columns in all the variables specified in vars.

B = replacedata(A,fun) or B = replacedata(A,fun,vars) creates a dataset
array B by applying the function fun to the values in A's variables. replacedata first

 replacedata

22-4101

horizontally concatenates A's variables into a single array, then applies the function
fun. The specified variables in A must have types and sizes compatible with the
concatenation. fun is a function handle that accepts a single input array and returns an
array with the same number of rows and columns as the input.

Examples

data = dataset({rand(3,3),'Var1','Var2','Var3'})

% Use ZSCORE to normalize each variable in a dataset array

% separately, by explicitly extracting and transforming the

% data, and then replacing it.

X = double(data);

X = zscore(X);

data = replacedata(data,X)

% Equivalently, provide a handle to ZSCORE.

data = replacedata(data,@zscore)

% Use ZSCORE to normalize each observation in a dataset

% array separately by creating an anonymous function.

data = replacedata(data,@(x) zscore(x,[],2))

See Also
dataset

22 Functions — Alphabetical List

22-4102

replaceWithMissing
Class: dataset

Insert missing data indicators into a dataset array

Compatibility
The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax
ds2 = replaceWithMissing(ds,Name,Value)

Description
ds2 = replaceWithMissing(ds,Name,Value) replaces specified values in a dataset
array with standard missing data indicators using options specified by one or more
Name,Value pair arguments. Use replaceWithMissing to specify:

• Which numeric missing value indicators to replace with NaN.
• Which string missing value indicators to replace with an empty string.
• Which categorical levels to replace with <undefined>.

Input Arguments
ds

dataset array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 replaceWithMissing

22-4103

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NumericValues'

Vector of numeric values that replaceWithMissing replaces with NaN.

'CategoricalLevels'

String or cell array of strings naming the categorical levels that replaceWithMissing
replaces with <undefined>.

'Strings'

String or cell array of strings containing the strings that replaceWithMissing replaces
with the empty string, ''.

'DataVars'

Specified set of variables in ds for which replaceWithMissing replaces values. You
can specify a positive integer or vector of positive integers indicating the variable column
numbers, a variable name or a cell array of variables names, or a logical vector indicating
which variables to replace missing values in.

Default: All variables in ds.

Output Arguments

ds2

dataset array that has the specified missing value indicators, in the specified variables
of ds, replaced with standard missing value indicators.

Examples

Replace Nonstandard Missing Value Indicators

Replace nonstandard missing value indicators with standard missing value indicators.

22 Functions — Alphabetical List

22-4104

Replace numeric missing values coded 99 with NaN, and string missing values coded '.'
with the empty string.

ds = replaceWithMissing(ds,'NumericValues',99,'Strings','.');

• “Clean Messy and Missing Data” on page 2-113

See Also
dataset | ismissing

More About
• “Dataset Arrays” on page 2-132

 reset

22-4105

reset
Class: qrandstream

Reset state

Syntax

reset(q)

Description

reset(q) resets the state of the quasi-random number stream q of the qrandstream
class back to its initial state, 1. Subsequent points drawn from the stream will be the
same as those drawn from a new stream. The command is equivalent to q.State = 1.

Examples

Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the
first 1000 values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)

q =

 Halton quasi-random stream in 3 dimensions

 Point set properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : none

nextIdx = q.State

nextIdx =

 1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)

X1 =

 0.0928 0.3475 0.0051

22 Functions — Alphabetical List

22-4106

 0.6958 0.2035 0.2371

 0.3013 0.8496 0.4307

 0.9087 0.5629 0.6166

nextIdx = q.State

nextIdx =

 5

X2 = qrand(q,4)

X2 =

 0.2446 0.0238 0.8102

 0.5298 0.7540 0.0438

 0.3843 0.5112 0.2758

 0.8335 0.2245 0.4694

nextIdx = q.State

nextIdx =

 9

Use reset to reset the stream, then generate another sample:

reset(q)

nextIdx = q.State

nextIdx =

 1

X = qrand(q,4)

X =

 0.0928 0.3475 0.0051

 0.6958 0.2035 0.2371

 0.3013 0.8496 0.4307

 0.9087 0.5629 0.6166

See Also
qrandstream | qrand

 residuals

22-4107

residuals

Class: GeneralizedLinearMixedModel

Residuals of fitted generalized linear mixed-effects model

Syntax

r = residuals(glme)

r = residuals(glme,Name,Value)

Description

r = residuals(glme) returns the raw conditional residuals from a fitted generalized
linear mixed-effects model glme.

r = residuals(glme,Name,Value) returns the residuals using additional options
specified by one or more Name,Value pair arguments. For example, you can specify to
return Pearson residuals for the model.

Input Arguments

glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-4108

'Conditional' — Indicator for conditional residuals
true (default) | false

Indicator for conditional residuals, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

true Contributions from both fixed effects and
random effects (conditional)

false Contribution from only fixed effects
(marginal)

Conditional residuals include contributions from both fixed- and random-effects
predictors. Marginal residuals include contribution from only fixed effects. To obtain
marginal residual values, residuals computes the conditional mean of the response
with the empirical Bayes predictor vector of random effects, b, set to 0.
Example: 'Conditional',false

'ResidualType' — Residual type
'raw' (default) | 'Pearson'

Residual type, specified as the comma-separated pair consisting of 'ResidualType' and
one of the following.

Residual Type Conditional Marginal

'raw'
r y g x z bci i i

T
i
T

i= - + +()-1 ˆ ˆb dr y g xmi i i
T

i= - +()-1 b̂ d

'Pearson'
r

r

w
v b

ci
pearson ci

i
i i

=

()()s
m b

2¶

ˆ, ˆ

r
r

w
v

mi
pearson mi

i
i i

=

()()s
m b

2

0

¶

ˆ,

In each of these equations:

• yi is the ith element of the n-by-1 response vector, y, where i = 1, ..., n.
• g-1 is the inverse link function for the model.
• xi

T is the ith row of the fixed-effects design matrix X.

 residuals

22-4109

• zi
T is the ith row of the random-effects design matrix Z.

• δi is the ith offset value.
• σ2 is the dispersion parameter.
• wi is the ith observation weight.
• vi is the variance term for the ith observation.
• μi is the mean of the response for the ith observation.
•

b̂ and ˆb are estimated values of β and b.

Raw residuals from a generalized linear mixed-effects model have nonconstant variance.
Pearson residuals are expected to have an approximately constant variance, and are
generally used for analysis.
Example: 'ResidualType','Pearson'

Output Arguments

r — Residuals
n-by-1 vector

Residuals of the fitted generalized linear mixed-effects model glme returned as an n-by-1
vector, where n is the number of observations.

Examples

Plot Residuals Versus Fitted Values

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The

22 Functions — Alphabetical List

22-4110

company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i (where i =
1, 2, ..., 20) during batch j (where j = 1, 2, ..., 5).

 residuals

22-4111

• μij is the mean number of defects corresponding to factory i during batch j.
• supplier_Cij and supplier_Bij are dummy variables that indicate whether company C

or B, respectively, supplied the process chemicals for the batch produced by factory i
during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Generate the conditional Pearson residuals and the conditional fitted values from the
model.

r = residuals(glme,'ResidualType','Pearson');

mufit = fitted(glme);

Display the first ten rows of the Pearson residuals.

r(1:10)

ans =

 0.4530

 0.4339

 0.3833

 -0.2653

 0.2811

 -0.0935

 -0.2984

 -0.2509

 1.5547

 -0.3027

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant
variance among the residuals (heteroscedasticity).

figure

scatter(mufit,r)

title('Residuals versus Fitted Values')

xlabel('Fitted Values')

ylabel('Residuals')

22 Functions — Alphabetical List

22-4112

The plot does not show a systematic dependence on the fitted values, so there are no
signs of nonconstant variance among the residuals.

See Also
GeneralizedLinearMixedModel | designMatrix | fitted | response

 residuals

22-4113

residuals
Class: LinearMixedModel

Residuals of fitted linear mixed-effects model

Syntax

R = residuals(lme)

R = residuals(lme,Name,Value)

Description

R = residuals(lme) returns the raw conditional residuals from a fitted linear mixed-
effects model lme.

R = residuals(lme,Name,Value) returns the residuals from the linear mixed-effects
model lme with additional options specified by one or more Name,Value pair arguments.

For example, you can specify Pearson or standardized residuals, or residuals with
contributions from only fixed effects.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-4114

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Conditional' — Indicator for conditional residuals
True (default) | False

Indicator for conditional residuals, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

True Contribution from both fixed effects and
random effects (conditional)

False Contribution from only fixed effects
(marginal)

Example: 'Conditional,'False'

'ResidualType' — Residual type
'Raw' (default) | 'Pearson' | 'Standardized'

Residual type, specified by the comma-separated pair consisting of ResidualType and
one of the following.

Residual Type Conditional Marginal

'Raw'
r y X Zbi

C

i
= - -È

Î
˘
˚

ˆ ˆb r y Xi
M

i
= -È

Î
˘
˚b̂

'Pearson'

pr
r

Var y X Zb
i
C i

C

y b
ii

=
- -()È

Î
˘
˚

·
, b

pr
r

Var y X
i
M i

M

y
ii

=
-()È

Î
˘
˚

· b

'Standardized'

st
r

Var r
i
C i

C

y
C

ii

=

()È
ÎÍ

˘
˚̇

·

st
r

Var r
i
M i

M

y
M

ii

=

()È
ÎÍ

˘
˚̇

·

For more information on the conditional and marginal residuals and residual variances,
see Definitions at the end of this page.

 residuals

22-4115

Example: 'ResidualType','Standardized'

Output Arguments

R — Residuals
n-by-1 vector

Residuals of the fitted linear mixed-effects model lmereturned as an n-by-1 vector, where
n is the number of observations.

Examples

Plot Residuals vs. Fitted Values

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time
periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

22 Functions — Alphabetical List

22-4116

Compute the fitted values and raw residuals.

F = fitted(lme);

R = residuals(lme);

Plot the residuals versus the fitted values.

plot(F,R,'bx')

xlabel('Fitted Values')

ylabel('Residuals')

Now, plot the residuals versus the fitted values, grouped by program.

figure();

 residuals

22-4117

gscatter(F,R,Program)

The residuals seem to behave similarly across levels of the program as expected.

Compute Conditional and Marginal Pearson Residuals

Load the sample data.

load carbig

Store the variables for miles per gallon (MPG), acceleration, horsepower, cylinders, and
model year in a table.

tbl = table(MPG,Acceleration,Horsepower,Cylinders,Model_Year);

22 Functions — Alphabetical List

22-4118

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower, and the cylinders, and potentially correlated random effects for
intercept and acceleration grouped by model year.

lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + Cylinders + (Acceleration|Model_Year)');

Compute the conditional Pearson residuals and display the first five residuals.

PR = residuals(lme,'ResidualType','Pearson');

PR(1:5)

ans =

 -0.0533

 0.0652

 0.3655

 -0.0106

 -0.3340

Compute the marginal Pearson residuals and display the first five residuals.

PRM = residuals(lme,'ResidualType','Pearson','Conditional',false);

PRM(1:5)

ans =

 -0.1250

 0.0130

 0.3242

 -0.0861

 -0.3006

Examine Residuals

Load the sample data.

load carbig

Store the variables for miles per gallon (MPG), acceleration, horsepower, cylinders, and
model year in a table.

tbl = table(MPG,Acceleration,Horsepower,Cylinders,Model_Year);

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for
acceleration, horsepower, and the cylinders, and potentially correlated random effects for
intercept and acceleration grouped by model year.

 residuals

22-4119

lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + Cylinders + (Acceleration|Model_Year)');

Draw a histogram of the raw residuals with a normal fit.

r = residuals(lme);

histfit(r)

Normal distribution seems to be a good fit for the residuals.

Compute the conditional Pearson and standardized residuals and create box plots of all
three types of residuals.

pr = residuals(lme,'ResidualType','Pearson');

st = residuals(lme,'ResidualType','Standardized');

22 Functions — Alphabetical List

22-4120

X = [r pr st];

figure();

boxplot(X)

Red plus signs show the observations with residuals above or below q3 + 1.5(q3 – q1) and
q1 – 1.5(q3 – q1), where q1 and q3 are the 25th and 75th percentiles, respectively.

Find the observations with residuals that are 2.5 standard deviations above and below
the mean.

find(r > nanmean(r) + 2.5*nanstd(r))

ans =

 residuals

22-4121

 62

 252

 255

 330

 337

 341

 396

find(r < nanmean(r) - 2.5*nanstd(r))

ans =

 119

 324

 375

Definitions

Conditional and Marginal Residuals

Conditional residuals include contributions from both fixed and random effects, whereas
marginal residuals include contribution from only fixed effects.

Suppose the linear mixed-effects model lmehas an n-by-p fixed-effects design matrix
X and an n-by-q random-effects design matrix Z. Also, suppose the p-by-1 estimated

fixed-effects vector is b̂ , and the q-by-1 estimated best linear unbiased predictor (BLUP)

vector of random effects is ˆb . The fitted conditional response is

ˆ ˆ ˆ,y X ZbCond = +b

and the fitted marginal response is

ˆ ˆ,y XMar = b

residuals can return three types of residuals: raw, Pearson, and standardized. For
any type, you can compute the conditional or the marginal residuals. For example, the
conditional raw residual is

22 Functions — Alphabetical List

22-4122

r y X ZbCond = - -ˆ ˆ,b

and the marginal raw residual is

r y XMar = - ˆ.b

For more information on other types of residuals, see the ResidualType name-value pair
argument.

See Also
fitted | LinearMixedModel | plotResiduals | response

 response

22-4123

response
Class: GeneralizedLinearMixedModel

Response vector of generalized linear mixed-effects model

Syntax
y = response(glme)

[y,binomialsize] = response(glme)

Description
y = response(glme) returns the response vector y used to fit the generalized linear
mixed effects model glme.

[y,binomialsize] = response(glme) also returns the binomial size associated with
each element of y if the conditional distribution of response given the random effects is
binomial.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. For properties and methods of this object, see GeneralizedLinearMixedModel.

Output Arguments
y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.

For an observation i with prior weights wi
p and binomial size ni (when applicable), the

response values yi can have the following values.

22 Functions — Alphabetical List

22-4124

Distribution Permitted Values Notes

Binomial

0
1 2

1, , , ,
w n w n

i
p

i i
p

i

…

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

wi
p and ni are integer values

> 0

Poisson

0
1 2

, , ,
w w

i
p

i
p
…

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

wi
p is an integer value > 0

Gamma (0,∞) wi
p ≥ 0

InverseGaussian (0,∞) wi
p ≥ 0

normal (-∞,∞) wi
p ≥ 0

You can access the prior weights property wi
p using dot notation. For example, to access

the prior weights property for a model glme:

glme.ObservationInfo.Weights

binomialsize — Binomial size
vector

Binomial size associated with each element of y, returned as an n-by-1 vector, where n
is the number of observations. response only returns binomialsize if the conditional
distribution of response given the random effects is binomial. binomialsize is empty for
other distributions.

Examples

Plot Response Versus Fitted Values

Navigate to the folder containing the sample data. Load the sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

load mfr

This simulated data is from a manufacturing company that operates 50 factories across
the world, with each factory running a batch process to create a finished product. The

 response

22-4125

company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected
20 of its factories at random to participate in an experiment: Ten factories implemented
the new process, while the other ten continued to run the old process. In each of the
20 factories, the company ran five batches (for a total of 100 batches) and recorded the
following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the

batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation
of time and temperature, respectively, from the process standard of 3 hours at 20 degrees
Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev,
and supplier as fixed-effects predictors. Include a random-effects term for intercept
grouped by factory, to account for quality differences that might exist due to factory-
specific variations. The response variable defects has a Poisson distribution, and the
appropriate link function for this model is log. Use the Laplace fit method to estimate the
coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defects Poissonij ij~ m()

This corresponds to the generalized linear mixed-effects model

log _ _m b b b b bij ij ij ijnewprocess time dev temp dev sup() = + + + +0 1 2 3 4 pplier C supplier_B bij ij i_ ,+ +b5

where

• defectsij is the number of defects observed in the batch produced by factory i during
batch j.

22 Functions — Alphabetical List

22-4126

• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20)
during batch j (where j = 1, 2, ..., 5).

• newprocessij, time_devij, and temp_devij are the measurements for each variable that
correspond to factory i during batch j. For example, newprocessij indicates whether the
batch produced by factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero)
coding to indicate whether company C or B, respectively, supplied the process
chemicals for the batch produced by factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-

specific variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Extract the observed response values for the model, then use fitted to generate the
fitted conditional mean values.

y = response(glme); % Observed response values

yfit = fitted(glme); % Fitted response values

Create a scatterplot of the observed response values versus fitted values. Add a reference
line to improve the visualization.

figure

scatter(yfit,y)

xlim([0,12])

ylim([0,12])

refline(1,0)

title('Response versus Fitted Values')

xlabel('Fitted Values')

ylabel('Response')

 response

22-4127

The plot shows a positive correlation between the fitted values and the observed response
values.

References

[1] Hox, J. Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum
Associates, Inc., 2002.

See Also
GeneralizedLinearMixedModel | fitted | residuals

22 Functions — Alphabetical List

22-4128

response

Class: LinearMixedModel

Response vector of the linear mixed-effects model

Syntax

y = response(lme)

Description

y = response(lme) returns the response vector y used to fit the linear mixed-effects
model lme.

Input Arguments

lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

For properties and methods of this object, see LinearMixedModel.

Output Arguments

y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.
Data Types: single | double

 response

22-4129

Examples

Plot Response versus Fitted Values

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load weight

weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over two-week time
periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);

tbl.Subject = nominal(tbl.Subject);

tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the
interaction between the week and type of program are the fixed effects. The intercept and
week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fitted values and the response.

F = fitted(lme);

y = response(lme);

Plot the response versus the fitted values.

plot(F,y,'bs')

xlabel('Fitted Values')

ylabel('Response')

22 Functions — Alphabetical List

22-4130

See Also
fitted | LinearMixedModel | residuals

 resubEdge

22-4131

resubEdge
Class: ClassificationDiscriminant

Classification edge by resubstitution

Syntax

edge = resubEdge(obj)

Description

edge = resubEdge(obj) returns the classification edge obtained by obj on its
training data.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments

edge

Classification edge obtained by resubstituting the training data into the calculation of
edge.

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are class
prior probabilities. If you supply additional weights, those weights are normalized to

22 Functions — Alphabetical List

22-4132

sum to the prior probabilities in the respective classes, and are then used to compute the
weighted average.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the
matrix X. A high value of margin indicates a more reliable prediction than a low value.

Score

For discriminant analysis, the score of a classification is the posterior probability of the
classification. For the definition of posterior probability in discriminant analysis, see
“Posterior Probability” on page 15-7.

Examples

Esimtate the Resubstitution Edge of Discriminant Analysis Classifiers

Estimate the quality of a discriminant analysis classifier for Fisher's iris data by
resubstitution.

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis classifier.

Mdl = fitcdiscr(meas,species);

Compute the resubstitution edge.

redge = resubEdge(Mdl)

redge =

 0.9454

 resubEdge

22-4133

See Also
resubMargin | ClassificationDiscriminant | fitcdiscr | edge

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-4134

resubEdge
Class: ClassificationECOC

Classification edge for error-correcting output codes, multiclass models by resubstitution

Syntax

e = resubEdge(Mdl)

e = resubEdge(Mdl,Name,Value)

Description

e = resubEdge(Mdl) returns the classification edge (e) for the trained, error-correcting
output codes (ECOC), multiclass model Mdl using the training data stored in Mdl.X and
corresponding class labels stored in Mdl.Y.

e = resubEdge(Mdl,Name,Value) computes the resubstitution classification edge
with additional options specified by one or more Name,Value pair arguments.

For example, specify a decoding scheme, binary learner loss function, or verbosity level.

Input Arguments

Mdl — ECOC multiclass model
ClassificationECOC model

ECOC multiclass model, specified as a ClassificationECOC model returned by
fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 resubEdge

22-4135

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.

22 Functions — Alphabetical List

22-4136

• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

 resubEdge

22-4137

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

Output Arguments

e — Classification edge
numeric scalar

Classification edge, returned as a scalar. e represents the (weighted) mean of the
classification margins.

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margin

The classification margins are, for each observation, the difference between the negative
loss for the positive class and maximal negative loss among the negative classes. If the
margins are on the same scale, then they serve as a classification confidence measure,
i.e., among multiple classifiers, those that yield larger margins are better [4].

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

22 Functions — Alphabetical List

22-4138

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2

 resubEdge

22-4139

Value Description Score Domain g(yj,sj)

'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Estimate the Resubstitution Edge of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the
predictors and define the class order. Specify to standardize the predictors using an SVM
template.

t = templateSVM('Standardize',1);

classOrder = unique(Y)

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

classOrder =

 'setosa'

 'versicolor'

 'virginica'

t is an SVM template object. The software uses default values for empty options in t
during training. Mdl is a ClassificationECOC model.

Estimate the resubstitution edge.

22 Functions — Alphabetical List

22-4140

e = resubEdge(Mdl)

e =

 0.4961

The mean of the training sample margins is 0.4961.

Select ECOC Model Features by Comparing In-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform
feature selection is to compare training sample edges from multiple models. Based solely
on this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set. Define two data sets:

• fullX contains all four predictors.
• partX contains the sepal measurements.

load fisheriris

X = meas;

fullX = X;

partX = X(:,1:2);

Y = species;

Train ECOC models using SVM binary learners for each predictor set. It is good practice
to standardize the predictors and define the class order. Specify to standardize the
predictors using an SVM template, and to compute posterior probabilities.

t = templateSVM('Standardize',1);

classOrder = unique(Y)

FullMdl = fitcecoc(fullX,Y,'Learners',t,'ClassNames',classOrder,...

 'FitPosterior',1);

PartMdl = fitcecoc(partX,Y,'Learners',t,'ClassNames',classOrder,...

 'FitPosterior',1);

classOrder =

 'setosa'

 'versicolor'

 'virginica'

 resubEdge

22-4141

The default SVM score is distance from the decision boundary. If you specify to compute
posterior probabilities, then the software uses posterior probabilities as scores.

Estimate the training sample edge for each classifier. The quadratic loss function
operates on scores in the domain [0,1]. Specify to use quadratic loss when aggregating
the binary learners for both models.

fullEdge = resubEdge(FullMdl,'BinaryLoss','quadratic')

partEdge = resubEdge(PartMdl,'BinaryLoss','quadratic')

fullEdge =

 0.9896

partEdge =

 0.5058

The edge for the classifier trained on the complete data set is greater, suggesting that the
classifier trained using every predictor has a better in-sample fit.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Tip

To compare margins or edges of several classifiers, use template objects to specify a
common score transform function among the classifiers when you train them using
fitcecoc.

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

22 Functions — Alphabetical List

22-4142

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | edge | fitcecoc | predict | resbuMargin |
resubPredict

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

 resubEdge

22-4143

resubEdge
Class: ClassificationEnsemble

Classification edge by resubstitution

Syntax

edge = resubEdge(ens)

edge = resubEdge(ens,Name,Value)

Description

edge = resubEdge(ens) returns the classification edge obtained by ens on its
training data.

edge = resubEdge(ens,Name,Value) calculates edge with additional options
specified by one or more Name,Value pair arguments. You can specify several name-
value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubEdge
uses only these learners for calculating edge.

22 Functions — Alphabetical List

22-4144

Default: 1:NumTrained

'mode'

String representing the meaning of the output edge:

• 'ensemble' — edge is a scalar value, the loss for the entire ensemble.
• 'individual' — edge is a vector with one element per trained learner.
• 'cumulative' — edge is a vector in which element J is obtained by using learners

1:J from the input list of learners.

Default: 'ensemble'

Output Arguments
edge

Classification edge obtained by ens by resubstituting the training data into the
calculation of edge. Classification edge is classification margin averaged over the entire
data. edge can be a scalar or vector, depending on the setting of the mode name-value
pair.

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are the
class probabilities in ens.Prior.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix ens.X.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

 resubEdge

22-4145

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Examples

Find the resubstitution edge for an ensemble that classifies the Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

edge = resubEdge(ens)

edge =

 3.2486

See Also
resubMargin | resubEdge | resubLoss | resubPredict

22 Functions — Alphabetical List

22-4146

resubEdge
Class: ClassificationKNN

Edge of k-nearest neighbor classifier by resubstitution

Syntax

E = resubEdge(mdl)

Description

E = resubEdge(mdl) returns the classification edge for mdl with the data used to train
mdl (see “Edge” on page 22-4147).

Input Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

Output Arguments

E

Classification edge, a scalar that is the mean classification margin (see “Margin” on page
22-4147).

 resubEdge

22-4147

Definitions

Edge

The edge is the mean value of the classification margin.

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

Margin is a column vector with the same number of rows as in the training data.

Score

The score of a classification is the posterior probability of the classification. The posterior
probability is the number of neighbors that have that classification, divided by the
number of neighbors. For a more detailed definition that includes weights and prior
probabilities, see “Posterior Probability” on page 22-3654.

Examples

Resubstitution Edge Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the data.

load fisheriris

X = meas;

Y = species;

Construct a classifier for 5-nearest neighbors.

mdl = fitcknn(X,Y,'NumNeighbors',5);

Examine the resubstitution edge of the classifier.

E = resubEdge(mdl)

22 Functions — Alphabetical List

22-4148

E =

 0.9253

• “Examine the Quality of a KNN Classifier” on page 16-29

See Also
ClassificationKNN | fitcknn | resubLoss | resubMargin | resubPredict

More About
• “Classification Using Nearest Neighbors” on page 16-8

 resubEdge

22-4149

resubEdge

Class: ClassificationNaiveBayes

Classification edge for naive Bayes classifiers by resubstitution

Syntax

e = resubEdge(Mdl)

Description

e = resubEdge(Mdl) returns the resubstitution classification edge (e) for the naive
Bayes classifier Mdl using the training data stored in Mdl.X and corresponding class
labels stored in Mdl.Y.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes
model trained by fitcnb.

Output Arguments

e — Classification edge
scalar

Classification edge, returned as a scalar. If you passed in weights when training the
classifier, then e is the weighted classification edge. The software normalizes the weights
so that they sum to the prior probability of their respective class.

22 Functions — Alphabetical List

22-4150

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability
of their respective class. The software uses the normalized weights to compute the
weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margins

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

 resubEdge

22-4151

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Score

The naive Bayes score is the class posterior probability given the observation.

Examples

Estimate the Resubstitution Edge of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

rng(1);

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the resubstitution edge.

e = resubEdge(Mdl)

e =

22 Functions — Alphabetical List

22-4152

 0.8944

The mean of the training sample margins is approximately 0.9, which indicates that the
classifier classifies in-sample observations with high confidence.

Select Naive Bayes Classifier Features by Comparing In-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform
feature selection is to compare training sample edges from multiple models. Based solely
on this criterion, the classifier with the highest edge is the best classifier.

Load Fisher's iris data set. Define two data sets:

• fullX contains all predictors.
• partX contains the last two predictors.

load fisheriris

X = meas; % Predictors

Y = species; % Response

fullX = X;

partX = X(:,3:4);

Train naive Bayes classifiers for each predictor set.

FullMdl = fitcnb(fullX,Y);

PartMdl = fitcnb(partX,Y);

Estimate the training sample edge for each classifier.

fullEdge = resubEdge(FullMdl)

partEdge = resubEdge(PartMdl)

fullEdge =

 0.8944

partEdge =

 0.9169

 resubEdge

22-4153

The edge for the classifier trained on predictors 3 and 4 is greater, suggesting that the
classifier trained using only those predictors has a better in-sample fit.

References

[1] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | edge |
fitcnb | loss | margin | predict | resubEdge | resubLoss | resubLoss |
resubMargin

More About
• “Naive Bayes Classification” on page 15-31

22 Functions — Alphabetical List

22-4154

resubEdge

Class: ClassificationSVM

Classification edge for support vector machine classifiers by resubstitution

Syntax

e = resubEdge(SVMModel)

Description

e = resubEdge(SVMModel) returns the resubstitution classification edge (e) for the
support vector machine (SVM) classifier SVMModel using the training data stored in
SVMModel.X and corresponding class labels stored in SVMModel.Y.

Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained using
fitcsvm.

Output Arguments

e — Classification edge
scalar

Classification edge, returned as a scalar. e represents the weighted mean of the
classification margins.

 resubEdge

22-4155

Definitions

Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software
normalizes them to sum to the prior probabilities in the respective classes. The software
uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margins

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

22 Functions — Alphabetical List

22-4156

f x x s b() = () ¢ +/ .b

s is the kernel scale and β is the vector of fitted linear coefficients.

Examples

Estimate the Resubstitution Edge of SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to standardize the predictors and define the
class order.

SVMModel = fitcsvm(X,Y,'Standardize',true,'ClassNames',{'b','g'});

SVMModel is a trained ClassificationSVM classifier. 'b' is the negative class and 'g'
is the positive class.

Estimate the resubstitution edge.

e = resubEdge(SVMModel)

e =

 5.0998

The mean of the training sample margins is 5.0999.

Select SVM Classifier Features by Comparing In-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform
feature selection is to compare training sample edges from multiple models. Based solely
on this criterion, the classifier with the highest edge is the best classifier.

Load the ionosphere data set. Define two data sets:

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

 resubEdge

22-4157

load ionosphere

fullX = X;

partX = X(:,end-20:end);

Train SVM classifiers for each predictor set.

FullSVMModel = fitcsvm(fullX,Y);

PartSVMModel = fitcsvm(partX,Y);

Estimate the training sample edge for each classifier.

fullEdge = resubEdge(FullSVMModel)

partEdge = resubEdge(PartSVMModel)

fullEdge =

 3.3653

partEdge =

 2.0471

The edge for the classifier trained on the complete data set is greater, suggesting that the
classifier trained using all of the predictors has a better in-sample fit.

Algorithms

For binary classification, the software defines the margin for observation j, mj, as

m y f xj j j= 2 (),

where yj ∊ {-1,1}, and f(xj) is the predicted score of observation j for the positive class.
However, the literature commonly uses mj = yjf(xj) to define the margin.

References

[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

22 Functions — Alphabetical List

22-4158

[2] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationSVM | CompactClassificationSVM | edge | fitcsvm | resubLoss
| resubMargin

 resubEdge

22-4159

resubEdge
Class: ClassificationTree

Classification edge by resubstitution

Syntax

edge = resubEdge(tree)

Description

edge = resubEdge(tree) returns the classification edge obtained by tree on its
training data.

Input Arguments

tree

A classification tree created using fitctree.

Output Arguments

edge

Classification edge obtained by resubstituting the training data into the calculation of
edge.

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are the
class probabilities in tree.Prior.

22 Functions — Alphabetical List

22-4160

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix X.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

 resubEdge

22-4161

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

22 Functions — Alphabetical List

22-4162

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

 resubEdge

22-4163

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Examples

Estimate the quality of a classification tree for the Fisher iris data by resubstitution.

load fisheriris

tree = fitctree(meas,species);

redge = resubEdge(tree)

redge =

 0.9384

See Also
edge | resubLoss | resubPredict | resubMargin | fitctree

22 Functions — Alphabetical List

22-4164

resubLoss
Class: ClassificationDiscriminant

Classification error by resubstitution

Syntax

L = resubLoss(obj)

L = resubLoss(obj,Name,Value)

Description

L = resubLoss(obj) returns the resubstitution loss, meaning the loss computed for
the data that fitcdiscr used to create obj.

L = resubLoss(obj,Name,Value) returns loss statistics with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'lossfun '

Function handle or string representing a loss function. Built-in loss functions are:

• 'binodeviance' — See “Loss Functions” on page 22-4165.

 resubLoss

22-4165

• 'classiferror' — Fraction of misclassified observations. See “Loss Functions” on
page 22-4165.

• 'exponential' — See “Loss Functions” on page 22-4165.
• 'hinge' — See “Loss Functions” on page 22-4181.
• 'mincost' — Smallest misclassification cost as given by the obj.Cost matrix.

You can write your own loss function using the syntax described in “Loss Functions” on
page 22-4165.

Default: 'mincost'

Output Arguments

L

Classification error, a scalar. The meaning of the error depends on the values in weights
and lossfun. See “Classification Error” on page 22-4165.

Definitions

Classification Error

The default classification error is the fraction of the training data X that obj misclassifies.

Weighted classification error is the sum of weight i times the Boolean value that is 1
when obj misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

22 Functions — Alphabetical List

22-4166

• 'exponential' — With the same definitions as for 'binodeviance', the
exponential loss is

w y f Xn n nexp .- ()()Â

• 'classiferror' — Predict the label with the largest posterior probability. The loss
is then the fraction of misclassified observations.

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file in this form:

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in the classifier, represented in the ClassNames property.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in the ClassNames property.

 resubLoss

22-4167

• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with
one row per observation, similar to the posterior output from predict.

• W is a numeric vector with N elements, the observation weights. If you pass W, the
elements are normalized to sum to the prior probabilities in the respective classes.

• COST is a K-by-K numeric matrix of misclassification costs. For example, you can use
COST = ones(K) - eye(K), which means a cost of 0 for correct classification, and 1
for misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

Posterior Probability

The posterior probability that a point z belongs to class j is the product of the prior
probability and the multivariate normal density. The density function of the multivariate
normal with mean μj and covariance Σj at a point z is

P x k x x

k

kk

T

k| exp ,
/

() = - -() -()Ê
Ë
Á

ˆ
¯
˜

()
-1

2

1

21 2
1

p
m m

S
S

where Sk
 is the determinant of Σk, and Sk

-1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an
observation x is of class k is

ˆ |
|

,P k x
P x k P k

P x
() =

() ()

()

where P(x) is a normalization constant, the sum over k of P(x|k)P(k).

Prior Probability

The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is one over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of

class k divided by the total number of training samples.

22 Functions — Alphabetical List

22-4168

• Custom — The prior probability of class k is the kth element of the prior vector. See
fitcdiscr.

After creating a classifier obj, you can set the prior using dot notation:

obj.Prior = v;

where v is a vector of positive elements representing the frequency with which each
element occurs. You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 15-8.

Examples

Compute the resubstituted classification error for the Fisher iris data:

load fisheriris

obj = fitcdiscr(meas,species);

L = resubLoss(obj)

L =

 0.0200

See Also
ClassificationDiscriminant | fitcdiscr | loss

How To
• “Discriminant Analysis” on page 15-3

 resubLoss

22-4169

resubLoss
Class: ClassificationECOC

Classification loss for error-correcting output codes, multiclass models by resubstitution

Syntax

L = resubLoss(Mdl)

L = resubLoss(Mdl,Name,Value)

Description

L = resubLoss(Mdl) returns classification loss (L) for the trained, error-correcting
output codes (ECOC), multiclass model Mdl using the training data stored in Mdl.X and
corresponding class labels stored in Mdl.Y.

L = resubLoss(Mdl,Name,Value) returns the classification loss with additional
options specified by one or more Name,Value pair arguments.

For example, specify the loss function, decoding scheme, or verbosity level.

Input Arguments

Mdl — ECOC multiclass model
ClassificationECOC model

ECOC multiclass model, specified as a ClassificationECOC model returned by
fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-4170

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.

 resubLoss

22-4171

• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'LossFun' — Loss function
'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or 'classiferror'.

You can:

• Specify the built-in function 'classiferror', then the loss function is classification
error, in other words, the proportion of misclassified observations.

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and k is the number of classes. Your
function must have the signature lossvalue = lossfun(C,S,W,Cost), where:

22 Functions — Alphabetical List

22-4172

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-k logical matrix with rows indicating to which class the corresponding

observation belongs. The column order corresponds to the class order in
Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q for each row. Set
all other elements of row p to 0.

• S is an n-by-k numeric matrix of negated loss values for classes. Each row
corresponds to an observation. The column order corresponds to the class
order in CVMdl.ClassNames. S is similar to the output argument negLoss of
resubPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes its elements to sum to 1.

• Cost is a k-by-k numeric matrix of misclassification costs. For example, Cost
= ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for
misclassification.

Specify your function using 'LossFun',@lossfun.

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.

 resubLoss

22-4173

Example: 'Verbose',1

Data Types: single | double

Output Arguments

L — Classification loss
scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality
measure. Its interpretation depends on the loss function and weighting scheme, but, in
general, better classifiers yield smaller loss values.

Definitions

Classification Error

The classification error is a binary classification error measure that has the form

L

w e

w

j j

j

n

j
j

n
=

=

=

Â

Â

1

1

,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, it is the proportion of observations that the classifier misclassifies.

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

22 Functions — Alphabetical List

22-4174

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2

 resubLoss

22-4175

Value Description Score Domain g(yj,sj)

'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Determine the Resubstitution Loss of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the
predictors and define the class order. Specify to standardize the predictors using an SVM
template.

t = templateSVM('Standardize',1);

classOrder = unique(Y)

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

classOrder =

 'setosa'

 'versicolor'

 'virginica'

t is an SVM template object. The software uses default values for empty options in t
during training. Mdl is a ClassificationECOC model.

Estimate the resubstitution loss (i.e., the in-sample classification error).

22 Functions — Alphabetical List

22-4176

L = resubLoss(Mdl)

L =

 0.0267

The ECOC model misclassifies 2.67% of the training sample irises.

Determine the ECOC Model Quality Using a Custom Resubstitution Loss

Suppose that it is interesting to know how well a model classifies a particular class. This
example shows how to pass such a custom loss function to resubLoss.

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

n = numel(Y); % Sample size

classOrder = unique(Y) % Class order

K = numel(classOrder); % Number of classes

classOrder =

 setosa

 versicolor

 virginica

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the
predictors and define the class order. Specify to standardize the predictors using an SVM
template.

t = templateSVM('Standardize',1);

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. The software uses default values for empty options in t
during training. Mdl is a ClassificationECOC model.

Compute the negated losses for the training observations.

rng(1); % For reproducibility

 resubLoss

22-4177

[~,negLoss] = resubPredict(Mdl);

Create a function that takes the minimal loss for each observation, and then averages the
minimal losses across all observations.

lossfun = @(C,S,~,~)mean(min(-negLoss,[],2));

Compute the custom loss for the training data.

resubLoss(Mdl,'LossFun',lossfun)

ans =

 0.0065

The average, minimal, binary loss in the training data is 0.0065.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | fitcecoc | loss | predict | resubPredict

22 Functions — Alphabetical List

22-4178

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

 resubLoss

22-4179

resubLoss
Class: ClassificationEnsemble

Classification error by resubstitution

Syntax

L = resubLoss(ens)

L = resubLoss(ens,Name,Value)

Description

L = resubLoss(ens) returns the resubstitution loss, meaning the loss computed for
the data that fitensemble used to create ens.

L = resubLoss(ens,Name,Value) calculates loss with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubLoss
uses only these learners for calculating loss.

22 Functions — Alphabetical List

22-4180

Default: 1:NumTrained

'lossfun'

Function handle or string representing a loss function. Built-in loss functions:

• 'binodeviance' — See “Loss Functions” on page 22-4181
• 'classiferror' — Fraction of misclassified data
• 'exponential' — See “Loss Functions” on page 22-4181
• 'hinge' — See “Loss Functions” on page 22-4181.
• 'mincost' — Smallest misclassification cost as given by the obj.Cost matrix. See

“Loss Functions” on page 22-4181.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-4181.

Default: 'classiferror'

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

Output Arguments

L

Loss, by default the fraction of misclassified data. L can be a vector, and can mean
different things, depending on the name-value pair settings.

 resubLoss

22-4181

Definitions

Classification Error

The default classification error is the fraction of the training data X that ens
misclassifies.

Weighted classification error is the sum of weight i times the Boolean value that is 1
when tree misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'classiferror' — Fraction of misclassified data, weighted by w.
• 'exponential' — With the same definitions as for 'binodeviance', the

exponential loss is

w y f Xn n nexp .- ()()Â

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.

22 Functions — Alphabetical List

22-4182

• For binary classification, yj = 1 for the positive class and -1 for the negative class.
For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file of the form

function loss = lossfun(C,S,W,COST)

• N is the number of rows of ens.X.
• K is the number of classes in ens, represented in ens.ClassNames.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in tree.ClassNames.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the score output from predict.
• W is a numeric vector with N elements, the observation weights.
• COST is a K-by-K numeric matrix of misclassification costs. The default

'classiferror' gives a cost of 0 for correct classification, and 1 for
misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

Examples

Compute the resubstitution loss for a classification ensemble for the Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

loss = resubLoss(ens)

 resubLoss

22-4183

loss =

 0.0333

See Also
resubEdge | resubLoss | resubMargin | resubPredict

22 Functions — Alphabetical List

22-4184

resubLoss
Class: ClassificationKNN

Loss of k-nearest neighbor classifier by resubstitution

Syntax
L = resubLoss(mdl)

L = resubLoss(mdl,Name,Value)

Description
L = resubLoss(mdl) returns the resubstitution loss, meaning the loss computed for
the data that fitcknn used to create mdl.

L = resubLoss(mdl,Name,Value) returns loss statistics with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 resubLoss

22-4185

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'lossfun '

Function handle or string representing a loss function. Built-in loss functions are:

• 'binodeviance' — See “Loss Functions” on page 22-4186.
• 'classiferror' — Fraction of misclassified observations. See “Loss Functions” on

page 22-4186.
• 'exponential' — See “Loss Functions” on page 22-4186.
• 'hinge' — See “Loss Functions” on page 22-4186.
• 'mincost' — Smallest misclassification cost as given by the mdl.Cost matrix.

You can write your own loss function using the syntax described in “Loss Functions” on
page 22-4186.

Default: 'mincost'

Output Arguments

L

Classification error, a scalar. The meaning of the error depends on the values in weights
and lossfun. See “Classification Error” on page 22-4185.

Definitions

Classification Error

The default classification error is the fraction of data X that mdl misclassifies, where Y
represents the true classifications.

The weighted classification error is the sum of weight i times the Boolean value that is 1
when mdl misclassifies the ith row of X, divided by the sum of the weights.

22 Functions — Alphabetical List

22-4186

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

• 'exponential' — With the same definitions as for 'binodeviance', the
exponential loss is

w y f Xn n nexp .- ()()Â

• 'classiferror' — Predict the label with the largest posterior probability. The loss
is then the fraction of misclassified observations.

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost

 resubLoss

22-4187

property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file in this form:

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in the classifier, represented in the ClassNames property.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in the ClassNames property.
• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with

one row per observation, similar to the posterior output from predict.
• W is a numeric vector with N elements, the observation weights. If you pass W, the

elements are normalized to sum to the prior probabilities in the respective classes.
• COST is a K-by-K numeric matrix of misclassification costs. For example, you can use

COST = ones(K) - eye(K), which means a cost of 0 for correct classification, and 1
for misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

True Misclassification Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when
you run fitcknn. Cost(i,j) is the cost of classifying an observation into class j if its
true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other
words, the cost is 0 for correct classification, and 1 for incorrect classification.

Expected Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation. The third output of
predict is the expected misclassification cost per observation.

22 Functions — Alphabetical List

22-4188

Suppose you have Nobs observations that you want to classify with a trained classifier
mdl. Suppose you have K classes. You place the observations into a matrix Xnew with one
observation per row. The command

[label,score,cost] = predict(mdl,Xnew)

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost
matrix contains the expected (average) cost of classifying the observation into each of the
K classes. cost(n,k) is

ˆ | () | ,P i Xnew n C k i

i

K

() ()
=
Â

1

where

• K is the number of classes.
• ˆ | ()P i Xnew n() is the posterior probability of class i for observation Xnew(n).

• C k i|() is the true misclassification cost of classifying an observation as k when its
true class is i.

Examples

Loss Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the data.

load fisheriris

Construct a classifier for 5-nearest neighbors.

mdl = fitcknn(meas,species,'NumNeighbors',5);

Examine the resubstitution loss of the classifier.

L = resubLoss(mdl)

L =

 resubLoss

22-4189

 0.0333

The classifier predicts incorrect classifications for 1/30 of its training data.

• “Examine the Quality of a KNN Classifier” on page 16-29
• “Predict Classification Based on a KNN Classifier” on page 16-30
• “Modify a KNN Classifier” on page 16-30

See Also
ClassificationKNN | fitcknn | resubEdge | resubMargin | resubPredict

More About
• “Classification Using Nearest Neighbors” on page 16-8

22 Functions — Alphabetical List

22-4190

resubLoss

Class: ClassificationNaiveBayes

Classification loss for naive Bayes classifiers by resubstitution

Syntax

L = resubLoss(Mdl)

L = resubLoss(Mdl,Name,Value)

Description

L = resubLoss(Mdl) returns the in-sample minimum misclassification cost loss (L),
which is a scalar representing how well the trained naive Bayes classifer Mdl classifies
the predictor data sotred in Mdl.X as compared to the true class labels stored in Mdl.Y.

L = resubLoss(Mdl,Name,Value) returns the in-sample classification loss with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes
model trained by fitcnb.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 resubLoss

22-4191

'LossFun' — Loss function
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' |
'mincost' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or string.

• This table describes the built-in loss functions. Specify one using its corresponding
string.

String Loss Function

'binodeviance' Binomial deviance
'classiferror' Classification error
'exponential' Exponential loss
'hinge' Hinge loss
'mincost' Minimum misclassification cost loss

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and k =
size(Mdl.ClassNames,1) is the number of classes. Your function must have the
signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-k logical matrix with rows indicating to which class the corresponding

observation belongs. The column order corresponds to the class order in
Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set
all other elements of row p to 0.

• S is an n-by-k numeric matrix of classification scores. The column order
corresponds to the class order in Mdl.ClassNames. S is a matrix of posterior
probabilities, similar to the output of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes the weights to sum to the prior probability of their respective class.
If Mdl is a compact model, then you must also supply the weights using the
'Weights' name-value pair argument.

22 Functions — Alphabetical List

22-4192

• Cost is a k-by-k numeric matrix of misclassification costs. For example, Cost
= ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for
misclassification.

Specify your function using 'LossFun',@lossfun.

Output Arguments

L — Classification loss
scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality
measure. Its interpretation depends on the loss function and weighting scheme, but, in
general, better classifiers yield smaller loss values.

Definitions

Binomial Deviance

The binomial deviance (or multinomial deviance for number of classes K > 3) is a
classification error measure that has the form

L

w y f X

w

j

n

j

n

j j j

j

=

+ - ()()()¢

=

=

Â

Â

1

1

1 2log exp

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class. For

problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in the
position corresponding to the true class, e.g., if the second observation is in the third
class and K = 4, then y2 = [0 0 1 0]′.

 resubLoss

22-4193

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector of
posterior probabilities for each class given observation j.

The binomial deviance has connections to the maximization of the binomial likelihood
function. For details on binomial deviance, see [1].

Classification Error

The classification error is a binary classification error measure that has the form

L

w e

w

j j

j

n

j
j

n
=

=

=

Â

Â

1

1

,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, it is the proportion of observations that the classifier misclassifies.

Exponential Loss

Exponential loss is a classification error measure that is similar to binomial deviance,
and has the form

L

w y f X

w

j

n

j

j

n

j j

j

=

- ()()¢

=

=

Â

Â

1

1

exp

,

where:

• wj is weight j.

22 Functions — Alphabetical List

22-4194

• For binary classification, yj = 1 for the positive class and -1 for the negative class. For
problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in the
position corresponding to the true class, e.g., if the second observation is in the third
class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector of
posterior probabilities for each class given observation j.

Hinge Loss

Hinge loss is a binary classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class. For

problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in the
position corresponding to the true class, e.g., if the second observation is in the third
class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector of
posterior probabilities for each class given observation j.

Hinge loss linearly penalizes for misclassified observations, and is related to the support
vector machine (SVM) objective function used for optimization. For more details on hinge
loss, see [1].

Minimum Misclassification Cost Loss

The minimum misclassification cost loss is the weighted average of the minimum
expected misclassification costs for each observation.

 resubLoss

22-4195

In other words, the minimum misclassification cost is

L

w c

w

j

j

n

j

j
j

n
=

=

Â

Â

1
,

where:

• wj is the weight of observation j.
• cj is the minimum of the expected misclassification costs for observation j.

Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into
the wrong class.

There are two types of misclassification costs: true and expected. Let K be the number of
classes.

• True misclassification cost — A K-by-K matrix, where element (i,j) indicates the
misclassification cost of predicting an observation into class j if its true class is i.
The software stores the misclassification cost in the property Mdl.Cost, and used in
computations. By default, Mdl.Cost(i,j) = 1 if i ≠ j, and Mdl.Cost(i,j) = 0 if
i = j. In other words, the cost is 0 for correct classification, and 1 for any incorrect
classification.

• Expected misclassification cost — A K-dimensional vector, where element k is the
weighted average misclassification cost of classifying an observation into class k,
weighted by the class posterior probabilities. In other words,

c Y j xP xk

j

K

jkP= =()
=

Â ˆ ,...,| .
1

1 Cost

the software classifies observations to the class corresponding with the lowest expected
misclassification cost.

22 Functions — Alphabetical List

22-4196

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Examples

Determine the Resubstitution Loss of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

 resubLoss

22-4197

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the default resubstitution loss, which is the in-sample minimum
misclassification cost.

L = resubLoss(Mdl)

L =

 0.0400

The average, in-sample cost of classification is 0.04.

Determine Resubstitution Classification Error of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the in-sample proportion of misclassified observations.

L = resubLoss(Mdl,'LossFun','classiferror')

L =

 0.0400

22 Functions — Alphabetical List

22-4198

The naive Bayes classifier misclassifies 4% of the training observations.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
second edition. Springer, New York, 2008.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb |
loss | predict | resubPredict

More About
• “Naive Bayes Classification” on page 15-31

 resubLoss

22-4199

resubLoss

Class: ClassificationSVM

Classification loss for support vector machine classifiers by resubstitution

Syntax

L = resubLoss(SVMModel)

L = resubLoss(SVMModel,Name,Value)

Description

L = resubLoss(SVMModel) returns the classification loss by resubstitution (L), the
in-sample classification loss, for the support vector machine (SVM) classifier SVMModel
using the training data stored in SVMModel.X and corresponding class labels stored in
SVMModel.Y.

L = resubLoss(SVMModel,Name,Value) returns the classification loss by
resubstitution with additional options specified by one or more Name,Value pair
arguments.

Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained using
fitcsvm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-4200

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'LossFun' — Loss function
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' |
function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or string.

• The following lists available loss functions. Specify one using its corresponding string.

Value Loss Function

'binodeviance' Binomial deviance
'classiferror' Classification error
'exponential' Exponential loss
'hinge' Hinge loss

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and K=
size(SVMModel.ClassNames,1) is the number of classes. Your function must have
the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding

observation belongs. The column order corresponds to the class order in
SVMModel.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set
all other elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order
corresponds to the class order in SVMModel.ClassNames. S is a matrix of
classification scores, similar to the output of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes them to sum to 1.

 resubLoss

22-4201

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost
= ones(K) - eye(K) specifies a cost of 0 for correct classification, and 1 for
misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | function_handle

Output Arguments

L — Classification loss
scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality
measure. Its interpretation depends on the loss function and weighting scheme, but, in
general, better classifiers yield smaller loss values.

Definitions

Binomial Deviance

The binomial deviance is a binary classification error measure that has the form

L

w y f X

w

j

n

j

n

j j j

j

=

+ - ()()()¢

=

=

Â

Â

1

1

1 2log exp

,

where:

• wj is weight j. The software renormalizes the weights to sum to 1.
• yj = {-1,1}.
• f X j() is the score for observation j.

22 Functions — Alphabetical List

22-4202

The binomial deviance has connections to the maximization of the binomial likelihood
function. For details on binomial deviance, see [1].

Classification Error

The classification error is a binary classification error measure that has the form

L

w e

w

j j

j

n

j
j

n
=

=

=

Â

Â

1

1

,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, it is the proportion of observations that the classifier misclassifies.

Exponential Loss

A binary classification error measure that is similar to binomial deviance, and has the
form

L

w y f X

w

j

n

j

j

n

j j

j

=

- ()()¢

=

=

Â

Â

1

1

exp

,

where:

• wj is weight j. The software renormalizes the weights to sum to 1.
• yj = {-1,1}.
• f X j() is the score for observation j.

 resubLoss

22-4203

Hinge Loss

Hinge loss is a binary classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j. The software renormalizes the weights to sum to 1.
• yj = {-1,1}.
• f X j() is the score for observation j.

Hinge loss linearly penalizes for misclassified observations, and is related to the SVM
objective function used for optimization. For more details on hinge loss, see [1].

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

22 Functions — Alphabetical List

22-4204

f x x s b() = () ¢ +/ .b

s is the kernel scale and β is the vector of fitted linear coefficients.

Examples

Determine the Resubstitution Loss of SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to standardize the data.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a trained ClassificationSVM classifier. The negative class is 'b' and the
positive class is 'g'.

Estimate the resubstitution loss (i.e., the in-sample classification error).

L = resubLoss(SVMModel)

L =

 0.0570

The SVM classifier misclassifies 5.7% of the training sample radar returns.

Determine the Resubstitution Hinge Loss of SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to standardize the data.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a trained ClassificationSVM classifier. The negative class is 'b' and the
positive class is 'g'.

 resubLoss

22-4205

Estimate the in-sample hinge loss.

L = resubLoss(SVMModel,'LossFun','Hinge')

L =

 0.1603

The hinge loss is 0.1603. Classifiers with hinge losses close to 0 are desirable.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
second edition. Springer, New York, 2008.

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | loss |
resubMargin | resubPredict

22 Functions — Alphabetical List

22-4206

resubLoss

Class: ClassificationTree

Classification error by resubstitution

Syntax

L = resubLoss(tree)

L = resubLoss(tree,Name,Value)

L = resubLoss(tree,'Subtrees',subtreevector)

[L,se] = resubLoss(tree,'Subtrees',subtreevector)

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector)

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)

[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

Description

L = resubLoss(tree) returns the resubstitution loss, meaning the loss computed for
the data that fitctree used to create tree.

L = resubLoss(tree,Name,Value) returns the loss with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

L = resubLoss(tree,'Subtrees',subtreevector) returns a vector of
classification errors for the trees in the pruning sequence subtreevector.

[L,se] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of
standard errors of the classification errors.

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector) returns the
vector of numbers of leaf nodes in the trees of the pruning sequence.

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)

returns the best pruning level as defined in the TreeSize name-value pair. By default,

 resubLoss

22-4207

bestlevel is the pruning level that gives loss within one standard deviation of minimal
loss.

[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

returns loss statistics with additional options specified by one or more Name,Value
pair arguments. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments

tree

A classification tree constructed by fitctree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'LossFun'

Function handle or string representing a loss function. Built-in loss functions:

• 'binodeviance' — See “Loss Functions” on page 22-4209
• 'classiferror' — Fraction of misclassified observations. See “Loss Functions” on

page 22-4209.
• 'exponential' — See “Loss Functions” on page 22-4209
• 'hinge' — See “Loss Functions” on page 22-4209.
• 'mincost' — Smallest misclassification cost as given by the tree.Cost matrix. See

“Loss Functions” on page 22-4209.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-4209.

Default: 'mincost'

22 Functions — Alphabetical List

22-4208

Name,Value arguments associated with pruning subtrees:

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then ClassificationTree.resubLoss operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

ClassificationTree.resubLoss prunes tree to each level indicated in Subtrees,
and then estimates the corresponding output arguments. The size of Subtrees
determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

'TreeSize'

One of the following strings:

• 'se' — loss returns the highest pruning level with loss within one standard
deviation of the minimum (L+se, where L and se relate to the smallest value in
Subtrees).

• 'min' — loss returns the element of Subtrees with smallest loss, usually the
smallest element of Subtrees.

Output Arguments

L

Classification error, a vector the length of Subtrees. The meaning of the error depends
on the values in Weights and LossFun; see “Classification Error” on page 22-4209.

 resubLoss

22-4209

se

Standard error of loss, a vector the length of Subtrees.

NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of
Subtrees.

bestlevel

A scalar whose value depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one
standard deviation of the minimum (L+se, where L and se relate to the smallest
value in Subtrees).

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss,
usually the smallest element of Subtrees.

Definitions

Classification Error

The default classification error is the fraction of the training data X that tree
misclassifies.

Weighted classification error is the sum of weight i times the Boolean value that is 1
when tree misclassifies the ith row of X, divided by the sum of the weights.

Loss Functions

The built-in loss functions are:

• 'binodeviance' — For binary classification, assume the classes yn are -1 and 1.
With weight vector w normalized to have sum 1, and predictions of row n of data X as
f(Xn), the binomial deviance is

w y f Xn n nlog exp .1 2+ - ()()()Â

22 Functions — Alphabetical List

22-4210

• 'exponential' — With the same definitions as for 'binodeviance', the
exponential loss is

w y f Xn n nexp .- ()()Â

• 'classiferror' — Predict the label with the largest posterior probability. The loss
is then the fraction of misclassified observations.

• 'hinge' — Classification error measure that has the form

L

w y

w

f X

j

n

j j j

j

n

j

=

-{ }¢ ()
=

=

Â

Â

1

1

0 1max ,

,

where:

• wj is weight j.
• For binary classification, yj = 1 for the positive class and -1 for the negative class.

For problems where the number of classes K > 3, yj is a vector of 0s, but with a 1 in
the position corresponding to the true class, e.g., if the second observation is in the
third class and K = 4, then y2 = [0 0 1 0]′.

• f X j() is, for binary classification, the posterior probability or, for K > 3, a vector
of posterior probabilities for each class given observation j.

• 'mincost' — Predict the label with the smallest expected misclassification cost,
with expectation taken over the posterior probability, and cost as given by the Cost
property of the classifier (a matrix). The loss is then the true misclassification cost
averaged over the observations.

To write your own loss function, create a function file in this form:

function loss = lossfun(C,S,W,COST)

• N is the number of rows of X.
• K is the number of classes in the classifier, represented in the ClassNames property.
• C is an N-by-K logical matrix, with one true per row for the true class. The index for

each class is its position in the ClassNames property.

 resubLoss

22-4211

• S is an N-by-K numeric matrix. S is a matrix of posterior probabilities for classes with
one row per observation, similar to the posterior output from predict.

• W is a numeric vector with N elements, the observation weights. If you pass W, the
elements are normalized to sum to the prior probabilities in the respective classes.

• COST is a K-by-K numeric matrix of misclassification costs. For example, you can use
COST = ones(K) - eye(K), which means a cost of 0 for correct classification, and 1
for misclassification.

• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

True Misclassification Cost

There are two costs associated with classification: the true misclassification cost per
class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair
when you create the classifier using the fitctree method. Cost(i,j) is the cost of
classifying an observation into class j if its true class is i. By default, Cost(i,j)=1 if
i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for correct classification,
and 1 for incorrect classification.

Expected Misclassification Cost

There are two costs associated with classification: the true misclassification cost per
class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier.
Suppose you have K classes. You place the observations into a matrix Xnew with one
observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected
(average) cost of classifying the observation into each of the K classes. CE(n,k) is

ˆ | () | ,P i Xnew n C k i

i

K

() ()
=
Â

1

22 Functions — Alphabetical List

22-4212

where

• K is the number of classes.
• ˆ | ()P i Xnew n() is the posterior probability of class i for observation Xnew(n).

• C k i|() is the true misclassification cost of classifying an observation as k when its
true class is i.

Examples

Compute the In-Sample Classification Error

Compute the resubstitution classification error for the ionosphere data.

load ionosphere

tree = fitctree(X,Y);

L = resubLoss(tree)

L =

 0.0114

Examine the Classification Error for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-
sample performance is to prune a tree (or restrict its growth) so that in-sample and out-
of-sample performance are satisfactory.

Load Fisher's iris data set. Partition the data into training (50%) and validation (50%)
sets.

load fisheriris

n = size(meas,1);

rng(1) % For reproducibility

idxTrn = false(n,1);

idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices

idxVal = idxTrn == false; % Validation set logical indices

Grow a classification tree using the training set.

 resubLoss

22-4213

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

View the classification tree.

view(Mdl,'Mode','graph');

The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as
displayed). Level 3 is just the root node (i.e., no splits).

Examine the training sample classification error for each subtree (or pruning level)
excluding the highest level.

22 Functions — Alphabetical List

22-4214

m = max(Mdl.PruneList) - 1;

trnLoss = resubLoss(Mdl,'SubTrees',0:m)

trnLoss =

 0.0267

 0.0533

 0.3067

• The full, unpruned tree misclassifies about 2.7% of the training observations.
• The tree pruned to level 1 misclassifies about 5.3% of the training observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training

observations.

Examine the validation sample classification error at each level excluding the highest
level.

valLoss = loss(Mdl,meas(idxVal,:),species(idxVal),'SubTrees',0:m)

valLoss =

 0.0369

 0.0237

 0.3067

• The full, unpruned tree misclassifies about 3.7% of the validation observations.
• The tree pruned to level 1 misclassifies about 2.4% of the validation observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation

observations.

To balance model complexity and out-of-sample performance, consider pruning Mdl to
level 1.

pruneMdl = prune(Mdl,'Level',1);

view(pruneMdl,'Mode','graph')

 resubLoss

22-4215

See Also
loss | resubMargin | resubPredict | resubEdge | fitctree

22 Functions — Alphabetical List

22-4216

resubLoss
Class: RegressionEnsemble

Regression error by resubstitution

Syntax

L = resubLoss(ens)

L = resubLoss(ens,Name,Value)

Description

L = resubLoss(ens) returns the resubstitution loss, meaning the mean squared error
computed for the data that fitensemble used to create ens.

L = resubLoss(ens,Name,Value) calculates loss with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A regression ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubLoss
uses only these learners for calculating loss.

 resubLoss

22-4217

Default: 1:NumTrained

'lossfun'

Function handle for loss function, or the string 'mse', meaning mean squared error. If
you pass a function handle fun, resubLoss calls it as

FUN(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length. Y is the observed response,
Yfit is the predicted response, and W is the observation weights.

Default: 'mse'

'mode'

String representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J

from the input list of learners.

Default: 'ensemble'

Output Arguments

L

Loss, by default the mean squared error. L can be a vector, and can mean different
things, depending on the name-value pair settings.

Examples

Find the resubstitution predictions of mileage from the carsmall data based on
horsepower and weight, and look at their mean square difference from the training data.

load carsmall

X = [Horsepower Weight];

22 Functions — Alphabetical List

22-4218

ens = fitensemble(X,MPG,'LSBoost',100,'Tree');

MSE = resubLoss(ens)

MSE =

 6.4336

See Also
resubPredict | loss | resubLoss

 resubLoss

22-4219

resubLoss

Class: RegressionTree

Regression error by resubstitution

Syntax

L = resubLoss(tree)

L = resubLoss(tree,Name,Value)

L = resubLoss(tree,'Subtrees',subtreevector)

[L,se] = resubLoss(tree,'Subtrees',subtreevector)

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector)

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)

[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

Description

L = resubLoss(tree) returns the resubstitution loss, meaning the loss computed for
the data that fitrtree used to create tree.

L = resubLoss(tree,Name,Value) returns the loss with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

L = resubLoss(tree,'Subtrees',subtreevector) returns a vector of mean
squared errors for the trees in the pruning sequence subtreevector.

[L,se] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of
standard errors of the classification errors.

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector) returns the
vector of numbers of leaf nodes in the trees of the pruning sequence.

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)

returns the best pruning level as defined in the TreeSize name-value pair. By default,

22 Functions — Alphabetical List

22-4220

bestlevel is the pruning level that gives loss within one standard deviation of minimal
loss.

[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

returns loss statistics with additional options specified by one or more Name,Value
pair arguments. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments

tree

A regression tree constructed using fitrtree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'LossFun'

Function handle, or the string 'mse' meaning mean squared error.

You can write your own loss function in the syntax described in “Loss Functions” on page
22-4222.

Default: 'mse'

Name,Value arguments associated with pruning subtrees:

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

 resubLoss

22-4221

If you specify 'all', then RegressionTree.resubLoss operates on all subtrees
(i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

RegressionTree.resubLoss prunes tree to each level indicated in Subtrees, and
then estimates the corresponding output arguments. The size of Subtrees determines
the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

'TreeSize'

One of the following strings:

• 'se' — loss returns the highest pruning level with loss within one standard
deviation of the minimum (L + se, where L and se relate to the smallest value in
Subtrees).

• 'min' — loss returns the element of Subtrees with smallest loss, usually the
smallest element of Subtrees.

Output Arguments

L

Mean squared error, a vector the length of Subtrees. The meaning of the error depends
on the values in Weights and LossFun.

se

Standard error of loss, a vector the length of Subtrees.

NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of
Subtrees.

22 Functions — Alphabetical List

22-4222

bestlevel

A scalar whose value depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one
standard deviation of the minimum (L + se, where L and se relate to the smallest
value in Subtrees).

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss,
usually the smallest element of Subtrees.

Definitions

Loss Functions

The built-in loss function is 'mse', meaning mean squared error.

To write your own loss function, create a function file of the form

function loss = lossfun(Y,Yfit,W)

• N is the number of rows of tree.X.
• Y is an N-element vector representing the observed response.
• Yfit is an N-element vector representing the predicted responses.
• W is an N-element vector representing the observation weights.
• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.

Examples

Compute the In-Sample MSE

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

 resubLoss

22-4223

X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

Mdl = fitrtree(X,MPG);

Compute the resubstitution MSE.

resubLoss(Mdl)

ans =

 4.8952

Examine the MSE for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-
sample performance is to prune a tree (or restrict its growth) so that in-sample and out-
of-sample performance are satisfactory.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

Y = MPG;

Partition the data into training (50%) and validation (50%) sets.

n = size(X,1);

rng(1) % For reproducibility

idxTrn = false(n,1);

idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices

idxVal = idxTrn == false; % Validation set logical indices

Grow a regression tree using the training set.

Mdl = fitrtree(X(idxTrn,:),Y(idxTrn));

View the regression tree.

view(Mdl,'Mode','graph');

22 Functions — Alphabetical List

22-4224

The regression tree has seven pruning levels. Level 0 is the full, unpruned tree (as
displayed). Level 7 is just the root node (i.e., no splits).

Examine the training sample MSE for each subtree (or pruning level) excluding the
highest level.

m = max(Mdl.PruneList) - 1;

trnLoss = resubLoss(Mdl,'SubTrees',0:m)

 resubLoss

22-4225

trnLoss =

 5.9789

 6.2768

 6.8316

 7.5209

 8.3951

 10.7452

 14.8445

• The MSE for the full, unpruned tree is about 6 units.
• The MSE for the tree pruned to level 1 is about 6.3 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 14.8 units.

Examine the validation sample MSE at each level excluding the highest level.

valLoss = loss(Mdl,X(idxVal,:),Y(idxVal),'SubTrees',0:m)

valLoss =

 32.1205

 31.5035

 32.0541

 30.8183

 26.3535

 30.0137

 38.4695

• The MSE for the full, unpruned tree (level 0) is about 32.1 units.
• The MSE for the tree pruned to level 4 is about 26.4 units.
• The MSE for the tree pruned to level 5 is about 30.0 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 38.5 units.

To balance model complexity and out-of-sample performance, consider pruning Mdl to
level 4.

pruneMdl = prune(Mdl,'Level',4);

view(pruneMdl,'Mode','graph')

22 Functions — Alphabetical List

22-4226

See Also
resubPredict | loss | fitrtree

 resubMargin

22-4227

resubMargin
Class: ClassificationDiscriminant

Classification margins by resubstitution

Syntax

M = resubMargin(obj)

Description

M = resubMargin(obj) returns resubstitution classification margins for obj.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments

M

Numeric column-vector of length size(obj.X,1) containing the classification margins.

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

22 Functions — Alphabetical List

22-4228

The classification margin is a column vector with the same number of rows as in the
matrix X. A high value of margin indicates a more reliable prediction than a low value.

Score

For discriminant analysis, the score of a classification is the posterior probability of the
classification. For the definition of posterior probability in discriminant analysis, see
“Posterior Probability” on page 15-7.

Examples

Estimate Resubstitution Margins for Discriminant Analysis Classifiers

Find the margins for a discriminant analysis classifier for Fisher's iris data by
resubstitution. Examine several entries.

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis classifier.

Mdl = fitcdiscr(meas,species);

Compute the resubstitution margins, and display several of them.

m = resubMargin(Mdl);

m(1:25:end)

ans =

 1.0000

 1.0000

 0.9998

 0.9998

 1.0000

 0.9946

See Also
ClassificationDiscriminant | fitcdiscr | margin

 resubMargin

22-4229

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-4230

resubMargin
Class: ClassificationECOC

Classification margins for error-correcting output codes, multiclass models by
resubstitution

Syntax

m = margin(Mdl)

m = margin(Mdl,Name,Value)

Description

m = margin(Mdl) returns the classification margins (m) for the trained, error-correcting
output codes (ECOC), multiclass model Mdl using the training data stored in Mdl.X and
corresponding class labels stored in Mdl.Y.

m = margin(Mdl,Name,Value) returns the classification margins with additional
options specified by one or more Name,Value pair arguments.

For example, specify a decoding scheme, binary learner loss function, or verbosity level.

Input Arguments

Mdl — ECOC multiclass model
ClassificationECOC model

ECOC multiclass model, specified as a ClassificationECOC model returned by
fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 resubMargin

22-4231

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.

22 Functions — Alphabetical List

22-4232

• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'Verbose' — Verbosity level
0 (default) | 1

 resubMargin

22-4233

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

Output Arguments

m — Classification margins
numeric column vector

Classification margins, returned as a numeric column vector.

m has the same length as Mdl.Y. The software estimates each entry of m using the
trained ECOC model Mdl, the corresponding row of Mdl.X, and the true class label
Mdl.Y.

Definitions

Classification Margin

The classification margins are, for each observation, the difference between the negative
loss for the positive class and maximal negative loss among the negative classes. If the
margins are on the same scale, then they serve as a classification confidence measure,
i.e., among multiple classifiers, those that yield larger margins are better [4].

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

22 Functions — Alphabetical List

22-4234

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2

 resubMargin

22-4235

Value Description Score Domain g(yj,sj)

'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

Examples

Estimate In-Sample Classification Margins of ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = species;

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the
predictors and define the class order. Specify to standardize the predictors using an SVM
template.

t = templateSVM('Standardize',1);

classOrder = unique(Y)

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

classOrder =

 'setosa'

 'versicolor'

 'virginica'

t is an SVM template object. The software uses default values for empty options in t
during training. Mdl is a ClassificationECOC model.

Estimate the in-sample classification margins. Display the distribution of the margins
using a boxplot.

22 Functions — Alphabetical List

22-4236

m = resubMargin(Mdl);

figure;

boxplot(m);

title 'In-Sample Margins'

An observation margin is the positive-class, negated loss minus the maximum negative-
class, negated loss. Classifiers that yield relatively large margins are desirable.

Select ECOC Model Features by Examining In-Sample Margins

The classifier margins measure, for each observation, the difference between the positive-
class, negated loss score and the maximal negative-class, negated loss. One way to

 resubMargin

22-4237

perform feature selection is to compare in-sample margins from multiple models. Based
solely on this criterion, the model with the highest margins is the best model.

Load Fisher's iris data set. Define two data sets:

• fullX contains all 4 predictors.
• partX contains the sepal measurements.

load fisheriris

X = meas;

fullX = X;

partX = X(:,1:2);

Y = species;

Train ECOC models using SVM binary learners for each predictor set. It is good practice
to standardize the predictors and define the class order. Specify to standardize the
predictors using an SVM template, and to compute posterior probabilities.

t = templateSVM('Standardize',1);

classOrder = unique(Y)

FullMdl = fitcecoc(fullX,Y,'Learners',t,'ClassNames',classOrder,...

 'FitPosterior',1);

PartMdl = fitcecoc(partX,Y,'Learners',t,'ClassNames',classOrder,...

 'FitPosterior',1);

classOrder =

 'setosa'

 'versicolor'

 'virginica'

Estimate the in-sample margins for each classifier. For each model, display the
distribution of the margins using a boxplot.

fullMargins = resubMargin(FullMdl);

partMargins = resubMargin(PartMdl);

figure;

boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'});

title('Boxplots of In-Sample Margins')

22 Functions — Alphabetical List

22-4238

The margin distribution of CMdl is situated higher, and with less variablility than the
margin distribution of PCMdl.

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Tip

To compare margins or edges of several classifiers, use template objects to specify a
common score transform function among the classifiers when you train them using
fitcecoc.

 resubMargin

22-4239

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[4] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationECOC | fitcecoc | margin | predict | resubEdge |
resubPredict

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

22 Functions — Alphabetical List

22-4240

resubMargin
Class: ClassificationEnsemble

Classification margins by resubstitution

Syntax

margin = resubMargin(ens)

margin = resubMargin(ens,Name,Value)

Description

margin = resubMargin(ens) returns the classification margin obtained by ens on its
training data.

margin = resubMargin(ens,Name,Value) calculates margins with additional
options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. resubMargin
uses only these learners for calculating margin.

 resubMargin

22-4241

Default: 1:NumTrained

Output Arguments

margin

A numeric column-vector of length size(ens.X,1) containing the classification
margins.

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes. Margin is a column vector
with the same number of rows as in the matrix ens.X.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Examples

Find the resubstitution margins for an ensemble that classifies the Fisher iris data:

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

margin = resubMargin(ens);

[min(margin) mean(margin) max(margin)]

22 Functions — Alphabetical List

22-4242

ans =

 -0.5674 3.2486 4.6245

See Also
resubEdge | resubMargin | resubLoss | resubPredict

 resubMargin

22-4243

resubMargin
Class: ClassificationKNN

Margin of k-nearest neighbor classifier by resubstitution

Syntax
m = resubMargin(mdl)

Description
m = resubMargin(mdl) returns the classification margins of the data used to train
mdl. For the definition, see “Margin” on page 22-4244.

Input Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

Output Arguments

m

A numeric column vector of length size(mdl.X,1), where mdl.X is the training data
for mdl. Each entry in m represents the margin for the corresponding row of mdl.X and
(true class) mdl.Y.

22 Functions — Alphabetical List

22-4244

Definitions

Margin

The classification margin is the difference between the classification score for the true
class and maximal classification score for the false classes.

Margin is a column vector with the same number of rows as in the training data.

Score

The score of a classification is the posterior probability of the classification. The posterior
probability is the number of neighbors that have that classification, divided by the
number of neighbors. For a more detailed definition that includes weights and prior
probabilities, see “Posterior Probability” on page 22-3654.

Examples

Resubstitution Margin Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the data.

load fisheriris

X = meas;

Y = species;

Construct a classifier for 5-nearest neighbors.

mdl = fitcknn(X,Y,'NumNeighbors',5);

Examine some statistics of the resubstitution margin of the classifier.

m = resubMargin(mdl);

[max(m) min(m) mean(m)]

ans =

 1.0000 -0.6000 0.9253

 resubMargin

22-4245

The mean margin is over 0.9, indicating fairly high classification accuracy for
resubstitution. For more reliable assessment of model accuracy, consider cross validation,
such as kfoldLoss.

• “Examine the Quality of a KNN Classifier” on page 16-29

See Also
ClassificationKNN | fitcknn | resubEdge | resubLoss | resubPredict

More About
• “Classification Using Nearest Neighbors” on page 16-8

22 Functions — Alphabetical List

22-4246

resubMargin

Class: ClassificationNaiveBayes

Classification margins for naive Bayes classifiers by resubstitution

Syntax

m = resubMargin(Mdl)

Description

m = resubMargin(Mdl) returns the resubstitution classification margins (m) for the
naive Bayes classifier Mdl using the training data stored in Mdl.X and corresponding
class labels stored in Mdl.Y.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes
model trained by fitcnb.

Output Arguments

m — Classification margins
numeric vector

Classification margins, returned as a numeric vector.

m has the same length equal to size(Mdl.X,1). Each entry of m is the classification
margin of the corresponding observation (row) of Mdl.X and element of Mdl.Y.

 resubMargin

22-4247

Definitions

Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability
of their respective class. The software uses the normalized weights to compute the
weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Classification Margin

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

22 Functions — Alphabetical List

22-4248

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Score

The naive Bayes score is the class posterior probability given the observation.

Examples

Estimate In-Sample Classification Margins of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationNaiveBayes classifier.

Estimate the in-sample classification margins. Display the distribution of the margins
using a boxplot.

m = resubMargin(Mdl);

figure;

boxplot(m);

h = gca;

iqr = quantile(m,0.75) - quantile(m,0.25);

h.YLim = median(m) + iqr*[-4 4];

 resubMargin

22-4249

title 'Boxplot of the Margins';

An observation margin is the observed (true) class score minus the maximum false class
score among all scores in the respective class. Classifiers that yield relatively large
margins are desirable.

Select Naive Bayes Classifier Features by Examining In-Sample Margins

The classifier margins measure, for each observation, the difference between the true
class observed score and the maximal false class score for a particular class. One way to
perform feature selection is to compare in-sample margins from multiple models. Based
solely on this criterion, the model with the highest margins is the best model.

Load Fisher's iris data set. Define two data sets:

22 Functions — Alphabetical List

22-4250

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

load fisheriris

X = meas; % Predictors

Y = species; % Response

fullX = X;

partX = X(:,3:4);

Train naive Bayes classifiers for each predictor set.

FullMdl = fitcnb(fullX,Y);

PartMdl = fitcnb(partX,Y);

Estimate the in-sample margins for each classifier. Compute confidence intervals for
each sample.

fullM = resubMargin(FullMdl);

partM = resubMargin(PartMdl);

n = size(X,1);

fullMCI = mean(fullM) + 2*[-std(fullM)/n std(fullM)/n]

partMCI = mean(partM) + 2*[-std(partM)/n std(partM)/n]

fullMCI =

 0.8898 0.8991

partMCI =

 0.9129 0.9209

The confidence intervals are tight, and mutually exclusive. The margin confidence
interval of the classifier trained using just predictors 3 and 4 has higher values than that
of the full model. Therefore, the model trained on two predictors has better in-sample
performance.

References

[1] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

 resubMargin

22-4251

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | margin |
resubEdge | resubLoss

22 Functions — Alphabetical List

22-4252

resubMargin

Class: ClassificationSVM

Classification margins for support vector machine classifiers by resubstitution

Syntax

m = resubMargin(SVMModel)

Description

m = resubMargin(SVMModel) returns the resubstitution classification margins (m) for
the support vector machine (SVM) classifier SVMModel using the training data stored in
SVMModel.X and corresponding class labels stored in SVMModel.Y.

Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained using
fitcsvm.

Output Arguments

m — Classification margins
numeric vector

Classification margins, returned as a numeric vector.

m has the same length as Y. The software estimates each entry of m using the trained
SVM classifier SVMModel, the corresponding row of X, and the true class label Y.

 resubMargin

22-4253

Definitions

Margins

The classification margins are, for each observation, the difference between the score
for the true class and maximal score for the false classes. Provided that they are on the
same scale, margins serve as a classification confidence measure, i.e., among multiple
classifiers, those that yield larger margins are better [2].

Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software
normalizes them to sum to the prior probabilities in the respective classes. The software
uses the renormalized weights to compute the weighted mean.

One way to choose among multiple classifiers, e.g., to perform feature selection, is to
choose the classifier that yields the highest edge.

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

22 Functions — Alphabetical List

22-4254

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x x s b() = () ¢ +/ .b

s is the kernel scale and β is the vector of fitted linear coefficients.

Examples

Estimate In-Sample Classification Margins of SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to specify the class order and standardize the
data.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier. The negative class is 'b' and the
positive class is 'g'.

Estimate the in-sample classification margins.

m = resubMargin(SVMModel);

m(10:20)

ans =

 5.5622

 4.2918

 1.9993

 4.5520

 -1.4897

 3.2816

 4.0260

 4.5419

 16.4449

 resubMargin

22-4255

 2.0006

 23.3782

An observation margin is the observed (true) class score minus the maximum false class
score among all scores in the respective class. Classifiers that yield relatively large
margins are desirable.

Select SVM Classifier Features by Examining In-Sample Margins

The classifier margins measure, for each observation, the difference between the true
class observed score and the maximal false class score for a particular class. One way to
perform feature selection is to compare in-sample margins from multiple models. Based
solely on this criterion, the model with the highest margins is the best model.

Load the ionosphere data set. Define two data sets:

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

load ionosphere

fullX = X;

partX = X(:,end-20:end);

Train SVM classifiers for each predictor set.

FullSVMModel = fitcsvm(fullX,Y);

PartSVMModel = fitcsvm(partX,Y);

Estimate the in-sample margins for each classifier.

fullMargins = resubMargin(FullSVMModel);

partMargins = resubMargin(PartSVMModel);

n = size(X,1);

p = sum(fullMargins < partMargins)/n

p =

 0.2222

22 Functions — Alphabetical List

22-4256

Approximately 22% of the margins from the full model are less than those from the
model with fewer predictors. This suggests that the model trained using all of the
predictors is better.

Algorithms

For binary classification, the software defines the margin for observation j, mj, as

m y f xj j j= 2 (),

where yj ∊ {-1,1}, and f(xj) is the predicted score of observation j for the positive class.
However, the literature commonly uses mj = yjf(xj) to define the margin.

References

[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

[2] Hu, Q., X. Che, L. Zhang, and D. Yu. “Feature Evaluation and Selection Based on
Neighborhood Soft Margin.” Neurocomputing. Vol. 73, 2010, pp. 2114–2124.

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | margin |
resubEdge | resubLoss

 resubMargin

22-4257

resubMargin
Class: ClassificationTree

Classification margins by resubstitution

Syntax

M = resubMargin(tree)

Description

M = resubMargin(tree) returns resubstitution classification margins for tree.

Input Arguments

tree

A classification tree created by fitctree.

Output Arguments

M

A numeric column-vector of length size(tree.X,1) containing the classification
margins.

Definitions

Margin

Classification margin is the difference between classification score for the true class and
maximal classification score for the false classes. A high value of margin indicates a more
reliable prediction than a low value.

22 Functions — Alphabetical List

22-4258

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the
classification at that node. The posterior probability of the classification at a node is the
number of training sequences that lead to that node with the classification, divided by
the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when X < 0.15 or X > 0.95, and
X is false otherwise.

Generate 100 random points and classify them:

rng(0,'twister') % for reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','Graph')

 resubMargin

22-4259

Prune the tree:

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','Graph')

22 Functions — Alphabetical List

22-4260

The pruned tree correctly classifies observations that are less than 0.15 as true. It
also correctly classifies observations from .15 to .94 as false. However, it incorrectly
classifies observations that are greater than .94 as false. Therefore, the score for
observations that are greater than .15 should be about .05/.85=.06 for true, and
about .8/.85=.94 for false.

Compute the prediction scores for the first 10 rows of X:

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

 resubMargin

22-4261

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.91 and 0.09. The difference (score 0.09 instead of the expected
.06) is due to a statistical fluctuation: there are 8 observations in X in the range
(.95,1) instead of the expected 5 observations.

Examples

Find the margins for a classification tree for the Fisher iris data by resubstitution.
Examine several entries:

load fisheriris

tree = fitctree(meas,species);

M = resubMargin(tree);

M(1:25:end)

ans =

 1.0000

 1.0000

 1.0000

 1.0000

 0.9565

 0.9565

See Also
margin | resubEdge | fitctree | resubLoss | resubPredict

22 Functions — Alphabetical List

22-4262

resubPredict
Class: ClassificationDiscriminant

Predict resubstitution response of classifier

Syntax

label = resubPredict(obj)

[label,posterior] = resubPredict(obj)

[label,posterior,cost] = resubPredict(obj)

Description

label = resubPredict(obj) returns the labels obj predicts for the data obj.X.
label is the predictions of obj on the data that fitcdiscr used to create obj.

[label,posterior] = resubPredict(obj) returns the posterior class probabilities
for the predictions.

[label,posterior,cost] = resubPredict(obj) returns the predicted
misclassification costs per class for the resubstituted data.

Input Arguments

obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments

label

Response obj predicts for the training data. label is the same data type as the training
response data obj.Y. The predicted class labels are those with minimal expected
misclassification cost; see “How the predict Method Classifies” on page 15-6.

 resubPredict

22-4263

posterior

N-by-K matrix of posterior probabilities for classes obj predicts, where N is the number of
observations and K is the number of classes.

cost

N-by-K matrix of predicted misclassification costs. Each cost is the average
misclassification cost with respect to the posterior probability.

Definitions

Posterior Probability

posterior(i,k) is the posterior probability of class k for observation i. For the
mathematical definition, see “Posterior Probability” on page 15-7.

Examples

Find the total number of misclassifications of the Fisher iris data for a discriminant
analysis classifier:

load fisheriris

obj = fitcdiscr(meas,species);

Ypredict = resubPredict(obj); % the predictions

Ysame = strcmp(Ypredict,species); % true when ==

sum(~Ysame) % how many are different?

ans =

 3

See Also
predict | ClassificationDiscriminant | fitcdiscr

How To
• “Discriminant Analysis” on page 15-3

22 Functions — Alphabetical List

22-4264

resubPredict
Class: ClassificationECOC

Predict error-correcting output codes, multiclass model resubstitution responses

Syntax

label = resubPredict(Mdl)

label = resubPredict(Mdl,Name,Value)

[label,NegLoss,PBScore] = resubPredict(___)

[label,NegLoss,PBScore,Posterior] = resubPredict(___)

Description

label = resubPredict(Mdl) returns a vector of predicted class labels for the
predictor data (stored in Mdl.X) based on the trained error-correcting output codes,
multiclass model Mdl.

The software predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest
average binary loss).

label = resubPredict(Mdl,Name,Value) returns predicted class labels with
additional options specified by one or more Name,Value pair arguments.

For example, specify the posterior probability estimation method, decoding scheme, or
verbosity level.

[label,NegLoss,PBScore] = resubPredict(___) additionally returns negated
average binary loss per class (NegLoss) for observations, and positive-class scores
(PBScore) for the observations classified by each binary learner.

[label,NegLoss,PBScore,Posterior] = resubPredict(___) additionally
returns posterior class probability estimates for observations (Posterior).

To obtain posterior class probabilities, you must set 'FitPosterior',1 when training
the ECOC model using fitcecoc. Otherwise, resubPredict throws an error.

 resubPredict

22-4265

Input Arguments

Mdl — ECOC multiclass model
ClassificationECOC model

ECOC multiclass model, specified as a ClassificationECOC model returned by
fitcecoc.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BinaryLoss' — Binary learner loss function
function handle | 'hamming' | 'linear' | 'exponential' | 'binodeviance' |
'hinge' | 'quadratic'

Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a function handle or string.

• If the value is a string, then it must correspond to a built-in function. This table
summarizes the built-in functions, where yj is a class label for a particular binary
learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary
loss formula.

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

22 Functions — Alphabetical List

22-4266

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also,
the software calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-L coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-L row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every

learner in a particular class. For example, you can use the mean binary loss to
aggregate the loss over the learners for each class.

• K is the number of classes.
• L is the number of binary learners.

For an example on passing a custom binary loss function, see “Predict Test-Sample
Labels of ECOC Models Using Custom Binary Loss Function”.

This list describes the default values of BinayLoss. If all binary learners are:

• SVMs, then BinaryLoss is 'hinge'
• Ensembles trained by AdaboostM1 or GentleBoost, then BinaryLoss is

'exponential'

• Ensembles trained by LogitBoost, then BinaryLoss is 'binodeviance'
• Predicting class posterior probabilities (i.e., set 'FitPosterior',1 in fitcecoc),

then BinaryLoss is 'quadratic'

Otherwise, the default BinaryLoss is 'hamming'.

Example: 'BinaryLoss','binodeviance'

Data Types: char | function_handle

'Decoding' — Decoding scheme
'lossweighted' (default) | 'lossbased'

 resubPredict

22-4267

Decoding scheme that aggregates the binary losses, specified as the comma-separated
pair consisting of 'Decoding' and 'lossweighted' or 'lossbased'.

Example: 'Decoding','lossbased'

Data Types: char

'NumKLInitializations' — Number of random initial values
0 (default) | nonnegative integer

Number of random initial values for fitting posterior probabilities by Kullback-
Leibler divergence minimization, specified as the comma-separated pair consisting of
'NumKLInitializations' and a nonnegative integer.

If you do not request the fourth output argument (Posterior) and set
'PosteriorMethod','kl' (the default), then the software ignores the value of
NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page
22-3679.
Example: 'NumKLInitializations',5

Data Types: single | double

'Options' — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and
a structure array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',1).

'PosteriorMethod' — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair
consisting of 'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior
probabilities by minimizing the Kullback-Leibler divergence between the predicted

22 Functions — Alphabetical List

22-4268

and expected posterior probabilities returned by binary learners. For details, see
“Posterior Estimation Using Kullback-Leibler Divergence”.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior
probabilities by solving a least-squares problem using quadratic programming. You
need an Optimization Toolbox license to use this option. For details, see “Posterior
Estimation Using Quadratic Programming”.

• If you do not request the fourth output argument (Posterior), then the software
ignores the value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Data Types: char

'Verbose' — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or
1. Verbose controls the amount of diagnostic messages that the software displays in the
Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the
software displays diagnostic messages.
Example: 'Verbose',1

Data Types: single | double

Output Arguments

label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Predicted class labels, returned as a categorical or character array, logical or numeric
vector, or cell array of strings.

label is the same data type as the Mdl.ClassNames, and has length equal to the
number of rows of Mdl.X.

The software predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest
average binary loss).

 resubPredict

22-4269

NegLoss — Negated average binary losses
numeric matrix

Negated, average binary losses, returned as a numeric matrix. NegLoss is an n-by-K
matrix, where n is the number of observations (size(Mdl.X,1)) and K is the number of
unique classes (size(Mdl.ClassNames,1)).

PBScore — Positive-class scores
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. PBScore is
an n-by-L matrix, where n is the number of observations (size(Mdl.X,1)) and L is the
number of binary learners (size(Mdl.CodingMatrix,2)).

Posterior — Posterior class probabilities
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an n-by-K
matrix, where n is the number of observations (size(Mdl.X,1)) and K is the number of
unique classes (size(Mdl.ClassNames,1)).

You must set 'FitPosterior',1 when training the ECOC model using fitcecoc to
request Posterior. Otherwise, the software throws an error.

Definitions

Binary Loss

A binary loss is a function of the class and classification score that determines how well a
binary learner classifies an observation into the class.

Let:

• mkj be element (k,j) of the coding design matrix M (i.e., the code corresponding to class
k of binary learner j)

• sj be the score of binary learner j for an observation
• g be the binary loss function
• ˆk be the predicted class for the observation

22 Functions — Alphabetical List

22-4270

In loss-based decoding [3], the class producing the minimum sum of the binary losses
over binary learners determines the predicted class of an observation, that is,

ˆ (,).k m g m s
k

kj

j

L

kj j=

=

Âargmin

1

In loss-weighted decoding [3], the class producing the minimum average of the binary
losses over binary learners determines the predicted class of an observation, that is,

ˆ

(,)

.k

m g m s

m
k

kj

j

L

kj j

j

L

kj

=
=

=

Â

Â

argmin
1

1

Allwein et al. [1] suggest that loss-weighted decoding improves classification accuracy by
keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where yj is a class label for a
particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj).

Value Description Score Domain g(yj,sj)

'binodeviance' Binomial deviance (-∞,∞) log[1 + exp(-2yjsj)]/
[2log(2)]

'exponential' Exponential (-∞,∞) exp(–yjsj)/2
'hamming' Hamming {-1,1} [1 – sign(yjsj)]/2
'hinge' Hinge (-∞,∞) max(0,1 – yjsj)/2
'linear' Linear (-∞,∞) (1 – yjsj)/2
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0, and
aggregates using the average of the binary learners [1].

Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value pair argument of predict and loss), e.g., classification error,
which measures how well an ECOC classifier performs as a whole.

 resubPredict

22-4271

Examples

Predict Labels of Training Data Using ECOC Models

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

n = numel(Y); % Sample size

classOrder = unique(Y);

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the
predictors and define the class order. Specify to standardize the predictors using an SVM
template.

t = templateSVM('Standardize',1);

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. The software uses default values for empty options in t
during training. Mdl is a ClassificationECOC model.

Predict the labels of the training data. Print a random subset of true and predicted
labels.

labels = resubPredict(Mdl);

rng(1);

idx = randsample(n,10);

table(Y(idx),labels(idx),'VariableNames',{'TrueLabels','PredictedLabels'})

ans =

 TrueLabels PredictedLabels

 __________ _______________

 setosa setosa

 versicolor versicolor

 virginica virginica

 setosa setosa

 versicolor versicolor

 setosa setosa

 versicolor versicolor

 versicolor versicolor

 setosa setosa

22 Functions — Alphabetical List

22-4272

 setosa setosa

Mdl correctly labeled the observations with indices idx.

Predict Resubstitution Labels of ECOC Models Using a Custom Binary Loss Function

Load Fisher's iris data set.

load fisheriris

X = meas;

Y = categorical(species);

n = numel(Y); % Sample size

classOrder = unique(Y); % Class order

K = numel(classOrder); % Number of classes

Train an ECOC model using SVM binary classifiers. It is good practice to standardize the
predictors and define the class order. Specify to standardize the predictors using an SVM
template.

t = templateSVM('Standardize',1);

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. The software uses default values for empty options in t
during training. Mdl is a ClassificationECOC model.

SVM scores are signed distances from the observation to the decision boundary.
Therefore, the domain is . Create a custom binary loss function that:

• Maps the coding design matrix (M) and positive-class classification scores (s) for each
learner to the binary loss for each observation

• Uses linear loss
• Aggregates the binary learner loss using the median

You can create a separate function for the binary loss function, and then save it on the
MATLAB® path. Or, you can specify an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

Predict resubstitution labels and estimate the median binary loss per class. Print the
median negative binary losses per class for a random set of 10 observations.

[label,NegLoss] = resubPredict(Mdl,'BinaryLoss',customBL);

rng(1); % For reproducibility

 resubPredict

22-4273

idx = randsample(n,10);

classOrder

table(Y(idx),label(idx),NegLoss(idx,:),'VariableNames',...

 {'TrueLabel','PredictedLabel','NegLoss'})

classOrder =

 setosa

 versicolor

 virginica

ans =

 TrueLabel PredictedLabel NegLoss

 __________ ______________ _______________________________

 setosa versicolor 0.12376 1.9575 -3.5812

 versicolor versicolor -1.0171 0.62948 -1.1123

 virginica virginica -1.9088 -0.21759 0.62641

 setosa versicolor 0.43846 2.2448 -4.1833

 versicolor versicolor -1.0735 0.3965 -0.82299

 setosa versicolor 0.26658 2.201 -3.9675

 versicolor versicolor -1.1237 0.69927 -1.0756

 versicolor versicolor -1.2716 0.51847 -0.74687

 setosa versicolor 0.35211 2.0683 -3.9204

 setosa versicolor 0.23342 2.1892 -3.9226

The column order corresponds to the elements of classOrder. The software predicts the
label based on the maximum negated loss. The results seem to indicate that the median
of the linear losses might not perform as well as other losses.

Estimate Posterior Probabilities Using ECOC Classifiers

Load Fisher's iris data set. Train the classifier using the petal dimensions as predictors.

load fisheriris

X = meas(:,3:4);

Y = species;

rng(1); % For reproducibility

Create an SVM template, and specify the Gaussian kernel. It is good practice to
standardize the predictors.

22 Functions — Alphabetical List

22-4274

t = templateSVM('Standardize',1,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the
ECOC classifier, it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to
class posterior probabilities (which are returned by predict or resubPredict) using
the 'FitPosterior' name-value pair argument. Display diagnostic messages during
the training using the 'Verbose' name-value pair argument. It is good practice to
specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',1,...

 'ClassNames',{'setosa','versicolor','virginica'},...

 'Verbose',2);

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 2

Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).

Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 3

Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).

Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations.

Negative class indices: 3

Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary
learner, but you can adjust options for each binary learner by passing in a cell vector of
templates.

Predict the in-sample labels and class posterior probabilities. Display diagnostic
messages during the computation of labels and class posterior probabilities using the
'Verbose' name-value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);

Mdl.BinaryLoss

Predictions from all learners have been computed.

Loss for all observations has been computed.

 resubPredict

22-4275

Computing posterior probabilities...

ans =

quadratic

The software assigns an observation to the class that yields the smallest average binary
loss. Since all binary learners are computing posterior probabilities, the binary loss
function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);

Mdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),...

 'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 TrueLabel PredLabel Posterior

 ____________ ____________ ______________________________________

 'virginica' 'virginica' 0.0039321 0.0039869 0.99208

 'virginica' 'virginica' 0.017067 0.018263 0.96467

 'virginica' 'virginica' 0.014948 0.015856 0.9692

 'versicolor' 'versicolor' 2.2197e-14 0.87317 0.12683

 'setosa' 'setosa' 0.999 0.00025091 0.00074639

 'versicolor' 'virginica' 2.2195e-14 0.059429 0.94057

 'versicolor' 'versicolor' 2.2194e-14 0.97001 0.029986

 'setosa' 'setosa' 0.999 0.0002499 0.00074741

 'versicolor' 'versicolor' 0.0085646 0.98259 0.008849

 'setosa' 'setosa' 0.999 0.00025013 0.00074718

The columns of Posterior correspond to the class order of Mdl.ClassNames.

22 Functions — Alphabetical List

22-4276

Define a grid of values in the observed predictor space. Predict the posterior probabilities
for each instance in the grid.

xMax = max(X);

xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));

x2Pts = linspace(xMin(2),xMax(2));

[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);

[~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

For each coordinate on the grid, plot the maximum class posterior probability among all
classes.

figure;

contourf(x1Grid,x2Grid,...

 reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));

h = colorbar;

h.YLabel.String = 'Maximum posterior';

h.YLabel.FontSize = 15;

hold on

gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);

gh(2).LineWidth = 2;

gh(3).LineWidth = 2;

title 'Iris Petal Measurements and Maximum Posterior';

xlabel 'Petal length (cm)';

ylabel 'Petal width (cm)';

axis tight

legend(gh,'Location','NorthWest')

hold off

 resubPredict

22-4277

Estimate Posterior Probabilities Using Parallel Computing

Train an error-correcting output codes, multiclass model and estimate posterior
probabilities using parallel computing.

Load the arrhythmia data set.

load arrhythmia

Y = categorical(Y);

tabulate(Y)

n = numel(Y);

K = numel(unique(Y));

 Value Count Percent

 1 245 54.20%

22 Functions — Alphabetical List

22-4278

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

Several classes are not represented in the data, and many other classes have low relative
frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak,
classification tree learners.

t = templateEnsemble('GentleBoost',50,'Tree');

t is a template object. Most of the options are empty ([]). The software uses default
values for all empty options during training.

Since there are many classes, specify a sparse random coding design.

rng(1); % For reproducibility

Coding = designecoc(K,'sparserandom');

Train an ECOC model using parallel computing. Specify to fit posterior probabilities.

pool = parpool; % Invokes workers

options = statset('UseParallel',1);

Mdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...

 'FitPosterior',1);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Mdl is a ClassificationECOC model. You can access its properties using dot notation.
The pool invokes four workers. The number of workers might vary among systems.

Estimate posterior probabilities, and display the posterior probability of being classified
as not having arrythmia (class 1) given the data.

[~,~,~,posterior] = resubPredict(Mdl);

idx = randsample(n,10,1);

 resubPredict

22-4279

table(idx,Y(idx),posterior(idx,1),...

 'VariableNames',{'ObservationIndex','TrueLabel','PosteriorNoArrythmia'})

ans =

 ObservationIndex TrueLabel PosteriorNoArrythmia

 ________________ _________ ____________________

 79 1 0.91522

 248 1 0.95376

 398 10 0.032369

 207 1 0.97965

 340 1 0.93628

 206 1 0.97795

 345 10 0.015643

 296 2 0.14796

 391 1 0.96494

 406 1 0.94867

• “Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on
page 21-2

Algorithms

The software can estimate class posterior probabilities using quadratic programming
or by minimizing the Kullback-Leibler divergence. For the following descriptions of the
posterior estimation algorithms, let:

• mkj be the element (k,j) of the coding design matrix M.
• I be the indicator function.
• p̂k be the class posterior probability estimate for class k of an observation, k = 1,...,K.

• rj be the positive-class posterior probability for binary learner j. That is, rj is the
probability that binary learner j classifies an observation into the positive class, given
the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class
posterior probabilities. The Kullback-Leibler divergence between the expected and
observed positive-class posterior probabilities is

22 Functions — Alphabetical List

22-4280

D(, �) log
�

log
�

,r r w
r

r
r

r
r r

j

j

L

j
j

j
j

j

j

= + -()
-

-

È

Î
Í
Í

˘

˚
˙
˙=

Â
1

1
1

1

where w wj i
S j

=
*

Â is the weight for binary learner j with Sj the set of observation

indices that binary learner j is trained on and w
i

* is the weight of observation i. The
software minimizes the divergence iteratively. The first step is to choose initial values
ˆ ; ,...,()p k Kk

0 1= for the class posterior probabilities.

• If you do not specify NumKLIterations, then the software uses both sets of
deterministic initial values described next, and uses the one that minimizes Δ.

•
ˆ / ; ,..., .()p K k Kk

0 1 1= =

•
ˆ ; ,...,()p k Kk

0 1= is the solution of the system

M p r01
0ˆ ,()

=

where M01 is M with all mkj = -1 replaced with 0, and r is a vector of positive-class
posterior probabilities returned by the L binary learners [2]. The software uses
lsqnonneg to solve the system.

• If you specify 'NumKLIterations',c, where c is a natural number, then the
software does the following to choose ˆ ; ,...,()p k Kk

0 1= , and uses the one that
minimizes Δ.

• The software chooses both sets of deterministic initial values as described
previously.

• The software randomly generates c vectors of length K using rand, and then
normalizes each vector to sum to 1.

At iteration t, the software:

1 Computes

 resubPredict

22-4281

ˆ

ˆ ()

ˆ ()

.
()

()

()

r

p I m

p I m m

j
t

k
t

k

K

kj

k
t

k

K

kj kj

=

= +

= + » = -

=

=

Â

Â

1

1

1

1 1

2 Estimates the next class posterior probability using

ˆ ˆ() ()p p

w r I I

w

m r m

k
t

k
t

j

j

L

j kj j kj

j
j

+ =

=

=

() + -() ()È
Î

˘
˚= + = -Â

1 1

1

1 11

LL

j
t

kj j
t

kjr I r Im mÂ = + = -() + -() ()È
ÎÍ

˘
˚̇

ˆ ˆ

.

() ()
1 11

3 Normalizes ˆ ,...,;()p k Kk
t+

=
1 1 so that they sum to 1.

4 Checks for convergence.

For more details, see [5] and [7].

Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization
Toolbox license. To estimate posterior probabilities for an observation using this method,
the software:

1 Estimates the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.

2 Using the relationship between rj and p̂k
 [6], minimizes

j

L

j k

k

K

kj j k

k

K

kjr p I m r p I m

= = =
Â Â Â-

È

Î
Í
Í

˘

˚
˙
˙

= -() + -() = +()
1 1 1

2

1 1 1ˆ ˆ

with respect to p̂k
 and the restrictions

22 Functions — Alphabetical List

22-4282

0 1

1

£ £

=Â

ˆ

ˆ .

p

p

k

k
k

The software performs minimization using quadprog.

References

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying
approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1,
2000, pp. 113–141.

[2] Dietterich, T., and G. Bakiri. “Solving Multiclass Learning Problems Via Error-
Correcting Output Codes.” Journal of Artificial Intelligence Research. Vol. 2,
1995, pp. 263–286.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-
correcting output codes.” IEEE Transactions on Pattern Analysis and Machine
Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.

[4] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs
of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–
297.

[5] Hastie, T., and R. Tibshirani. “Classification by Pairwise Coupling.” Annals of
Statistics. Vol. 26, Issue 2, 1998, pp. 451–471.

[6] Wu, T. F., C. J. Lin, and R. Weng. “Probability Estimates for Multi-Class
Classification by Pairwise Coupling.” Journal of Machine Learning Research. Vol.
5, 2004, pp. 975–1005.

[7] Zadrozny, B. “Reducing Multiclass to Binary by Coupling Probability Estimates.”
NIPS 2001: Proceedings of Advances in Neural Information Processing Systems
14, 2001, pp. 1041–1048.

See Also
ClassificationECOC | fitcecoc | predict | quadprog | statset

 resubPredict

22-4283

More About
• “Reproducibility in Parallel Statistical Computations” on page 21-13
• “Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on

page 21-7

22 Functions — Alphabetical List

22-4284

resubPredict

Class: ClassificationEnsemble

Predict ensemble response by resubstitution

Syntax

label = resubPredict(ens)

[label,score] = resubPredict(ens)

[label,score] = resubPredict(ens,Name,Value)

Description

label = resubPredict(ens) returns the labels ens predicts for the data ens.X.
label is the predictions of ens on the data that fitensemble used to create ens.

[label,score] = resubPredict(ens) also returns scores for all classes.

[label,score] = resubPredict(ens,Name,Value) finds resubstitution predictions
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 resubPredict

22-4285

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses
only these learners for calculating loss.

Default: 1:NumTrained

Output Arguments

label

The response ens predicts for the training data. label is the same data type as the
training response data ens.Y, and has the same number of entries as the number of
rows in ens.X.

score

An N-by-K matrix, where N is the number of rows in ens.X, and K is the number of
classes in ens. High score value indicates that an observation likely comes from this
class.

Definitions

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a
class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore,
the range of scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Examples

Find the total number of misclassifications of the Fisher iris data for a classification
ensemble:

22 Functions — Alphabetical List

22-4286

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');

Ypredict = resubPredict(ens); % the predictions

Ysame = strcmp(Ypredict,species); % true when ==

sum(~Ysame) % how many are different?

ans =

 5

See Also
resubEdge | resubLoss | resubPredict | resubMargin

 resubPredict

22-4287

resubPredict
Class: ClassificationKNN

Predict resubstitution response of k-nearest neighbor classifier

Syntax

label = resubPredict(mdl)

[label,score] = resubPredict(mdl)

[label,score,cost] = resubPredict(mdl)

Description

label = resubPredict(mdl) returns the labels mdl predicts for the data mdl.X.
label is the predictions of mdl on the data that fitcknn used to create mdl.

[label,score] = resubPredict(mdl) returns the posterior class probabilities for
the predictions.

[label,score,cost] = resubPredict(mdl) returns the misclassification costs.

Input Arguments

mdl — Classifier model
classifier model object

k-nearest neighbor classifier model, returned as a classifier model object.

Note that using the 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a model of class
ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method.

Otherwise, mdl is of class ClassificationKNN, and you can use the predict method
to make predictions.

22 Functions — Alphabetical List

22-4288

Output Arguments

label

Predicted class labels for the points in the training data X, a vector with length equal to
the number of rows in the training data X. The label is the class with minimal expected
cost (see “Expected Cost” on page 22-4289).

score

Numeric matrix of size N-by-K, where N is the number of observations (rows) in the
training data X, and K is the number of classes (in mdl.ClassNames). score(i,j) is
the posterior probability that row i of X is of class j. See “Posterior Probability” on page
22-4288.

cost

Matrix of expected costs of size N-by-K, where N is the number of observations (rows) in
the training data X, and K is the number of classes (in mdl.ClassNames). cost(i,j) is
the cost of classifying row i of X as class j. See “Expected Cost” on page 22-4289.

Definitions

Posterior Probability

For a vector (single query point) X and model mdl, let

• K be the number of nearest neighbors used in prediction, mdl.NumNeighbors
• nbd(mdl,X) be the K nearest neighbors to X in mdl.X
• Y(nbd) be the classifications of the points in nbd(mdl,X), namely mdl.Y(nbd)
• W(nbd) be the weights of the points in nbd(mdl,X)
• prior be the priors of the classes in mdl.Y

If there is a vector of prior probabilities, then the observation weights W are normalized
by class to sum to the priors. This might involve a calculation for the point X, because
weights can depend on the distance from X to the points in mdl.X.

The posterior probability p(j|X) is

 resubPredict

22-4289

p j

W i

W i

Y X i j

i

i

|

()

()
.

(())

X nbd

nbd

() =

=

Œ

Œ

Â

Â

1

Here 1Y X i j(())=
 means 1 when mdl.Y(i) = j, and 0 otherwise.

Expected Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation. The third output of
predict is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier
mdl. Suppose you have K classes. You place the observations into a matrix X with one
observation per row. The command

[label,score,cost] = predict(mdl,X)

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost
matrix contains the expected (average) cost of classifying the observation into each of the
K classes. cost(n,k) is

ˆ | () | ,P i X n C k i

i

K

() ()
=
Â

1

where

• K is the number of classes.
• ˆ | ()P i X n() is the posterior probability of class i for observation X(n).

• C k i|() is the true misclassification cost of classifying an observation as k when its
true class is i.

True Misclassification Cost

There are two costs associated with KNN classification: the true misclassification cost
per class, and the expected misclassification cost per observation.

22 Functions — Alphabetical List

22-4290

You can set the true misclassification cost per class in the Cost name-value pair when
you run fitcknn. Cost(i,j) is the cost of classifying an observation into class j if its
true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other
words, the cost is 0 for correct classification, and 1 for incorrect classification.

Algorithms

If you specified to standardize the predictor data, that is, mdl.Mu and mdl.Sigma are
not empty ([]), then resubPredict standardizes the predictor data before predicting
labels.

Examples

Predict the Labels of the Training Data

Examine the quality of a classifier by its resubstitution predictions.

Load the data.

load fisheriris

X = meas;

Y = species;

Construct a classifier for 5-nearest neighbors.

mdl = fitcknn(X,Y,'NumNeighbors',5);

Generate the resubstitution predictions.

label = resubPredict(mdl);

Calculate the number of differences between the predictions label and the original data
Y.

mydiff = not(strcmp(Y,label)); % mydiff(i) = 1 means they differ

sum(mydiff) % Number of differences

ans =

 5

 resubPredict

22-4291

A values of 1 in mydiff indicates that the observed label differs from the corresponding
predicted label. There are 5 misclassifications.

See Also
ClassificationKNN | fitcknn | predict | resubEdge | resubLoss |
resubMargin

22 Functions — Alphabetical List

22-4292

resubPredict
Class: ClassificationNaiveBayes

Predict naive Bayes classifier resubstitution response

Syntax

label = resubPredict(Mdl)

[label,Posterior,Cost] = predict(Mdl)

Description

label = resubPredict(Mdl) returns a vector of predicted class labels (label) for the
trained naive Bayes classifier Mdl using the predictor data Mdl.X.

[label,Posterior,Cost] = predict(Mdl) additionally returns posterior
probabilities (Posterior) and predicted (expected) misclassification costs (Cost)
corresponding to the observations (rows) in Mdl.X.

Input Arguments

Mdl — Fully trained naive Bayes classifier
ClassificationNaiveBayes model

A fully trained naive Bayes classifier, specified as a ClassificationNaiveBayes
model trained by fitcnb.

Output Arguments

label — Predicted class labels
categorical vector | character array | logical vector | numeric vector | cell vector of
strings

Predicted class labels, returned as a categorical vector, character array, logical or
numeric vector, or cell vector of strings.

 resubPredict

22-4293

label:

• Is the same data type as the observed class labels (Y) that trained Mdl
• Has length equal to the number of rows of X
• Is the class yielding the lowest expected misclassification cost (Cost)

Posterior — Class posterior probabilities
numeric matrix

Class posterior probabilities, returned as a numeric matrix. Posterior has rows equal
to the number of rows of Mdl.X and columns equal to the number of distinct classes in
the training data (size(Mdl.ClassNames,1)).

Posterior(j,k) is the predicted posterior probability of class k (i.e., in class
Mdl.ClassNames(k)) given the observation in row j of Mdl.X.

Data Types: double

Cost — Expected misclassification costs
numeric matrix

Expected misclassification costs, returned as a numeric matrix. Cost has rows equal to
the number of rows of Mdl.X and columns equal to the number of distinct classes in the
training data (size(Mdl.ClassNames,1)).

Cost(j,k) is the expected misclassification cost of the observation in row j of Mdl.X
being predicted into class k (i.e., in class Mdl.ClassNames(k)).

Definitions

Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into
the wrong class.

There are two types of misclassification costs: true and expected. Let K be the number of
classes.

• True misclassification cost — A K-by-K matrix, where element (i,j) indicates the
misclassification cost of predicting an observation into class j if its true class is i.

22 Functions — Alphabetical List

22-4294

The software stores the misclassification cost in the property Mdl.Cost, and used in
computations. By default, Mdl.Cost(i,j) = 1 if i ≠ j, and Mdl.Cost(i,j) = 0 if
i = j. In other words, the cost is 0 for correct classification, and 1 for any incorrect
classification.

• Expected misclassification cost — A K-dimensional vector, where element k is the
weighted average misclassification cost of classifying an observation into class k,
weighted by the class posterior probabilities. In other words,

c Y j xP xk

j

K

jkP= =()
=

Â ˆ ,...,| .
1

1 Cost

the software classifies observations to the class corresponding with the lowest expected
misclassification cost.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular
class, given the data.

For naive Bayes, the posterior probability that a classification is k for a given observation
(x1,...,xP) is

ˆ | ,..,
,...,

,...,
,

|
P Y k x x

X

X

P X y k Y k

P X
P

P

P

= =
()

()
=() =

()
1

1

1

p

where:

• P X X y kP1,..., | =() is the conditional joint density of the predictors given they are in
class k. Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior
distribution.

• P X X
P1,..,() is the joint density of the predictors. The classes are discrete, so

P X X P X X y k Y kP P
k

K

(),..., (,..., |) ().1
1

1= = =

=

Â p

 resubPredict

22-4295

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Examples

Label Training Sample Observations for Naive Bayes

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,...

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationNaiveBayes classifier.

Predict the training sample labels. Display the results for the 10 observations.

label = resubPredict(Mdl);

rng(1); % For reproducibility

idx = randsample(size(X,1),10);

table(Y(idx),label(idx),'VariableNames',...

 {'TrueLabel','PredictedLabel'})

ans =

 TrueLabel PredictedLabel

 ____________ ______________

 'setosa' 'setosa'

 'versicolor' 'versicolor'

 'virginica' 'virginica'

 'setosa' 'setosa'

 'versicolor' 'versicolor'

 'setosa' 'setosa'

22 Functions — Alphabetical List

22-4296

 'versicolor' 'versicolor'

 'versicolor' 'versicolor'

 'setosa' 'setosa'

 'setosa' 'setosa'

Estimate In-Sample Posterior Probabilities of Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris

X = meas; % Predictors

Y = species; % Response

Train a naive Bayes classifier. It is good practice to specify the class order. Assume that
each predictor is conditionally, normally distributed given its label.

Mdl = fitcnb(X,Y,...

 'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationNaiveBayes classifier.

Estimate posterior probabilities and expected misclassification costs for the training
data. Display the results for 10 observations.

[label,Posterior,MisclassCost] = resubPredict(Mdl);

rng(1); % For reproducibility

idx = randsample(size(X,1),10);

Mdl.ClassNames

table(Y(idx),label(idx),Posterior(idx,:),'VariableNames',...

 {'TrueLabel','PredictedLabel','PosteriorProbability'})

MisclassCost(idx,:)

ans =

 'setosa'

 'versicolor'

 'virginica'

ans =

 TrueLabel PredictedLabel PosteriorProbability

 ____________ ______________ ___

 resubPredict

22-4297

 'setosa' 'setosa' 1 3.8821e-16 5.5878e-24

 'versicolor' 'versicolor' 1.2516e-54 1 4.5001e-06

 'virginica' 'virginica' 5.5646e-188 0.00058232 0.99942

 'setosa' 'setosa' 1 4.5352e-20 3.1301e-27

 'versicolor' 'versicolor' 5.0002e-69 0.99989 0.00010716

 'setosa' 'setosa' 1 2.9813e-18 2.1524e-25

 'versicolor' 'versicolor' 4.6313e-60 0.99999 7.5413e-06

 'versicolor' 'versicolor' 7.9205e-100 0.94293 0.057072

 'setosa' 'setosa' 1 1.799e-19 6.0606e-27

 'setosa' 'setosa' 1 1.5426e-17 1.2744e-24

ans =

 0.0000 1.0000 1.0000

 1.0000 0.0000 1.0000

 1.0000 0.9994 0.0006

 0.0000 1.0000 1.0000

 1.0000 0.0001 0.9999

 0.0000 1.0000 1.0000

 1.0000 0.0000 1.0000

 1.0000 0.0571 0.9429

 0.0000 1.0000 1.0000

 0.0000 1.0000 1.0000

The order of the columns of Posterior and MisclassCost corresponds to the order of
the classes in Mdl.ClassNames.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | fitcnb |
loss | predict

More About
• “Naive Bayes Classification” on page 15-31

22 Functions — Alphabetical List

22-4298

• “Grouping Variables” on page 2-52

 resubPredict

22-4299

resubPredict

Class: ClassificationSVM

Predict support vector machine classifier resubstitution responses

Syntax

label = resubPredict(SVMModel)

[label,Score] = resubPredict(SVMModel)

Description

label = resubPredict(SVMModel) returns a vector of predicted class labels (label)
for the trained support vector machine (SVM) classifier SVMModel using the predictor
data SVMModel.X.

[label,Score] = resubPredict(SVMModel) additionally returns class likelihood
measures, that is, either scores or posterior probabilities.

Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained using
fitcsvm.

Output Arguments

label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

22 Functions — Alphabetical List

22-4300

Predicted class labels, returned as a categorical or character array, logical or numeric
vector, or cell array of strings.

label:

• Is the same data type as the observed class labels (SVMModel.Y)
• Has length equal to the number of rows of SVMModel.X

For one-class learning, the elements of label are the one class represented in
SVMModel.Y

Score — Predicted class scores or posterior probabilities
numeric column vector | numeric matrix

Predicted class scores or posterior probabilities, returned as a numeric column vector or
numeric matrix.

• For one-class learning, Score is a column vector with the same number of rows
as SVMModel.X. The elements are the positive class scores for the corresponding
observations. You cannot obtain posterior probabilities for one-class learning.

• For two-class learning, Score is a two column matrix with the same number of rows
as SVMModel.X.

• If you fit the optimal score-to-posterior probability transformation function using
fitPosterior or fitSVMPosterior, then Score contains class posterior
probabilities. That is, if the value of SVMModel.ScoreTransform is not none,
then the elements of the first and second columns of Score are the negative class
(SVMModel.ClassNames{1}) and positive class (SVMModel.ClassNames{2})
posterior probabilities for the corresponding observations, respectively.

• Otherwise, the elements of the first column are the negative class scores and the
elements of the second column are the positive class scores for the corresponding
observations.

If SVMModel.KernelParameters.Function is 'linear', then the software estimates
the classification score for the observation x using

f x x s b() = () ¢ +/ .b

SVMModel stores β, b, and s in the properties Beta, Bias, and KernelParameters.Scale,
respectively.

 resubPredict

22-4301

Data Types: double | single

Definitions

Score

The SVM score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted
to be in that class, a negative score indicates otherwise.

The score is also the numerical, predicted response for x, f x() , computed by the trained
SVM classification function

f y G x x bx j

n

j j

j

() (,) ,= +

=

Â a

1

where (,..., ,)a a1 n b are the estimated SVM parameters, G x xj(,) is the dot product in the
predictor space between x and the support vectors, and the sum includes the training set
observations.

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x x s b() = () ¢ +/ .b

s is the kernel scale and β is the vector of fitted linear coefficients.

Posterior Probability

The probability that an observation belongs in a particular class, given the data.

For SVM, the posterior probability is a function of the score, P(s), that observation j is in
class k = {-1,1}.

• For separable classes, the posterior probability is the step function

22 Functions — Alphabetical List

22-4302

P s

s s

s s s

s

j j

j

y
k

y
k

y
k

y

k

k k

k

() =

<

>

£ £

=-

=- =+

=+

0

1

1

1 1

; max

max min

min

;

;

p

11
sk

Ï

Ì

Ô
ÔÔ

Ó

Ô
Ô
Ô

,

where:

• sj is the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

• For inseparable classes, the posterior probability is the sigmoid function

P s
As B

j
j

()
exp()

,=

+ +

1

1

where the parameters A and B are the slope and intercept parameters.

Prior Probability

The prior probability is the believed relative frequency that observations from a class
occur in the population for each class.

Examples

Label Training Sample Observations for SVM Classifiers Using resubPredict

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to specify the class order and standardize the
data.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

 resubPredict

22-4303

SVMModel is a ClassificationSVM classifier. The positive class is 'g'.

Predict the training sample labels and scores. Display the results for the first 10
observations.

[label,score] = resubPredict(SVMModel);

table(Y(1:10),label(1:10),score(1:10,2),'VariableNames',...

 {'TrueLabel','PredictedLabel','Score'})

ans =

 TrueLabel PredictedLabel Score

 _________ ______________ _______

 'g' 'g' 1.4861

 'b' 'b' -1.0004

 'g' 'g' 1.8685

 'b' 'b' -2.6458

 'g' 'g' 1.2805

 'b' 'b' -1.4617

 'g' 'g' 2.1672

 'b' 'b' -5.7085

 'g' 'g' 2.4797

 'b' 'b' -2.7811

Estimate In-Sample Posterior Probabilities of SVM Classifiers

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. It is good practice to specify the class order and standardize the
data.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier. The positive class is 'g'.

Fit the optimal score-to-posterior-probability transformation function.

rng(1); % For reproducibility

ScoreSVMModel = fitPosterior(SVMModel)

22 Functions — Alphabetical List

22-4304

ScoreSVMModel =

 ClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: '@(S)sigmoid(S,-9.481802e-01,-1.218745e-01)'

 NumObservations: 351

 Alpha: [90x1 double]

 Bias: -0.1343

 KernelParameters: [1x1 struct]

 Mu: [1x34 double]

 Sigma: [1x34 double]

 BoxConstraints: [351x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [351x1 logical]

 Solver: 'SMO'

Since the classes are inseparable, the score transformation function
(ScoreSVMModel.ScoreTransform) is the sigmoid function.

Estimate scores and positive class posterior probabilities for the training data. Display
the results for the first 10 observations.

[label,scores] = resubPredict(SVMModel);

[~,postProbs] = resubPredict(ScoreSVMModel);

table(Y(1:10),label(1:10),scores(1:10,2),postProbs(1:10,2),'VariableNames',...

 {'TrueLabel','PredictedLabel','Score','PosteriorProbability'})

ans =

 TrueLabel PredictedLabel Score PosteriorProbability

 _________ ______________ _______ ____________________

 'g' 'g' 1.4861 0.82215

 'b' 'b' -1.0004 0.30436

 'g' 'g' 1.8685 0.86916

 'b' 'b' -2.6458 0.084183

 'g' 'g' 1.2805 0.79184

 'b' 'b' -1.4617 0.22028

 'g' 'g' 2.1672 0.89814

 'b' 'b' -5.7085 0.0050122

 resubPredict

22-4305

 'g' 'g' 2.4797 0.92223

 'b' 'b' -2.7811 0.074805

Algorithms

• By default, the software computes optimal posterior probabilities using Platt’s method
[1]:

1 Performing 10-fold cross validation
2 Fitting the sigmoid function parameters to the scores returned from the cross

validation
3 Estimating the posterior probabilities by entering the cross-validation scores into

the fitted sigmoid function
• The software incorporates prior probabilities in the SVM objective function during

training.
• For SVM, predict classifies observations into the class yielding the largest score

(i.e., the largest posterior probability). The software accounts for misclassification
costs by applying the average-cost correction before training the classifier. That is,
given the class prior vector P, misclassification cost matrix C, and observation weight
vector w, the software defines a new vector of observation weights (W) such that

W w P Cj j j jk
k

K

=

=

Â
1

.

References

[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods.” In Advances in Large Margin Classifiers. MIT
Press, 1999, pp. 61–74.

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | fitPosterior |
fitSVMPosterior | predict

22 Functions — Alphabetical List

22-4306

resubPredict
Class: ClassificationTree

Predict resubstitution response of tree

Syntax

label = resubPredict(tree)

[label,posterior] = resubPredict(tree)

[label,posterior,node] = resubPredict(tree)

[label,posterior,node,cnum] = resubPredict(tree)

[label,...] = resubPredict(tree,Name,Value)

Description

label = resubPredict(tree) returns the labels tree predicts for the data tree.X.
label is the predictions of tree on the data that fitctree used to create tree.

[label,posterior] = resubPredict(tree) returns the posterior class probabilities
for the predictions.

[label,posterior,node] = resubPredict(tree) returns the node numbers of
tree for the resubstituted data.

[label,posterior,node,cnum] = resubPredict(tree) returns the predicted
class numbers for the predictions.

[label,...] = resubPredict(tree,Name,Value) returns resubstitution
predictions with additional options specified by one or more Name,Value pair arguments.

Input Arguments

tree

A classification tree constructed by fitctree.

 resubPredict

22-4307

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then ClassificationTree.resubPredict operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

ClassificationTree.resubPredict prunes tree to each level indicated in Subtrees,
and then estimates the corresponding output arguments. The size of Subtrees
determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

Output Arguments

label

The response tree predicts for the training data. label is the same data type as the
training response data tree.Y.

If the Subtrees name-value argument contains m>1 entries, label has m columns, each
of which represents the predictions of the corresponding subtree. Otherwise, label is a
vector.

22 Functions — Alphabetical List

22-4308

posterior

Matrix or array of posterior probabilities for classes tree predicts.

If the Subtrees name-value argument is a scalar or is missing, posterior is an n-by-k
matrix, where n is the number of rows in the training data tree.X, and k is the number
of classes.

If Subtrees contains m>1 entries, posterior is an n-by-k-by-m array, where the matrix
for each m gives posterior probabilities for the corresponding subtree.

node

The node numbers of tree where each data row resolves.

If the Subtrees name-value argument is a scalar or is missing, node is a numeric
column vector with n rows, the same number of rows as tree.X.

If Subtrees contains m>1 entries, node is a n-by-m matrix. Each column represents the
node predictions of the corresponding subtree.

cnum

The class numbers that tree predicts for the resubstituted data.

If the Subtrees name-value argument is a scalar or is missing, cnum is a numeric
column vector with n rows, the same number of rows as tree.X.

If Subtrees contains m>1 entries, cnum is a n-by-m matrix. Each column represents the
class predictions of the corresponding subtree.

Definitions

Posterior Probability

The posterior probability of the classification at a node is the number of training
sequences that lead to that node with this classification, divided by the number of
training sequences that lead to that node.

 resubPredict

22-4309

For example, consider classifying a predictor X as true when X<0.15 or X>0.95, and X
is false otherwise.

1 Generate 100 random points and classify them:

rng(0) % For reproducibility

X = rand(100,1);

Y = (abs(X - .55) > .4);

tree = fitctree(X,Y);

view(tree,'Mode','graph')

2 Prune the tree:

22 Functions — Alphabetical List

22-4310

tree1 = prune(tree,'Level',1);

view(tree1,'Mode','graph')

The pruned tree correctly classifies observations that are less than 0.15 as true.
It also correctly classifies observations between .15 and .94 as false. However, it
incorrectly classifies observations that are greater than .94 as false. Therefore the
score for observations that are greater than .15 should be about .05/.85=.06 for true,
and about .8/.85=.94 for false.

3 Compute the prediction scores for the first 10 rows of X:

 resubPredict

22-4311

[~,score] = predict(tree1,X(1:10));

[score X(1:10,:)]

ans =

 0.9059 0.0941 0.8147

 0.9059 0.0941 0.9058

 0 1.0000 0.1270

 0.9059 0.0941 0.9134

 0.9059 0.0941 0.6324

 0 1.0000 0.0975

 0.9059 0.0941 0.2785

 0.9059 0.0941 0.5469

 0.9059 0.0941 0.9575

 0.9059 0.0941 0.9649

Indeed, every value of X (the rightmost column) that is less than 0.15 has associated
scores (the left and center columns) of 0 and 1, while the other values of X have
associated scores of 0.94 and 0.06.

Examples
Compute Number of Misclassified Observations

Find the total number of misclassifications of the Fisher iris data for a classification tree.

load fisheriris

tree = fitctree(meas,species);

Ypredict = resubPredict(tree); % The predictions

Ysame = strcmp(Ypredict,species); % True when ==

sum(~Ysame) % How many are different?

ans =

 3

Compare In-Sample Posterior Probabilities for Each Subtree

Load Fisher's iris data set. Partition the data into training (50%)

22 Functions — Alphabetical List

22-4312

load fisheriris

Grow a classification tree using the all petal measurements.

Mdl = fitctree(meas(:,3:4),species);

n = size(meas,1); % Sample size

K = numel(Mdl.ClassNames); % Number of classes

View the classification tree.

view(Mdl,'Mode','graph');

 resubPredict

22-4313

The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as
displayed). Level 4 is just the root node (i.e., no splits).

Estimate the posterior probabilities for each class using the subtrees pruned to levels 1
and 3.

[~,Posterior] = resubPredict(Mdl,'SubTrees',[1 3]);

Posterior is an n-by- K-by- 2 array of posterior probabilities. Rows of Posterior
correspond to observations, columns correspond to the classes with order
Mdl.ClassNames, and pages correspond to pruning level.

Display the class posterior probabilities for iris 125 using each subtree.

Posterior(125,:,:)

ans(:,:,1) =

 0 0.0217 0.9783

ans(:,:,2) =

 0 0.5000 0.5000

The decision stump (page 2 of Posterior) has trouble predicting whether iris 125 is
versicolor or virginica.

See Also
resubEdge | resubLoss | predict | fitctree | resubMargin

22 Functions — Alphabetical List

22-4314

resubPredict
Class: RegressionEnsemble

Predict response of ensemble by resubstitution

Syntax

Yfit = resubPredict(ens)

Yfit = resubPredict(ens,Name,Value)

Description

Yfit = resubPredict(ens) returns the response ens predicts for the data ens.X.
Yfit is the predictions of ens on the data that fitensemble used to create ens.

Yfit = resubPredict(ens,Name,Value) predicts responses with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

A regression ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NumTrained. oobLoss uses
only these learners for calculating loss.

 resubPredict

22-4315

Default: 1:NumTrained

Output Arguments

Yfit

A vector of predicted responses to the training data, with ens.X elements.

Examples

Find the resubstitution predictions of mileage from the carsmall data based on
horsepower and weight, and look at their mean square difference from the training data.

load carsmall

X = [Horsepower Weight];

ens = fitensemble(X,MPG,'LSBoost',100,'Tree');

Yfit = resubPredict(ens);

MSE = mean((Yfit - ens.Y).^2)

MSE =

 6.4336

This is the same as the result of resubLoss:

resubLoss(ens)

ans =

 6.4336

See Also
resubLoss | predict | resubPredict

22 Functions — Alphabetical List

22-4316

resubPredict
Class: RegressionTree

Predict resubstitution response of tree

Syntax

Yfit = resubPredict(tree)

[Yfit,node] = resubPredict(tree)

[Yfit,node] = resubPredict(tree,Name,Value)

Description

Yfit = resubPredict(tree) returns the responses tree predicts for the data
tree.X. Yfit is the predictions of tree on the data that fitrtree used to create tree.

[Yfit,node] = resubPredict(tree) returns the node numbers of tree for the
resubstituted data.

[Yfit,node] = resubPredict(tree,Name,Value) predicts with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

tree

A regression tree constructed using fitrtree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 resubPredict

22-4317

'Subtrees'

A vector of nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at
most max(tree.PruneList). 0 indicates the full, unpruned tree and
max(tree.PruneList) indicates the a completely pruned tree (i.e., just the root node).

If you specify 'all', then RegressionTree.resubPredict operates on all
subtrees (i.e., the entire pruning sequence). This specification is equivalent to using
0:max(tree.PruneList).

RegressionTree.resubPredict prunes tree to each level indicated in Subtrees, and
then estimates the corresponding output arguments. The size of Subtrees determines
the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be
nonempty. In other words, grow tree by setting 'Prune','on', or by pruning tree
using prune.

Default: 0

Output Arguments

Yfit

The response tree predicts for the training data.

If the Subtrees name-value argument is a scalar or is missing, label is the same data
type as the training response data tree.Y.

If Subtrees contains m>1 entries, label has m columns, each of which represents the
predictions of the corresponding subtree.

node

The tree node numbers where tree sends each data row.

If the Subtrees name-value argument is a scalar or is missing, node is a numeric
column vector with n rows, the same number of rows as tree.X.

22 Functions — Alphabetical List

22-4318

If Subtrees contains m>1 entries, node is a n-by-m matrix. Each column represents the
node predictions of the corresponding subtree.

Examples

Compute the In-Sample MSE

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as
predictors of the response MPG.

load carsmall

X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

Mdl = fitrtree(X,MPG);

Compute the resubstitution MSE.

Yfit = resubPredict(Mdl);

mean((Yfit - Mdl.Y).^2)

ans =

 4.8952

You can get the same result using resubLoss (RegressionTree).

resubLoss(Mdl)

ans =

 4.8952

Estimate In-Sample Responses For Each Subtree

Load the carsmall data set. Consider Weight as a predictor of the response MPG.

 resubPredict

22-4319

load carsmall

idxNaN = isnan(MPG + Weight);

X = Weight(~idxNaN);

Y = MPG(~idxNaN);

n = numel(X);

Grow a regression tree using all observations.

Mdl = fitrtree(X,Y);

Compute resubstitution fitted values for the subtrees at several pruning levels.

m = max(Mdl.PruneList);

pruneLevels = 1:4:m; % Pruning levels to consider

z = numel(pruneLevels);

Yfit = resubPredict(Mdl,'SubTrees',pruneLevels);

Yfit is an n-by- z matrix of fitted values in which the rows correspond to observations
and the columns correspond to a subtree.

Plot several columns of Yfit and Y against X.

figure;

sortDat = sortrows([X Y Yfit],1); % Sort all data with respect to X

plot(repmat(sortDat(:,1),1,size(Yfit,2) + 1),sortDat(:,2:end))...

 % Vectorize for efficiency

lev = cellstr(num2str((pruneLevels)','Level %d MPG'));

legend(['Observed MPG'; lev])

title 'In-Sample Fitted Responses'

xlabel 'Weight (lbs)';

ylabel 'MPG';

h = findobj(gcf);

set(h(4:end),'LineWidth',3) % Widen all lines

22 Functions — Alphabetical List

22-4320

The values of Yfit for lower pruning levels tend to follow the data more closely than
higher levels. Higher pruning levels tend to be flat for large X intervals.

See Also
resubLoss | predict | fitrtree

 resume

22-4321

resume
Class: ClassificationEnsemble

Resume training ensemble

Syntax
ens1 = resume(ens,nlearn)

ens1 = resume(ens,nlearn,Name,Value)

Description
ens1 = resume(ens,nlearn) trains ens for nlearn more cycles. resume uses the
same training options fitensemble used to create ens.

Note: You cannot resume training when ens is a Subspace ensemble created with
'AllPredictorCombinations' number of learners.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

A classification ensemble, created with fitensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-4322

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'nprint'

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the
command line the number of weak learners trained so far. Useful when you train
ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1

The classification ensemble ens, augmented with additional training.

Examples

Train a classification ensemble for 10 cycles. Examine the resubstitution error. Then
train for 10 more cycles and examine the new resubstitution error.

load ionosphere

ens = fitensemble(X,Y,'GentleBoost',10,'Tree');

L = resubLoss(ens)

L =

 0.0484

ens1 = resume(ens,10);

L = resubLoss(ens1)

L =

 0.0256

The new ensemble has much less resubstitution error than the original.

See Also
fitensemble

 resume

22-4323

resume
Class: ClassificationPartitionedEnsemble

Resume training learners on cross-validation folds

Syntax

ens1 = resume(ens,nlearn)

ens1 = resume(ens,nlearn,Name,Value)

Description

ens1 = resume(ens,nlearn) trains ens in every fold for nlearn more cycles. resume
uses the same training options fitensemble used to create ens.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

A cross-validated classification ensemble. ens is the result of either:

• The fitensemble function with a cross-validation name-value pair. The names are
'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

• The crossval method applied to a classification ensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-4324

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'nprint'

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the
command line the number of weak learners trained so far. Useful when you train
ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1

The cross-validated classification ensemble ens, augmented with additional training.

Examples

Train a partitioned classification ensemble for 10 cycles. Examine the error. Then train
for 10 more cycles and examine the new error.

load ionosphere

cvens = fitensemble(X,Y,'GentleBoost',10,'Tree',...

 'crossval','on');

L = kfoldLoss(cvens)

L =

 0.0883

cvens = resume(cvens,10);

L = kfoldLoss(cvens)

L =

 0.0769

The ensemble has less cross-validation error after training for ten more cycles.

See Also
kfoldEdge | kfoldMargin | kfoldLoss | kfoldPredict

 resume

22-4325

resume
Class: ClassificationSVM

Resume training support vector machine classifier

Syntax

UpdatedSVMModel = resume(SVMModel,numIter)

UpdatedSVMModel = resume(SVMModel,numIter,Name,Value)

Description

UpdatedSVMModel = resume(SVMModel,numIter) returns an updated support
vector machine (SVM) classifier (UpdatedSVMModel) by training the support vector
machine classifier SVMModel for numIter more iterations.

resume continues applying the training options that you set for fitcsvm to train
SVMModel.

UpdatedSVMModel = resume(SVMModel,numIter,Name,Value) returns an updated
support vector machine classifier (UpdatedSVMModel) with additional options specified
by one or more Name,Value pair arguments.

Tips

If optimization has not converged and the solver is 'SMO' or 'ISDA', then try to resume
training the SVM classifier.

Input Arguments

SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained using
fitcsvm.

22 Functions — Alphabetical List

22-4326

numIter — Number of iterations
Positive integer

Number of iterations to continue training the SVM classifier, specified as a positive
integer.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Verbose' — Verbosity level
0 | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose'
and either 0, 1, or 2. Verbose controls the amount of optimization information
that the software displays to the Command Window and is saved as a structure to
SVMModel.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

Value Description

0 The software does not display or save
convergence information.

1 The software displays diagnostic messages
and saves convergence criteria every
numprint iterations, where numprint is
the value of the name-value pair argument
'NumPrint'.

2 The software displays diagnostic messages
and saves convergence criteria at every
iteration.

By default, Verbose is the value that fitcsvm used to train SVMModel.

Example: 'Verbose',1

 resume

22-4327

Data Types: double

'NumPrint' — Number of iterations between diagnostic message printouts
nonnegative integer

Number of iterations between diagnostic message printouts, specified as the comma-
separated pair consisting of 'NumPrint' and a nonnegative integer.

If you set 'Verbose',1 and 'NumPrint',numprint, then the software displays all
optimization diagnostic messages from SMO [1] and ISDA [2] every numprint iterations
to the Command Window.

By default, NumPrint is the value that fitcsvm used to train SVMModel.

Example: 'NumPrint',500

Data Types: double

Output Arguments

UpdatedSVMModel — Updated SVM classifier
ClassificationSVM classifier

Updated SVM classifier, returned as a ClassificationSVM classifier.

Examples

Resume Training an SVM Classifier

If you trained an SVM classifier, and the solver failed to converge onto a solution, then
you can resume training the classifier without having to restart the entire learning
process.

Load the ionosphere data set.

load ionosphere

rng(1); % For reproducibility

Train an SVM classifier. For illustration, specify that the optimization routine uses at
most 50 iterations.

22 Functions — Alphabetical List

22-4328

SVMModel = fitcsvm(X,Y,'IterationLimit',50);

DidConverge = SVMModel.ConvergenceInfo.Converged

Reason = SVMModel.ConvergenceInfo.ReasonForConvergence

DidConverge =

 0

Reason =

NoConvergence

DidConverge = 0 indicates that the optimization routine did not converge onto
a solution. Reason states the reaon why the routine did not converge. Therefore,
SVMModel is a partially trained, SVM classifier.

Resume training the SVM classifier for another 1500 iterations.

UpdatedSVMModel = resume(SVMModel,1500);

DidConverge = UpdatedSVMModel.ConvergenceInfo.Converged

Reason = UpdatedSVMModel.ConvergenceInfo.ReasonForConvergence

DidConverge =

 1

Reason =

DeltaGradient

DidConverge indicates that the optimization routine converged onto a solution. Reason
indicates that the gradient difference (DeltaGradient) reached its tolerance level
(DelatGradientTolerance). Therefore, SVMModel is a fully trained SVM classifier.

Monitor Training of an SVM Classifier

Load the ionosphere data set.

load ionosphere

 resume

22-4329

Train an SVM classifier. For illustration, specify that the optimization routine uses at
most 100 iterations. Monitor the algorithm specifying that the software prints diagnostic
inofrmation every 50 iterations.

SVMModel = fitcsvm(X,Y,'IterationLimit',100,'Verbose',1,'NumPrint',50);

|===|

| Iteration | Set | Set Size | Feasibility | Delta | KKT | Number of | Objective |

| | | | Gap | Gradient | Violation | Supp. Vec. | |

|===|

| 0 |active| 351 | 9.971591e-01 | 2.000000e+00 | 1.000000e+00 | 0 | 0.000000e+00 |

| 50 |active| 351 | 8.064425e-01 | 3.736929e+00 | 2.161317e+00 | 60 | -3.628863e+01 |

SVM optimization did not converge to the required tolerance.

The software prints an iterative display to the Command Window. The printout indicates
that the optimization routine has not converged onto a solution.

Estimate the resubstitution loss of the partially trained SVM classifier.

partialLoss = resubLoss(SVMModel)

partialLoss =

 0.1054

The training sample misclassification error is approximately 11%.

Resume training the classifier for another 1500 iterations. Specify that the software
print diagnostic information every 250 iterations.

UpdatedSVMModel = resume(SVMModel,1500,'NumPrint',250)

|===|

| Iteration | Set | Set Size | Feasibility | Delta | KKT | Number of | Objective |

| | | | Gap | Gradient | Violation | Supp. Vec. | |

|===|

| 250 |active| 351 | 1.441556e-01 | 1.701201e+00 | 1.015454e+00 | 100 | -7.671009e+01 |

| 500 |active| 351 | 3.277736e-03 | 9.155364e-02 | 4.830095e-02 | 103 | -7.819815e+01 |

| 750 |active| 351 | 3.928360e-04 | 1.367091e-02 | 9.155316e-03 | 103 | -7.820938e+01 |

| 1000 |active| 351 | 4.802547e-05 | 1.551900e-03 | 7.765843e-04 | 103 | -7.820959e+01 |

| 1044 |active| 351 | 3.602828e-05 | 9.382457e-04 | 5.182592e-04 | 103 | -7.820959e+01 |

 Exiting Active Set upon convergence due to DeltaGradient.

22 Functions — Alphabetical List

22-4330

UpdatedSVMModel =

 ClassificationSVM

 PredictorNames: {1x34 cell}

 ResponseName: 'Y'

 ClassNames: {'b' 'g'}

 ScoreTransform: 'none'

 NumObservations: 351

 Alpha: [103x1 double]

 Bias: -3.8828

 KernelParameters: [1x1 struct]

 BoxConstraints: [351x1 double]

 ConvergenceInfo: [1x1 struct]

 IsSupportVector: [351x1 logical]

 Solver: 'SMO'

The software resumes at iteration 1000, and uses the same verbosity level as you set
when you trained the model using fitcsvm. The printout indicates that the algorithm
converged. Therefore, UpdatedSVMModel is a fully trained ClassificationSVM
classifier.

updatedLoss = resubLoss(UpdatedSVMModel)

updatedLoss =

 0.0769

The trainig sample misclassification error of the fully trained classifier is approximately
8%.

References

[1] Fan, R.-E., P.-H. Chen, and C.-J. Lin. “Working set selection using second order
information for training support vector machines.” Journal of Machine Learning
Research, Vol 6, 2005, pp. 1889–1918.

[2] Kecman V., T. -M. Huang, and M. Vogt. “Iterative Single Data Algorithm for Training
Kernel Machines from Huge Data Sets: Theory and Performance.” In Support

 resume

22-4331

Vector Machines: Theory and Applications. Edited by Lipo Wang, 255–274.
Berlin: Springer-Verlag, 2005.

See Also
ClassificationSVM | fitcsvm

22 Functions — Alphabetical List

22-4332

resume
Class: RegressionEnsemble

Resume training ensemble

Syntax

ens1 = resume(ens,nlearn)

ens1 = resume(ens,nlearn,Name,Value)

Description

ens1 = resume(ens,nlearn) trains ens for nlearn more cycles. resume uses the
same training options fitensemble used to create ens.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

A regression ensemble, created with fitensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 resume

22-4333

'nprint'

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the
command line the number of weak learners trained so far. Useful when you train
ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1

The regression ensemble ens, augmented with additional training.

Examples

Train a regression ensemble for 50 cycles. Examine the resubstitution error. Then train
for 50 more cycles and examine the new resubstitution error.

load carsmall

X = [Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'LSBoost',50,'Tree');

 L = resubLoss(ens)

L =

 6.2681

ens = resume(ens,50);

L = resubLoss(ens)

L =

 4.3904

The new ensemble has much less resubstitution error than the original.

See Also
fitensemble

22 Functions — Alphabetical List

22-4334

resume
Class: RegressionPartitionedEnsemble

Resume training ensemble

Syntax

ens1 = resume(ens,nlearn)

ens1 = resume(ens,nlearn,Name,Value)

Description

ens1 = resume(ens,nlearn) trains ens in every fold for nlearn more cycles. resume
uses the same training options fitensemble used to create ens.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

ens

A cross-validated regression ensemble. ens is the result of either:

• The fitensemble function with a cross-validation name-value pair. The names are
'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

• The crossval method applied to a regression ensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 resume

22-4335

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'nprint'

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the
command line the number of weak learners trained so far. Useful when you train
ensembles with many learners on large data sets.

Default: 'off'

Output Arguments

ens1

The cross-validated regression ensemble ens, augmented with additional training.

Examples

Train a regression ensemble for 50 cycles, and cross validate it. Examine the cross-
validation error. Then train for 50 more cycles and examine the new cross-validation
error.

load carsmall

X = [Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'LSBoost',50,'Tree');

cvens = crossval(ens);

L = kfoldLoss(cvens)

L =

 25.6573

cvens = resume(cvens,50);

L = kfoldLoss(cvens)

L =

 26.7563

The additional training did not improve the cross-validation error.

22 Functions — Alphabetical List

22-4336

See Also
kfoldLoss | fitensemble

 prob.RicianDistribution class

22-4337

prob.RicianDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Rician probability distribution object

Description

prob.RicianDistribution is an object consisting of parameters, a model description,
and sample data for a Rician probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Rician') creates a Rician probability distribution object using the
default parameter values.

pd = makedist('Rician','s',s,'sigma',sigma) creates a Rician probability
distribution object using the specified parameter values.

Input Arguments

s — Noncentrality parameter
1 (default) | nonnegative scalar value

Noncentrality parameter for the Rician distribution, specified as a nonnegative scalar
value.
Data Types: single | double

sigma — scale parameter
1 (default) | positive scalar value

Scale parameter for the Rician distribution, specified as a positive scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-4338

Properties

s — Noncentrality parameter
nonnegative scalar value

Noncentrality parameter of the Rician distribution, stored as a nonnegative scalar value.
Data Types: single | double

sigma — scale parameter
positive scalar value

Scale parameter for the Rician distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.

 prob.RicianDistribution class

22-4339

Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

22 Functions — Alphabetical List

22-4340

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

 prob.RicianDistribution class

22-4341

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Rician Distribution

The Rician distribution is used in communications theory to model scattered signals that
reach a receiver using multiple paths.

The Rician distribution uses the following parameters.

Name Description Support

s Noncentrality
parameter

s ≥ 0

sigma Scale parameter s > 0

The probability density function (pdf) is

22 Functions — Alphabetical List

22-4342

f x s I
xs x x s

x| , exp ; ,s
s s s

() =
Ê

Ë
Á

ˆ

¯
˜
Ê

Ë
Á

ˆ

¯
˜ -

+Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
≥0 2 2

2 2

22
0

where I0 is the zero-order modified Bessel function of the first kind.

Examples

Create a Rician Distribution Object Using Default Parameters

Create a Rician distribution object using the default parameter values.

pd = makedist('Rician')

pd =

 RicianDistribution

 Rician distribution

 s = 1

 sigma = 1

Create a Rician Distribution Object Using Specified Parameters

Create a Rician distribution object by specifying the parameter values.

pd = makedist('Rician','s',0,'sigma',2)

pd =

 RicianDistribution

 Rician distribution

 s = 0

 sigma = 2

Compute the mean of the distribution.

m = mean(pd)

m =

 prob.RicianDistribution class

22-4343

 2.5066

See Also
dfittool | fitdist | makedist

More About
• “Rician Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-4344

ridge
Ridge regression

Syntax
b = ridge(y,X,k)

b = ridge(y,X,k,scaled)

Description
b = ridge(y,X,k) returns a vector b of coefficient estimates for a multilinear ridge
regression of the responses in y on the predictors in X. X is an n-by-p matrix of p
predictors at each of n observations. y is an n-by-1 vector of observed responses. k is a
vector of ridge parameters. If k has m elements, b is p-by-m. By default, b is computed
after centering and scaling the predictors to have mean 0 and standard deviation 1. The
model does not include a constant term, and X should not contain a column of 1s.

b = ridge(y,X,k,scaled) uses the {0,1}-valued flag scaled to determine if the
coefficient estimates in b are restored to the scale of the original data. ridge(y,X,k,0)
performs this additional transformation. In this case, b contains p+1 coefficients for
each value of k, with the first row corresponding to a constant term in the model.
ridge(y,X,k,1) is the same as ridge(y,X,k). In this case, b contains p coefficients,
without a coefficient for a constant term.

The relationship between b0 = ridge(y,X,k,0) and b1 = ridge(y,X,k,1) is given
by

 m = mean(X);

 s = std(X,0,1)';

 b1_scaled = b1./s;

 b0 = [mean(y)-m*b1_scaled; b1_scaled]

This can be seen by replacing the xi (i = 1, ..., n) in the multilinear model y = b0
0 + b1

0x1

+ ... + bn
0xn with the z-scores zi = (xi – μi)/σi , and replacing y with y – μy.

In general, b1 is more useful for producing plots in which the coefficients are to be
displayed on the same scale, such as a ridge trace (a plot of the regression coefficients as
a function of the ridge parameter). b0 is more useful for making predictions.

 ridge

22-4345

Coefficient estimates for multiple linear regression models rely on the independence of
the model terms. When terms are correlated and the columns of the design matrix X have
an approximate linear dependence, the matrix (XTX)–1 becomes close to singular. As a
result, the least-squares estimate

ˆ ()b = -X X X yT T1

becomes highly sensitive to random errors in the observed response y, producing a
large variance. This situation of multicollinearity can arise, for example, when data are
collected without an experimental design.

Ridge regression addresses the problem by estimating regression coefficients using

ˆ ()b = + -X X kI X yT T1

where k is the ridge parameter and I is the identity matrix. Small positive values of k
improve the conditioning of the problem and reduce the variance of the estimates. While
biased, the reduced variance of ridge estimates often result in a smaller mean square
error when compared to least-squares estimates.

Examples

Ridge Regression

Load the sample data.

load acetylene

acetylene has observations for the predictor variables x1 , x2 , x3 , and the response
variable y .

Plot the predictor variables against each other.

subplot(1,3,1)

plot(x1,x2,'.')

xlabel('x1'); ylabel('x2'); grid on; axis square

subplot(1,3,2)

22 Functions — Alphabetical List

22-4346

plot(x1,x3,'.')

xlabel('x1'); ylabel('x3'); grid on; axis square

subplot(1,3,3)

plot(x2,x3,'.')

xlabel('x2'); ylabel('x3'); grid on; axis square

Note the correlation between x1 and the other two predictor variables.

Compute coefficient estimates for a multilinear model with interaction terms, for a range
of ridge parameters using ridge and x2fx .

X = [x1 x2 x3];

D = x2fx(X,'interaction');

 ridge

22-4347

D(:,1) = []; % No constant term

k = 0:1e-5:5e-3;

b = ridge(y,D,k);

Plot the ridge trace.

figure

plot(k,b,'LineWidth',2)

ylim([-100 100])

grid on

xlabel('Ridge Parameter')

ylabel('Standardized Coefficient')

title('{\bf Ridge Trace}')

legend('x1','x2','x3','x1x2','x1x3','x2x3')

22 Functions — Alphabetical List

22-4348

The estimates stabilize to the right of the plot. Note that the coefficient of the x2x3
interaction term changes sign at a value of the ridge parameter .

References

[1] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Biased Estimation for
Nonorthogonal Problems.” Technometrics. Vol. 12, No. 1, 1970, pp. 55–67.

[2] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Applications to Nonorthogonal
Problems.” Technometrics. Vol. 12, No. 1, 1970, pp. 69–82.

[3] Marquardt, D.W. “Generalized Inverses, Ridge Regression, Biased Linear Estimation,
and Nonlinear Estimation.” Technometrics. Vol. 12, No. 3, 1970, pp. 591–612.

[4] Marquardt, D. W., and R.D. Snee. “Ridge Regression in Practice.” The American
Statistician. Vol. 29, No. 1, 1975, pp. 3–20.

See Also
regress | stepwise

 risk

22-4349

risk
Class: classregtree

Node risks

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

r = risk(t)

r = risk(t,nodes)

Description

r = risk(t) returns an n-element vector r of the risk of the nodes in the tree t, where
n is the number of nodes. The risk r(i) for node i is the node error e(i) (computed by
nodeerr) weighted by the node probability p(i) (computed by nodeprob).

r = risk(t,nodes) takes a vector nodes of node numbers and returns the risk values
for the specified nodes.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

22 Functions — Alphabetical List

22-4350

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

e = nodeerr(t);

p = nodeprob(t);

r = risk(t);

r

r =

 risk

22-4351

 0.6667

 0

 0.3333

 0.0333

 0.0067

 0.0067

 0.0133

 0

 0

e.*p

ans =

 0.6667

 0

 0.3333

 0.0333

 0.0067

 0.0067

 0.0133

 0

 0

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | nodeprob | nodeerr

22 Functions — Alphabetical List

22-4352

robustdemo

Interactive robust regression

Syntax

robustdemo

robustdemo(x,y)

Description

robustdemo shows the difference between ordinary least squares and robust regression
for data with a single predictor. With no input arguments, robustdemo displays a
scatter plot of a sample of roughly linear data with one outlier. The bottom of the figure
displays equations of lines fitted to the data using ordinary least squares and robust
methods, together with estimates of the root mean squared errors.

Use the right mouse button to click on a point and view its least-squares leverage and
robust weight.

Use the left mouse button to click-and-drag a point. The displays will update.

robustdemo(x,y) uses x and y data vectors you supply, in place of the sample data
supplied with the function.

Examples

The following steps show you how to use robustdemo.

1 Start the example. To begin using robustdemo with the built-in data, simply type
the function name:

robustdemo

 robustdemo

22-4353

The resulting figure shows a scatter plot with two fitted lines. The red line is the
fit using ordinary least-squares regression. The green line is the fit using robust
regression. At the bottom of the figure are the equations for the fitted lines, together
with the estimated root mean squared errors for each fit.

2 View leverages and robust weights. Right-click on any data point to see its least-
squares leverage and robust weight:

22 Functions — Alphabetical List

22-4354

In the built-in data, the right-most point has a relatively high leverage of 0.35. The
point exerts a large influence on the least-squares fit, but its small robust weight
shows that it is effectively excluded from the robust fit.

3 See how changes in the data affect the fits. With the left mouse button, click
and hold on any data point and drag it to a new location. When you release the
mouse button, the displays update:

 robustdemo

22-4355

Bringing the right-most data point closer to the least-squares line makes the two
fitted lines nearly identical. The adjusted right-most data point has significant
weight in the robust fit.

See Also
robustfit | leverage

22 Functions — Alphabetical List

22-4356

robustfit
Robust regression

Syntax

b = robustfit(X,y)

b = robustfit(X,y,wfun,tune)

b = robustfit(X,y,wfun,tune,const)

[b,stats] = robustfit(...)

Description

b = robustfit(X,y) returns a (p + 1)-by-1 vector b of coefficient estimates for a robust
multilinear regression of the responses in y on the predictors in X. X is an n-by-p matrix
of p predictors at each of n observations. y is an n-by-1 vector of observed responses.
By default, the algorithm uses iteratively reweighted least squares with a bisquare
weighting function.

Note: By default, robustfit adds a first column of 1s to X, corresponding to a constant
term in the model. Do not enter a column of 1s directly into X. You can change the default
behavior of robustfit using the input const, below.

robustfit treats NaNs in X or y as missing values, and removes them.

b = robustfit(X,y,wfun,tune) specifies a weighting function wfun. tune is a
tuning constant that is divided into the residual vector before computing weights.

The weighting function wfun can be any one of the following strings:

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'

(default)
w = (abs(r)<1) .* (1 - r.^2).^2 4.685

 robustfit

22-4357

Weight Function Equation Default Tuning
Constant

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'ols' Ordinary least squares (no weighting function) None
'talwar' w = 1 * (abs(r)<1) 2.795
'welsch' w = exp(-(r.^2)) 2.985

If tune is unspecified, the default value in the table is used. Default tuning constants
give coefficient estimates that are approximately 95% as statistically efficient as the
ordinary least-squares estimates, provided the response has a normal distribution with
no outliers. Decreasing the tuning constant increases the downweight assigned to large
residuals; increasing the tuning constant decreases the downweight assigned to large
residuals.

The value r in the weight functions is

r = resid/(tune*s*sqrt(1-h))

where resid is the vector of residuals from the previous iteration, h is the vector of
leverage values from a least-squares fit, and s is an estimate of the standard deviation of
the error term given by

s = MAD/0.6745

Here MAD is the median absolute deviation of the residuals from their median. The
constant 0.6745 makes the estimate unbiased for the normal distribution. If there are
p columns in X, the smallest p absolute deviations are excluded when computing the
median.

You can write your own weight function. The function must take a vector of scaled
residuals as input and produce a vector of weights as output. In this case, wfun is
specified using a function handle @ (as in @myfun), and the input tune is required.

b = robustfit(X,y,wfun,tune,const) controls whether or not the model will
include a constant term. const is 'on' to include the constant term (the default), or

22 Functions — Alphabetical List

22-4358

'off' to omit it. When const is 'on', robustfit adds a first column of 1s to X and b
becomes a (p + 1)-by-1 vector . When const is 'off', robustfit does not alter X, then
b is a p-by-1 vector.

[b,stats] = robustfit(...) returns the structure stats, whose fields contain
diagnostic statistics from the regression. The fields of stats are:

• ols_s — Sigma estimate (RMSE) from ordinary least squares
• robust_s — Robust estimate of sigma
• mad_s — Estimate of sigma computed using the median absolute deviation of the

residuals from their median; used for scaling residuals during iterative fitting
• s — Final estimate of sigma, the larger of robust_s and a weighted average of

ols_s and robust_s
• resid — Residual
• rstud — Studentized residual (see regress for more information)
• se — Standard error of coefficient estimates
• covb — Estimated covariance matrix for coefficient estimates
• coeffcorr — Estimated correlation of coefficient estimates
• t — Ratio of b to se
• p — p-values for t
• w — Vector of weights for robust fit
• R — R factor in QR decomposition of X
• dfe — Degrees of freedom for error
• h — Vector of leverage values for least-squares fit

The robustfit function estimates the variance-covariance matrix of the coefficient
estimates using inv(X'*X)*stats.s^2. Standard errors and correlations are derived
from this estimate.

Examples

Compare Robust and Least-Squares Regression

Generate data with the trend y = 10 - 2* x , then change one value to simulate an outlier.

 robustfit

22-4359

x = (1:10)';

rng default; % For reproducibility

y = 10 - 2*x + randn(10,1);

y(10) = 0;

Fit a straight line using ordinary least squares regression.

bls = regress(y,[ones(10,1) x])

bls =

 7.8518

 -1.3644

Now use robust regression to estimate a straight-line fit.

brob = robustfit(x,y)

brob =

 8.4504

 -1.5278

Create scatter plot of the data together with the fits.

scatter(x,y,'filled'); grid on; hold on

plot(x,bls(1)+bls(2)*x,'r','LineWidth',2);

plot(x,brob(1)+brob(2)*x,'g','LineWidth',2)

legend('Data','Ordinary Least Squares','Robust Regression')

22 Functions — Alphabetical List

22-4360

The robust fit is less influenced by the outlier than the least-squares fit.

References

[1] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple
Regression Computing Environment.” Computer Science and Statistics:
Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American
Statistical Association, 1989.

[2] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted
Least-Squares.” Communications in Statistics: Theory and Methods, A6, 1977, pp.
813–827.

 robustfit

22-4361

[3] Huber, P. J. Robust Statistics. Hoboken, NJ: John Wiley & Sons, Inc., 1981.

[4] Street, J. O., R. J. Carroll, and D. Ruppert. “A Note on Computing Robust Regression
Estimates via Iteratively Reweighted Least Squares.” The American Statistician.
Vol. 42, 1988, pp. 152–154.

See Also
regress | robustdemo

22 Functions — Alphabetical List

22-4362

rotatefactors
Rotate factor loadings

Syntax
B = rotatefactors(A)

B = rotatefactors(A,'Method','orthomax','Coeff',gamma)

B = rotatefactors(A,'Method','procrustes','Target',target)

B = rotatefactors(A,'Method','pattern','Target',target)

B = rotatefactors(A,'Method','promax')

[B,T] = rotatefactors(A,...)

Description
B = rotatefactors(A) rotates the d-by-m loadings matrix A to maximize the varimax
criterion, and returns the result in B. Rows of A and B correspond to variables and
columns correspond to factors, for example, the (i, j)th element of A is the coefficient for
the i th variable on the j th factor. The matrix A usually contains principal component
coefficients created with pca or pcacov, or factor loadings estimated with factoran.

B = rotatefactors(A,'Method','orthomax','Coeff',gamma) rotates A to
maximize the orthomax criterion with the coefficient gamma, i.e., B is the orthogonal
rotation of A that maximizes

sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)

The default value of 1 for gamma corresponds to varimax rotation. Other possibilities
include gamma = 0, m/2, and d(m - 1)/(d + m - 2), corresponding to quartimax, equamax,
and parsimax. You can also supply the strings 'varimax', 'quartimax', 'equamax',
or 'parsimax' for the 'method' parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or 'parsimax',
then additional parameters are

• 'Normalize' — Flag indicating whether the loadings matrix should be row-
normalized for rotation. If 'on' (the default), rows of A are normalized prior to
rotation to have unit Euclidean norm, and unnormalized after rotation. If 'off', the
raw loadings are rotated and returned.

 rotatefactors

22-4363

• 'Reltol' — Relative convergence tolerance in the iterative algorithm used to find T.
The default is sqrt(eps).

• 'Maxit' — Iteration limit in the iterative algorithm used to find T. The default is
250.

B = rotatefactors(A,'Method','procrustes','Target',target) performs an
oblique procrustes rotation of A to the d-by-m target loadings matrix target.

B = rotatefactors(A,'Method','pattern','Target',target) performs an
oblique rotation of the loadings matrix A to the d-by-m target pattern matrix target,
and returns the result in B. target defines the "restricted" elements of B, i.e., elements
of B corresponding to zero elements of target are constrained to have small magnitude,
while elements of B corresponding to nonzero elements of target are allowed to take on
any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is 'Type', the
type of rotation. If 'Type' is 'orthogonal', the rotation is orthogonal, and the factors
remain uncorrelated. If 'Type' is 'oblique' (the default), the rotation is oblique, and
the rotated factors might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has m columns,
then for orthogonal rotation, the jth column of target must contain at least m - j zeros.
For oblique rotation, each column of target must contain at least m - 1 zeros.

B = rotatefactors(A,'Method','promax') rotates A to maximize the promax
criterion, equivalent to an oblique Procrustes rotation with a target created by an
orthomax rotation. Use the four orthomax parameters to control the orthomax rotation
used internally by promax.

An additional parameter for 'promax' is 'Power', the exponent for creating promax
target matrix. 'Power' must be 1 or greater. The default is 4.

[B,T] = rotatefactors(A,...) returns the rotation matrix T used to create B,
that is, B = A*T. You can find the correlation matrix of the rotated factors by using
inv(T'*T). For orthogonal rotation, this is the identity matrix, while for oblique
rotation, it has unit diagonal elements but nonzero off-diagonal elements.

Examples
rng('default') % for reproducibility

22 Functions — Alphabetical List

22-4364

X = randn(100,10);

% Default (normalized varimax) rotation:

% first three principal components.

LPC = pca(X);

[L1,T] = rotatefactors(LPC(:,1:3));

% Equamax rotation:

% first three principal components.

[L2,T] = rotatefactors(LPC(:,1:3),...

 'method','equamax');

% Promax rotation:

% first three factors.

LFA = factoran(X,3,'Rotate','none');

[L3,T] = rotatefactors(LFA(:,1:3),...

 'method','promax',...

 'power',2);

% Pattern rotation:

% first three factors.

Tgt = [1 1 1 1 1 0 1 0 1 1; ...

 0 0 0 1 1 1 0 0 0 0; ...

 1 0 0 1 0 1 1 1 1 0]';

[L4,T] = rotatefactors(LFA(:,1:3),...

 'method','pattern',...

 'target',Tgt);

inv(T'*T) % Correlation matrix of the rotated factors

ans =

 1.0000 -0.9593 -0.7098

 -0.9593 1.0000 0.5938

 -0.7098 0.5938 1.0000

References

[1] Harman, H. H. Modern Factor Analysis. 3rd ed. Chicago: University of Chicago Press,
1976.

[2] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical Method. 2nd ed.
New York: American Elsevier Publishing, 1971.

 rotatefactors

22-4365

See Also
biplot | factoran | pca | pcacov | procrustes

22 Functions — Alphabetical List

22-4366

rowexch
Row exchange

Syntax

dRE = rowexch(nfactors,nruns)

[dRE,X] = rowexch(nfactors,nruns)

[dRE,X] = rowexch(nfactors,nruns,model)

[dRE,X] = rowexch(...,param1,val1,param2,val2,...)

Description

dRE = rowexch(nfactors,nruns) uses a row-exchange algorithm to generate a D-
optimal design dRE with nruns runs (the rows of dRE) for a linear additive model with
nfactors factors (the columns of dRE). The model includes a constant term.

[dRE,X] = rowexch(nfactors,nruns) also returns the associated design matrix X,
whose columns are the model terms evaluated at each treatment (row) of dRE.

[dRE,X] = rowexch(nfactors,nruns,model) uses the linear regression model
specified in model. model is one of the following strings:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

 rowexch

22-4367

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In
this case, model should have one column for each factor and one row for each term in
the model. The entries in any row of model are powers for the factors in the columns.
For example, if a model has factors X1, X2, and X3, then a row [0 1 2] in model
specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies
a constant term, which can be omitted.

[dRE,X] = rowexch(...,param1,val1,param2,val2,...) specifies additional
parameter/value pairs for the design. Valid parameters and their values are listed in the
following table.

Parameter Value

'bounds' Lower and upper bounds for each factor, specified as a 2-
by-nfactors matrix. Alternatively, this value can be a cell array
containing nfactors elements, each element specifying the vector
of allowable values for the corresponding factor.

'categorical' Indices of categorical predictors.
'display' Either 'on' or 'off' to control display of the iteration counter.

The default is 'on'.
'excludefun' Handle to a function that excludes undesirable runs. If the

function is f, it must support the syntax b = f(S), where S is a
matrix of treatments with nfactors columns and b is a vector of
Boolean values with the same number of rows as S. b(i) is true if
the ith row S should be excluded.

'init' Initial design as an nruns-by-nfactors matrix. The default is a
randomly selected set of points.

'levels' Vector of number of levels for each factor.
'maxiter' Maximum number of iterations. The default is 10.
options A structure that specifies whether to run in parallel, and specifies

the random stream or streams. Create the options structure with
statset. Option fields:

• UseParallel — Set to true to compute in parallel. Default is
false.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute

22 Functions — Alphabetical List

22-4368

Parameter Value

reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects.
If you do not specify Streams, rowexch uses the default
stream or streams. If you choose to specify Streams, use a
single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.
'tries' Number of times to try to generate a design from a new starting

point. The algorithm uses random points for each try, except
possibly the first. The default is 1.

Examples

Suppose you want a design to estimate the parameters in the following three-factor,
seven-term interaction model:

y x x x x x x x x x= + + + + + + +b b b b b b b e
0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

Use rowexch to generate a D-optimal design with seven runs:

nfactors = 3;

nruns = 7;

[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)

dRE =

 -1 -1 1

 1 -1 1

 1 -1 -1

 1 1 1

 -1 -1 -1

 -1 1 -1

 -1 1 1

X =

 rowexch

22-4369

 1 -1 -1 1 1 -1 -1

 1 1 -1 1 -1 1 -1

 1 1 -1 -1 -1 -1 1

 1 1 1 1 1 1 1

 1 -1 -1 -1 1 1 1

 1 -1 1 -1 -1 1 -1

 1 -1 1 1 -1 -1 1

Columns of the design matrix X are the model terms evaluated at each row of the design
dRE. The terms appear in order from left to right: constant term, linear terms (1, 2, 3),
interaction terms (12, 13, 23). Use X to fit the model, as described in “Linear Regression”
on page 9-11, to response data measured at the design points in dRE.

More About

Algorithms

Both cordexch and rowexch use iterative search algorithms. They operate by
incrementally changing an initial design matrix X to increase D = |XTX| at each step.
In both algorithms, there is randomness built into the selection of the initial design
and into the choice of the incremental changes. As a result, both algorithms may return
locally, but not globally, D-optimal designs. Run each algorithm multiple times and select
the best result for your final design. Both functions have a 'tries' parameter that
automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of X with a row from
a design matrix C evaluated at a candidate set of feasible treatments. The rowexch
function automatically generates a C appropriate for a specified model, operating in two
steps by calling the candgen and candexch functions in sequence. Provide your own C
by calling candexch directly. In either case, if C is large, its static presence in memory
can affect computation.

See Also
candgen | candexch | cordexch

22 Functions — Alphabetical List

22-4370

rsmdemo

Interactive response surface demonstration

Syntax

rsmdemo

Description

rsmdemo opens a group of three graphical user interfaces for interactively investigating
response surface methodology (RSM), nonlinear fitting, and the design of experiments.

The interfaces allow you to collect and model data from a simulated chemical reaction.
Experimental predictors are concentrations of three reactants (hydrogen, n-Pentane, and
isopentane) and the response is the reaction rate. The reaction rate is simulated by a
Hougen-Watson model (Bates and Watts, [2], pp. 271–272):

rate
x x

x x x
=

-

+ + +

b b

b b b
1 2 3 5

2 1 3 2 4 31

/

where rate is the reaction rate, x1, x2, and x3 are the concentrations of hydrogen, n-
pentane, and isopentane, respectively, and β1, β2, ... , β5 are fixed parameters. Random
errors are used to perturb the reaction rate for each combination of reactants.

Collect data using one of two methods:

1 Manually set reactant concentrations in the Reaction Simulator interface by
editing the text boxes or by adjusting the associated sliders.

 rsmdemo

22-4371

When you click Run, the concentrations and simulated reaction rate are recorded on
the Trial and Error Data interface.

You are allowed up to 13 independent experimental runs for data collection.
2 Use a designed experiment to set reactant concentrations in the Experimental

Data interface by clicking the Do Experiment button.

22 Functions — Alphabetical List

22-4372

A 13-run D-optimal design for a full quadratic model is generated by the cordexch
function, and the concentrations and simulated reaction rates are recorded on the
same interface.

 rsmdemo

22-4373

Once data is collected, scatter plots of reaction rates vs. individual predictors are
generated by selecting one of the following from the Plot pop-up menu below the
recorded data:

• Hydrogen vs. Rate
• n-Pentane vs. Rate
• Isopentane vs. Rate

Fit a response surface model to the data by clicking the Analyze button below the trial-
and-error data or the Response Surface button below the experimental data. Both
buttons load the data into the Response Surface Tool rstool. By default, trial-and-error
data is fit with a linear additive model and experimental data is fit with a full quadratic
model, but the models can be adjusted in the Response Surface Tool.

For experimental data, you have the additional option of fitting a Hougen-Watson model.
Click the Nonlinear Model button to load the data and the model in hougen into the
Nonlinear Fitting Tool nlintool.

See Also
hougen | cordexch | rstool | nlintool

22 Functions — Alphabetical List

22-4374

rstool
Interactive response surface modeling

Syntax
rstool

rstool(X,Y,model)

rstool(x,y,model,alpha)

rstool(x,y,model,alpha,xname,yname)

Description
rstool opens a graphical user interface for interactively investigating one-dimensional
contours of multidimensional response surface models.

 rstool

22-4375

By default, the interface opens with the data from hald.mat and a fitted response
surface with constant, linear, and interaction terms.

A sequence of plots is displayed, each showing a contour of the response surface against
a single predictor, with all other predictors held fixed. rstool plots a 95% simultaneous
confidence band for the fitted response surface as two red curves. Predictor values are
displayed in the text boxes on the horizontal axis and are marked by vertical dashed blue
lines in the plots. Predictor values are changed by editing the text boxes or by dragging
the dashed blue lines. When you change the value of a predictor, all plots update to show
the new point in predictor space.

The pop-up menu at the lower left of the interface allows you to choose among the
following models:

• Linear — Constant and linear terms (the default)
• Pure Quadratic — Constant, linear, and squared terms
• Interactions — Constant, linear, and interaction terms
• Full Quadratic — Constant, linear, interaction, and squared terms

Click Export to open the following dialog box:

The dialog allows you to save information about the fit to MATLAB workspace variables
with valid names.

rstool(X,Y,model) opens the interface with the predictor data in X, the response data
in Y, and the fitted model model. Distinct predictor variables should appear in different
columns of X. Y can be a vector, corresponding to a single response, or a matrix, with

22 Functions — Alphabetical List

22-4376

columns corresponding to multiple responses. Y must have as many elements (or rows, if
it is a matrix) as X has rows.

The optional input model can be any one of the following strings:

• 'linear' — Constant and linear terms (the default)
• 'purequadratic' — Constant, linear, and squared terms
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms

To specify a polynomial model of arbitrary order, or a model without a constant term, use
a matrix for model as described in x2fx.

rstool(x,y,model,alpha) uses 100(1-alpha)% global confidence intervals for new
observations in the plots.

rstool(x,y,model,alpha,xname,yname) labels the axes using the strings in xname
and yname. To label each subplot differently, xname and yname can be cell arrays of
strings.

Examples

The following uses rstool to visualize a quadratic response surface model of the 3-D
chemical reaction data in reaction.mat:

load reaction

alpha = 0.01; % Significance level

rstool(reactants,rate,'quadratic',alpha,xn,yn)

 rstool

22-4377

The rstool interface is used by rsmdemo to visualize the results of simulated
experiments with data like that in reaction.mat. As described in “Response Surface
Designs” on page 19-9, rsmdemo uses a response surface model to generate simulated
data at combinations of predictors specified by either the user or by a designed
experiment.

See Also
x2fx | rsmdemo | nlintool

22 Functions — Alphabetical List

22-4378

runstest

Run test for randomness

Syntax

h = runstest(x)

h = runstest(x,v)

h = runstest(x,'ud')

h = runstest(___ ,Name,Value)

[h,p,stats] = runstest(___)

Description

h = runstest(x) returns a test decision for the null hypothesis that the values in
the data vector x come in random order, against the alternative that they do not. The
test is based on the number of runs of consecutive values above or below the mean of x.
The result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0
otherwise.

h = runstest(x,v) returns a test decision based on the number of runs of consecutive
values above or below the specified reference value v. Values exactly equal to v are
discarded.

h = runstest(x,'ud') returns a test decision based on the number of runs up or
down. Too few runs indicate a trend, while too many runs indicate an oscillation. Values
exactly equal to the preceding value are discarded.

h = runstest(___ ,Name,Value) returns a test decision using additional options
specified by one or more name-value pair arguments. For example, you can change
the significance level of the test, specify the algorithm used to calculate the p-value, or
conduct a one-sided test.

[h,p,stats] = runstest(___) also returns the p-value of the test p, and a
structure stats containing additional data about the test.

 runstest

22-4379

Examples

Test Data for Randomness Using Sample Median

Generate a vector of 40 random numbers from a standard normal distribution.

rng default; % for reproducibility

x = randn(40,1);

Test whether the values in x appear in random order, using the sample median as the
reference value.

[h,p] = runstest(x,median(x))

h =

 0

p =

 0.8762

The returned value of h = 0 indicates that runstest does not reject the null hypothesis
that the values in x are in random order at the default 5% significance level.

Input Arguments

x — Data vector
vector of scalar values

Data vector, specified as a vector of scalar values. runstest treats NaN values in x as
missing values, and ignores them.
Data Types: single | double

v — Reference value
mean of x (default) | scalar value

22 Functions — Alphabetical List

22-4380

Reference value, specified as a scalar value. If you specify a value for v, then runstest
performs the hypothesis test based on the number of runs of consecutive values above or
below v. runstest discards values exactly equal to v.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Method' — Method used to compute p-value
'exact' | 'approximate'

Method used to compute p-value, specified as the comma-separated pair consisting of
'Method' and either 'exact' to use an exact algorithm, or 'approximate' to use a
normal approximation. The default is 'exact' for runs above/below, and for runs up/
down when the length of x is less than or equal to 50. If runstest tests for runs up/
down and the length of x is greater than 50, then the default is 'approximate', and the
'exact' method is not available.

Example: 'Method','approximate'

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis, specified as the comma-separated pair consisting of
'Tail' and one of the following.

'both' Two-tailed test (sequence is not random)

 runstest

22-4381

'right' Right-tailed test (like values separate for runs above/below, direction
alternates for runs up/down)

'left' Left-tailed test (like values cluster for runs above/below, values trend
for runs up/down)

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, then runstest rejects the null hypothesis at the Alpha significance level.
• If h = 0, then runstest fails to reject the null hypothesis at the Alpha significance

level.

The result in runstest is based on the number of runs of consecutive values above or
below the mean of x. Too few runs indicate a tendency for high and low values to cluster.
Too many runs indicate a tendency for high and low values to alternate.

runstest uses a test statistic which is the difference between the number of runs and
its mean, divided by its standard deviation. The test statistic is approximately normally
distributed when the null hypothesis is true.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

p is computed from either the test statistic or the exact distribution of the number of
runs, depending on the value specified for the 'Method' name-value pair argument.

stats — Test data
structure

Test data, returned as a structure with the following fields.

22 Functions — Alphabetical List

22-4382

• nruns — The number of runs
• n1 — The number of values above v
• n0 — The number of values below v
• z — The test statistic

See Also
signrank | signtest

 SampleWithReplacement property

22-4383

SampleWithReplacement property
Class: TreeBagger

Flag to sample with replacement

Description

The SampleWithReplacement property is a logical flag specifying if data are sampled
for each decision tree with replacement. True if TreeBagger samples data with
replacement and false otherwise. True by default.

22 Functions — Alphabetical List

22-4384

sampsizepwr
Sample size and power of test

sampsizepwr computes the sample size, power, or alternative parameter value for a
hypothesis test, given the other two values. For example, you can compute the sample
size required to obtain a particular power for a hypothesis test, given the parameter
value of the alternative hypothesis.

Syntax

nout = sampsizepwr(testtype,p0,p1)

nout = sampsizepwr(testtype,p0,p1,pwr)

pwrout = sampsizepwr(testtype,p0,p1,[],n)

p1out = sampsizepwr(testtype,p0,[],pwr,n)

___ = sampsizepwr(testtype,p0,p1,n,pwr,Name,Value)

Description

nout = sampsizepwr(testtype,p0,p1) returns the sample size, nout, required for
a two-sided test of the type specified by testtype to have a power (probability of rejecting
the null hypothesis when the alternative hypothesis is true) of 0.90 when the significance
level (probability of rejecting the null hypothesis when the null hypothesis is true) is
0.05. p0 specifies parameter values under the null hypothesis. p1 specifies the value, or
an array of values, of the single parameter being tested under the alternative hypothesis.

nout = sampsizepwr(testtype,p0,p1,pwr) returns the sample size, nout, that
corresponds to the specified power, pwr, and the parameter value under the alternative
hypothesis, p1.

pwrout = sampsizepwr(testtype,p0,p1,[],n) returns the power achieved for a
sample size of n when the true parameter value is p1.

p1out = sampsizepwr(testtype,p0,[],pwr,n) returns the parameter value
detectable with the specified sample size, n, and the specified power, pwr.

 sampsizepwr

22-4385

___ = sampsizepwr(testtype,p0,p1,n,pwr,Name,Value) returns any of the
previous arguments using one or more name-value pair arguments. For example, you can
change the significance level of the test, or specify a right- or left-tailed test. The name-
value pairs can appear in any order but must begin in the sixth argument position.

Examples

Compute Sample Size for Selected Power Value

A company runs a manufacturing process that fills empty bottles with 100 mL of liquid.
To monitor quality, the company randomly selects several bottles and measures the
volume of liquid inside.

Determine the sample size the company must use if it wants to detect a difference
between 100 mL and 102 mL with a power of 0.80. Assume that prior evidence indicates
a standard deviation of 5 mL.

nout = sampsizepwr('t',[100 5],102,0.80)

nout =

 52

The company must test 52 bottles to detect the difference between a mean volume of 100
mL and 102 mL with a power of 0.80.

Generate a power curve to visualize how the sample size affects the power of the test.

nn = 1:100;

pwrout = sampsizepwr('t',[100 5],102,[],nn);

figure;

plot(nn,pwrout,'b-',nout,0.8,'ro')

title('Power versus Sample Size')

xlabel('Sample Size')

ylabel('Power')

22 Functions — Alphabetical List

22-4386

Compute Power amd Sample Size for One-Sided Test

An employee wants to buy a house near her office. She decides to eliminate from
consideration any house that has a mean morning commute time greater than 20
minutes. The null hypothesis for this right-sided test is H0: = 20, and the alternative
hypothesis is HA: > 20. The selected significance level is 0.05.

To determine the mean commute time, the employee takes a test drive from the house to
her office during rush hour every morning for one week, so her total sample size is 5. She
assumes that the standard deviation, , is equal to 5.

The employee decides that a true mean commute time of 25 minutes is too different
from her targeted 20-minute limit, so she wants to detect a significant departure if the

 sampsizepwr

22-4387

true mean is 25 minutes. Find the probability of incorrectly concluding that the mean
commute time is no greater than 20 minutes.

Compute the power of the test, and then subtract the power from 1 to obtain .

power = sampsizepwr('t',[20 5],25,[],5,'Tail','right');

beta = 1 - power

beta =

 0.4203

The value indicates a probability of 0.4203 that the employee concludes incorrectly that
the morning commute is not greater than 20 minutes.

The employee decides tha this risk is too high, and she wants no more than a 0.01
probability of reaching an incorrect conclusion. Calculate the number of test drives the
employee must take to obtain a power of 0.99.

nout = sampsizepwr('t',[20 5],25,0.99,[],'Tail','right')

nout =

 18

The results indicate that she must take 18 test drives from a candidate house to achieve
this power level.

The employee decides that she only has time to take 10 test drives. She also accepts a
0.05 probability of making an incorrect conclusion. Calculate the smallest true parameter
value that produces a detectable difference in mean commute time.

p1out = sampsizepwr('t',[20 5],[],0.95,10,'Tail','right')

p1out =

 25.6532

22 Functions — Alphabetical List

22-4388

Given the employee's target power level and sample size, her test detects a significant
difference from a mean commute time of at least 25.6532 minutes.

Compute Sample Size for a Binomial Test

Compute the sample size, n, required to distinguish p = 0.30 from p = 0.36, using a
binomial test with a power of 0.8.

napprox = sampsizepwr('p',0.30,0.36,0.8)

Warning: Values N>200 are approximate. Plotting the power as a function

of N may reveal lower N values that have the required power.

napprox =

 485

The result indicates that a power of 0.8 requires a sample size of 485. However, this
result is approximate.

Make a plot to see if any smaller n values provide the required power of 0.8.

nn = 1:500;

pwrout = sampsizepwr('p',0.3,0.36,[],nn);

nexact = min(nn(pwrout>=0.8))

figure

plot(nn,pwrout,'b-',[napprox nexact],pwrout([napprox nexact]),'ro')

grid on

nexact =

 462

 sampsizepwr

22-4389

The result indicates that a sample size of 462 also provides a power of 0.8 for this test.

Compute Power for a Two-Sample t-Test

A farmer wants to test the impact of two different types of fertilizer on the yield of his
bean crops. He currently uses Fertilizer A, but believes that Fertilizer B might improve
crop yield. Because Fertilizer B is more expensive than Fertilizer A, the farmer wants to
limit the number of plans he treats with Fertilizer B in this experiment.

The farmer uses a 2:1 ratio of plants in each treatment group. He tests 10 plants with
Fertilizer A, and 5 plants with Fertilizer B. The mean yield using Fertilizer A is 1.4 kg
per plant, with a standard deviation of 0.2. The mean yield using Fertilizer B is 1.7 kg
per plant. The significance level of the test is 0.05.

22 Functions — Alphabetical List

22-4390

Compute the power of the test.

pwr = sampsizepwr('t2',[1.4 0.2],1.7,[],5,'Ratio',2)

pwr =

 0.7165

The farmer wants to increase the power of the test to 0.90. Calculate how many plants he
must treat with each type of fertilizer.

n = sampsizepwr('t2',[1.4 0.2],1.7,0.9,[])

n =

 11

To increase the power of the test to 0.90, the farmer must test 11 plants with each type of
fertilizer.

The farmer wants to reduce the number of plants he must treat with Fertilizer B, but
keep the power of the test at 0.90. but maintain the initial 2:1 ratio of plants in each
treatment group

Using a 2:1 ratio of plants in each treatment group, calculate how many plants the
farmer must test to obtain a power of 0.90. Use the mean and standard deviation values
obtained in the previous test.

[n1out,n2out] = sampsizepwr('t2',[1.4,0.2],1.7,0.9,[],'Ratio',2)

n1out =

 8

n2out =

 16

 sampsizepwr

22-4391

To obtain a power of 0.90. the farmer must treat 16 plants with Fertilizer A and 8 plants
with Fertilizer B.

Input Arguments

testtype — Test type
'z' | 't' | 't2' | 'var' | 'p'

Test type, specified as one of the following.

• 'z' — z-test for normally distributed data with known standard deviation.
• 't' — t-test for normally distributed data with unknown standard deviation.
• 't2' — Two-sample pooled t-test for normally distributed data with unknown

standard deviation and equal variances.
• 'var' — Chi-square test of variance for normally distributed data.
• 'p' — Test of the p parameter (success probability) for a binomial distribution.

The 'p' test is a discrete test for which increasing the sample size does not always
increase the power. For n values larger than 200, there may exist values smaller than
the returned n value that also produce the specified power.

p0 — Parameter value under null hypothesis
scalar value | two-element array of scalar values

Parameter value under the null hypothesis, specified as a scalar value or a two-element
array of scalar values.

• If testtype is 'z'or 't', then p0 is a two-element array [mu0,sigma0] of the mean
and standard deviation, respectively, under the null hypothesis.

• If testtype is 't2', then p0 is a two-element array [mu0,sigma0] of the mean and
standard deviation, respectively, of the first sample under the null and alternative
hypotheses.

• If testtype is 'var', then p0 is the variance under the null hypothesis.
• If testtype is 'p', then p0 is the value of p under the null hypothesis.

Data Types: single | double

p1 — Parameter value under alternative hypothesis
scalar value | array of scalar values | []

22 Functions — Alphabetical List

22-4392

Parameter value under the alternative hypothesis, specified as a scalar value or as an
array of scalar values.

• If testtype is 'z' or 't', then p1 is the value of the mean under the alternative
hypothesis.

• If testtype is 't2', then p1 is the value of the mean of the second sample under the
alternative hypothesis.

• If testtype is 'var', then p1 is the variance under the alternative hypothesis.
• If testtype is 'p', then p1 is the value of p under the alternative hypothesis.

If you specify p1 as an array, then sampsizepwr returns an array for nout or pwrout
that is the same length as p1.

To return the alternative parameter value, p1out, specify p1 using empty brackets ([]),
as shown in the syntax description.
Data Types: single | double

pwr — Power of the test
0.90 (default) | scalar value in the range (0,1) | array of scalar values in the range (0,1) |
[]

Power of the test, specified as a scalar value in the range (0,1) or as an array of scalar
values in the range (0,1). The power of a test is the probability of rejecting the null
hypothesis when the alternative hypothesis is true, given a particular significance level.

If you specify pwr as an array, then sampsizepwr returns an array for nout or p1out
that is the same length as pwr.

To return a power value, pwrout, specify pwr using empty brackets ([]), as shown in the
syntax description.
Data Types: single | double

n — Sample size
positive integer value | array of positive integer values

Sample size, specified as a positive integer value or as an array of positive integer values.

If testtype is 't2', then sampsizepwr assumes that the two sample sizes are equal.
For unequal sample sizes, specify n as the smaller of the two sample sizes, and use the

 sampsizepwr

22-4393

'Ratio' name-value pair argument to indicate the sample size ratio. For example, if the
smaller sample size is 5 and the larger sample size is 10, specify n as 5, and the 'Ratio'
name-value pair as 2.

If you specify n as an array, then sampsizepwr returns an array for pwrout or p1out
that is the same length as n.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alpha',0.01,'Tail','right' specifies a right-tailed test with a 0.01
significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance value of the test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Ratio' — Sample size ratio
1 (default) | scalar value greater than or equal to 1

Sample size ratio for a two-sample t-test, specified as the comma-separated pair
consisting of 'Ratio' and a scalar value greater than or equal to 1. The value of Ratio is
equal to n2/n1, where n2 is the larger sample size, and n1 is the smaller sample size.

To return the power, pwrout, or alternative parameter value, p1out, specify the smaller
of the two sample sizes for n, and use 'Ratio' to indicate the sample size ratio.

Example: 'Ratio',2

'Tail' — Test type
'both' (default) | 'right' | 'left'

22 Functions — Alphabetical List

22-4394

Test type, specified as the comma-separated pair consisting of 'Tail' and one of the
following:

• 'both' — Two-sided test for an alternative not equal to p0
• 'right' — One-sided test for an alternative larger than p0
• 'left' — One-sided test for an alternative smaller than p0

Example: 'Tail','right'

Output Arguments

nout — Sample size
positive integer value | array of positive integer values

Sample size, returned as a positive integer value or as an array of positive integer values.

If testtype is t2, and you use the 'Ratio' name-value pair argument to specify the ratio
of the two unequal sample sizes, then nout returns the smaller of the two sample sizes.

Alternatively, to return both sample sizes, specify this argument as [n1out,n2out]. In
this case, sampsizepwr returns the smaller sample size as n1out, and the larger sample
size as n2out.

If you specify pwr or p1 as an array, then sampsizepwr returns an array for nout that is
the same length as pwr or p1.

pwrout — Power
scalar value in the range (0,1) | array of scalar values in the range (0,1)

Power achieved by the test, returned as a scalar value in the range (0,1) or as an array of
scalar values in the range (0,1).

If you specify n or p1 as an array, then sampsizepwr returns an array for pwrout that is
the same length as n or p1.

p1out — Parameter value for the alternative hypothesis
scalar value | array of scalar values

Parameter value for the alternative hypothesis, returned as a scalar value or as an array
of scalar values.

 sampsizepwr

22-4395

When computing p1out for the 'p' test, if no alternative can be rejected for a given null
hypothesis and significance level, the function displays a warning message and returns
NaN.

See Also
binocdf | ttest | vartest | ztest

22 Functions — Alphabetical List

22-4396

scatterhist
Scatter plot with marginal histograms

Syntax

scatterhist(x,y)

scatterhist(x,y,Name,Value)

h = scatterhist(___)

Description

scatterhist(x,y) creates a 2-D scatter plot of the data in vectors x and y, and puts a
univariate histogram on the horizontal and vertical axes of the plot.

scatterhist(x,y,Name,Value) creates the plot using additional options specified
by one or more name-value pair arguments. For example, you can specify a grouping
variable or change the display options.

h = scatterhist(___) returns a vector of three axis handles for the scatter plot,
the histogram along the horizontal axis, and the histogram along the vertical axis,
respectively, using any of the input arguments in the previous syntaxes.

Examples

Create a Scatterhist Plot

Load the sample data. Create data vector x from the first column of the data matrix,
which contains sepal length measurements from iris flowers. Create data vector y from
the second column of the data matrix, which contains sepal width measurements from
the same flowers.

load fisheriris.mat;

x = meas(:,1);

y = meas(:,2);

 scatterhist

22-4397

Create a scatter plot and two marginal histograms to visualize the relationship between
sepal length and sepal width.

scatterhist(x,y)

Plot Grouped Data

Load the sample data. Create data vector x from the first column of the data matrix,
which contains sepal length measurements from three species of iris flowers. Create
data vector y from the second column of the data matrix, which contains sepal width
measurements from the same flowers.

load fisheriris.mat;

x = meas(:,1);

22 Functions — Alphabetical List

22-4398

y = meas(:,2);

Create a scatter plot and six kernel density plots to visualize the relationship between
sepal length and sepal width, grouped by species.

scatterhist(x,y,'Group',species)

The plot shows that the relationship between sepal length and width varies depending on
the flower species.

Customize the Plot Display

Load the sample data. Create data vector x from the first column of the data matrix,
which contains sepal length measurements from three different species of iris flowers.

 scatterhist

22-4399

Create data vector y from the second column of the data matrix, which contains sepal
width measurements from the same flowers.

load fisheriris.mat;

x = meas(:,1);

y = meas(:,2);

Create a scatter plot and six kernel density plots to visualize the relationship between
sepal length and sepal width as measured on three species of iris flowers, grouped by
species. Customize the appearance of the plots.

scatterhist(x,y,'Group',species,'Location','SouthEast',...

 'Direction','out','Color','kbr','LineStyle',{'-','-.',':'},...

 'LineWidth',[2,2,2],'Marker','+od','MarkerSize',[4,5,6]);

22 Functions — Alphabetical List

22-4400

Customize Plots Using Axes Handles

Load the sample data. Create data vector x from the first column of the data matrix,
which contains sepal length measurements from three species of iris flowers. Create
data vector y from the second column of the data matrix, which contains sepal width
measurements from the same flowers.

load fisheriris.mat;

x = meas(:,1);

y = meas(:,2);

Use axis handles to replace the marginal histograms with box plots.

h = scatterhist(x,y,'Group',species);

 scatterhist

22-4401

hold on;

clr = get(h(1),'colororder');

boxplot(h(2),x,species,'orientation','horizontal',...

 'label',{'','',''},'color',clr);

boxplot(h(3),y,species,'orientation','horizontal',...

 'label', {'','',''},'color',clr);

set(h(2:3),'XTickLabel','');

view(h(3),[270,90]); % Rotate the Y plot

axis(h(1),'auto'); % Sync axes

hold off;

22 Functions — Alphabetical List

22-4402

Create a scatterhist Plot in a Specified Parent Container

Load the sample data. Create data vector x from the first column of the data matrix,
which contains sepal length measurements from iris flowers. Create data vector y from
the second column of the data matrix, which contains sepal width measurements from
the same flowers.

load fisheriris

x = meas(:,1);

y = meas(:,2);

Create a new figure and define two uipanel objects to divide the figure into two parts. In
the upper half of the figure, plot the sample data using scatterhist. Include marginal

 scatterhist

22-4403

kernel density plots grouped by species. In the lower half of the figure, plot a histogram
of the sepal length measurements contained in x.

figure

hp1 = uipanel('position',[0 .5 1 .5]);

hp2 = uipanel('position',[0 0 1 .5]);

scatterhist(x,y,'Group',species,'Parent',hp1);

axes('Parent',hp2);

hist(x);

22 Functions — Alphabetical List

22-4404

Input Arguments

x — Sample data
vector

Sample data, specified as a vector. The data vectors x and y must be the same length.

If x or y contain NaN values, then scatterhist:

• Removes rows with NaN values in either x or y from both data vectors when
generating the scatter plot

 scatterhist

22-4405

• Removes rows with NaN values only from the corresponding x or y data vector when
generating the marginal histograms

Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. The data vectors x and y must be the same length.

If x or y contain NaN values, then scatterhist:

• Removes rows with NaN values in either x or y from both data vectors when
generating the scatter plot

• Removes rows with NaN values only from the corresponding x or y data vector when
generating the marginal histograms

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Location','SouthEast','Direction','out' specifies a plot with
histograms located below and to the right of the scatter plot, with the bars directed away
from the scatter plot.

'NBins' — Number of bins for histograms
positive integer value | vector

Number of bins for histograms, specified as the comma-separated pair consisting of
'NBins' and a positive integer value greater than or equal to 2, or vector of two such
values. If the number of bins is specified as a positive integer value, that value is the
number of bins for both the x and y histograms. If the number of bins is specified by a
vector, the first value is the number of bins for the x data, and the second value is the
number of bins for the y data. By default, the number of bins is computed based on the
sample standard deviation using Scott’s rule.
Example: 'NBins',[5,7]

22 Functions — Alphabetical List

22-4406

Data Types: single | double

'Location' — Location of marginal histograms
'SouthWest' (default) | 'SouthEast' | 'NorthEast' | 'NorthWest'

Location of the marginal histograms in the figure, specified as the comma-separated pair
consisting of 'Location' and one of the following.

'SouthWest'Plot the histograms below and to the left of the scatter plot.
'SouthEast'Plot the histograms below and to the right of the scatter plot.
'NorthEast'Plot the histograms above and to the right of the scatter plot.
'NorthWest'Plot the histograms above and to the left of the scatter plot.

Example: 'Location','SouthEast'

'Direction' — Direction of marginal histograms
'in' (default) | 'out'

Direction of the marginal histograms, specified as the comma-separated pair consisting of
'Direction' and one of the following.

'in' Plot the histograms with the bars directed toward the scatter plot.
'out' Plot the histograms with the bars directed away from the scatter plot.

Example: 'Direction','out'

'Group' — Grouping variable
categorical array | logical or numeric vector | cell array of strings

Grouping variable, specified as the comma-separated pair consisting of 'Group' and a
categorical array, logical or numeric vector, or cell array of strings. Each unique value in
a grouping variable defines a group.

For example, if Gender is a cell array of strings with values 'Male' and 'Female', you
can use Gender as a grouping variable to plot your data by gender.

Multiple grouping variables can be used by specifying a cell array of grouping variable
names. Observations are placed in the same group if they have common values of all
specified grouping variables.

 scatterhist

22-4407

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for
smokers, then specifying the cell array {Gender,Smoker} divides observations into four
groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker.
Example: 'Group',{Gender,Smoker}

Data Types: single | double | logical | cell | char

'PlotGroup' — Grouped plot indicator
'on' | 'off'

Grouped plot indicator, specified as the comma-separated pair consisting of
'PlotGroup' and one of the following.

'on' Displays grouped histograms or grouped kernel density plots. This is the
default if a Group parameter is specified.

'off' Displays histograms or kernel density plots of the whole data set. This is
the default if a Group parameter is not specified.

Example: 'PlotGroup','off'

'Style' — Histogram display style
'stairs' | 'bar'

Histogram display style, specified as the comma-separated pair consisting of
'PlotGroup' and one of the following.

'stairs' Displays a stairstep plot that shows the outline of the histogram without
filling the bars. This is the default if you specify a grouping variable that
contains more than one group.

'bar' Displays a histogram bar plot. This is the default if you specify a grouping
variable that contains only one group or if PlotGroup is specified as 'off'.

Example: 'Style','bar'

'Kernel' — Grouped kernel density plot indicator
'off' (default) | 'on' | 'overlay'

Grouped kernel density plot indicator, specified as the comma-separated pair consisting
of 'Kernel' and one of the following.

22 Functions — Alphabetical List

22-4408

'off' Display the overall marginal distribution as histograms.
'on' Display kernel density plots for each group.
'overlay' Display the overall marginal distribution as kernel density plots overlaid

onto histograms, similar to histfit.

Example: 'Kernel','overlay'

'Bandwidth' — Bandwidth of kernel smoothing window
matrix

Bandwidth of kernel smoothing window, specified as the comma-separated pair
consisting of 'Bandwidth' and a matrix of size 2-by-K, where K is the number of unique
groups. The first row of the matrix gives the bandwidth of each group in x, and the
second row gives the bandwidth of each group in y. By default, scatterhist finds the
optimal bandwidth for estimating normal densities. Specifying a different bandwidth
value changes the smoothing characteristics of the resulting kernel density plot. The
value specified is a scaling factor for the normal distribution used to generate the kernel
density plot.
Example: 'Bandwidth',[.5,.2,.1;.15,.25,.35]

Data Types: single | double

'Legend' — Legend visibility indicator
'on' | 'off'

Legend visibility indicator, specified as the comma-separated pair consisting of
'Legend' and one of the following.

'on' Set legend visible. This is the default if a Group parameter is specified.
'off' Set legend invisible. This is the default if a Group parameter is not

specified.

Example: 'Legend','on'

'Parent' — Parent container of the plot
uipanel container object | figure container object

Parent container for the plot, specified as a uipanel container object or figure
container object. You can create panel container objects using uipanel or figure,
respectively.

 scatterhist

22-4409

For example, if h1 is a panel container object, specify the parent container of the plot as
follows.
Example: 'Parent',h1

'LineStyle' — Style of kernel density plot line
valid line style string | cell array of strings

Style of kernel density plot line, specified as the comma-separated pair consisting of
'LineStyle' and a valid line style string or a cell array of valid line style strings. See
plot for valid line style strings. The default is a solid line. Use a cell array to specify
different line styles for each group. When the total number of groups exceeds the number
of specified values, scatterhist cycles through the specified values.

Example: 'LineStyle',{'-',':','-.'}

'LineWidth' — Width of kernel density plot line
0.5 (default) | nonnegative scalar value | vector

Width of kernel density plot line, specified as the comma-separated pair consisting of
'LineWidth' and a nonnegative scalar value or vector of nonnegative scalar values. The
specified value is the size of the kernel density plot line measured in points. The default
size is 0.5 points. Use a vector to specify different line widths for each group. When the
total number of groups is greater than the number of specified values, scatterhist
cycles through the specified values.
Example: 'LineWidth',[0.5,1,2]

Data Types: single | double

'Color' — Marker color for each scatter plot group
valid color designation char | string of chars | matrix of RGB values

Marker color for each scatter plot group, specified as the comma-separated pair
consisting of 'Color' and a valid color designation character, a string of valid color
designation characters, or a three-column matrix of RGB values in the range [0,1]. See
ColorSpec for predefined colors and their RGB equivalents. If colors are specified using
a matrix, each row of the matrix represents a group, and the three columns represent the
R value, G value, and B value, respectively. When the total number of groups exceeds the
number of specified colors, scatterhist cycles through the specified colors.

Example: 'Color','kcm'

Example: 'Color',[.5,0,1;0,.5,.5]

22 Functions — Alphabetical List

22-4410

Data Types: single | double | char

'Marker' — Marker symbol for each scatterplot group
'o' (default) | valid marker symbol | string of valid marker symbols

Marker symbol for each scatter plot group, specified as the comma-separated pair
consisting of 'Marker' and a valid marker symbol or string of valid marker symbols.
See plot for valid symbols. The default is 'o', a circle. When the total number of groups
exceeds the number of specified symbols, scatterhist cycles through the specified
symbols.
Example: 'Marker','+do'

'MarkerSize' — Marker size for each scatter plot group
6 (default) | nonnegative scalar value | vector

Marker size for each scatter plot group, specified as the comma-separated pair consisting
of 'MarkerSize' and a nonnegative scalar value or a vector of nonnegative scalar
values, measured in points. When the total number of groups exceeds the number of
specified values, scatterhist cycles through the specified values.

Example: 'MarkerSize',10

Data Types: single | double

Output Arguments

h — Axes handles
vector

Axes handles for the three plots, returned as a vector. The vector contains the handles
for the scatter plot, the histogram along the horizontal axis, and the histogram along the
vertical axis, respectively.

More About
• “Grouping Variables” on page 2-52

See Also
gscatter | histogram

 scramble

22-4411

scramble

Class: qrandset

Scramble quasi-random point set

Syntax

ps = scramble(p,type)

ps = scramble(p,'clear')

ps = scramble(p)

Description

ps = scramble(p,type) returns a scrambled copy ps of the point set p of the
qrandset class, created using the scramble type specified in the string type. Point sets
from different subclasses of qrandset support different scramble types, as indicated in
the following table.

Subclass Scramble Types

haltonset 'RR2' — A permutation of the radical inverse coefficients
derived by applying a reverse-radix operation to all of the
possible coefficient values. The scramble is described in [1].

sobolset 'MatousekAffineOwen' — A random linear scramble
combined with a random digital shift. The scramble is described
in [2].

ps = scramble(p,'clear') removes all scramble settings from p and returns the
result in ps.

ps = scramble(p) removes all scramble settings from p and then adds them back
in the order they were originally applied. This typically results in a different point set
because of the randomness of the scrambling algorithms.

22 Functions — Alphabetical List

22-4412

Examples

Use haltonset to generate a 3-D Halton point set, skip the first 1000 values, and then
retain every 101st point:

p = haltonset(3,'Skip',1e3,'Leap',1e2)

p =

 Halton point set in 3 dimensions (8.918019e+013 points)

 Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : none

Use scramble to apply reverse-radix scrambling:

p = scramble(p,'RR2')

p =

 Halton point set in 3 dimensions (8.918019e+013 points)

 Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : RR2

Use net to generate the first four points:

X0 = net(p,4)

X0 =

 0.0928 0.6950 0.0029

 0.6958 0.2958 0.8269

 0.3013 0.6497 0.4141

 0.9087 0.7883 0.2166

Use parenthesis indexing to generate every third point, up to the 11th point:

X = p(1:3:11,:)

X =

 0.0928 0.6950 0.0029

 0.9087 0.7883 0.2166

 0.3843 0.9840 0.9878

 0.6831 0.7357 0.7923

 scramble

22-4413

References

[1] Kocis, L., and W. J. Whiten. “Computational Investigations of Low-Discrepancy
Sequences.” ACM Transactions on Mathematical Software. Vol. 23, No. 2, 1997,
pp. 266–294.

[2] Matousek, J. “On the L2-Discrepancy for Anchored Boxes.” Journal of Complexity.
Vol. 14, No. 4, 1998, pp. 527–556.

See Also
haltonset | sobolset

22 Functions — Alphabetical List

22-4414

ScrambleMethod property
Class: qrandset

Settings that control scrambling

Description

The ScrambleMethod property contains a structure that defines which scrambles to
apply to the sequence. The structure consists of two fields:

• Type: A string containing the name of the scramble.
• Options: A cell array of parameter values for the scramble.

Different point sets support different scramble types as outlined in the help for each
point set class. An error occurs if you set an invalid scramble type for a given point set.

The ScrambleMethod property also accepts an empty matrix as a value. This will clear
all scrambling and set the property to contain a (0x0) structure.

The scramble method provides an alternative, easier way to set scrambles.

Examples

Apply a random linear scramble combined with a random digital shift to a sobolset
point set class:

P = sobolset(5);

P = scramble(P, 'MatousekAffineOwen');

P.ScrambleMethod

See Also
sobolset | scramble

 segment

22-4415

segment
Class: piecewisedistribution

Segments containing values

Syntax

S = segment(obj,X,P)

Description

S = segment(obj,X,P) returns an array S of integers indicating which segment of
the piecewise distribution object obj contains each value of X or, alternatively, P. One
of X and P must be empty ([]). If X is nonempty, S is determined by comparing X with
the quantile boundary values defined for obj. If P is nonempty, S is determined by
comparing P with the probability boundary values.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

pvals = 0:0.2:1;

s = segment(obj,[],pvals)

s =

 1 2 2 2 2 3

See Also
paretotails | boundary | nsegments

22 Functions — Alphabetical List

22-4416

sequentialfs
Sequential feature selection

Syntax

inmodel = sequentialfs(fun,X,y)

inmodel = sequentialfs(fun,X,Y,Z,...)

[inmodel,history] = sequentialfs(fun,X,...)

[] = sequentialfs(...,param1,val1,param2,val2,...)

Description

inmodel = sequentialfs(fun,X,y) selects a subset of features from the data matrix
X that best predict the data in y by sequentially selecting features until there is no
improvement in prediction. Rows of X correspond to observations; columns correspond
to variables or features. y is a column vector of response values or class labels for each
observation in X. X and y must have the same number of rows. fun is a function handle
to a function that defines the criterion used to select features and to determine when to
stop. The output inmodel is a logical vector indicating which features are finally chosen.

Starting from an empty feature set, sequentialfs creates candidate feature subsets
by sequentially adding each of the features not yet selected. For each candidate feature
subset, sequentialfs performs 10-fold cross-validation by repeatedly calling fun with
different training subsets of X and y, XTRAIN and ytrain, and test subsets of X and y,
XTEST and ytest, as follows:

criterion = fun(XTRAIN,ytrain,XTEST,ytest)

XTRAIN and ytrain contain the same subset of rows of X and Y, while XTEST and ytest
contain the complementary subset of rows. XTRAIN and XTEST contain the data taken
from the columns of X that correspond to the current candidate feature set.

Each time it is called, fun must return a scalar value criterion. Typically, fun
uses XTRAIN and ytrain to train or fit a model, then predicts values for XTEST using
that model, and finally returns some measure of distance, or loss, of those predicted
values from ytest. In the cross-validation calculation for a given candidate feature

 sequentialfs

22-4417

set, sequentialfs sums the values returned by fun and divides that sum by the total
number of test observations. It then uses that mean value to evaluate each candidate
feature subset.

Typical loss measures include sum of squared errors for regression models
(sequentialfs computes the mean-squared error in this case), and the number of
misclassified observations for classification models (sequentialfs computes the
misclassification rate in this case).

Note: sequentialfs divides the sum of the values returned by fun across all test sets
by the total number of test observations. Accordingly, fun should not divide its output
value by the number of test observations.

After computing the mean criterion values for each candidate feature subset,
sequentialfs chooses the candidate feature subset that minimizes the mean criterion
value. This process continues until adding more features does not decrease the criterion.

inmodel = sequentialfs(fun,X,Y,Z,...) allows any number of input variables X,
Y, Z, sequentialfs chooses features (columns) only from X, but otherwise imposes
no interpretation on X, Y, Z, All data inputs, whether column vectors or matrices,
must have the same number of rows. sequentialfs calls fun with training and test
subsets of X, Y, Z, ... as follows:

criterion = fun(XTRAIN,YTRAIN,ZTRAIN,...,

 XTEST,YTEST,ZTEST,...)

sequentialfs creates XTRAIN, YTRAIN, ZTRAIN, ... , XTEST, YTEST, ZTEST, ... by
selecting subsets of the rows of X, Y, Z, fun must return a scalar value criterion,
but may compute that value in any way. Elements of the logical vector inmodel
correspond to columns of X and indicate which features are finally chosen.

[inmodel,history] = sequentialfs(fun,X,...) returns information on which
feature is chosen at each step. history is a scalar structure with the following fields:

• Crit — A vector containing the criterion values computed at each step.
• In — A logical matrix in which row i indicates the features selected at step i.

[] = sequentialfs(...,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs from the following table.

22 Functions — Alphabetical List

22-4418

Parameter Value

'cv' The validation method used to compute the criterion for each
candidate feature subset.

• When the value is a positive integer k, sequentialfs uses
k-fold cross-validation without stratification.

• When the value is an object of the cvpartition class,
other forms of cross-validation can be specified.

• When the value is 'resubstitution', the original data
are passed to fun as both the training and test data to
compute the criterion.

• When the value is 'none', sequentialfs calls fun as
criterion = fun(X,Y,Z,...), without separating test
and training sets.

The default value is 10, that is, 10-fold cross-validation
without stratification.

So-called wrapper methods use a function fun that implements
a learning algorithm. These methods usually apply cross-
validation to select features. So-called filter methods use a
function fun that measures characteristics of the data (such as
correlation) to select features.

'mcreps' A positive integer indicating the number of Monte-Carlo
repetitions for cross-validation. The default value is 1. The
value must be 1 if the value of 'cv' is 'resubstitution' or
'none'.

'direction' The direction of the sequential search. The default is
'forward'. A value of 'backward' specifies an initial
candidate set including all features and an algorithm that
removes features sequentially until the criterion increases.

'keepin' A logical vector or a vector of column numbers specifying
features that must be included. The default is empty.

'keepout' A logical vector or a vector of column numbers specifying
features that must be excluded. The default is empty.

 sequentialfs

22-4419

Parameter Value

'nfeatures' The number of features at which sequentialfs should stop.
inmodel includes exactly this many features. The default
value is empty, indicating that sequentialfs should stop
when a local minimum of the criterion is found. A nonempty
value overrides values of 'MaxIter' and 'TolFun' in
'options'.

'nullmodel' A logical value, indicating whether or not the null model
(containing no features from X) should be included in feature
selection and in the history output. The default is false.

'options' Options structure for the iterative sequential search algorithm,
as created by statset. sequentialfs uses the following
statset parameters:

• Display — Amount of information displayed by the
algorithm. The default is 'off'.

• MaxIter — Maximum number of iterations allowed. The
default is Inf.

• TolFun — Termination tolerance for the objective function
value. The default is 1e-6 if 'direction' is 'forward';
0 if 'direction' is 'backward'.

• TolTypeFun — Use absolute or relative objective function
tolerances. The default is 'rel'.

• UseParallel — Set to true to compute in parallel.
Default is false.

• UseSubstreams — Set to true to compute in parallel
in a reproducible fashion. Default is false. To compute
reproducibly, set Streams to a type allowing substreams:
'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array consisting
of one such object. If you do not specify Streams,
sequentialfs uses the default stream.

22 Functions — Alphabetical List

22-4420

Examples

Perform sequential feature selection for classification of noisy features:

load fisheriris;

X = randn(150,10);

X(:,[1 3 5 7])= meas;

y = species;

c = cvpartition(y,'k',10);

opts = statset('display','iter');

fun = @(XT,yT,Xt,yt)...

 (sum(~strcmp(yt,classify(Xt,XT,yT,'quadratic'))));

[fs,history] = sequentialfs(fun,X,y,'cv',c,'options',opts)

Start forward sequential feature selection:

Initial columns included: none

Columns that can not be included: none

Step 1, added column 7, criterion value 0.04

Step 2, added column 5, criterion value 0.0266667

Final columns included: 5 7

fs =

 0 0 0 0 1 0 1 0 0 0

history =

 In: [2x10 logical]

 Crit: [0.0400 0.0267]

history.In

ans =

 0 0 0 0 0 0 1 0 0 0

 0 0 0 0 1 0 1 0 0 0

More About
• “Sequential Feature Selection” on page 13-68

See Also
crossval | cvpartition | statset | stepwisefit

 set

22-4421

set

Class: dataset

Set and display properties

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

set(A)

set(A,PropertyName)

A = set(A,PropertyName,PropertyValue,...)

B = set(A,PropertyName,value)

Description

set(A) displays all properties of the dataset array A and their possible values.

set(A,PropertyName) displays possible values for the property specified by the string
PropertyName.

A = set(A,PropertyName,PropertyValue,...) sets property name/value pairs.

B = set(A,PropertyName,value) returns a dataset array B that is a copy of A, but
with the property 'PropertyName' set to the value value.

Note: Using set(A,'PropertyName',value) without assigning to a variable does not
modify A's properties. Use A = set(A,'PropertyName',value) to modify A.

22 Functions — Alphabetical List

22-4422

Examples

Create a dataset array from Fisher's iris data and add a description:

load fisheriris

NumObs = size(meas,1);

NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));

iris = dataset({nominal(species),'species'},...

 {meas,'SL','SW','PL','PW'},...

 'ObsNames',NameObs);

iris = set(iris,'Description','Fisher''s Iris Data');

get(iris)

 Description: 'Fisher's Iris Data'

 Units: {}

 DimNames: {'Observations' 'Variables'}

 UserData: []

 ObsNames: {150x1 cell}

 VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

See Also
get | summary

 setDefaultYfit

22-4423

setDefaultYfit
Class: CompactTreeBagger

Set default value for predict

Syntax

B = setDefaultYfit(B,Yfit)

Description

B = setDefaultYfit(B,Yfit) sets the default prediction for ensemble B to Yfit.
The default prediction must be a character variable for classification or a numeric
scalar for regression. This setting controls what predicted value CompactTreeBagger
returns when no prediction is possible, for example when the predict method needs to
predict for an observation which has only false values in the matrix supplied through
'useifort' argument.

See Also
predict | TreeBagger.DefaultYfit

22 Functions — Alphabetical List

22-4424

setdiff
Class: dataset

Set difference for dataset array observations

Compatibility
The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax
C = setdiff(A,B)

C = setdiff(A,B,vars)

C = setxor(A,B,vars,setOrder)

[C,iA] = setxor(___)

Description
C = setdiff(A,B) for dataset arrays A and B returns the set of observations that
are in A but not B, with repetitions removed. The observations in the dataset array C are
sorted.

C = setdiff(A,B,vars) returns the set of observations that are in A but not
B, considering only the variables specified in vars, with repetitions removed. The
observations in the dataset array C are sorted by these variables. The values for variables
not specified in vars for each observation in C are taken from the corresponding
observation in A. If there are multiple observations in A that correspond to an
observation in C, those values are taken from the first occurrence.

C = setxor(A,B,vars,setOrder) returns the observations in C in the order specified
by setOrder.

[C,iA] = setxor(___) also returns the index vector iA such that C = A(iA,:).
If there are repeated observations in A, then setxor returns the index of the first
occurrence. You can use any of the previous input arguments.

 setdiff

22-4425

Input Arguments

A,B

Input dataset arrays.

vars

Cell array of strings containing variable names or a vector of integers containing variable
column numbers, indicating the variables that setdiff considers.

Specify vars as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of
setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A.

Output Arguments

C

Dataset array with the observations that are in A but not B, with repetitions removed. C
is in sorted order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations from A that are in C. The vector iA contains the
index to the first occurrence of any repeated observations in A.

Examples

Set Difference of Two Dataset Arrays

Create a scalar structure array, and then convert it into two dataset arrays.

22 Functions — Alphabetical List

22-4426

S(1,1).Name = 'CLARK';

S(1,1).Gender = 'M';

S(1,1).SystolicBP = 124;

S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';

S(2,1).Gender = 'F';

S(2,1).SystolicBP = 122;

S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';

S(3,1).Gender = 'M';

S(3,1).SystolicBP = 130;

S(3,1).DiastolicBP = 92;

A = struct2dataset(S(1:2));

B = struct2dataset(S(2:3));

The intersection of A and B is the second observation, with last name BROWN.

Return the set difference of A and B.

[C,iA] = setdiff(A,B)

C =

 Name Gender SystolicBP DiastolicBP

 'CLARK' 'M' 124 93

iA =

 1

The first observation in A is not present in B.

See Also
dataset | intersect | ismember | setxor | sortrows | union | unique

More About
• “Dataset Arrays” on page 2-132

 setlabels

22-4427

setlabels
Assign labels to levels of nominal or ordinal arrays

Compatibility

The nominal and ordinal array data types might be removed in a future release.
To represent ordered and unordered discrete, nonnumeric data, use the MATLAB
categorical data type instead.

Syntax

B = setlabels(A,labels)

B = setlabels(A,labels,levels)

Description

B = setlabels(A,labels) returns a nominal or ordinal array object the same as A
but with levels labeled in the order specified by labels.

B = setlabels(A,labels,levels) labels only the levels specified in levels.

Examples
• “Change Category Labels” on page 2-9

Input Arguments

A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created using
nominal or ordinal.

22 Functions — Alphabetical List

22-4428

labels — Labels to assign
cell array of strings | 2-D character matrix

Labels to assign to levels, specified as a cell array of strings or 2-D character matrix.
Data Types: char | cell

levels — Levels to assign labels
cell array of strings | 2-D character matrix

Level to assign labels to, specified as a cell array of strings or 2-D character matrix.
Data Types: char | cell

Output Arguments

B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

More About
• Using nominal Objects
• Using ordinal Objects

See Also
getlabels | nominal | ordinal

 setxor

22-4429

setxor
Class: dataset

Set exclusive or for dataset array observations

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

C = setxor(A,B)

C = setxor(A,B,vars)

C = setxor(A,B,vars,setOrder)

[C,iA,iB] = setxor(___)

Description

C = setxor(A,B) for dataset arrays A and B returns the set of observations that are
not in the intersection of the two arrays, with repetitions removed. The observations in
the dataset array C are sorted.

C = setxor(A,B,vars) returns the set of observations that are not in the intersection
of the two arrays, considering only the variables specified in vars, with repetitions
removed. The observations in the dataset array C are sorted by these variables. The
values for variables not specified in vars for each observation in C are taken from the
corresponding observation in A or B. If there are multiple observations in A or B that
correspond to an observation in C, those values are taken from the first occurrence.

C = setxor(A,B,vars,setOrder) returns the observations in C in the order specified
by setOrder.

[C,iA,iB] = setxor(___) also returns index vectors iA and iB such that C is
a sorted combination of the values A(iA,:) and B(iB,:). If there are repeated

22 Functions — Alphabetical List

22-4430

observations in A or B, then setxor returns the index of the first occurrence. You can use
any of the previous input arguments.

Input Arguments

A,B

Input dataset arrays.

vars

Cell array of strings containing variable names or a vector of integers containing variable
column numbers, indicating the variables in A and B that setxor considers.

Specify vars as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of
setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A,

then B.

Output Arguments

C

Dataset array with the observations not in the intersection of A and B, with repetitions
removed. C is in sorted order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations from A that are in C. The vector iA contains the
index to the first occurrence of any repeated observations in A.

 setxor

22-4431

iB

Index vector, indicating the observations from B that are in C. The vector iB contains the
index to the first occurrence of any repeated observations in B.

Examples

Symmetric Difference of Two Dataset Arrays

Create a scalar structure array, and then convert it into two dataset arrays.

S(1,1).Name = 'CLARK';

S(1,1).Gender = 'M';

S(1,1).SystolicBP = 124;

S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';

S(2,1).Gender = 'F';

S(2,1).SystolicBP = 122;

S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';

S(3,1).Gender = 'M';

S(3,1).SystolicBP = 130;

S(3,1).DiastolicBP = 92;

A = struct2dataset(S(1:2));

B = struct2dataset(S(2:3));

The intersection of A and B is the second observation, with last name BROWN.

Return the symmetric difference of A and B.

[C,iA,iB] = setxor(A,B);

C

C =

 Name Gender SystolicBP DiastolicBP

 'CLARK' 'M' 124 93

 'MARTIN' 'M' 130 92

[iA iB]

22 Functions — Alphabetical List

22-4432

ans =

 1 2

The symmetric difference contains the first observation from A, and the second
observation from B.

See Also
dataset | intersect | ismember | setdiff | sortrows | union | unique

More About
• “Dataset Arrays” on page 2-132

 SharedCovariance property

22-4433

SharedCovariance property
Class: gmdistribution

true if all covariance matrices are restricted to be the same

Description

Logical true if all the covariance matrices are restricted to be the same (pooled
estimate); logical false otherwise.

22 Functions — Alphabetical List

22-4434

shrink
Class: RegressionEnsemble

Prune ensemble

Syntax

cmp = shrink(ens)

cmp = shrink(ens,Name,Value)

Description

cmp = shrink(ens) returns a compact shrunken version of ens, a regularized
ensemble. cmp retains only learners with weights above a threshold.

cmp = shrink(ens,Name,Value) returns an ensemble with additional options
specified by one or more Name,Value pair arguments. You can specify several name-
value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

ens

A regression ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'lambda'

Vector of nonnegative regularization parameter values for lasso. If
ens.Regularization is nonempty (populate it with regularize), shrink regularizes

 shrink

22-4435

ens using lambda. If ens contains a Regularization structure, you cannot pass
lambda.

Default: []

'threshold'

Lower cutoff on weights for weak learners, a numeric nonnegative scalar. shrink creates
cmp from those learners with weights above threshold.

Default: 0

'weightcolumn'

Column index of ens.Regularization.TrainedWeights, a positive integer. shrink
creates cmp with learner weights from this column.

Default: 1

Output Arguments

cmp

A regression ensemble of class CompactRegressionEnsemble. Use cmp for making
predictions exactly as you use ens, with the predict method.

shrink orders the members of cmp from largest to smallest.

Examples

Shrink a 300-member bagged regression ensemble using 0.1 for the parameter lambda,
and view the number of members of the resulting ensemble:

X = rand(2000,20);

Y = repmat(-1,2000,1);

Y(sum(X(:,1:5),2)>2.5) = 1;

bag = fitensemble(X,Y,'Bag',300,'Tree','type','regression');

cmp = shrink(bag,'lambda',0.1);

cmp.NumTrained

22 Functions — Alphabetical List

22-4436

ans =

 83

See Also
regularize | predict | cvshrink

 Sigma property

22-4437

Sigma property
Class: gmdistribution

Input array of covariances

Description

Input array of covariances SIGMA.

22 Functions — Alphabetical List

22-4438

signrank

Wilcoxon signed rank test

Syntax

p = signrank(x)

p = signrank(x,y)

p = signrank(x,y,Name,Value)

[p,h] = signrank(___)

[p,h,stats] = signrank(___)

[___] = signrank(x,m)

[___] = signrank(x,m,Name,Value)

Description

p = signrank(x) returns the p-value of a two-sided Wilcoxon signed rank test.

signrank tests the null hypothesis that data in the vector x come from a distribution
whose median is zero at the 5% significance level. The test assumes that the data in x
come from a continuous distribution symmetric about its median.

p = signrank(x,y) returns the p-value of a paired, two-sided test for the null
hypothesis that x – y comes from a distribution with zero median.

p = signrank(x,y,Name,Value) returns the p-value for the sign test with additional
options specified by one or more Name,Value pair arguments.

[p,h] = signrank(___) also returns a logical value indicating the test decision. h =
1 indicates a rejection of the null hypothesis, and h = 0 indicates a failure to reject the
null hypothesis at the 5% significance level. You can use any of the input arguments in
the previous syntaxes.

[p,h,stats] = signrank(___) also returns the structure stats with information
about the test statistic.

 signrank

22-4439

[___] = signrank(x,m) returns any of the output arguments in the previous
syntaxes for the null hypothesis that the data in x are observations from a distribution
with median m.

[___] = signrank(x,m,Name,Value) returns any of the output arguments in the
previous syntaxes for the signed rank test with additional options specified by one or
more Name,Value pair arguments.

Examples

Test for Zero Median of a Single Population

Test the hypothesis of zero median.

Generate the sample data.

rng('default') % for reproducibility

x = randn(1,25) + 1.30;

Test the hypothesis that the data in x has zero median.

[p,h] = signrank(x)

p =

 3.2229e-05

h =

 1

At the default 5% significance level, the value h = 1 indicates that the test rejects the null
hypothesis of zero median.

Test the Median of Differences of Paired Samples

Test the hypothesis of zero median for the difference between paired samples.

Generate the sample data.

rng('default') % for reproducibility

22 Functions — Alphabetical List

22-4440

x = lognrnd(2,.25,10,1);

y = x + trnd(2,10,1);

Test the hypothesis that x – y has zero median.

[p,h] = signrank(x,y)

p =

 0.3223

h =

 0

The results indicate that the test fails to reject the null hypothesis of zero median in the
difference at the default 5% significance level.

Signed Rank Test for Large Samples

Conduct a -sided test on a large sample using approximation.

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load gradespaired

Test the null hypothesis that the median of the grade differences of students before and
after participating in a tutoring program is 0 against the alternate that it is less than 0.

[p,h,stats] = signrank(gradespaired(:,1),...

 gradespaired(:,2),'tail','left')

p =

 0.0047

h =

 1

 signrank

22-4441

stats =

 zval: -2.5982

 signedrank: 2.0175e+03

Because the sample size is greater than 15, signrank uses an approximate method
to calculate the p-value and also returns the value of the z-statistic. The value h = 1
indicates that the test rejects the null hypothesis that there is no difference between
the grade medians at the 5% significance level. There is enough statistical evidence to
conclude that the median grade before the tutoring program is less than the median
grade after the tutoring program.

Repeat the test using the exact method.

[p,h,stats] = signrank(gradespaired(:,1),gradespaired(:,2),...

 'tail','left','method','exact')

p =

 0.0045

h =

 1

stats =

 signedrank: 2.0175e+03

The results obtained using the approximate method are consistent with the exact
method.

Two-Sided Test for the Median of a Single Population

Load the sample data.

load mileage

The data contains the mileages per gallon for three different types of cars in columns 1 to
3.

22 Functions — Alphabetical List

22-4442

Test the hypothesis that the median mileage for the type of cars in the second column
differs from 33.

[p,h,stats] = signrank(mileage(:,2),33)

p =

 0.0313

h =

 1

stats =

 signedrank: 21

At the 5% significance level, the results indicate that the median mileage for the second
type of cars differs from 33. Note that signrank uses an exact method to calculate the p-
value for small samples and does not return the z-statistic.

Right-Sided Test for the Median of a Single Population

Use the name-value pair arguments in signrank.

Load the sample data.

load mileage

The data contains the mileage per gallon for three different types of cars in columns 1 to
3.

Test the hypothesis that the median mileage for the type of cars in the second row are
larger than 33.

[p,h,stats] = signrank(mileage(:,2),33,'tail','right')

p =

 0.0156

h =

 1

stats =

 signedrank: 21

Repeat the same test at the 1% significance level using the approximate method.

 signrank

22-4443

[p,h,stats] = signrank(mileage(:,2),33,'tail','right',...

'alpha',0.01,'method','approximate')

p =

 0.0180

h =

 0

stats =

 zval: 2.0966

 signedrank: 21

This result, h = 0, indicates that the null hypothesis cannot be rejected at the 1%
significance level.

Input Arguments

x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. y must be the same length as x.

Data Types: single | double

m — Hypothesized value of the median
scalar

Hypothesized value of the median, specified as a scalar.
Example: signrank(x,10)

Data Types: single | double

22 Functions — Alphabetical List

22-4444

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'alpha',0.01,'method','approximate','tail','right' specifies a
right-tailed signed rank test with 1% significance level, which returns the approximate p-
value.

'alpha' — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level of the decision of a hypothesis test, specified as the comma-separated
pair consisting of 'alpha' and a scalar value in the range 0 to 1. Significance level of h
is 100 * alpha%.

Example: 'alpha', 0.01

Data Types: double | single

'method' — Computation method of p
'exact' | 'approximate'

Computation method of p, specified as the comma-separated pair consisting of 'method'
and one of the following.

'exact' Exact computation of the p-value, p. Default value for 15 or fewer
observations in x, x – m, or x – y when method is unspecified.

'approximate'Normal approximation while computing the p-value, p. Default value
for more than 15 observations in x, x – m, or x – y when 'method' is
unspecified because the exact method can be slow on large samples.

Example: 'method','exact'

Data Types: char

'tail' — Type of test
'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the
following:

 signrank

22-4445

'both' Two-sided hypothesis test, which is the default test type.

• For a one-sample test, the alternate hypothesis states that the data in x
come from a continuous distribution with median different than 0 or m.

• For a two-sample test, the alternate hypothesis states that the data in x – y
come from a distribution with median different than 0.

'right'Right-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x
come from a continuous distribution with median greater than 0 or m.

• For a two-sample test, the alternate hypothesis states the data in x – y
come from a distribution with median greater than 0.

'left' Left-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x
come from a continuous distribution with median less than 0 or m.

• For a two-sample test, the alternate hypothesis states the data in x – y
come from a distribution with median less than 0.

Example: 'tail','left'

Output Arguments

p — p-value of the test
nonnegative scalar

p-value of the test, returned as a nonnegative scalar from 0 to 1. p is the probability of
observing a test statistic as or more extreme than the observed value under the null
hypothesis. signrank computes the two-sided p-value by doubling the most significant
one-sided value.

h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the 100 * alpha%
significance level.

22 Functions — Alphabetical List

22-4446

• If h = 0, this indicates a failure to reject the null hypothesis at the 100 * alpha%
significance level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in stats are:

• signrank: Value of the sign rank test statistic.
• zval: Value of the z- statistic (computed when 'method' is 'approximate').

More About

Wilcoxon Signed Rank Test

The Wilcoxon signed rank test is a nonparametric test for two populations when the
observations are paired. In this case, the test statistic, W, is the sum of the ranks of
positive differences between the observations in the two samples (that is, x – y). When
you use the test for one sample, then W is the sum of the ranks of positive differences
between the observations and the hypothesized median value M0 (which is 0 when you
use signrank(x) and m when you use signrank(x,m)).

z-Statistic

For large samples, or when method is approximate, the signrank function calculates
the p-value using the z-statistic, given by

z
W n n

n n n tieadj
=

- +()()

+() +() -

1 4

1 2 1

24

/
,

where n is the sample size of the difference x – y or x – m. For the two-sample case,
signrank uses [tie_rank,tieadj] = tiedrank(abs(diffxy),0,0,epsdiff) to
obtain the tie adjustment value tieadj.

Algorithms

signrank treats NaNs in x and y as missing values and ignores them.

 signrank

22-4447

For the two-sample case, signrank uses a tolerance based on the values epsdiff =
eps(x) + eps(y). The signrank function treats any pair of values with difference
d(i) = x(i) - y(i) that differ by no more than the sum of their two eps values
(abs(d(i)) < epsdiff(i)) as ties.

References

[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed., Boca
Raton, FL: Chapman & Hall/CRC Press, Taylor & Francis Group, 2011.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ:
John Wiley & Sons, Inc., 1999.

See Also
ranksum | signtest | ttest | ztest

22 Functions — Alphabetical List

22-4448

signtest
Sign test

Syntax

p = signtest(x)

p = signtest(x,y)

p = signtest(x,y,Name,Value)

[p,h] = signtest(___)

[p,h,stats] = signtest(___)

[___] = signtest(x,m)

[___] = signtest(x,m,Name,Value)

Description

p = signtest(x) returns the p-value for a two-sided sign test.

signtest tests the hypothesis that data in x has a continuous distribution with zero
median against the alternative that the distribution does not have zero median at the 5%
significance level.

p = signtest(x,y) returns the p-value of a two-sided sign test. Here,signtest tests
for the hypothesis that the data in x – y has a distribution with zero median against the
alternative that the distribution does not have zero median. Note that a hypothesis of
zero median for x – y is not equivalent to a hypothesis of equal median for x and y.

p = signtest(x,y,Name,Value) returns the p-value for the sign test with additional
options specified by one or more Name,Value pair arguments.

[p,h] = signtest(___) also returns a logical value indicating the test decision.
The value h = 1 indicates a rejection of the null hypothesis, and h = 0 indicates a failure
to reject the null hypothesis at the 5% significance level. You can use any of the input
arguments in the previous syntaxes.

[p,h,stats] = signtest(___) also returns the structure stats containing
information about the test statistic.

 signtest

22-4449

[___] = signtest(x,m) returns any of the output arguments in the previous
syntaxes for the test whether the data in x are observations from a distribution with
median m against the alternative that the median is different from m.

[___] = signtest(x,m,Name,Value) returns any of the output arguments in the
previous syntaxes for the sign test with additional options specified by one or more
Name,Value pair arguments.

Examples

Test for Zero Median of a Single Population

Test the hypothesis of zero median.

Generate the sample data.

rng('default') % for reproducibility

x = randn(1,25);

The sampling distribution of x is symmetric with zero median.

Test the null hypothesis that x comes from a distribution with a median different from
zero median.

[p,h,stats] = signtest(x,0)

p =

 0.1078

h =

 0

stats =

 zval: NaN

 sign: 17

At the default 5% significance level, the result h = 0 indicates that signtest fails to
reject to the null hypothesis of zero median. signtest calculates the p-value using the
exact method, hence it does not calculate zval and returns it as a NaN.

Test for Zero Median for the Difference of Paired Samples

Test the hypothesis of zero median for the difference between paired samples.

22 Functions — Alphabetical List

22-4450

Generate the sample data.

rng('default') % for reproducibility

before = lognrnd(2,.25,10,1);

after = before + (lognrnd(0,.5,10,1) - 1);

The sampling distribution of the difference between before and after is symmetric
with zero median.

Test the null hypothesis that the difference of before and after has zero median.

[p,h] = signtest(before,after)

p =

 0.7539

h =

 0

At the default 5% significance level, the value h = 0 indicates that signtest fails to
reject to the null hypothesis of zero median in the difference.

Medians of Paired Samples

Test the hypothesis of zero median for the difference between two paired samples using
the exact and approximate methods.

Generate the sample data.

rng('default') % for reproducibility

x = lognrnd(2,.25,15,1);

y = x + trnd(2,15,1);

display([x y])

ans =

 8.4521 7.8047

 11.6869 11.4094

 4.2009 5.1133

 9.1664 12.1655

 8.0020 10.0300

 5.3285 6.0153

 signtest

22-4451

 6.6300 5.1235

 8.0499 8.6737

 18.0763 19.2164

 14.7665 15.3380

 5.2726 8.4187

 15.7798 16.2093

 8.8583 8.5575

 7.2735 7.4783

 8.8347 7.8894

Test the hypothesis that x – y has zero median.

[p,h,stats] = signtest(x,y)

p =

 0.3018

h =

 0

stats =

 zval: NaN

 sign: 5

At the default 5% significance level, the value h = 0 indicates that the test fails to reject
the null hypothesis of zero median in the difference.

Repeat the test using the approximate method.

[p,h,stats] = signtest(x,y,'method','approximate')

p =

 0.3017

h =

 0

22 Functions — Alphabetical List

22-4452

stats =

 zval: -1.0328

 sign: 5

The approximate p-value, which signtest obtains using the z-statistic, is really close to
the exact p-value.

Test for Large Samples

Perform a left-sided sign test for large samples.

Navigate to a folder containing sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

Load the sample data.

load gradespaired

Test the null hypothesis that the median of the grade differences before and after the
tutoring program is 0 against the alternate that it is less than 0.

[p,h,stats] = signtest(gradespaired(:,1),gradespaired(:,2),...

'tail','left')

p =

 0.0013

h =

 1

stats =

 zval: -3.0110

 sign: 37

Because the sample size is large (greater than 100), signtest uses an approximate
method to calculate the p-value and also returns the value of the z-statistic. The test

 signtest

22-4453

rejects the null hypothesis that there is no difference between the grade medians at the
5% significance level.

Test for Median of a Single Population

Test the hypothesis that the population median is different from a specified value.

Load the sample data.

load lawdata

The data set has 15 observations for variables gpa and lsat.

Test the hypothesis that the median lsat score is higher than 570.

[p,h,stats] = signtest(lsat,570,'tail','right')

p =

 0.0176

h =

 1

stats =

 zval: NaN

 sign: 12

Both the p-value, 0.0176, and h = 1 indicate that at the 5% significance level the test
concludes in favor of the alternate hypothesis.

Input Arguments

x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

22 Functions — Alphabetical List

22-4454

y — Sample data
vector

Sample data, specified as a vector. y must be the same length as x.

Data Types: single | double

m — Hypothesized value of the median
scalar

Hypothesized value of the median, specified as a scalar.
Example: signtest(x,35)

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'alpha',0.01,'method','approximate','tail','right' specifies a
right-tailed sign test with 1% significance level , which returns the approximate p-value.

'alpha' — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'alpha' and a scalar value in the range 0 to 1. The default value of alpha is 0.05.
Significance level of h is 100 * alpha%.

Example: 'alpha', 0.01

Data Types: double | single

'method' — p-value computation method
'exact' | 'approximate'

p-value computation method, specified as the comma-separated pair consisting of
'method' and one of the following:

'exact' Exact computation of the p-value, p.

 signtest

22-4455

'approximate' Normal approximation for computing the p-value, p.

The default computation method is 'exact', if there are fewer than 100 observations
and 'approximate' if there are 100 observations or more.

Example: 'method','exact'

Data Types: char

'tail' — Type of test
'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the
following:

'both' Two-sided hypothesis test, which is the default test type.

• For a one-sample test, the alternate hypothesis states that the data in x
come from a continuous distribution with median different than zero (or m).

• For a two-sample test, the alternate hypothesis states that the data in x-y
come from a distribution with median different than zero.

'right' Right-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x
come from a continuous distribution with median greater than zero (or m).

• For a two-sample test, the alternate hypothesis states the data in x-y
come from a distribution with median greater than zero.

'left' Left-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x
come from a continuous distribution with median less than zero (or m).

• For a two-sample test, the alternative hypothesis states the data in x-y
come from a distribution with median less than zero.

Example: 'tail','left'

Output Arguments

p — p-value of the test
nonnegative scalar

22 Functions — Alphabetical List

22-4456

p-value of the test, returned as a nonnegative scalar from 0 to 1. p is the probability of
observing a test statistic as or more extreme than the observed value under the null
hypothesis. signtest computes the two-sided p-value by doubling the most significant
one-sided value.

h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.

• If h = 1, this indicates rejection of the null hypothesis at the 100 * alpha%
significance level.

• If h = 0, this indicates a failure to reject the null hypothesis at the 100 * alpha%
significance level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in stats are:

• sign: Value of the sign test statistic.
• zval: Value of the z-statistic (computed only for large samples).

More About

Sign Test

The sign test is a nonparametric test for the median of a population or median of the
difference of two populations.

For example, for tests on a single population median:

• If the test is two-sided, then the test statistic, S, is the minimum of the number of
observations that are smaller or larger than the hypothesized median value, M0.

• If the test is right-sided, then S is the number of observations that are larger than the
hypothesized median value M0.

• If the test is left-sided, then S is the number of observations that are smaller than the
hypothesized median value M0.

 signtest

22-4457

z-Statistic

For a large sample, signtest uses the z-statistic to approximate the p-value.

The signtest test statistic is the number of elements that are greater than 0 (for
signtest(x) or signtest(x-y)), or m (for signtest(x,m)). Hence, the z-statistic of
the sign test, with the continuity correction, is:

z
S E S

V S

S n sign npos nneg

n
=

-()
=

- - -()()

()

(.) . ()

(.)(.)
,

0 5 0 5

0 5 0 5

where npos and nneg are the number of positive and negative differences from the
hypothesized median value, respectively.

Algorithms

For a one-sample test, signtest omits values in x that are zero or NaN.

For a two-sample test, signtest omits values in x – y that are zero or NaN.

References

[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed. Boca
Raton, FL: Chapman & Hall/CRC Press, Taylor & Francis Group, 2011.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ:
John Wiley & Sons, Inc., 1999.

See Also
ranksum | signrank | ttest | ztest

22 Functions — Alphabetical List

22-4458

silhouette
Silhouette plot

Syntax

silhouette(X,clust)

s = silhouette(X,clust)

[s,h] = silhouette(X,clust)

[...] = silhouette(X,clust,metric)

[...] = silhouette(X,clust,distfun,p1,p2,...)

Description

silhouette(X,clust) plots cluster silhouettes for the n-by-p data matrix X, with
clusters defined by clust. Rows of X correspond to points, columns correspond to
coordinates. clust can be a categorical variable, numeric vector, character matrix, or
cell array of strings containing a cluster name for each point. silhouette treats NaNs or
empty strings in clust as missing values, and ignores the corresponding rows of X. By
default, silhouette uses the squared Euclidean distance between points in X.

s = silhouette(X,clust) returns the silhouette values in the n-by-1 vector s, but
does not plot the cluster silhouettes.

[s,h] = silhouette(X,clust) plots the silhouettes, and returns the silhouette
values in the n-by-1 vector s, and the figure handle in h.

[...] = silhouette(X,clust,metric) plots the silhouettes using the inter-point
distance function specified in metric. Choices for metric are given in the following
table.

Metric Description

'Euclidean' Euclidean distance
'sqEuclidean' Squared Euclidean distance (default)
'cityblock' Sum of absolute differences

 silhouette

22-4459

Metric Description

'cosine' One minus the cosine of the included angle between points
(treated as vectors)

'correlation' One minus the sample correlation between points (treated as
sequences of values)

'Hamming' Percentage of coordinates that differ
'Jaccard' Percentage of nonzero coordinates that differ
Vector A numeric distance matrix in upper triangular vector form,

such as is created by pdist. X is not used in this case, and
can safely be set to [].

For more information on each metric, see “Distance Metrics”.

[...] = silhouette(X,clust,distfun,p1,p2,...) accepts a function handle
distfun to a metric of the form

d = distfun(X0,X,p1,p2,...)

where X0 is a 1-by-p point, X is an n-by-p matrix of points, and p1,p2,... are optional
additional arguments. The function distfun returns an n-by-1 vector d of distances
between X0 and each point (row) in X. The arguments p1, p2,... are passed directly to
the function distfun.

Examples

Create Silhouette Plot

Create a silhouette plot from clustered data.

Generate random sample data.

rng('default'); % For reproducibility

X = [randn(10,2)+ones(10,2);randn(10,2)-ones(10,2)];

Cluster the data in X using kmeans.

cidx = kmeans(X,2);

22 Functions — Alphabetical List

22-4460

Create a silhouette plot from the clustered data.

silhouette(X,cidx)

Compute Silhouette Values

Compute the silhouette values from clustered data.

Generate random sample data.

rng('default'); % For reproducibility

X = [randn(10,2)+ones(10,2);randn(10,2)-ones(10,2)];

Use kmeans to cluster the data in X based on the sum of absolute differences in distance.

 silhouette

22-4461

cidx = kmeans(X,2,'distance','cityblock');

Compute the silhouette values from the clustered data. Specify metric as 'cityblock'
to indicate that the kmeans clustering is based on the sum of absolute differences.

s = silhouette(X,cidx,'cityblock')

s =

 0.0816

 0.5848

 0.1906

 0.2781

 0.3954

 0.4050

 0.0897

 0.5416

 0.6203

 0.6664

 0.5814

 0.6022

 0.6540

 0.5223

 0.5566

 0.4227

 0.6225

 0.6558

 0.5284

 0.6034

More About

Silhouette Value

The silhouette value for each point is a measure of how similar that point is to points in
its own cluster, when compared to points in other clusters. The silhouette value for the
ith point, Si, is defined as

Si = (bi-ai)/ max(ai,bi)

where ai is the average distance from the ith point to the other points in the same
cluster as i, and bi is the minimum average distance from the ith point to points in a
different cluster, minimized over clusters.

22 Functions — Alphabetical List

22-4462

The silhouette value ranges from -1 to +1. A high silhouette value indicates that i is
well-matched to its own cluster, and poorly-matched to neighboring clusters. If most
points have a high silhouette value, then the clustering solution is appropriate. If many
points have a low or negative silhouette value, then the clustering solution may have
either too many or too few clusters. The silhouette clustering evaluation criterion can be
used with any distance metric.
• “Grouping Variables” on page 2-52

References

[1] Kaufman L., and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. Hoboken, NJ: John Wiley & Sons, Inc., 1990.

See Also
dendrogram | kmeans | linkage | pdist | evalclusters

 clustering.evaluation.SilhouetteEvaluation class

22-4463

clustering.evaluation.SilhouetteEvaluation class

Package: clustering.evaluation
Superclasses: clustering.evaluation.ClusterCriterion

Silhouette criterion clustering evaluation object

Description

clustering.evaluation.SilhouetteEvaluation is an object consisting of sample
data, clustering data, and silhouette criterion values used to evaluate the optimal
number of data clusters. Create a silhouette criterion clustering evaluation object using
evalclusters.

Construction

eva = evalclusters(x,clust,'Silhouette') creates a silhouette criterion
clustering evaluation object.

eva = evalclusters(x,clust,'Silhouette',Name,Value) creates a silhouette
criterion clustering evaluation object using additional options specified by one or more
name-value pair arguments.

Input Arguments

x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the
number of variables.
Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions |
function handle

22 Functions — Alphabetical List

22-4464

Clustering algorithm, specified as one of the following.

'kmeans' Cluster the data in x using the kmeans clustering
algorithm, with 'EmptyAction' set to 'singleton' and
'Replicates' set to 5.

'linkage' Cluster the data in x using the clusterdata
agglomerative clustering algorithm, with 'Linkage' set
to 'ward'.

'gmdistribution' Cluster the data in x using the gmdistribution
Gaussian mixture distribution algorithm, with
'SharedCov' set to true and 'Replicates' set to 5.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you can
specify a clustering algorithm using the function_handle (@) operator. The function
must be of the form C = clustfun(DATA,K), where DATA is the data to be clustered,
and K is the number of clusters. The output of clustfun must be one of the following:

• A vector of integers representing the cluster index for each observation in DATA. There
must be K unique values in this vector.

• A numeric n-by-K matrix of score for n observations and K classes. In this case, the
cluster index for each observation is determined by taking the largest score value in
each row.

If Criterion is 'CalinskHarabasz', 'DaviesBouldin', or 'silhouette', you
can also specify clust as a n-by-K matrix containing the proposed clustering solutions.
n is the number of observations in the sample data, and K is the number of proposed
clustering solutions. Column j contains the cluster indices for each of the N points in the
jth clustering solution.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'KList',[1:5],'Distance','cityblock' specifies to test 1, 2, 3, 4, and 5
clusters using the sum of absolute differences distance measure.

'ClusterPriors' — Prior probabilities for each cluster
'empirical' (default) | 'equal'

 clustering.evaluation.SilhouetteEvaluation class

22-4465

Prior probabilities for each cluster, specified as the comma-separated pair consisting of
'ClusterPriors' and one of the following.

'empirical' Compute the overall silhouette value for the clustering
solution by averaging the silhouette values for all points.
Each cluster contributes to the overall silhouette value
proportionally to its size.

'equal' Compute the overall silhouette value for the clustering
solution by averaging the silhouette values for all points
within each cluster, and then averaging those values
across all clusters. Each cluster contributes equally to the
overall silhouette value, regardless of its size.

Example: 'ClusterPriors','empirical'

'Distance' — Distance metric
'sqEuclidean' (default) | 'Euclidean' | 'cityblock' | vector | function | ...

Distance metric used for computing the criterion values, specified as the comma-
separated pair consisting of 'Distance' and one of the following.

'sqEuclidean' Squared Euclidean distance
'Euclidean' Euclidean distance
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle between points

(treated as vectors)
'correlation' One minus the sample correlation between points (treated

as sequences of values)
'Hamming' Percentage of coordinates that differ
'Jaccard' Percentage of nonzero coordinates that differ

For detailed information about each distance metric, see pdist.

You can also specify a function for the distance metric by using the function_handle
(@) operator. The distance function must be of the form d2 = distfun(XI,XJ), where
XI is a 1-by-n vector corresponding to a single row of the input matrix X, and XJ is an m2-

22 Functions — Alphabetical List

22-4466

by-n matrix corresponding to multiple rows of X. distfun must return an m2-by-1 vector
of distances d2, whose kth element is the distance between XI and XJ(k,:).

If Criterion is 'silhouette', you can also specify Distance as the output vector
output created by the function pdist.

When Clust a string representing a built-in clustering algorithm, evalclusters uses
the distance metric specified for Distance to cluster the data, except for the following:

• If Clust is 'linkage', and Distance is either 'sqEuclidean' or 'Euclidean',
then the clustering algorithm uses Euclidean distance and Ward linkage.

• If Clust is 'linkage' and Distance is any other metric, then the clustering
algorithm uses the specified distance metric and average linkage.

In all other cases, the distance metric specified for Distance must match the distance
metric used in the clustering algorithm to obtain meaningful results.
Example: 'Distance','Euclidean'

'KList' — List of number of clusters to evaluate
vector

List of number of clusters to evaluate, specified as the comma-separated pair consisting
of 'KList' and a vector of positive integer values. You must specify KList when clust is
a clustering algorithm name string or a function handle. When criterion is 'gap', clust
must be a string or a function handle, and you must specify KList.
Example: 'KList',[1:6]

Properties

ClusteringFunction

Clustering algorithm used to cluster the input data, stored as a valid clustering
algorithm name string or function handle. If the clustering solutions are provided in the
input, ClusteringFunction is empty.

ClusterPriors

Prior probabilities for each cluster, stored as valid prior probability name string.

 clustering.evaluation.SilhouetteEvaluation class

22-4467

ClusterSilhouettes

Silhouette values corresponding to each proposed number of clusters in InspectedK,
stored as a cell array of vectors.

CriterionName

Name of the criterion used for clustering evaluation, stored as a valid criterion name
string.

CriterionValues

Criterion values corresponding to each proposed number of clusters in InspectedK,
stored as a vector of numerical values.

Distance

Distance measure used for clustering data, stored as a valid distance measure name
string.

InspectedK

List of the number of proposed clusters for which to compute criterion values, stored as a
vector of positive integer values.

Missing

Logical flag for excluded data, stored as a column vector of logical values. If Missing
equals true, then the corresponding value in the data matrix x is not used in the
clustering solution.

NumObservations

Number of observations in the data matrix X, minus the number of missing (NaN) values
in X, stored as a positive integer value.

OptimalK

Optimal number of clusters, stored as a positive integer value.

OptimalY

Optimal clustering solution corresponding to OptimalK, stored as a column vector of
positive integer values. If the clustering solutions are provided in the input, OptimalY is
empty.

22 Functions — Alphabetical List

22-4468

X

Data used for clustering, stored as a matrix of numerical values.

Methods

Inherited Methods

addK
Evaluate additional numbers of clusters

plot
Plot clustering evaluation object criterion
values

compact
Compact clustering evaluation object

Definitions

Silhouette Value

The silhouette value for each point is a measure of how similar that point is to points in
its own cluster, when compared to points in other clusters. The silhouette value for the
ith point, Si, is defined as

Si = (bi-ai)/ max(ai,bi)

where ai is the average distance from the ith point to the other points in the same
cluster as i, and bi is the minimum average distance from the ith point to points in a
different cluster, minimized over clusters.

The silhouette value ranges from -1 to +1. A high silhouette value indicates that i is
well-matched to its own cluster, and poorly-matched to neighboring clusters. If most
points have a high silhouette value, then the clustering solution is appropriate. If many
points have a low or negative silhouette value, then the clustering solution may have

 clustering.evaluation.SilhouetteEvaluation class

22-4469

either too many or too few clusters. The silhouette clustering evaluation criterion can be
used with any distance metric.

Examples

Evaluate the Clustering Solution Using Silhouette Criterion

Evaluate the optimal number of clusters using the silhouette clustering evaluation
criterion.

Generate sample data containing random numbers from three multivariate distributions
with different parameter values.

rng('default'); % For reproducibility

mu1 = [2 2];

sigma1 = [0.9 -0.0255; -0.0255 0.9];

mu2 = [5 5];

sigma2 = [0.5 0 ; 0 0.3];

mu3 = [-2, -2];

sigma3 = [1 0 ; 0 0.9];

N = 200;

X = [mvnrnd(mu1,sigma1,N);...

 mvnrnd(mu2,sigma2,N);...

 mvnrnd(mu3,sigma3,N)];

Evaluate the optimal number of clusters using the silhouette criterion. Cluster the data
using kmeans.

E = evalclusters(X,'kmeans','silhouette','klist',[1:6])

E =

 SilhouetteEvaluation with properties:

 NumObservations: 600

 InspectedK: [1 2 3 4 5 6]

 CriterionValues: [NaN 0.8055 0.8551 0.7170 0.7376 0.6239]

 OptimalK: 3

22 Functions — Alphabetical List

22-4470

The OptimalK value indicates that, based on the silhouette criterion, the optimal
number of clusters is three.

Plot the silhouette criterion values for each number of clusters tested.

figure;

plot(E)

The plot shows that the highest silhouette value occurs at three clusters, suggesting that
the optimal number of clusters is three.

Create a grouped scatter plot to visually examine the suggested clusters.

figure;

gscatter(X(:,1),X(:,2),E.OptimalY,'rbg','xod')

 clustering.evaluation.SilhouetteEvaluation class

22-4471

The plot shows three distinct clusters within the data: Cluster 1 is in the lower-left
corner, cluster 2 is near the center of the plot, and cluster 3 is in the upper-right corner.

References

[1] Kaufman L. and P. J. Rouseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Hoboken, NJ: John Wiley & Sons, Inc., 1990.

[2] Rouseeuw, P. J. “Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis.” Journal of Computational and Applied Mathematics. Vol. 20,
No. 1, 1987, pp. 53–65.

22 Functions — Alphabetical List

22-4472

See Also
clustering.evaluation.CalinskiHarabaszEvaluation

| clustering.evaluation.DaviesBouldinEvaluation |
clustering.evaluation.GapEvaluation | evalclusters | silhouette

More About
• Class Attributes
• Property Attributes

 single

22-4473

single
Class: dataset

Convert dataset variables to single array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

B = single(A)

B = single(A,vars)

Description

B = single(A) returns the contents of the dataset A, converted to one single array. The
classes of the variables in the dataset must support the conversion.

B = single(A,vars) returns the contents of the dataset variables specified by vars.
vars is a positive integer, a vector of positive integers, a variable name, a cell array
containing one or more variable names, or a logical vector.

See Also
dataset | double | replacedata

22 Functions — Alphabetical List

22-4474

size
Class: dataset

Size of dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

D = SIZE(A)

[NOBS,NVARS] = SIZE(A)

[M1,M2,M3,...,MN] = SIZE(A)

M = size(A,dim)

Description

D = SIZE(A) returns the two-element row vector D = [NOBS,NVARS] containing the
number of observations and number of variables in the dataset A. A dataset array always
has two dimensions.

[NOBS,NVARS] = SIZE(A) returns the numbers of observations and variables in the
dataset A as separate output variables.

[M1,M2,M3,...,MN] = SIZE(A), for N > 2, returns M1 = NOBS, M2 = NVARS, and
M3,..,MN = 1.

M = size(A,dim) returns the length of the dimension specified by the scalar dim:

• M = size(A,1) returns NOBS
• M = size(A,2) returns NVARS
• M = size(A,k) returns 1 for k > 2

 size

22-4475

See Also
length | numel | ndims

22 Functions — Alphabetical List

22-4476

size
Class: qrandset

Number of dimensions in matrix

Syntax

d = size(p)

[m,n] = size(p)

m = size(p,dim)

Description

d = size(p) returns the two-element row vector d = [m,n] containing the number
of points in the point set and the number of dimensions the points are in, for the point
set p. These correspond to the number of rows and columns in the matrix that would be
produced by the expression p(:,:).

[m,n] = size(p) returns the number of points and dimensions for p as separate
output variables.

m = size(p,dim) returns the length of the dimension specified by the scalar dim.
For example, size(p,1) returns the number of rows (points in the point set). If dim is
greater than 2, m will be 1.

Examples

The commands

P = sobolset(12);

d = size(P)

return

d = [9.0072e+015 12]

The command

[m,n] = size(P)

 size

22-4477

returns

m = 9.0072e+015

n = 12

The command

m2 = size(P, 2)

returns

 m2 = 12

See Also
length | ndims | qrandset

22 Functions — Alphabetical List

22-4478

slicesample
Slice sampler

Syntax

rnd = slicesample(initial,nsamples,'pdf',pdf)

rnd = slicesample(initial,nsamples,'logpdf',logpdf)

[rnd,neval] = slicesample(initial,...)

[rnd,neval] = slicesample(initial,...,Name,Value)

Description

rnd = slicesample(initial,nsamples,'pdf',pdf) generates nsamples random
samples using the slice sampling method (see “Algorithms” on page 22-4483). pdf gives
the target probability density function (pdf). initial is a row vector or scalar containing
the initial value of the random sample sequences.

rnd = slicesample(initial,nsamples,'logpdf',logpdf) generates samples
using the logarithm of the pdf.

[rnd,neval] = slicesample(initial,...) returns the average number of function
evaluations that occurred in the slice sampling.

[rnd,neval] = slicesample(initial,...,Name,Value) generates random
samples with additional options specified by one or more Name,Value pair arguments.

Input Arguments

initial

Initial point, a scalar or row vector. Set initial so pdf(initial) is a strictly positive
scalar. length(initial) is the number of dimensions of each sample.

nsamples

Positive integer, the number of samples that slicesample generates.

 slicesample

22-4479

pdf

Handle to a function that generates the probability density function, specified with @.
pdf can be unnormalized, meaning it need not integrate to 1.

logpdf

Handle to a function that generates the logarithm of the probability density function,
specified with @. logpdf can be the logarithm of an unnormalized pdf.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'burnin'

Nonnegative integer, the number of samples to generate and discard before generating
the samples to return. The slice sampling algorithm is a Markov chain whose stationary
distribution is proportional to that of the pdf argument. Set burnin to a high enough
value that you believe the Markov chain approximately reaches stationarity after
burnin samples.

Default: 0

'thin'

Positive integer, where slicesample discards every thin - 1 samples and returns
the next. The slice sampling algorithm is a Markov chain, so the samples are serially
correlated. To reduce the serial correlation, choose a larger value of thin.

Default: 1

'width'

Width of the interval around the current sample, a scalar or vector of positive values.
slicesample begins with this interval and searches for an appropriate region
containing the points of pdf that evaluate to a large enough value.

22 Functions — Alphabetical List

22-4480

• If width is a scalar and the samples have multiple dimensions, slicesample uses
width for each dimension.

• If width is a vector, it should have the same length as initial.

Default: 10

Output Arguments

rnd

nsamples-by-length(initial) matrix, where each row is one sample.

neval

Scalar, the mean number of function evaluations per sample. neval includes the burnin
and thin evaluations, not just the evaluations of samples returned in rnd. Therefore the
total number of function evaluations is
neval*(nsamples*thin + burnin).

Examples

Generate Random Samples From a Multimodal Density

This example shows how to generate random samples from a multimodal density using
slicesample.

Define a function proportional to a multimodal density.

rng default % For reproducibility

f = @(x) exp(-x.^2/2).*(1 + (sin(3*x)).^2).*...

 (1 + (cos(5*x).^2));

area = integral(f,-5,5);

Generate 2000 samples from the density, using a burn-in period of 1000, and keeping one
in five samples.

N = 2000;

x = slicesample(1,N,'pdf',f,'thin',5,'burnin',1000);

Plot a histogram of the sample.

 slicesample

22-4481

[binheight,bincenter] = hist(x,50);

h = bar(bincenter,binheight,'hist');

h.FaceColor = [.8 .8 1];

Scale the density to have the same area as the histogram, and superimpose it on the
histogram.

hold on

h = gca;

xd = h.XLim;

xgrid = linspace(xd(1),xd(2),1000);

binwidth = (bincenter(2)-bincenter(1));

y = (N*binwidth/area) * f(xgrid);

plot(xgrid,y,'r','LineWidth',2)

22 Functions — Alphabetical List

22-4482

hold off

The samples seem to fit the theoretical distribution well, so the burnin value seems
adequate.

More About

Tips

• There are no definitive suggestions for choosing appropriate values for burnin,
thin, or width. Choose starting values of burnin and thin, and increase them, if

 slicesample

22-4483

necessary, to give the requisite independence and marginal distributions. See Neal [1]
for details of the effect of adjusting width.

Algorithms

At each point in the sequence of random samples, slicesample selects the next point by
“slicing” the density to form a neighborhood around the previous point where the density
is above some value. Consequently, the sample points are not independent. Nearby
points in the sequence tend to be closer together than they would be from a sample of
independent values. For many purposes, the entire set of points can be used as a sample
from the target distribution. However, when this type of serial correlation is a problem,
the burnin and thin parameters can help reduce that correlation.

slicesample uses the slice sampling algorithm of Neal [1]. For numerical stability,
it converts a pdf function into a logpdf function. The algorithm to resize the support
region for each level, called “stepping-out” and “stepping-in,” was suggested by Neal.

References

[1] Neal, Radford M. Slice Sampling. Ann. Stat. Vol. 31, No. 3, pp. 705–767, 2003.
Available at Project Euclid.

See Also
mhsample | rand | randsample

http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1056562461

22 Functions — Alphabetical List

22-4484

skewness
Skewness

Syntax

y = skewness(X)

y = skewness(X,flag)

y = skewness(X,flag,dim)

Description

y = skewness(X) returns the sample skewness of X. For vectors, skewness(x) is the
skewness of the elements of x. For matrices, skewness(X) is a row vector containing the
sample skewness of each column. For N-dimensional arrays, skewness operates along
the first nonsingleton dimension of X.

y = skewness(X,flag) specifies whether to correct for bias (flag = 0) or not
(flag = 1, the default). When X represents a sample from a population, the skewness
of X is biased; that is, it will tend to differ from the population skewness by a systematic
amount that depends on the size of the sample. You can set flag = 0 to correct for this
systematic bias.

y = skewness(X,flag,dim) takes the skewness along dimension dim of X.

skewness treats NaNs as missing values and removes them.

Examples
X = randn([5 4])

X =

 1.1650 1.6961 -1.4462 -0.3600

 0.6268 0.0591 -0.7012 -0.1356

 0.0751 1.7971 1.2460 -1.3493

 0.3516 0.2641 -0.6390 -1.2704

 -0.6965 0.8717 0.5774 0.9846

 skewness

22-4485

y = skewness(X)

y =

 -0.2933 0.0482 0.2735 0.4641

More About

Algorithms

Skewness is a measure of the asymmetry of the data around the sample mean. If
skewness is negative, the data are spread out more to the left of the mean than to the
right. If skewness is positive, the data are spread out more to the right. The skewness of
the normal distribution (or any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as

s
E x

=
−()m

s

3

3

where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the
expected value of the quantity t. skewness computes a sample version of this population
value.

When you set flag to 1, the following equation applies:

s
n

x x

n
x x

i

i

n

i

i

n

1

3

1

2

1

3

1

1

=

−()

−()














=

=

∑

∑

When you set flag to 0, the following equation applies:

s

n n

n

s
0 1

1

2
=

−()
−

This bias-corrected formula requires that X contain at least three elements.

22 Functions — Alphabetical List

22-4486

See Also
kurtosis | mean | moment | std | var

 Skip property

22-4487

Skip property
Class: qrandset

Number of initial points to omit from sequence

Description

The Skip property of a point set contains a positive integer which specifies the number of
initial points in the sequence to omit from the point set. The default Skip value is 0.

Initial points of a sequence sometimes exhibit undesirable properties, for example
the first point is often (0,0,0,...) and this may "unbalance" the sequence since its
counterpart, (1,1,1,...), never appears. Another common reason is that initial points
often exhibit correlations among different dimensions which disappear later in the
sequence.

Examples

Examine the difference between skipping and not skipping points:

% No skipping produces the standard Sobol sequence.

P = sobolset(5);

P(1:3,:)

% Skip the first point of the sequence. The point set now

% starts at the second point of the basic Sobol sequence.

P.Skip = 1;

P(1:3,:)

See Also
Leap | subsref | net | qrandset

22 Functions — Alphabetical List

22-4488

sobolset class
Superclasses: qrandset

Sobol quasi-random point sets

Description

sobolset is a quasi-random point set class that produces points from the Sobol
sequence. The Sobol sequence is a base-2 digital sequence that fills space in a highly
uniform manner.

Construction

.sobolset
Construct Sobol quasi-random point set

Methods

Inherited Methods

Methods in the following table are inherited from qrandset.

disp
Display qrandset object

end
Last index in indexing expression for point
set

length
Length of point set

ndims
Number of dimensions in matrix

net
Generate quasi-random point set

 sobolset class

22-4489

scramble
Scramble quasi-random point set

size
Number of dimensions in matrix

subsref
Subscripted reference for qrandset

Properties

PointOrder
Point generation method

Inherited Properties

Properties in the following table are inherited from qrandset.

Dimensions
Number of dimensions

Leap
Interval between points

ScrambleMethod
Settings that control scrambling

Skip
Number of initial points to omit from
sequence

Type
Name of sequence on which point set P is
based

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

22 Functions — Alphabetical List

22-4490

References

[1] Bratley, P., and B. L. Fox, "ALGORITHM 659 Implementing Sobol's Quasirandom
Sequence Generator," ACM Transactions on Mathematical Software, Vol. 14, No.
1, pp. 88-100, 1988.

[2] Joe, S., and F. Y. Kuo, "Remark on Algorithm 659: Implementing Sobol's
Quasirandom Sequence Generator," ACM Transactions on Mathematical
Software, Vol. 29, No. 1, pp. 49-57, 2003.

[3] Hong, H. S., and F. J. Hickernell, "ALGORITHM 823: Implementing Scrambled
Digital Sequences," ACM Transactions on Mathematical Software, Vol. 29, No. 2,
pp. 95-109, 2003.

[4] Matousek, J., "On the L2-discrepancy for anchored boxes," Journal of Complexity, Vol.
14, pp. 527-556, 1998.

See Also
haltonset

How To
• “Quasi-Random Point Sets” on page 6-17

 sobolset

22-4491

sobolset
Class: sobolset

Construct Sobol quasi-random point set

Syntax

p = sobolset(d)

p = sobolset(d,prop1,val1,prop2,val2,...)

Description

p = sobolset(d) constructs a d-dimensional point set p of the sobolset class, with
default property settings.

p = sobolset(d,prop1,val1,prop2,val2,...) specifies property name/value pairs
used to construct p.

The object p returned by sobolset encapsulates properties of a specified quasi-random
sequence. The point set is finite, with a length determined by the Skip and Leap
properties and by limits on the size of point set indices (maximum value of 253). Values
of the point set are not generated and stored in memory until you access p using net or
parenthesis indexing.

Examples

Generate a 3-D Sobol point set, skip the first 1000 values, and then retain every 101st
point:

p = sobolset(3,'Skip',1e3,'Leap',1e2)

p =

 Sobol point set in 3 dimensions (8.918019e+013 points)

 Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : none

 PointOrder : standard

22 Functions — Alphabetical List

22-4492

Use scramble to apply a random linear scramble combined with a random digital shift:

p = scramble(p,'MatousekAffineOwen')

p =

 Sobol point set in 3 dimensions (8.918019e+013 points)

 Properties:

 Skip : 1000

 Leap : 100

 ScrambleMethod : MatousekAffineOwen

 PointOrder : standard

Use net to generate the first four points:

X0 = net(p,4)

X0 =

 0.7601 0.5919 0.9529

 0.1795 0.0856 0.0491

 0.5488 0.0785 0.8483

 0.3882 0.8771 0.8755

Use parenthesis indexing to generate every third point, up to the 11th point:

X = p(1:3:11,:)

X =

 0.7601 0.5919 0.9529

 0.3882 0.8771 0.8755

 0.6905 0.4951 0.8464

 0.1955 0.5679 0.3192

References

[1] Bratley, P., and B. L. Fox. “Algorithm 659 Implementing Sobol's Quasirandom
Sequence Generator.” ACM Transactions on Mathematical Software. Vol. 14, No.
1, 1988, pp. 88–100.

[2] Joe, S., and F. Y. Kuo. “Remark on Algorithm 659: Implementing Sobol's
Quasirandom Sequence Generator.” ACM Transactions on Mathematical
Software. Vol. 29, No. 1, 2003, pp. 49–57.

[3] Hong, H. S., and F. J. Hickernell. “Algorithm 823: Implementing Scrambled Digital
Sequences.” ACM Transactions on Mathematical Software. Vol. 29, No. 2, 2003,
pp. 95–109.

 sobolset

22-4493

[4] Matousek, J. “On the L2-Discrepancy for Anchored Boxes.” Journal of Complexity.
Vol. 14, No. 4, 1998, pp. 527–556.

See Also
haltonset | scramble | net

22 Functions — Alphabetical List

22-4494

sortrows
Class: dataset

Sort rows of dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

B = sortrows(A)

B = sortrows(A,vars)

B = sortrows(A,'obsnames')

B = sortrows(A,vars,mode)

[B,idx] = sortrows(A)

Description

B = sortrows(A) returns a copy of the dataset array A, with the observations sorted in
ascending order by all of the variables in A. The observations in B are sorted first by the
first variable, next by the second variable, and so on. Each variable in A must be a valid
input to sort, or, if a variable has multiple columns, to the MATLAB sortrows function
or to its ownsortrows method.

B = sortrows(A,vars) sorts the observations in A by the variables specified by vars.
vars is a positive integer, a vector of positive integers, variable names, a cell array
containing one or more variable names, or a logical vector.

B = sortrows(A,'obsnames') sorts the observations in A by observation name.

B = sortrows(A,vars,mode) sorts in the direction specified by mode. When mode
is the single string 'ascend' (the default) or 'descend', sortrows sorts A by the

 sortrows

22-4495

variables specified by vars in ascending or descending order, respectively. mode can also
be a cell array containing the strings 'ascend' or 'descend', to specify a different
sorting direction for each variable in vars. Specify [] for vars to sort using all variables.

[B,idx] = sortrows(A) also returns an index vector idx such that B = A(idx,:).

Examples

Sort the data in hospital.mat by age and then by last name:

load hospital

hospital(1:5,1:3)

ans =

 LastName Sex Age

 YPL-320 'SMITH' Male 38

 GLI-532 'JOHNSON' Male 43

 PNI-258 'WILLIAMS' Female 38

 MIJ-579 'JONES' Female 40

 XLK-030 'BROWN' Female 49

hospital = sortrows(hospital,{'Age','LastName'});

hospital(1:5,1:3)

ans =

 LastName Sex Age

 REV-997 'ALEXANDER' Male 25

 FZR-250 'HALL' Male 25

 LIM-480 'HILL' Female 25

 XUE-826 'JACKSON' Male 25

 SCQ-914 'JAMES' Male 25

Sort the data in hospital by gender in ascending order, and age in descending order.

hospital = sortrows(hospital,{'Sex','Age'},{'ascend','descend'});

hospital(1:5,1:3)

ans =

 LastName Sex Age

 XLK-030 'BROWN' Female 49

 GGU-691 'HUGHES' Female 49

 KKL-155 'ADAMS' Female 48

 HQO-561 'BRYANT' Female 48

 BKD-785 'CLARK' Female 48

22 Functions — Alphabetical List

22-4496

hospital(end-4:end,1:3)

ans =

 LastName Sex Age

 VNL-702 'MOORE' Male 28

 REV-997 'ALEXANDER' Male 25

 FZR-250 'HALL' Male 25

 XUE-826 'JACKSON' Male 25

 SCQ-914 'JAMES' Male 25

See Also
dataset | unique

More About
• “Dataset Arrays” on page 2-132

 squareform

22-4497

squareform
Format distance matrix

Syntax

Z = squareform(y)

y = squareform(Z)

Z = squareform(y,'tovector')

Y = squareform(Z,'tomatrix')

Description

Z = squareform(y), where y is a vector as created by the pdist function, converts y
into a square, symmetric format Z, in which Z(i,j) denotes the distance between the
ith and jth objects in the original data.

y = squareform(Z), where Z is a square, symmetric matrix with zeros along the
diagonal, creates a vector y containing the Z elements below the diagonal. y has the same
format as the output from the pdist function.

Z = squareform(y,'tovector') forces squareform to treat y as a vector.

Y = squareform(Z,'tomatrix') forces squareform to treat Z as a matrix.

The last two formats are useful if the input has a single element, so that it is ambiguous
whether the input is a vector or square matrix.

Examples
y = 1:6

y =

 1 2 3 4 5 6

X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0]

X =

 0 1 2 3

22 Functions — Alphabetical List

22-4498

 1 0 4 5

 2 4 0 6

 3 5 6 0

Then squareform(y) = X and squareform(X) = y.

See Also
pdist

 stack

22-4499

stack
Class: dataset

Stack data from multiple variables into single variable

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

tall = stack(wide,datavars)

[tall,iwide] = stack(wide,datavars)

tall = stack(wide,datavars,Parameter,value)

Description

tall = stack(wide,datavars) converts a wide-format dataset array into a tall-
format array, by stacking multiple variables in wide into a single variable in tall. In
general, tall contains fewer variables but more observations than wide.

datavars specifies a group of m data variables in wide. stack creates a single data
variable in tall by interleaving their values, and if wide has n observations, then
tall has m-by-n observations. In other words, stack takes the m data values from each
observation in wide and stacks them up to create m observations in tall. datavars is
a positive integer, a vector of positive integers, a variable name, a cell array containing
one or more variable names, or a logical vector. stack also creates a grouping variable
in tall to indicate which of the m data variables in wide each observation in tall
corresponds to.

stack assigns values for the "per-variable properties (e.g., Units and VarDescription)
for the new data variable in tall from the corresponding property values for the first
variable listed in datavars.

22 Functions — Alphabetical List

22-4500

stack copies the remaining variables from wide to tall without stacking, by replicating
each of their values m times. These variables are typically grouping variables. Because
their values are constant across each group of m observations in tall, they identify
which observation in wide an observation in tall came from.

[tall,iwide] = stack(wide,datavars) returns an index vector iwide indicating
the correspondence between observations in tall and those in wide. stack creates
tall(j,:) using wide(iwide(j),datavarss).

For more information on grouping variables, see “Grouping Variables” on page 2-52.

Input Arguments

tall = stack(wide,datavars,Parameter,value) uses the following parameter
name/value pairs to control how stack converts variables in wide to variables in tall:

'ConstVars' Variables in wide to copy to tall without
stacking. ConstVars is a positive integer,
a vector of positive integers, a variable
name, a cell array containing one or
more variable names, or a logical vector.
The default is all variables in wide not
specified in datavars.

'NewDataVarName' A name for the data variable to be created
in tall. The default is a concatenation
of the names of the m variables that are
stacked up.

'IndVarName' A name for the grouping variable to create
in tall to indicate the source of each
value in the new data variable. The default
is based on the 'NewDataVarName'
parameter.

You can also specify multiple groups of data variables in wide, each of which becomes a
variable in tall. All groups must contain the same number of variables. Use a cell array
to contain multiple parameter values for datavars, and a cell array of strings to contain
multiple 'NewDataVarName'.

 stack

22-4501

Examples

Convert a wide format data set to tall format, and then back to a different wide format:

load flu

% FLU has a 'Date' variable, and 10 variables for estimated

% influenza rates (in 9 different regions, estimated from

% Google searches, plus a nationwide estimate from the

% CDC). Combine those 10 variables into a "tall" array that

% has a single data variable, 'FluRate', and an indicator

% variable, 'Region', that says which region each estimate

% is from.

[flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...

 'IndVarName','Region')

% The second observation in FLU is for 10/16/2005. Find the

% observations in FLU2 that correspond to that date.

flu(2,:)

flu2(iflu==2,:)

% Use the 'Date' variable from that tall array to split

% 'FluRate' into 52 separate variables, each containing the

% estimated influenza rates for each unique date. The new

% "wide" array has one observation for each region. In

% effect, this is the original array FLU "on its side".

dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));

[flu3,iflu2] = unstack(flu2, 'FluRate', 'Date', ...

 'NewDataVarNames',dateNames)

% Since observations in FLU3 represent regions, IFLU2

% indicates the first occurrence in FLU2 of each region.

flu2(iflu2,:)

See Also
dataset.unstack | dataset.join

How To
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-4502

State property
Class: qrandstream

Current state of the stream

Description

The State property of a quasi-random stream contains the index into the associated
point set of the next point to draw in the stream. Getting and resetting the State
property allows you to return a stream to a previous state. The initial value of State is
1.

Examples

Q = qrandstream('sobol', 5);

s = Q.State;

u1 = qrand(Q, 10)

Q.State = s;

u2 = qrand(Q, 10) % contains exactly the same values as u1

See Also
qrand

 statget

22-4503

statget
Access values in statistics options structure

Syntax

val = statget(options,param)

val = statget(options,param,default)

Description

val = statget(options,param) returns the value of the parameter specified by the
string param in the statistics options structure options. If the parameter is undefined
in options, statget returns []. You need to type only enough leading characters to
define the parameter name uniquely. statget ignores case for parameter names. For
available options, see Inputs.

val = statget(options,param,default) returns default if the specified
parameter is undefined in the optimization options structure options.

Input Arguments

DerivStep

Relative difference used in finite difference derivative calculations. A positive scalar, or
a vector of positive scalars the same size as the vector of parameters estimated by the
Statistics and Machine Learning Toolbox function using the options structure.

Display

Amount of information displayed by the algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.
• 'iter' — Displays iterative output to the command window for some functions;

otherwise displays the final output.

22 Functions — Alphabetical List

22-4504

FunValCheck

Check for invalid values, such as NaN or Inf, from the objective function.

• 'off'

• 'on'

GradObj

Flags whether the objective function returns a gradient vector as a second output.

• 'off'

• 'on'

Jacobian

Flags whether the objective function returns a Jacobian as a second output.

• 'off'

• 'on'

MaxFunEvals

Maximum number of objective function evaluations allowed. Positive integer.

MaxIter

Maximum number of iterations allowed. Positive integer.

OutputFcn

The solver calls all output functions after each iteration.

• Function handle specified using @
• a cell array with function handles
• an empty array (default)

Robust

Invoke robust fitting option.

• 'off'

 statget

22-4505

• 'on'

RobustWgtFun

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a
function handle that accepts a normalized residual as input and returns the robust
weights as output.

• 'bisquare'

• 'andrews'

• 'cauchy'

• 'fair'

• 'huber'

• 'logistic'

• 'talwar'

• 'welsch'

Streams

A single instance of the RandStream class, or a cell array of RandStream instances.
The Streams option is accepted by some functions to govern what stream(s) to use in
generating random numbers within the function. If 'UseSubstreams' is true, the
Streams value must be a scalar, or must be empty. If 'UseParallel' is true and
'UseSubstreams' is false, then the Streams argument must either be empty, or
its length must match the number of processors used in the computation: equal to the
parpool size if a parpool is open, a scalar otherwise.

TolBnd

Parameter bound tolerance. Positive scalar.

TolFun

Termination tolerance for the objective function value. Positive scalar.

TolTypeFun

Use TolFun for absolute or relative objective function tolerances.

• 'abs'

22 Functions — Alphabetical List

22-4506

• 'rel'

TolTypeX

Use TolX for absolute or relative parameter tolerances.

• 'abs'

• 'rel'

TolX

Termination tolerance for the parameters. Positive scalar.

Tune

The tuning constant used in robust fitting to normalize the residuals before applying the
weight function. The default value depends upon the weight function. This parameter is
necessary if you specify the weight function as a function handle. Positive scalar.

UseParallel

Flag indicating whether eligible functions should use capabilities of the Parallel
Computing Toolbox (PCT), if the capabilities are available. That is, if the PCT is
installed, and a PCT parpool is in effect. Valid values are false (the default), for serial
computation, and true, for parallel computation.

UseSubstreams

Flag indicating whether the random number generator in eligible functions should use
Substream property of the RandStream class. false (default) or true. When true,
high level iterations within the function will set the Substream property to the value of
the iteration. This behavior helps to generate reproducible random number streams in
parallel and/or serial mode computation.

WgtFun

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a
function handle that accepts a normalized residual as input and returns the robust
weights as output.

• 'bisquare'

• 'andrews'

 statget

22-4507

• 'cauchy'

• 'fair'

• 'huber'

• 'logistic'

• 'talwar'

• 'welsch'

Examples

This statement returns the value of the Display statistics options parameter from the
structure called my_options.

val = statget(my_options,'Display')

Return the value of the Display statistics options parameter from the structure called
my_options (as in the previous example). If the Display parameter is undefined,
statget returns the value 'final'.

optnew = statget(my_options,'Display','final');

See Also
statset

22 Functions — Alphabetical List

22-4508

statset

Create statistics options structure

Syntax

statset

statset(statfun)

options = statset(...)

options = statset(fieldname1,val1,fieldname2,val2,...)

options = statset(oldopts,fieldname1,val1,fieldname2,val2,...)

options = statset(oldopts,newopts)

Description

statset with no input arguments and no output arguments displays all fields of a
statistics options structure and their possible values.

statset(statfun) displays fields and default values used by the Statistics and
Machine Learning Toolbox function statfun. Specify statfun using a string name or a
function handle.

options = statset(...) creates a statistics options structure options. With no
input arguments, all fields of the options structure are an empty array ([]). With a
specified statfun, function-specific fields are default values and the remaining fields are
[]. Function-specific fields set to [] indicate that the function is to use its default value
for that parameter. For available options, see Inputs.

options = statset(fieldname1,val1,fieldname2,val2,...) creates an options
structure in which the named fields have the specified values. Any unspecified values
are []. Use strings for field names. For fields that are string-valued, you must input the
complete string for the value. If you provide an invalid string for a value, statset uses
the default.

options = statset(oldopts,fieldname1,val1,fieldname2,val2,...) creates
a copy of oldopts with the named parameters changed to the specified values.

 statset

22-4509

options = statset(oldopts,newopts) combines an existing options structure,
oldopts, with a new options structure, newopts. Any parameters in newopts with
nonempty values overwrite corresponding parameters in oldopts.

Input Arguments

DerivStep

Relative difference used in finite difference derivative calculations. A positive scalar, or
a vector of positive scalars the same size as the vector of parameters estimated by the
Statistics and Machine Learning Toolbox function using the options structure.

Display

Amount of information displayed by the algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.
• 'iter' — Displays iterative output to the command window for some functions;

otherwise displays the final output.

FunValCheck

Check for invalid values, such as NaN or Inf, from the objective function.

• 'off'

• 'on'

GradObj

Flags whether the objective function returns a gradient vector as a second output.

• 'off'

• 'on'

Jacobian

Flags whether the objective function returns a Jacobian as a second output.

• 'off'

22 Functions — Alphabetical List

22-4510

• 'on'

MaxFunEvals

Maximum number of objective function evaluations allowed. Positive integer.

MaxIter

Maximum number of iterations allowed. Positive integer.

OutputFcn

The solver calls all output functions after each iteration.

• Function handle specified using @
• a cell array with function handles
• an empty array (default)

Robust

Invoke robust fitting option.

• 'off'

• 'on'

Robust will be removed in a future software release. Use RobustWgtFun for robust
fitting.

RobustWgtFun

Weight function for robust fitting. Can also be a function handle that accepts a
normalized residual as input and returns the robust weights as output. If you use a
function handle, give a Tune constant. See “Robust Options” on page 22-4513.

Streams

A single instance of the RandStream class, or a cell array of RandStream instances.
The Streams option is accepted by some functions to govern what stream(s) to use in
generating random numbers within the function. If 'UseSubstreams' is true, the
Streams value must be a scalar, or must be empty. If 'UseParallel' is true and
'UseSubstreams' is false, then the Streams argument must either be empty, or

 statset

22-4511

its length must match the number of processors used in the computation: equal to the
parpool size if a parpool is open, a scalar otherwise.

TolBnd

Parameter bound tolerance. Positive scalar.

TolFun

Termination tolerance for the objective function value. Positive scalar.

TolTypeFun

Use TolFun for absolute or relative objective function tolerances.

• 'abs'

• 'rel'

TolTypeX

Use TolX for absolute or relative parameter tolerances.

• 'abs'

• 'rel'

TolX

Termination tolerance for the parameters. Positive scalar.

Tune

Tuning constant used in robust fitting to normalize the residuals before applying the
weight function. The default value depends upon the weight function. This parameter
is necessary if you specify the weight function as a function handle. Positive scalar. See
“Robust Options” on page 22-4513.

UseParallel

Flag indicating whether eligible functions should use capabilities of the Parallel
Computing Toolbox (PCT), if the capabilities are available. That is, if the PCT is
installed, and a PCT parpool is in effect. Valid values are false (the default), for serial
computation, and true, for parallel computation.

22 Functions — Alphabetical List

22-4512

UseSubstreams

Flag indicating whether the random number generator in eligible functions should use
Substream property of the RandStream class. false (default) or true. When true,
high level iterations within the function will set the Substream property to the value of
the iteration. This behavior helps to generate reproducible random number streams in
parallel and/or serial mode computation.

WgtFun

Weight function for robust fitting. Valid only when Robust is 'on'. Can also be a
function handle that accepts a normalized residual as input and returns the robust
weights as output. See “Robust Options” on page 22-4513.

WgtFun will be removed in a future software release. Use RobustWgtFun instead.

Examples

Suppose you want to change the default parameter values for the function evfit, which
fits an extreme value distribution to data. The defaults parameter values are:

statset('evfit')

ans =

 Display: 'off'

 MaxFunEvals: []

 MaxIter: []

 TolBnd: []

 TolFun: []

 TolTypeFun: []

 TolX: 1.0000e-06

 TolTypeX: []

 GradObj: []

 Jacobian: []

 DerivStep: []

 FunValCheck: []

 Robust: []

 RobustWgtFun: []

 WgtFun: []

 Tune: []

 UseParallel: []

 UseSubstreams: []

 Streams: []

 statset

22-4513

 OutputFcn: []

The only parameters that evfit uses are Display and TolX. To create an options
structure with the value of TolX set to 1e-8, enter:

options = statset('TolX',1e-8)

% Pass options to evfit:

mu = 1;

sigma = 1;

data = evrnd(mu,sigma,1,100);

paramhat = evfit(data,[],[],[],options)

More About

Robust Options

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'

(default)
w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'talwar' w = 1 * (abs(r)<1) 2.795
'welsch' w = exp(-(r.^2)) 2.985
[] No robust fitting —

See Also
statget

22 Functions — Alphabetical List

22-4514

std
Standard deviation of probability distribution

Syntax

s = std(pd)

Description

s = std(pd) returns the standard deviation s of the probability distribution pd.

Examples

Standard Deviation of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the standard deviation of the fitted distribution.

s = std(pd)

s =

 std

22-4515

 8.7202

For a normal distribution, the standard deviation is equal to the parameter sigma.

Standard Deviation of a Skewed Distribution

Create a Weibull probability distribution object

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

Compute the standard deviation of the distribution.

s = std(pd)

s =

 2.3163

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

s — Standard deviation
nonnegative scalar value

22 Functions — Alphabetical List

22-4516

Standard deviation of the probability distribution, returned as a nonnegative scalar
value.

See Also
dfittool | fitdist | makedist

 std

22-4517

std

Class: prob.KernelDistribution
Package: prob

Standard deviation of probability distribution object

Syntax

s = std(pd)

Description

s = std(pd) returns the standard deviation s of the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Fit a probability
distribution object to data using fitdist or the Distribution Fitting app.

Output Arguments

s — Standard deviation
nonnegative scalar value

Standard deviation of the probability distribution, returned as a nonnegative scalar
value.

22 Functions — Alphabetical List

22-4518

Examples

Standard Deviation of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Create a probability distribution object by fitting a kernel distribution to the data.

pd = fitdist(x,'Kernel')

pd =

 KernelDistribution

 Kernel = normal

 Bandwidth = 3.61677

 Support = unbounded

Compute the standard deviation of the fitted distribution.

s = std(pd)

s =

 9.4069

See Also
dfittool | fitdist

 std

22-4519

std
Class: ProbDistUnivParam

Return standard deviation of ProbDistUnivParam object

Syntax

S = std(PD)

Description

S = std(PD) returns S, the standard deviation of the ProbDistUnivParam object PD.

Input Arguments

PD An object of the class ProbDistUnivParam.

Output Arguments

S The standard deviation of the ProbDistUnivParam object PD.

See Also
std

22 Functions — Alphabetical List

22-4520

std
Class: prob.ParametricTruncatableDistribution
Package: prob

Standard deviation of probability distribution object

Syntax
s = std(pd)

Description
s = std(pd) returns the standard deviation s of the probability distribution pd.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.

Output Arguments
s — Standard deviation
nonnegative scalar value

Standard deviation of the probability distribution, returned as a nonnegative scalar
value.

Examples
Standard Deviation of a Triangular Distribution

Create a triangular distribution object.

 std

22-4521

pd = makedist('Triangular','a',-3,'b',1,'c',3)

pd =

 TriangularDistribution

A = -3, B = 1, C = 3

Compute the standard deviation of the distribution.

s = std(pd)

s =

 1.2472

See Also
makedist

22 Functions — Alphabetical List

22-4522

std

Class: prob.ToolboxFittableParametricDistribution
Package: prob

Standard deviation of probability distribution object

Syntax

s = std(pd)

Description

s = std(pd) returns the standard deviation s of the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

s — Standard deviation
nonnegative scalar value

Standard deviation of the probability distribution, returned as a nonnegative scalar
value.

 std

22-4523

Examples

Standard Deviation of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the standard deviation of the fitted distribution.

s = std(pd)

s =

 8.7202

For a normal distribution, the standard deviation is equal to the parameter sigma.

Standard Deviation of a Skewed Distribution

Create a Weibull probability distribution object

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

22 Functions — Alphabetical List

22-4524

Compute the standard deviation of the distribution.

s = std(pd)

s =

 2.3163

See Also
dfittool | fitdist | makedist

 step

22-4525

step
Class: GeneralizedLinearModel

Improve generalized linear regression model by adding or removing terms

Syntax

mdl1 = step(mdl)

mdl1 = step(mdl,Name,Value)

Description

mdl1 = step(mdl) returns an improved generalized linear model based on mdl, with
one predictor added or removed.

mdl1 = step(mdl,Name,Value) improves a generalized linear model with additional
options specified by one or more Name,Value pair arguments.

Tips

• Use addTerms or removeTerms to control exactly which terms enter or leave the
model.

Input Arguments

mdl — Generalized linear model
GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to
the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the
GeneralizedLinearModel class page.

22 Functions — Alphabetical List

22-4526

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Criterion' — Criterion to add or remove terms
'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of
'Criterion' and one of the following:

• 'sse' — Default for stepwiselm. p-value for an F-test of the change in the sum of
squared error by adding or removing the term.

• 'aic' — Change in the value of Akaike information criterion (AIC).
• 'bic' — Change in the value of Bayesian information criterion (BIC).
• 'rsquared' — Increase in the value of R2.
• 'adjrsquared' — Increase in the value of adjusted R2.

Example: 'Criterion','bic'

'Lower' — Model specification describing terms that cannot be removed from model
'constant' (default)

Model specification describing terms that cannot be removed from the model, specified
as the comma-separated pair consisting of 'Lower' and one of the string options for
modelspec naming the model.
Example: 'Lower','linear'

'NSteps' — Number of steps to take
1 (default) | positive integer

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Data Types: single | double

'PEnter' — Improvement measure for adding term
scalar value

 step

22-4527

Improvement measure for adding a term, specified as the comma-separated pair
consisting of 'PEnter' and a scalar value. The default values are below.

Criterion Default value Decision

'Deviance' 0.05 If the p-value of F or chi-
squared statistic is smaller
than PEnter, add the term
to the model.

'SSE' 0.05 If the SSE of the model is
smaller than PEnter, add
the term to the model.

'AIC' 0 If the change in the AIC of
the model is smaller than
PEnter, add the term to the
model.

'BIC' 0 If the change in the BIC of
the model is smaller than
PEnter, add the term to the
model.

'Rsquared' 0.1 If the increase in the R-
squared of the model is
larger than PEnter, add the
term to the model.

'AdjRsquared' 0 If the increase in the
adjusted R-squared of the
model is larger than PEnter,
add the term to the model.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PEnter',0.075

'PRemove' — Improvement measure for removing term
scalar value

Improvement measure for removing a term, specified as the comma-separated pair
consisting of 'PRemove' and a scalar value.

22 Functions — Alphabetical List

22-4528

Criterion Default value Decision

'Deviance' 0.10 If the p-value of F or chi-
squared statistic is larger
than PRemove, remove the
term from the model.

'SSE' 0.10 If the p-value of the F
statistic is larger than
PRemove, remove the term
from the model.

'AIC' 0.01 If the change in the AIC
of the model is larger than
PRemove, remove the term
from the model.

'BIC' 0.01 If the change in the BIC
of the model is larger than
PRemove, remove the term
from the model.

'Rsquared' 0.05 If the increase in the R-
squared value of the model
is smaller than PRemove,
remove the term from the
model.

'AdjRsquared' -0.05 If the increase in the
adjusted R-squared value of
the model is smaller than
PRemove, remove the term
from the model.

At each step, stepwise algorithm also checks whether any term is redundant (linearly
dependent) with other terms in the current model. When any term is linearly dependent
with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PRemove',0.05

'Upper' — Model specification describing largest set of terms in fit
'interaction' (default) | string

 step

22-4529

Model specification describing the largest set of terms in the fit, specified as the comma-
separated pair consisting of 'Upper' and one of the string options for modelspec naming
the model.
Example: 'Upper','quadratic'

'Verbose' — Control for display of information
1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of
'Verbose' and one of the following:

• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Also display the actions evaluated at each step.

Example: 'Verbose',2

Output Arguments

mdl1

Linear model, the same as mdl but with additional terms given in terms. You can set
mdl1 equal to mdl to overwrite mdl.

Examples

Add Predictors One at a Time

Fit a Poisson regression model using random data and a single predictor, then step in
other predictors.

Generate artificial data with 20 predictors, using three of the predictors for the
responses.

rng('default') % for reproducibility

X = randn(100,20);

mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);

22 Functions — Alphabetical List

22-4530

y = poissrnd(mu);

Construct a generalized linear model using X(:,1) as the only predictor.

mdl = fitglm(X,y,...

 'y ~ x1','Distribution','poisson')

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x1

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.1278 0.057487 19.618 1.0904e-85

 x1 0.061287 0.04848 1.2642 0.20617

100 observations, 98 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 1.59, p-value = 0.208

Add a variable to the model using step.

mdl1 = step(mdl)

1. Adding x5, Deviance = 134.2976, Chi2Stat = 50.80176, PValue = 1.021821e-12

mdl1 =

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x5

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.0418 0.062341 16.712 1.07e-62

 x1 0.018803 0.049916 0.37671 0.70639

 x5 0.47881 0.067875 7.0542 1.7357e-12

100 observations, 97 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 52.4, p-value = 4.21e-12

Add another variable to the model using step.

mdl1 = step(mdl1)

2. Adding x15, Deviance = 105.9973, Chi2Stat = 28.30027, PValue = 1.038814e-07

mdl1 =

 step

22-4531

Generalized Linear regression model:

 log(y) ~ 1 + x1 + x5 + x15

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.0459 0.0627 16.681 1.7975e-62

 x1 0.026907 0.05003 0.53782 0.5907

 x5 0.3983 0.068376 5.8251 5.7073e-09

 x15 0.28949 0.053992 5.3618 8.2375e-08

100 observations, 96 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 80.7, p-value = 2.18e-17

• “Plots to Understand Predictor Effects and How to Modify a Model” on page 10-30

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear
or generalized linear model based on their statistical significance in explaining the
response variable. The method begins with an initial model, specified using modelspec,
and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At
each step, the method searches for terms to add to or remove from the model based on
the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse',
and in this case, stepwiselm uses the p-value of an F-statistic to test models with
and without a potential term at each step. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is,

if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p-value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, the
hypothesis of a zero coefficient can be rejected), remove the one with the largest p-
value and go to step 2; otherwise, end.

22 Functions — Alphabetical List

22-4532

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for
adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion'
argument. You can use the change in the value of the Akaike information criterion,
Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or
remove terms.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method might build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will not
lead to a better fit. In this sense, stepwise models are locally optimal, but might not be
globally optimal.

Alternatives

Use stepwiseglm to select a model from a starting model, continuing until no single
step is beneficial.

Use addTerms or removeTerms to add or remove particular terms.

See Also
addTerms | GeneralizedLinearModel | removeTerms | stepwiseglm

More About
• “Generalized Linear Models” on page 10-12

 step

22-4533

step
Class: LinearModel

Improve linear regression model by adding or removing terms

Syntax

mdl1 = step(mdl)

mdl1 = step(mdl,Name,Value)

Description

mdl1 = step(mdl) returns an improved linear model based on mdl, with one predictor
added or removed.

Note: You can use step only if mdl.Robust = []. This holds when you create mdl with
fitlm having the RobustOpts name-value pair set to the default 'off'.

mdl1 = step(mdl,Name,Value) improves a linear model with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

mdl

Linear model, as constructed by fitlm or stepwiselm.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-4534

'Criterion' — Criterion for selecting terms to add or remove
'SSE' (default)

Criterion for selecting terms to add or remove, specified as the comma-separated pair
consisting of 'Criterion' and one of the following.

Criterion PEnter PRemove Compared Against

'SSE' 0.05 < 0.1 p-value for F test
'AIC' 0 < 0.01 Change in AIC
'BIC' 0 < 0.01 Change in BIC
'Rsquared' 0.1 > 0.05 Increase in R-squared
'AdjRsquared' 0 > -0.05 Increase in adjusted R-squared

Example: 'Criterion','BIC'

'Lower' — Model specification describing terms that cannot be removed from model
'constant' (default)

Model specification describing terms that cannot be removed from the model, specified
as the comma-separated pair consisting of 'Lower' and one of the string options for
modelspec naming the model.
Example: 'Lower','linear'

'NSteps' — Number of steps to take
1 (default) | positive integer

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Data Types: single | double

'PEnter' — Improvement measure for adding term
scalar value

Improvement measure for adding a term, specified as the comma-separated pair
consisting of 'PEnter' and a scalar value. The default values are below.

Criterion Default value Decision

'Deviance' 0.05 If the p-value of F or chi-
squared statistic is smaller

 step

22-4535

Criterion Default value Decision

than PEnter, add the term
to the model.

'SSE' 0.05 If the SSE of the model is
smaller than PEnter, add
the term to the model.

'AIC' 0 If the change in the AIC of
the model is smaller than
PEnter, add the term to the
model.

'BIC' 0 If the change in the BIC of
the model is smaller than
PEnter, add the term to the
model.

'Rsquared' 0.1 If the increase in the R-
squared of the model is
larger than PEnter, add the
term to the model.

'AdjRsquared' 0 If the increase in the
adjusted R-squared of the
model is larger than PEnter,
add the term to the model.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PEnter',0.075

'PRemove' — Improvement measure for removing term
scalar value

Improvement measure for removing a term, specified as the comma-separated pair
consisting of 'PRemove' and a scalar value.

Criterion Default value Decision

'Deviance' 0.10 If the p-value of F or chi-
squared statistic is larger
than PRemove, remove the
term from the model.

22 Functions — Alphabetical List

22-4536

Criterion Default value Decision

'SSE' 0.10 If the p-value of the F
statistic is larger than
PRemove, remove the term
from the model.

'AIC' 0.01 If the change in the AIC
of the model is larger than
PRemove, remove the term
from the model.

'BIC' 0.01 If the change in the BIC
of the model is larger than
PRemove, remove the term
from the model.

'Rsquared' 0.05 If the increase in the R-
squared value of the model
is smaller than PRemove,
remove the term from the
model.

'AdjRsquared' -0.05 If the increase in the
adjusted R-squared value of
the model is smaller than
PRemove, remove the term
from the model.

At each step, stepwise algorithm also checks whether any term is redundant (linearly
dependent) with other terms in the current model. When any term is linearly dependent
with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PRemove',0.05

'Upper' — Model specification describing largest set of terms in fit
'interaction' (default) | string

Model specification describing the largest set of terms in the fit, specified as the comma-
separated pair consisting of 'Upper' and one of the string options for modelspec naming
the model.
Example: 'Upper','quadratic'

 step

22-4537

'Verbose' — Control for display of information
1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of
'Verbose' and one of the following:

• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Also display the actions evaluated at each step.

Example: 'Verbose',2

Output Arguments

mdl1

Linear model. Typically you set mdl1 equal to mdl.

Examples

Modify a Linear Model

Fit a linear model to car data. Use step to see if a quadratic model would help the fit
quality.

Load carsmall data, and make a dataset from weight and model year predictors with
MPG response.

load carsmall

ds = dataset(MPG,Weight);

ds.Year = ordinal(Model_Year);

Make a linear model of MPG as a function of Year and Weight.

mdl = fitlm(ds,'MPG ~ Year + Weight')

mdl =

Linear regression model:

 MPG ~ 1 + Weight + Year

Estimated Coefficients:

 Estimate SE tStat pValue

22 Functions — Alphabetical List

22-4538

 (Intercept) 40.11 1.5418 26.016 1.2024e-43

 Weight -0.0066475 0.00042802 -15.531 3.3639e-27

 Year_76 1.9291 0.74761 2.5804 0.011488

 Year_82 7.9093 0.84975 9.3078 7.8681e-15

Number of observations: 94, Error degrees of freedom: 90

Root Mean Squared Error: 2.92

R-squared: 0.873, Adjusted R-Squared 0.868

F-statistic vs. constant model: 206, p-value = 3.83e-40

Use step to adjust the model to potentially include full quadratic terms.

mdl1 = step(mdl,'upper','quadratic')

1. Adding Weight^2, FStat = 9.9164, pValue = 0.0022303

mdl1 =

Linear regression model:

 MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 54.206 4.7117 11.505 2.6648e-19

 Weight -0.016404 0.0031249 -5.2493 1.0283e-06

 Year_76 2.0887 0.71491 2.9215 0.0044137

 Year_82 8.1864 0.81531 10.041 2.6364e-16

 Weight^2 1.5573e-06 4.9454e-07 3.149 0.0022303

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 2.78

R-squared: 0.885, Adjusted R-Squared 0.88

F-statistic vs. constant model: 172, p-value = 5.52e-41

• “Linear Regression Workflow” on page 9-41
• “Change Models” on page 9-35

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear
or generalized linear model based on their statistical significance in explaining the
response variable. The method begins with an initial model, specified using modelspec,
and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At
each step, the method searches for terms to add to or remove from the model based on
the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse',
and in this case, stepwiselm uses the p-value of an F-statistic to test models with
and without a potential term at each step. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if added to the model. If

 step

22-4539

there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is,

if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p-value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, the
hypothesis of a zero coefficient can be rejected), remove the one with the largest p-
value and go to step 2; otherwise, end.

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for
adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion'
argument. You can use the change in the value of the Akaike information criterion,
Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or
remove terms.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method might build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will not
lead to a better fit. In this sense, stepwise models are locally optimal, but might not be
globally optimal.

Alternatives

Use stepwiselm to select a model from a starting model, continuing until no single step
is beneficial.

Use addTerms or removeTerms to add or remove particular terms.

See Also
addTerms | LinearModel | removeTerms | stepwiselm

22 Functions — Alphabetical List

22-4540

How To
• “Linear Regression” on page 9-11

 stepwise

22-4541

stepwise

Interactive stepwise regression

Syntax

stepwise

stepwise(X,y)

stepwise(X,y,inmodel,penter,premove)

Description

stepwise uses the sample data in hald.mat to display a graphical user interface for
performing stepwise regression of the response values in heat on the predictive terms in
ingredients.

22 Functions — Alphabetical List

22-4542

The upper left of the interface displays estimates of the coefficients for all potential
terms, with horizontal bars indicating 90% (colored) and 95% (grey) confidence intervals.
The red color indicates that, initially, the terms are not in the model. Values displayed in
the table are those that would result if the terms were added to the model.

The middle portion of the interface displays summary statistics for the entire model.
These statistics are updated with each step.

The lower portion of the interface, Model History, displays the RMSE for the model.
The plot tracks the RMSE from step to step, so you can compare the optimality of

 stepwise

22-4543

different models. Hover over the blue dots in the history to see which terms were in
the model at a particular step. Click on a blue dot in the history to open a copy of the
interface initialized with the terms in the model at that step.

Initial models, as well as entrance/exit tolerances for the p-values of F-statistics, are
specified using additional input arguments to stepwise. Defaults are an initial model
with no terms, an entrance tolerance of 0.05, and an exit tolerance of 0.10.

To center and scale the input data (compute z-scores) to improve conditioning of the
underlying least-squares problem, select Scale Inputs from the Stepwise menu.

You proceed through a stepwise regression in one of two ways:

1 Click Next Step to select the recommended next step. The recommended next step
either adds the most significant term or removes the least significant term. When
the regression reaches a local minimum of RMSE, the recommended next step is
“Move no terms.” You can perform all of the recommended steps at once by clicking
All Steps.

2 Click a line in the plot or in the table to toggle the state of the corresponding term.
Clicking a red line, corresponding to a term not currently in the model, adds the
term to the model and changes the line to blue. Clicking a blue line, corresponding to
a term currently in the model, removes the term from the model and changes the line
to red.

To call addedvarplot and produce an added variable plot from the stepwise interface,
select Added Variable Plot from the Stepwise menu. A list of terms is displayed.
Select the term you want to add, and then click OK.

Click Export to display a dialog box that allows you to select information from the
interface to save to the MATLAB workspace. Check the information you want to export
and, optionally, change the names of the workspace variables to be created. Click OK to
export the information.

stepwise(X,y) displays the interface using the p predictive terms in the n-by-p matrix
X and the response values in the n-by-1 vector y. Distinct predictive terms should appear
in different columns of X.

Note: stepwise automatically includes a constant term in all models. Do not enter a
column of 1s directly into X.

22 Functions — Alphabetical List

22-4544

stepwise treats NaN values in either X or y as missing values, and ignores them.

stepwise(X,y,inmodel,penter,premove) additionally specifies the initial model
(inmodel) and the entrance (penter) and exit (premove) tolerances for the p-values
of F-statistics. inmodel is either a logical vector with length equal to the number of
columns of X, or a vector of indices, with values ranging from 1 to the number of columns
in X. The value of penter must be less than or equal to the value of premove.

More About

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a
multilinear model based on their statistical significance in a regression. The method
begins with an initial model and then compares the explanatory power of incrementally
larger and smaller models. At each step, the p value of an F-statistic is computed to test
models with and without a potential term. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model. The method proceeds as follows:

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is,

if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, if it
is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one
with the largest p value and go to step 2; otherwise, end.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method may build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will
not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be
globally optimal.

 stepwise

22-4545

See Also
addedvarplot | regress | stepwisefit

22 Functions — Alphabetical List

22-4546

GeneralizedLinearModel.stepwise
Class: GeneralizedLinearModel

Create generalized linear regression model by stepwise regression

Compatibility

GeneralizedLinearModel.stepwise will be removed in a future release. Use
stepwiseglm instead.

Syntax

mdl = GeneralizedLinearModel.stepwise(tbl,modelspec)

mdl = GeneralizedLinearModel.stepwise(X,y,modelspec)

mdl = GeneralizedLinearModel.stepwise(...,modelspec,Name,Value)

Description

mdl = GeneralizedLinearModel.stepwise(tbl,modelspec) creates a generalized
linear model of a table or dataset array tbl, using stepwise regression to add or remove
predictors. modelspec is the starting model for the stepwise procedure.

mdl = GeneralizedLinearModel.stepwise(X,y,modelspec) creates a generalized
linear model of the responses y to a data matrix X, using stepwise regression to add or
remove predictors.

mdl = GeneralizedLinearModel.stepwise(...,modelspec,Name,Value)

creates a generalized linear model with additional options specified by one or more
Name,Value pair arguments.

Tips

• The generalized linear model mdl is a standard linear model unless you specify
otherwise with the Distribution name-value pair.

 GeneralizedLinearModel.stepwise

22-4547

• For other methods such as devianceTest, or properties of the
GeneralizedLinearModel object, see GeneralizedLinearModel.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

22 Functions — Alphabetical List

22-4548

Data Types: single | double

modelspec — Starting model
string specifying the model | t-by-(p+1) terms matrix | string of the form 'Y ~ terms'

Starting model for stepwiseglm, specified as one of the following:

• String specifying the type of model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

• t-by-(p+1) matrix, namely terms matrix, specifying terms to include in model, where t
is the number of terms and p is the number of predictor variables, and plus one is for
the response variable.

• String representing a formula in the form
'Y ~ terms',
where the terms are in “Wilkinson Notation” on page 22-4561.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 GeneralizedLinearModel.stepwise

22-4549

'BinomialSize' — Number of trials for binomial distribution
1 (default) | scalar value | vector

Number of trials for binomial distribution, that is the sample size, specified as the
comma-separated pair consisting of a scalar value or a vector of the same length as the
response. This is the parameter n for the fitted binomial distribution. BinomialSize
applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of
trials.

As an alternative to BinomialSize, you can specify the response as a two-column vector
with counts in column 1 and BinomialSize in column 2.

Data Types: single | double

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical
variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Criterion' — Criterion to add or remove terms
'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of
'Criterion' and one of the following:

22 Functions — Alphabetical List

22-4550

• 'sse' — Default for stepwiselm. p-value for an F-test of the change in the sum of
squared error by adding or removing the term.

• 'aic' — Change in the value of Akaike information criterion (AIC).
• 'bic' — Change in the value of Bayesian information criterion (BIC).
• 'rsquared' — Increase in the value of R2.
• 'adjrsquared' — Increase in the value of adjusted R2.

Example: 'Criterion','bic'

'DispersionFlag' — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson'
distributions, specified as the comma-separated pair consisting of 'DispersionFlag'
and one of the following.

true Estimate a dispersion parameter when computing standard
errors

false Default. Use the theoretical value when computing standard
errors

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

'Distribution' — Distribution of the response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'normal' Normal distribution
'binomial' Binomial distribution
'poisson' Poisson distribution
'gamma' Gamma distribution
'inverse gaussian' Inverse Gaussian distribution

 GeneralizedLinearModel.stepwise

22-4551

Example: 'Distribution','gamma'

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'Link' — Link function
The canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-
separated pair consisting of 'Link' and one of the following.

Link Function Name Link Function Mean (Inverse) Function

'identity' f(μ) = μ μ = Xb
'log' f(μ) = log(μ) μ = exp(Xb)
'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'probit' f(μ) = Φ–1(μ) μ = Φ(Xb)

22 Functions — Alphabetical List

22-4552

Link Function Name Link Function Mean (Inverse) Function

'comploglog' f(μ) = log(–log(1 – μ)) μ = 1 – exp(–exp(Xb))
'reciprocal' f(μ) = 1/μ μ = 1/(Xb)
p (a number) f(μ) = μp μ = Xb1/p

S (a structure)
with three fields. Each field
holds a function handle
that accepts a vector of
inputs and returns a vector
of the same size:

• S.Link — The link
function

• S.Inverse — The
inverse link function

• S.Derivative — The
derivative of the link
function

f(μ) = S.Link(μ) μ = S.Inverse(Xb)

The link function defines the relationship f(μ) = X*b between the mean response μ and
the linear combination of predictors X*b.

For more information on the canonical link functions, see Definitions.

Example: 'Link','probit'

'Lower' — Model specification describing terms that cannot be removed from model
'constant' (default)

Model specification describing terms that cannot be removed from the model, specified
as the comma-separated pair consisting of 'Lower' and one of the string options for
modelspec naming the model.
Example: 'Lower','linear'

'Offset' — Offset variable
[] (default) | vector | string

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset'
and a vector or name of a variable with the same length as the response.

 GeneralizedLinearModel.stepwise

22-4553

fitglm and stepwiseglm use Offset as an additional predictor, with a coefficient
value fixed at 1.0. In other words, the formula for fitting is
μ ~ Offset + (terms involving real predictors)

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is
known for theoretical reasons to be proportional to a predictor A. By using the log link
function and by specifying log(A) as an offset, you can force the model to satisfy this
theoretical constraint.
Data Types: single | double | char

'PEnter' — Improvement measure for adding term
scalar value

Improvement measure for adding a term, specified as the comma-separated pair
consisting of 'PEnter' and a scalar value. The default values are below.

Criterion Default value Decision

'Deviance' 0.05 If the p-value of F or chi-
squared statistic is smaller
than PEnter, add the term
to the model.

'SSE' 0.05 If the SSE of the model is
smaller than PEnter, add
the term to the model.

'AIC' 0 If the change in the AIC of
the model is smaller than
PEnter, add the term to the
model.

'BIC' 0 If the change in the BIC of
the model is smaller than
PEnter, add the term to the
model.

'Rsquared' 0.1 If the increase in the R-
squared of the model is
larger than PEnter, add the
term to the model.

22 Functions — Alphabetical List

22-4554

Criterion Default value Decision

'AdjRsquared' 0 If the increase in the
adjusted R-squared of the
model is larger than PEnter,
add the term to the model.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PEnter',0.075

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'PRemove' — Improvement measure for removing term
scalar value

Improvement measure for removing a term, specified as the comma-separated pair
consisting of 'PRemove' and a scalar value.

Criterion Default value Decision

'Deviance' 0.10 If the p-value of F or chi-
squared statistic is larger

 GeneralizedLinearModel.stepwise

22-4555

Criterion Default value Decision

than PRemove, remove the
term from the model.

'SSE' 0.10 If the p-value of the F
statistic is larger than
PRemove, remove the term
from the model.

'AIC' 0.01 If the change in the AIC
of the model is larger than
PRemove, remove the term
from the model.

'BIC' 0.01 If the change in the BIC
of the model is larger than
PRemove, remove the term
from the model.

'Rsquared' 0.05 If the increase in the R-
squared value of the model
is smaller than PRemove,
remove the term from the
model.

'AdjRsquared' -0.05 If the increase in the
adjusted R-squared value of
the model is smaller than
PRemove, remove the term
from the model.

At each step, stepwise algorithm also checks whether any term is redundant (linearly
dependent) with other terms in the current model. When any term is linearly dependent
with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PRemove',0.05

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset

22 Functions — Alphabetical List

22-4556

array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

'Upper' — Model specification describing largest set of terms in fit
'interaction' (default) | string

Model specification describing the largest set of terms in the fit, specified as the comma-
separated pair consisting of 'Upper' and one of the string options for modelspec naming
the model.
Example: 'Upper','quadratic'

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

 GeneralizedLinearModel.stepwise

22-4557

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments
mdl — Generalized linear model
GeneralizedLinearModel object

Generalized linear model representing a least-squares fit of the link of the response to
the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the
GeneralizedLinearModel class page.

Definitions

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

22 Functions — Alphabetical List

22-4558

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes

 GeneralizedLinearModel.stepwise

22-4559

the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

22 Functions — Alphabetical List

22-4560

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

• Y is the response name.
• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

 GeneralizedLinearModel.stepwise

22-4561

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

22 Functions — Alphabetical List

22-4562

Canonical Link Functions for Generalized Linear Models

Distribution Link Function Name Link Function Mean (Inverse) Function

'normal' 'identity' f(μ) = μ μ = Xb
'binomial' 'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)
'inverse

gaussian'

-2 f(μ) = 1/μ2 μ = (Xb)–1/2

Examples

Create a Generalized Linear Model Stepwise

Create response data using just three of 20 predictors, and create a generalized linear
model stepwise to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors,
plus a constant.

rng('default') % for reproducibility

X = randn(100,20);

mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);

y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl = stepwiseglm(X,y,...

 'constant','upper','linear','Distribution','poisson')

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13

2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07

3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x5 + x10 + x15

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 GeneralizedLinearModel.stepwise

22-4563

 (Intercept) 1.0115 0.064275 15.737 8.4217e-56

 x5 0.39508 0.066665 5.9263 3.0977e-09

 x10 0.18863 0.05534 3.4085 0.0006532

 x15 0.29295 0.053269 5.4995 3.8089e-08

100 observations, 96 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

• “Compare large and small stepwise models” on page 9-124

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear
or generalized linear model based on their statistical significance in explaining the
response variable. The method begins with an initial model, specified using modelspec,
and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At
each step, the method searches for terms to add to or remove from the model based on
the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse',
and in this case, stepwiselm uses the p-value of an F-statistic to test models with
and without a potential term at each step. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is,

if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p-value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, the
hypothesis of a zero coefficient can be rejected), remove the one with the largest p-
value and go to step 2; otherwise, end.

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for
adding or removing terms.

22 Functions — Alphabetical List

22-4564

There are several other criteria available, which you can specify using the 'Criterion'
argument. You can use the change in the value of the Akaike information criterion,
Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or
remove terms.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method might build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will not
lead to a better fit. In this sense, stepwise models are locally optimal, but might not be
globally optimal.

Alternatives

You can also create a stepwise generalized linear model using stepwiseglm.

Use fitglm to create a model with a fixed specification. Use step, addTerms, or
removeTerms to adjust a fitted model.

References

[1] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

See Also
fitglm | GeneralizedLinearModel | stepwiseglm

More About
• “Generalized Linear Models” on page 10-12

 LinearModel.stepwise

22-4565

LinearModel.stepwise

Class: LinearModel

Create linear regression model by stepwise regression

Compatibility

LinearModel.stepwise will be removed in a future release. Use stepwiselm instead.

Syntax

mdl = LinearModel.stepwise(tbl,modelspec)

mdl = LinearModel.stepwise(X,y,modelspec)

mdl = LinearModel.stepwise(___ ,modelspec,Name,Value)

Description

mdl = LinearModel.stepwise(tbl,modelspec) returns a linear model of a table or
dataset array tbl, using stepwise regression to add or remove predictors. modelspec is
the starting model for the stepwise procedure.

mdl = LinearModel.stepwise(X,y,modelspec) creates a linear model of the
responses y to a data matrix X, using stepwise regression to add or remove predictors.
modelspec is the starting model for the stepwise procedure.

mdl = LinearModel.stepwise(___ ,modelspec,Name,Value) creates a linear
model for any of the inputs in the previous syntaxes, with additional options specified by
one or more Name,Value pair arguments.

For example, you can specify the categorical variables, the smallest or largest set
of terms to use in the model, the maximum number of steps to take, or the criterion
LinearModel.stepwise uses to add or remove terms.

22 Functions — Alphabetical List

22-4566

Tips

• You cannot use robust regression with stepwise regression. Check your data for
outliers before using LinearModel.stepwise.

• For other methods or properties of the LinearModel object, see LinearModel.

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

 LinearModel.stepwise

22-4567

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

modelspec — Starting model
string specifying the model | t-by-(p+1) terms matrix | string of the form 'Y ~ terms'

Starting model for the stepwise regression, specified as one of the following:

• String specifying the type of starting model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

If you want to specify the smallest or largest set of terms in the model, use the Lower
and Upper name-value pair arguments.

• t-by-(p+1) matrix, namely a terms matrix, specifying terms to include in model, where
t is the number of terms and p is the number of predictor variables, and plus one is for
the response variable.

• String representing a formula in the form
'Y ~ terms',
where the terms are in “Wilkinson Notation” on page 22-4578.

22 Functions — Alphabetical List

22-4568

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical
variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Criterion' — Criterion to add or remove terms
'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of
'Criterion' and one of the following:

• 'sse' — Default for stepwiselm. p-value for an F-test of the change in the sum of
squared error by adding or removing the term.

• 'aic' — Change in the value of Akaike information criterion (AIC).
• 'bic' — Change in the value of Bayesian information criterion (BIC).
• 'rsquared' — Increase in the value of R2.

 LinearModel.stepwise

22-4569

• 'adjrsquared' — Increase in the value of adjusted R2.

Example: 'Criterion','bic'

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'Lower' — Model specification describing terms that cannot be removed from model
'constant' (default)

Model specification describing terms that cannot be removed from the model, specified
as the comma-separated pair consisting of 'Lower' and one of the string options for
modelspec naming the model.
Example: 'Lower','linear'

'NSteps' — Number of steps to take
1 (default) | positive integer

22 Functions — Alphabetical List

22-4570

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Data Types: single | double

'PEnter' — Improvement measure for adding term
scalar value

Improvement measure for adding a term, specified as the comma-separated pair
consisting of 'PEnter' and a scalar value. The default values are below.

Criterion Default value Decision

'Deviance' 0.05 If the p-value of F or chi-
squared statistic is smaller
than PEnter, add the term
to the model.

'SSE' 0.05 If the SSE of the model is
smaller than PEnter, add
the term to the model.

'AIC' 0 If the change in the AIC of
the model is smaller than
PEnter, add the term to the
model.

'BIC' 0 If the change in the BIC of
the model is smaller than
PEnter, add the term to the
model.

'Rsquared' 0.1 If the increase in the R-
squared of the model is
larger than PEnter, add the
term to the model.

'AdjRsquared' 0 If the increase in the
adjusted R-squared of the
model is larger than PEnter,
add the term to the model.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PEnter',0.075

 LinearModel.stepwise

22-4571

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'PRemove' — Improvement measure for removing term
scalar value

Improvement measure for removing a term, specified as the comma-separated pair
consisting of 'PRemove' and a scalar value.

Criterion Default value Decision

'Deviance' 0.10 If the p-value of F or chi-
squared statistic is larger
than PRemove, remove the
term from the model.

'SSE' 0.10 If the p-value of the F
statistic is larger than
PRemove, remove the term
from the model.

'AIC' 0.01 If the change in the AIC
of the model is larger than
PRemove, remove the term
from the model.

22 Functions — Alphabetical List

22-4572

Criterion Default value Decision

'BIC' 0.01 If the change in the BIC
of the model is larger than
PRemove, remove the term
from the model.

'Rsquared' 0.05 If the increase in the R-
squared value of the model
is smaller than PRemove,
remove the term from the
model.

'AdjRsquared' -0.05 If the increase in the
adjusted R-squared value of
the model is smaller than
PRemove, remove the term
from the model.

At each step, stepwise algorithm also checks whether any term is redundant (linearly
dependent) with other terms in the current model. When any term is linearly dependent
with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PRemove',0.05

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

 LinearModel.stepwise

22-4573

Data Types: single | double | logical | char

'Upper' — Model specification describing largest set of terms in fit
'interaction' (default) | string

Model specification describing the largest set of terms in the fit, specified as the comma-
separated pair consisting of 'Upper' and one of the string options for modelspec naming
the model.
Example: 'Upper','quadratic'

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Verbose' — Control for display of information
1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of
'Verbose' and one of the following:

• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Also display the actions evaluated at each step.

Example: 'Verbose',2

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

22 Functions — Alphabetical List

22-4574

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments
mdl — Linear model
LinearModel object

Linear model representing a least-squares fit of the response to the data, returned as a
LinearModel object.

For the properties and methods of the linear model object, mdl, see the LinearModel
class page.

Definitions

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

 LinearModel.stepwise

22-4575

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes

22 Functions — Alphabetical List

22-4576

the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

 LinearModel.stepwise

22-4577

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

• Y is the response name.
• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

22 Functions — Alphabetical List

22-4578

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

 LinearModel.stepwise

22-4579

Examples

Linear Model from Stepwise Regression

Fit a linear model of the Hald data using stepwise regression.

Load the data.

load hald

Fit a linear model to the data.

 mdl = LinearModel.stepwise(ingredients,heat,'PEnter',0.06)

1. Adding x4, FStat = 22.7985, pValue = 0.000576232

2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06

3. Adding x2, FStat = 5.0259, pValue = 0.051687

4. Removing x4, FStat = 1.8633, pValue = 0.2054

mdl =

Linear regression model:

 y ~ 1 + x1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 52.577 2.2862 22.998 5.4566e-10

 x1 1.4683 0.1213 12.105 2.6922e-07

 x2 0.66225 0.045855 14.442 5.029e-08

Number of observations: 13, Error degrees of freedom: 10

Root Mean Squared Error: 2.41

R-squared: 0.979, Adjusted R-Squared 0.974

F-statistic vs. constant model: 230, p-value = 4.41e-09

Simultaneously Specify the Variables and Use Formula

Simultaneously identify response and predictor variables and specify the initial model
using formula in stepwise regression.

Load sample data.

load hospital

22 Functions — Alphabetical List

22-4580

Fit a linear model to the data.

mdl = LinearModel.stepwise(hospital,'Weight~1+Smoker',...

'ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},...

'CategoricalVar',{'Sex','Smoker'})

1. Adding Sex, FStat = 770.0158, pValue = 6.262758e-48

2. Removing Smoker, FStat = 0.21224, pValue = 0.64605

mdl =

Linear regression model:

 Weight ~ 1 + Sex

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 130.47 1.1995 108.77 5.2762e-104

 Sex_Male 50.06 1.7496 28.612 2.2464e-49

Number of observations: 100, Error degrees of freedom: 98

Root Mean Squared Error: 8.73

R-squared: 0.893, Adjusted R-Squared 0.892

F-statistic vs. constant model: 819, p-value = 2.25e-49

The weight of the patients do not seem to differ significantly according to age or the
status of smoking, or interaction of these factors with gender. LinearModel.stepwise
only includes Sex in the final linear model.

• “Compare large and small stepwise models” on page 9-124

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear
or generalized linear model based on their statistical significance in explaining the
response variable. The method begins with an initial model, specified using modelspec,
and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At
each step, the method searches for terms to add to or remove from the model based on
the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse',
and in this case, stepwiselm uses the p-value of an F-statistic to test models with
and without a potential term at each step. If a term is not currently in the model, the

 LinearModel.stepwise

22-4581

null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is,

if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p-value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, the
hypothesis of a zero coefficient can be rejected), remove the one with the largest p-
value and go to step 2; otherwise, end.

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for
adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion'
argument. You can use the change in the value of the Akaike information criterion,
Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or
remove terms.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method might build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will not
lead to a better fit. In this sense, stepwise models are locally optimal, but might not be
globally optimal.

References

[1] Draper, N. R., and H. Smith. Applied Regression Analysis. Hoboken, NJ: Wiley-
Interscience, pp. 307–312, 1998.

Alternatives
You can also construct a stepwise linear model using stepwiselm.

22 Functions — Alphabetical List

22-4582

You can construct a model using fitlm, then manually adjust the model using step,
addTerms, or removeTerms. Use fitlm for robust regression. You cannot use robust
regression and stepwise regression together.

See Also
step | LinearModel | fitlm

How To
• “Linear Regression” on page 9-11
• “Stepwise Regression” on page 9-124

 stepwiseglm

22-4583

stepwiseglm
Create generalized linear regression model by stepwise regression

Syntax

mdl = stepwiseglm(tbl,modelspec)

mdl = stepwiseglm(X,y,modelspec)

mdl = stepwiseglm(...,modelspec,Name,Value)

Description

mdl = stepwiseglm(tbl,modelspec) creates a generalized linear model of a table or
dataset array tbl, using stepwise regression to add or remove predictors. modelspec is
the starting model for the stepwise procedure.

mdl = stepwiseglm(X,y,modelspec) creates a generalized linear model of the
responses y to a data matrix X, using stepwise regression to add or remove predictors.

mdl = stepwiseglm(...,modelspec,Name,Value) creates a generalized linear
model with additional options specified by one or more Name,Value pair arguments.

Examples

Generalized Linear Model Using Stepwise Algorithm

Create response data using just three of 20 predictors, and create a generalized linear
model using stepwise algorithm to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors,
plus a constant.

rng('default') % for reproducibility

X = randn(100,20);

mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);

y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

22 Functions — Alphabetical List

22-4584

mdl = stepwiseglm(X,y,...

 'constant','upper','linear','Distribution','poisson')

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13

2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07

3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

mdl =

Generalized Linear regression model:

 log(y) ~ 1 + x5 + x10 + x15

 Distribution = Poisson

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 1.0115 0.064275 15.737 8.4217e-56

 x5 0.39508 0.066665 5.9263 3.0977e-09

 x10 0.18863 0.05534 3.4085 0.0006532

 x15 0.29295 0.053269 5.4995 3.8089e-08

100 observations, 96 error degrees of freedom

Dispersion: 1

Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

The starting model is the constant model. stepwiseglm by default uses deviance of the
model as the criterion. It first adds x5 into the model, as the p-value for the test statistic,
deviance (the differences in the deviances of the two models), is less than the default
threshold value 0.05. Then, it adds x15 because given x5 is in the model, when x15 is
added, the p-value for chi-squared test is smaller than 0.05. It then adds x10 because
given x5 and x15 are in the model, when x10 is added, the p-value for the chi-square test
statistic is again less than 0.05.

• “Compare large and small stepwise models” on page 9-124

Input Arguments
tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

 stepwiseglm

22-4585

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

modelspec — Starting model
string specifying the model | t-by-(p+1) terms matrix | string of the form 'Y ~ terms'

Starting model for stepwiseglm, specified as one of the following:

• String specifying the type of model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

22 Functions — Alphabetical List

22-4586

String Model Type

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

• t-by-(p+1) matrix, namely terms matrix, specifying terms to include in model, where t
is the number of terms and p is the number of predictor variables, and plus one is for
the response variable.

• String representing a formula in the form
'Y ~ terms',
where the terms are in “Wilkinson Notation” on page 22-4599.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Criterion','aic','Distribution','poisson','Upper','interactions'

specifies Akaike Information Criterion as the criterion to add or remove variables to the
model, Poisson distribution as the distribution of the response variable, and a model with
all possible interactions as the largest model to consider as the fit.

'BinomialSize' — Number of trials for binomial distribution
1 (default) | scalar value | vector

Number of trials for binomial distribution, that is the sample size, specified as the
comma-separated pair consisting of a scalar value or a vector of the same length as the
response. This is the parameter n for the fitted binomial distribution. BinomialSize
applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of
trials.

 stepwiseglm

22-4587

As an alternative to BinomialSize, you can specify the response as a two-column vector
with counts in column 1 and BinomialSize in column 2.

Data Types: single | double

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical
variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Criterion' — Criterion to add or remove terms
'Deviance' (default) | 'sse' | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of
'Criterion' and one of the following:

• 'Deviance' — Default for stepwiseglm. p-value for F or chi-squared test of the
change in the deviance by adding or removing the term. F-test is for testing a single
model. Chi-squared test is for comparing two different models. This option is not valid
for stepwiselm.

• 'sse' — Default for stepwiselm. p-value for an F-test of the change in the sum of
squared error by adding or removing the term.

• 'aic' — Change in the value of Akaike information criterion (AIC).
• 'bic' — Change in the value of Bayesian information criterion (BIC).
• 'rsquared' — Increase in the value of R2.

22 Functions — Alphabetical List

22-4588

• 'adjrsquared' — Increase in the value of adjusted R2.

Example: 'Criterion','bic'

'DispersionFlag' — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson'
distributions, specified as the comma-separated pair consisting of 'DispersionFlag'
and one of the following.

true Estimate a dispersion parameter when computing standard
errors

false Default. Use the theoretical value when computing standard
errors

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

'Distribution' — Distribution of the response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'normal' Normal distribution
'binomial' Binomial distribution
'poisson' Poisson distribution
'gamma' Gamma distribution
'inverse gaussian' Inverse Gaussian distribution

Example: 'Distribution','gamma'

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

 stepwiseglm

22-4589

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'Link' — Link function
The canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-
separated pair consisting of 'Link' and one of the following.

Link Function Name Link Function Mean (Inverse) Function

'identity' f(μ) = μ μ = Xb
'log' f(μ) = log(μ) μ = exp(Xb)
'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'probit' f(μ) = Φ–1(μ) μ = Φ(Xb)

'comploglog' f(μ) = log(–log(1 – μ)) μ = 1 – exp(–exp(Xb))
'reciprocal' f(μ) = 1/μ μ = 1/(Xb)
p (a number) f(μ) = μp μ = Xb1/p

S (a structure)
with three fields. Each field
holds a function handle
that accepts a vector of

f(μ) = S.Link(μ) μ = S.Inverse(Xb)

22 Functions — Alphabetical List

22-4590

Link Function Name Link Function Mean (Inverse) Function

inputs and returns a vector
of the same size:

• S.Link — The link
function

• S.Inverse — The
inverse link function

• S.Derivative — The
derivative of the link
function

The link function defines the relationship f(μ) = X*b between the mean response μ and
the linear combination of predictors X*b.

For more information on the canonical link functions, see Definitions.

Example: 'Link','probit'

'Lower' — Model specification describing terms that cannot be removed from model
'constant' (default)

Model specification describing terms that cannot be removed from the model, specified
as the comma-separated pair consisting of 'Lower' and one of the string options for
modelspec naming the model.
Example: 'Lower','linear'

'Offset' — Offset variable
[] (default) | vector | string

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset'
and a vector or name of a variable with the same length as the response.

fitglm and stepwiseglm use Offset as an additional predictor, with a coefficient
value fixed at 1.0. In other words, the formula for fitting is
μ ~ Offset + (terms involving real predictors)

with the Offset predictor having coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is
known for theoretical reasons to be proportional to a predictor A. By using the log link

 stepwiseglm

22-4591

function and by specifying log(A) as an offset, you can force the model to satisfy this
theoretical constraint.
Data Types: single | double | char

'PEnter' — Improvement measure for adding term
scalar value

Improvement measure for adding a term, specified as the comma-separated pair
consisting of 'PEnter' and a scalar value. The default values are below.

Criterion Default value Decision

'Deviance' 0.05 If the p-value of F or chi-
squared statistic is smaller
than PEnter, add the term
to the model.

'SSE' 0.05 If the SSE of the model is
smaller than PEnter, add
the term to the model.

'AIC' 0 If the change in the AIC of
the model is smaller than
PEnter, add the term to the
model.

'BIC' 0 If the change in the BIC of
the model is smaller than
PEnter, add the term to the
model.

'Rsquared' 0.1 If the increase in the R-
squared of the model is
larger than PEnter, add the
term to the model.

'AdjRsquared' 0 If the increase in the
adjusted R-squared of the
model is larger than PEnter,
add the term to the model.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PEnter',0.075

22 Functions — Alphabetical List

22-4592

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'PRemove' — Improvement measure for removing term
scalar value

Improvement measure for removing a term, specified as the comma-separated pair
consisting of 'PRemove' and a scalar value.

Criterion Default value Decision

'Deviance' 0.10 If the p-value of F or chi-
squared statistic is larger
than PRemove, remove the
term from the model.

'SSE' 0.10 If the p-value of the F
statistic is larger than
PRemove, remove the term
from the model.

'AIC' 0.01 If the change in the AIC
of the model is larger than
PRemove, remove the term
from the model.

 stepwiseglm

22-4593

Criterion Default value Decision

'BIC' 0.01 If the change in the BIC
of the model is larger than
PRemove, remove the term
from the model.

'Rsquared' 0.05 If the increase in the R-
squared value of the model
is smaller than PRemove,
remove the term from the
model.

'AdjRsquared' -0.05 If the increase in the
adjusted R-squared value of
the model is smaller than
PRemove, remove the term
from the model.

At each step, stepwise algorithm also checks whether any term is redundant (linearly
dependent) with other terms in the current model. When any term is linearly dependent
with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PRemove',0.05

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

22 Functions — Alphabetical List

22-4594

Data Types: single | double | logical | char

'Upper' — Model specification describing largest set of terms in fit
'interaction' (default) | string

Model specification describing the largest set of terms in the fit, specified as the comma-
separated pair consisting of 'Upper' and one of the string options for modelspec naming
the model.
Example: 'Upper','quadratic'

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments

mdl — Generalized linear model
GeneralizedLinearModel object

 stepwiseglm

22-4595

Generalized linear model representing a least-squares fit of the link of the response to
the data, returned as a GeneralizedLinearModel object.

For properties and methods of the generalized linear model object, mdl, see the
GeneralizedLinearModel class page.

Alternatives

Use fitglm to create a model with a fixed specification. Use step, addTerms, or
removeTerms to adjust a fitted model.

More About

Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,

22 Functions — Alphabetical List

22-4596

so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

 stepwiseglm

22-4597

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

22 Functions — Alphabetical List

22-4598

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

• Y is the response name.
• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.

 stepwiseglm

22-4599

'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

Canonical Function

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models

22 Functions — Alphabetical List

22-4600

Distribution Link Function Name Link Function Mean (Inverse) Function

'normal' 'identity' f(μ) = μ μ = Xb
'binomial' 'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)
'inverse

gaussian'

-2 f(μ) = 1/μ2 μ = (Xb)–1/2

Tips

• The generalized linear model mdl is a standard linear model unless you specify
otherwise with the Distribution name-value pair.

• For other methods such as devianceTest, or properties of the
GeneralizedLinearModel object, see GeneralizedLinearModel.

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear
or generalized linear model based on their statistical significance in explaining the
response variable. The method begins with an initial model, specified using modelspec,
and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At
each step, the method searches for terms to add to or remove from the model based on
the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse',
and in this case, stepwiselm uses the p-value of an F-statistic to test models with
and without a potential term at each step. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is,

if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p-value and repeat this step; otherwise, go to step 3.

 stepwiseglm

22-4601

3 If any terms in the model have p-values greater than an exit tolerance (that is, the
hypothesis of a zero coefficient can be rejected), remove the one with the largest p-
value and go to step 2; otherwise, end.

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for
adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion'
argument. You can use the change in the value of the Akaike information criterion,
Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or
remove terms.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method might build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will not
lead to a better fit. In this sense, stepwise models are locally optimal, but might not be
globally optimal.
• “Generalized Linear Models” on page 10-12

References

[1] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

See Also
fitglm | GeneralizedLinearModel

22 Functions — Alphabetical List

22-4602

stepwiselm
Create linear regression model using stepwise regression

Syntax

mdl = stepwiselm(tbl,modelspec)

mdl = stepwiselm(X,y,modelspec)

mdl = stepwiselm(___ ,Name,Value)

Description

mdl = stepwiselm(tbl,modelspec) returns a linear model for the variables in
the table or dataset array tbl using stepwise regression to add or remove predictors.
stepwiselm uses forward and backward stepwise regression to determine a final model.
At each step, the function searches for terms to add to or remove from the model based
on the value of the 'Criterion' argument. modelspec is the starting model for the
stepwise procedure.

mdl = stepwiselm(X,y,modelspec) creates a linear model of the responses y to
the predictor variables in the data matrix X, using stepwise regression to add or remove
predictors. modelspec is the starting model for the stepwise procedure.

mdl = stepwiselm(___ ,Name,Value) creates a linear model for any of the inputs in
the previous syntaxes, with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the categorical variables, the smallest or largest set
of terms to use in the model, the maximum number of steps to take, or the criterion
stepwiselm uses to add or remove terms.

Examples

Linear Model Using Stepwise Regression

Load the sample data.

 stepwiselm

22-4603

load hald

hald contains hardening data for 13 different concrete compositions. heat is the heat of
hardening after 180 days. ingredients is the percentage of each different ingredient in
the cement sample.

Fit a linear model to the data. Set the criterion value to enter the model as 0.06.

 mdl = stepwiselm(ingredients,heat,'PEnter',0.06)

1. Adding x4, FStat = 22.7985, pValue = 0.000576232

2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06

3. Adding x2, FStat = 5.0259, pValue = 0.051687

4. Removing x4, FStat = 1.8633, pValue = 0.2054

mdl =

Linear regression model:

 y ~ 1 + x1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 52.577 2.2862 22.998 5.4566e-10

 x1 1.4683 0.1213 12.105 2.6922e-07

 x2 0.66225 0.045855 14.442 5.029e-08

Number of observations: 13, Error degrees of freedom: 10

Root Mean Squared Error: 2.41

R-squared: 0.979, Adjusted R-Squared 0.974

F-statistic vs. constant model: 230, p-value = 4.41e-09

By default, the starting model is the constant model. stepwiselm performs forward
selection and x4, x1, and x2, respectively, as the corresponding p-values are less than
the PEnter value of 0.06. stepwiselm later uses backward elimination and eliminates
x4 from the model. Because, given that x2 is in the model, the p-value of x4 is higher
than the default value of PRemove, 0.1.

Specify Model Using Formula and Specify Variables

Perform stepwise regression with variables in a dataset array. Specify the starting
model using formula, and identify the response and predictor variables with optional
arguments.

22 Functions — Alphabetical List

22-4604

Load the sample data.

load hospital

The hospital dataset array includes the gender, age, weight, and smoking status of
patients.

Fit a linear model with a starting model of a constant term and Smoker as the predictor
variable. Specify the response variable, Weight, and categorical predictor variables, Sex,
Age, and Smoker.

mdl = stepwiselm(hospital,'Weight~1+Smoker',...

'ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},...

'CategoricalVar',{'Sex','Smoker'})

1. Adding Sex, FStat = 770.0158, pValue = 6.262758e-48

2. Removing Smoker, FStat = 0.21224, pValue = 0.64605

mdl =

Linear regression model:

 Weight ~ 1 + Sex

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 130.47 1.1995 108.77 5.2762e-104

 Sex_Male 50.06 1.7496 28.612 2.2464e-49

Number of observations: 100, Error degrees of freedom: 98

Root Mean Squared Error: 8.73

R-squared: 0.893, Adjusted R-Squared 0.892

F-statistic vs. constant model: 819, p-value = 2.25e-49

At each step, stepwiselm searches for terms to add and remove. At first step, stepwise
algorithm adds Sex to the model with a p-value of 6.26e-48. Then, removes Smoker
from the model, since given Sex in the model, the variable Smoker becomes redundant.
stepwiselm only includes Sex in the final linear model. The weight of the patients do
not seem to differ significantly according to age or the status of smoking.

• “Compare large and small stepwise models” on page 9-124
• “Linear Regression” on page 9-11

 stepwiselm

22-4605

Input Arguments

tbl — Input data
table | dataset array

Input data, specified as a table or dataset array. When modelspec is a formula, it
specifies the variables to be used as the predictors and response. Otherwise, if you do not
specify the predictor and response variables, the last variable is the response variable
and the others are the predictor variables by default.

Predictor variables can be numeric, or any grouping variable type, such as logical or
categorical (see “Grouping Variables” on page 2-52). The response must be numeric or
logical.

To set a different column as the response variable, use the ResponseVar name-value pair
argument. To use a subset of the columns as predictors, use the PredictorVars name-
value pair argument.
Data Types: single | double | logical

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations
and p is the number of predictor variables. Each column of X represents one variable, and
each row represents one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do
not include a column of 1s in X.

Data Types: single | double | logical

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations.
Each entry in y is the response for the corresponding row of X.

Data Types: single | double

modelspec — Starting model
string specifying the model | t-by-(p+1) terms matrix | string of the form 'Y ~ terms'

22 Functions — Alphabetical List

22-4606

Starting model for the stepwise regression, specified as one of the following:

• String specifying the type of starting model.

String Model Type

'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each

predictor.
'interactions' Model contains an intercept, linear terms, and all

products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept, linear terms, and squared
terms.

'quadratic' Model contains an intercept, linear terms, interactions,
and squared terms.

'polyijk' Model is a polynomial with all terms up to degree i in
the first predictor, degree j in the second predictor, etc.
Use numerals 0 through 9. For example, 'poly2111'
has a constant plus all linear and product terms, and
also contains terms with predictor 1 squared.

If you want to specify the smallest or largest set of terms in the model, use the Lower
and Upper name-value pair arguments.

• t-by-(p+1) matrix, namely a terms matrix, specifying terms to include in model, where
t is the number of terms and p is the number of predictor variables, and plus one is for
the response variable.

• String representing a formula in the form
'Y ~ terms',
where the terms are in “Wilkinson Notation” on page 22-4617.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 stepwiselm

22-4607

Example: 'Criterion','aic','Upper',interactions,'Verbose',1 instructs
stepwiselm to use the Akaike information criterion, display the action it takes at each
step, and include at most the interaction terms in the model.

'CategoricalVars' — Categorical variables
cell array of strings | logical or numeric index vector

Categorical variables in the fit, specified as the comma-separated pair consisting of
'CategoricalVars' and either a cell array of strings of the names of the categorical
variables in the table or dataset array tbl, or a logical or numeric index vector indicating
which columns are categorical.

• If data is in a table or dataset array tbl, then the default is to treat all categorical or
logical variables, character arrays, or cell arrays of strings as categorical variables.

• If data is in matrix X, then the default value of this name-value pair argument is an
empty matrix []. That is, no variable is categorical unless you specify it.

For example, you can specify the observations 2 and 3 out of 6 as categorical using either
of the following examples.
Example: 'CategoricalVars',[2,3]

Example: 'CategoricalVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Criterion' — Criterion to add or remove terms
'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of
'Criterion' and one of the following:

• 'sse' — Default for stepwiselm. p-value for an F-test of the change in the sum of
squared error by adding or removing the term.

• 'aic' — Change in the value of Akaike information criterion (AIC).
• 'bic' — Change in the value of Bayesian information criterion (BIC).
• 'rsquared' — Increase in the value of R2.
• 'adjrsquared' — Increase in the value of adjusted R2.

Example: 'Criterion','bic'

22 Functions — Alphabetical List

22-4608

'Exclude' — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting
of 'Exclude' and a logical or numeric index vector indicating which observations to
exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following
examples.
Example: 'Exclude',[2,3]

Example: 'Exclude',logical([0 1 1 0 0 0])

Data Types: single | double | logical

'Intercept' — Indicator for constant term
true (default) | false

Indicator the for constant term (intercept) in the fit, specified as the comma-separated
pair consisting of 'Intercept' and either true to include or false to remove the
constant term from the model.

Use 'Intercept' only when specifying the model using a string, not a formula or
matrix.
Example: 'Intercept',false

'Lower' — Model specification describing terms that cannot be removed from model
'constant' (default)

Model specification describing terms that cannot be removed from the model, specified
as the comma-separated pair consisting of 'Lower' and one of the string options for
modelspec naming the model.
Example: 'Lower','linear'

'NSteps' — Number of steps to take
1 (default) | positive integer

Number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Data Types: single | double

 stepwiselm

22-4609

'PEnter' — Improvement measure for adding term
scalar value

Improvement measure for adding a term, specified as the comma-separated pair
consisting of 'PEnter' and a scalar value. The default values are below.

Criterion Default value Decision

'Deviance' 0.05 If the p-value of F or chi-
squared statistic is smaller
than PEnter, add the term
to the model.

'SSE' 0.05 If the SSE of the model is
smaller than PEnter, add
the term to the model.

'AIC' 0 If the change in the AIC of
the model is smaller than
PEnter, add the term to the
model.

'BIC' 0 If the change in the BIC of
the model is smaller than
PEnter, add the term to the
model.

'Rsquared' 0.1 If the increase in the R-
squared of the model is
larger than PEnter, add the
term to the model.

'AdjRsquared' 0 If the increase in the
adjusted R-squared of the
model is larger than PEnter,
add the term to the model.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PEnter',0.075

'PredictorVars' — Predictor variables
cell array of strings | logical or numeric index vector

22 Functions — Alphabetical List

22-4610

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a cell array of strings of the variable names in the table
or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The strings should be among the names in tbl, or the names you specify using the
'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables
using either of the following examples.
Example: 'PredictorVars',[2,3]

Example: 'PredictorVars',logical([0 1 1 0 0 0])

Data Types: single | double | logical | cell

'PRemove' — Improvement measure for removing term
scalar value

Improvement measure for removing a term, specified as the comma-separated pair
consisting of 'PRemove' and a scalar value.

Criterion Default value Decision

'Deviance' 0.10 If the p-value of F or chi-
squared statistic is larger
than PRemove, remove the
term from the model.

'SSE' 0.10 If the p-value of the F
statistic is larger than
PRemove, remove the term
from the model.

'AIC' 0.01 If the change in the AIC
of the model is larger than
PRemove, remove the term
from the model.

'BIC' 0.01 If the change in the BIC
of the model is larger than

 stepwiselm

22-4611

Criterion Default value Decision

PRemove, remove the term
from the model.

'Rsquared' 0.05 If the increase in the R-
squared value of the model
is smaller than PRemove,
remove the term from the
model.

'AdjRsquared' -0.05 If the increase in the
adjusted R-squared value of
the model is smaller than
PRemove, remove the term
from the model.

At each step, stepwise algorithm also checks whether any term is redundant (linearly
dependent) with other terms in the current model. When any term is linearly dependent
with other terms in the current model, it is removed, regardless of the criterion value.

For more information on the criteria, see Criterion name-value pair argument.
Example: 'PRemove',0.05

'ResponseVar' — Response variable
last column in tbl (default) | string for variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting
of 'ResponseVar' and either a string of the variable name in the table or dataset
array tbl, or a logical or numeric index vector indicating which column is the response
variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six
variables, in one of the following ways.
Example: 'ResponseVar','yield'

Example: 'ResponseVar',[4]

Example: 'ResponseVar',logical([0 0 0 1 0 0])

Data Types: single | double | logical | char

22 Functions — Alphabetical List

22-4612

'Upper' — Model specification describing largest set of terms in fit
'interaction' (default) | string

Model specification describing the largest set of terms in the fit, specified as the comma-
separated pair consisting of 'Upper' and one of the string options for modelspec naming
the model.
Example: 'Upper','quadratic'

'VarNames' — Names of variables in fit
{'x1','x2',...,'xn','y'} (default) | cell array of strings

Names of variables in fit, specified as the comma-separated pair consisting of
'VarNames' and a cell array of strings including the names for the columns of X first,
and the name for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those
variables already have names.

For example, if in your data, horsepower, acceleration, and model year of the cars are the
predictor variables, and miles per gallon (MPG) is the response variable, then you can
name the variables as follows.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}

Data Types: cell

'Verbose' — Control for display of information
1 (default) | 0 | 2

Control for display of information, specified as the comma-separated pair consisting of
'Verbose' and one of the following:

• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Also display the actions evaluated at each step.

Example: 'Verbose',2

'Weights' — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and an n-by-1 vector of nonnegative scalar values, where n is the number of observations.

 stepwiselm

22-4613

Data Types: single | double

Output Arguments
mdl — Linear model
LinearModel object

Linear model representing a least-squares fit of the response to the data, returned as a
LinearModel object.

For the properties and methods of the linear model object, mdl, see the LinearModel
class page.

Alternative Functionality
You can construct a model using fitlm, and then manually adjust the model using step,
addTerms, or removeTerms.

More About
Terms Matrix

A terms matrix is a t-by-(p + 1) matrix specifying terms in a model, where t is the number
of terms, p is the number of predictor variables, and plus one is for the response variable.

The value of T(i,j) is the exponent of variable j in term i. Suppose there are three
predictor variables A, B, and C:

[0 0 0 0] % Constant term or intercept

[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

[1 0 1 0] % A*C

[2 0 0 0] % A^2

[0 1 2 0] % B*(C^2)

The 0 at the end of each term represents the response variable. In general,

• If you have the variables in a table or dataset array, then 0 must represent the
response variable depending on the position of the response variable. The following
example illustrates this.

Load the sample data and define the dataset array.

22 Functions — Alphabetical List

22-4614

load hospital

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...

hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in
a terms matrix. The response variable is in the second column of the dataset array,
so there must be a column of 0s for the response variable in the second column of the
terms matrix.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 1 0 0 0

 0 0 1 0

 0 0 0 1

Redefine the dataset array.

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...

hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

Now, the response variable is the first term in the dataset array. Specify the same
linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a terms
matrix.

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

T =

 0 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

• If you have the predictor and response variables in a matrix and column vector, then
you must include 0 for the response variable at the end of each term. The following
example illustrates this.

Load the sample data and define the matrix of predictors.

load carsmall

X = [Acceleration,Weight];

 stepwiselm

22-4615

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight
+ Weight^2' using a term matrix and fit the model to the data. This model includes
the main effect and two-way interaction terms for the variables, Acceleration and
Weight, and a second-order term for the variable, Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T =

 0 0 0

 1 0 0

 0 1 0

 1 1 0

 0 2 0

Fit a linear model.

mdl = fitlm(X,MPG,T)

mdl =

Linear regression model:

 y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 48.906 12.589 3.8847 0.00019665

 x1 0.54418 0.57125 0.95261 0.34337

 x2 -0.012781 0.0060312 -2.1192 0.036857

 x1:x2 -0.00010892 0.00017925 -0.6076 0.545

 x2^2 9.7518e-07 7.5389e-07 1.2935 0.19917

Number of observations: 94, Error degrees of freedom: 89

Root Mean Squared Error: 4.1

R-squared: 0.751, Adjusted R-Squared 0.739

F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which correspond to the Weight variable, are
significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and
a linear model with interactions as the upper model.

22 Functions — Alphabetical List

22-4616

T = [0 0 0;1 0 0;0 1 0;1 1 0];

mdl = stepwiselm(X,MPG,[0 0 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28

mdl =

Linear regression model:

 y ~ 1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 (Intercept) 49.238 1.6411 30.002 2.7015e-49

 x2 -0.0086119 0.0005348 -16.103 1.6434e-28

Number of observations: 94, Error degrees of freedom: 92

Root Mean Squared Error: 4.13

R-squared: 0.738, Adjusted R-Squared 0.735

F-statistic vs. constant model: 259, p-value = 1.64e-28

The results of the stepwise regression are consistent with the results of fitlm in the
previous step.

Formula

A formula for model specification is a string of the form 'Y ~ terms'

where

• Y is the response name.
• terms contains

• Variable names
• + means include the next variable
• - means do not include the next variable
• : defines an interaction, a product of terms
• * defines an interaction and all lower-order terms
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower

order terms as well
• () groups terms

 stepwiselm

22-4617

Note: Formulas include a constant (intercept) term by default. To exclude a constant
term from the model, include -1 in the formula.

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a B^2 term.
'Y ~ A + B^2 + C' is the same as the previous example because B^2 includes a B
term.
'Y ~ A + B + C + A:B' includes an A*B term.
'Y ~ A*B + C' is the same as the previous example because A*B = A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except the three-way
interaction.
'Y ~ A*(B + C + D)' has all linear terms, plus products of A with each of the other
variables.

Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to
factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation

1 Constant (intercept) term
A^k, where k is a positive integer A, A2, ..., Ak

A + B A, B
A*B A, B, A*B
A:B A*B only
-B Do not include B
A*B + C A, B, C, A*B
A + B + C + A:B A, B, C, A*B
A*B*C - A:B:C A, B, C, A*B, A*C, B*C
A*(B + C) A, B, C, A*B, A*C

Statistics and Machine Learning Toolbox notation always includes a constant term
unless you explicitly remove the term using -1.

22 Functions — Alphabetical List

22-4618

Tips

• You cannot use robust regression with stepwise regression. Check your data for
outliers before using stepwiselm.

• For other methods such as anova, or properties of the LinearModel object, see
LinearModel.

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a linear
or generalized linear model based on their statistical significance in explaining the
response variable. The method begins with an initial model, specified using modelspec,
and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At
each step, the method searches for terms to add to or remove from the model based on
the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse',
and in this case, stepwiselm uses the p-value of an F-statistic to test models with
and without a potential term at each step. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is,

if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p-value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, the
hypothesis of a zero coefficient can be rejected), remove the one with the largest p-
value and go to step 2; otherwise, end.

The default for stepwiseglm is 'Deviance' and it follows a similar procedure for
adding or removing terms.

There are several other criteria available, which you can specify using the 'Criterion'
argument. You can use the change in the value of the Akaike information criterion,

 stepwiselm

22-4619

Bayesian information criterion, R-squared, adjusted R-squared as a criterion to add or
remove terms.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method might build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will not
lead to a better fit. In this sense, stepwise models are locally optimal, but might not be
globally optimal.
• “Stepwise Regression” on page 9-124

See Also
fitlm | LinearModel | step

22 Functions — Alphabetical List

22-4620

stepwisefit
Stepwise regression

Syntax

b = stepwisefit(X,y)

[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...)

[...] = stepwisefit(X,y,param1,val1,param2,val2,...)

Description

b = stepwisefit(X,y) uses a stepwise method to perform a multilinear regression of
the response values in the n-by-1 vector y on the p predictive terms in the n-by-p matrix
X. Distinct predictive terms should appear in different columns of X.

b is a p-by-1 vector of estimated coefficients for all of the terms in X. The stepwisefit
function calculates the coefficient estimate values in b as follows:

• If a term is not in the final model, then the corresponding coefficient estimate in b
results from adding only that term to the predictors in the final model.

• If a term is in the final model, then the coefficient estimate in b for that term is a
result of the final model, that is stepwise does not consider the terms it excluded
from the model while computing these values.

Note: stepwisefit automatically includes a constant term in all models. Do not enter a
column of 1s directly into X.

stepwisefit treats NaN values in either X or y as missing values, and ignores them.

[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...) returns
the following additional information:

• se — A vector of standard errors for b
• pval — A vector of p-values for testing whether elements of b are 0

 stepwisefit

22-4621

• inmodel — A logical vector, with length equal to the number of columns in X,
specifying which terms are in the final model

• stats — A structure of additional statistics with the following fields. All statistics
pertain to the final model except where noted.

• source — The string 'stepwisefit'
• dfe — Degrees of freedom for error
• df0 — Degrees of freedom for the regression
• SStotal — Total sum of squares of the response
• SSresid — Sum of squares of the residuals
• fstat — F-statistic for testing the final model vs. no model (mean only)
• pval — p value of the F-statistic
• rmse — Root mean square error
• xr — Residuals for predictors not in the final model, after removing the part of

them explained by predictors in the model
• yr — Residuals for the response using predictors in the final model
• B — Coefficients for terms in final model, with values for a term not in the model

set to the value that would be obtained by adding that term to the model
• SE — Standard errors for coefficient estimates
• TSTAT — t statistics for coefficient estimates
• PVAL — p-values for coefficient estimates
• intercept — Estimated intercept
• wasnan — Indicates which rows in the data contained NaN values

• nextstep — The recommended next step—either the index of the next term to move
in or out of the model, or 0 if no further steps are recommended

• history — Structure containing information on steps taken, with the following
fields:

• B — Matrix of regression coefficients, where each column is one step, and each row
is one coefficient.

• rmse — Root mean square errors for the model at each step.
• df0 — Degrees of freedom for the regression at each step.

22 Functions — Alphabetical List

22-4622

• in — Logical array indicating which predictors are in the model at each step,
where each row is one step, and each column is one predictor.

[...] = stepwisefit(X,y,param1,val1,param2,val2,...) specifies one or more
of the name/value pairs described in the following table.

Parameter Value

'inmodel' A logical vector specifying terms to include in the initial fit. The
default is to specify no terms.

'penter' The maximum p value for a term to be added. The default is 0.05.
'premove' The minimum p value for a term to be removed. The default is the

maximum of the value of 'penter' and 0.10.
'display' 'on' displays information about each step in the command window.

This is the default.

'off' omits the display.
'maxiter' The maximum number of steps in the regression. The default is Inf.
'keep' A logical vector specifying terms to keep in their initial state. The

default is to specify no terms.
'scale' 'on' centers and scales each column of X (computes z-scores) before

fitting.

'off' does not scale the terms. This is the default.

Examples

Load the data in hald.mat, which contains observations of the heat of reaction of
various cement mixtures:

load hald

whos

 Name Size Bytes Class Attributes

 Description 22x58 2552 char

 hald 13x5 520 double

 heat 13x1 104 double

 ingredients 13x4 416 double

 stepwisefit

22-4623

The response (heat) depends on the quantities of the four predictors (the columns of
ingredients).

Use stepwisefit to carry out the stepwise regression algorithm, beginning with no
terms in the model and using entrance/exit tolerances of 0.05/0.10 on the p-values:

stepwisefit(ingredients,heat,...

 'penter',0.05,'premove',0.10);

Initial columns included: none

Step 1, added column 4, p=0.000576232

Step 2, added column 1, p=1.10528e-006

Final columns included: 1 4

 'Coeff' 'Std.Err.' 'Status' 'P'

 [1.4400] [0.1384] 'In' [1.1053e-006]

 [0.4161] [0.1856] 'Out' [0.0517]

 [-0.4100] [0.1992] 'Out' [0.0697]

 [-0.6140] [0.0486] 'In' [1.8149e-007]

stepwisefit automatically includes an intercept term in the model, so you do not add
it explicitly to ingredients as you would for regress. For terms not in the model,
coefficient estimates and their standard errors are those that result by adding the
corresponding term to the final model.

The inmodel parameter is used to specify terms in an initial model:

initialModel = ...

 [false true false false]; % Force in 2nd term

stepwisefit(ingredients,heat,...

 'inmodel',initialModel,...

 'penter',.05,'premove',0.10);

Initial columns included: 2

Step 1, added column 1, p=2.69221e-007

Final columns included: 1 2

 'Coeff' 'Std.Err.' 'Status' 'P'

 [1.4683] [0.1213] 'In' [2.6922e-007]

 [0.6623] [0.0459] 'In' [5.0290e-008]

 [0.2500] [0.1847] 'Out' [0.2089]

 [-0.2365] [0.1733] 'Out' [0.2054]

The preceding two models, built from different initial models, use different subsets of the
predictive terms. Terms 2 and 4, swapped in the two models, are highly correlated:

term2 = ingredients(:,2);

term4 = ingredients(:,4);

22 Functions — Alphabetical List

22-4624

R = corrcoef(term2,term4)

R =

 1.0000 -0.9730

 -0.9730 1.0000

To compare the models, use the stats output of stepwisefit:

[betahat1,se1,pval1,inmodel1,stats1] = ...

 stepwisefit(ingredients,heat,...

 'penter',.05,'premove',0.10,...

 'display','off');

[betahat2,se2,pval2,inmodel2,stats2] = ...

 stepwisefit(ingredients,heat,...

 'inmodel',initialModel,...

 'penter',.05,'premove',0.10,...

 'display','off');

RMSE1 = stats1.rmse

RMSE1 =

 2.7343

RMSE2 = stats2.rmse

RMSE2 =

 2.4063

The second model has a lower Root Mean Square Error (RMSE).

More About

Algorithms

Stepwise regression is a systematic method for adding and removing terms from a
multilinear model based on their statistical significance in a regression. The method
begins with an initial model and then compares the explanatory power of incrementally
larger and smaller models. At each step, the p value of an F-statistic is computed to test
models with and without a potential term. If a term is not currently in the model, the
null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a
zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is
removed from the model. The method proceeds as follows:

1 Fit the initial model.

 stepwisefit

22-4625

2 If any terms not in the model have p-values less than an entrance tolerance (that is,
if it is unlikely that they would have zero coefficient if added to the model), add the
one with the smallest p value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, if it
is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one
with the largest p value and go to step 2; otherwise, end.

Depending on the terms included in the initial model and the order in which terms are
moved in and out, the method may build different models from the same set of potential
terms. The method terminates when no single step improves the model. There is no
guarantee, however, that a different initial model or a different sequence of steps will
not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be
globally optimal.

References

[1] Draper, N. R., and H. Smith. Applied Regression Analysis. Hoboken, NJ: Wiley-
Interscience, 1998. pp. 307–312.

See Also
stepwise | addedvarplot | regress

22 Functions — Alphabetical List

22-4626

subsasgn
Class: classregtree

Subscripted reference for classregtree object

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

Description

Subscript assignment is not allowed for a classregtree object.

See Also
classregtree

 subsasgn

22-4627

subsasgn
Class: dataset

Subscripted assignment to dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

A = subsasgn(A,S,B) is called for the syntax A(i,j)=B, A{i,j}=B, or A. var=B when
A is a dataset array. S is a structure array with the fields:

type String containing '()', '{}', or '.'
specifying the subscript type.

subs Cell array or string containing the actual
subscripts.

A(i,j) = B assigns the contents of the dataset array B to a subset of the observations
and variables in the dataset array A. i and j are one of the following types:

• positive integers
• vectors of positive integers
• observation/variable names
• cell arrays containing one or more observation/variable names
• logical vectors

The assignment does not use observation names, variable names, or any other properties
of B to modify properties of A; however properties of A are extended with default values if
the assignment expands the number of observations or variables in A. Elements of B are
assigned into A by position, not by matching names.

22 Functions — Alphabetical List

22-4628

A{i,j} = B assigns the value B into an element of the dataset array A. i and J are
positive integers, or logical vectors. Cell indexing cannot assign into multiple dataset
elements, that is, the subscripts i and j must each refer to only a single observation or
variable. B is cast to the type of the target variable if necessary. If the dataset element
already exists, A{i,j} may also be followed by further subscripting as supported by the
variable.

For dataset variables that are cell arrays, assignments such as A{1,'CellVar'} = B
assign into the contents of the target dataset element in the same way that {}-indexing
of an ordinary cell array does.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or array,
an assignment such as A{1,'ArrayVar'} = B assigns into the second and following
dimensions of the target dataset element, i.e., the assignment adds a leading singleton
dimension to B to account for the observation dimension of the dataset variable.

A.var = B or A.(varname) = B assigns B to a dataset variable. var is a variable
name literal, or varname is a character variable containing a variable name. If the
dataset variable already exists, the assignment completely replaces that variable. To
assign into an element of the variable, A.var or A.(varname) may be followed by
further subscripting as supported by the variable. In particular, A.var(obsnames,...)
= B and A.var{obsnames,...} = B (when supported by var) provide assignment into
a dataset variable using observation names.

A.properties.propertyname = P assigns to a dataset property. propertyname is
one of the following:

• 'ObsNames'

• 'VarNames'

• 'Description'

• 'Units'

• 'DimNames'

• 'UserData'

• 'VarDescription'

To assign into an element of the property, A.properties.propertyname may also be
followed by further subscripting as supported by the property.

You cannot assign multiple values into dataset variables or properties using
assignments such as [A.CellVar{1:2}] = B, [A.StructVar(1:2).field] = B,

 subsasgn

22-4629

or [A.Properties.ObsNames{1:2}] = B. Use multiple assignments of the form
A.CellVar{1} = B instead.

Similarly, if a dataset variable is a cell array with multiple columns or is an n-D cell
array, then the contents of that variable for a single observation consists of multiple
cells, and you cannot assign to all of them using the syntax A{1,'CellVar'} = B. Use
multiple assignments of the form [A.CellVar{1,1}] = B instead.

See Also
dataset | set | subsref

22 Functions — Alphabetical List

22-4630

subsasgn
Class: gmdistribution

Subscripted reference for Gaussian mixture distribution object

Description

Subscript assignment is not allowed for gmdistribution objects.

See Also
gmdistribution

 subsasgn

22-4631

subsasgn
Class: NaiveBayes

Subscripted reference for NaiveBayes object

Description

Subscript assignment is not allowed for a NaiveBayes object.

22 Functions — Alphabetical List

22-4632

subsref
Class: classregtree

Subscripted reference for classregtree object

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

B = subsref(T,S)

Description

B = subsref(T,S) is called for the syntax T(X) when T is a classregtree object. S is
a structure array with the fields:

type String containing '()', '{}', or '.' specifying the
subscript type.

subs Cell array or string containing the actual subscripts.

[...]=T(...) invokes the eval method for the tree T.

See Also
classregtree | eval

 subsref

22-4633

subsref
Class: dataset

Subscripted reference for dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

B = subsref(A,S)

Description

B = subsref(A,S) is called for the syntax A(i,j), A{i,j}, or A.var when A is a
dataset array. S is a structure array with the fields:

type String containing '()', '{}', or '.' specifying the subscript
type.

subs Cell array or string containing the actual subscripts.

B = A(i,j) returns a dataset array that contains a subset of the observations and
variables in the dataset array A. i and j are one of the following types:

• positive integers
• vectors of positive integers
• observation/variable names
• cell arrays containing one or more observation/variable names
• logical vectors

B contains the same property values as A, subsetted for observations or variables where
appropriate.

22 Functions — Alphabetical List

22-4634

B = A{i,j} returns an element of a dataset variable. i and j are positive integers,
or logical vectors. Cell indexing cannot return multiple dataset elements, that is, the
subscripts i and j must each refer to only a single observation or variable. A{i,j} may
also be followed by further subscripting as supported by the variable.

For dataset variables that are cell arrays, expressions such as A{1,'CellVar'} return
the contents of the referenced dataset element in the same way that {}-indexing on an
ordinary cell array does. If the dataset variable is a single column of cells, the contents of
a single cell is returned. If the dataset variable has multiple columns or is n-D, multiple
outputs containing the contents of multiple cells are returned.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or an array,
expressions such as A{1,'ArrayVar'} return A.ArrayVar(1,:,...) with the leading
singleton dimension squeezed out.

B = A.var or A.(varname) returns a dataset variable. var is a variable name literal,
or varname is a character variable containing a variable name. A.var or A.(varname)
may also be followed by further subscripting as supported by the variable. In particular,
A.var(obsnames,...) and A.var{obsnames,...} (when supported by var) provide
subscripting into a dataset variable using observation names.

P = A.Properties.propertyname returns a dataset property. propertyname is one
of the following:

• 'ObsNames'

• 'VarNames'

• 'Description'

• 'Units'

• 'DimNames'

• 'UserData'

• 'VarDescription'

A.properties.propertyname may also be followed by further subscripting as
supported by the property.

Limitations

Subscripting expressions such as A.CellVar{1:2}, A.StructVar(1:2).field,
or A.Properties.ObsNames{1:2} are valid, but result in subsref returning

 subsref

22-4635

multiple outputs in the form of a comma-separated list. If you explicitly assign to output
arguments on the left-hand side of an assignment, for example, [cellval1,cellval2]
= A.CellVar{1:2}, those variables will receive the corresponding values. However,
if there are no output arguments, only the first output in the comma-separated list is
returned.

Similarly, if a dataset variable is a cell array with multiple columns or is an n-D cell
array, then subscripting expressions such as A{1,'CellVar'} result in subsref
returning the contents of multiple cells. You should explicitly assign to output arguments
on the left-hand side of an assignment, for example, [cellval1,cellval2] =
A{1,'CellVar'}.

See Also
dataset | set | subsasgn

22 Functions — Alphabetical List

22-4636

subsref
Class: gmdistribution

Subscripted reference for Gaussian mixture distribution object

Syntax

B = subsref(T,S)

Description

B = subsref(T,S) is called for the syntax T(X) when T is a gmdistribution object.
S is a structure array with the following fields:

type String containing '()', '{}', or '.' specifying the subscript type.
subs Cell array or string containing the actual subscripts.

See Also
gmdistribution

 subsref

22-4637

subsref
Class: NaiveBayes

Subscripted reference for NaiveBayes object

Syntax

b = subsref(nb,s)

Description

b = subsref(nb,s) is called for the syntax nb(s) when nb is a NaiveBayes object. S
is a structure array with the fields:

type string containing '()', '{}', or '.' specifying the
subscript type.

subs Cell array or string containing the actual
subscripts.

22 Functions — Alphabetical List

22-4638

subsref
Class: qrandset

Subscripted reference for qrandset

Syntax

x = p(i,j)

x = subsref(p,s)

Description

x = p(i,j) returns a matrix that contains a subset of the points from the point set
p. The indices in i select points from the set and the indices in j select columns from
those points. i and j are vector of positive integers or logical vectors. A colon used as a
subscript, as in p(i,:), indicates the entire row (or column).

x = subsref(p,s) is called for the syntax p(i), p{i}, or p.i. s is a structure array
with the fields:

type string containing '()', '{}', or '.' specifying the subscript type.
subs Cell array or string containing the actual subscripts.

Examples

Command Returns

p = sobolset(5); The fifth point
x = p(1:10,:) All columns of the first 10 points
x = p(end,1) The first column of the last point
x = p([1,4,5], :) Points 1, 4, and 5

See Also
qrandset

 summary

22-4639

summary
Class: dataset

Print summary of dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

summary(A)

s = summary(A)

Description

summary(A) prints a summary of a dataset array and the variables that it contains.

s = summary(A) returns a scalar structure s that contains a summary of the dataset A
and the variables that A contains. For more information on the fields in s, see Outputs.

Summary information depends on the type of the variables in the data set:

• For numerical variables, summary computes a five-number summary of the data,
giving the minimum, the first quartile, the median, the third quartile, and the
maximum.

• For logical variables, summary counts the number of trues and falses in the data.
• For categorical variables, summary counts the number of data at each level.

Output Arguments

The following list describes the fields in the structure s:

22 Functions — Alphabetical List

22-4640

• Description — A character array containing the dataset description.
• Variables — A structure array with one element for each dataset variable in A.

Each element has the following fields:

• Name — A character string containing the name of the variable.
• Description — A character string containing the variable's description.
• Units — A character string containing the variable's units.
• Size — A numeric vector containing the size of the variable.
• Class — A character string containing the class of the variable.
• Data — A scalar structure containing the following fields.

For numeric variables:

• Probabilities — A numeric vector containing the probabilities
[0.0 .25 .50 .75 1.0] and NaN (if any are present in the corresponding dataset
variable).

• Quantiles — A numeric vector containing the values that correspond to
'Probabilities' for the corresponding dataset variable, and a count of NaNs (if
any are present).

For logical variables:

• Values — The logical vector [true false].
• Counts — A numeric vector of counts for each logical value.

For categorical variables:

• Levels — A cell array containing the labels for each level of the corresponding
dataset variable.

• Counts — A numeric vector of counts for each level.

'Data' is empty if variable is not numeric, categorical, or logical. If a dataset
variable has more than one column, then the corresponding 'Quantiles' or
'Counts' field is a matrix or an array.

Examples
Summarize Fisher's iris data:

 summary

22-4641

load fisheriris

species = nominal(species);

data = dataset(species,meas);

summary(data)

species: [150x1 nominal]

 setosa versicolor virginica

 50 50 50

meas: [150x4 double]

 min 4.3000 2 1 0.1000

 1st Q 5.1000 2.8000 1.6000 0.3000

 median 5.8000 3 4.3500 1.3000

 3rd Q 6.4000 3.3000 5.1000 1.8000

 max 7.9000 4.4000 6.9000 2.5000

Summarize the data in hospital.mat:

load hospital

summary(hospital)

Dataset array created from the data file hospital.dat.

The first column of the file ("id") is used for observation

names. Other columns ("sex" and "smoke") have been

converted from their original coded values into categorical

and logical variables. Two sets of columns ("sys" and

"dia", "trial1" through "trial4") have been combined into

single variables with multivariate observations. Column

headers have been replaced with more descriptive variable

names. Units have been added where appropriate.

LastName: [100x1 cell string]

Sex: [100x1 nominal]

 Female Male

 53 47

Age: [100x1 double, Units = Yrs]

 min 1st Q median 3rd Q max

 25 32 39 44 50

Weight: [100x1 double, Units = Lbs]

 min 1st Q median 3rd Q max

 111 130.5000 142.5000 180.5000 202

Smoker: [100x1 logical]

22 Functions — Alphabetical List

22-4642

 true false

 34 66

BloodPressure: [100x2 double, Units = mm Hg]

Systolic/Diastolic

 min 109 68

 1st Q 117.5000 77.5000

 median 122 81.5000

 3rd Q 127.5000 89

 max 138 99

Trials: [100x1 cell, Units = Counts]

From zero to four measurement trials performed

See Also
get | set | grpstats

 Support property

22-4643

Support property
Class: ProbDist

Read-only structure containing information about support of ProbDist object

Description

Support is a read-only property of the ProbDist class. Support is a structure
containing information about the support of a ProbDist object. It includes the following
fields:

• range

• closedbound

• iscontinuous

Values

The values for the three fields in the structure are:

• range — A two-element vector [L, U], such that all of the probability is contained
from L to U.

• closedbound — A two-element logical vector indicating whether the corresponding
range endpoint is included. Possible values for each endpoint are 1 (true) or 0
(false).

• iscontinuous — A logical value indicates if the distribution takes values on the
entire interval from L to U (true), or if it takes only integer values within this range
(false). Possible values are 1 (true) or 0 (false).

Use this information to view and compare information about the support of distributions.

22 Functions — Alphabetical List

22-4644

struct2dataset

Convert structure array to dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

ds = struct2dataset(S)

ds = struct2dataset(S,Name,Value)

Description

ds = struct2dataset(S) converts a structure array to a dataset array.

ds = struct2dataset(S,Name,Value) performs the conversion using additional
options specified by one or more Name,Value pair arguments.

Examples

Convert Scalar Structure Array to Dataset Array

Convert a scalar structure array to a dataset array using the default options.

Create a structure array to convert.

S.Name = {'CLARK';'BROWN';'MARTIN'};

S.Gender = {'M';'F';'M'};

S.SystolicBP = [124;122;130];

S.DiastolicBP = [93;80;92];

 struct2dataset

22-4645

S

S =

 Name: {3x1 cell}

 Gender: {3x1 cell}

 SystolicBP: [3x1 double]

 DiastolicBP: [3x1 double]

The scalar structure array has four fields, each with three rows.

Convert the structure array to a dataset array.

ds = struct2dataset(S)

ds =

 Name Gender SystolicBP DiastolicBP

 'CLARK' 'M' 124 93

 'BROWN' 'F' 122 80

 'MARTIN' 'M' 130 92

The structure field names in S become the variable names in the output dataset array.
The size of ds is 3-by-4.

Convert Nonscalar Structure Array to Dataset Array

Convert a nonscalar structure array to a dataset array, using one of the structure fields
for observation names.

Create a nonscalar structure array to convert.

S(1,1).Name = 'CLARK';

S(1,1).Gender = 'M';

S(1,1).SystolicBP = 124;

S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';

S(2,1).Gender = 'F';

S(2,1).SystolicBP = 122;

S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';

S(3,1).Gender = 'M';

22 Functions — Alphabetical List

22-4646

S(3,1).SystolicBP = 130;

S(3,1).DiastolicBP = 92;

S

S =

3x1 struct array with fields:

 Name

 Gender

 SystolicBP

 DiastolicBP

This is a 3-by-1 structure array with 4 fields.

Convert the structure array to a dataset array, using the Name field for observation
names.

ds = struct2dataset(S,'ReadObsNames','Name')

ds =

 Gender SystolicBP DiastolicBP

 CLARK 'M' 124 93

 BROWN 'F' 122 80

 MARTIN 'M' 130 92

The size of ds is 3-by-3 because the structure field Name is used for observation names,
and not as a dataset array variable.

ds.Properties.DimNames

ans =

 'Name' 'Variables'

ds.Properties.ObsNames

ans =

 'CLARK'

 'BROWN'

 'MARTIN'

• “Create a Dataset Array from Workspace Variables” on page 2-63

 struct2dataset

22-4647

• “Create a Dataset Array from a File” on page 2-69

Input Arguments

S — Input structure array
structure array

Input structure array to convert to a dataset array, specified as a scalar structure array
with N fields, each with M rows, or a nonscalar M-by-1 structure array with N fields.
Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ReadObsNames','myField' specifies that the structure field, myField,
contains observation names.

'ReadObsNames' — Name of structure field containing observation names for dataset array
false (default) | string

Name of structure field containing observation names for the output dataset array,
specified as the comma-separated pair consisting of 'ReadObsNames' and a string
containing a field name from the input structure array, S. When you specify a field
name, struct2dataset uses that field to create observation names, and sets
ds.Properties.DimNames equal to {ReadObsNames,'Variables'}.

For example, to specify that observation names are in the structure field, Names, use

Example: 'ReadObsNames','Names'

By default, or if ReadObsNames is equal to false, struct2dataset does not create
observation names unless you specify names using the name-value pair argument
ObsNames.

'ObsNames' — Observation names for dataset array
cell array of strings

22 Functions — Alphabetical List

22-4648

Observation names for the output dataset array, specified as the comma-separated pair
consisting of 'ObsNames' and a cell array of strings containing observation names. The
names do not need to be valid MATLAB identifiers, but they must be unique.

'AsScalar' — Indicator for how to treat scalar structure
false | true

Indicator for how to treat a scalar input structure array, specified as the comma-
separated pair consisting of 'AsScalar' and either true or false. The default value is
true if S is a scalar structure array, and false otherwise.

By default, struct2dataset converts a scalar structure array with N fields, each with
M rows, into an M-by-N dataset array.

If instead you set AsScalar equal to false for a scalar input structure array, then
struct2dataset converts S to a dataset array with N observations.

Output Arguments

ds — Output dataset array
dataset array

Output dataset array, returned by default with M observations and N variables.

• If S is a scalar structure array with N fields, each with M rows, then ds is an M-by-N
dataset array.

• If S is a nonscalar M-by-1 structure array with N fields, then ds is an M-by-N dataset
array.

• If S is a scalar structure array with N fields, each with M rows, and AsScalar is set
equal to false, then ds is a dataset array with N observations.

More About
• “Dataset Arrays” on page 2-132

See Also
cell2dataset | dataset | dataset2struct

 surfht

22-4649

surfht
Interactive contour plot

Syntax

surfht(Z)

surfht(x,y,Z)

Description

surfht(Z) is an interactive contour plot of the matrix Z treating the values in Z as
height above the plane. The x-values are the column indices of Z while the y-values are
the row indices of Z.

surfht(x,y,Z) where x and y are vectors specify the x and y-axes on the contour plot.
The length of x must match the number of columns in Z, and the length of y must match
the number of rows in Z.

There are vertical and horizontal reference lines on the plot whose intersection defines
the current x value and y value. You can drag these dotted white reference lines
and watch the interpolated z value (at the top of the plot) update simultaneously.
Alternatively, you can get a specific interpolated z value by typing the x value and y
value into editable text fields on the x-axis and y-axis respectively.

22 Functions — Alphabetical List

22-4650

surrcutcategories
Class: classregtree

Categories used for surrogate splits in decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

C = surrcutcategories(T)

C = surrcutcategories(T,J)

Description

C = surrcutcategories(T) returns an n-element cell array C of the categories used
for surrogate splits in the decision tree T, where n is the number of nodes in the tree.
For each node K, C{K} is a cell array. The length of C{K} is equal to the number of
surrogate predictors found at this node. Every element of C{K} is either an empty string
for a continuous surrogate predictor or a two-element cell array with categories for a
categorical surrogate predictor. The first element of this two-element cell array lists
categories assigned to the left child by this surrogate split and the second element of
this two-element cell array lists categories assigned to the right child by this surrogate
split. The order of the surrogate split variables at each node is matched to the order
of variables returned by surrcutvar. The optimal-split variable at this node is not
included. For non-branch (leaf) nodes, C contains an empty cell.

C = surrcutcategories(T,J) takes an array J of node numbers and returns the
categories for the specified nodes.

See Also
classregtree | surrcuttype | surrcutpoint | surrcutvar | cutcategories

 surrcutflip

22-4651

surrcutflip

Class: classregtree

Numeric cutpoint assignments used for surrogate splits in decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

V = surrcutflip(T)

V = surrcutflip(T,J)

Description

V = surrcutflip(T) returns an n-element cell array V of the numeric cut assignments
used for surrogate splits in the decision tree T, where n is the number of nodes in the
tree. For each node K, V{K} is a numeric vector. The length of V{K} is equal to the
number of surrogate predictors found at this node. Every element of V{K} is either
zero for a categorical surrogate predictor or a numeric cut assignment for a continuous
surrogate predictor. The numeric cut assignment can be either -1 or +1. For every
surrogate split with a numeric cut C based on a continuous predictor variable Z, the
left child is chosen if Z<C and the cut assignment for this surrogate split is +1, or if
Z>=C and the cut assignment for this surrogate split is -1. Similarly, the right child is
chosen if Z>=C and the cut assignment for this surrogate split is +1, or if Z<C and the cut
assignment for this surrogate split is -1. The order of the surrogate split variables at each
node is matched to the order of variables returned by surrcutvar. The optimal-split
variable at this node is not included. For non-branch (leaf) nodes, V contains an empty
array.

V = surrcutflip(T,J) takes an array J of node numbers and returns the cutpoint
assignments for the specified nodes.

22 Functions — Alphabetical List

22-4652

See Also
classregtree | surrcuttype | surrcutpoint | surrcutvar |
surrcutcategories | cutpoint

 surrcutpoint

22-4653

surrcutpoint
Class: classregtree

Cutpoints used for surrogate splits in decision tree

Compatibility
classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax
V = surrcutpoint(T)

V = surrcutpoint(T,J)

Description
V = surrcutpoint(T) returns an n-element cell array V of the numeric values used
for surrogate splits in the decision tree T, where n is the number of nodes in the tree.
For each node K, V{K} is a numeric vector. The length of V{K} is equal to the number of
surrogate predictors found at this node. Every element of V{K} is either either NaN for a
categorical surrogate predictor or a numeric cut for a continuous surrogate predictor. For
every surrogate split with a numeric cut C based on a continuous predictor variable Z,
the left child is chosen if Z<C and surrcutflip for this surrogate split is -1. Similarly,
the right child is chosen if Z>=C and surrcutflip for this surrogate split is +1, or if
Z<C and surrcutflip for this surrogate split is -1. The order of the surrogate split
variables at each node is matched to the order of variables returned by surrcutvar. The
optimal-split variable at this node is not included. For non-branch (leaf) nodes, V contains
an empty cell.

V = surrcutpoint(T,J) takes an array J of node numbers and returns the cutpoint
assignments for the specified nodes.

See Also
classregtree | surrcuttype | surrcutflip | surrcutvar | surrcutcategories
| cutpoint

22 Functions — Alphabetical List

22-4654

surrcuttype
Class: classregtree

Types of surrogate splits used at branches in decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

C = surrcuttype(T)

C = surrcuttype(T,J)

Description

C = surrcuttype(T) returns an n-element cell array C indicating types of surrogate
splits at each node in the tree T, where n is the number of nodes in the tree. For each
node K, C{K} is a cell array with the types of the surrogate split variables at this node.
The variables are sorted by the predictive measure of association with the optimal
predictor in the descending order, and only variables with the positive predictive
measure are included. The order of the surrogate split variables at each node is matched
to the order of variables returned by surrcutvar. The optimal-split variable at this node
is not included. For non-branch (leaf) nodes, C contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z
and cutpoint V or 'categorical' if the cut is defined by whether Z takes a value in a
set of categories.

C = surrcuttype(T,J) takes an array J of node numbers and returns the cut types
for the specified nodes.

See Also
classregtree | cuttype | numnodes | surrcutvar

 surrcutvar

22-4655

surrcutvar
Class: classregtree

Variables used for surrogate splits in decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

V = surrcutvar(T)

V = surrcutvar(T,J)

[V,NUM] = surrcutvar(...)

Description

V = surrcutvar(T) returns an n-element cell array V of the names of the variables
used for surrogate splits in each node of the tree T, where n is the number of nodes in the
tree. Every element of V is a cell array with the names of the surrogate split variables
at this node. The variables are sorted by the predictive measure of association with the
optimal predictor in the descending order, and only variables with the positive predictive
measure are included. The optimal-split variable at this node is not included. For non-
branch (leaf) nodes, V contains an empty cell.

V = surrcutvar(T,J) takes an array J of node numbers and returns the cut types for
the specified nodes.

[V,NUM] = surrcutvar(...) also returns a cell array NUM with indices for each
variable.

See Also
classregtree | children | numnodes | cutvar

22 Functions — Alphabetical List

22-4656

surrvarassoc
Class: classregtree

Predictive measure of association for surrogate splits in decision tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

A = surrvarassoc(T)

A = surrvarassoc(T,J)

Description

A = surrvarassoc(T) returns an n-element cell array A of the predictive measures
of association for surrogate splits in the decision tree T, where n is the number of nodes
in the tree. For each node K, A{K} is a numeric vector. The length of A{K} is equal to
the number of surrogate predictors found at this node. Every element of A{K} gives the
predictive measure of association between the optimal split and this surrogate split. The
order of the surrogate split variables at each node is matched to the order of variables
returned by surrcutvar. The optimal-split variable at this node is not included. For
non-branch (leaf) nodes, V contains an empty cell.

A = surrvarassoc(T,J) takes an array J of node numbers and returns the predictive
measure of association for the specified nodes.

See Also
classregtree | surrcuttype | surrcutflip | surrcutvar | surrcutcategories
| surrcutpoint

 svmclassify

22-4657

svmclassify
Classify using support vector machine (SVM)

Compatibility

svmclassify will be removed in a future release. See fitcsvm, ClassificationSVM,
and CompactClassificationSVM instead.

Syntax

Group = svmclassify(SVMStruct,Sample)

Group = svmclassify(SVMStruct,Sample,'Showplot',true)

Description

Group = svmclassify(SVMStruct,Sample) classifies each row of the data in
Sample, a matrix of data, using the information in a support vector machine classifier
structure SVMStruct, created using the svmtrain function. Like the training data used
to create SVMStruct, Sample is a matrix where each row corresponds to an observation
or replicate, and each column corresponds to a feature or variable. Therefore, Sample
must have the same number of columns as the training data. This is because the number
of columns defines the number of features. Group indicates the group to which each row
of Sample has been assigned.

Group = svmclassify(SVMStruct,Sample,'Showplot',true) plots the Sample
data in the figure created using the Showplot property with the svmtrain function.
This plot appears only when the data is two-dimensional.

Input Arguments

SVMStruct

Support vector machine classifier structure created using the svmtrain function.

22 Functions — Alphabetical List

22-4658

Sample

A matrix where each row corresponds to an observation or replicate, and each column
corresponds to a feature or variable. Therefore, Sample must have the same number
of columns as the training data. This is because the number of columns defines the
dimensionality of the data space.

Showplot

Describes whether to display a plot of the classification. Displays only for 2-D problems.
Follow with a Boolean argument: true to display the plot, false to give no display.

Output Arguments

Group

Column vector with the same number of rows as Sample. Each entry (row) in Group
represents the class of the corresponding row of Sample.

Examples

Classify an Observation Using a Trained SVM Classifier.

Find a line separating the Fisher iris data on versicolor and virginica species, according
to the petal length and petal width measurements. These two species are in rows 51 and
higher of the data set, and the petal length and width are the third and fourth columns.

load fisheriris

xdata = meas(51:end,3:4);

group = species(51:end);

figure;

svmStruct = svmtrain(xdata,group,'ShowPlot',true);

 svmclassify

22-4659

Classify two new flowers, one with petal length 5 and petal width 2 and the other with
petal length 4 and petal width 1.5.

Xnew = [5 2; 4 1.5];

species = svmclassify(svmStruct,Xnew,'ShowPlot',true)

hold on;

plot(Xnew(:,1),Xnew(:,2),'ro','MarkerSize',12);

hold off

species =

 'virginica'

 'versicolor'

22 Functions — Alphabetical List

22-4660

More About

Algorithms

The svmclassify function uses results from svmtrain to classify vectors x according to
the following equation:

c k s x bi i

i

= +∑a (,) ,

 svmclassify

22-4661

where si are the support vectors, αi are the weights, b is the bias, and k is a kernel
function. In the case of a linear kernel, k is the dot product. If c ≥ 0, then x is classified as
a member of the first group, otherwise it is classified as a member of the second group.
• “Support Vector Machines (SVM)” on page 16-170

References

[1] Kecman, V., Learning and Soft Computing, MIT Press, Cambridge, MA. 2001.

[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J.,
Least Squares Support Vector Machines, World Scientific, Singapore, 2002.

[3] Scholkopf, B., and Smola, A.J., Learning with Kernels, MIT Press, Cambridge, MA.
2002.

[4] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, First Edition (Cambridge:
Cambridge University Press). http://www.support-vector.net/

See Also
svmtrain

http://www.support-vector.net/

22 Functions — Alphabetical List

22-4662

svmtrain
Train support vector machine classifier

Compatibility

svmtrain will be removed in a future release. See fitcsvm, ClassificationSVM, and
CompactClassificationSVM instead.

Syntax

SVMStruct = svmtrain(Training,Group)

SVMStruct = svmtrain(Training,Group,Name,Value)

Description

SVMStruct = svmtrain(Training,Group) returns a structure, SVMStruct,
containing information about the trained support vector machine (SVM) classifier.

SVMStruct = svmtrain(Training,Group,Name,Value) returns a structure with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

Training

Matrix of training data, where each row corresponds to an observation or replicate, and
each column corresponds to a feature or variable. svmtrain treats NaNs or empty strings
in Training as missing values and ignores the corresponding rows of Group.

Group

Grouping variable, which can be a categorical, numeric, or logical vector, a cell vector of
strings, or a character matrix with each row representing a class label. Each element of

 svmtrain

22-4663

Group specifies the group of the corresponding row of Training. Group should divide
Training into two groups. Group has the same number of elements as there are rows
in Training. svmtrain treats each NaN, empty string, or 'undefined' in Group as a
missing value, and ignores the corresponding row of Training.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'autoscale'

Boolean specifying whether svmtrain automatically centers the data points at their
mean, and scales them to have unit standard deviation, before training.

Default: true

'boxconstraint'

Value of the box constraint C for the soft margin. C can be a scalar, or a vector of the
same length as the training data.

If C is a scalar, it is automatically rescaled by N/(2*N1) for the data points of group one
and by N/(2*N2) for the data points of group two, where N1 is the number of elements in
group one, N2 is the number of elements in group two, and N = N1 + N2. This rescaling
is done to take into account unbalanced groups, that is cases where N1 and N2 have very
different values.

If C is an array, then each array element is taken as a box constraint for the data point
with the same index.

Default: 1

'kernelcachelimit'

Value that specifies the size of the kernel matrix cache for the SMO training method. The
algorithm keeps a matrix with up to kernelcachelimit × kernelcachelimit double-
precision, floating-point numbers in memory.

22 Functions — Alphabetical List

22-4664

Default: 5000

'kernel_function'

Kernel function svmtrain uses to map the training data into kernel space. The default
kernel function is the dot product. The kernel function can be one of the following strings
or a function handle:

• 'linear' — Linear kernel, meaning dot product.
• 'quadratic' — Quadratic kernel.
• 'polynomial' — Polynomial kernel (default order 3). Specify another order with the

polyorder name-value pair.
• 'rbf' — Gaussian Radial Basis Function kernel with a default scaling factor, sigma,

of 1. Specify another value for sigma with the rbf_sigma name-value pair.
• 'mlp' — Multilayer Perceptron kernel with default scale [1 –1]. Specify another

scale with the mlp_params name-value pair.
• @kfun — Function handle to a kernel function. A kernel function must be of the form

function K = kfun(U, V)

The returned value, K, is a matrix of size M-by-N, where U and V have M and N rows
respectively.

If kfun has extra parameters, include the extra parameters via an anonymous
function. For example, suppose that your kernel function is:

function k = kfun(u,v,p1,p2)

k = tanh(p1*(u*v')+p2);

Set values for p1 and p2, and then use an anonymous function:

@(u,v) kfun(u,v,p1,p2)

Default: 'linear'

'kktviolationlevel'

Value that specifies the fraction of variables allowed to violate the Karush-Kuhn-Tucker
(KKT) conditions for the SMO training method. Set any value in [0,1). For example, if
you set kktviolationlevel to 0.05, then 5% of the variables are allowed to violate the
KKT conditions.

 svmtrain

22-4665

Tip Set this option to a positive value to help the algorithm converge if it is fluctuating
near a good solution.

For more information on KKT conditions, see Cristianini and Shawe-Taylor [4].

Default: 0

'method'

Method used to find the separating hyperplane. Options are:

• 'QP' — Quadratic programming (requires an Optimization Toolbox license).
The classifier is a 2-norm soft-margin support vector machine. Give quadratic
programming options with the options name-value pair, and create options with
optimset.

• 'SMO' — Sequential Minimal Optimization. Give SMO options with the options
name-value pair, and create options with statset.

• 'LS' — Least squares.

Default: SMO

'mlp_params'

Parameters of the Multilayer Perceptron (mlp) kernel. The mlp kernel requires two
parameters, [P1 P2]. The kernel K = tanh(P1*U*V' + P2), where P1 > 0 and
P2 < 0.

Default: [1 –1]

'options'

Options structure for training.

• When you set 'method' to 'SMO' (default), create the options structure using
statset. Options are:

Display String that specifies the level of information about the
optimization iterations that is displayed as the algorithm
runs. Choices are:

• off (default) — Reports nothing.

22 Functions — Alphabetical List

22-4666

• iter — Reports every 500 iterations.
• final — Reports only when the algorithm finishes.

MaxIter Integer that specifies the maximum number of iterations of
the main loop. If this limit is exceeded before the algorithm
converges, then the algorithm stops and returns an error.
Default is 15000.

The other name-value pairs that relate specifically to the 'SMO' method are
kernelcachelimit, kktviolationlevel, and tolkkt.

• When you set method to 'QP', create the options structure using optimset. For
details of applicable option choices, see quadprog options. SVM uses a convex
quadratic program, so you can choose the 'interior-point-convex' quadprog
algorithm. In limited testing, the 'interior-point-convex' algorithm was the
best quadprog option for svmtrain, in both speed and memory utilization.

'polyorder'

Order of the polynomial kernel.

Default: 3

'rbf_sigma'

Scaling factor (sigma) in the radial basis function kernel.

Default: 1

'showplot'

Boolean indicating whether to plot the grouped data and separating line. Creates a plot
only when the data has two columns (features).

Default: false

'tolkkt'

Value that specifies the tolerance with which the Karush-Kuhn-Tucker (KKT) conditions
are checked for the SMO training method. For a definition of KKT conditions, see
“Karush-Kuhn-Tucker (KKT) Conditions” on page 22-4669.

 svmtrain

22-4667

Default: 1e-3

Output Arguments

SVMStruct

Structure containing information about the trained SVM classifier in the following fields:

• SupportVectors — Matrix of data points with each row corresponding to a support
vector in the normalized data space. This matrix is a subset of the Training input
data matrix, after normalization has been applied according to the 'AutoScale'
argument.

• Alpha — Vector of weights for the support vectors. The sign of the weight is positive
for support vectors belonging to the first group, and negative for the second group.

• Bias — Intercept of the hyperplane that separates the two groups in the normalized
data space (according to the 'AutoScale' argument).

• KernelFunction — Handle to the function that maps the training data into kernel
space.

• KernelFunctionArgs — Cell array of any additional arguments required by the
kernel function.

• GroupNames — Categorical, numeric, or logical vector, a cell vector of strings, or
a character matrix with each row representing a class label. Specifies the group
identifiers for the support vectors. It has the same number of elements as there
are rows in SupportVectors. Each element specifies the group to which the
corresponding row in SupportVectors belongs.

• SupportVectorIndices — Vector of indices that specify the rows in Training, the
training data, that were selected as support vectors after the data was normalized,
according to the AutoScale argument.

• ScaleData — Field containing normalization factors. When 'AutoScale' is set to
false, it is empty. When AutoScale is set to true, it is a structure containing two
fields:

• shift — Row vector of values. Each value is the negative of the mean across an
observation in Training, the training data.

• scaleFactor — Row vector of values. Each value is 1 divided by the standard
deviation of an observation in Training, the training data.

22 Functions — Alphabetical List

22-4668

Both svmtrain and svmclassify apply the scaling in ScaleData.
• FigureHandles — Vector of figure handles created by svmtrain when using the

'Showplot' argument.

Examples

Train an SVM Classifier

Find a line separating the Fisher iris data on versicolor and virginica species, according
to the petal length and petal width measurements. These two species are in rows 51 and
higher of the data set, and the petal length and width are the third and fourth columns.

load fisheriris

xdata = meas(51:end,3:4);

group = species(51:end);

svmStruct = svmtrain(xdata,group,'ShowPlot',true);

 svmtrain

22-4669

More About

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) conditions are analogous to the condition that the
gradient must be zero at a minimum, modified to take constraints into account. The
difference is that the KKT conditions hold for constrained problems. The KKT conditions
use the auxiliary Lagrangian function:

L x f x g x h xg i i h i i(,) () () ()., ,l l l= + +∑ ∑

22 Functions — Alphabetical List

22-4670

Here f(x) is the objective function, g(x) is a vector of constraint functions g(x) ≤ 0, and h(x)
is a vector of constraint functions h(x) = 0. The vector λ, which is the concatenation of λg
and λh, is the Lagrange multiplier vector. Its length is the total number of constraints.

The KKT conditions are:

∇ x

g i i

g i

L x

g x i

g x

h x

(,)

()

()

()

.

,

,

l

l

l

=
= ∀

≤
=
≥

0

0

0

0

0

For more information, see Karush-Kuhn-Tucker conditions.

Tips

• To classify new data, use the result of training, SVMStruct, with the svmclassify
function.

Algorithms

The svmtrain function uses an optimization method to identify support vectors si,
weights αi, and bias b that are used to classify vectors x according to the following
equation:

c k s x bi i

i

= +∑a (,) ,

where k is a kernel function. In the case of a linear kernel, k is the dot product. If c ≥ 0,
then x is classified as a member of the first group, otherwise it is classified as a member
of the second group.

Memory Usage and Out of Memory Error

When you set 'Method' to 'QP', the svmtrain function operates on a data set
containing N elements, and it creates an (N+1)-by-(N+1) matrix to find the separating
hyperplane. This matrix needs at least 8*(n+1)^2 bytes of contiguous memory. If this
size of contiguous memory is not available, the software displays an “out of memory”
error message.

http://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions

 svmtrain

22-4671

When you set 'Method' to 'SMO' (default), memory consumption is controlled by the
kernelcachelimit option. The SMO algorithm stores only a submatrix of the kernel
matrix, limited by the size specified by the kernelcachelimit option. However, if the
number of data points exceeds the size specified by the kernelcachelimit option, the
SMO algorithm slows down because it has to recalculate the kernel matrix elements.

When using svmtrain on large data sets, and you run out of memory or the optimization
step is very time consuming, try either of the following:

• Use a smaller number of samples and use cross-validation to test the performance of
the classifier.

• Set 'Method' to 'SMO', and set the kernelcachelimit option as large as your
system permits.

• “Support Vector Machines (SVM)” on page 16-170
• “Grouping Variables” on page 2-52

References

[1] Kecman, V., Learning and Soft Computing, MIT Press, Cambridge, MA. 2001.

[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J.,
Least Squares Support Vector Machines, World Scientific, Singapore, 2002.

[3] Scholkopf, B., and Smola, A.J., Learning with Kernels, MIT Press, Cambridge, MA.
2002.

[4] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, First Edition (Cambridge:
Cambridge University Press). http://www.support-vector.net/

See Also
svmclassify | classify

http://www.support-vector.net/

22 Functions — Alphabetical List

22-4672

table2dataset
Convert table to dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

ds = table2dataset(t)

Description

ds = table2dataset(t) converts a table to a dataset array.

Examples

Convert a Table to a Dataset Array

Load the sample data, which contains nutritional information for 77 cereals.

load cereal;

Create a table containing the calorie, protein, fat, and name data for the first five cereals.
Label the variables.

Calories = Calories(1:5);

Protein = Protein(1:5);

Fat = Fat(1:5);

Name = Name(1:5);

cereal = table(Calories,Protein,Fat,'RowNames',Name)

cereal =

 table2dataset

22-4673

 Calories Protein Fat

 -------- ------- ---

 100% Bran 70 4 1

 100% Natural Bran 120 3 5

 All-Bran 70 4 1

 All-Bran with Extra Fiber 50 4 0

 Almond Delight 110 2 2

Convert the table to a dataset array.

ds = table2dataset(cereal)

ds =

 Calories Protein Fat

 100% Bran 70 4 1

 100% Natural Bran 120 3 5

 All-Bran 70 4 1

 All-Bran with Extra Fiber 50 4 0

 Almond Delight 110 2 2

Input Arguments

t — Input table
table

Input table to convert to a dataset array, specified as a table. Each variable in t becomes
a variable in the output dataset array ds.
Example:
Data Types: table

Output Arguments

ds — Output dataset array
dataset array

Output dataset array, returned as a dataset array containing the variables from the
input table t.

22 Functions — Alphabetical List

22-4674

More About
• “Array Dimensions”
• “Dataset Arrays” on page 2-132

See Also
dataset | table

 tabulate

22-4675

tabulate
Frequency table

Syntax
tbl = tabulate(x)

tabulate(x)

Description
tbl = tabulate(x) creates a frequency table of data in vector x. Information in tbl is
arranged as follows:

• 1st column — The unique values of x
• 2nd column — The number of instances of each value
• 3rd column — The percentage of each value

If x is a numeric array, tbl is a numeric matrix. If the elements of x are nonnegative
integers, tbl includes 0 counts for integers between 1 and max(x) that do not appear in
x.

If x is a categorical variable, character array, or cell array of strings, tbl is a cell array.

tabulate(x) with no output arguments displays the table in the command window.

Examples
tabulate([1 2 4 4 3 4])

 Value Count Percent

 1 1 16.67%

 2 1 16.67%

 3 1 16.67%

 4 3 50.00%

More About
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-4676

See Also
pareto

 tblread

22-4677

tblread
Read tabular data from file

Syntax

[data,varnames,casenames] = tblread

[data,varnames,casenames] = tblread(filename)

[data,varnames,casenames] = tblread(filename,delimiter)

Description

[data,varnames,casenames] = tblread displays the File Open dialog box for
interactive selection of a tabular data file. The file format has variable names in the first
row, case names in the first column and data starting in the (2, 2) position. Outputs are:

• data — Numeric matrix with a value for each variable-case pair
• varnames — String matrix containing the variable names in the first row of the file
• casenames — String matrix containing the names of each case in the first column of

the file

[data,varnames,casenames] = tblread(filename) allows command line
specification of the name of a file in the current folder, or the complete path name of any
file, using the string filename.

[data,varnames,casenames] = tblread(filename,delimiter) reads from the
file using delimiter as the delimiting character. Accepted values for delimiter are:

• ' ' or 'space'
• '\t' or 'tab'
• ',' or 'comma'
• ';' or 'semi'
• '|' or 'bar'

The default value of delimiter is 'space'.

22 Functions — Alphabetical List

22-4678

Examples
[data,varnames,casenames] = tblread('sat.dat')

data =

 470 530

 520 480

varnames =

Male

Female

casenames =

Verbal

Quantitative

See Also
tblwrite | tdfread | caseread

 tblwrite

22-4679

tblwrite
Write tabular data to file

Syntax

tblwrite(data,varnames,casenames)

tblwrite(data,varnames,casenames,filename)

tblwrite(data,varnames,casenames,filename,delimiter)

Description

tblwrite(data,varnames,casenames) displays the File Open dialog box for
interactive specification of the tabular data output file. The file format has variable
names in the first row, case names in the first column and data starting in the (2,2)
position.

varnames is a string matrix containing the variable names. casenames is a string
matrix containing the names of each case in the first column. data is a numeric matrix
with a value for each variable-case pair.

tblwrite(data,varnames,casenames,filename) specifies a file in the current
folder, or the complete path name of any file in the string filename.

tblwrite(data,varnames,casenames,filename,delimiter) writes to the file
using delimiter as the delimiting character. The following table lists the accepted
character values for delimiter and their equivalent string values.

Character String

' ' 'space'

'\t' 'tab'

',' 'comma'

';' 'semi'

'|' 'bar'

The default value of delimiter is 'space'.

22 Functions — Alphabetical List

22-4680

Examples

Continuing the example from tblread:

tblwrite(data,varnames,casenames,'sattest.dat')

type sattest.dat

 Male Female

Verbal 470 530

Quantitative 520 480

See Also
casewrite | tblread

 tcdf

22-4681

tcdf
Student's t cumulative distribution function

Syntax

p = tcdf(x,nu)

p = tcdf(x,nu,'upper')

Description

p = tcdf(x,nu) returns the cumulative distribution function (cdf) of the Student's t
distribution at each of the values in x using the corresponding degrees of freedom in nu.
x and nu can be vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same dimensions as the
other inputs.

p = tcdf(x,nu,'upper') returns the complement of the Student’s t cdf at each
value in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

Examples

Compute Student's t cdf

mu = 1; % Population mean

sigma = 2; % Population standard deviation

n = 100; % Sample size

rng default % For reproducibility

x = normrnd(mu,sigma,n,1); % Random sample from population

xbar = mean(x); % Sample mean

s = std(x); % Sample standard deviation

t = (xbar - mu)/(s/sqrt(n))

22 Functions — Alphabetical List

22-4682

t =

 1.0589

p = 1-tcdf(t,n-1) % Probability of larger t-statistic

p =

 0.1461

This probability is the same as the p value returned by a t test of the null hypothesis that
the sample comes from a normal population with mean

[h,ptest] = ttest(x,mu,0.05,'right')

h =

 0

ptest =

 0.1461

More About

Student’s t cdf

The cumulative distribution function (cdf) of Student’s t distribution is

p F x

t

dt
x

= =

+









 +











+−∞∫(|)n

n

n np

n

n

Γ

Γ

1

2

2

1 1

1
2

1

2

 tcdf

22-4683

where ν is the degrees of freedom and Γ(·) is the Gamma function. The result p is the
probability that a single observation from the t distribution with ν degrees of freedom will
fall in the interval [–∞, x].
• “Student's t Distribution” on page B-146

See Also
tpdf | tinv | tstat | trnd | cdf

22 Functions — Alphabetical List

22-4684

tdfread

Read tab-delimited file

Syntax

tdfread

tdfread(filename)

tdfread(filename,delimiter)

s = tdfread(filename,...)

Description

tdfread displays the File Open dialog box for interactive selection of a data file, then
reads data from the file. The file should have variable names separated by tabs in the
first row, and data values separated by tabs in the remaining rows. tdfread creates
variables in the workspace, one for each column of the file. The variable names are taken
from the first row of the file. If a column of the file contains only numeric data in the
second and following rows, tdfread creates a double variable. Otherwise, tdfread
creates a char variable. After all values are imported, tdfread displays information
about the imported values using the format of the tdfread command.

tdfread(filename) allows command line specification of the name of a file in the
current folder, or the complete path name of any file, using the string filename.

tdfread(filename,delimiter) indicates that the character specified by delimiter
separates columns in the file. Accepted values for delimiter are:

• ' ' or 'space'
• '\t' or 'tab'
• ',' or 'comma'
• ';' or 'semi'
• '|' or 'bar'

The default delimiter is 'tab'.

 tdfread

22-4685

s = tdfread(filename,...) returns a scalar structure s whose fields each contain a
variable.

Examples

The following displays the contents of the file sat2.dat:

type sat2.dat

Test,Gender,Score

Verbal,Male,470

Verbal,Female,530

Quantitative,Male,520

Quantitative,Female,480

The following creates the variables Gender, Score, and Test from the file sat2.dat
and displays the contents of the MATLAB workspace:

tdfread('sat2.dat',',')

Name Size Bytes Class Attributes

Gender 4x6 48 char

Score 4x1 32 double

Test 4x12 96 char

See Also
tblread | caseread

22 Functions — Alphabetical List

22-4686

ClassificationDiscriminant.template
Class: ClassificationDiscriminant

Discriminant analysis classifier template for ensemble (to be removed)

Compatibility

ClassificationDiscriminant.template will be removed in a future release. Use
templateDiscriminant instead.

Syntax

t = ClassificationDiscriminant.template()

t = ClassificationDiscriminant.template(Name,Value)

Description

t = ClassificationDiscriminant.template() returns a learner template suitable
to use in the fitensemble function.

t = ClassificationDiscriminant.template(Name,Value) creates a template
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Delta' — Linear coefficient threshold
0 (default) | nonnegative scalar value

 ClassificationDiscriminant.template

22-4687

Linear coefficient threshold, specified as the comma-separated pair consisting of
'Delta' and a nonnegative scalar value. If a coefficient of obj has magnitude smaller
than Delta, obj sets this coefficient to 0, and you can eliminate the corresponding
predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Data Types: single | double

'DiscrimType' — Discriminant type
'linear' (default) | 'quadratic' | 'diagLinear' | 'diagQuadratic' |
'pseudoLinear' | 'pseudoQuadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType'
and one of the following:

• 'linear'

• 'quadratic'

• 'diagLinear'

• 'diagQuadratic'

• 'pseudoLinear'

• 'pseudoQuadratic'

Example: 'DiscrimType','quadratic'

'FillCoeffs' — Coeffs property flag
'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of
'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coeffs
property in the classifier object. This can be computationally intensive, especially when
cross validating. The default is 'on', unless you specify a cross validation name-value
pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

'Gamma' — Regularization parameter
scalar value in the range [0,1]

Parameter for regularizing the correlation matrix of predictors, specified as the comma-
separated pair consisting of 'Gamma' and a scalar value in the range [0,1].

22 Functions — Alphabetical List

22-4688

• Linear discriminant — Scalar value in the range [0,1].

• If you pass a value strictly between 0 and 1, fitcdiscr sets the discriminant type
to 'Linear'.

• If you pass 0 for Gamma and 'Linear' for DiscrimType, and if the correlation
matrix is singular, fitcdiscr sets Gamma to the minimal value required for
inverting the covariance matrix.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to 'DiagLinear'.
• Quadratic discriminant — Either 0 or 1.

• If you pass 0 for Gamma and 'Quadratic' for DiscrimType, and if one of the
classes has a singular covariance matrix, fitcdiscr errors.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to
'DiagQuadratic'.

• If you set Gamma to a value between 0 and 1 for a quadratic discriminant,
fitcdiscr errors.

Example: 'Gamma',1

Data Types: single | double

'SaveMemory' — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of
'SaveMemory' and either 'on' or 'off'. If you specify 'on', then fitcdiscr does
not store the full covariance matrix, but instead stores enough information to compute
the matrix. The predict method computes the full covariance matrix for prediction, and
does not store the matrix. If you specify 'off', then fitcdiscr computes and stores the
full covariance matrix in obj.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory','on'

Output Arguments

t — Discriminant analysis classification template
classification template object

 ClassificationDiscriminant.template

22-4689

Discriminant analysis classification template suitable to use in the fitensemble
function, returned as a classification template object. In an ensemble, t specifies how to
create the discriminant analysis classifier.

Examples

Discriminant Analysis Template for Nondefault Options

Create a nondefault discriminant analysis template for use in fitensemble.

Create a template for pseudolinear discriminant analysis.

t = ClassificationDiscriminant.template('discrimType','pseudoLinear')

t =

Fit template for classification Discriminant.

 DiscrimType: 'pseudoLinear'

 Gamma: []

 Delta: []

 FillCoeffs: []

 SaveMemory: []

 Method: 'Discriminant'

 Type: 'classification'

You can use t for ensemble learning.

See Also
ClassificationDiscriminant | fitensemble | templateDiscriminant

22 Functions — Alphabetical List

22-4690

ClassificationKNN.template
Class: ClassificationKNN

k-nearest neighbor classifier template for ensemble (to be removed)

Compatibility

ClassificationKNN.template will be removed in a future release. Use templateKNN
instead.

Syntax

t = ClassificationKNN.template()

t = ClassificationKNN.template(Name,Value)

Description

t = ClassificationKNN.template() returns a learner template suitable to use in
the fitensemble function.

t = ClassificationKNN.template(Name,Value) creates a template with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BreakTies' — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

 ClassificationKNN.template

22-4691

Tie-breaking algorithm used by the predict method if multiple classes have the same
smallest cost, specified as the comma-separated pair consisting of 'BreakTies' and one
of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points
among the K nearest neighbors.

Example: 'BreakTies','nearest'

'BucketSize' — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the kd-tree, specified as the comma-
separated pair consisting of 'BucketSize' and a positive integer value. This argument
is meaningful only when NSMethod is 'kdtree'.

Example: 'BucketSize',40

Data Types: single | double

'Cov' — Covariance matrix
nancov(X) (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and
a positive definite matrix of scalar values representing the covariance matrix when
computing the Mahalanobis distance. This argument is only valid when 'Distance' is
'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

'Distance' — Distance metric
valid distance metric string | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance'
and a valid distance metric string or function handle. The allowable strings depend
on the NSMethod parameter, which you set in fitcknn, and which exists as a field in

22 Functions — Alphabetical List

22-4692

ModelParameters. If you specify CategoricalPredictors as 'all', then the default
distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

NSMethod Distance Metric Names

exhaustive Any distance metric of ExhaustiveSearcher
kdtree 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

For definitions, see “Distance Metrics”.

This table includes valid distance metrics of ExhaustiveSearcher.

Value Description

'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'cosine' One minus the cosine of the included angle between

observations (treated as vectors).
'euclidean' Euclidean distance.
'hamming' Hamming distance, percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of

nonzero coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample
covariance matrix of X, as computed by nancov(X). To
specify a different value for C, use the 'Cov' name-value
pair argument.

'minkowski' Minkowski distance. The default exponent is 2. To specify
a different exponent, use the 'Exponent' name-value pair
argument.

'seuclidean' Standardized Euclidean distance. Each coordinate
difference between X and a query point is scaled, meaning
divided by a scale value S. The default value of S is the
standard deviation computed from X, S = nanstd(X). To
specify another value for S, use the Scale name-value pair
argument.

 ClassificationKNN.template

22-4693

Value Description

'spearman' One minus the sample Spearman's rank correlation
between observations (treated as sequences of values).

@distfun Distance function handle. distfun has the form

function D2 = DISTFUN(ZI,ZJ)

% calculation of distance

...

where

• ZI is a 1-by-N vector containing one row of X or y.
• ZJ is an M2-by-N matrix containing multiple rows of X or

y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the

distance between observations ZI and ZJ(J,:).

Example: 'Distance','minkowski'

Data Types: function_handle

'DistanceWeight' — Distance weighting function
'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of
'DistanceWeight' and either a function handle or one of the following strings
specifying the distance weighting function.

DistanceWeight Meaning

'equal' No weighting
'inverse' Weight is 1/distance
'squaredinverse' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative
distances, and returns a matrix the same size
containing nonnegative distance weights. For example,
'squaredinverse' is equivalent to @(d)d.^(-2).

Example: 'DistanceWeight','inverse'

Data Types: function_handle

22 Functions — Alphabetical List

22-4694

'Exponent' — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of
'Exponent' and a positive scalar value. This argument is only valid when 'Distance'
is 'minkowski'.

Example: 'Exponent',3

Data Types: single | double

'IncludeTies' — Tie inclusion flag
false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies'
and a logical value indicating whether predict includes all the neighbors whose
distance values are equal to the Kth smallest distance. If IncludeTies is true,
predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Example: 'IncludeTies',true

Data Types: logical

'NSMethod' — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of
'NSMethod' and 'kdtree' or 'exhaustive'.

• 'kdtree' — Create and use a kd-tree to find nearest neighbors. 'kdtree' is valid
when the distance metric is one of the following:

• 'euclidean'

• 'cityblock'

• 'minkowski'

• 'chebyshev'

• 'exhaustive' — Use the exhaustive search algorithm. The distance values from all
points in X to each point in y are computed to find nearest neighbors.

The default is 'kdtree' when X has 10 or fewer columns, X is not sparse, and the
distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

 ClassificationKNN.template

22-4695

'NumNeighbors' — Number of nearest neighbors to find
1 (default) | positive integer value

Number of nearest neighbors in X to find for classifying each point when predicting,
specified as the comma-separated pair consisting of 'NumNeighbors' and a positive
integer value.
Example: 'NumNeighbors',3

Data Types: single | double

'Scale' — Distance scale
nanstd(X) (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector
containing nonnegative scalar values with length equal to the number of columns in X.
Each coordinate difference between X and a query point is scaled by the corresponding
element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

Output Arguments

t — Classification template
classification template object

K-nearest neighbor classification template suitable to use in the fitensemble function.
In an ensemble, t specifies how to create the KNN classifier.

Examples

KNN template for nondefault options

Create a nondefault k-nearest neighbor template for use in fitensemble.

Create a template for 5-nearest neighbor search.

t = ClassificationKNN.template('NumNeighbors',5)

22 Functions — Alphabetical List

22-4696

t =

Fit template for classification KNN.

 NumNeighbors: 5

 NSMethod: ''

 Distance: ''

 BucketSize: []

 IncludeTies: ''

 DistanceWeight: []

 BreakTies: []

 Exponent: []

 Cov: []

 Scale: []

 Method: 'KNN'

 Type: 'classification'

You can use t for ensemble learning.

• “Random Subspace Classification” on page 16-124

See Also
ClassificationKNN | fitensemble

 ClassificationTree.template

22-4697

ClassificationTree.template
Class: ClassificationTree

Create classification template (to be removed)

Compatibility

ClassificationTree.template will be removed in a future release. Use
templateTree instead.

Syntax

t = ClassificationTree.template

t = ClassificationTree.template(Name,Value)

Description

t = ClassificationTree.template returns a learner template suitable to use in the
fitensemble function.

t = ClassificationTree.template(Name,Value) creates a template with
additional options specified by one or more Name,Value pair arguments. You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-4698

'AlgorithmForCategorical'

Algorithm to find the best split on a categorical predictor for data with K = 3 or more
classes. The available algorithms are:

'Exact' For a categorical predictor with C
categories, consider all 2C — 1 — 1
combinations.

'PullLeft' Start with all C categories on the right
branch. Consider moving each category to
the left branch as it achieves the minimum
impurity for the K classes among the
remaining categories. Out of this sequence,
choose the split that has the lowest
impurity.

'PCA' Compute a score for each category
using the inner product between the
first principal component of a weighted
covariance matrix (of the centered class
probability matrix) and the vector of class
probabilities for that category. Sort the
scores in ascending order, and consider all
C — 1 splits.

'OVAbyClass' Start with all C categories on the right
branch. For each class, order the categories
based on their probability for that class.
For the first class, consider moving each
category to the left branch in order,
recording the impurity criterion at each
move. Repeat for the remaining classes.
Out of this sequence, choose the split that
has the minimum impurity.

Default: ClassificationTree selects the optimal subset of algorithms for each split
using the known number of classes and levels of a categorical predictor. For two classes,
ClassificationTree always performs the exact search.

 ClassificationTree.template

22-4699

'MaxCat'

ClassificationTree splits a categorical predictor using the exact search
algorithm if the predictor has at most MaxCat levels in the split node. Otherwise,
ClassificationTree finds the best categorical split using one of the inexact
algorithms.

Specify MaxCat as a numeric nonnegative scalar value. Passing a small value can lead to
long computation time and memory overload.

Default: 10

'MergeLeaves'

String that specifies whether to merge leaves after the tree is grown. Values are 'on' or
'off'.

When 'on', ClassificationTree merges leaves that originate from the same parent
node, and that give a sum of risk values greater or equal to the risk associated with the
parent node. When 'off', ClassificationTree does not merge leaves.

Default: 'off'

'MinLeaf'

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent
and MinLeaf, ClassificationTree uses the setting that gives larger leaves:
MinParent=max(MinParent,2*MinLeaf).

Default: Half the number of training observations for boosting, 1 for bagging

'MinParent'

Each branch node in the tree has at least MinParent observations. If you supply both
MinParent and MinLeaf, ClassificationTree uses the setting that gives larger
leaves: MinParent=max(MinParent,2*MinLeaf).

Default: Number of training observations for boosting, 2 for bagging

'NVarToSample'

Number of predictors to select at random for each split. Can be a positive integer or
'all', which means use all available predictors.

22 Functions — Alphabetical List

22-4700

Default: 'all' for boosting, square root of number of predictors for bagging

'Prune'

When 'on', ClassificationTree grows the classification tree and computes the
optimal sequence of pruned subtrees. When 'off' ClassificationTree grows the
tree without pruning.

Default: 'off'

'PruneCriterion'

String with the pruning criterion, either 'error' or 'impurity'.

Default: 'error'

'SplitCriterion'

Criterion for choosing a split. One of 'gdi' (Gini's diversity index), 'twoing' for the
twoing rule, or 'deviance' for maximum deviance reduction (also known as cross
entropy).

Default: 'gdi'

'Surrogate'

String describing whether to find surrogate decision splits at each branch node. Specify
as 'on', 'off', 'all', or a positive scalar value.

• When 'on', ClassificationTree finds at most 10 surrogate splits at each branch
node.

• When set to a positive integer value, ClassificationTree finds at most the
specified number of surrogate splits at each branch node.

• When set to 'all', ClassificationTree finds all surrogate splits at each branch
node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also enables you to compute measures of predictive association between
predictors.

Default: 'off'

 ClassificationTree.template

22-4701

Output Arguments

t

Classification tree template suitable to use in the fitensemble function. In an
ensemble, t specifies how to grow the classification trees.

Examples

Construct a Classification Template with Surrogate Splits

Create a classification template with surrogate splits, and train an ensemble for the
Fisher iris model with the template.

t = ClassificationTree.template('surrogate','on');

load fisheriris

ens = fitensemble(meas,species,'AdaBoostM2',100,t);

References

[1] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. “Partitioning Nominal Attributes
in Decision Trees.” Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197–
217.

See Also
ClassificationTree | fitctree | templateTree | fitensemble

22 Functions — Alphabetical List

22-4702

RegressionTree.template
Class: RegressionTree

Create regression template (to be removed)

Compatibility

RegressionTree.template will be removed in a future release. Use templateTree
instead.

Syntax

t = RegressionTree.template

t = RegressionTree.template(Name,Value)

Description

t = RegressionTree.template returns a learner template suitable to use in the
fitensemble function.

t = RegressionTree.template(Name,Value) creates a template with additional
options specified by one or more Name,Value pair arguments. You can specify several
name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 RegressionTree.template

22-4703

'MergeLeaves'

String that specifies whether to merge leaves after the tree is grown. Values are 'on' or
'off'.

When 'on', RegressionTree merges leaves that originate from the same parent node,
and that give a sum of risk values greater or equal to the risk associated with the parent
node. When 'off', RegressionTree does not merge leaves.

Default: 'off'

'MinLeaf'

Each leaf has at least MinLeaf observations per tree leaf. If you supply both
MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves:
MinParent=max(MinParent,2*MinLeaf).

Default: Half the number of training observations for boosting, 5 for bagging

'MinParent'

Each branch node in the tree has at least MinParent observations. If you supply both
MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves:
MinParent=max(MinParent,2*MinLeaf).

Default: Number of training observations for boosting, 10 for bagging

'NVarToSample'

Number of predictors to select at random for each split. Can be a positive integer or
'all', which means use all available predictors.

Default: 'all' for boosting, one third of the number of predictors for bagging

'Prune'

When 'on', RegressionTree grows the regression tree and computes the optimal
sequence of pruned subtrees. When 'off' RegressionTree grows the tree without
pruning.

Default: 'off'

22 Functions — Alphabetical List

22-4704

'Surrogate'

String describing whether to find surrogate decision splits at each branch node. Specify
as 'on', 'off', 'all', or a positive scalar value.

• When 'on', RegressionTree finds at most 10 surrogate splits at each branch node.
• When set to a positive integer value, RegressionTree finds at most the specified

number of surrogate splits at each branch node.
• When set to 'all', RegressionTree finds all surrogate splits at each branch node.

The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
The setting also enables you to compute measures of predictive association between
predictors.

Default: 'off'

Output Arguments

t

Regression tree template suitable to use in the fitensemble function. In an ensemble, t
specifies how to grow the regression trees.

Examples

Create a regression template with surrogate splits, and train an ensemble for the
carsmall data with the template:

t = RegressionTree.template('surrogate','on');

load carsmall

X = [Acceleration Displacement Horsepower Weight];

ens = fitensemble(X,MPG,'LSBoost',100,t);

See Also
RegressionTree | fitrtree | fitensemble

 templateDiscriminant

22-4705

templateDiscriminant
Discriminant analysis classifier template

Syntax

t = templateDiscriminant()

t = templateDiscriminant(Name,Value)

Description

t = templateDiscriminant() returns a discriminant analysis learner template
suitable for training ensembles or error-correcting output code (ECOC) multiclass
models.

If you specify a default template, then the software uses default values for all input
arguments during training.

Specify t as a learner in fitensemble or fitcecoc.

t = templateDiscriminant(Name,Value) creates a template with additional
options specified by one or more name-value pair arguments.

For example, you can specify the discriminant type or the regularization parameter.

If you display t in the Command Window, then all options appear empty ([]), except
those that you specify using name-value pair arguments. During training, the software
uses default values for empty options.

Examples

Create a Discriminant Analysis Template for Ensemble Learning

Create a nondefault discriminant analysis template for use in fitensemble.

Load Fisher's iris data set.

load fisheriris

22 Functions — Alphabetical List

22-4706

Create a template for pseudolinear discriminant analysis.

t = templateDiscriminant('DiscrimType','pseudoLinear')

t =

Fit template for classification Discriminant.

 DiscrimType: 'pseudoLinear'

 Gamma: []

 Delta: []

 FillCoeffs: []

 SaveMemory: []

 Method: 'Discriminant'

 Type: 'classification'

All properties of the template object are empty except for DiscrimType, Method, and
Type. When trained on, the software fills in the empty properties with their respective
default values.

Specify t as a weak learner for a classification ensemble.

Mdl = fitensemble(meas,species,'Subspace',100,t);

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)

L =

 0.0400

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 templateDiscriminant

22-4707

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'DiscrimType','pseudoLinear','SaveMemory','on' specifies a
template for pseudolinear discriminant analysis that does not store the full covariance
matrix.

'Delta' — Linear coefficient threshold
0 (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of
'Delta' and a nonnegative scalar value. If a coefficient of obj has magnitude smaller
than Delta, obj sets this coefficient to 0, and you can eliminate the corresponding
predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Data Types: single | double

'DiscrimType' — Discriminant type
'linear' (default) | 'quadratic' | 'diagLinear' | 'diagQuadratic' |
'pseudoLinear' | 'pseudoQuadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType'
and one of the following:

• 'linear'

• 'quadratic'

• 'diagLinear'

• 'diagQuadratic'

• 'pseudoLinear'

• 'pseudoQuadratic'

Example: 'DiscrimType','quadratic'

'FillCoeffs' — Coeffs property flag
'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of
'FillCoeffs' and 'on' or 'off'. Setting the flag to 'on' populates the Coeffs
property in the classifier object. This can be computationally intensive, especially when

22 Functions — Alphabetical List

22-4708

cross validating. The default is 'on', unless you specify a cross validation name-value
pair, in which case the flag is set to 'off' by default.

Example: 'FillCoeffs','off'

'Gamma' — Regularization parameter
scalar value in the range [0,1]

Parameter for regularizing the correlation matrix of predictors, specified as the comma-
separated pair consisting of 'Gamma' and a scalar value in the range [0,1].

• Linear discriminant — Scalar value in the range [0,1].

• If you pass a value strictly between 0 and 1, fitcdiscr sets the discriminant type
to 'Linear'.

• If you pass 0 for Gamma and 'Linear' for DiscrimType, and if the correlation
matrix is singular, fitcdiscr sets Gamma to the minimal value required for
inverting the covariance matrix.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to 'DiagLinear'.
• Quadratic discriminant — Either 0 or 1.

• If you pass 0 for Gamma and 'Quadratic' for DiscrimType, and if one of the
classes has a singular covariance matrix, fitcdiscr errors.

• If you set Gamma to 1, fitcdiscr sets the discriminant type to
'DiagQuadratic'.

• If you set Gamma to a value between 0 and 1 for a quadratic discriminant,
fitcdiscr errors.

Example: 'Gamma',1

Data Types: single | double

'SaveMemory' — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of
'SaveMemory' and either 'on' or 'off'. If you specify 'on', then fitcdiscr does
not store the full covariance matrix, but instead stores enough information to compute
the matrix. The predict method computes the full covariance matrix for prediction, and
does not store the matrix. If you specify 'off', then fitcdiscr computes and stores the
full covariance matrix in obj.

 templateDiscriminant

22-4709

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.

Example: 'SaveMemory','on'

Output Arguments

t — Discriminant analysis classification template
template object

Discriminant analysis classification template suitable for training ensembles or error-
correcting output code (ECOC) multiclass models, returned as a template object. Pass
t to fitensemble or fitcecoc to specify how to create the discriminant analysis
classifier for the ensemble or ECOC model, respectively.

If you display t to the Command Window, then all unspecified options appear empty
([]). However, the software replaces empty options with their corresponding default
values during training.

See Also
ClassificationDiscriminant | fitcecoc | fitensemble | predict

22 Functions — Alphabetical List

22-4710

templateECOC
Error-correcting output codes learner template

Syntax

t = templateECOC()

t = templateECOC(Name,Value)

Description

t = templateECOC() returns an error-correcting output codes (ECOC) classification
learner template.

If you specify a default template, then the software uses default values for all input
arguments during training.

t = templateECOC(Name,Value) returns a template with additional options specified
by one or more name-value pair arguments.

For example, you can specify a coding design, whether to fit posterior probabilities, or the
types of binary learners.

If you display t in the Command Window, then all options appear empty ([]), except
those that you specify using name-value pair arguments. During training, the software
uses default values for empty options.

Examples

Create a Default ECOC Classification Learner Template

Use templateECOC to create a default ECOC template.

t = templateECOC()

 templateECOC

22-4711

t =

Fit template for classification ECOC.

 BinaryLearners: ''

 Coding: ''

 FitPosterior: []

 Options: []

 VerbosityLevel: []

 Method: 'ECOC'

 Type: 'classification'

All properties of the template object are empty except for Method and Type. When you
pass t to testckfold, the software fills in the empty properties with their respective
default values. For example, the software fills the BinaryLearners property with
'SVM'. For details on other default values, see fitcecoc.

t is a plan for an ECOC learner. When you create it, no computation occurs. You can
pass t to testckfold to specify a plan for an ECOC classification model to statistically
compare with another model.

Statistically Compare Performance of Two ECOC Classification Models

One way to select predictors or features is to train two models where one that uses a
subset of the predictors that trained the other. Statistically compare the predictive
performances of the models. If there is sufficient evidence that model trained on fewer
predictors performs better than the model trained using more of the predictors, then you
can proceed with a more efficient model.

Load Fisher's iris data set. Plot all 2-dimensional combinations of predictors.

load fisheriris

d = size(meas,2); % Number of predictors

pairs = combnk(1:d,2);

figure;

for j = 1:size(pairs,1);

 subplot(3,2,j);

 gscatter(meas(:,pairs(j,1)),meas(:,pairs(j,2)),species);

 xlabel(sprintf('meas(:,%d)',pairs(j,1)));

 ylabel(sprintf('meas(:,%d)',pairs(j,2)));

 legend off;

end

22 Functions — Alphabetical List

22-4712

Based on the scatterplot, meas(:,3) and meas(:,4) seem like they separate the groups
well.

Create an ECOC template. Specify to use a one-versus-all coding design.

t = templateECOC('Coding','onevsall');

By default, the ECOC model uses linear SVM binary learners. You can choose other,
supported algorithms by specifying them using the 'Learners' name-value pair
argument.

Test whether an ECOC model that is just trained using predictors 3 and 4 performs
at most as well as an ECOC model that is trained using all predictors. Rejecting this
null hypothesis means that the ECOC model trained using predictors 3 and 4 performs

 templateECOC

22-4713

better than the ECOC model trained using all predictors. Suppose represents
the classification error of the ECOC model trained using predictors 3 and 4 and
represents the classification error of the ECOC model trained using all predictors, then
the test is:

By default, testckfold conducts a 5-by-2 k-fold F test, which is not appropriate as a
one-tailed test. Specify to conduct a 5-by-2 k-fold t test.

rng(1); % For reproducibility

[h,pValue] = testckfold(t,t,meas(:,pairs(1,:)),meas,species,...

 'Alternative','greater','Test','5x2t')

h =

 0

pValue =

 0.8940

The h = 0 indicates that there is not enough evidence to suggest that the model trained
using predictors 3 and 4 is more accurate than the model trained using all predictors.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Coding','ternarycomplete','FitPosterior',true,'Learners','tree'

22 Functions — Alphabetical List

22-4714

specifies a ternary complete coding design, to transform scores to posterior probabilities,
and to grow classification trees for all binary learners.

'Coding' — Coding design
'onevsall' (default) | 'allpairs' | 'binarycomplete' | 'denserandom' |
'onevsone' | 'ordinal' | 'sparserandom' | 'ternarycomplete' | numeric
matrix

Coding design name, specified as the comma-separated pair consisting of 'Coding' and
a numeric matrix or string.

This table summarizes the available, built-in coding designs.

Value Number of Binary Learners Description

'allpairs' and
'onevsone'

K(K – 1)/2 For each binary learner, one
class is positive, another is
negative, and the software
ignores the rest. This design
exhausts all combinations of
class pair assignments.

'binarycomplete'
2 1

1()K-

-

This design partitions
the classes into all binary
combinations, and does not
ignore any classes. For each
binary learner, all class
assignments are -1 and 1
with at least one positive
and negative class in the
assignment.

'denserandom' Random, but approximately
10 log2K

For each binary learner,
the software randomly
assigns classes into positive
or negative classes, with at
least one of each type. For
more details, see “Random
Coding Design Matrices” on
page 22-1542.

'onevsall' K For each binary learner, one
class is positive and the rest
are negative. This design

 templateECOC

22-4715

Value Number of Binary Learners Description

exhausts all combinations of
positive class assignments.

'ordinal' K – 1 For the first binary learner,
the first class is negative,
and the rest positive. For
the second binary learner,
the first two classes are
negative, the rest positive,
and so on.

'sparserandom' Random, but approximately
15 log2K

For each binary learner,
the software randomly
assigns classes as positive
or negative with probability
0.25 for each, and ignores
classes with probability
0.5. For more details, see
“Random Coding Design
Matrices” on page 22-1542.

'ternarycomplete'
3 22 1

1K K
- +()+() This design partitions the

classes into all ternary
combinations. All class
assignments are 0, -1, and
1 with at least one positive
and one negative class in the
assignment.

You can also specify a coding design using a custom coding matrix. The custom coding
matrix is a K-by-L matrix. Each row corresponds to a class and each column corresponds
to a binary learner. The class order (rows) corresponds to the order in ClassNames.
Compose the matrix by following these guidelines:

• Every element of the custom coding matrix must be -1, 0, or 1, and the value must
correspond to a dichotomous class assignment. This table describes the meaning of
Coding(i,j), that is, the class that learner j assigns to observations in class i.

Value Dichotomous Class Assignment

-1 Negative class

22 Functions — Alphabetical List

22-4716

Value Dichotomous Class Assignment

0 Before training, learner j removes
observations in class i from the data set.

1 Positive class

• Every column must contain at least one -1 or 1.
• For all column indices i,j such that i ≠ j, Coding(:,i) cannot equal Coding(:,j)

and Coding(:,i) cannot equal -Coding(:,j).
• All rows of the custom coding matrix must be different.

For more details on the form of custom coding design matrices, see “Custom Coding
Design Matrices” on page 22-1540.
Example: 'Coding','ternarycomplete'

Data Types: char | double | single | int16 | int32 | int64 | int8

'FitPosterior' — Flag indicating whether to transform scores to posterior probabilities
false or 0 (default) | true or 1

Flag indicating whether to transform scores to posterior probabilities, specified as the
comma-separated pair consisting of 'FitPosterior' and a true (1) or false (0).

If FitPosterior is true, then the software transforms binary-learner classification
scores to posterior probabilities. You can obtain posterior probabilities by using
kfoldPredict, predict, or resubPredict.

Ensemble methods that do not fit posterior probabilities are AdaBoostM2, LPBoost,
RUSBoost, RobustBoost, and TotalBoost. Therefore, if any binary learner is an
ensemble that uses any of these methods, then the software generates an error.
Example: 'FitPosterior',true

Data Types: logical

'Learners' — Binary learner templates
'svm' (default) | 'discriminant' | 'knn' | 'tree' | template object | cell vector of
template objects

Binary learner templates, specified as the comma-separated pair consisting of
'Learners' and a string, template object, or cell vector of template objects.

 templateECOC

22-4717

Specifically, you can specify binary classifiers such as SVM, and the ensembles that use
GentleBoost, LogitBoost, and RobustBoost, to solve multiclass problems. However,
fitcecoc also supports multiclass models as binary classifiers.

• If Learners is a string, then the software trains each binary learner using the
default values of the algorithm corresponding to the string. This table summarizes the
available strings.

Value Description

'discriminant' Discriminant analysis. For default
options, see templateDiscriminant.

'knn' k-nearest neighbors. For default options,
see templateKNN.

'naivebayes' Naive Bayes. For default options, see
templateNaiveBayes.

'svm' SVM. For default options, see
templateSVM.

'tree' Classification trees. For default options,
see templateTree.

• If Learners is a template object, then each binary learner trains according to the
stored options. You can create a template object using:

• templateDiscriminant, for discriminant analysis.
• templateEnsemble, for ensemble learning. You must at least specify the learning

method (Method), the number of learners (NLearn), and the type of learner
(Learners). You cannot use the AdaBoostM2 ensemble method for binary
learning.

• templateKNN, for k-nearest neighbors.
• templateNaiveBayes, for naive Bayes.
• templateSVM, for SVM.
• templateTree, for classification trees.

• If Learners is cell vector of template objects, then:

• Cell j corresponds to binary learner j (in other words, column j of the coding design
matrix), and the cell vector must have length L. L is the number of columns in the
coding design matrix. For details, see Coding.

22 Functions — Alphabetical List

22-4718

• To use one of the built-in loss functions for prediction, then all binary learners
must return a score in the same range. For example, you cannot include default
SVM binary learners with default naive Bayes binary learners. The former returns
a score in the range (-∞,∞), and the latter returns a posterior probability as a score.
Otherwise, you must provide a custom loss as a function handle to functions such
as predict and loss.

By default, the software trains learners using default SVM templates.
Example: 'Learners','tree'

Output Arguments

t — ECOC classification template
template object

ECOC classification template, returned as a template object. Pass t to testckfold
to specify how to create an ECOC classifier whose predictive performance you want to
compare with another classifier.

If you display t to the Command Window, then all, unspecified options appear empty
([]). However, the software replaces empty options with their corresponding default
values during training.

See Also
ClassificationECOC | designecoc | fitcecoc | predict |
templateDiscriminant | templateEnsemble | templateKNN | templateSVM |
templateTree | testckfold

Introduced in R2015a

 templateEnsemble

22-4719

templateEnsemble
Ensemble learning template

Syntax

t = templateEnsemble(Method,NLearn,Learners)

t = templateNaiveBayes(Method,NLearn,Learners,Name,Value)

Description

t = templateEnsemble(Method,NLearn,Learners) returns an ensemble learning
template suitable for training error-correcting output code (ECOC) multiclass models,
which uses the method Method, NLearn learning cycles, and the weak learners
(Leaners).

All other options of the template (t) specific to ensemble learning appear empty, but the
software uses their corresponding default values during training.

Specify t as a binary learner, or one in a set of binary learners, in fitcecoc to train an
ECOC multiclass classifer.

t = templateNaiveBayes(Method,NLearn,Learners,Name,Value) returns a
template with additional options specified by one or more name-value pair arguments.

For example, you can specify the number of predictors in each random subspace learner,
learning rate for shrinkage, or the target classification error for RobustBoost.

If you display t in the Command Window, then all options appear empty ([]), except
those that you specify using name-value pair arguments. During training, the software
uses default values for empty options.

Input Arguments

Method

Case-insensitive string consisting of one of the following.

22 Functions — Alphabetical List

22-4720

• For classification with two classes:

• 'AdaBoostM1'

• 'LogitBoost'

• 'GentleBoost'

• 'RobustBoost' (requires an Optimization Toolbox license)
• 'LPBoost' (requires an Optimization Toolbox license)
• 'TotalBoost' (requires an Optimization Toolbox license)
• 'RUSBoost'

• 'Subspace'

• 'Bag'

• For classification with three or more classes:

• 'AdaBoostM2'

• 'LPBoost' (requires an Optimization Toolbox license)
• 'TotalBoost' (requires an Optimization Toolbox license)
• 'RUSBoost'

• 'Subspace'

• 'Bag'

• For regression:

• 'LSBoost'

• 'Bag'

'Bag' applies to all methods. So when you use 'Bag', indicate whether you want a
classifier or regressor with the type name-value pair set to 'classification' or
'regression'.

NLearn

Number of ensemble learning cycles, a positive integer (or the string
'AllPredictorCombinations', see the next paragraph). At every training cycle,
fitensemble loops over all learner templates in Learners and trains one weak
learner for every template. The total number of trained learners in Ensemble is
NLearn*numel(Learners).

 templateEnsemble

22-4721

If you set Method to 'Subspace', you can set NLearn to
'AllPredictorCombinations'. With this setting, fitensemble constructs learners
for all possible combinations of predictors taken NPredToSample at a time. This gives a
total of nchoosek(size(X,2),NPredToSample) learners in the ensemble. You can use
only one learner template for this setting.

NLearn for ensembles can vary from a few dozen to a few thousand. Usually, an
ensemble with a good predictive power needs from a few hundred to a few thousand
weak learners. You do not have to train an ensemble for that many cycles at once. You
can start by growing a few dozen learners, inspect the ensemble performance and, if
necessary, train more weak learners using the resume method of the ensemble.

Learners

One of the following:

• A string with the name of a weak learner:

• 'Discriminant' (recommended for 'Subspace')
• 'KNN' (applies only to 'Subspace')
• 'Tree' (applies to all methods except 'Subspace')

• A single weak learner template you create with templateTree, templateKNN, or
templateDiscriminant.

• A cell array of weak learner templates. Usually you should supply only one weak
learner template.

Ensemble performance depends on the parameters of the weak learners, and you can get
poor performance using weak learners with default parameters. Specify the parameters
for the weak learners in the template.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

22 Functions — Alphabetical List

22-4722

All Ensembles

'FResample'

Fraction of the training set to be selected by resampling for every weak learner. A
numeric scalar from 0 through 1. This parameter has no effect unless you grow an
ensemble by bagging or set 'Resample' to 'on'. The default setting is the one used
most often for an ensemble grown by resampling.

Default: 1

'NPredToSample'

Number of predictors in each random subspace learner, a positive integer from 1 to the
number of predictors.

Default: 1

'NPrint'

Printout frequency, a positive integer scalar. Set to 'Off' for no printout. Use this
parameter to track how many weak learners have been trained so far. This is useful
when you train ensembles with many learners on large data sets. If you use one of the
cross-validation options, this parameter defines the printout frequency per number of
cross-validation folds.

Default: 'Off'

'Replace'

'On' or 'Off'. If 'On', sample with replacement. If 'Off', sample without
replacement. This parameter has no effect unless you grow an ensemble by bagging
or set Resample to 'On'. If you set Resample to 'On' and Replace to 'Off',
fitensemble samples training observations assuming uniform weights, and boosts by
reweighting observations.

Default: 'On'

'Resample'

'On' or 'Off'. If 'On', grow an ensemble by resampling, with the resampling fraction
given by FResample, and sampling with or without replacement given by Replace.

 templateEnsemble

22-4723

• Boosting — When 'Off', the boosting algorithm reweights observations at every
learning iteration. When 'On', the algorithm samples training observations using
updated weights as the multinomial sampling probabilities.

• Bagging — You can use only the default value of this parameter ('On').

Default: 'Off' for boosting, 'On' for bagging

AdaBoostM1, AdaBoostM2, LogitBoost, GentleBoost,
RUSBoost, and LSBoost:

'LearnRate'

Learning rate for shrinkage, a numeric scalar from 0 to 1. If you set the learning rate to
less than 1, the ensemble requires more learning iterations but often achieves a better
accuracy. 0.1 is a popular choice for an ensemble grown with shrinkage.

Default: 1

RUSBoost

'RatioToSmallest'

Either a numeric scalar or vector with K elements when there are K classes. Every
element of this vector is the sampling proportion for this class with respect to the class
with fewest observations in Y. If you pass a scalar, the software uses this sampling
proportion for all classes. For example, suppose you have class A with 100 observations
and class B with 10 observations. If you pass [2 1] for 'RatioToSmallest', every
learner in the ensemble is trained on 20 observations of class A and 10 observations of
class B. If you pass 2 or [2 2], every learner is trained on 20 observations of class A and
20 observations of class B. If you specify class names by using the ClassNames name-
value pair argument of the fitting function, then the software matches elements in the
array of class names to elements in this vector.

Default: ones(K,1)

22 Functions — Alphabetical List

22-4724

LPBoost and TotalBoost

'MarginPrecision'

Margin precision, a numeric scalar between 0 and 1. MarginPrecision affects the
number of boosting iterations required for conversion. Use a small value to grow an
ensemble with many learners, and use a large value to grow an ensemble with few
learners.

Default: 0.01

RobustBoost

'RobustErrorGoal'

Target classification error for RobustBoost, a numeric scalar from 0 through 1. Usually
there is an optimal range for this parameter for your training data. If you set the error
goal too low or too high, RobustBoost can produce a model with poor classification
accuracy.

Default: 0.1

'RobustMarginSigma'

Spread of the distribution of classification margins over the training set for
RobustBoost, a numeric positive scalar. You should consult literature on RobustBoost
before setting this parameter

Default: 0.1

'RobustMaxMargin'

Maximal classification margin for RobustBoost in the training set, a nonnegative
numeric scalar. RobustBoost minimizes the number of observations in the training set
with classification margins below RobustMaxMargin.

Default: 0

 templateEnsemble

22-4725

Output Arguments

t — Classification template for ensemble learning
classification template object

Classification template for ensemble learning suitable for training error-correcting
output code (ECOC) multiclass models, returned as a template object. Pass t to
fitcecoc to specify how to create the ensemble learning classifier for the ECOC model.

If you display t in the Command Window, then all, unspecified options appear empty
([]). However, the software replaces empty options with their corresponding default
values during training.

Examples

Create an Ensemble Learning Template

Use templateEnsemble to specify an ensemble learning template. You must specify
the ensemble method, the number of learning cycles, and the type of weak learners. For
this example, specify the AdaBoostM1 method, 100 learners, and classification tree weak
learners.

t = templateEnsemble('AdaBoostM1',100,'tree')

t =

Fit template for classification AdaBoostM1.

 Type: 'classification'

 Method: 'AdaBoostM1'

 LearnerTemplates: 'Tree'

 NLearn: 100

 LearnRate: []

All properties of the template object are empty except for Method, Type,
LearnerTemplates, and NLearn. When trained on, the software fills in the empty
properties with their respective default values. For example, the software fills the
LearnRate property with 1.

22 Functions — Alphabetical List

22-4726

t is a plan for an ensemble learner, and no computation takes place when you specify
it. You can pass t to fitcecoc to specify ensemble binary learners for ECOC multiclass
learning.

Create an Ensemble Template for ECOC Multiclass Learning

Create an ensemble template for use in fitcecoc.

Load the arrhythmia data set.

load arrhythmia

tabulate(categorical(Y));

rng(1); % For reproducibility

 Value Count Percent

 1 245 54.20%

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

Some classes have small relative frequencies in the data.

Create a template for a GentleBoost ensemble of classification trees, and specify to use
a 100 learners and a shrinkage of 0.1. By default, boosting grows stumps (i.e., one node
having a set of leaves). Since there are classes with small frequencies, the trees must be
leafy enough to be sensitive to the minority classes. Specify the minimum number of leaf
node observations to 3.

tTree = templateTree('MinLeaf',20);

t = templateEnsemble('AdaBoostM1',100,tTree,'LearnRate',0.1);

All properties of the template objects are empty except for Method and Type, and the
corresponding properties of the name-value pair argument values in the function calls.
When you pass t to the training function, the software fills in the empty properties with
their respective default values.

 templateEnsemble

22-4727

Specify t as a binary learner for an ECOC multiclass model. Train using the default one-
versus-one coding design.

Mdl = fitcecoc(X,Y,'Learners',t);

• Mdl is a ClassificationECOC multiclass model.
• Mdl.BinaryLearners is a 78-by-1 cell array of

CompactClassificationEnsemble models.
• Mdl.BinaryLearners{j}.Trained is a 100-by-1 cell array of

CompactClassificationTree models, for j = 1,...,78.

You can verify that one of the binary learners contains a weak learner that isn't a stump
by using view.

view(Mdl.BinaryLearners{1}.Trained{1},'Mode','graph')

22 Functions — Alphabetical List

22-4728

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L =

 0.0597

 templateEnsemble

22-4729

More About

Algorithms

By default, if you specify Method to be a boosting algorithm and Learners to be decision
trees, then the software grows stumps (i.e., one root node connected to two terminal, leaf
nodes). You can adjust this by specifying values for the MinLeaf or MinParent name-
value pair arguments using templateTree.

See Also
ClassificationECOC | ClassificationEnsemble | fitcecoc | fitensemble |
templateDiscriminant | templateKNN | templateTree

22 Functions — Alphabetical List

22-4730

templateKNN
k-nearest neighbor classifier template

Syntax

t = templateKNN()

t = templateKNN(Name,Value)

Description

t = templateKNN() returns a k-nearest neighbor (KNN) learner template suitable for
training ensembles or error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input
arguments during training.

Specify t as a learner in fitensemble or fitcecoc.

t = templateKNN(Name,Value) creates a template with additional options specified
by one or more name-value pair arguments.

For example, you can specify the nearest neighbor search method, the number of nearest
neighbors to find, or the distance metric.

If you display t in the Command Window, then all options appear empty ([]), except
those that you specify using name-value pair arguments. During training, the software
uses default values for empty options.

Examples

Create a k-Nearest Neighbors Template for Ensemble

Create a nondefault k-nearest neighbor template for use in fitensemble.

Load Fisher's iris data set.

load fisheriris

 templateKNN

22-4731

Create a template for a 5-nearest neighbor search, and specify to standardize the
predictors.

t = templateKNN('NumNeighbors',5,'Standardize',1)

t =

Fit template for classification KNN.

 NumNeighbors: 5

 NSMethod: ''

 Distance: ''

 BucketSize: ''

 IncludeTies: []

 DistanceWeight: []

 BreakTies: []

 Exponent: []

 Cov: []

 Scale: []

 StandardizeData: 1

 Method: 'KNN'

 Type: 'classification'

All properties of the template object are empty except for NumNeighbors, Method,
StandardizeData, and Type. When you specify t as a learner, the software fills in the
empty properties with their respective default values.

Specify t as a weak learner for a classification ensemble.

Mdl = fitensemble(meas,species,'Subspace',100,t);

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)

L =

 0.0600

Create a k-Nearest Neighbors Template for ECOC Multiclass Learning

Create a nondefault k-nearest neighbor template for use in fitcecoc.

22 Functions — Alphabetical List

22-4732

Load Fisher's iris data set.

load fisheriris

Create a template for a 5-nearest neighbor search, and specify to standardize the
predictors.

t = templateKNN('NumNeighbors',5,'Standardize',1)

t =

Fit template for classification KNN.

 NumNeighbors: 5

 NSMethod: ''

 Distance: ''

 BucketSize: ''

 IncludeTies: []

 DistanceWeight: []

 BreakTies: []

 Exponent: []

 Cov: []

 Scale: []

 StandardizeData: 1

 Method: 'KNN'

 Type: 'classification'

All properties of the template object are empty except for NumNeighbors, Method,
StandardizeData, and Type. When you specify t as a learner, the software fills in the
empty properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model.

Mdl = fitcecoc(meas,species,'Learners',t);

By default, the software trains Mdl using the one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L =

 templateKNN

22-4733

 0.0467

• “Random Subspace Classification” on page 16-124

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NumNeighbors',4,'Distance','minkowski' specifies a 4-nearest
neighbor classifier template using the Minkowski distance measure.

'BreakTies' — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by the predict method if multiple classes have the same
smallest cost, specified as the comma-separated pair consisting of 'BreakTies' and one
of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points
among the K nearest neighbors.

Example: 'BreakTies','nearest'

'BucketSize' — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the kd-tree, specified as the comma-
separated pair consisting of 'BucketSize' and a positive integer value. This argument
is meaningful only when NSMethod is 'kdtree'.

22 Functions — Alphabetical List

22-4734

Example: 'BucketSize',40

Data Types: single | double

'Cov' — Covariance matrix
nancov(X) (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and
a positive definite matrix of scalar values representing the covariance matrix when
computing the Mahalanobis distance. This argument is only valid when 'Distance' is
'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

'Distance' — Distance metric
valid distance metric string | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance'
and a valid distance metric string or function handle. The allowable strings depend
on the NSMethod parameter, which you set in fitcknn, and which exists as a field in
ModelParameters. If you specify CategoricalPredictors as 'all', then the default
distance metric is 'hamming'. Otherwise, the default distance metric is 'euclidean'.

NSMethod Distance Metric Names

exhaustive Any distance metric of ExhaustiveSearcher
kdtree 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

For definitions, see “Distance Metrics”.

This table includes valid distance metrics of ExhaustiveSearcher.

Value Description

'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'cosine' One minus the cosine of the included angle between

observations (treated as vectors).

 templateKNN

22-4735

Value Description

'euclidean' Euclidean distance.
'hamming' Hamming distance, percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of

nonzero coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample
covariance matrix of X, as computed by nancov(X). To
specify a different value for C, use the 'Cov' name-value
pair argument.

'minkowski' Minkowski distance. The default exponent is 2. To specify
a different exponent, use the 'Exponent' name-value pair
argument.

'seuclidean' Standardized Euclidean distance. Each coordinate
difference between X and a query point is scaled, meaning
divided by a scale value S. The default value of S is the
standard deviation computed from X, S = nanstd(X). To
specify another value for S, use the Scale name-value pair
argument.

'spearman' One minus the sample Spearman's rank correlation
between observations (treated as sequences of values).

@distfun Distance function handle. distfun has the form

function D2 = DISTFUN(ZI,ZJ)

% calculation of distance

...

where

• ZI is a 1-by-N vector containing one row of X or y.
• ZJ is an M2-by-N matrix containing multiple rows of X or

y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the

distance between observations ZI and ZJ(J,:).

Example: 'Distance','minkowski'

Data Types: function_handle

22 Functions — Alphabetical List

22-4736

'DistanceWeight' — Distance weighting function
'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of
'DistanceWeight' and either a function handle or one of the following strings
specifying the distance weighting function.

DistanceWeight Meaning

'equal' No weighting
'inverse' Weight is 1/distance
'squaredinverse' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative
distances, and returns a matrix the same size
containing nonnegative distance weights. For example,
'squaredinverse' is equivalent to @(d)d.^(-2).

Example: 'DistanceWeight','inverse'

Data Types: function_handle

'Exponent' — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of
'Exponent' and a positive scalar value. This argument is only valid when 'Distance'
is 'minkowski'.

Example: 'Exponent',3

Data Types: single | double

'IncludeTies' — Tie inclusion flag
false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies'
and a logical value indicating whether predict includes all the neighbors whose
distance values are equal to the Kth smallest distance. If IncludeTies is true,
predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Example: 'IncludeTies',true

Data Types: logical

 templateKNN

22-4737

'NSMethod' — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of
'NSMethod' and 'kdtree' or 'exhaustive'.

• 'kdtree' — Create and use a kd-tree to find nearest neighbors. 'kdtree' is valid
when the distance metric is one of the following:

• 'euclidean'

• 'cityblock'

• 'minkowski'

• 'chebyshev'

• 'exhaustive' — Use the exhaustive search algorithm. The distance values from all
points in X to each point in y are computed to find nearest neighbors.

The default is 'kdtree' when X has 10 or fewer columns, X is not sparse, and the
distance metric is a 'kdtree' type; otherwise, 'exhaustive'.

Example: 'NSMethod','exhaustive'

'NumNeighbors' — Number of nearest neighbors to find
1 (default) | positive integer value

Number of nearest neighbors in X to find for classifying each point when predicting,
specified as the comma-separated pair consisting of 'NumNeighbors' and a positive
integer value.
Example: 'NumNeighbors',3

Data Types: single | double

'Scale' — Distance scale
nanstd(X) (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector
containing nonnegative scalar values with length equal to the number of columns in X.
Each coordinate difference between X and a query point is scaled by the corresponding
element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.

Data Types: single | double

22 Functions — Alphabetical List

22-4738

'Standardize' — Flag to standardize predictors
false (default) | true

Flag to standardize the predictors, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true, then the software centers and scales each column of
the predictor data (X) by the column mean and standard deviation, respectively.

The software does not standardize categorical predictors, and throws an error if all
predictors are categorical.

You cannot simultaneously specify 'Standardize',1 and either of 'Scale' or 'Cov'.

It is good practice to standardize the predictor data.
Example: 'Standardize',true

Data Types: logical

Output Arguments

t — kNN classification template
template object

kNN classification template suitable for training ensembles or error-correcting output
code (ECOC) multiclass models, returned as a template object. Pass t to fitensemble
or fitcecoc to specify how to create the KNN classifier for the ensemble or ECOC
model, respectively.

If you display t to the Command Window, then all, unspecified options appear empty
([]). However, the software replaces empty options with their corresponding default
values during training.

See Also
ClassificationKNN | ExhaustiveSearcher | fitcecoc | fitensemble

 templateNaiveBayes

22-4739

templateNaiveBayes
Naive Bayes classifier template

Syntax

t = templateNaiveBayes()

t = templateNaiveBayes(Name,Value)

Description

t = templateNaiveBayes() returns a naive Bayes template suitable for training
error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input
arguments during training.

Specify t as a learner in fitcecoc.

t = templateNaiveBayes(Name,Value) returns a template with additional options
specified by one or more name-value pair arguments. All properties of t are empty,
except those you specify using Name,Value pair arguments.

For example, you can specify distributions for the predictors.

If you display t in the Command Window, then all options appear empty ([]), except
those that you specify using name-value pair arguments. During training, the software
uses default values for empty options.

Examples

Create a Default Naive Bayes Template

Use templateNaiveBayes to specify a default naive Bayes template.

t = templateNaiveBayes()

22 Functions — Alphabetical List

22-4740

t =

Fit template for classification NaiveBayes.

 DistributionNames: [1x0 double]

 Kernel: []

 Support: []

 Width: []

 Method: 'NaiveBayes'

 Type: 'classification'

All properties of the template object are empty except for Method and Type. When you
pass t to the training function, the software fills in the empty properties with their
respective default values. For example, the software fills the DistributionNames
property with a 1-by- D cell array of strings with 'normal' in each cell, where D is the
number of predictors. For details on other default values, see fitcnb.

t is a plan for a naive Bayes learner, and no computation occurs when you specify it.
You can pass t to fitcecoc to specify naive Bayes binary learners for ECOC multiclass
learning.

Create a Naive Bayes Template for ECOC Multiclass Learning

Create a nondefault naive Bayes template for use in fitcecoc.

Load Fisher's iris data set.

load fisheriris

Create a template for naive Bayes binary classifiers, and specify kernel distributions for
all predictors.

t = templateNaiveBayes('DistributionNames','kernel')

t =

Fit template for classification NaiveBayes.

 DistributionNames: 'kernel'

 Kernel: []

 Support: []

 Width: []

 Method: 'NaiveBayes'

 templateNaiveBayes

22-4741

 Type: 'classification'

All properties of the template object are empty except for DistributionNames, Method,
and Type. When you pass t to the training function, the software fills in the empty
properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model.

Mdl = fitcecoc(meas,species,'Learners',t);

By default, the software trains Mdl using the one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L =

 0.0333

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'DistributionNames','mn' specifies to treat all predictors as token counts
for a multinomial model.

'DistributionNames' — Data distributions
'kernel' | 'mn' | 'mvmn' | 'normal' | cell array of strings

Data distributions fitcnb uses to model the data, specified as the comma-separated pair
consisting of 'DistributionNames' and a string or cell array of strings.

This table summarizes the available distributions.

22 Functions — Alphabetical List

22-4742

Value Description

'kernel' Kernel smoothing density estimate.
'mn' Multinomial distribution. If you specify

mn, then all features are components of
a multinomial distribution. Therefore,
you cannot include 'mn' as an element
of a cell array of strings. For details, see
“Algorithms”.

'mvmn' Multivariate multinomial distribution. For
details, see “Algorithms”.

'normal' Normal (Gaussian) distribution.

If you specify a string, then the software models all the features using that distribution.
If you specify a 1-by-P cell array of strings, then the software models feature j using the
distribution in element j of the cell array.

By default, the software sets all predictors specified as categorical predictors (using the
CategoricalPredictors name-value pair argument) to 'mvmn'. Otherwise, the default
distribution is 'normal'.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.
Example: 'Distribution','mn'

Data Types: cell | char

'Kernel' — Kernel smoother type
'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | cell array of strings

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and
a string or cell array of strings.

This table summarizes the available options for setting the kernel smoothing density
region. Let I{u} denote the indictor function.

Value Kernel Formula

'box' Box (uniform)
f x I x() .= { }£0 5 1

 templateNaiveBayes

22-4743

Value Kernel Formula

'epanechnikov'Epanechnikov
f x x I x() .= -() { }£0 75 1 1

2

'normal' Gaussian
f x x() exp .= -()1

2
0 5 2

p

'triangle'Triangular
f x x I x() = -() { }£1 1

If you specify a 1-by-P cell array, with each cell containing any value in the table, then
the software trains the classifier using the kernel smoother type in cell j for feature
j in X. The software ignores cells of Kernel not corresponding to a predictor whose
distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.
Example: 'Kernel',{'epanechnikov','normal'}

Data Types: cell | char

'Support' — Kernel smoothing density support
'unbounded' (default) | 'positive' | cell array | numeric row vector

Kernel smoothing density support, specified as the comma-separated pair consisting of
'Support' and 'positive', 'unbounded', a cell array, or a numeric row vector. The
software applies the kernel smoothing density to the specified region.

This table summarizes the available options for setting the kernel smoothing density
region.

Value Description

1-by-2 numeric row
vector

For example, [L,U], where L and U are the finite lower and
upper bounds, respectively, for the density support.

'positive' The density support is all positive real values.
'unbounded' The density support is all real values.

If you specify a 1-by-P cell array, with each cell containing any value in the table, then
the software trains the classifier using the kernel support in cell j for feature j in X. The

22 Functions — Alphabetical List

22-4744

software ignores cells of Kernel not corresponding to a predictor whose distribution is
'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.
Example: 'KSSupport',{[-10,20],'unbounded'}

Data Types: cell | char | double

'Width' — Kernel smoothing window width
matrix of numeric values | numeric column vector | numeric row vector | scalar

Kernel smoothing window width, specified as the comma-separated pair consisting of
'Width' and a matrix of numeric values, numeric column vector, numeric row vector, or
scalar.

Suppose there are K class levels and P predictors. This table summarizes the available
options for setting the kernel smoothing window width.

Value Description

K-by-P matrix of numeric values Element (k,j) specifies the width for predictor j in
class k.

K-by-1 numeric column vector Element k specifies the width for all predictors in
class k.

1-by-P numeric row vector Element j specifies the width in all class levels for
predictor j.

scalar Specifies the bandwidth for all features in all
classes.

By default, the software selects a default width automatically for each combination of
predictor and class by using a value that is optimal for a Gaussian distribution. If you
specify Width and it contains NaNs, then the software selects widths for the elements
containing NaNs.

You must specify that at least one predictor has distribution 'kernel' to additionally
specify Kernel, Support, or Width.
Example: 'Width',[NaN NaN]

Data Types: double | struct

 templateNaiveBayes

22-4745

Output Arguments

t — Naive Bayes classification template
template object

Naive Bayes classification template suitable for training error-correcting output code
(ECOC) multiclass models, returned as a template object. Pass t to fitcecoc to specify
how to create the naive Bayes classifier for the ECOC model.

If you display t to the Command Window, then all, unspecified options appear empty
([]). However, the software replaces empty options with their corresponding default
values during training.

More About

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are
conditionally independent, given the class. Though the assumption is usually violated
in practice, naive Bayes classifiers tend to yield posterior distributions that are robust
to biased class density estimates, particularly where the posterior is 0.5 (the decision
boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words,
the maximum a posteriori decision rule). Explicitly, the algorithm:

1 Estimates the densities of the predictors within each class.
2 Models posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

ˆ ,..,

|

|

|

P X

Y k P Y k

Y k P

Y k X

X

X Y

P
j

j

k

K

j

j

P

P
=() =

() ()

()

= =

=

=

= =

’

Â ’
1

1

1 1

p

p ==()k

,

where:

22 Functions — Alphabetical List

22-4746

• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• p Y k=() is the prior probability that a class index is k.

3 Classifies an observation by estimating the posterior probability for each class, and
then assigns the observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior
probability ˆ ,.., , ..., || ,P X Y k X Y kY k X P XP Pmn=() () ()µ = =1 1p where

P X X Y kmn P1,..., | =() is the probability mass function of a multinomial distribution.

Algorithms

• If you specify 'Distribution','mn' when training Mdl using fitcnb, then
the software fits a multinomial distribution using the bag-of-tokens model. The
software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. Using additive smoothing [2], the estimated
probability is

P
c

P c
j k

j k

k

()| ,
|

token class =

+

+

1

where:

•

c

w

n

x w

j k k

ij

i y k

i

i
i y k

i

i

|
:

:

;=
Œ

Œ

Â

Â

class

class

 which is the weighted number of occurrences of token j in

class k.
• nk is the number of observations in class k.
•

w
i is the weight for observation i. The software normalizes weights within a class

such that they sum to the prior probability for that class.

 templateNaiveBayes

22-4747

•
c ck j k

j

P

=

=

Â | ;
1

 which is the total weighted number of occurrences of all tokens in

class k.
• If you specify 'Distribution','mvmn' when training Mdl using fitcnb, then:

1 For each predictor, the software collects a list of the unique levels, stores
the sorted list in CategoricalLevels, and considers each level a bin. Each
predictor/class combination is a separate, independent multinomial random
variable.

2 For predictor j in class k, the software counts instances of each categorical level
using the list stored in CategoricalLevels{j}.

3 The software stores the probability that predictor j, in class k, has level
L in the property DistributionParameters{k,j}, for all levels in
CategoricalLevels{j}. Using additive smoothing [2], the estimated probability
is

P
m

m
j L k

L

m

j k

j k

predictor class =
+

() =
+

|
()

,
|1

where:

•

m L n

I x L w

w

j k k

ij i

i y k

i
i y k

i

i

|
:

:

()

{ }

;=

=

Œ

Œ

Â

Â

 class

 class

 which is the weighted number of

observations for which predictor j equals L in class k.
• nk is the number of observations in class k.
•

I x Lij ={ } = 1 if xij = L, 0 otherwise.

•
w

i is the weight for observation i. The software normalizes weights within a
class such that they sum to the prior probability for that class.

• mj is the number of distinct levels in predictor j.

22 Functions — Alphabetical List

22-4748

• mk is the weighted number of observations in class k.

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[2] Manning, C. D., P. Raghavan, and M. Schütze. Introduction to Information Retrieval,
NY: Cambridge University Press, 2008.

See Also
ClassificationECOC | ClassificationNaiveBayes | fitcecoc | fitcnb

 templateSVM

22-4749

templateSVM
Support vector machine template

Syntax
t = templateSVM()

t = templateSVM(Name,Value)

Description
t = templateSVM() returns a support vector machine (SVM) learner template suitable
for training error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input
arguments during training.

Specify t as a binary learner, or one in a set of binary learners, in fitcecoc to train an
ECOC multiclass classifer.

t = templateSVM(Name,Value) returns a template with additional options specified
by one or more name-value pair arguments.

For example, you can specify the box constraint, the kernel function, or whether to
standardize the predictors.

If you display t in the Command Window, then all options appear empty ([]), except
those that you specify using name-value pair arguments. During training, the software
uses default values for empty options.

Examples

Create a Default Support Vector Machine Template

Use templateSVM to specify a default SVM template.

t = templateSVM()

22 Functions — Alphabetical List

22-4750

t =

Fit template for classification SVM.

 Alpha: [0x1 double]

 BoxConstraint: []

 CacheSize: []

 CachingMethod: ''

 DeltaGradientTolerance: []

 GapTolerance: []

 KKTTolerance: []

 IterationLimit: []

 KernelFunction: ''

 KernelScale: []

 KernelOffset: []

 KernelPolynomialOrder: []

 NumPrint: []

 Nu: []

 OutlierFraction: []

 ShrinkagePeriod: []

 Solver: ''

 StandardizeData: []

 SaveSupportVectors: []

 VerbosityLevel: []

 Method: 'SVM'

 Type: 'classification'

All properties of the template object are empty except for Method and Type. When you
pass t to the training function, the software fills in the empty properties with their
respective default values. For example, the software fills the KernelFunction property
with 'linear'. For details on other default values, see fitcsvm.

t is a plan for an SVM learner, and no computation occurs when you specify it. You can
pass t to fitcecoc to specify SVM binary learners for ECOC multiclass learning. However,
by default, fitcecoc uses default SVM binary learners.

Create an SVM Template for ECOC Multiclass Learning

Create a nondefault SVM template for use in fitcecoc.

Load Fisher's iris data set.

load fisheriris

 templateSVM

22-4751

Create a template for SVM binary classifiers, and specify to use a Gaussian kernel
function.

t = templateSVM('KernelFunction','gaussian')

t =

Fit template for classification SVM.

 Alpha: [0x1 double]

 BoxConstraint: []

 CacheSize: []

 CachingMethod: ''

 DeltaGradientTolerance: []

 GapTolerance: []

 KKTTolerance: []

 IterationLimit: []

 KernelFunction: 'gaussian'

 KernelScale: []

 KernelOffset: []

 KernelPolynomialOrder: []

 NumPrint: []

 Nu: []

 OutlierFraction: []

 ShrinkagePeriod: []

 Solver: ''

 StandardizeData: []

 SaveSupportVectors: []

 VerbosityLevel: []

 Method: 'SVM'

 Type: 'classification'

All properties of the template object are empty except for DistributionNames,
Method, and Type. When trained on, the software fills in the empty properties with their
respective default values.

Specify t as a binary learner for an ECOC multiclass model.

Mdl = fitcecoc(meas,species,'Learners',t);

Mdl is a ClassificationECOC multiclass classifier. By default, the software trains Mdl
using the one-versus-one coding design.

22 Functions — Alphabetical List

22-4752

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L =

 0.0200

Retain and Discard Support Vectors of SVM Binary Learners

By default, fitcecoc empties the Alpha, SupportVectorLabels, and
SupportVectors properties of the linear, SVM binary learners stored in the
BinaryLearners property of the trained ECOC model. You can retain the support
vectors and related values, and then discard them from the model.

Load Fisher's iris data set.

load fisheriris

rng(1); % For reproducibility

Train an ECOC model using the entire data set. Specify retaining the support vectors by
passing in the appropriate SVM template.

t = templateSVM('SaveSupportVectors',true);

MdlSV = fitcecoc(meas,species,'Learners',t);

Mdl is a trained ClassificationECOC model. By default, fitcecoc uses linear, SVM
binary learners. It implements a one-versus-one coding design, which requires three
binary learners for three-class learning.

Access the estimated values using dot notation.

alpha = cell(3,1);

alpha{1} = MdlSV.BinaryLearners{1}.Alpha;

alpha{2} = MdlSV.BinaryLearners{2}.Alpha;

alpha{3} = MdlSV.BinaryLearners{3}.Alpha;

alpha

alpha =

 [3x1 double]

 [3x1 double]

 templateSVM

22-4753

 [23x1 double]

alpha is a 3-by-1 cell array that stores the estimated values of .

Discard the support vectors and related values from the ECOC model.

Mdl = discardSupportVectors(MdlSV);

Mdl is similar to MdlSV, except that the Alpha, SupportVectorLabels, and
SupportVectors of all linear SVM binary learners are empty ([]).

areAllEmpty = @(x)isempty([x.Alpha x.SupportVectors x.SupportVectorLabels]);

cellfun(areAllEmpty,Mdl.BinaryLearners)

ans =

 1

 1

 1

Compare the sizes of the two ECOC models.

vars = whos('MdlSV','Mdl');

100*(1 - vars(1).bytes/vars(2).bytes)

ans =

 5.3485

Mdl is about 5% smaller than MdlSV.

Reduce your memory footprint by compacting Mdl, and then clearing MdlSV and Mdl
from the workspace.

CMdl = compact(Mdl);

clear MdlSV Mdl;

Predict the label for a random row of the training data using the more efficient SVM
model.

idx = randsample(size(meas,1),1)

22 Functions — Alphabetical List

22-4754

predictedLabel = predict(CMdl,meas(idx,:))

trueLabel = species(idx)

idx =

 63

predictedLabel =

 'versicolor'

trueLabel =

 'versicolor'

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'BoxConstraint',0.1,'KernelFunction','gaussian','Standardize',1

specifies a box constraint of 0.1, to use the Gaussian (RBF) kernel, and to standardize
the predictors.

'BoxConstraint' — Box constraint
1 (default) | positive scalar

Box constraint, specified as the comma-separated pair consisting of 'BoxConstraint'
and a positive scalar.

For one-class learning, the software always sets the box constraint to 1.

Example: 'BoxConstraint',100

 templateSVM

22-4755

Data Types: double | single

'CacheSize' — Cache size
1000 (default) | 'maximal' | positive scalar

Cache size, specified as the comma-separated pair consisting of 'CacheSize' and
'maximal' or a positive scalar.

If CacheSize is 'maximal', then the software reserves enough disk space to hold the
entire n-by-n Gram matrix.

If CacheSize is a positive scalar, then the software reserves CacheSize megabytes of
disk space for training the classifier.
Example: 'CacheSize','maximal'

Data Types: double | char | single

'DeltaGradientTolerance' — Tolerance for gradient difference
nonnegative scalar

Tolerance for the gradient difference between upper and lower violators obtained by
Sequential Minimal Optimization (SMO) or Iterative Single Data Algorithm (ISDA),
specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a
nonnegative scalar.

If DeltaGradientTolerance is 0, then the software does not use the tolerance for the
gradient difference to check for optimization convergence.

The defaults are:

• 1e-3 if the solver is SMO (for example, you set 'Solver','SMO')
• 0 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'DeltaGapTolerance',1e-2

Data Types: double | single

'GapTolerance' — Feasibility gap tolerance
0 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated
pair consisting of 'GapTolerance' and a nonnegative scalar.

22 Functions — Alphabetical List

22-4756

If GapTolerance is 0, then the software does not use the feasibility gap tolerance to
check for optimization convergence.
Example: 'GapTolerance',1e-2

Data Types: double | single

'IterationLimit' — Maximal number of numerical optimization iterations
1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated
pair consisting of 'IterationLimit' and a positive integer.

The software returns a trained classifier regardless of whether the optimization routine
successfully converges.
Example: 'IterationLimit',1e8

Data Types: double | single

'KernelFunction' — Kernel function
string

Kernel function used to compute the Gram matrix, specified as the comma-separated pair
consisting of 'KernelFunction' and a string.

This table summarizes the available options for setting a kernel function.

Value Description Formula

'gaussian' or 'rbf' Gaussian or Radial Basis
Function (RBF) kernel,
default for one-class
learning

G x x x x1 2 1 2
2

, exp() = -()-

'linear' Linear kernel, default for
two-class learning

G x xx x(),1 2 1 2= ¢

'polynomial' Polynomial kernel. Use
'PolynomialOrder',polyOrder

to specify a polynomial
kernel of order polyOrder.

G x x x x p(,) ()1 2 1 21= + ¢

You can set your own kernel function, for example, kernel, by setting
'KernelFunction','kernel'. kernel must have the following form:

 templateSVM

22-4757

function G = kernel(U,V)

where:

• U is an m-by-p matrix.
• V is an n-by-p matrix.
• G is an m-by-n Gram matrix of the rows of U and V.

And kernel.m must be on the MATLAB path.

It is good practice to avoid using generic names for kernel functions. For example, call a
sigmoid kernel function 'mysigmoid' rather than 'sigmoid'.

Example: 'KernelFunction','gaussian'

Data Types: char

'KernelOffset' — Kernel offset parameter
nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of
'KernelOffset' and a nonnegative scalar.

The software adds KernelOffset to each element of the Gram matrix.

The defaults are:

• 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 0.1 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'KernelOffset',0

Data Types: double | single

'KernelScale' — Kernel scale parameter
1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of
'KernelScale' and 'auto' or a positive scalar.

• If KernelFunction is 'gaussian' ('rbf'), 'linear', or 'polymonial', then the
software divides all elements of the predictor matrix X by the value of KernelScale.
Then, the software applies the appropriate kernel norm to compute the Gram matrix.

22 Functions — Alphabetical List

22-4758

• If you specify 'auto', then the software uses a heuristic procedure to select the scale
value. The heuristic procedure uses subsampling. Therefore, to reproduce results, set
a random number seed using rng before training the classifier.

• If you specify KernelScale and your own kernel function, for example, kernel,
using 'KernelFunction','kernel', then the software displays an error. You must
apply scaling within kernel.

Example: 'KernelScale',''auto'

Data Types: double | single | char

'KKTTolerance' — Karush-Kuhn-Tucker complementarity conditions violation tolerance
nonnegative scalar

Karush-Kuhn-Tucker (KKT) complementarity conditions violation tolerance, specified as
the comma-separated pair consisting of 'KKTTolerance' and a nonnegative scalar.

If KKTTolerance is 0, then the software does not use the KKT complementarity
conditions violation tolerance to check for optimization convergence.

The defaults are:

• 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 1e-3 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'KKTTolerance',1e-2

Data Types: double | single

'Nu' — ν parameter for one-class learning
0.5 (default) | positive scalar

ν parameter for one-class learning, specified as the comma-separated pair consisting of
'Nu' and a positive scalar. Nu must be greater than 0 and at most 1.

Set Nu to control the tradeoff between ensuring most training examples are in the
positive class and minimizing the weights in the score function.
Example: 'Nu',0.25

Data Types: double | single

'NumPrint' — Number of iterations between optimization diagnostic message output
1000 (default) | nonnegative integer

 templateSVM

22-4759

Number of iterations between optimization diagnostic message output, specified as the
comma-separated pair consisting of 'NumPrint' and a nonnegative integer.

If you use 'Verbose',1 and 'NumPrint',numprint, then the software displays all
optimization diagnostic messages from SMO and ISDA every numprint iterations in the
Command Window.
Example: 'NumPrint',500

Data Types: double | single

'OutlierFraction' — Expected proportion of outliers in training data
0 (default) | nonnegative scalar

Expected proportion of outliers in the training data, specified as the comma-separated
pair consisting of 'OutlierFraction' and a nonnegative scalar. OutlierFraction
must be at least 0 and less than 1.

If you set 'OutlierFraction',outlierfraction, where outlierfraction is a
value greater than 0, then:

• For two-class learning, the software implements robust learning. In other words, the
software attempts to remove 100*outlierfraction% of the observations when the
optimization algorithm converges. The removed observations correspond to gradients
that are large in magnitude.

• For one-class learning, the software finds an appropriate bias term such that
outlierfraction of the observations in the training set have negative scores.

Example: 'OutlierFraction',0.01

Data Types: double | single

'PolynomialOrder' — Polynomial kernel function order
3 (default) | positive integer

Polynomial kernel function order, specified as the comma-separated pair consisting of
'PolynomialOrder' and a positive integer.

If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the
software displays an error.
Example: 'PolynomialOrder',2

Data Types: double | single

22 Functions — Alphabetical List

22-4760

'SaveSupportVectors' — Store support vectors, their labels, and the estimated α
coefficients
true | false

Store support vectors, their labels, and the estimated α coefficients as properties
of the resulting model, specified as the comma-separated pair consisting of
'SaveSupportVectors' and true or false.

If SaveSupportVectors is true, the resulting model stores the support vectors in the
SupportVectors property, their labels in the SupportVectorLabels property, and
the estimated α coefficients in the Alpha property of the compact, SVM learners.

If SaveSupportVectors is false and KernelFunction is 'linear', the resulting
model does not store the support vectors and the related estimates.

To reduce memory consumption by compact SVM models, specify SaveSupportVectors.

For linear, SVM binary learners in an ECOC model, the default value is false.
Otherwise, the default value is true.

Example: 'SaveSupportVectors',true

Data Types: logical

'ShrinkagePeriod' — Number of iterations between movement of observations from
active to inactive set
0 (default) | nonnegative integer

Number of iterations between the movement of observations from the active to inactive
set, specified as the comma-separated pair consisting of 'ShrinkagePeriod' and a
nonnegative integer.

If you set 'ShrinkagePeriod',0, then the software does not shrink the active set.

Example: 'ShrinkagePeriod',1000

Data Types: double | single

'Solver' — Optimization routine
'ISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as a string.

This table summarizes the available optimization routine options.

 templateSVM

22-4761

Value Description

'ISDA' Iterative Single Data Algorithm (see [4])
'L1QP' Uses quadprog to implement L1 soft-

margin minimization by quadratic
programming. This option requires an
Optimization Toolbox license. For more
details, see “Quadratic Programming
Definition”.

'SMO' Sequential Minimal Optimization (see [2])

The defaults are:

• 'ISDA' if you set 'OutlierFraction' to a positive value and for two-class learning
• 'SMO' otherwise

Example: 'Solver','ISDA'

Data Types: char

'Standardize' — Flag to standardize predictors
false (default) | true

Flag to standardize the predictors, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true, then the software centers and scales each column of
the predictor data (X) by the column mean and standard deviation, respectively. It is
good practice to standardize the predictor data.
Example: 'Standardize',true

Data Types: logical

'Verbose' — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose'
and either 0, 1, or 2. Verbose controls the amount of optimization information
that the software displays in the Command Window and saves as a structure to
SVMModel.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

22 Functions — Alphabetical List

22-4762

Value Description

0 The software does not display or save
convergence information.

1 The software displays diagnostic messages
and saves convergence criteria every
numprint iterations, where numprint is
the value of the name-value pair argument
'NumPrint'.

2 The software displays diagnostic messages
and saves convergence criteria at every
iteration.

Example: 'Verbose',1

Data Types: double | single

Output Arguments

t — SVM classification template
template object

SVM classification template suitable for training error-correcting output code (ECOC)
multiclass models, returned as a template object. Pass t to fitcecoc to specify how to
create the SVM classifier for the ECOC model.

If you display t to the Command Window, then all, unspecified options appear empty
([]). However, the software replaces empty options with their corresponding default
values during training.

More About

Tips

For linear, SVM binary learners, and for efficiency, fitcecoc empties the properties
Alpha, SupportVectorLabels, and SupportVectors. fitcecoc lists Beta, rather
than Alpha, in the model display.

 templateSVM

22-4763

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear, SVM
template that specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors','on')

Mdl = fitcecoc(X,Y,'Learners',t);

You can subsequently remove the support vectors and related values by passing the
resulting ClassificationECOC model to discardSupportVectors.

References

[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge
University Press, 2000.

[2] Fan, R.-E., P.-H. Chen, and C.-J. Lin. “Working set selection using second order
information for training support vector machines.” Journal of Machine Learning
Research, Vol 6, 2005, pp. 1889–1918.

[3] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Second Edition. NY: Springer, 2008.

[4] Kecman V., T. -M. Huang, and M. Vogt. “Iterative Single Data Algorithm for Training
Kernel Machines from Huge Data Sets: Theory and Performance.” In Support
Vector Machines: Theory and Applications. Edited by Lipo Wang, 255–274.
Berlin: Springer-Verlag, 2005.

[5] Scholkopf, B., J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
“Estimating the Support of a High-Dimensional Distribution.” Neural Comput.,
Vol. 13, Number 7, 2001, pp. 1443–1471.

[6] Scholkopf, B., and A. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond, Adaptive Computation and Machine
Learning. Cambridge, MA: The MIT Press, 2002.

See Also
ClassificationECOC | ClassificationSVM | fitcecoc | fitcsvm

Introduced in R2014b

22 Functions — Alphabetical List

22-4764

templateTree

Create decision tree template

Syntax

t = templateTree

t = templateTree(Name,Value)

Description

t = templateTree returns a default decision tree learner template suitable for
training ensembles or error-correcting output code (ECOC) multiclass models. Specify t
as a learner using:

• fitensemble for classification or regression ensembles
• fitcecoc for ECOC model classification

If you specify a default decision tree template, then the software uses default values for
all input arguments during training. It is good practice to specify the type of decision
tree, e.g., for a classification tree template, specify 'Type','classification'. If you
specify the type of decision tree and display t in the Command Window, then all options
except Type appear empty ([]).

t = templateTree(Name,Value) creates a template with additional options specified
by one or more name-value pair arguments.

For example, you can specify the algorithm used to find the best split on a categorical
predictor, the split criterion, or the number of predictors selected for each split.

If you display t in the Command Window, then all options appear empty ([]), except
those that you specify using name-value pair arguments. During training, the software
uses default values for empty options.

 templateTree

22-4765

Examples

Create a Classification Template with Surrogate Splits

Create a decision tree template with surrogate splits, and use the template to train an
ensemble using sample data.

Load Fisher's iris data set.

load fisheriris

Create a decision tree template with surrogate splits.

t = templateTree('Surrogate','on')

t =

Fit template for Tree.

 Surrogate: 'on'

All options of the template object are empty except for Surrogate. When you pass t to
the training function, the software fills in the empty options with their respective default
values.

Specify t as a weak learner for a classification ensemble.

Mdl = fitensemble(meas,species,'AdaBoostM2',100,t)

Mdl =

 classreg.learning.classif.ClassificationEnsemble

 PredictorNames: {'x1' 'x2' 'x3' 'x4'}

 ResponseName: 'Y'

 ClassNames: {'setosa' 'versicolor' 'virginica'}

 ScoreTransform: 'none'

 NumObservations: 150

 NumTrained: 100

 Method: 'AdaBoostM2'

 LearnerNames: {'Tree'}

 ReasonForTermination: 'Terminated normally after completing the reques...'

 FitInfo: [100x1 double]

 FitInfoDescription: {2x1 cell}

22 Functions — Alphabetical List

22-4766

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)

L =

 0.0333

Train a Regression Ensemble

Use a trained, boosted regression tree ensemble to predict the fuel economy of a car.
Choose the number of cylinders, volume displaced by the cylinders, horsepower, and
weight as predictors.

Load the carsmall data set. Set the predictors to X.

load carsmall

X = [Cylinders,Displacement,Horsepower,Weight];

xnames = {'Cylinders','Displacement','Horsepower','Weight'};

Specify a regression tree template that uses surrogate splits to impove predictive
accuracy in the presence of NaN values.

RegTreeTemp = templateTree('Surrogate','On');

Train the regression tree ensemble using LSBoost and 100 learning cycles.

RegTreeEns = fitensemble(X,MPG,'LSBoost',100,RegTreeTemp,...

 'PredictorNames',xnames);

RegTreeEns is a trained RegressionEnsemble regression ensemble.

Use the trained regression ensemble to predict the fuel economy for a four-cylinder car
with a 200-cubic inch displacement, 150 horsepower, and weighing 3000 lbs.

predMPG = predict(RegTreeEns,[4 200 150 3000])

predMPG =

 22.6290

 templateTree

22-4767

The average fuel economy of a car with these specifications is 21.78 mpg.

Find the Optimal Number of Splits and Trees for an Ensemble

You can control the depth of the trees in an ensemble of decision trees. You can also
control the tree depth in an ECOC model containing decision tree binary learners using
the MaxNumSplits, MinLeafSize, or MinParentSize name-value pair parameters.

• When bagging decision trees, fitensemble grows deep decision trees by default. You
can grow shallower trees to reduce model complexity or computation time.

• When boosting decision trees, fitensemble grows stumps (a tree with one split) by
default. You can grow deeper trees for better accuracy.

Load the carsmall data set. Specify the variables Acceleration, Displacement,
Horsepower, and Weight as predictors, and MPG as the response.

load carsmall

X = [Acceleration Displacement Horsepower Weight];

Y = MPG;

The default values of the tree depth controllers for boosting regression trees are:

• 1 for MaxNumSplits. This option grows stumps.
• 5 for MinLeafSize
• 10 for MinParentSize

To search for the optimal number of splits:

1 Train a set of ensembles. Exponentially increase the maximum number of splits for
subsequent ensembles from stump to at most n - 1 splits. Also, decrease the learning
rate for each ensemble from 1 to 0.1.

2 Cross validate the ensembles.
3 Estimate the cross-validated mean-squared error (MSE) for each ensemble.
4 Compare the cross-validated MSEs. The ensemble with the lowest one performs the

best, and indicates the optimal maximum number of splits, number of trees, and
learning rate for the data set.

Grow and cross validate a deep classification tree and a stump. Specify to use surrogate
splits because the data contain missing values. These serve as benchmarks.

MdlDeep = fitrtree(X,Y,'CrossVal','on','MergeLeaves','off',...

 'MinParentSize',1,'Surrogate','on');

22 Functions — Alphabetical List

22-4768

MdlStump = fitrtree(X,Y,'MaxNumSplits',1,'CrossVal','on','Surrogate','on');

Train the boosting ensembles using 200 regression trees. Cross validate the ensemble
using 10-fold cross validation. Vary the maximum number of splits using the values in
the sequence , where m is such that is no greater than n - 1. For each
variant, adjust the learning rate to each value in the set {0.1, 0.25, 0.5, 1};

n = size(X,1);

m = floor(log2(n - 1));

lr = [0.1 0.25 0.5 1];

maxNumSplits = 2.^(0:m);

numTrees = 250;

Mdl = cell(numel(maxNumSplits),numel(lr));

rng(1); % For reproducibility

for k = 1:numel(lr);

 for j = 1:numel(maxNumSplits);

 t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');

 Mdl{j,k} = fitensemble(X,Y,'LSBoost',numTrees,t,...

 'Type','regression','CrossVal','on','LearnRate',lr(k));

 end;

end;

Compute the cross-validated MSE for each ensemble.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');

errorCell = cellfun(kflAll,Mdl,'Uniform',false);

error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(lr)]);

errorDeep = kfoldLoss(MdlDeep);

errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated classification error behaves as the number of trees in the
ensemble increases for a few of the ensembles, the deep tree, and the stump. Plot the
curves with respect to learning rate in the same plot, and plot separate plots for varying
tree complexities. Choose a subset of tree complexity levels.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];

figure;

for k = 1:3;

 subplot(2,2,k);

 plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2);

 axis tight;

 hold on;

 h = gca;

 plot(h.XLim,[errorDeep errorDeep],'-.b','LineWidth',2);

 templateTree

22-4769

 plot(h.XLim,[errorStump errorStump],'-.r','LineWidth',2);

 plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'--k');

 h.YLim = [10 50];

 xlabel 'Number of trees';

 ylabel 'Cross-validated MSE';

 title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))));

 hold off;

end;

hL = legend([cellstr(num2str(lr','Learning Rate = %0.2f'));...

 'Deep Tree';'Stump';'Min. MSE']);

hL.Position(1) = 0.6;

Each curve contains a minimum cross-validated MSE occuring at the optimal number of
trees in the ensemble.

22 Functions — Alphabetical List

22-4770

Identify the maximum number of splits, number of trees, and learning rate that yields
the lowest MSE overall.

[minErr minErrIdxLin] = min(error(:));

[idxNumTrees idxMNS idxLR] = ind2sub(size(error),minErrIdxLin);

fprintf('\nMin. MSE = %0.5f',minErr)

fprintf('\nOptimal Parameter Values:\nNum. Trees = %d',idxNumTrees);

fprintf('\nMaxNumSplits = %d\nLearning Rate = %0.2f\n',...

 maxNumSplits(idxMNS),lr(idxLR))

Min. MSE = 17.87423

Optimal Parameter Values:

Num. Trees = 79

MaxNumSplits = 1

Learning Rate = 0.25

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Surrogate','on','NVarToSample','all' specifies a template with
surrogate splits, and uses all available predictors at each split.

For Classification Trees and Regression Trees

'MaxNumSplits' — Maximal number of decision splits
positive integer

Maximal number of decision splits (or branch nodes) per tree, specified as the comma-
separated pair consisting of 'MaxNumSplits' and a positive integer. templateTree
splits MaxNumSplits or fewer branch nodes. For more details on splitting behavior, see
“Algorithms” on page 22-4776.

 templateTree

22-4771

For bagged decision trees and decision tree binary learners in ECOC models, the default
is size(X,1) - 1. For boosted decision trees, the default is 1.

Example: 'MaxNumSplits',5

Data Types: single | double

'MergeLeaves' — Leaf merge flag
'off' | 'on'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves'
and either 'on' or 'off'.

When 'on', the decision tree merges leaves that originate from the same parent node,
and that provide a sum of risk values greater or equal to the risk associated with the
parent node. When 'off', the decision tree does not merge leaves.

For ensembles models, the default is 'off'. For decision tree binary learners in ECOC
models, the default is 'on'.

Example: 'MergeLeaves','on'

'MinLeafSize' — Minimum observations per leaf
positive integer value

Minimum observations per leaf, specified as the comma-separated pair consisting of
'MinLeafSize' and a positive integer value. Each leaf has at least MinLeafSize
observations per tree leaf. If you supply both MinParentSize and MinLeafSize,
the decision tree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

For boosted and bagged decision trees, the defaults are 1 for classification and 5 for
regression. For decision tree binary learners in ECOC models, the default is 1.

Example: 'MinLeafSize',2

'MinParentSize' — Minimum observations per branch node
positive integer value

Minimum observations per branch node, specified as the comma-separated pair
consisting of 'MinParentSize' and a positive integer value. Each branch node in the
tree has at least MinParentSize observations. If you supply both MinParentSize
and MinLeafSize, the decision tree uses the setting that gives larger leaves:
MinParentSize = max(MinParentSize,2*MinLeafSize).

22 Functions — Alphabetical List

22-4772

For boosted and bagged decision trees, the defaults are 2 for classification and 10 for
regression. For decision tree binary learners in ECOC models, the default is 10.

Example: 'MinParentSize',4

'NumVariablesToSample' — Number of predictors to select at random for each split
positive integer value | 'all'

Number of predictors to select at random for each split, specified as the comma-
separated pair consisting of 'NumVariablesToSample' and a positive integer value.
Alternatively, you can specify 'all' to use all available predictors.

For boosted decision trees and decision tree binary learners in ECOC models models, the
default is 'all'. The default for bagged decision trees is the square root of the number of
predictors for classification, or one third of predictors for regression.
Example: 'NumVariablesToSample',3

'Prune' — Flag to estimate optimal sequence of pruned subtrees
'off' (default) | 'on'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-
separated pair consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then the software trains the classification tree learners without
pruning them, but estimates the optimal sequence of pruned subtrees for each learner in
the ensemble or decision tree binary learner in ECOC models. Otherwise, the software
trains the classification tree learners without estimating the optimal sequence of pruned
subtrees.

For ensembles, the default is 'off'.

For decision tree binary learners in ECOC models, then the default is 'on'.

Example: 'Prune','on'

'PruneCriterion' — Pruning criterion
'error' | 'impurity' | 'mse'

Pruning criterion, specified as the comma-separated pair consisting of
'PruneCriterion' and a pruning criterion string valid for the tree type.

• For classification trees, you can specify 'error' (default) or 'impurity'.
• For regression, you can only specify 'mse'(default).

 templateTree

22-4773

Example: 'PruneCriterion','impurity'

'SplitCriterion' — Split criterion
'gdi' | 'twoing' | 'deviance' | 'mse'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion'
and a split criterion string valid for the tree type.

• For classification trees:

• 'gdi' for Gini's diversity index (default)
• 'twoing' for the twoing rule
• 'deviance' for maximum deviance reduction (also known as cross entropy)

• For regression trees:

• 'mse' for mean squared error (default)

Example: 'SplitCriterion','deviance'

'Surrogate' — Surrogate decision splits
'off' (default) | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of
'Surrogate' and one of 'off', 'on', 'all', or a positive integer value.

• When 'off', the decision tree does not find surrogate splits at the branch nodes.
• When 'on', the decision tree finds at most 10 surrogate splits at each branch node.
• When set to 'all', the decision tree finds all surrogate splits at each branch node.

The 'all' setting can consume considerable time and memory.
• When set to a positive integer value, the decision tree finds at most the specified

number of surrogate splits at each branch node.

Use surrogate splits to improve the accuracy of predictions for data with missing values.
This setting also lets you compute measures of predictive association between predictors.
Example: 'Surrogate','on'

For Classification Trees Only
'AlgorithmForCategorical' — Algorithm for best categorical predictor split
'Exact' | 'PullLeft' | 'PCA' | 'OVAbyClass'

22 Functions — Alphabetical List

22-4774

Algorithm to find the best split on a categorical predictor for data with C categories
for data and K ≥ 3 classes, specified as the comma-separated pair consisting of
'AlgorithmForCategorical' and one of the following.

'Exact' Consider all 2C–1 – 1 combinations.
'PullLeft' Start with all C categories on the right

branch. Consider moving each category to
the left branch as it achieves the minimum
impurity for the K classes among the
remaining categories. From this sequence,
choose the split that has the lowest
impurity.

'PCA' Compute a score for each category
using the inner product between the
first principal component of a weighted
covariance matrix (of the centered class
probability matrix) and the vector of class
probabilities for that category. Sort the
scores in ascending order, and consider all
C — 1 splits.

'OVAbyClass' Start with all C categories on the right
branch. For each class, order the categories
based on their probability for that class.
For the first class, consider moving each
category to the left branch in order,
recording the impurity criterion at each
move. Repeat for the remaining classes.
From this sequence, choose the split that
has the minimum impurity.

ClassificationTree selects the optimal subset of algorithms for each split
using the known number of classes and levels of a categorical predictor. For
two classes, ClassificationTree always performs the exact search. Use the
'AlgorithmForCategorical' name-value pair argument to specify a particular
algorithm.
Example: 'AlgorithmForCategorical','PCA'

'MaxNumCategories' — Maximum category levels in split node
10 (default) | nonnegative scalar value

 templateTree

22-4775

Maximum category levels in the split node, specified as the comma-separated
pair consisting of 'MaxNumCategories' and a nonnegative scalar value.
ClassificationTree splits a categorical predictor using the exact search algorithm
if the predictor has at most MaxNumCategories levels in the split node. Otherwise,
ClassificationTree finds the best categorical split using one of the inexact
algorithms. Note that passing a small value can increase computation time and memory
overload.
Example: 'MaxNumCategories',8

For Regression Trees Only

'QuadraticErrorTolerance' — Quadratic error tolerance
1e-6 (default) | nonnegative scalar value

Quadratic error tolerance per node, specified as the comma —separated pair
consisting of 'QuadraticErrorTolerance' and a nonnegative scalar value.
RegressionTree stops splitting nodes when the quadratic error per node drops below
QuadraticErrorTolerance*QED, where QED is the quadratic error for the entire data
computed before the decision tree is grown. QED = NORM(Y - YBAR), where YBAR is
estimated as the average of the input array Y.

Example: 'QuadraticErrorTolerance',1e-4

Output Arguments

t — Decision tree template for classification or regression
template object

Decision tree template for classification or regression suitable for training ensembles or
error-correcting output code (ECOC) multiclass models, returned as a template object.
Pass t to fitensemble or fitcecoc to specify how to create the decision tree for the
ensemble or ECOC model, respectively.

If you display t in the Command Window, then all unspecified options appear empty
([]). However, the software replaces empty options with their corresponding default
values during training.

22 Functions — Alphabetical List

22-4776

More About

Algorithms

• To accommodate MaxNumSplits, the software splits all nodes in the current
layer, and then counts the number of branch nodes. A layer is the set of nodes
that are equidistant from the root node. If the number of branch nodes exceeds
MaxNumSplits, then the software follows this procedure.

1 Determine how many branch nodes in the current layer need to be unsplit so that
there would be at most MaxNumSplits branch nodes.

2 Sort the branch nodes by their impurity gains.
3 Unsplit the desired number of least successful branches.
4 Return the decision tree grown so far.

This procedure aims at producing maximally balanced trees.
• The software splits branch nodes layer by layer until at least one of these events

occurs.

• There are MaxNumSplits + 1 branch nodes.
• A proposed split causes the number of observations in at least one branch node to

be fewer than MinParentSize.
• A proposed split causes the number of observations in at least one leaf node to be

fewer than MinLeafSize.
• The algorithm cannot find a good split within a layer (i.e., the pruning criterion

(see PruneCriterion), does not improve for all proposed splits in a layer). A special
case of this event is when all nodes are pure (i.e., all observations in the node have
the same class).

MaxNumSplits and MinLeafSize do not affect splitting at their default values.
Therefore, if you set 'MaxNumSplits', then splitting might stop due to the value of
MinParentSize before MaxNumSplits splits occur.

References

[1] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. “Partitioning Nominal Attributes
in Decision Trees.” Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197–
217.

 templateTree

22-4777

See Also
RegressionTree | ClassificationTree | fitcecoc | fitctree | fitensemble

22 Functions — Alphabetical List

22-4778

test
Class: classregtree

Error rate

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

cost = test(t,'resubstitution')

cost = test(t,'test',X,y)

cost = test(t,'crossvalidate',X,y)

[cost,secost,ntnodes,bestlevel] = test(...)

[...] = test(...,param1,val1,param2,val2,...)

Description

cost = test(t,'resubstitution') computes the cost of the tree t using a
resubstitution method. t is a decision tree as created by classregtree. The cost
of the tree is the sum over all terminal nodes of the estimated probability of a node
times the cost of a node. If t is a classification tree, the cost of a node is the sum of the
misclassification costs of the observations in that node. If t is a regression tree, the
cost of a node is the average squared error over the observations in that node. cost
is a vector of cost values for each subtree in the optimal pruning sequence for t. The
resubstitution cost is based on the same sample that was used to create the original tree,
so it under estimates the likely cost of applying the tree to new data.

cost = test(t,'test',X,y) uses the matrix of predictors X and the response vector
y as a test sample, applies the decision tree t to that sample, and returns a vector cost
of cost values computed for the test sample. X and y should not be the same as the
learning sample, that is, the sample that was used to fit the tree t.

 test

22-4779

cost = test(t,'crossvalidate',X,y) uses 10-fold cross-validation to compute the
cost vector. X and y should be the learning sample, that is, the sample that was used to
fit the tree t. The function partitions the sample into 10 subsamples, chosen randomly
but with roughly equal size. For classification trees, the subsamples also have roughly
the same class proportions. For each subsample, test fits a tree to the remaining data
and uses it to predict the subsample. It pools the information from all subsamples to
compute the cost for the whole sample.

[cost,secost,ntnodes,bestlevel] = test(...) also returns the vector secost
containing the standard error of each cost value, the vector ntnodes containing the
number of terminal nodes for each subtree, and the scalar bestlevel containing the
estimated best level of pruning. A bestlevel of 0 means no pruning. The best level
is the one that produces the smallest tree that is within one standard error of the
minimum-cost subtree.

[...] = test(...,param1,val1,param2,val2,...) specifies optional parameter
name/value pairs for methods other than 'resubstitution', chosen from the
following:

• 'weights' — Observation weights.
• 'nsamples' — The number of cross-validation samples (default is 10).
• 'treesize' — Either 'se' (default) to choose the smallest tree whose cost is within

one standard error of the minimum cost, or 'min' to choose the minimal cost tree.

Examples
Compute the Cost of a Decision Tree

Find the best tree for Fisher's iris data using cross-validation.

Grow a large tree:

load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'},...

 'minparent',5)

view(t)

t =

Decision tree for classification

22 Functions — Alphabetical List

22-4780

 1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

 2 class = setosa

 3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

 4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

 5 class = virginica

 6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

 7 if PW<1.55 then node 10 elseif PW>=1.55 then node 11 else virginica

 8 class = versicolor

 9 class = virginica

10 class = virginica

11 class = versicolor

 test

22-4781

Find the minimum-cost tree:

rng(1); % For reproducibility

[c,s,n,best] = test(t,'crossvalidate',meas,species);

tmin = prune(t,'level',best)

view(tmin)

tmin =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 class = versicolor

5 class = virginica

22 Functions — Alphabetical List

22-4782

Plot the smallest tree within one standard error of the minimum cost tree:

[mincost,minloc] = min(c);

plot(n,c,'b-o',...

 n(best+1),c(best+1),'bs',...

 n,(mincost+s(minloc))*ones(size(n)),'k--')

xlabel('Tree size (number of terminal nodes)')

ylabel('Cost')

 test

22-4783

The solid line shows the estimated cost for each tree size, the dashed line marks one
standard error above the minimum, and the square marks the smallest tree under the
dashed line.

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | view | eval | prune

22 Functions — Alphabetical List

22-4784

test
Class: cvpartition

Test indices for cross-validation

Syntax

idx = test(c)

idx = test(c,i)

Description

idx = test(c) returns the logical vector idx of test indices for an object c of the
cvpartition class of type 'holdout' or 'resubstitution'.

If c.Type is 'holdout', idx specifies the observations in the test set.

If c.Type is 'resubstitution', idx specifies all observations.

idx = test(c,i) returns the logical vector idx of test indices for repetition i of an
object c of the cvpartition class of type 'kfold' or 'leaveout'.

If c.Type is 'kfold', idx specifies the observations in the test set in fold i.

If c.Type is 'leaveout', idx specifies the observation left out at repetition i.

Examples

Identify the test indices in the first fold of a partition of 10 observations for 3-fold cross-
validation:

c = cvpartition(10,'kfold',3)

c =

K-fold cross validation partition

 N: 10

 NumTestSets: 3

 test

22-4785

 TrainSize: 7 6 7

 TestSize: 3 4 3

test(c,1)

ans =

 1

 1

 0

 0

 0

 0

 0

 0

 1

 0

See Also
cvpartition | training

22 Functions — Alphabetical List

22-4786

testcholdout
Compare predictive accuracies of two classification models

testcholdout statistically assesses the accuracies of two classification models. The
function first compares their predicted labels against the true labels, and then it detects
whether the difference between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. testcholdout can
conduct several McNemar test variations, including the asymptotic test, the exact-
conditional test, and the mid-p-value test. For cost-sensitive assessment, available tests
include a chi-square test (requires an Optimization Toolbox license) and a likelihood ratio
test.

Syntax
h = testcholdout(YHat1,YHat2,Y)

h = testcholdout(YHat1,YHat2,Y,Name,Value)

[h,p,e1,e2] = testcholdout(___)

Description
h = testcholdout(YHat1,YHat2,Y) returns the test decision, by conducting the
mid-p-value McNemar test, from testing the null hypothesis that the predicted class
labels YHat1 and YHat2 have equal accuracy for predicting the true class labels Y. The
alternative hypothesis is that the labels have unequal accuracy.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at 5% level.

h = testcholdout(YHat1,YHat2,Y,Name,Value) returns the result of the
hypothesis test with additional options specified by one or more Name,Value pair
arguments. For example, you can specify the type of alternative hypothesis, specify the
type of test, or supply a cost matrix.

[h,p,e1,e2] = testcholdout(___) returns the p-value for the hypothesis test
(p) and the respective classification loss of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

 testcholdout

22-4787

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test
comparing the misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM
model, specify to use the radial basis function kernel and a heuristic procedure to
determine the kernel scale. It is a good practice to standardize the predictor data for
SVM.

MdlSVM = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF','KernelScale','auto');

MdlBag = fitensemble(X(idxTrain,:),Y(idxTrain),'Bag',100,'Tree',...

 'Type','classification');

MdlSVM is a trained ClassificationSVM model. MdlBag is a trained
ClassificationBaggedEnsemble model.

Label the test-set observations using the trained models.

YhatSVM = predict(MdlSVM,X(idxTest,:));

YhatBag = predict(MdlBag,X(idxTest,:));

YhatSVM and YhatBag are vectors continuing the predicted class labels of the respective
models.

Test whether the two models have equal predictive accuracies.

h = testcholdout(YhatSVM,YhatBag,Y(idxTest))

22 Functions — Alphabetical List

22-4788

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter
to make the algorithm more complex. Conduct a statistical test to assess whether the
simpler model has better accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary
classification) and one that uses the radial basis function kernel. Use the default kernel
scale of 1. It is a good practice to standardize the predictor data for SVM.

MdlLinear = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);

MdlRBF = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...

 'KernelFunction','RBF');

MdlLinear and MdlRBF are trained ClassificationSVM models.

Label the test-set observations using the trained models.

YhatLinear = predict(MdlLinear,X(idxTest,:));

YhatRBF = predict(MdlRBF,X(idxTest,:));

YhatLinear and YhatRBF are vectors continuing the predicted class labels of the
respective models.

 testcholdout

22-4789

Test the null hypothesis that the simpler model (MdlLinear) is at most as accurate
as the more complex model (MdlRBF). Because the test-set size is large, conduct the
asymptotic McNemar test, and compare the results with the mid- p-value test (the cost-
insensitive testing default). Request to return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation

MidP = zeros(4,1);

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = testcholdout(YhatLinear,YhatRBF,Y(idxTest),...

 'Alternative','greater','Test','asymptotic');

[MidP(1),MidP(2),MidP(3),MidP(4)] = testcholdout(YhatLinear,YhatRBF,Y(idxTest),...

 'Alternative','greater');

table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans =

 Asymp MidP

 __________ __________

 h 1 1

 p 7.2801e-09 2.7649e-10

 e1 0.13714 0.13714

 e2 0.33143 0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject the
null hypothesis that the simpler model is less accurate than the more complex model. No
matter what test you specify, testcholdout returns the same type of misclassification
measure for both models.

Conduct a Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or if the false-positive and false-
negative costs are imbalanced, you can statistically compare the predictive performances
of two classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

load arrhythmia;

Y = categorical(Y);

tabulate(Y);

 Value Count Percent

 1 245 54.20%

22 Functions — Alphabetical List

22-4790

 2 44 9.73%

 3 15 3.32%

 4 15 3.32%

 5 13 2.88%

 6 25 5.53%

 7 3 0.66%

 8 2 0.44%

 9 9 1.99%

 10 50 11.06%

 14 4 0.88%

 15 5 1.11%

 16 22 4.87%

There are 16 classes, however some are not represented in the data set. Most
observations are classified as not having arrhythmia (class 1). To summarize, the data
set is highly discrete with imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove
those observations with unknown arrhythmia status from the data set.

Y = Y(Y ~= '16');

Y(Y ~= '1') = '2';

X = X(Y ~= '16',:);

Create a partition that evenly splits the data into training and testing sets.

rng(1); % For reproducibility

CVP = cvpartition(Y,'holdout',0.5);

idxTrain = training(CVP); % Training-set indices

idxTest = test(CVP); % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifiying an arrhythmatic patient into the no
arrhythmia class is five times worse that misclassifying a patient without arrhythmia
into the arrhythmia class. Classifying correctly incurs no cost. The rows indicate the
true class and the columns indicate predicted class. When conducting a cost-sensitive
analysis, it is a good practice to specify the order of the classes.

Cost = [0 1;5 0];

ClassNames = categorical([2 1]);

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1
and the other that uses LogitBoost. Because there are missing values, specify to use
surrogate splits. Train the models using the cost matrix.

 testcholdout

22-4791

t = templateTree('Surrogate','on');

numTrees = 50;

MdlAda = fitensemble(X(idxTrain,:),Y(idxTrain),'AdaBoostM1',numTrees,t,...

 'Cost',Cost,'ClassNames',ClassNames);

MdlLogit = fitensemble(X(idxTrain,:),Y(idxTrain),'LogitBoost',numTrees,t,...

 'Cost',Cost,'ClassNames',ClassNames);

MdlAda and MdlLogit are trained ClassificationEnsemble models.

Label the test-set observations using the trained models.

YhatAda = predict(MdlAda,X(idxTest,:));

YhatLogit = predict(MdlLogit,X(idxTest,:));

YhatLinear and YhatRBF are vectors containing the predicted class labels of the
respective models.

Test whether the AdaBoostM1 ensemble (MdlAda) and the LogitBoost ensemble
(MdlLogit) have equal predictive accuracy. Supply the cost matrix. Conduct the
asymptotic, likelihood ratio, cost-sensitive test (the default when you pass in a cost
matrix). Request to return p-values and misclassification costs.

[h,p,e1,e2] = testcholdout(YhatAda,YhatLogit,Y(idxTest),'Cost',Cost)

h =

 0

p =

 0.2300

e1 =

 2.0837

e2 =

 1.9581

22 Functions — Alphabetical List

22-4792

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Input Arguments

YHat1 — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Predicted class labels of the first classification model, specified as a categorical or
character array, logical or numeric vector, or cell array of strings.

If YHat1 is a character array, then each element must correspond to one row of the array.

YHat1, YHat2, and Y must have equal lengths.

It is a best practice for YHat1, YHat2, and Y to share the same data type.

YHat2 — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Predicted class labels of the second classification model, specified as a categorical or
character array, logical or numeric vector, or cell array of strings.

If YHat2 is a character array, then each element must correspond to one row of the array.

YHat1, YHat2, and Y must have equal lengths.

It is a best practice for YHat1, YHat2, and Y to share the same data type.

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

True class labels, specified as a categorical or character array, logical or numeric vector,
or cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

YHat1, YHat2, and Y must have equal lengths.

It is a best practice for YHat1, YHat2, and Y to share the same data type.

 testcholdout

22-4793

Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0]
specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the asymptotic McNemar test, and to penalize misclassifying
observations with the true label ClassNames{1} twice as much as for misclassifying
observations with the true label ClassNames{2}.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of the values listed in the table.

Value Alternative hypothesis

'unequal' (default) For predicting Y, YHat1 and YHat2 have unequal accuracies.
'greater' For predicting Y, YHat1 is more accurate than YHat2.
'less' For predicting Y, YHat1 is less accurate than YHat2.

Example: 'Alternative','greater'

Data Types: char

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

22 Functions — Alphabetical List

22-4794

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array. If you specify:

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class
and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

If you specify Cost, then testcholdout cannot conduct one-sided, exact, or mid-p tests.
You must also specify 'Alternative','unequal','Test','asymptotic'. For cost-
sensitive testing options, see the CostTest name-value pair argument.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

 testcholdout

22-4795

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'CostTest' — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest'
and 'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost
name-value pair argument, testcholdout ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements

'chisquare' Chi-square test Optimization Toolbox license
to implement quadprog

'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 22-4797.
Example: 'CostTest','chisquare'

Data Types: char

'Test' — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and
'asymptotic', 'exact', and 'midp'. This table summarizes the available options for
cost-insensitive testing.

Value Description

'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 22-4799.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost
name-value pair argument, and choose a cost-sensitive test using the CostTest name-
value pair argument, 'asymptotic' is the default.

22 Functions — Alphabetical List

22-4796

Example: 'Test','asymptotic'

Data Types: char

Note: NaNs, <undefined> values, and empty strings ('') indicate missing values.
testcholdout:

• Treats missing values in YHat1 and YHat2 as misclassified observations.

• Removes missing values in Y and the corresponding values of YHat1 and YHat2

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

testcholdout estimates p using the distribution of the test statistic, which varies with
the type of test. For details on test statistics derived from the available variants of the
McNemar test, see “McNemar Tests” on page 22-4799. For details on test statistics
derived from cost-sensitive tests, see “Cost-Sensitive Testing” on page 22-4797.

e1 — Classification loss
scalar

Classification loss that summarizes the accuracy of the first set of class labels (YHat1)
predicting the true class labels (Y), returned as a scalar.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

 testcholdout

22-4797

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted
average of the misclassification costs, in which the weights are the respective estimated
proportions of misclassified observations.

e2 — Classification loss
scalar

Classification loss that summarizes the accuracy of the second set of class labels (YHat2)
predicting the true class labels (Y), returned as a scalar.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion
of misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted
average of the costs of misclassification, in which the weights are the respective
estimated proportions of misclassified observations.

More About

Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. When
conducting a cost-sensitive analysis, you can account for the cost imbalance in training
the classification models, and then in statistically comparing them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to
be a poorly performing classification loss. Use misclassification cost instead to compare
classification models.

Misclassification costs are often unbalanced in applications. For example, consider
classifying subjects based on a set of predictors into two categories: healthy and sick.
Misclassifying a sick subject as healthy poses a danger to the subject's life. However,
misclassifying a healthy subject as sick can cause some inconvenience, but does not pose
any danger. In this situation, you assign misclassification costs such that misclassifying
a sick subject as healthy is more costly than misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and p̂ijk are the number and estimated proportion of test-sample observations
with true class k that the first classification model assigns label i. The second

22 Functions — Alphabetical List

22-4798

classification model assigns label j. The unknown, true value of p̂ijk is πijk. The test-

set sample size is Â =
i j k

ijk testn n
, ,

. Â Â= =
i j k

ijk
i j k

ijk
, , , ,

� .p p 1 .

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥
0, and, for at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of
classes.

• The expected difference in the misclassification costs of the two classification models
is

d p= -()
===
ÂÂÂ
k

K

ki kj ijk

j

K

i

K

c c

111

.

• The hypothesis test is

H

H

0

1

0

0

:

:
.

d

d

=

π

The available cost-sensitive tests are appropriate for two-tailed testing.

Available, asymptotic tests that address imbalanced costs are a chi-square test and a
likelihood ratio test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman
chi-square test statistics, but with a Laplace correction factor to account for any nijk =
0. The test statistic is

t
n

n

n K

i j k

ijk test ijk

ijk
c

p
2

1

1

3 1
2

*

π
=

+ ()()- +

+
ÂÂ

ˆ

.

()

If 1 12 2- () <*
F tc c a; , then reject H0.

•
ˆ ()
p

ijk
1 are estimated by minimizing t

c
2

* under the constraint that δ = 0.

 testcholdout

22-4799

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial
random variables having sample size ntest and success probability πijk. They represent
the random number of observations with true class k that the first classification
model assigns label i. The second classification model assigns label j. Jointly, their
distribution is multinomial.

The test statistic is

t

P N n n

P

LRT
i j k

ijk ijk test ijk ijk

i j

* =
=Ê

Ë
Á

ˆ

¯
˜=«

«
2

2

log

� �; ,
, ,

()

,

p p

,,

(); , � �

.

k
ijk ijk test ijk ijkN n n=Ê

Ë
Á

ˆ

¯
˜=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙p p 3

If 1 12- () <*
F t

LRTc a; , , then reject H0.

•
ˆ ()
pijk

ijk

test

n

n

2
= is the unrestricted MLE of πijk.

•
ˆ

()

()
p

l
ijk

ijk

test ki kj

n

n c c

3
=

+ -
 is the MLE under the null hypothesis that δ = 0. λ is the

solution to

Â
-

-+
=

i j k

ijk ki kj

test ki kj

n

n

c c

c c, ,

()

()
.

l
0

• F x
c

2 1(;) is the χ2 C.D.F. with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while
addressing the issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

22 Functions — Alphabetical List

22-4800

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table resembling this figure.

nii are the number of concordant pairs, that is, the number of observations that both
models classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of
discordant pairs, that is, the number of observations that models classify differently
(correctly or incorrectly).

The misclassification rates for Models 1 and 2 are

ˆ /p2 2∑ ∑
= n n

and ˆ /p
∑ ∑

=2 2n n , respectively. A two-sided test for comparing the accuracy of the two
models is

H

H

0 2 2

2 21

:

:
.

p p

p p

∑ ∑

∑ ∑

=

π

 testcholdout

22-4801

The null hypothesis suggests that the population exhibits marginal homogeneity, which
reduces the null hypothesis to H

0 12 21
: .p p= Also, under the null hypothesis, N12 ~

Binomial(n12 + n21,0.5) [1].

These facts are the basis for these, available McNemar test variants: the asymptotic,
exact-conditional and mid-p-value McNemar tests. The definitions that follow summarize
the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for
significance-level α) are:

• For one-sided tests, the test statistic

t
n

n

n

n
a1

12 21

12 21

*
=

-

+

.

If 1 1- () <
*

F t a , , where Φ is the standard Gaussian C.D.F., then reject H0.

• For two-sided tests, the test statistic

t
n

n

n

n
a2

12 21

2

12 21

*
=

()-

+
.

If 1 2 2- () <*
F t mc a; , where F x m

c
2 (;) is the χm

2 C.D.F. evaluated at x, then reject

H0.

This variant requires large-sample theory, specifically, the Gaussian approximation to
the binomial distribution. Therefore:

•
The total number of discordant pairs, n n n

d
= +

12 21 must be greater than 10 ([1],
Ch. 10.1.4).

• In general, asymptotic tests do not guarantee nominal coverage. The observed
probability of falsely rejecting the null hypothesis can exceed α. Simulation studies
in [14] suggest this, but the asymptotic McNemar test performs well in terms of
statistical power.

22 Functions — Alphabetical List

22-4802

• Exact Conditional — The exact-conditional McNemar test statistics and rejection
regions (for significance-level α) are ([24], [25]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n
dBin 1 0 5*() <; , . a , where F x n pBin ; ,() is the binomial C.D.F. with sample size

n and success probability p evaluated at x, then reject H0.
• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

If F t n
dBin 2 0 5 2*() <; , . /a , then reject H0.

The exact conditional test always attains nominal coverage. Simulation studies in
[14] suggest that the test is conservative, and then show that the test lacks statistical
power compared to other variants. For small or highly discrete test samples, consider
using the mid-p-value test ([1], Ch. 3.6.3). For details, see Test and “McNemar Tests”
on page 22-4799.

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions
(for significance-level α) are ([23]):

• For one-sided tests, the test statistic

t n
1 12

*
=

If F t n f t nn nBin Bin1 12 21 1 12 211 0 5 0 5 0 5* *
-() + () <+ +; , . . , .; a , where F x n pBin ; ,() and

f x n pBin ; ,() are the binomial C.D.F. and P.D.F, respectively, with sample size n
and success probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic

t n n2 12 21
*

= min(),

 testcholdout

22-4803

If F t f t nn n nBin Bin2 12 21 2 12 211 1 0 5 0 50 5 2* *
- -() + () <+ +; , . ; /. , . a , then reject H0.

The mid-p-value test addresses the over-conservative behavior of the exact conditional
test. The simulation studies in [14] demonstrate that this test attains nominal
coverage, and has good statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. Two classification losses are misclassification rate and cost.

testcholdout returns the classification losses (see e1 and e2) under the alternative
hypothesis (i.e., the unrestricted classification losses). nijk is the number of test-sample
observations with true class k that the first classification model assigns label i and the
second classification model assigns label j, and the corresponding estimated proportion

is ˆ .pijk
ijk

test

n

n
= . The test-set sample size is Â =

i j k
ijk testn n

, ,

. The indices are taken from 1

through K, the number of classes.

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

e ijk

i kk

K

j

K

1

11

=

π==

ÂÂÂ ˆ .p

For the misclassification rate of the second classification model (e2), switch the indices
i and j in the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• Misclassification cost is a nonnegative scalar and is a measure of classification quality

relative to the values the specified cost matrix elements. Its interpretation depends
on the specified costs of misclassification. Misclassification cost is the weighted
average of the costs of misclassification (specified in a cost matrix, C) in which the
weights are the respective, estimated proportions of misclassified observations. The
misclassification cost for the first classification model is

22 Functions — Alphabetical List

22-4804

e cijk

ik

K

j

K

ki

k

1

11

=

π==

ÂÂÂ ˆ ,p

where ckj is the cost of classifying an observation into class j if its true class is k. For
the misclassification cost of the second classification model (e2), switch the indices i
and j in the formula.

In general, for a fixed cost matrix, classification accuracy decreases as
misclassification cost increases.

Tips

• It is a good practice to obtain predicted class labels by passing any trained
classification model and new predictor data to the predict method. For example, for
predicted labels from an SVM model, see predict.

• Cost-sensitive tests perform numerical optimization, which requires additional
computational resources. The likelihood ratio test conducts numerical optimization
indirectly by finding the root of a Lagrange multiplier in an interval. For some data
sets, if the root lies close to the boundaries of the interval, then the method can fail.
Therefore, if you have an Optimization Toolbox license, consider conducting the cost-
sensitive chi-square test instead. For more details, see CostTest and “Cost-Sensitive
Testing” on page 22-4797.

• “Hypothesis Tests”

References

[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ,
2002.

[2] Fagerlan, M.W., S Lydersen, P. Laake. “The McNemar Test for Binary Matched-Pairs
Data: Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical
Research Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number
294, 1961, pp. 223–234.

 testcholdout

22-4805

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated
Proportions or Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–
157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to
Drugs.” Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

See Also
testckfold

Introduced in R2015a

22 Functions — Alphabetical List

22-4806

testckfold
Compare accuracies of two classification models by repeated cross validation

testckfold statistically assesses the accuracies of two classification models by
repeatedly cross validating the two models, determining the differences in the
classification loss, and then formulating the test statistic by combining the classification
loss differences. This type of test is particularly appropriate when sample size is limited.

You can assess whether the accuracies of the classification models are different, or
whether one classification model performs better than another. Available tests include
a 5-by-2 paired t test, a 5-by-2 paired F test, and a 10-by-10 repeated cross-validation
t test. For more details, see “Repeated Cross-Validation Tests” on page 22-4826. To
speed up computations, testckfold supports parallel computing (requires a Parallel
Computing Toolbox license).

Syntax

h = testckfold(C1,C2,X1,X2,Y)

h = testckfold(C1,C2,X1,X2,Y,Name,Value)

[h,p,e1,e2] = testckfold(___)

Description

h = testckfold(C1,C2,X1,X2,Y) returns the decision that results from testing the
null hypothesis that classification models C1 and C2 have equal accuracy for predicting
the true class labels Y. The alternative hypothesis is that the labels have unequal
accuracy.

The first classification model, C1, uses predictor data X1. The second classification
model, C2, uses X2. testckfold conducts a 5-by-2 paired F test (see “Repeated Cross-
Validation Tests” on page 22-4826).

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to
not reject the null hypothesis at the 5% level.

Examples of tests you can conduct include:

 testckfold

22-4807

• Compare the accuracies of a simple classification model and a more complex model by
passing the same set of predictor data (that is, X1 = X2).

• Compare the accuracies of two different models using two different sets of predictors.
• Perform various types of feature selection. For example, you can compare the

accuracy of a model trained using a set of predictors to the accuracy of one trained
on a subset or different set of those predictors. You can arbitrarily choose the set
of predictors, or use a feature selection technique like PCA or sequential feature
selection (see pca and sequentialfs).

h = testckfold(C1,C2,X1,X2,Y,Name,Value) returns the result of the hypothesis
test with additional options specified by one or more Name,Value pair arguments. For
example, you can specify the type of alternative hypothesis, the type of test, or the use of
parallel computing.

[h,p,e1,e2] = testckfold(___) additionally returns the p-value for the
hypothesis test (p) and the respective classification losses for each cross-validation run
and fold (e1 and e2) using any of the input arguments in the previous syntaxes.

Examples

Compare Accuracies of Two Different Classification Models

Conduct a statistical test comparing the misclassification rates of the two models using a
5-by-2 paired F test.

Load Fisher's iris data set.

load fisheriris;

Create a naive Bayes template and a classification tree template using default options.

C1 = templateNaiveBayes;

C2 = templateTree;

C1 and C2 are template objects corresponding to the naive Bayes and classification tree
algorithms, respectively.

Test whether the two models have equal predictive accuracies. Use the same predictor
data for each model. testckfold conducts a 5-by-2, two-sided, paired F test by default.

rng(1); % For reproducibility

22 Functions — Alphabetical List

22-4808

h = testckfold(C1,C2,meas,meas,species)

h =

 0

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Conduct a statistical test to assess whether a simpler model has better accuracy than a
more complex model using a 10-by-10 repeated cross-validation t test.

Load Fisher's iris data set. Create a cost matrix that penalizes misclassifying a setosa
iris twice as much as misclassifying a virginica iris as a versicolor.

load fisheriris;

tabulate(species)

Cost = [0 2 2;2 0 1;2 1 0];

ClassNames = {'setosa' 'versicolor' 'virginica'};...

 % Specifies the order of the rows and columns in Cost

 Value Count Percent

 setosa 50 33.33%

 versicolor 50 33.33%

 virginica 50 33.33%

The empirical distribution of the classes is uniform, and the classification cost is slightly
imbalanced.

Create two ECOC templates: one that uses linear SVM binary learners and one that uses
SVM binary learners equipped with the RBF kernel. It is a good practice to standardize
the predictor data when using SVM.

tSVMLinear = templateSVM('Standardize',true); % Linear SVM by default

tSVMRBF = templateSVM('KernelFunction','RBF','Standardize',true);

C1 = templateECOC('Learners',tSVMLinear);

C2 = templateECOC('Learners',tSVMRBF);

C1 and C2 are ECOC template objects. C1 is prepared for linear SVM. C2 is prepared for
SVM with an RBF kernel training.

 testckfold

22-4809

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more
complex model (C2) in terms of classification costs. Conduct the 10-by-10 repeated cross-
validation test. Request to return p-values and misclassification costs.

rng(1); % For reproducibility

[h,p,e1,e2] = testckfold(C1,C2,meas,meas,species,...

 'Alternative','greater','Test','10x10t','Cost',Cost,...

 'ClassNames',ClassNames)

h =

 0

p =

 0.1077

e1 =

 Columns 1 through 7

 0 0 0 0.0667 0 0.0667 0.1333

 0.0667 0.0667 0 0 0 0 0.0667

 0 0 0 0 0 0.0667 0.0667

 0.0667 0.0667 0 0.0667 0 0.0667 0

 0.0667 0.0667 0.0667 0 0.0667 0.0667 0

 0 0 0.1333 0 0 0.0667 0

 0.0667 0.0667 0 0 0.0667 0 0

 0.0667 0 0.0667 0.0667 0 0.1333 0

 0 0.0667 0.1333 0.0667 0.0667 0 0

 0 0.0667 0.0667 0.0667 0.0667 0 0

 Columns 8 through 10

 0 0.1333 0

 0 0.0667 0.0667

 0.0667 0.0667 0.0667

 0 0.0667 0

 0 0 0

 0 0.0667 0.0667

 0.0667 0 0.0667

22 Functions — Alphabetical List

22-4810

 0.0667 0 0

 0 0 0

 0.0667 0 0

e2 =

 Columns 1 through 7

 0 0 0 0.1333 0 0.0667 0.1333

 0.0667 0.0667 0 0.1333 0 0 0

 0.1333 0.1333 0 0 0 0.0667 0

 0 0.1333 0 0.0667 0.1333 0.1333 0

 0.0667 0.0667 0.0667 0 0.0667 0.1333 0.1333

 0.0667 0 0.0667 0.0667 0 0.0667 0.1333

 0.2000 0.0667 0 0 0.0667 0 0

 0.2000 0 0 0.1333 0 0.1333 0

 0 0.0667 0.0667 0.0667 0.1333 0 0.2000

 0.0667 0.0667 0 0.0667 0.1333 0 0

 Columns 8 through 10

 0 0.2667 0

 0.1333 0.1333 0.0667

 0.0667 0.0667 0.0667

 0 0.0667 0

 0 0 0.0667

 0 0.0667 0.0667

 0.1333 0 0.0667

 0.0667 0 0

 0 0 0

 0.0667 0.1333 0.0667

The p-value is slightly greater than 0.10, which indicates to retain the null hypothesis
that the simpler model is at most as accurate as the more complex model. This result is
consistent for any significance level (Alpha) that is at most 0.10.

e1 and e2 are 10-by-10 matrices containing misclassification costs. Row r corresponds
to run r of the repeated cross validation. Column k corresponds to test-set fold k within
a particular cross-validation run. For example, element (2,4) of e2 is 0.1333. This value

 testckfold

22-4811

means that in cross-validation run 2, when the test set is fold 4, the estimated test-set
misclassification cost is 0.1333.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables
(features) from a larger set. Then, statistically compare the accuracy between the two
models.

Load the ionosphere data set.

load ionosphere;

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire
set of predictors. Inspect the importance measure for each predictor.

nTrees = 100;

C = fitensemble(X,Y,'AdaBoostM1',nTrees,'Tree');

predImp = predictorImportance(C);

figure;

bar(predImp);

h = gca;

h.XTick = 1:2:h.XLim(2);

title('Predictor Importances');

xlabel('Predictor');

ylabel('Importance measure');

22 Functions — Alphabetical List

22-4812

Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');

idx5 = idxSort(1:5);

Test whether the two models have equal predictive accuracies. Specify the reduced data
set and then the full predictor data. Use parallel computing to speed up computations.

Options = statset('UseParallel',true);

[h,p,e1,e2] = testckfold(C,C,X(:,idx5),X,Y,'Options',Options)

h =

 0

 testckfold

22-4813

p =

 0.3318

e1 =

 0.0800 0.0739

 0.0629 0.0966

 0.0629 0.0625

 0.0629 0.0909

 0.0800 0.1080

e2 =

 0.0914 0.0852

 0.0800 0.0852

 0.0857 0.0739

 0.1086 0.1023

 0.0857 0.0966

testckfold treats trained classification models as templates, and so it ignores all fitted
parameters in C. That is, testckfold cross validates C using only the specified options
and the predictor data to estimate the out-of-fold classification losses.

h = 0 indicates to not reject the null hypothesis that the two models have equal
predictive accuracies. This result favors the simpler ensemble. Your results can vary.

Input Arguments

C1 — Classification model template or trained classification model
Classification model template object | Trained classification model object

Classification model template or trained classification model, specified as any
classification model template object or trained classification model object described in
these tables.

Template Type Returned By

Classification tree templateTree

22 Functions — Alphabetical List

22-4814

Template Type Returned By

Discriminant analysis templateDiscriminant

Ensemble (boosting, bagging, and random
subspace)

templateEnsemble

Error-correcting output codes (ECOC),
multiclass classification model

templateECOC

kNN templateKNN

Naive Bayes templateNaiveBayes

Support Vector Machine (SVM) templateSVM

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of classification
models

ClassificationEnsemble fitensemble

ECOC model ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

SVM ClassificationSVM fitcsvm

For efficiency, supply a classification model template object instead of a trained
classification model object.

C2 — Classification model template or trained model
Classification model template object | Trained classification model object

Classification model template or trained classification model, specified as any
classification model template object or trained classification model object described in
these tables.

Template Type Returned By

Classification tree templateTree

 testckfold

22-4815

Template Type Returned By

Discriminant analysis templateDiscriminant

Ensemble (boosting, bagging, and random
subspace)

templateEnsemble

Error-correcting output codes (ECOC),
multiclass classification model

templateECOC

kNN templateKNN

Naive Bayes templateNaiveBayes

Support Vector Machine (SVM) templateSVM

Trained Model Type Model Object Returned By

Classification tree ClassificationTree fitctree

Discriminant analysis ClassificationDiscriminant fitcdiscr

Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitensemble

Ensemble of classification
models

ClassificationEnsemble fitensemble

ECOC model ClassificationECOC fitcecoc

kNN ClassificationKNN fitcknn

Naive Bayes ClassificationNaiveBayes fitcnb

SVM ClassificationSVM fitcsvm

For efficiency, supply a classification model template object instead of a trained
classification model object.

X1 — Predictor data for first classification model
numeric matrix

Predictor data for the first classification model, C1, specified as a numeric matrix.

Each row of X1 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C1 must compose X1.

The number of rows in X1 and X2 must equal the length of Y.

22 Functions — Alphabetical List

22-4816

Data Types: double | single

X2 — Predictor data for second classification model
numeric matrix

Predictor data for the second classification model, C2, specified as a numeric matrix.

Each row of X2 corresponds to one observation (also known as an instance or example),
and each column corresponds to one variable (also known as a predictor or feature). The
variables used to train C2 must compose X2.

The number of rows in X2 and X1 must equal the length of Y.

Data Types: double | single

Y — True class labels
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

True class labels, specified as a categorical or character array, a logical or numeric
vector, or a cell array of strings.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in X1 and X2 must equal the length of Y.
Data Types: categorical | char | logical | single | double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
'Alternative','greater','Test','10x10t','Options',statsset('UseParallel',true)

specifies to test whether the first set of first predicted class labels is more accurate than
the second set, to conduct the 10-by-10 t test, and to use parallel computing for cross
validation.

'Alpha' — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

 testckfold

22-4817

Hypothesis test significance level, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the interval (0,1).

Example: 'Alpha',0.1

Data Types: single | double

'Alternative' — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of the values listed in the table.

Value Alternative Hypothesis Description Supported Tests

'unequal'

(default)
For predicting Y, the set of predictions
resulting from C1 applied to X1
and C2 applied to X2 have unequal
accuracies.

'5x2F', '5x2t', and
'10x10t'

'greater' For predicting Y, the set of predictions
resulting from C1 applied to X1 is
more accurate than C2 applied to X2.

'5x2t' and '10x10t'

'less' For predicting Y, the set of predictions
resulting from C1 applied to X1 is less
accurate than C2 applied to X2.

'5x2t' and '10x10t'

For details on supported tests, see Test.
Example: 'Alternative','greater'

Data Types: char

'X1CategoricalPredictors' — Flag identifying categorical predictors
[] (default) | logical vector | numeric vector | 'all'

Flag identifying categorical predictors in the first test-set predictor data (X1), specified as
the comma-separated pair consisting of 'X1CategoricalPredictors' and one of the
following:

• A numeric vector with indices from 1 through p, where p is the number of columns of
X1.

• A logical vector of length p, where a true entry means that the corresponding column
of X1 is a categorical variable.

22 Functions — Alphabetical List

22-4818

• 'all', meaning all predictors are categorical.

Specification of X1CategoricalPredictors is appropriate if:

• At least one predictor is categorical and C1 is a classification tree, an ensemble of
classification trees, an ECOC model, or a naive Bayes classification model.

• All predictors are categorical and C1 is a kNN classification model.

If you specify X1CategoricalPredictors for any other case, then testckfold
throws an error. For example, the function cannot train SVM learners using categorical
predictors.

The default is [], which indicates that there are no categorical predictors.

Example: 'X1CategoricalPredictors','all'

Data Types: single | double

'X2CategoricalPredictors' — Flag identifying categorical predictors
[] (default) | logical vector | numeric vector | 'all'

Flag identifying categorical predictors in the second test-set predictor data (X2), specified
as the comma-separated pair consisting of 'X2CategoricalPredictors' and one of
the following:

• A numeric vector with indices from 1 through p, where p is the number of columns of
X2.

• A logical vector of length p, where a true entry means that the corresponding column
of X2 is a categorical variable.

• 'all', meaning all predictors are categorical.

Specification of X2CategoricalPredictors is appropriate if:

• At least one predictor is categorical and C2 is a classification tree, an ensemble of
classification trees, an ECOC model, or a naive Bayes classification model.

• All predictors are categorical and C2 is a kNN classification model.

If you specify X2CategoricalPredictors for any other case, then testckfold
throws an error. For example, the function cannot train SVM learners using categorical
predictors.

The default is [], which indicates that there are no categorical predictors.

 testckfold

22-4819

Example: 'X2CategoricalPredictors','all'

Data Types: single | double

'ClassNames' — Class names
categorical array | character array | logical vector | vector of numeric values | cell array
of strings

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a
categorical or character array, logical or numeric vector, or cell array of strings. You must
set ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the
array.

Use ClassNames to order the classes or to select a subset of classes for testing.

When supplying a cost matrix using the Cost name-value pair argument, it is a good
practice to specify the class order.

The default is the distinct class names in Y.

Example: 'ClassNames',{'virginica','versicolor'}

Data Types: categorical | char | logical | single | double | cell

'Cost' — Classification cost
square matrix | structure array

Classification cost, specified as the comma-separated pair consisting of 'Cost' and a
square matrix or structure array.

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class
and the columns correspond to the predicted class. To specify the class order for the
corresponding rows and columns of Cost, additionally specify the ClassNames name-
value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data
type as Y. You can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and
columns ordered as in S.ClassNames

22 Functions — Alphabetical List

22-4820

For cost-sensitive testing use, testcholdout.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.

Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]

Data Types: double | single | struct

'LossFun' — Loss function
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' |
function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a
function handle or string.

• The following lists available loss functions. Specify one using its corresponding string.

Value Loss Function

'binodeviance' Binomial deviance
'classiferror' Classification error
'exponential' Exponential loss
'hinge' Hinge loss

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and there are K unique classes. Your
function must have the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• lossfun is the name of your function.
• C is an n-by-K logical matrix with rows indicating which class the corresponding

observation belongs to. The column order corresponds to the class order in the
ClassNames name-value pair argument.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set
all other elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order
corresponds to the class order in the ClassNames name-value pair argument. S is a
matrix of classification scores.

 testckfold

22-4821

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software
normalizes the weights to sum to 1.

• Cost is a K-by-K numeric matrix of classification costs. For example, Cost =
ones(K) - eye(K) specifies a cost of 0 for correct classification and a cost of 1
for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | function_handle

'Options' — Parallel computing options
[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of
'Options' and a structure array returned by statset. These options require
Parallel Computing Toolbox. testckfold uses 'Streams', 'UseParallel', and
'UseSubtreams' fields.

This table summarizes the available options.

Option Description

'Streams' A RandStream object or cell array of such
objects. If you do not specify Streams,
the software uses the default stream or
streams. If you specify Streams, use a
single object except when the following are
true:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

In that case, use a cell array of the same
size as the parallel pool. If a parallel pool
is not open, then the software tries to open
one (depending on your preferences), and
Streams must supply a single random
number stream.

22 Functions — Alphabetical List

22-4822

Option Description

'UseParallel' If you have Parallel Computing Toolbox,
then you can invoke a pool of workers by
setting 'UseParallel',1.

'UseSubstreams' Set to true to compute in parallel using
the stream specified by 'Streams'.
Default is false. For example, set
Streams to a type allowing substreams,
such as'mlfg6331_64' or 'mrg32k3a'.

A best practice to ensure more predictable results is to use parpool and explicitly create
a parallel pool before you invoke parallel computing using testckfold.

Example: 'Options',statset('UseParallel',1)

'Prior' — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of
'Prior' and a string, numeric vector, or a structure.

This table summarizes the available options for setting prior probabilities.

Value Description

'empirical' The class prior probabilities are the class
relative frequencies in Y.

'uniform' All class prior probabilities are equal to
1/K, where K is the number of classes.

numeric vector Each element is a class prior probability.
Specify the order using the ClassNames
name-value pair argument. The software
normalizes the elements such that they
sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class
names as a variable of the same type as
Y.

 testckfold

22-4823

Value Description

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such
that they sum to 1.

Example: 'Prior',struct('ClassNames',
{{'setosa','versicolor'}},'ClassProbs',[1,2])

'Test' — Test to conduct
'5x2F' (default) | '5x2t' | '10x10t'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and one of
he following: '5x2F', '5x2t', '10x10t'.

Value Description Supported Alternative
Hypothesis

'5x2F' (default) 5-by-2 paired F test.
Appropriate for two-sided
testing only.

'unequal'

'5x2t' 5-by-2 paired t test 'unequal', 'less',
'greater'

'10x10t' 10-by-10 repeated cross
validation t test

'unequal', 'less',
'greater'

For details on the available tests, see “Repeated Cross-Validation Tests” on page
22-4826. For details on supported alternative hypotheses, see Alternative.
Example: 'Test','10x10t'

'Verbose' — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1,
or 2. Verbose controls the amount of diagnostic information that the software displays
in the Command Window during training of each cross-validation fold.

This table summarizes the available verbosity level options.

22 Functions — Alphabetical List

22-4824

Value Description

0 The software does not display diagnostic
information.

1 The software displays diagnostic messages
every time it implements a new cross
validation run.

2 The software displays diagnostic messages
every time it implements a new cross
validation run, and every time it trains on
a particular fold.

Example: 'Verbose',1

Data Types: double | single

'Weights' — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights'
and a numeric vector.

The size of Weights must equal the number of rows of X1. The software weighs the
observations in each row of X with the corresponding weight in Weights.

The software normalizes Weights to sum up to the value of the prior probability in the
respective class.
Data Types: double | single

Notes:

• testckfold treats trained classification models as templates. Therefore, it ignores
all fitted parameters in the model. That is, testckfold cross validates using only the
options specified in the model and the predictor data.

• The repeated cross-validation tests depend on the assumption that the test
statistics are asymptotically normal under the null hypothesis. Highly imbalanced
cost matrices (for example, Cost = [0 100;1 0]) and highly discrete response
distributions (that is, most of the observations are in a small number of classes)
might violate the asymptotic normality assumption. For cost-sensitive testing, use
testcholdout.

 testckfold

22-4825

• NaNs, <undefined> values, and empty strings ('') indicate missing values.

• For the treatment of missing values in X1 and X2, see the appropriate
classification model training function reference page: fitctree, fitcdiscr,
fitensemble, fitensemble, fitcecoc, fitcknn, fitcnb, or fitcsvm.

• testckfold removes missing values in Y and the corresponding rows of X1 and
X2.

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a
random test statistic is at least as extreme as the observed test statistic, given that the
null hypothesis is true.

testckfold estimates p using the distribution of the test statistic, which varies with
the type of test. For details on test statistics, see “Repeated Cross-Validation Tests” on
page 22-4826.

e1 — Classification losses
numeric matrix

Classification losses, returned as a numeric matrix. The rows of e1 correspond to the
cross-validation run and the columns correspond to the test fold.

testckfold applies the first test-set predictor data (X1) to the first classification model
(C1) to estimate the first set of class labels.

22 Functions — Alphabetical List

22-4826

e1 summarizes the accuracy of the first set of class labels predicting the true class labels
(Y) for each cross-validation run and fold. The meaning of the elements of e1 depends on
the type of classification loss.

e2 — Classification losses
numeric matrix

Classification losses, returned as a numeric matrix. The rows of e2 correspond to the
cross-validation run and the columns correspond to the test fold.

testckfold applies the first test-set predictor data (X2) to the first classification model
(C2) to estimate the first set of class labels.

e2 summarizes the accuracy of the first set of class labels predicting the true class labels
(Y) for each cross-validation run and fold. The meaning of the elements of e2 depends on
the type of classification loss.

Alternatives

Use testcholdout:

• For test sets with larger sample sizes
• To implement variants of the McNemar test to compare two classification model

accuracies
• For cost-sensitive testing using a chi-square or likelihood ratio test. The chi-square

test uses quadprog, which requires an Optimization Toolbox license.

More About

Repeated Cross-Validation Tests

Repeated cross-validation tests form the test statistic for comparing the accuracies of
two classification models by combining the classification loss differences resulting from
repeatedly cross validating the data. Repeated cross-validation tests are useful when
sample size is limited.

To conduct an R-by-K test:

 testckfold

22-4827

1 Randomly divide (stratified by class) the predictor data sets and true class labels into
K sets, R times. Each division is called a run and each set within a run is called a
fold. Each run contains the complete, but divided, data sets.

2 For runs r = 1 through R, repeat these steps for k = 1 through K:

a Reserve fold k as a test set, and train the two classification models using their
respective predictor data sets on the remaining K – 1 folds.

b Predict class labels using the trained models and their respective fold k predictor
data sets.

c Estimate the classification loss by comparing the two sets of estimated labels to
the true labels. Denote ecrk as the classification loss when the test set is fold k
in run r of classification model c.

d Compute the difference between the classification losses of the two models:

ˆ .drk rk rke e= -
1 2

At the end of a run, there are K classification losses per classification model.
3 Combine the results of step 2. For each r = 1 through R:

• Estimate the within-fold averages of the differences and their average:

d dr kr

k

K

K
=

=

Â
1

1

ˆ .

•
Estimate the overall average of the differences: d d=

==

ÂÂ
1

11
KR

rk

k

K

r

R

ˆ .

•
Estimate the within-fold variances of the differences: s

K
r

k

K

rk r
2

1

21
= -()

=

Â ˆ .d d

•
Estimate the average of the within-fold differences: s

R
s
r

r

R
2 2

1

1
=

=

Â .

• Estimate the overall sample variance of the differences:

S
KR

k

K

r

R

rk
2

11

21

1
=

-
()-

==
ÂÂ ˆ .d d

22 Functions — Alphabetical List

22-4828

Compute the test statistic. All supported tests described here assume that, under H0,
the estimated differences are independent and approximately normally distributed,
with mean 0 and a finite, common standard deviation. However, these tests
violate the independence assumption, and so the test-statistic distributions are
approximate.

• For R = 2, the test is a paired test. The two supported tests are a paired t and F
test.

• The test statistic for the paired t test is

t

s
paired
*

=

ˆ

.
d

11

2

tpaired
* has a t-distribution with R degrees of freedom under the null

hypothesis.

To reduce the effects of correlation between the estimated differences, the
quantity d̂

11 occupies the numerator rather than d .

5-by-2 paired t tests can be slightly conservative [4].
• The test statistic for the paired F test is

F
RK

s
paired

rk

k

K

r

R

* ===

()ÂÂ
1 2

11

2

ˆ

.

d

Fpaired
* has an F distribution with RK and R degrees of freedom.

A 5-by-2 paired F test has comparable power to the 5-by-2 t test, but is more
conservative [1].

• For R > 2, the test is a repeated cross-validation test. The test statistic is

 testckfold

22-4829

t
S

CV
*

=
+

d

n 1
.

tCV
* has a t distribution with ν degress of freedom. If the differences were truly

independent, then ν = RK – 1. In this case, the degrees of freedom parameter
must be optimized.

For a 10-by-10 repeated cross-validation t test, the optimal degrees of freedom
between 8 and 11 ([2] and [3]). testckfold uses ν = 10.

The advantage of repeated cross validation tests over paired tests is that the results are
more repeatable [3]. The disadvantage is that they require high computational resources.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted
labels. In general, for a fixed cost matrix, classification accuracy decreases as
classification loss increases.

testckfold returns the classification losses (see e1 and e2) under the alternative
hypothesis (that is, the unrestricted classification losses). In the definitions that follow:

• The classification losses focus on the first classification model. The classification
losses for the second model are similar.

• ntest is the test-set sample size.
• I(x) is the indicator function. If x is a true statement, then I(x) = 1. Otherwise, I(x) = 0.
• p̂ j1 is the predicted class assignment of classification model 1 for observation j.

• yj is the true class label of observation j.

• Binomial deviance has the form

e

yw f X

w

j j j

j

j

n

j

n

test

test
1

1

1

1 2

=

+ -()()
=

¢

=

Â

Â

log ()exp

22 Functions — Alphabetical List

22-4830

where:

• yj = 1 for the positive class and -1 for the negative class.
• f X j() is the classification score.

The binomial deviance has connections to the maximization of the binomial likelihood
function. For details on binomial deviance, see [5].

• Exponential loss is similar to binomial deviance and has the form

e

yw f X

w

j
j

n

j j

j

n

j

test

test
1

1

1

=

-()
=

=

Â

Â

exp ()

.

yj and f X j() take the same forms here as in the binomial deviance formula.

• Hinge loss has the form

e

w y

w

f X

j

n

j j j

j

n

j

1
1

1

0 1

=

-{ }¢ ()
=

=

Â

Â

max ,

,

yj and f X j() take the same forms here as in the binomial deviance formula.

Hinge loss linearly penalizes for misclassified observations and is related to the SVM
objective function used for optimization. For more details on hinge loss, see [5].

• Misclassification rate, or classification error, is a scalar in the interval
[0,1] representing the proportion of misclassified observations. That is, the
misclassification rate for the first classification model is

 testckfold

22-4831

e

w I p y

w

j
j

n

j j

j

j

n

test

test
1

1

1

1

=

π

=

=

Â

Â

(�)

.

Tips

• One way to perform cost-insensitive feature selection is:

1 Create a classification model template that characterizes the first classification
model (C1).

2 Create a classification model template that characterizes the second classification
model (C2).

3 Specify two predictor data sets. For example, specify X1 as the full predictor set
and X2 as a reduced set.

4 Enter testckfold(C1,C2,X1,X2,'Alternative','less'). If testckfold
returns 1, then there is enough evidence to suggest that the classification model
that uses fewer predictors performs better than the model that uses the full
predictor set.

Alternatively, you can assess whether there is a significant difference between
the accuracies of the two models. To perform this assessment, remove the
'Alternative','less' specification in step 4.testckfold conducts a two-sided
test, and h = 0 indicates that there is not enough evidence to suggest a difference in
the accuracy of the two models.

• The tests are appropriate for the misclassification rate classification loss, but you
can specify other loss functions (see LossFun). The key assumptions are that the
estimated classification losses are independent and normally distributed with mean 0
and finite common variance under the two-sided null hypothesis. Classification losses
other than the misclassification rate might violate this assumption.

• Highly discrete data, imbalanced classes, and highly imbalanced cost matrices can
violate the normality assumption of classification loss differences.

22 Functions — Alphabetical List

22-4832

Algorithms

If you specify to conduct the 10-by-10 repeated cross-validation t test using
'Test','10x10t', then testckfold uses 10 degrees of freedom for the t distribution
to find the critical region and estimate the p-value. For more details, see [2] and [3].
• “Hypothesis Tests”

References

[1] Alpaydin, E. “Combined 5 x 2 CV F Test for Comparing Supervised Classification
Learning Algorithms.” Neural Computation, Vol. 11, No. 8, 1999, pp. 1885–1992.

[2] Bouckaert. R. “Choosing Between Two Learning Algorithms Based on Calibrated
Tests.” International Conference on Machine Learning, 2003, pp. 51–58.

[3] Bouckaert, R., and E. Frank. “Evaluating the Replicability of Significance Tests for
Comparing Learning Algorithms.” Advances in Knowledge Discovery and Data
Mining, 8th Pacific-Asia Conference, 2004, pp. 3–12.

[4] Dietterich, T. “Approximate statistical tests for comparing supervised classification
learning algorithms.” Neural Computation, Vol. 10, No. 7, 1998, pp. 1895–1923.

[5] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd
Ed. New York: Springer, 2008.

See Also
templateDiscriminant | templateECOC | templateEnsemble | templateKNN |
templateNaiveBayes | templateSVM | templateTree | testcholdout

Introduced in R2015a

 TestSize property

22-4833

TestSize property
Class: cvpartition

Size of each test set

Description

Value is a vector in partitions of type 'kfold' and 'leaveout'.
Value is a scalar in partitions of type 'holdout' and 'resubstitution'.

22 Functions — Alphabetical List

22-4834

tiedrank
Rank adjusted for ties

Syntax

[R,TIEADJ] = tiedrank(X)

[R,TIEADJ] = tiedrank(X,1)

[R,TIEADJ] = tiedrank(X,0,1)

Description

[R,TIEADJ] = tiedrank(X) computes the ranks of the values in the vector X. If any X
values are tied, tiedrank computes their average rank. The return value TIEADJ is an
adjustment for ties required by the nonparametric tests signrank and ranksum, and for
the computation of Spearman's rank correlation.

[R,TIEADJ] = tiedrank(X,1) computes the ranks of the values in the vector X.
TIEADJ is a vector of three adjustments for ties required in the computation of Kendall's
tau. tiedrank(X,0) is the same as tiedrank(X).

[R,TIEADJ] = tiedrank(X,0,1) computes the ranks from each end, so that the
smallest and largest values get rank 1, the next smallest and largest get rank 2, etc.
These ranks are used in the Ansari-Bradley test.

Examples

Counting from smallest to largest, the two 20 values are 2nd and 3rd, so they both get
rank 2.5 (average of 2 and 3):

tiedrank([10 20 30 40 20])

ans =

 1.0000 2.5000 4.0000 5.0000 2.5000

See Also
ansaribradley | ranksum | signrank | corr | partialcorr

 tinv

22-4835

tinv
Student's t inverse cumulative distribution function

Syntax
x = tinv(p,nu)

Description
x = tinv(p,nu) returns the inverse of Student's t cdf using the degrees of freedom
in nu for the corresponding probabilities in p. p and nu can be vectors, matrices, or
multidimensional arrays that are the same size. A scalar input is expanded to a constant
array with the same dimensions as the other inputs. The values in p must lie on the
interval [0 1].

The t inverse function in terms of the t cdf is

x F p x F x p= () = () ={ }−1 | : |n n

where

p F x

t

dt
x

= =

+









 +











+−∞∫(|)n

n

n np

n

n

Γ

Γ

1

2

2

1 1

1
2

1

2

The result, x, is the solution of the cdf integral with parameter ν, where you supply the
desired probability p.

Examples
Compute Student's t icdf

What is the 99th percentile of the Student's t distribution for one to six degrees of
freedom?

22 Functions — Alphabetical List

22-4836

percentile = tinv(0.99,1:6)

percentile =

 31.8205 6.9646 4.5407 3.7469 3.3649 3.1427

More About
• “Student's t Distribution” on page B-146

See Also
tcdf | tpdf | tstat | trnd | icdf

 prob.tLocationScaleDistribution class

22-4837

prob.tLocationScaleDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

t Location-Scale probability distribution object

Description
prob.tLocationScaleDistribution is an object consisting of parameters, a model
description, and sample data for a t location-scale probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction
pd = makedist('tLocationScale') creates a t location-scale probability distribution
object using the default parameter values.

pd = makedist('tLocationScale','mu',mu,'sigma',sigma,'nu',nu) creates a
t location-scale probability distribution object using the specified parameter values.

Input Arguments

mu — Location parameter
0 (default) | scalar value

Location parameter for the t location-scale distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
1 (default) | positive scalar value

Scale parameter for the t location-scale distribution, specified as a positive scalar value.
Data Types: single | double

nu — Degrees of freedom
5 (default) | positive scalar value

22 Functions — Alphabetical List

22-4838

Degrees of freedom for the t location-scale distribution, specified as a positive scalar
value.
Data Types: single | double

Properties

mu — Location parameter
scalar value

Location parameter of the t location-scale distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
positive scalar value

Scale parameter of the t location-scale distribution, stored as a positive scalar value.
Data Types: single | double

nu — Degrees of freedom
positive scalar value

Degrees of freedom of the t location-scale distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.

 prob.tLocationScaleDistribution class

22-4839

• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

22 Functions — Alphabetical List

22-4840

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

 prob.tLocationScaleDistribution class

22-4841

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

22 Functions — Alphabetical List

22-4842

Definitions

t Location-Scale Distribution

The t location-scale distribution is useful for modeling data distributions with heavier
tails (more prone to outliers) than the normal distribution. It approaches the normal
distribution as ν approaches infinity, and smaller values of ν yield heavier tails.

The t location-scale distribution uses the following parameters.

Parameter Description Support

mu Location parameter -• < < •m

sigma Scale parameter s > 0

nu Shape parameter n > 0

The probability density function (pdf) is

f x

x

| , ,m s n

n

s np n

n
m

s
n

() =

+Ê
Ë
Á

ˆ
¯
˜

Ê
ËÁ

ˆ
¯̃

+
-Ê

Ë
Á

ˆ
¯
˜

È

Î

Í
Í
Í
Í
Í

˘

˚

˙G

G

1

2

2

2

˙̇
˙
˙
˙

- • < < •

-
+Ê

Ë
Á

ˆ
¯
˜

n 1

2

; ,x

where G ◊() is the Gamma function.

Examples

Create a t Location-Scale Distribution Object Using Default Parameters

Create a t location scale distribution object using the default parameter values.

pd = makedist('tLocationScale')

pd =

 prob.tLocationScaleDistribution class

22-4843

 tLocationScaleDistribution

 t Location-Scale distribution

 mu = 0

 sigma = 1

 nu = 5

Create a t Location-Scale Distribution Object Using Specified Parameters

Create a t location-scale distribution object by specifying the parameter values.

pd = makedist('tLocationScale','mu',-2,'sigma',1,'nu',20)

pd =

 tLocationScaleDistribution

 t Location-Scale distribution

 mu = -2

 sigma = 1

 nu = 20

Compute the interquartile range of the distribution.

r = iqr(pd)

r =

 1.3739

See Also
dfittool | fitdist | makedist

More About
• “t Location-Scale Distribution”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-4844

prob.ToolboxFittableParametricDistribution class
Package: prob
Superclasses: prob.TruncatableDistribution

Toolbox-integrated fittable parametric probability distribution object

Description
Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Methods
mean

Mean of probability distribution object
negloglik

Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

 prob.ToolboxFittableParametricDistribution class

22-4845

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

See Also
dfittool | fitdist | makedist

More About
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-4846

tpdf
Student's t probability density function

Syntax

y = tpdf(x,nu)

Description

y = tpdf(x,nu) returns the probability density function (pdf) of the Student's t
distribution at each of the values in x using the corresponding degrees of freedom in nu.
x and nu can be vectors, matrices, or multidimensional arrays that have the same size.
A scalar input is expanded to a constant array with the same dimensions as the other
inputs.

Examples

Compute Student's t pdf

The mode of the Student's t distribution is at x = 0. This example shows that the value of
the function at the mode is an increasing function of the degrees of freedom.

tpdf(0,1:6)

ans =

 0.3183 0.3536 0.3676 0.3750 0.3796 0.3827

The t distribution converges to the standard normal distribution as the degrees of
freedom approaches infinity. How good is the approximation for equal to 30?

difference = tpdf(-2.5:2.5,30)-normpdf(-2.5:2.5)

difference =

 tpdf

22-4847

 0.0035 -0.0006 -0.0042 -0.0042 -0.0006 0.0035

More About

Student’s t pdf

The probability density function (pdf) of the Student's t distribution is

y f x

x

= =

+









 +











+
(|)n

n

n np

n

n

Γ

Γ

1

2

2

1 1

1
2

1

2

where ν is the degrees of freedom and Γ(·) is the Gamma function. The result y is the
probability of observing a particular value of x from a Student’s t distribution with ν
degrees of freedom.
• “Student's t Distribution” on page B-146

See Also
tcdf | tinv | tstat | trnd | pdf

22 Functions — Alphabetical List

22-4848

training
Class: cvpartition

Training indices for cross-validation

Syntax

idx = training(c)

idx = training(c,i)

Description

idx = training(c) returns the logical vector idx of training indices for an object c of
the cvpartition class of type 'holdout' or 'resubstitution'.

If c.Type is 'holdout', idx specifies the observations in the training set.

If c.Type is 'resubstitution', idx specifies all observations.

idx = training(c,i) returns the logical vector idx of training indices for repetition i
of an object c of the cvpartition class of type 'kfold' or 'leaveout'.

If c.Type is 'kfold', idx specifies the observations in the training set in fold i.

If c.Type is 'leaveout', idx specifies the observations left in at repetition i.

Examples

Identify the training indices in the first fold of a partition of 10 observations for 3-fold
cross-validation:

c = cvpartition(10,'kfold',3)

c =

K-fold cross validation partition

 N: 10

 NumTestSets: 3

 training

22-4849

 TrainSize: 7 6 7

 TestSize: 3 4 3

training(c,1)

ans =

 0

 0

 1

 1

 1

 1

 1

 1

 0

 1

See Also
cvpartition | test

22 Functions — Alphabetical List

22-4850

TrainSize property
Class: cvpartition

Size of each training set

Description

Value is a vector in partitions of type 'kfold' and 'leaveout'.
Value is a scalar in partitions of type 'holdout' and 'resubstitution'.

See Also
type

 TreeArgs property

22-4851

TreeArgs property
Class: TreeBagger

Cell array of arguments for fitctree or fitrtree

Description

The TreeArgs property is a cell array of arguments for fitctree or fitrtree.
TreeBagger uses these arguments in growing new trees for the ensemble.

See Also
ClassificationTree | RegressionTree | TreeBagger | fitctree | fitrtree

22 Functions — Alphabetical List

22-4852

TreeBagger class

Bootstrap aggregation for ensemble of decision trees

Description

TreeBagger bags an ensemble of decision trees for either classification or regression.
Bagging stands for bootstrap aggregation. Every tree in the ensemble is grown on an
independently drawn bootstrap replica of input data. Observations not included in
this replica are "out of bag" for this tree. To compute prediction of an ensemble of trees
for unseen data, TreeBagger takes an average of predictions from individual trees.
To estimate the prediction error of the bagged ensemble, you can compute predictions
for each tree on its out-of-bag observations, average these predictions over the entire
ensemble for each observation and then compare the predicted out-of-bag response with
the true value at this observation.

TreeBagger relies on the ClassificationTree and RegressionTree
functionality for growing individual trees. In particular, ClassificationTree and
RegressionTree accepts the number of features selected at random for each decision
split as an optional input argument.

The compact method returns an object of another class, CompactTreeBagger,
with sufficient information to make predictions using new data. This information
includes the tree ensemble, variable names, and class names (for classification).
CompactTreeBagger requires less memory than TreeBagger, but only TreeBagger
has methods for growing more trees for the ensemble. Once you grow an ensemble of
trees using TreeBagger and no longer need access to the training data, you can opt to
work with the compact version of the trained ensemble from then on.

Construction

.TreeBagger
Create ensemble of bagged decision trees

 TreeBagger class

22-4853

Methods

append
Append new trees to ensemble

compact
Compact ensemble of decision trees

error
Error (misclassification probability or MSE)

fillProximities
Proximity matrix for training data

growTrees
Train additional trees and add to ensemble

margin
Classification margin

mdsProx
Multidimensional scaling of proximity
matrix

meanMargin
Mean classification margin

oobError
Out-of-bag error

oobMargin
Out-of-bag margins

oobMeanMargin
Out-of-bag mean margins

oobPredict
Ensemble predictions for out-of-bag
observations

predict
Predict response

22 Functions — Alphabetical List

22-4854

Properties

ClassNames

A cell array containing the class names for the response variable Y. This property is
empty for regression trees.

ComputeOOBPrediction

A logical flag specifying whether out-of-bag predictions for training observations should
be computed. The default is false.

If this flag is true, the following properties are available:

• OOBIndices

• OOBInstanceWeight

If this flag is true, the following methods can be called:

• oobError

• oobMargin

• oobMeanMargin

See also oobError, OOBIndices, OOBInstanceWeight, oobMargin, oobMeanMargin.

ComputeOOBVarImp

A logical flag specifying whether out-of-bag estimates of variable importance should be
computed. The default is false. If this flag is true, then ComputeOOBPrediction is
true as well.

If this flag is true, the following properties are available:

• OOBPermutedVarDeltaError

• OOBPermutedVarDeltaMeanMargin

• OOBPermutedVarCountRaiseMargin

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (i.e., the rows correspond to the true class and the columns correspond to the

 TreeBagger class

22-4855

predicted class). The order of the rows and columns of Cost corresponds to the order of
the classes in ClassNames. The number of rows and columns in Cost is the number of
unique classes in the response.

This property is:

• read-only
• empty ([]) for ensembles of regression trees

DefaultYfit

Default value returned by predict and oobPredict. The DefaultYfit property
controls what predicted value is returned when no prediction is possible. For example,
when oobPredict needs to predict for an observation that is in-bag for all trees in the
ensemble.

• For classification, you can set this property to either '' or 'MostPopular'. If you
choose 'MostPopular' (the default), the property value becomes the name of the
most probably class in the training data. If you choose '', the in-bag observations are
excluded from computation of the out-of-bag error and margin.

• For regression, you can set this property to any numeric scalar. The default value is
the mean of the response for the training data. If you set this property to NaN, the in-
bag observations are excluded from computation of the out-of-bag error and margin.

DeltaCritDecisionSplit

A numeric array of size 1-by-Nvars of changes in the split criterion summed over splits
on each variable, averaged across the entire ensemble of grown trees.

See also ClassificationTree.predictorImportance and
RegressionTree.predictorImportance.

FBoot

Fraction of observations that are randomly selected with replacement for each
bootstrap replica. The size of each replica is Nobs×FBoot, where Nobs is the number of
observations in the training set. The default value is 1.

MergeLeaves

A logical flag specifying whether decision tree leaves with the same parent are merged
for splits that do not decrease the total risk. The default value is false.

22 Functions — Alphabetical List

22-4856

Method

Method used by trees. The possible values are 'classification' for classification
ensembles, and 'regression' for regression ensembles.

MinLeaf

Minimum number of observations per tree leaf. By default, MinLeaf is 1 for
classification and 5 for regression. For decision tree training, the MinParent value is set
equal to 2*MinLeaf.

NTrees

Scalar value equal to the number of decision trees in the ensemble.

NVarSplit

A numeric array of size 1-by-Nvars, where every element gives a number of splits on this
predictor summed over all trees.

NVarToSample

Number of predictor or feature variables to select at random for each decision split. By
default, NVarToSample is equal to the square root of the total number of variables for
classification, and one third of the total number of variables for regression.

OOBIndices

Logical array of size Nobs-by-NTrees, where Nobs is the number of observations in
the training data and NTrees is the number of trees in the ensemble. A true value
for the (i,j) element indicates that observation i is out-of-bag for tree j. In other words,
observation i was not selected for the training data used to grow tree j.

OOBInstanceWeight

Numeric array of size Nobs-by-1 containing the number of trees used for computing
the out-of-bag response for each observation. Nobs is the number of observations in the
training data used to create the ensemble.

OOBPermutedVarCountRaiseMargin

A numeric array of size 1-by-Nvars containing a measure of variable importance for each
predictor variable (feature). For any variable, the measure is the difference between

 TreeBagger class

22-4857

the number of raised margins and the number of lowered margins if the values of that
variable are permuted across the out-of-bag observations. This measure is computed for
every tree, then averaged over the entire ensemble and divided by the standard deviation
over the entire ensemble. This property is empty for regression trees.

OOBPermutedVarDeltaError

A numeric array of size 1-by-Nvars containing a measure of importance for each predictor
variable (feature). For any variable, the measure is the increase in prediction error if the
values of that variable are permuted across the out-of-bag observations. This measure
is computed for every tree, then averaged over the entire ensemble and divided by the
standard deviation over the entire ensemble.

OOBPermutedVarDeltaMeanMargin

A numeric array of size 1-by-Nvars containing a measure of importance for each predictor
variable (feature). For any variable, the measure is the decrease in the classification
margin if the values of that variable are permuted across the out-of-bag observations.
This measure is computed for every tree, then averaged over the entire ensemble and
divided by the standard deviation over the entire ensemble. This property is empty for
regression trees.

OutlierMeasure

A numeric array of size Nobs-by-1, where Nobs is the number of observations in the
training data, containing outlier measures for each observation.

See also CompactTreeBagger.OutlierMeasure.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior
corresponds to the order of the classes in ClassNames.

This property is:

• read-only
• empty ([]) for ensembles of regression trees

Proximity

A numeric matrix of size Nobs-by-Nobs, where Nobs is the number of observations in
the training data, containing measures of the proximity between observations. For

22 Functions — Alphabetical List

22-4858

any two observations, their proximity is defined as the fraction of trees for which these
observations land on the same leaf. This is a symmetric matrix with 1s on the diagonal
and off-diagonal elements ranging from 0 to 1.

See also CompactTreeBagger.proximity.

Prune

The Prune property is true if decision trees are pruned and false if they are not. Pruning
decision trees is not recommended for ensembles. The default value is false.

See also ClassificationTree.prune and RegressionTree.prune.

SampleWithReplacement

A logical flag specifying if data are sampled for each decision tree with replacement. True
if TreeBagger samples data with replacement and false otherwise. True by default.

TreeArgs

Cell array of arguments for fitctree or fitrtree. These arguments are used by
TreeBagger when growing new trees for the ensemble.

Trees

A cell array of size NTrees-by-1 containing the trees in the ensemble.

See also NTrees.

VarAssoc

A matrix of size Nvars-by-Nvars with predictive measures of variable association,
averaged across the entire ensemble of grown trees. If you grew the ensemble setting
'surrogate' to 'on', this matrix for each tree is filled with predictive measures
of association averaged over the surrogate splits. If you grew the ensemble setting
'surrogate' to 'off' (default), VarAssoc is diagonal.

VarNames

A cell array containing the names of the predictor variables (features). TreeBagger
takes these names from the optional 'names' parameter. The default names are 'x1',
'x2', etc.

 TreeBagger class

22-4859

W

Numeric vector of weights of length Nobs, where Nobs is the number of observations
(rows) in the training data. TreeBagger uses these weights for growing every decision
tree in the ensemble. The default W is ones(Nobs,1).

X

A numeric matrix of size Nobs-by-Nvars, where Nobs is the number of observations
(rows) and Nvars is the number of variables (columns) in the training data. This matrix
contains the predictor (or feature) values.

Y

An array of true class labels for classification, or response values for regression. Y can be
a numeric column vector, a character matrix, or a cell array of strings.

Copy Semantics

Value. To learn how this affects your use of the class, see Comparing Handle and Value
Classes in the MATLAB Object-Oriented Programming documentation.

How To
• “Ensemble Methods” on page 16-68
• “Classification Trees and Regression Trees” on page 16-33
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-4860

TreeBagger
Class: TreeBagger

Create ensemble of bagged decision trees

Syntax

B = TreeBagger(NTrees,X,Y)

B = TreeBagger(NTrees,X,Y,'param1',val1,'param2',val2,...)

Description

B = TreeBagger(NTrees,X,Y) creates an ensemble B of NTrees decision trees for
predicting response Y as a function of predictors X. By default TreeBagger builds an
ensemble of classification trees. The function can build an ensemble of regression trees by
setting the optional input argument 'method' to 'regression'.

X is a numeric matrix of training data. Each row represents an observation and
each column represents a predictor or feature. Y is an array of true class labels for
classification or numeric function values for regression. True class labels can be a
numeric vector, character matrix, vector cell array of strings or categorical vector.
TreeBagger converts labels to a cell array of strings for classification.

For more information on grouping variables, see “Grouping Variables” on page 2-52.

B = TreeBagger(NTrees,X,Y,'param1',val1,'param2',val2,...) specifies
optional parameter name/value pairs:

'FBoot' Fraction of input data to sample with replacement from the
input data for growing each new tree. Default value is 1.

'Cost' Square matrix C, where C(i,j) is the cost of classifying a point
into class j if its true class is i (i.e., the rows correspond to the
true class and the columns correspond to the predicted class).
The order of the rows and columns of Cost corresponds to the
order of the classes in the ClassNames property of the trained
TreeBagger model B.

 TreeBagger

22-4861

Alternatively, cost can be a structure S having two fields:

• S.ClassNames containing the group names as a categorical
variable, character array, or cell array of strings

• S.ClassificationCosts containing the cost matrix C

The default value is C(i,j) = 1 if i ~= j, and C(i,j) = 0 if
i = j.

If Cost is highly skewed, then, for in-bag samples, the software
oversamples unique observations from the class that has a large
penalty. For smaller sample sizes, this might cause a very low
relative frequency of out-of-bag observations from the class that
has a large penalty. Therefore, the estimated out-of-bag error is
highly variable, and might be difficult to interpret.

'SampleWithReplacement''on' to sample with replacement or 'off' to sample without
replacement. If you sample without replacement, you need to set
'FBoot' to a value less than one. Default is 'on'.

'OOBPred' 'on' to store info on what observations are out of bag for each
tree. This info can be used by oobPredict to compute the
predicted class probabilities for each tree in the ensemble.
Default is 'off'.

'OOBVarImp' 'on' to store out-of-bag estimates of feature importance in
the ensemble. Default is 'off'. Specifying 'on' also sets the
'OOBPred' value to 'on'.

'Method' Either 'classification' or 'regression'. Regression
requires a numeric Y.

'NVarToSample' Number of variables to select at random for each decision
split. Default is the square root of the number of variables
for classification and one third of the number of variables for
regression. Valid values are 'all' or a positive integer. Setting
this argument to any valid value but 'all' invokes Breiman's
'random forest' algorithm.

'NPrint' Number of training cycles (grown trees) after which TreeBagger
displays a diagnostic message showing training progress. Default
is no diagnostic messages.

22 Functions — Alphabetical List

22-4862

'MinLeaf' Minimum number of observations per tree leaf. Default is 1 for
classification and 5 for regression.

'Options' A structure that specifies options that govern the computation
when growing the ensemble of decision trees. One option
requests that the computation of decision trees on multiple
bootstrap replicates uses multiple processors, if the Parallel
Computing Toolbox is available. Two options specify the random
number streams to use in selecting bootstrap replicates. You can
create this argument with a call to statset. You can retrieve
values of the individual fields with a call to statget. Applicable
statset parameters are:

• 'UseParallel' — If true and if a parpool of the Parallel
Computing Toolbox is open, compute decision trees drawn
on separate boostrap replicates in parallel. If the Parallel
Computing Toolbox is not installed, or a parpool is not open,
computation occurs in serial mode. Default is false, or serial
computation.

• 'UseSubstreams' — If true select each bootstrap replicate
using a separate Substream of the random number generator
(aka Stream). This option is available only with RandStream
types that support Substreams: 'mlfg6331_64' or
'mrg32k3a'. Default is false, do not use a different
Substream to compute each bootstrap replicate.

• Streams — A RandStream object or cell array of such
objects. If you do not specify Streams, TreeBagger uses the
default stream or streams. If you choose to specify Streams,
use a single object except in the case

• You have an open Parallel pool
• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel
pool.

 TreeBagger

22-4863

'Prior' Prior probabilities for each class. Specify as one of:

• A string:

• 'Empirical' determines class probabilities from class
frequencies in Y. If you pass observation weights, they are
used to compute the class probabilities. This is the default.

• 'Uniform' sets all class probabilities equal.
• A vector (one scalar value for each class). The order of the

elements Prior corresponds to the order of the classes in the
ClassNames property of the trained TreeBagger model B.

• A structure S with two fields:

• S.ClassNames containing the class names as a
categorical variable, character array, or cell array of
strings

• S.ClassProbs containing a vector of corresponding
probabilities

If you set values for both Weights and Prior, the weights are
renormalized to add up to the value of the prior probability in the
respective class.

If Prior is highly skewed, then, for in-bag samples, the software
oversamples unique observations from the class that has a large
prior probability. For smaller sample sizes, this might cause a
very low relative frequency of out-of-bag observations from the
class that has a large prior probability. Therefore, the estimated
out-of-bag error is highly variable, and might be difficult to
interpret.

22 Functions — Alphabetical List

22-4864

'CategoricalPredictors'Categorical predictors list, specified as the comma-separated
pair consisting of 'CategoricalPredictors' and one of the
following.

• A numeric vector with indices from 1 to p, where p is the
number of columns of X.

• A logical vector of length p, where a true entry means that
the corresponding column of X is a categorical variable.

• A cell array of strings, where each element in the array is the
name of a predictor variable. The names must match entries
in PredictorNames values.

• A character matrix, where each row of the matrix is a name
of a predictor variable. The names must match entries in
PredictorNames values. Pad the names with extra blanks
so each row of the character matrix has the same length.

• 'all', meaning all predictors are categorical.

In addition to the optional arguments above, this method accepts all optional
fitctree and fitrtree arguments with the exception of 'minparent'. Refer to the
documentation for fitctree and fitrtree for more detail.

Examples

Train a Bagged Ensemble of Classification Trees

Load Fisher's iris data set.

load fisheriris

Train a bagged ensemble of classification trees using the data and specifying 50 weak
learners. Store which observations are out of bag for each tree.

rng(1); % For reproducibility

BaggedEnsemble = TreeBagger(50,meas,species,'OOBPred','On')

BaggedEnsemble =

 TreeBagger

22-4865

 TreeBagger

Ensemble with 50 bagged decision trees:

 Training X: [150x4]

 Training Y: [150x1]

 Method: classification

 Nvars: 4

 NVarToSample: 2

 MinLeaf: 1

 FBoot: 1

 SampleWithReplacement: 1

 ComputeOOBPrediction: 1

 ComputeOOBVarImp: 0

 Proximity: []

 ClassNames: 'setosa' 'versicolor' 'virginica'

BaggedEnsemble is a TreeBagger ensemble. BaggedEnsemble.OOBIndices stores
the out-of-bag indices as a matrix of logical values.

Plot the out-of-bag error over the number of grown classification trees.

oobErrorBaggedEnsemble = oobError(BaggedEnsemble);

plot(oobErrorBaggedEnsemble)

xlabel 'Number of grown trees';

ylabel 'Out-of-bag classification error';

22 Functions — Alphabetical List

22-4866

The out-of-bag error decreases with the number of grown trees.

To label out-of-bag observations, pass BaggedEnsemble to oobPredict.

Algorithms

TreeBagger generates in-bag samples by oversampling classes with large
misclassification costs and undersampling classes with small misclassification costs.
Consequently, out-of-bag samples have fewer observations from classes with large
misclassification costs and more observations from classes with small misclassification
costs. If you train a classification ensemble using a small data set and a highly skewed

 TreeBagger

22-4867

cost matrix, then the number of out-of-bag observations per class might be very low.
Therefore, the estimated out-of-bag error might have a large variance and might be
difficult to interpret. The same phenomenon can occur for classes with large prior
probabilities.

Tips

Avoid large estimated out-of-bag error variances by setting a more balanced
misclassification cost matrix or a less skewed prior probability vector.

See Also
TreeBagger | statset | fitctree | fitrtree | CompactTreeBagger

How To
• “Ensemble Methods” on page 16-68
• “Grouping Variables” on page 2-52

22 Functions — Alphabetical List

22-4868

treedisp
Plot tree

Compatibility

treedisp will be removed in a future release. Use fitctree or fitrtree to grow a
tree. Then use view (ClassificationTree) or view (RegressionTree) instead of
treedisp.

Syntax

treedisp(t)

treedisp(t,param1,val1,param2,val2,...)

Description

treedisp(t) takes as input a decision tree t as computed by the treefit function, and
displays it in a figure window. Each branch in the tree is labeled with its decision rule,
and each terminal node is labeled with the predicted value for that node.

For each branch node, the left child node corresponds to the points that satisfy the
condition, and the right child node corresponds to the points that do not satisfy the
condition.

The Click to display pop-up menu at the top of the figure enables you to display more
information about each node, as described in the following table.

Menu Choice Displays

Identity The node number, whether the node is a branch or a leaf, and
the rule that governs the node

Variable ranges The range of each of the predictor variables for that node
Node statistics Descriptive statistics for the observations falling into this

node

 treedisp

22-4869

After you select the type of information you want, click any node to display the
information for that node.

The Pruning level button displays the number of levels that have been cut from the tree
and the number of levels in the unpruned tree. For example, 1 of 6 indicates that the
unpruned tree has six levels, and that one level has been cut from the tree. Use the spin
button to change the pruning level.

treedisp(t,param1,val1,param2,val2,...) specifies optional parameter name-
value pairs, listed in the following table.

Parameter Value

'names' A cell array of names for the predictor variables, in the order
in which they appear in the X matrix from which the tree was
created (see treefit)

'prunelevel' Initial pruning level to display

Examples

Create and graph classification tree for Fisher's iris data. The names in this example are
abbreviations for the column contents (sepal length, sepal width, petal length, and petal
width).

 load fisheriris;

 t = treefit(meas,species);

 treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

22 Functions — Alphabetical List

22-4870

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
treefit | treeprune | treetest

 treefit

22-4871

treefit

Fit tree

Note: treefit will be removed in a future release. Use fitctree or fitrtree instead.

Syntax

t = treefit(X,y)

t = treefit(X,y,param1,val1,param2,val2,...)

Description

t = treefit(X,y) creates a decision tree t for predicting response y as a function of
predictors X. X is an n-by-m matrix of predictor values. y is either a vector of n response
values (for regression), or a character array or cell array of strings containing n class
names (for classification). Either way, t is a binary tree where each non-terminal node is
split based on the values of a column of X.

t = treefit(X,y,param1,val1,param2,val2,...) specifies optional parameter
name-value pairs. Valid parameter strings are:

The following table lists parameters available for all trees.

Parameter Value

'catidx' Vector of indices of the columns of X. treefit treats these
columns as unordered categorical values.

'method' Either 'classification' (default if y is text) or
'regression' (default if y is numeric).

'splitmin' A number n such that impure nodes must have n or more
observations to be split (default 10).

22 Functions — Alphabetical List

22-4872

Parameter Value

'prune' 'on' (default) to compute the full tree and a sequence of
pruned subtrees, or 'off' for the full tree without pruning.

The following table lists parameters available for classification trees only.

Parameter Value

'cost' p-by-p matrix C, where p is the number of distinct response
values or class names in the input y. C(i,j) is the cost of
classifying a point into class j if its true class is i. (The default
has C(i,j)=1 if i~=j, and C(i,j)=0 if i=j.) C can also be
a structure S with two fields: S.group containing the group
names, and S.cost containing a matrix of cost values.

'splitcriterion' Criterion for choosing a split: either 'gdi' (default) for Gini's
diversity index, 'twoing' for the twoing rule, or 'deviance'
for maximum deviance reduction.

'priorprob' Prior probabilities for each class, specified as a vector (one
value for each distinct group name) or as a structure S with
two fields: S.group containing the group names, and S.prob
containing a vector of corresponding probabilities.

Examples

Create a classification tree for Fisher's iris data:

 load fisheriris;

 t = treefit(meas,species);

 treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

 treefit

22-4873

More About
• “Grouping Variables” on page 2-52

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

22 Functions — Alphabetical List

22-4874

See Also
treedisp | treetest

 treeprune

22-4875

treeprune
Prune tree

Compatibility

treeprune will be removed in a future release. Use fitctree or fitrtree to grow a
tree. Then use prune (ClassificationTree) or prune (RegressionTree) instead of
treeprune.

Syntax

t2 = treeprune(t1,'level',level)

t2 = treeprune(t1,'nodes',nodes)

t2 = treeprune(t1)

Description

t2 = treeprune(t1,'level',level) takes a decision tree t1 as created by the
treefit function, and a pruning level, and returns the decision tree t2 pruned to that
level. Setting level to 0 means no pruning. Trees are pruned based on an optimal
pruning scheme that first prunes branches giving less improvement in error cost.

t2 = treeprune(t1,'nodes',nodes) prunes the nodes listed in the nodes vector
from the tree. Any t1 branch nodes listed in nodes become leaf nodes in t2, unless their
parent nodes are also pruned. The treedisp function can display the node numbers for
any node you select.

t2 = treeprune(t1) returns the decision tree t2 that is the same as t1, but with
the optimal pruning information added. This is useful only if you created t1 by pruning
another tree, or by using the treefit function with pruning set 'off'. If you plan to
prune a tree multiple times, it is more efficient to create the optimal pruning sequence
first.

Pruning is the process of reducing a tree by turning some branch nodes into leaf nodes,
and removing the leaf nodes under the original branch.

22 Functions — Alphabetical List

22-4876

Examples

Display the full tree for Fisher's iris data, as well as the next largest tree from the
optimal pruning sequence:

 load fisheriris;

 t1 = treefit(meas,species,'splitmin',5);

 treedisp(t1,'names',{'SL' 'SW' 'PL' 'PW'});

 t2 = treeprune(t1,'level',1);

 treedisp(t2,'names',{'SL' 'SW' 'PL' 'PW'});

 treeprune

22-4877

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
treefit | treetest | treedisp

22 Functions — Alphabetical List

22-4878

Trees property
Class: TreeBagger

Decision trees in ensemble

Description

The Trees property is a cell array of size NTrees-by-1 containing the trees in the
ensemble.

See Also
NTrees

 treetest

22-4879

treetest
Error rate

Syntax

cost = treetest(t,'resubstitution')

cost = treetest(t,'test',X,y)

cost = treetest(t,'crossvalidate',X,y)

[cost,secost,ntnodes,bestlevel] = treetest(...)

[...] = treetest(...,param1,val1,param2,val2,...)

Compatibility

treetest will be removed in a future release. Use fitctree or fitrtree to grow a
tree. Then use resubLoss (ClassificationTree) or resubLoss (RegressionTree)
instead of treetest(T,'resubstitution'). Use loss (ClassificationTree)
or loss (RegressionTree) instead of treetest(T,'test',X,Y). Use
cvLoss (ClassificationTree) or cvLoss (RegressionTree) instead of
treetest(T,'crossvalidate',X,Y).

Description

cost = treetest(t,'resubstitution') computes the cost of the tree t using a
resubstitution method. t is a decision tree as created by the treefit function. The
cost of the tree is the sum over all terminal nodes of the estimated probability of that
node times the node's cost. If t is a classification tree, the cost of a node is the sum of
the misclassification costs of the observations in that node. If t is a regression tree, the
cost of a node is the average squared error over the observations in that node. cost
is a vector of cost values for each subtree in the optimal pruning sequence for t. The
resubstitution cost is based on the same sample that was used to create the original tree,
so it underestimates the likely cost of applying the tree to new data.

cost = treetest(t,'test',X,y) uses the predictor matrix X and response y as a
test sample, applies the decision tree t to that sample, and returns a vector cost of cost

22 Functions — Alphabetical List

22-4880

values computed for the test sample. X and y should not be the same as the learning
sample, which is the sample that was used to fit the tree t.

cost = treetest(t,'crossvalidate',X,y) uses 10-fold cross-validation to
compute the cost vector. X and y should be the learning sample, which is the sample that
was used to fit the tree t. The function partitions the sample into 10 subsamples, chosen
randomly but with roughly equal size. For classification trees, the subsamples also have
roughly the same class proportions. For each subsample, treetest fits a tree to the
remaining data and uses it to predict the subsample. It pools the information from all
subsamples to compute the cost for the whole sample.

[cost,secost,ntnodes,bestlevel] = treetest(...) also returns the vector
secost containing the standard error of each cost value, the vector ntnodes containing
number of terminal nodes for each subtree, and the scalar bestlevel containing
the estimated best level of pruning. bestlevel = 0 means no pruning, i.e., the full
unpruned tree. The best level is the one that produces the smallest tree that is within
one standard error of the minimum-cost subtree.

[...] = treetest(...,param1,val1,param2,val2,...) specifies optional
parameter name-value pairs chosen from the following table.

Parameter Value

'nsamples' The number of cross-validations samples (default is 10).
'treesize' Either 'se' (default) to choose the smallest tree whose cost is

within one standard error of the minimum cost, or 'min' to
choose the minimal cost tree.

Examples

Find the best tree for Fisher's iris data using cross-validation. The solid line shows the
estimated cost for each tree size, the dashed line marks one standard error above the
minimum, and the square marks the smallest tree under the dashed line.

% Start with a large tree.

load fisheriris;

t = treefit(meas,species','splitmin',5);

% Find the minimum-cost tree.

[c,s,n,best] = treetest(t,'cross',meas,species);

 treetest

22-4881

tmin = treeprune(t,'level',best);

% Plot smallest tree within 1 std of minimum cost tree.

[mincost,minloc] = min(c);

plot(n,c,'b-o',...

 n(best+1),c(best+1),'bs',...

 n,(mincost+s(minloc))*ones(size(n)),'k--');

xlabel('Tree size (number of terminal nodes)')

ylabel('Cost')

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

22 Functions — Alphabetical List

22-4882

See Also
treefit | treedisp

 treeval

22-4883

treeval
Predicted responses

Compatibility

treeval will be removed in a future release. Use fitctree or fitrtree to grow a tree.
Then use predict (ClassificationTree) or predict (RegressionTree) instead of
treeval.

Syntax

yfit = treeval(t,X)

yfit = treeval(t,X,subtrees)

[yfit,node] = treeval(...)

[yfit,node,cname] = treeval(...)

Description

yfit = treeval(t,X) takes a classification or regression tree t as produced by the
treefit function and a matrix X of predictor values, and produces a vector yfit of
predicted response values. For a regression tree, yfit(i) is the fitted response value
for a point having the predictor values X(i,:). For a classification tree, yfit(i) is the
class number into which the tree would assign the point with data X(i,:). To convert
the number into a class name, use the third output argument, cname (described below).

yfit = treeval(t,X,subtrees) takes an additional vector subtrees of pruning
levels, with 0 representing the full, unpruned tree. T must include a pruning sequence
as created by the treefit or prunetree function. If subtree has k elements and X has
n rows, the output yfit is an n-by-k matrix, with the jth column containing the fitted
values produced by the subtrees(j) subtree. subtrees must be sorted in ascending
order.

[yfit,node] = treeval(...) also returns an array node of the same size as yfit
containing the node number assigned to each row of X. The treedisp function can
display the node numbers for any node you select.

22 Functions — Alphabetical List

22-4884

[yfit,node,cname] = treeval(...) is valid only for classification trees. It returns
a cell array cname containing the predicted class names.

Examples

Find the predicted classifications for Fisher's iris data:

load fisheriris;

t = treefit(meas,species); % Create decision tree

sfit = treeval(t,meas); % Find assigned class numbers

sfit = t.classname(sfit); % Get class names

mean(strcmp(sfit,species)) % Proportion in correct class

ans =

 0.9800

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
treefit | treeprune | treetest

 prob.TriangularDistribution class

22-4885

prob.TriangularDistribution class

Package: prob
Superclasses: prob.ParametricTruncatableDistribution

Triangular probability distribution object

Description

prob.TriangularDistribution is an object consisting of parameters and a model
description for a triangular probability distribution. Create a probability distribution
object with specified parameters using makedist.

Construction

pd = makedist('Triangular') creates a triangular probability distribution object
using the default parameter values.

pd = makedist('Triangular','a',a,'b',b,'c',c) creates a triangular
distribution object using the specified parameter values.

Input Arguments

a — Lower limit
0 (default) | scalar value

Lower limit for the triangular distribution, specified as a scalar value.
Data Types: single | double

b — Peak location
0.5 (default) | scalar value

Peak location for the triangular distribution, specified as a scalar value greater than or
equal to a.
Data Types: single | double

22 Functions — Alphabetical List

22-4886

c — Upper limit
1 (default) | scalar value

Upper limit for the triangular distribution, specified as a scalar value greater than or
equal to b.
Data Types: single | double

Properties

a — Lower limit
scalar value

Lower limit for the triangular distribution, stored as a scalar value.
Data Types: single | double

b — Peak location
scalar value

Location of the peak for the triangular distribution, stored as a scalar value greater than
or equal to a.

Data Types: single | double

c — Upper limit
scalar value

Upper limit for the triangular distribution, stored as a scalar value greater than or equal
to b.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

IsTruncated — Logical flag for truncated distribution
0 | 1

 prob.TriangularDistribution class

22-4887

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

22 Functions — Alphabetical List

22-4888

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

 prob.TriangularDistribution class

22-4889

Definitions

Triangular Distribution

The triangular distribution is frequently used in simulations when limited sample data is
available. The lower and upper limits represent the smallest and largest values, and the
location of the peak represents an estimate of the mode.

The triangular distribution uses the following parameters.

Parameter Description Support

a Lower limit a b£

b Peak location a b c£ £

c Upper limit c b≥

The probability density function (pdf) is

f x a b c

x a

c a b a
a x b

c x

c a c b
b x c

x

(| , ,)

;

;

;

=

-()
-() -()

£ £

-()
-() -()

< £

2

2

0 << >

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô a x c,

.

and

f x a b c
c x

c a c b
b x c| , , ; .() =

-()

-() -()
< £

2

The value of the pdf is 0 when x < a or x > c.

Examples

Create a Triangular Distribution Object Using Default Parameters

Create a triangular distribution object using the default parameter values.

22 Functions — Alphabetical List

22-4890

pd = makedist('Triangular')

pd =

 TriangularDistribution

A = 0, B = 0.5, C = 1

Create a Triangular Distribution Object Using Specified Parameters

Create a triangular distribution object by specifying parameter values.

pd = makedist('Triangular', 'a',-2,'b',1,'c',5)

pd =

 TriangularDistribution

A = -2, B = 1, C = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 1.3333

See Also
makedist

More About
• Class Attributes
• Property Attributes

 trimmean

22-4891

trimmean

Mean excluding outliers

Syntax

m = trimmean(X,percent)

trimmean(X,percent,dim)

m = trimmean(X,percent,flag)

m = trimmean(x,percent,flag,dim)

Description

m = trimmean(X,percent) calculates the trimmed mean of the values in X. For a
vector input, m is the mean of X, excluding the highest and lowest k data values, where
k=n*(percent/100)/2 and where n is the number of values in X. For a matrix input,
m is a row vector containing the trimmed mean of each column of X. For n-D arrays,
trimmean operates along the first non-singleton dimension. percent is a scalar between
0 and 100.

trimmean(X,percent,dim) takes the trimmed mean along dimension dim of X.

m = trimmean(X,percent,flag) controls how to trim when k is not an integer. flag
can be chosen from the following:

'round' Round k to the nearest integer (round to a smaller integer if k
is a half integer). This is the default.

'floor' Round k down to the next smaller integer.
'weight' If k=i+f where i is the integer part and f is the fraction,

compute a weighted mean with weight (1-f) for the (i+1)th
and (n-i)th values, and full weight for the values between
them.

m = trimmean(x,percent,flag,dim) takes the trimmed mean along dimension dim
of x.

22 Functions — Alphabetical List

22-4892

Examples

Efficiency of the Trimmed Mean

Generate a 100-by-100 matrix of random numbers from the standard normal
distribution. This represents 100 samples, each containing 100 data points.

rng default; % For reproducibility

x = normrnd(0,1,100,100);

Compute the sample mean and the 10% trimmed mean for each column of the data
matrix.

m = mean(x);

trim = trimmean(x,10);

Compute the efficiency of the 10% trimmed mean relative to the sample mean for the
data.

sm = std(m);

strim = std(trim);

efficiency = (sm/strim).^2

efficiency =

 0.9663

Trimmed Mean for Distributions with Outliers

Generate random data from the t location-scale distribution, which tends to have
outliers.

rng default; % For reproducibility

x = trnd(1,40,1);

Visualize the distribution using a normal probability plot.

probplot(x)

 trimmean

22-4893

Although the distribution is symmetric around zero, there are several outliers which will
affect the mean. The trimmed mean is closer to zero, which is more representative of the
data.

mean = mean(x)

tmean = trimmean(x,25)

mean =

 2.7991

tmean =

22 Functions — Alphabetical List

22-4894

 0.8797

More About

Tips

The trimmed mean is a robust estimate of the location of a sample. If there are outliers
in the data, the trimmed mean is a more representative estimate of the center of the
body of the data than the mean. However, if the data is all from the same probability
distribution, then the trimmed mean is less efficient than the sample mean as an
estimator of the location of the data.

See Also
mean | median | geomean | harmmean

 trnd

22-4895

trnd
Student's t random numbers

Syntax

r = trnd(nu)

r = trnd(nu,m,n,...)

r = trnd(nu,[m,n,...])

Description

r = trnd(nu) generates random numbers from Student's t distribution with nu degrees
of freedom. nu can be a vector, a matrix, or a multidimensional array. The size of r is
equal to the size of nu.

r = trnd(nu,m,n,...) or r = trnd(nu,[m,n,...]) generates an m-by-n-by-...
array. The nu parameter can be a scalar or an array of the same size as r.

Examples

Generate Student's t Distribution Random Numbers

r1 = trnd(ones(1,6))

r1 =

 0.2108 7.8450 -11.0511 0.4134 4.3293 -0.8323

r2 = trnd(1:6,[1 6])

r2 =

 8.9290 -0.1908 0.3496 -0.7658 1.3234 -1.2808

22 Functions — Alphabetical List

22-4896

r3 = trnd(3,2,6)

r3 =

 1.3157 0.7010 0.1591 -1.3840 4.1354 0.2442

 0.9789 -2.4700 -1.8884 -0.0116 -0.9496 -0.2340

More About
• “Student's t Distribution” on page B-146

See Also
tpdf | tcdf | tinv | tstat | random

 prob.TruncatableDistribution class

22-4897

prob.TruncatableDistribution class
Package: prob

Truncatable probability distribution object

Description

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-4898

More About
• Class Attributes
• Property Attributes

 truncate

22-4899

truncate
Truncate probability distribution object

Syntax
t = truncate(pd,lower,upper)

Description
t = truncate(pd,lower,upper) returns a probability distribution t, which is the
probability distribution pd truncated to the specified interval with lower limit, lower, and
upper limit, upper.

Examples

Truncate a Probability Distribution

Create a standard normal probability distribution object.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Truncate the distribution to have a lower limit of -2 and an upper limit of 2.

t = truncate(pd,-2,2)

t =

 NormalDistribution

 Normal distribution

 mu = 0

22 Functions — Alphabetical List

22-4900

 sigma = 1

 Truncated to the interval [-2, 2]

Plot the pdf of the original and truncated distributions for a visual comparison.

x = -3:.1:3;

figure;

plot(x,pdf(pd,x),'Color','red','LineWidth',2)

hold on;

plot(x,pdf(t,x),'Color','blue','LineWidth',2)

hold off;

Generate Random Numbers from a Truncated Distribution

Create a standard normal probability distribution object.

 truncate

22-4901

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Truncate the distribution by restricting it to positive values. Set the lower limit to 0 and
the upper limit to infinity.

t = truncate(pd,0,inf)

t =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

 Truncated to the interval [0, Inf]

Generate random numbers from the truncated distribution and visualize with a
histogram.

r = random(t,10000,1);

histogram(r,100)

22 Functions — Alphabetical List

22-4902

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

lower — Lower truncation limit
scalar value

 truncate

22-4903

Lower truncation limit, specified as a scalar value.
Data Types: single | double

upper — Upper truncation limit
scalar value

Upper truncation limit, specified as a scalar value.
Data Types: single | double

Output Arguments

t — Truncated distribution
probability distribution object

Truncated distribution, returned as a probability distribution object. The pdf of t is 0
outside the truncation interval. Inside the truncation interval, the pdf of t is equal to the
pdf of pd, but divided by the probability assigned to that interval by pd.

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-4904

truncate
Class: prob.TruncatableDistribution
Package: prob

Truncate probability distribution object

Syntax

t = truncate(pd,lower,upper)

Description

t = truncate(pd,lower,upper) returns a probability distribution t, which is the
probability distribution pd truncated to the specified interval with lower limit, lower, and
upper limit, upper.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, for fittable distributions, create a probability distribution object by fitting
it to data using fitdist or the Distribution Fitting app.

lower — Lower truncation limit
scalar value

Lower truncation limit, specified as a scalar value.
Data Types: single | double

upper — Upper truncation limit
scalar value

 truncate

22-4905

Upper truncation limit, specified as a scalar value.
Data Types: single | double

Output Arguments

t — Truncated distribution
probability distribution object

Truncated distribution, returned as a probability distribution object. The pdf of t is 0
outside the truncation interval. Inside the truncation interval, the pdf of t is equal to the
pdf of pd, but divided by the probability assigned to that interval by pd.

Examples

Truncate a Probability Distribution

Create a standard normal probability distribution object.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Truncate the distribution to have a lower limit of -2 and an upper limit of 2.

t = truncate(pd,-2,2)

t =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

22 Functions — Alphabetical List

22-4906

 Truncated to the interval [-2, 2]

Plot the pdf of the original and truncated distributions for a visual comparison.

x = -3:.1:3;

figure;

plot(x,pdf(pd,x),'Color','red','LineWidth',2)

hold on;

plot(x,pdf(t,x),'Color','blue','LineWidth',2)

hold off;

Generate Random Numbers from a Truncated Distribution

Create a standard normal probability distribution object.

 truncate

22-4907

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Truncate the distribution by restricting it to positive values. Set the lower limit to 0 and
the upper limit to infinity.

t = truncate(pd,0,inf)

t =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

 Truncated to the interval [0, Inf]

Generate random numbers from the truncated distribution and visualize with a
histogram.

rng default % For reproducibility

r = random(t,10000,1);

histogram(r,100)

22 Functions — Alphabetical List

22-4908

See Also
dfittool | fitdist | makedist

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 tstat

22-4909

tstat
Student's t mean and variance

Syntax

[m,v] = tstat(nu)

Description

[m,v] = tstat(nu) returns the mean of and variance for Student's t distribution using
the degrees of freedom in nu. nu can a vectors, matrix, or multidimensional array. The
returned values for m and v are the same size as nu.

Examples

Compute Student's t Mean and Variance

Compute the mean and variance for Student's t distributions with degrees of freedom nu
equal to 1 through 30.

nu = reshape(1:30,6,5);

[m,v] = tstat(nu)

m =

 NaN 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

v =

 NaN 1.4000 1.1818 1.1176 1.0870

22 Functions — Alphabetical List

22-4910

 NaN 1.3333 1.1667 1.1111 1.0833

 3.0000 1.2857 1.1538 1.1053 1.0800

 2.0000 1.2500 1.1429 1.1000 1.0769

 1.6667 1.2222 1.1333 1.0952 1.0741

 1.5000 1.2000 1.1250 1.0909 1.0714

Note that the variance does not exist for one and two degrees of freedom.

More About

Student’s t Mean and Variance

The mean of the Student’s t distribution is

mean = 0

for degrees of freedom ν greater than 1. If ν equals 1, then the mean is undefined.

The variance of the Student’s t distribution is

var =

-

n

n 2

for degrees of freedom ν greater than 2. If ν is less than or equal to 2, then the variance is
undefined.
• “Student's t Distribution” on page B-146

See Also
tpdf | tcdf | tinv | trnd

 ttest

22-4911

ttest

One-sample and paired-sample t-test

Syntax

h = ttest(x)

h = ttest(x,y)

h = ttest(x,y,Name,Value)

h = ttest(x,m)

h = ttest(x,m,Name,Value)

[h,p] = ttest(___)

[h,p,ci,stats] = ttest(___)

Description

h = ttest(x) returns a test decision for the null hypothesis that the data in x comes
from a normal distribution with mean equal to zero and unknown variance, using the
one-sample t-test. The alternative hypothesis is that the population distribution does not
have a mean equal to zero. The result h is 1 if the test rejects the null hypothesis at the
5% significance level, and 0 otherwise.

h = ttest(x,y) returns a test decision for the null hypothesis that the data in x – y
comes from a normal distribution with mean equal to zero and unknown variance, using
the paired-sample t-test.

h = ttest(x,y,Name,Value) returns a test decision for the paired-sample t-test with
additional options specified by one or more name-value pair arguments. For example, you
can change the significance level or conduct a one-sided test.

h = ttest(x,m) returns a test decision for the null hypothesis that the data in x
comes from a normal distribution with mean m and unknown variance. The alternative
hypothesis is that the mean is not m.

22 Functions — Alphabetical List

22-4912

h = ttest(x,m,Name,Value) returns a test decision for the one-sample t-test with
additional options specified by one or more name-value pair arguments. For example, you
can change the significance level or conduct a one-sided test.

[h,p] = ttest(___) also returns the p-value, p, of the test, using any of the input
arguments from the previous syntax groups.

[h,p,ci,stats] = ttest(___) also returns the confidence interval ci for the mean
of x, or of x – y for the paired t-test, and the structure stats containing information
about the test statistic.

Examples

Test for a Mean Equal to Zero

Load the sample data. Create a vector containing the third column of the stock returns
data.

load stockreturns;

x = stocks(:,3);

Test the null hypothesis that the sample data comes from a population with mean equal
to zero.

[h,p,ci,stats] = ttest(x)

h =

 1

p =

 0.0106

ci =

 -0.7357

 -0.0997

stats =

 tstat: -2.6065

 df: 99

 sd: 1.6027

 ttest

22-4913

The returned value h = 1 indicates that ttest rejects the null hypothesis at the 5%
significance level.

Test Hypothesis at a Different Significance Level

Load the sample data. Create a vector containing the third column of the stock returns
data.

load stockreturns;

x = stocks(:,3);

Test the null hypothesis that the sample data are from a population with mean equal to
zero at the 1% significance level.

h = ttest(x,0,'Alpha',0.01)

h =

 0

The returned value h = 0 indicates that ttest does not reject the null hypothesis at the
1% significance level.

Paired-Sample t-Test

Load the sample data. Create vectors containing the first and second columns of the data
matrix to represent students’ grades on two exams.

load examgrades;

x = grades(:,1);

y = grades(:,2);

Test the null hypothesis that the pairwise difference between data vectors x and y has a
mean equal to zero.

[h,p] = ttest(x,y)

h =

 0

p =

 0.9805

22 Functions — Alphabetical List

22-4914

The returned value of h = 0 indicates that ttest does not reject the null hypothesis at
the default 5% significance level.

Paired-Sample t-Test at a Different Significance Level

Load the sample data. Create vectors containing the first and second columns of the data
matrix to represent students’ grades on two exams.

load examgrades;

x = grades(:,1);

y = grades(:,2);

Test the null hypothesis that the pairwise difference between data vectors x and y has a
mean equal to zero at the 1% significance level.

[h,p] = ttest(x,y,'Alpha',0.01)

h =

 0

p =

 0.9805

The returned value of h = 0 indicates that ttest does not reject the null hypothesis at
the 1% significance level.

Test for a Hypothesized Mean

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Test the null hypothesis that sample data comes from a distribution with mean m = 75.

h = ttest(x,75)

h =

 0

 ttest

22-4915

The returned value of h = 0 indicates that ttest does not reject the null hypothesis at
the 5% significance level.

One-Sided Hypothesis Test

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Test the null hypothesis that the data comes from a population with mean equal to 65,
against the alternative that the mean is greater than 65.

h = ttest(x,65,'Tail','right')

h =

 1

The returned value of h = 1 indicates that ttest rejects the null hypothesis at the
5% significance level, in favor of the alternate hypothesis that the data comes from a
population with a mean greater than 65.

Input Arguments

x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. ttest performs
a separate t-test along each column and returns a vector of results. If y sample data is
specified, x and y must be the same size.
Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. If y sample data is
specified, x and y must be the same size.
Data Types: single | double

22 Functions — Alphabetical List

22-4916

m — Hypothesized population mean
0 (default) | scalar value

Hypothesized population mean, specified as a scalar value.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 conducts a right-tailed hypothesis test at
the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Dim' — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-
separated pair consisting of 'Dim' and a positive integer value. For example, specifying
'Dim',1 tests the column means, while 'Dim',2 tests the row means.

Example: 'Dim',2

Data Types: single | double

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

 ttest

22-4917

'both' Test the alternative hypothesis that the population mean is not m.
'right' Test the alternative hypothesis that the population mean is greater

than m.
'left' Test the alternative hypothesis that the population mean is less than m.

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true population mean, returned as a two-element vector
containing the lower and upper boundaries of the 100 × (1 – Alpha)% confidence interval.

stats — Test statistics
structure

Test statistics, returned as a structure containing the following:

• tstat — Value of the test statistic.
• df — Degrees of freedom of the test.

22 Functions — Alphabetical List

22-4918

• sd — Estimated population standard deviation. For a paired t-test, this is the
standard deviation of x – y.

More About

One-Sample t-Test

The one-sample t-test is a parametric test of the location parameter when the population
standard deviation is unknown.

The test statistic is

t
x

s n

=
- m

/
,

where x is the sample mean, µ is the hypothesized population mean, s is the sample
standard deviation, and n is the sample size. Under the null hypothesis, the test statistic
has Student’s t distribution with n – 1 degrees of freedom.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-
by-4 array, then x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not
equal to 1. For example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the
first nonsingleton dimension of x.

See Also
ttest2 | ztest

 ttest2

22-4919

ttest2
Two-sample t-test

Syntax

h = ttest2(x,y)

h = ttest2(x,y,Name,Value)

[h,p] = ttest2(___)

[h,p,ci,stats] = ttest2(___)

Description

h = ttest2(x,y) returns a test decision for the null hypothesis that the data in vectors
x and y comes from independent random samples from normal distributions with equal
means and equal but unknown variances, using the two-sample t-test. The alternative
hypothesis is that the data in x and y comes from populations with unequal means. The
result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0
otherwise.

h = ttest2(x,y,Name,Value) returns a test decision for the two-sample t-test with
additional options specified by one or more name-value pair arguments. For example, you
can change the significance level or conduct the test without assuming equal variances.

[h,p] = ttest2(___) also returns the p-value, p, of the test, using any of the input
arguments in the previous syntaxes.

[h,p,ci,stats] = ttest2(___) also returns the confidence interval on the
difference of the population means, ci, and the structure stats containing information
about the test statistic.

Examples

Test for Equal Means

Load the data set. Create vectors containing the first and second columns of the data
matrix to represent students’ grades on two exams.

22 Functions — Alphabetical List

22-4920

load examgrades;

x = grades(:,1);

y = grades(:,2);

Test the null hypothesis that the two data samples are from populations with equal
means.

[h,p,ci,stats] = ttest2(x,y)

h =

 0

p =

 0.9867

ci =

 -1.9438

 1.9771

stats =

 tstat: 0.0167

 df: 238

 sd: 7.7084

The returned value of h = 0 indicates that ttest2 does not reject the null hypothesis at
the default 5% significance level.

Test for Equal Means Without Assuming Equal Variances

Load the data set. Create vectors containing the first and second columns of the data
matrix to represent students’ grades on two exams.

load examgrades;

x = grades(:,1);

y = grades(:,2);

Test the null hypothesis that the two data vectors are from populations with equal
means, without assuming that the populations also have equal variances.

[h,p] = ttest2(x,y,'Vartype','unequal')

h =

 0

p =

 ttest2

22-4921

 0.9867

The returned value of h = 0 indicates that ttest2 does not reject the null hypothesis at
the default 5% significance level even if equal variances are not assumed.

Input Arguments

x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. ttest2 treats NaN
values as missing data and ignores them.

• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns.

ttest2 performs a separate t-test along each column and returns a vector of results.
• If x and y are specified as multidimensional arrays, they must have the same size

along all but the first nonsingleton dimension.

Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. ttest2 treats NaN
values as missing data and ignores them.

• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns.

ttest2 performs a separate t-test along each column and returns a vector of results.
• If x and y are specified as multidimensional arrays, they must have the same

size along all but the first nonsingleton dimension. ttest2 works along the first
nonsingleton dimension.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-4922

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01,'Vartype','unequal' specifies a right-
tailed test at the 1% significance level, and does not assume that x and y have equal
population variances.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Dim' — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-
separated pair consisting of 'Dim' and a positive integer value. For example, specifying
'Dim',1 tests the column means, while 'Dim',2 tests the row means.

Example: 'Dim',2

Data Types: single | double

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the population means are not
equal.

'right' Test the alternative hypothesis that the population mean of x is
greater than the population mean of y.

'left' Test the alternative hypothesis that the population mean of x is less
than the population mean of y.

Example: 'Tail','right'

 ttest2

22-4923

'Vartype' — Variance type
'equal' (default) | 'unequal'

Variance type, specified as the comma-separated pair consisting of 'Vartype' and one
of the following.

'equal' Conduct test using the assumption that x and y are from normal
distributions with unknown but equal variances.

'unequal' Conduct test using the assumption that x and y are from normal
distributions with unknown and unequal variances. This is called the
Behrens-Fisher problem. ttest2 uses Satterthwaite’s approximation
for the effective degrees of freedom.

Vartype must be a single string, even when x is a matrix or a multidimensional array.

Example: 'Vartype','unequal'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

22 Functions — Alphabetical List

22-4924

Confidence interval for the difference in population means of x and y, returned as a two-
element vector containing the lower and upper boundaries of the 100 × (1 – Alpha)%
confidence interval.

stats — Test statistics
structure

Test statistics for the two-sample t-test, returned as a structure containing the following:

• tstat — Value of the test statistic.
• df — Degrees of freedom of the test.
• sd — Pooled estimate of the population standard deviation (for the equal variance

case) or a vector containing the unpooled estimates of the population standard
deviations (for the unequal variance case).

More About

Two-Sample t-test

The two-sample t-test is a parametric test that compares the location parameter of two
independent data samples.

The test statistic is

t
x y

s

n

s

m

x y

=
-

+

2 2
,

where x and y are the sample means, sx and sy are the sample standard deviations, and
n and m are the sample sizes.

In the case where it is assumed that the two data samples are from populations with
equal variances, the test statistic under the null hypothesis has Student's t distribution
with n + m – 2 degrees of freedom, and the sample standard deviations are replaced by
the pooled standard deviation

s
n s m s

n m

x y
=

-() + -()

+ -

1 1

2

2 2

.

 ttest2

22-4925

In the case where it is not assumed that the two data samples are from populations
with equal variances, the test statistic under the null hypothesis has an approximate
Student's t distribution with a number of degrees of freedom given by Satterthwaite's
approximation. This test is sometimes called Welch’s t-test.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-
by-4 array, then x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not
equal to 1. For example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the
first nonsingleton dimension of x.

See Also
ttest | ztest

22 Functions — Alphabetical List

22-4926

type
Class: classregtree

Tree type

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

ttype = type(t)

Description

ttype = type(t) returns the type of the tree t. ttype is 'regression' for
regression trees and 'classification' for classification trees.

Examples

Create a classification tree for Fisher's iris data:
load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

 type

22-4927

9 class = virginica

view(t)

ttype = type(t)

ttype =

classification

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

22 Functions — Alphabetical List

22-4928

See Also
classregtree

 Type property

22-4929

Type property
Class: cvpartition

Type of partition

Description

The type of validation partition. It is 'kfold', 'holdout', 'leaveout', or
'resubstitution'.

See Also
trainsize

22 Functions — Alphabetical List

22-4930

Type property
Class: qrandset

Name of sequence on which point set P is based

Description

P.Type returns a string that contains the name of the sequence on which the point set P
is based, for example 'Sobol'. You cannot change the Type property for a point set.

 Using BetaDistribution Objects

22-4931

Using BetaDistribution Objects
Beta probability distribution object

A BetaDistribution object consist of parameters, a model description, and sample
data for a beta probability distribution.

The beta distribution describes a family of curves that are unique in that they are
nonzero only on the interval (0,1). A more general version of the distribution assigns
parameters to the endpoints of the interval.

The beta distribution uses the following parameters.

Parameter Description Support

a First shape parameter
a > 0

b Second shape parameter b > 0

Examples

Create a Beta Distribution Object Using Default Parameters

Create a beta distribution object using the default parameter values.

pd = makedist('Beta')

pd =

 BetaDistribution

 Beta distribution

 a = 1

 b = 1

Create a Beta Distribution Object Using Specified Parameters

Create a beta distribution object by specifying the parameter values.

pd = makedist('Beta','a',2,'b',4)

pd =

22 Functions — Alphabetical List

22-4932

 BetaDistribution

 Beta distribution

 a = 2

 b = 4

Compute the mean of the distribution.

m = mean(pd)

m =

 0.3333

Properties

a — First shape parameter
positive scalar value

First shape parameter of the beta distribution, stored as a positive scalar value.
Data Types: single | double

b — Second shape parameter
positive scalar value

Second shape parameter of the beta distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

 Using BetaDistribution Objects

22-4933

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

22 Functions — Alphabetical List

22-4934

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
BetaDistribution probability distribution object.

 Using BetaDistribution Objects

22-4935

• Create a BetaDistribution object with specified parameter values using
makedist.

pd = makedist('Beta') creates a BetaDistribution object using the default
parameter values for the first shape parameter (a = 1) and the second shape
parameter (b = 1).

pd = makedist('Beta','a',a,'b',b) creates a BetaDistribution object
using the parameter values specified for a and b.

For additional syntax options, see makedist.
• Fit a BetaDistribution object to data using fitdist.

pd = fitdist(x,'Beta') creates a BetaDistribution object by fitting a beta
distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a BetaDistribution object to data using the Distribution Fitting

app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Beta Distribution”

22 Functions — Alphabetical List

22-4936

Using BinomialDistribution Objects
Binomial probability distribution object

A BinomialDistribution object consists of parameters, a model description, and
sample data for a binomial probability distribution

The binomial distribution models the total number of successes in repeated trials from an
infinite population under the following conditions:

• Only two outcomes are possible for each of n trials.
• The probability of success for each trial is constant.
• All trials are independent of each other.

The binomial distribution uses the following parameters.

Parameter Description Support

N Number of trials positive integer
p Probability of success 0 1£ £p

Examples

Create a Binomial Distribution Object Using Default Parameters

Create a binomial distribution object using the default parameter values.

pd = makedist('Binomial')

pd =

 BinomialDistribution

 Binomial distribution

 N = 1

 p = 0.5

Create a Binomial Distribution Object Using Specified Parameters

Create a binomial distribution object by specifying the parameter values.

pd = makedist('Binomial','N',30,'p',0.25)

 Using BinomialDistribution Objects

22-4937

pd =

 BinomialDistribution

 Binomial distribution

 N = 30

 p = 0.25

Compute the mean of the distribution.

m = mean(pd)

m =

 7.5000

Properties

N — Number of trials
positive integer value

Number of trials for the binomial distribution, stored as a positive integer value.
Data Types: single | double

p — Probability of success
positive scalar value in the range [0,1]

Probability of success of any individual trial for the binomial distribution, stored as a
positive scalar value in the range [0,1].

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

22 Functions — Alphabetical List

22-4938

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.

 Using BinomialDistribution Objects

22-4939

Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object
Statistics and Machine Learning Toolbox provides several ways to create a
BinomialDistribution probability distribution object.

22 Functions — Alphabetical List

22-4940

• Create a BinomialDistribution object with specified parameter values using
makedist.

pd = makedist('Binomial') creates a BinomialDistribution object using
the default parameter values for the number of trials (N = 1) and the probability of
success (p = 0.5).

pd = makedist('Binomial','N',N,'p',p) creates a BinomialDistribution
object using the parameter values specified for N and p.

For additional syntax options, see makedist.
• Fit a BinomialDistribution object to data using fitdist.

pd = fitdist(x,'Binomial') creates a BinomialDistribution object by fitting
a binomial distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a BinomialDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Binomial Distribution”
• “Bernoulli Distribution”

 Using BirnbaumSaundersDistribution Objects

22-4941

Using BirnbaumSaundersDistribution Objects
Birnbaum-Saunders probability distribution object

A BirnbaumSaundersDistribution object consists of parameters, a model description,
and sample data for a Birnbaum-Saunders probability distribution.

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for
materials subject to cyclic patterns of stress and strain, where the ultimate failure
of the material comes from the growth of a prominent flaw. In materials science,
Miner's Rule suggests that the damage occurring after n cycles, at a stress level with an
expected lifetime of N cycles, is proportional to n / N. Whenever Miner's Rule applies, the
Birnbaum-Saunders model is a reasonable choice for a lifetime distribution model.

The Birnbaum-Saunders distribution uses the following parameters.

Parameter Description Support

beta scale parameter β > 0
gamma shape parameter γ > 0

Examples

Create a Birnbaum-Saunders Distribution Object Using Default Parameters

Create a Birnbaum-Saunders distribution object using the default parameter values.

pd = makedist('BirnbaumSaunders')

pd =

 BirnbaumSaundersDistribution

 Birnbaum-Saunders distribution

 beta = 1

 gamma = 1

Create a Birnbaum-Saunders Distribution Object Using Specified Parameter Values

Create a Birnbaum-Saunders distribution object by specifying the parameter values.

pd = makedist('BirnbaumSaunders','beta',2,'gamma',5)

22 Functions — Alphabetical List

22-4942

pd =

 BirnbaumSaundersDistribution

 Birnbaum-Saunders distribution

 beta = 2

 gamma = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 27

Properties

beta — Scale parameter
positive scalar value

Scale parameter of the Birnbaum-Saunders distribution, stored as a positive scalar
value.
Data Types: single | double

gamma — Shape parameter
positive scalar value

Shape parameter of the Birnbaum-Saunders distribution, stored as a positive scalar
value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

 Using BirnbaumSaundersDistribution Objects

22-4943

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.

22 Functions — Alphabetical List

22-4944

Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object
Statistics and Machine Learning Toolbox provides several ways to create a
BirnbaumSaundersDistribution probability distribution object.

 Using BirnbaumSaundersDistribution Objects

22-4945

• Create a BirnbaumSaundersDistribution object with specified parameter values
using makedist.

pd = makedist('BirnbaumSaunders') creates a
BirnbaumSaundersDistribution object using the default parameter values for the
scale parameter (beta = 1) and the shape parameter (gamma = 1).

pd = makedist('BirnbaumSaunders','beta',beta,'gamma',gamma) creates
a BirnbaumSaundersDistribution object using the parameter values specified for
beta and gamma.

For additional syntax options, see makedist.
• Fit a BirnbaumSaundersDistribution object to data using fitdist.

pd = fitdist(x,'BirnbaumSaunders') creates a
BirnbaumSaundersDistribution object by fitting a Birnbaum-Saunders
distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a BirnbaumSaundersDistribution object to data using the

Distribution Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Birnbaum-Saunders Distribution”

22 Functions — Alphabetical List

22-4946

Using BurrDistribution Objects
Burr probability distribution object

A BurrDistribution object consists of parameters, a model description, and sample
data for a Burr probability distribution.

The Burr distribution is a three-parameter family of distributions on the positive real
line. It can fit a wide range of empirical data, and is used in various fields such as
finance, hydrology, and reliability to model a variety of data types.

The Burr distribution uses the following parameters.

Parameter Description Support

alpha Scale parameter a > 0

c First shape parameter
c > 0

k Second shape parameter k > 0

Examples

Create a Burr Distribution Object Using Default Parameters

Create a Burr distribution object using the default parameter values.

pd = makedist('Burr')

pd =

 BurrDistribution

 Burr distribution

 alpha = 1

 c = 1

 k = 1

Create a Burr Distribution Object Using Specified Parameters

Create a Burr distribution object by specifying parameter values.

 Using BurrDistribution Objects

22-4947

pd = makedist('Burr','alpha',1,'c',2,'k',5)

pd =

 BurrDistribution

 Burr distribution

 alpha = 1

 c = 2

 k = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 0.4295

Properties

alpha — Scale parameter
positive scalar value

Scale parameter of the Burr distribution, stored as a positive scalar value.
Data Types: single | double

c — First shape parameter
positive scalar value

First shape parameter of the Burr distribution, stored as a positive scalar value.
Data Types: single | double

k — Second shape parameter
positive scalar value

Second shape parameter of the Burr distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

22 Functions — Alphabetical List

22-4948

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated

 Using BurrDistribution Objects

22-4949

by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

22 Functions — Alphabetical List

22-4950

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
BurrDistribution probability distribution object.

• Create a BurrDistribution object with specified parameter values using
makedist.

pd = makedist('Burr') creates a BurrDistribution object using the default
parameter values for the scale parameter (alpha = 1), the first shape parameter (c
= 1), and the second shape parameter (k = 1).

pd = makedist('Burr','alpha',alpha,'c',c,'k',k) creates a
BurrDistribution object using the parameter values specified for alpha, c, and k.

For additional syntax options, see makedist.
• Fit a BurrDistribution object to data using fitdist.

pd = fitdist(x,'Burr') creates a BurrDistribution object by fitting a Burr
distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a BurrDistribution object to data using the Distribution Fitting

app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Burr Type XII Distribution”

 Using ExponentialDistribution Objects

22-4951

Using ExponentialDistribution Objects
Exponential probability distribution object

An ExponentialDistribution object consists of parameters, a model description, and
sample data for an exponential probability distribution.

The exponential distribution is used to model events that occur randomly over time,
and its main application area is studies of lifetimes. It is a special case of the gamma
distribution with the shape parameter a = 1.

The exponential distribution uses the following parameters.

Parameter Description Support

mu Mean m > 0

Examples

Create an Exponential Distribution Object Using Default Parameters

Create an exponential distribution object using the default parameter values.

pd = makedist('Exponential')

pd =

 ExponentialDistribution

 Exponential distribution

 mu = 1

Create an Exponential Distribution Object Using Specified Parameters

Create an exponential distribution object by specifying the parameter values.

pd = makedist('Exponential','mu',2)

pd =

22 Functions — Alphabetical List

22-4952

 ExponentialDistribution

 Exponential distribution

 mu = 2

Compute the variance of the distribution.

v = var(pd)

v =

 4

Properties

mu — Mean
positive scalar value

Mean of the exponential distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

 Using ExponentialDistribution Objects

22-4953

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.

22 Functions — Alphabetical List

22-4954

Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create an
ExponentialDistribution probability distribution object.

• Create an ExponentialDistribution object with specified parameter values using
makedist.

pd = makedist('Exponential') creates a ExponentialDistribution object
using the default parameter value for the mean (mu = 1).

pd = makedist('Exponential','mu',mu) creates an
ExponentialDistribution object using the parameter value specified for mu.

 Using ExponentialDistribution Objects

22-4955

For additional syntax options, see makedist.
• Fit an ExponentialDistribution object to data using fitdist.

pd = fitdist(x,'Exponential') creates an ExponentialDistribution object
by fitting an exponential distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit an ExponentialDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Exponential Distribution”

22 Functions — Alphabetical List

22-4956

Using ExtremeValueDistribution Objects
Extreme value probability distribution object

An ExtremeValueDistribution object consists of parameters, a model description,
and sample data for an extreme value probability distribution.

The extreme value distribution is appropriate for modeling the smallest value from a
distribution whose tails decay exponentially fast, for example, the normal distribution. It
can also model the largest value from a distribution, such as the normal or exponential
distributions, by using the negative of the original values.

The extreme value distribution uses the following parameters.

Parameter Description Support

mu Location parameter -• < < •m

sigma Scale parameter s ≥ 0

Examples

Create an Extreme Value Distribution Object Using Default Parameters

Create an extreme value distribution object using the default parameter values.

pd = makedist('ExtremeValue')

pd =

 ExtremeValueDistribution

 Extreme Value distribution

 mu = 0

 sigma = 1

Create an Extreme Value Distribution Object Using Specified Parameters

Create an extreme value distribution object by specifying the parameter values.

pd = makedist('ExtremeValue', 'mu',-1,'sigma',2)

 Using ExtremeValueDistribution Objects

22-4957

pd =

 ExtremeValueDistribution

 Extreme Value distribution

 mu = -1

 sigma = 2

Compute the standard deviation for the distribution.

s = std(pd)

s =

 2.5651

Properties

mu — Location parameter
scalar value

Location parameter of the extreme value distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the extreme value distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

22 Functions — Alphabetical List

22-4958

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

 Using ExtremeValueDistribution Objects

22-4959

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create an
ExtremeValueDistribution probability distribution object.

22 Functions — Alphabetical List

22-4960

• Create an ExtremeValueDistribution object with specified parameter values
using makedist.

pd = makedist('ExtremeValue') creates an ExtremeValueDistribution
object using the default parameter values for the location parameter (mu = 0) and
the scale parameter (sigma = 1).

pd = makedist('ExtremeValue','mu',mu,'sigma',sigma) creates an
ExtremeValueDistribution object using the parameter values specified for mu and
sigma.

For additional syntax options, see makedist.
• Fit an ExtremeValueDistribution object to data using fitdist.

pd = fitdist(x,'ExtremeValue') creates an ExtremeValueDistribution
object by fitting an extreme value distribution to the data contained in the column
vector, x.

For additional syntax options, see fitdist.
• Interactively fit a ExtremeValueDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Extreme Value Distribution”

 Using GammaDistribution Objects

22-4961

Using GammaDistribution Objects
Gamma probability distribution object

A GammaDistribution object consists of parameters, a model description, and sample
data for a gamma probability distribution.

The gamma distribution is a two-parameter family of distributions used to model sums
of exponentially distributed random variables. The chi-square and the exponential
distributions, which are special cases of the gamma distribution, are one-parameter
distributions that fix one of the two gamma parameters.

The gamma distribution uses the following parameters.

Parameter Description Support

a Shape parameter
a > 0

b Scale parameter b ≥ 0

Examples

Create a Gamma Distribution Object Using Default Parameters

Create a gamma distribution object using the default parameter values.

pd = makedist('Gamma')

pd =

 GammaDistribution

 Gamma distribution

 a = 1

 b = 1

Create a Gamma Distribution Object Using Specified Parameters

Create a gamma distribution object by specifying the parameter values.

pd = makedist('Gamma', 'a',2,'b',4)

22 Functions — Alphabetical List

22-4962

pd =

 GammaDistribution

 Gamma distribution

 a = 2

 b = 4

Compute the mean of the distribution.

m = mean(pd)

m =

 8

Properties

a — Shape parameter
positive scalar value

Shape parameter for the gamma distribution, stored as a positive scalar value.
Data Types: single | double

b — Scale parameter
nonnegative scalar value

Scale parameter for the gamma distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

 Using GammaDistribution Objects

22-4963

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

22 Functions — Alphabetical List

22-4964

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
GammaDistribution probability distribution object.

 Using GammaDistribution Objects

22-4965

• Create a GammaDistribution object with specified parameter values using
makedist.

pd = makedist('Gamma') creates a GammaDistribution object using the default
parameter values for the shape parameter (a = 1) and the scale parameter (b = 1).

pd = makedist('Gamma','a',a,'b',b) creates a GammaDistribution object
using the parameter values specified for a and b.

For additional syntax options, see makedist.
• Fit a GammaDistribution object to data using fitdist.

pd = fitdist(x,'Gamma') creates a GammaDistribution object by fitting a
gamma distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a GammaDistribution object to data using the Distribution Fitting

app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Gamma Distribution”

22 Functions — Alphabetical List

22-4966

Using GeneralizedExtremeValueDistribution Objects

Generalized extreme value probability distribution object

A GeneralizedExtremeValueDistribution object consists of parameters, a model
description, and sample data for a generalized extreme value probability distribution.

The generalized extreme value distribution is often used to model the smallest or
largest value among a large set of independent, identically distributed random values
representing measurements or observations. It combines three simpler distributions into
a single form, allowing a continuous range of possible shapes that include all three of the
simpler distributions.

The three distribution types correspond to the limiting distribution of block maxima from
different classes of underlying distributions:

• Type 1 — Distributions whose tails decrease exponentially, such as the normal
distribution

• Type 2 — Distributions whose tails decrease as a polynomial, such as Student’s t
distribution

• Type 3 — Distributions whose tails are finite, such as the beta distribution

The generalized extreme value distribution uses the following parameters.

Parameter Description Support

k Shape parameter -• £ £ •k

sigma Scale parameter s ≥ 0

mu Location parameter -• £ £ •m

Examples

Create a Generalized Extreme Value Distribution Object Using Default Parameters

Create a generalized extreme value distribution object using the default parameter
values.

 Using GeneralizedExtremeValueDistribution Objects

22-4967

pd = makedist('GeneralizedExtremeValue')

pd =

 GeneralizedExtremeValueDistribution

 Generalized Extreme Value distribution

 k = 0

 sigma = 1

 mu = 0

Create a Generalized Extreme Value Distribution Object Using Specified Parameters

Create a generalized extreme value distribution object by specifying values for the
parameters.

pd = makedist('GeneralizedExtremeValue','k',0,'sigma',2,'mu',1)

pd =

 GeneralizedExtremeValueDistribution

 Generalized Extreme Value distribution

 k = 0

 sigma = 2

 mu = 1

Compute the mean of the distribution.

m = mean(pd)

m =

 2.1544

Properties

k — Shape parameter
scalar value

Shape parameter of the generalized extreme value distribution, stored as a scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-4968

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the generalized extreme value distribution, stored as a nonnegative
scalar value.
Data Types: single | double

mu — Location parameter
scalar value

Location parameter of the generalized extreme value distribution, stored as a scalar
value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

 Using GeneralizedExtremeValueDistribution Objects

22-4969

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.

22 Functions — Alphabetical List

22-4970

Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
GeneralizedExtremeValueDistribution probability distribution object.

• Create a GeneralizedExtremeValueDistribution object with specified
parameter values using makedist.

pd = makedist('GeneralizedExtremeValue') creates a
GeneralizedExtremeValueDistribution object using the default parameter
values for the shape parameter (k = 0) , the scale parameter (sigma = 1), and the
location parameter (mu = 0).

pd = makedist('GeneralizedExtremeValue','k',k,'sigma',sigma,'mu',

mu) creates a GeneralizedExtremeValueDistribution object using the
parameter values specified for k, sigma, and mu.

For additional syntax options, see makedist.
• Fit a GeneralizedExtremeValueDistribution object to data using fitdist.

 Using GeneralizedExtremeValueDistribution Objects

22-4971

pd = fitdist(x,'GeneralizedExtremeValue') creates a
GeneralizedExtremeValueDistribution object by fitting a generalized extreme
value distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a GeneralizedExtremeValueDistribution object to data using

the Distribution Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Generalized Extreme Value Distribution”

22 Functions — Alphabetical List

22-4972

Using GeneralizedParetoDistribution Objects
Generalized Pareto probability distribution object

A GeneralizedParetoDistribution object consists of parameters, a model
description, and sample data for a generalized Pareto probability distribution.

The generalized Pareto distribution is used to model the tails of another distribution.
It allows a continuous range of possible shapes that include both the exponential and
Pareto distributions as special cases. It has three basic forms, each corresponding to a
limiting distribution of exceedence data from a different class of underlying distributions.

• Distributions whose tails decrease exponentially, such as the normal, lead to a
generalized Pareto shape parameter of zero.

• Distributions whose tails decrease polynomially, such as the Student’s t, lead to a
positive shape parameter.

• Distributions whose tails are finite, such as the beta, lead to a negative shape
parameter.

The generalized Pareto distribution uses the following parameters.

Parameter Description Support

k Shape parameter -• < < •k

sigma Scale parameter s ≥ 0

theta Location parameter -• < < •q

Examples

Create a Generalized Pareto Distribution Object Using Default Parameters

Create a generalized Pareto distribution object using the default parameter values.

pd = makedist('GeneralizedPareto')

pd =

 GeneralizedParetoDistribution

 Using GeneralizedParetoDistribution Objects

22-4973

 Generalized Pareto distribution

 k = 1

 sigma = 1

 theta = 1

Create a Generalized Pareto Distribution Object Using Specified Parameters

Create a generalized Pareto distribution object by specifying parameter values.

pd = makedist('GeneralizedPareto','k',0,'sigma',2,'theta',1)

pd =

 GeneralizedParetoDistribution

 Generalized Pareto distribution

 k = 0

 sigma = 2

 theta = 1

Compute the mean of the distribution.

m = mean(pd)

m =

 2.1544

Properties

k — Shape parameter
scalar value

Shape parameter for the generalized Pareto distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter for the generalized Pareto distribution, stored as a nonnegative scalar
value.
Data Types: single | double

22 Functions — Alphabetical List

22-4974

theta — Location parameter
scalar value

Location parameter for the generalized Pareto distribution, stored as a scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

 Using GeneralizedParetoDistribution Objects

22-4975

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

22 Functions — Alphabetical List

22-4976

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
GeneralizedParetoDistribution probability distribution object.

• Create a GeneralizedParetoDistribution object with specified parameter values
using makedist.

pd = makedist('GeneralizedPareto') creates a
GeneralizedParetoDistribution object using the default parameter values for
the shape parameter (k = 1), the scale parameter (sigma = 1), and the location
parameter (theta = 1).

pd = makedist('GeneralizedPareto','k',k,'sigma',sigma,'theta',

theta) creates a GeneralizedParetoDistribution object using the parameter
values specified for k, sigma, and theta.

For additional syntax options, see makedist.
• Fit a GeneralizedParetoDistribution object to data using fitdist.

pd = fitdist(x,'GeneralizedPareto') creates a
GeneralizedParetoDistribution object by fitting a generalized Pareto
distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a GeneralizedParetoDistribution object to data using the

Distribution Fitting app, dfittool.

 Using GeneralizedParetoDistribution Objects

22-4977

See Also
dfittool | fitdist | makedist

More About
• “Generalized Pareto Distribution”

22 Functions — Alphabetical List

22-4978

Using InverseGaussianDistribution Objects
Inverse Gaussian probability distribution object

An InverseGaussianDistribution object consists of parameters, a model description,
and sample data for an inverse Gaussian probability distribution.

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative
positively skewed data. Inverse Gaussian distributions have many similarities to
standard Gaussian (normal) distributions, which lead to applications in inferential
statistics.

The inverse Gaussian distribution uses the following parameters.

Parameter Description Support

mu Scale parameter m > 0

lambda Shape parameter l > 0

Examples

Create an Inverse Gaussian Distribution Object Using Default Parameters

Create an inverse Gaussian distribution object using the default parameter values.

pd = makedist('InverseGaussian')

pd =

 InverseGaussianDistribution

 Inverse Gaussian distribution

 mu = 1

 lambda = 1

Create an Inverse Gaussian Distribution Object Using Specified Parameters

Create an inverse Gaussian distribution object by specifying parameter values.

pd = makedist('InverseGaussian','mu',2,'lambda',4)

 Using InverseGaussianDistribution Objects

22-4979

pd =

 InverseGaussianDistribution

 Inverse Gaussian distribution

 mu = 2

 lambda = 4

Compute the standard deviation of the distribution.

s = std(pd)

s =

 1.4142

Properties

mu — Scale parameter
positive scalar value

Scale parameter for the inverse Gaussian distribution, stored as a positive scalar value.
Data Types: single | double

lambda — Shape parameter
positive scalar value

Shape parameter for the inverse Gaussian distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

22 Functions — Alphabetical List

22-4980

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

 Using InverseGaussianDistribution Objects

22-4981

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create an
InverseGaussianDistribution probability distribution object.

22 Functions — Alphabetical List

22-4982

• Create an InverseGaussianDistribution object with specified parameter values
using makedist.

pd = makedist('InverseGaussian') creates an
InverseGaussianDistribution object using the default parameter values for the
scale parameter (mu = 1) and the shape parameter (lambda = 1).

pd = makedist('InverseGaussian','mu',mu,'lambda',lambda) creates an
InverseGaussianDistribution object using the parameter values specified for mu
and lambda.

For additional syntax options, see makedist.
• Fit an InverseGaussianDistribution object to data using fitdist.

pd = fitdist(x,'InverseGaussian') creates an
InverseGaussianDistribution object by fitting an inverse Gaussian distribution
to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit an InverseGaussianDistribution object to data using the

Distribution Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Inverse Gaussian Distribution”

 Using KernelDistribution Objects

22-4983

Using KernelDistribution Objects

Kernel probability distribution object

A KernelDistribution object consists of parameters, a model description, and sample
data for a nonparametric kernel-smoothing distribution.

The kernel distribution is a nonparametric estimation of the probability density function
(pdf) of a random variable.

The kernel distribution uses the following options.

Option Description Possible Values

Kernel Kernel function type normal, box, triangle,
epanechnikov

BandWidth Kernel smoothing parameter BandWidth > 0

Examples

Fit a Kernel Distribution Object to Data

Load the sample data. Visualize the patient weight data using a histogram.

load hospital;

histogram(hospital.Weight)

22 Functions — Alphabetical List

22-4984

The histogram shows that the data has two modes, one for female patients and one for
male patients.

Create a probability distribution object by fitting a kernel distribution to the patient
weight data.

pd_kernel = fitdist(hospital.Weight,'Kernel')

pd_kernel =

 KernelDistribution

 Kernel = normal

 Bandwidth = 14.3792

 Using KernelDistribution Objects

22-4985

 Support = unbounded

For comparison, create another probability distribution object by fitting a normal
distribution to the patient weight data.

pd_normal = fitdist(hospital.Weight,'Normal')

pd_normal =

 NormalDistribution

 Normal distribution

 mu = 154 [148.728, 159.272]

 sigma = 26.5714 [23.3299, 30.8674]

Define the x values and compute the pdf of each distribution.

x = 50:1:250;

pdf_kernel = pdf(pd_kernel,x);

pdf_normal = pdf(pd_normal,x);

Plot the pdf of each distribution.

plot(x,pdf_kernel,'Color','b','LineWidth',2);

hold on;

plot(x,pdf_normal,'Color','r','LineStyle',':','LineWidth',2);

legend('Kernel Distribution','Normal Distribution','Location','SouthEast');

hold off;

22 Functions — Alphabetical List

22-4986

Fitting a kernel distribution instead of a unimodal distribution such as the normal
reveals the separate modes for the female and male patients.

• “Fit Kernel Distribution Object to Data” on page 5-49
• “Fit Probability Distribution Objects to Grouped Data” on page 5-124
• “Compare Multiple Distribution Fits” on page 5-117

Properties

Kernel — Kernel smoother type
'normal' | 'box' | 'triangle' | 'epanechnikov'

 Using KernelDistribution Objects

22-4987

Kernel function type, stored as a valid kernel function type name.

BandWidth — Bandwidth of kernel smoothing window
positive scalar value

Bandwidth of the kernel smoothing window, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.

22 Functions — Alphabetical List

22-4988

Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikpdf randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
KernelDistribution probability distribution object.

• Fit a KernelDistribution object to data using fitdist.

pd = fitdist(x,'Kernel') creates a KernelDistribution object by fitting a
kernel distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a KernelDistribution object to data using the Distribution Fitting

app, dfittool.

See Also
dfittool | fitdist

More About
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Kernel Distribution”

 Using LogisticDistribution Objects

22-4989

Using LogisticDistribution Objects
Logistic probability distribution object

A LogisticDistribution object consists of parameters, a model description, and
sample data for a logistic probability distribution.

The logistic distribution is used for growth models and in logistic regression. It has
longer tails and a higher kurtosis than the normal distribution.

The logistic distribution uses the following parameters.

Parameter Description Support

mu Mean -• < < •m

sigma Scale parameter s ≥ 0

Examples

Create a Logistic Distribution Object Using Default Parameters

Create a logistic distribution object using the default parameter values.

pd = makedist('Logistic')

pd =

 LogisticDistribution

 Logistic distribution

 mu = 0

 sigma = 1

Create a Logistic Distribution Object Using Specified Parameters

Create a logistic distribution object by specifying parameter values.

pd = makedist('Logistic', 'mu',2,'sigma',4)

pd =

22 Functions — Alphabetical List

22-4990

 LogisticDistribution

 Logistic distribution

 mu = 2

 sigma = 4

Compute the standard deviation of the distribution.

s = std(pd)

s =

 7.2552

• “Compare Multiple Distribution Fits” on page 5-117

Properties

mu — Mean
scalar value

Mean of the logistic distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the logistic distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

 Using LogisticDistribution Objects

22-4991

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

22 Functions — Alphabetical List

22-4992

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
LogisticDistribution probability distribution object.

 Using LogisticDistribution Objects

22-4993

• Create a LogisticDistribution object with specified parameter values using
makedist.

pd = makedist('Logistic') creates a LogisticDistribution object using the
default parameter values for the mean (mu = 0) and the scale parameter (sigma =
1).

pd = makedist('Logistic','mu',mu,'sigma',sigma) creates a
LogisticDistribution object using the parameter values specified for mu and
sigma.

For additional syntax options, see makedist.
• Fit a LogisticDistribution object to data using fitdist.

pd = fitdist(x,'Logistic') creates a LogisticDistribution object by fitting
a logistic distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a LogisticDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Logistic Distribution”

22 Functions — Alphabetical List

22-4994

Using LoglogisticDistribution Objects

Loglogistic probability distribution object

A LoglogisticDistribution object consists of parameters, a model description, and
sample data for a loglogistic probability distribution.

The loglogistic distribution is closely related to the logistic distribution. If x is distributed
loglogistically with parameters μ and σ, then log(x) is distributed logistically with mean
and standard deviation. This distribution is often used in survival analysis to model
events that experience an initial rate increase, followed by a rate decrease.

The loglogistic distribution uses the following parameters.

Parameter Description Support

mu Log mean m > 0

sigma Log scale parameter s > 0

Examples

Create a Loglogistic Distribution Object Using Default Parameters

Create a loglogistic distribution object using the default parameter values.

pd = makedist('Loglogistic')

pd =

 LoglogisticDistribution

 Log-Logistic distribution

 mu = 0

 sigma = 1

Create a Loglogistic Distribution Object Using Specified Parameters

Create a loglogistic distribution object by specifying the parameter values.

 Using LoglogisticDistribution Objects

22-4995

pd = makedist('Loglogistic','mu',5,'sigma',2)

pd =

 LoglogisticDistribution

 Log-Logistic distribution

 mu = 5

 sigma = 2

Generate random numbers from the loglogistic distribution and compute their log values.

rng(19) % for reproducibility

x = random(pd,10000,1);

logx = log(x);

Compute the mean of the log values.

m = mean(logx)

m =

 4.9828

The mean of the log of x is equal to the mu parameter of x, since x has a loglogistic
distribution.

Plot logx.

histogram(logx,50)

22 Functions — Alphabetical List

22-4996

The plot shows that the log values of x have a logistic distribution.

Properties
mu — Log mean
positive scalar value

Log mean for the loglogistic distribution, stored as a positive scalar value.
Data Types: single | double

sigma — Log scale parameter
positive scalar value

 Using LoglogisticDistribution Objects

22-4997

Log scale parameter for the loglogistic distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

22 Functions — Alphabetical List

22-4998

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

 Using LoglogisticDistribution Objects

22-4999

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
LoglogisticDistribution probability distribution object.

• Create a LoglogisticDistribution object with specified parameter values using
makedist.

pd = makedist('Loglogistic') creates a LoglogisticDistribution object
using the default parameter values for the log mean (mu = 0) and the log scale
parameter (sigma = 1).

pd = makedist('Loglogistic','mu',mu,'sigma',sigma) creates a
LoglogisticDistribution object using the parameter values specified for mu and
sigma.

For additional syntax options, see makedist.
• Fit a LoglogisticDistribution object to data using fitdist.

pd = fitdist(x,'Loglogistic') creates a LoglogisticDistribution object
by fitting a loglogistic distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a LoglogisticDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-5000

More About
• “Working with Probability Distributions” on page 5-3
• “Loglogistic Distribution”

 Using LognormalDistribution Objects

22-5001

Using LognormalDistribution Objects

Lognormal probability distribution object

A LognormalDistribution object consists of parameters, a model description, and
sample data for a lognormal probability distribution.

The lognormal distribution is a probability distribution whose logarithm has a normal
distribution. It is sometimes called the Galton distribution. The lognormal distribution is
applicable when the quantity of interest must be positive, since log(x) exists only when x
is positive.

The lognormal distribution uses the following parameters.

Parameter Description Support

mu Log mean -• < < •m

sigma Log standard deviation s ≥ 0

Examples

Create a Lognormal Distribution Object Using Default Parameters

Create a lognormal distribution object using the default parameter values.

pd = makedist('Lognormal')

pd =

 LognormalDistribution

 Lognormal distribution

 mu = 0

 sigma = 1

Create a Lognormal Distribution Object Using Specified Parameters

Create a lognormal distribution object by specifying the parameter values.

22 Functions — Alphabetical List

22-5002

pd = makedist('Lognormal','mu',5,'sigma',2)

pd =

 LognormalDistribution

 Lognormal distribution

 mu = 5

 sigma = 2

Compute the mean of the lognormal distribution.

mean(pd)

ans =

 1.0966e+03

The mean of the lognormal distribution is not equal to the mu parameter.

Generate random numbers from the lognormal distribution and compute their log values.

rng(47); % for reproducibility

x = random(pd,10000,1);

logx = log(x);

Compute the mean of the log values.

m = mean(logx)

m =

 4.9999

The mean of the log of x is equal to the mu parameter of x, since x has a lognormal
distribution.

Plot logx.

histogram(logx,50)

 Using LognormalDistribution Objects

22-5003

The plot shows that the log values of x are normally distributed with a mean equal to 5
and a standard deviation equal to 2.

Properties

mu — Log mean
scalar value

Log mean for the lognormal distribution, stored as a scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-5004

sigma — Log standard deviation
nonnegative scalar value

Log standard deviation for the lognormal distribution, stored as a nonnegative scalar
value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.

 Using LognormalDistribution Objects

22-5005

Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.

22 Functions — Alphabetical List

22-5006

Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
LognormalDistribution probability distribution object.

• Create a LognormalDistribution object with specified parameter values using
makedist.

pd = makedist('Lognormal') creates a LognormalDistribution object
using the default parameter values for the log mean (mu = 0) and the log standard
deviation (sigma = 1).

pd = makedist('Lognormal','mu',mu,'sigma',sigma) creates a
LognormalDistribution object using the parameter values specified for mu and
sigma.

For additional syntax options, see makedist.
• Fit a LognormalDistribution object to data using fitdist.

pd = fitdist(x,'Lognormal') creates a LognormalDistribution object by
fitting a lognormal distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a LognormalDistribution object to data using the Distribution

Fitting app, dfittool.

 Using LognormalDistribution Objects

22-5007

See Also
dfittool | fitdist | makedist

More About
• “Working with Probability Distributions” on page 5-3
• “Lognormal Distribution”
• “Supported Distributions” on page 5-17

22 Functions — Alphabetical List

22-5008

Using MultinomialDistribution Objects
Multinomial probability distribution object

A MultinomialDistribution object consists of parameters and a model description for
a multinomial probability distribution.

The multinomial distribution is a generalization of the binomial distribution. While the
binomial distribution gives the probability of the number of “successes” in n independent
trials of a two-outcome process, the multinomial distribution gives the probability of each
combination of outcomes in n independent trials of a k-outcome process. The probability
of each outcome in any one trial is given by the fixed probabilities p1, ..., pk.

The multinomial distribution uses the following parameters.

Parameter Description Support

probabilities Outcome
probabilities

0 1 1£ () £ () =

()
Âprobabilities i probabilities i

all i

;

Examples

Create a Multinomial Distribution Object Using Default Parameters

Create a multinomial distribution object using the default parameter values.

pd = makedist('Multinomial')

pd =

 MultinomialDistribution

 Probabilities:

 0.5000 0.5000

Create a Multinomial Distribution Object Using Specified Parameters

Create a multinomial distribution object for a distribution with three possible outcomes.
Outcome 1 has a probability of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has
a probability of 1/6.

pd = makedist('Multinomial','probabilities',[1/2 1/3 1/6])

 Using MultinomialDistribution Objects

22-5009

pd =

 MultinomialDistribution

 Probabilities:

 0.5000 0.3333 0.1667

Generate a random outcome from the distribution.

rng('default'); % for reproducibility

r = random(pd)

r =

 2

The result of this trial is outcome 2. By default, the number of trials in each experiment,
n, equals 1.

Generate random outcomes from the distribution when the number of trials in each
experiment, n, equals 1, and the experiment is repeated ten times.

rng('default'); % for reproducibility

r = random(pd,10,1)

r =

 2

 3

 1

 3

 2

 1

 1

 2

 3

 3

Each element in the array is the outcome of an individual experiment that contains one
trial.

Generate random outcomes from the distribution when the number of trials in each
experiment, n, equals 5, and the experiment is repeated ten times.

rng('default'); % for reproducibility

22 Functions — Alphabetical List

22-5010

r = random(pd,10,5)

r =

 2 1 2 2 1

 3 3 1 1 1

 1 3 3 1 2

 3 1 3 1 2

 2 2 2 1 1

 1 1 2 2 1

 1 1 2 2 1

 2 3 1 1 2

 3 2 2 3 2

 3 3 1 1 2

Each element in the resulting matrix is the outcome of one trial. The columns correspond
to the five trials in each experiment, and the rows correspond to the ten experiments. For
example, in the first experiment (corresponding to the first row), 2 of the 5 trials resulted
in outcome 1, and 3 of the 5 trials resulted in outcome 2.

• “Multinomial Probability Distribution Objects” on page 5-128
• “Multinomial Probability Distribution Functions” on page 5-132

Properties

probabilities — outcome probabilities
vector of scalar values in the range [0,1]

Outcome probabilities for the multinomial distribution, stored as a vector of scalar values
in the range [0,1]. The values in probabilities must sum to 1.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

IsTruncated — Logical flag for truncated distribution
0 | 1

 Using MultinomialDistribution Objects

22-5011

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

22 Functions — Alphabetical List

22-5012

Object Functions
cdficdfiqr meanmedian pdfrandom stdtruncate var

Create Object

Create a MultinomialDistribution object with specified parameter values using
makedist.

pd = makedist('Multinomial') creates a MultinomialDistribution
object using the default parameter values for the probabilities (probabilities =
[0.500,0.500]).

pd = makedist('Multinomial','Probabilities',probabilities) creates
a MultinomialDistribution object using the parameter values specified for
probabilities.

For additional syntax options, see makedist.

See Also
makedist

More About
• “Multinomial Distribution”

 Using NakagamiDistribution Objects

22-5013

Using NakagamiDistribution Objects
Nakagami probability distribution object

A NakagamiDistribution object consists of parameters, a model description, and
sample data for a Nakagami probability distribution.

The Nakagami distribution is commonly used in communication theory to model
scattered signals that reach a receiver using multiple paths.

The Nakagami distribution uses the following parameters.

Parameter Description Support

mu Shape parameter m > 0

omega Scale parameter w > 0

Examples

Create a Nakagami Distribution Object Using Default Parameters

Create a Nakagami distribution object using the default parameter values.

pd = makedist('Nakagami')

pd =

 NakagamiDistribution

 Nakagami distribution

 mu = 1

 omega = 1

Create a Nakagami Distribution Object Using Specified Parameters

Create a Nakagami distribution object by specifying parameter values.

pd = makedist('Nakagami','mu',5,'omega',2)

pd =

22 Functions — Alphabetical List

22-5014

 NakagamiDistribution

 Nakagami distribution

 mu = 5

 omega = 2

Compute the mean of the distribution.

m = mean(pd)

m =

 1.3794

Properties

mu — Shape parameter
positive scalar value

Shape parameter for the Nakagami distribution, stored as a positive scalar value.
Data Types: single | double

omega — Scale parameter
positive scalar value

Scale parameter for the Nakagami distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

 Using NakagamiDistribution Objects

22-5015

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

22 Functions — Alphabetical List

22-5016

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
NakagamiDistribution probability distribution object.

 Using NakagamiDistribution Objects

22-5017

• Create a NakagamiDistribution object with specified parameter values using
makedist.

pd = makedist('Nakagami') creates a NakagamiDistribution object using the
default parameter values for the shape parameter (mu = 1) and the scale parameter
(omega = 1).

pd = makedist('Nakagami','mu',mu,'omega',omega) creates a
NakagamiDistribution object using the parameter values specified for mu and
omega.

For additional syntax options, see makedist.
• Fit a NakagamiDistribution object to data using fitdist.

pd = fitdist(x,'Nakagami') creates a NakagamiDistribution object by fitting
a Nakagami distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a NakagamiDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Nakagami Distribution”

22 Functions — Alphabetical List

22-5018

Using NegativeBinomialDistribution Objects
Negative binomial distribution object

A NegativeBinomialDistribution object consists of parameters, a model description,
and sample data for a negative binomial probability distribution.

The negative binomial distribution models the number of failures x before a specified
number of successes, R, is reached in a series of independent, identical trials. This
distribution can also model count data, in which case R does not need to be an integer
value.

The negative binomial distribution uses the following parameters.

Parameter Description Support

R Number of successes
r > 0

p Probability of success 0 1< £p

Examples

Create a Negative Binomial Distribution Object Using Default Parameters

Create a negative binomial distribution object using the default parameter values.

pd = makedist('NegativeBinomial')

pd =

 NegativeBinomialDistribution

 Negative Binomial distribution

 R = 1

 P = 0.5

Create a Negative Binomial Distribution Object Using Specified Parameters

Create a negative binomial distribution object by specifying the parameter values.

pd = makedist('NegativeBinomial','R',5,'p',.1)

 Using NegativeBinomialDistribution Objects

22-5019

pd =

 NegativeBinomialDistribution

 Negative Binomial distribution

 R = 5

 P = 0.1

Compute the mean of the distribution.

m = mean(pd)

m =

 45

Properties

R — Number of successes
positive scalar value

Number of successes for the negative binomial distribution, stored as a positive scalar
value.
Data Types: single | double

p — Probability of success
positive scalar value in the range (0,1]

Probability of success of any individual trial for the negative binomial distribution,
specified as a positive scalar value in the range (0,1].
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

22 Functions — Alphabetical List

22-5020

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.

 Using NegativeBinomialDistribution Objects

22-5021

Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object
Statistics and Machine Learning Toolbox provides several ways to create a
NegativeBinomialDistribution probability distribution object.

22 Functions — Alphabetical List

22-5022

• Create a NegativeBinomialDistribution object with specified parameter values
using makedist.

pd = makedist('NegativeBinomial') creates a
NegativeBinomialDistribution object using the default parameter values for the
number of successes (R = 1) and the probability of success (p = 0.5).

pd = makedist('NegativeBinomial','R',R,'p',p) creates a
NegativeBinomialDistribution object using the parameter values specified for R
and p.

For additional syntax options, see makedist.
• Fit a NegativeBinomialDistribution object to data using fitdist.

pd = fitdist(x,'NegativeBinomial') creates a
NegativeBinomialDistribution object by fitting a negative binomial distribution
to the data contained in the column vector, x.

• Interactively fit a NegativeBinomialDistribution object to data using the
Distribution Fitting app, dfittool.

For additional syntax options, see fitdist.

See Also
dfittool | fitdist | makedist

More About
• “Negative Binomial Distribution”

 Using NormalDistribution Objects

22-5023

Using NormalDistribution Objects
Normal probability distribution object

A NormalDistribution object consists of parameters, a model description, and sample
data for a normal probability distribution.

The normal distribution, sometimes called the Gaussian distribution, is a two-parameter
family of curves. The usual justification for using the normal distribution for modeling is
the Central Limit theorem, which states (roughly) that the sum of independent samples
from any distribution with finite mean and variance converges to the normal distribution
as the sample size goes to infinity.

The normal distribution uses the following parameters.

Parameter Description Support

mu Mean -• < < •m

sigma Standard deviation s ≥ 0

Examples

Create a Normal Distribution Object Using Default Parameters

Create a normal distribution object using the default parameter values.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

 sigma = 1

Create a Normal Distribution Object Using Specified Parameters

Create a normal distribution object by specifying the parameter values.

22 Functions — Alphabetical List

22-5024

pd = makedist('Normal','mu',75,'sigma',10)

pd =

 NormalDistribution

 Normal distribution

 mu = 75

 sigma = 10

Compute the interquartile range of the distribution.

r = iqr(pd)

r =

 13.4898

Fit a Normal Distribution Object

Load the sample data. Create a vector containing the first column of students’ exam
grades data.

load examgrades;

x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

• “Compare Multiple Distribution Fits” on page 5-117

Properties

mu — Mean
scalar value

 Using NormalDistribution Objects

22-5025

Mean of the normal distribution, stored as a scalar value.
Data Types: single | double

sigma — Standard deviation
nonnegative scalar value

Standard deviation of the normal distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

22 Functions — Alphabetical List

22-5026

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

 Using NormalDistribution Objects

22-5027

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
NormalDistribution probability distribution object.

• Create a NormalDistribution object with specified parameter values using
makedist.

pd = makedist('Normal') creates a NormalDistribution object using the
default parameter values for the mean (mu = 0) and the standard deviation (sigma
= 1).

pd = makedist('Normal','mu',mu,'sigma',sigma) creates a
NormalDistribution object using the parameter values specified for mu and sigma.

For additional syntax options, see makedist.
• Fit a NormalDistribution object to data using fitdist.

pd = fitdist(x,'Normal') creates a NormalDistribution object by fitting a
normal distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a NormalDistribution object to data using the Distribution Fitting

app, dfittool.

22 Functions — Alphabetical List

22-5028

See Also
dfittool | fitdist | makedist

More About
• “Normal Distribution”

 Using PiecewiseLinearDistribution Objects

22-5029

Using PiecewiseLinearDistribution Objects

Piecewise linear probability distribution object

A PiecewiseLinearDistribution object consists of a model description for a
piecewise linear probability distribution.

The piecewise linear distribution is a nonparametric probability distribution created
using a piecewise linear representation of the cumulative distribution function (cdf). The
options specified for the piecewise linear distribution specify the form of the cdf. The
probability density function (pdf) is a step function.

The piecewise linear distribution uses the following parameters.

Parameter Description

x Vector of x values at which the cdf changes
slope

Fx Vector of cdf values that correspond to each
value in x

Examples

Create a Piecewise Linear Distribution Object Using Default Parameters

Create a piecewise linear distribution object using the default parameter values.

pd = makedist('PiecewiseLinear')

pd =

 PiecewiseLinearDistribution

F(0) = 0

F(1) = 1

Create a Piecewise Linear Distribution Object Using Specified Parameters

Load the sample data. Visualize the patient weight data using a histogram.

22 Functions — Alphabetical List

22-5030

load hospital

histogram(hospital.Weight)

The histogram shows that the data has two modes, one for female patients and one for
male patients.

Compute the empirical cumulative distribution function (ecdf) for the data.

[f,x] = ecdf(hospital.Weight);

Construct a piecewise linear approximation to the ecdf and plot both functions.

f = f(1:5:end); % keep a less dense grid of points

 Using PiecewiseLinearDistribution Objects

22-5031

x = x(1:5:end);

figure;

ecdf(hospital.Weight)

hold on

plot(x,f,'ro','MarkerFace','r') % overlay grid

plot(x,f,'k') % show interpolation

Create a piecewise linear probability distribution object using the piecewise
approximation of the ecdf.

pd = makedist('PiecewiseLinear','x',x,'Fx',f)

pd =

22 Functions — Alphabetical List

22-5032

 PiecewiseLinearDistribution

F(111) = 0

F(118) = 0.05

F(124) = 0.13

F(130) = 0.25

F(135) = 0.37

F(142) = 0.5

F(163) = 0.55

F(171) = 0.61

F(178) = 0.7

F(183) = 0.82

F(189) = 0.94

F(202) = 1

Generate 100 random numbers from the distribution.

rw = random(pd,100,1);

Plot the random numbers to visually compare their distribution to the original data.

figure;

histogram(rw)

 Using PiecewiseLinearDistribution Objects

22-5033

The random numbers generated from the piecewise linear distribution have the same
bimodal distribution as the original data.

• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61

Properties

x — Data values
vector of scalar values

Data values at which the cumulative distribution function (cdf) changes slope, stored as a
vector of scalar values.

22 Functions — Alphabetical List

22-5034

Data Types: single | double

Fx — cdf value
vector of scalar values

cdf value at each value in x, stored as a vector of scalar values.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

 Using PiecewiseLinearDistribution Objects

22-5035

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian pdfrandom stdtruncate var

Create Object

Create a PiecewiseLinearDistribution object with specified parameter values using
makedist.

pd = makedist('PiecewiseLinear') creates a PiecewiseLinearDistribution
object using the default parameter values for the data values (x = 1) and the cdf values
(Fx = 1).

pd = makedist('PiecewiseLinear','x',x,'Fx',Fx) creates a
PiecewiseLinearDistribution object using the parameter values specified for x and
Fx.

For additional syntax options, see makedist.

See Also
makedist

22 Functions — Alphabetical List

22-5036

More About
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Piecewise Linear Distribution”

 Using PoissonDistribution Objects

22-5037

Using PoissonDistribution Objects
Poisson probability distribution object

A PoissonDistribution object consists of parameters, a model description, and
sample data for a Poisson probability distribution.

The Poisson distribution is appropriate for applications that involve counting the number
of times a random event occurs in a given amount of time, distance, area, etc. If the
number of counts follows the Poisson distribution, then the interval between individual
counts follows the exponential distribution.

The Poisson distribution uses the following parameters.

Parameter Description Support

lambda Mean l ≥ 0

Examples

Create a Poisson Distribution Object Using Default Parameters

Create a Poisson distribution object using the default parameter values.

pd = makedist('Poisson')

pd =

 PoissonDistribution

 Poisson distribution

 lambda = 1

Create a Poisson Distribution Object Using Specified Parameters

Create a Poisson distribution object by specifying the parameter values.

pd = makedist('Poisson','lambda',5)

pd =

 PoissonDistribution

22 Functions — Alphabetical List

22-5038

 Poisson distribution

 lambda = 5

Compute the variance of the distribution.

v = var(pd)

v =

 5

For the Poisson distribution, both the mean and variance are equal to the parameter
lambda.

Properties

lambda — Mean
nonnegative scalar value

Mean of the Poisson distribution, stored as a nonnegative scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.

 Using PoissonDistribution Objects

22-5039

Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the

22 Functions — Alphabetical List

22-5040

corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
PoissonDistribution probability distribution object.

• Create a PoissonDistribution object with specified parameter values using
makedist.

pd = makedist('Poisson') creates a PoissonDistribution object using the
default parameter value for the mean (lambda = 1).

 Using PoissonDistribution Objects

22-5041

pd = makedist('Poisson','lambda',lambda) creates a
PoissonDistribution object using the parameter value specified for lambda.

For additional syntax options, see makedist.
• Fit a PoissonDistribution object to data using fitdist.

pd = fitdist(x,'Poisson') creates a PoissonDistribution object by fitting a
Poisson distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a PoissonDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Poisson Distribution”

22 Functions — Alphabetical List

22-5042

Using RayleighDistribution Objects

Rayleigh probability distribution object

A RayleighDistribution object consists of parameters, a model description, and
sample data for a normal probability distribution.

The Rayleigh distribution is a special case of the Weibull distribution. It is often used in
communication theory to model scattered signals that reach a receiver by multiple paths.

The Rayleigh distribution uses the following parameter.

Parameter Description Support

b Defining parameter b > 0

Examples

Create a Rayleigh Distribution Object Using Default Parameters

Create a Rayleigh distribution object using the default parameter values.

pd = makedist('Rayleigh')

pd =

 RayleighDistribution

 Rayleigh distribution

 B = 1

Create a Rayleigh Distribution Object Using Specified Parameters

Create a Rayleigh distribution object by specifying the parameter values.

pd = makedist('Rayleigh','b',3)

pd =

 RayleighDistribution

 Using RayleighDistribution Objects

22-5043

 Rayleigh distribution

 B = 3

Compute the mean of the distribution.

m = mean(pd)

m =

 3.7599

Properties

b — Defining parameter
positive scalar value

Defining parameter for the Rayleigh distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

22 Functions — Alphabetical List

22-5044

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.

 Using RayleighDistribution Objects

22-5045

Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
RayleighDistribution probability distribution object.

• Create a RayleighDistribution object with specified parameter values using
makedist.

pd = makedist('Rayleigh') creates a RayleighDistribution object using the
default parameter value for defining parameter (b = 1).

pd = makedist('Rayleigh','b',b) creates a RayleighDistribution object
using the parameter value specified for b.

22 Functions — Alphabetical List

22-5046

For additional syntax options, see makedist.
• Fit a RayleighDistribution object to data using fitdist.

pd = fitdist(x,'Rayleigh') creates a RayleighDistribution object by fitting
a Rayleigh distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a RayleighDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Rayleigh Distribution”

 Using RicianDistribution Objects

22-5047

Using RicianDistribution Objects
Rician probability distribution object

A RicianDistribution object consists of parameters, a model description, and sample
data for a Rician probability distribution.

The Rician distribution is used in communications theory to model scattered signals that
reach a receiver using multiple paths.

The Rician distribution uses the following parameters.

Name Description Support

s Noncentrality
parameter

s ≥ 0

sigma Scale parameter s > 0

Examples

Create a Rician Distribution Object Using Default Parameters

Create a Rician distribution object using the default parameter values.

pd = makedist('Rician')

pd =

 RicianDistribution

 Rician distribution

 s = 1

 sigma = 1

Create a Rician Distribution Object Using Specified Parameters

Create a Rician distribution object by specifying the parameter values.

pd = makedist('Rician','s',0,'sigma',2)

pd =

22 Functions — Alphabetical List

22-5048

 RicianDistribution

 Rician distribution

 s = 0

 sigma = 2

Compute the mean of the distribution.

m = mean(pd)

m =

 2.5066

Properties

s — Noncentrality parameter
nonnegative scalar value

Noncentrality parameter of the Rician distribution, stored as a nonnegative scalar value.
Data Types: single | double

sigma — scale parameter
positive scalar value

Scale parameter for the Rician distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

 Using RicianDistribution Objects

22-5049

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

22 Functions — Alphabetical List

22-5050

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
RicianDistribution probability distribution object.

 Using RicianDistribution Objects

22-5051

• Create a RicianDistribution object with specified parameter values using
makedist.

pd = makedist('Rician') creates a RicianDistribution object using the
default parameter values for the noncentrality parameter (s = 1) and the scale
parameter (sigma = 1).

pd = makedist('Binomial','s',s,'sigma',sigma) creates a
RicianDistribution object using the parameter values specified for s and sigma.

For additional syntax options, see makedist.
• Fit a RicianDistribution object to data using fitdist.

pd = fitdist(x,'Rician') creates a RicianDistribution object by fitting a
Rician distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a RicianDistribution object to data using the Distribution Fitting

app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Rician Distribution”

22 Functions — Alphabetical List

22-5052

Using tLocationScaleDistribution Objects
t Location-Scale probability distribution object

A tLocationScaleDistribution object consists of parameters, a model description,
and sample data for a t location-scale probability distribution.

The t location-scale distribution is useful for modeling data distributions with heavier
tails (more prone to outliers) than the normal distribution. It approaches the normal
distribution as ν approaches infinity, and smaller values of ν yield heavier tails.

The t location-scale distribution uses the following parameters.

Parameter Description Support

mu Location parameter -• < < •m

sigma Scale parameter s > 0

nu Shape parameter n > 0

Examples

Create a t Location-Scale Distribution Object Using Default Parameters

Create a t location scale distribution object using the default parameter values.

pd = makedist('tLocationScale')

pd =

 tLocationScaleDistribution

 t Location-Scale distribution

 mu = 0

 sigma = 1

 nu = 5

Create a t Location-Scale Distribution Object Using Specified Parameters

Create a t location-scale distribution object by specifying the parameter values.

 Using tLocationScaleDistribution Objects

22-5053

pd = makedist('tLocationScale','mu',-2,'sigma',1,'nu',20)

pd =

 tLocationScaleDistribution

 t Location-Scale distribution

 mu = -2

 sigma = 1

 nu = 20

Compute the interquartile range of the distribution.

r = iqr(pd)

r =

 1.3739

• “Represent Cauchy Distribution Using t Location-Scale” on page 5-138

Properties

mu — Location parameter
scalar value

Location parameter of the t location-scale distribution, stored as a scalar value.
Data Types: single | double

sigma — Scale parameter
positive scalar value

Scale parameter of the t location-scale distribution, stored as a positive scalar value.
Data Types: single | double

nu — Degrees of freedom
positive scalar value

Degrees of freedom of the t location-scale distribution, stored as a positive scalar value.
Data Types: single | double

22 Functions — Alphabetical List

22-5054

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the

 Using tLocationScaleDistribution Objects

22-5055

estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.

22 Functions — Alphabetical List

22-5056

Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object
Statistics and Machine Learning Toolbox provides several ways to create a
tLocationScaleDistribution probability distribution object.

• Create a tLocationScaleDistribution object with specified parameter values
using makedist.

pd = makedist('tLocationScale') creates a tLocationScaleDistribution
object using the default parameter values for the location parameter (mu = 0), the
scale parameter (sigma = 1), and the degrees of freedom (nu = 5).

pd = makedist('tLocationScale','mu',mu,'sigma',sigma,'nu',nu)

creates a tLocationScaleDistribution object using the parameter values
specified for mu, sigma, and nu.

For additional syntax options, see makedist.
• Fit a tLocationScaleDistribution object to data using fitdist.

pd = fitdist(x,'tLocationScale') creates a tLocationScaleDistribution
object by fitting a t location-scale distribution to the data contained in the column
vector, x.

For additional syntax options, see fitdist.
• Interactively fit a tLocationScaleDistribution object to data using the

Distribution Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “t Location-Scale Distribution”

 Using TriangularDistribution Objects

22-5057

Using TriangularDistribution Objects
Triangular probability distribution object

A TriangularDistribution object consists of parameters and a model description for
a triangular probability distribution.

The triangular distribution is frequently used in simulations when limited sample data is
available. The lower and upper limits represent the smallest and largest values, and the
location of the peak represents an estimate of the mode.

The triangular distribution uses the following parameters.

Parameter Description Support

a Lower limit a b£

b Peak location a b c£ £

c Upper limit c b≥

Examples

Create a Triangular Distribution Object Using Default Parameters

Create a triangular distribution object using the default parameter values.

pd = makedist('Triangular')

pd =

 TriangularDistribution

A = 0, B = 0.5, C = 1

Create a Triangular Distribution Object Using Specified Parameters

Create a triangular distribution object by specifying parameter values.

pd = makedist('Triangular', 'a',-2,'b',1,'c',5)

pd =

22 Functions — Alphabetical List

22-5058

 TriangularDistribution

A = -2, B = 1, C = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 1.3333

• “Generate Random Numbers Using the Triangular Distribution” on page 5-66

Properties

a — Lower limit
scalar value

Lower limit for the triangular distribution, stored as a scalar value.
Data Types: single | double

b — Peak location
scalar value

Location of the peak for the triangular distribution, stored as a scalar value greater than
or equal to a.

Data Types: single | double

c — Upper limit
scalar value

Upper limit for the triangular distribution, stored as a scalar value greater than or equal
to b.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.

 Using TriangularDistribution Objects

22-5059

Data Types: char

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

22 Functions — Alphabetical List

22-5060

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian pdfrandom stdtruncate var

Create Object

Create a TriangularDistribution object with specified parameter values using
makedist.

pd = makedist('Triangular') creates a TriangularDistribution object using
the default parameter values for the lower limit (a = 0), the peak location (b = 0.5),
and the upper limit (c = 1).

pd = makedist('Triangular','a',a,'b',b,'c',c) creates a
TriangularDistribution object using the parameter values specified for a, b, and c.

For additional syntax options, see makedist.

See Also
makedist

More About
• “Triangular Distribution” on page B-157

 Using UniformDistribution Objects

22-5061

Using UniformDistribution Objects

Uniform probability distribution object

A UniformDistribution object consists of parameters and a model description for a
uniform probability distribution.

The uniform distribution has a constant probability density function between its two
parameters, lower (the minimum) and upper (the maximum). This distribution is
appropriate for representing round-off errors in values tabulated to a particular number
of decimal places.

The uniform distribution uses the following parameters.

Parameter Description Support

lower Lower parameter -• < <lower upper

upper Upper parameter lower upper< < •

Examples

Create a Uniform Distribution Object Using Default Parameters

Create a uniform distribution object using the default parameter values.

pd = makedist('Uniform')

pd =

 UniformDistribution

 Uniform distribution

 Lower = 0

 Upper = 1

Create a Uniform Distribution Object Using Specified Parameters

Create a uniform distribution object by specifying parameter values.

22 Functions — Alphabetical List

22-5062

pd = makedist('Uniform','Lower',-4,'Upper',2)

pd =

 UniformDistribution

 Uniform distribution

 Lower = -4

 Upper = 2

Compute the interquartile range of the distribution

r = iqr(pd)

r =

 3

• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-135

Properties

lower — Lower parameter
scalar value

Lower parameter for the uniform distribution, stored as a scalar value.
Data Types: single | double

upper — Upper parameter
scalar value

Upper parameter for the uniform distribution, stored as a scalar value greater than
lower.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

 Using UniformDistribution Objects

22-5063

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.

22 Functions — Alphabetical List

22-5064

Data Types: single | double

Object Functions
cdficdfiqr meanmedian pdfrandom stdtruncate var

Create Object

Create a UniformDistribution object with specified parameter values using
makedist.

pd = makedist('Uniform') creates a UniformDistribution object using the
default parameter values for the lower parameter (lower = 0) and the upper parameter
(upper = 1).

pd = makedist('Uniform','lower',lower,'upper',upper) creates a
UniformDistribution object using the parameter values specified for lower and
upper.

For additional syntax options, see makedist.

See Also
makedist

More About
• “Uniform Distribution (Continuous)”

 Using WeibullDistribution Objects

22-5065

Using WeibullDistribution Objects
Weibull probability distribution object

A WeibullDistribution object consists of parameters, a model description, and
sample data for a Weibull probability distribution.

The Weibull distribution is used in reliability and lifetime modeling, and to model the
breaking strength of materials.

The Weibull distribution uses the following parameters.

Parameter Description Support

a Scale parameter
a > 0

b Shape parameter b > 0

Examples

Create a Weibull Distribution Object Using Default Parameters

Create a Weibull distribution object using the default parameter values.

pd = makedist('Weibull')

pd =

 WeibullDistribution

 Weibull distribution

 A = 1

 B = 1

Create a Weibull Distribution Object Using Specified Parameter Values

Create a Weibull distribution object by specifying the parameter values.

pd = makedist('Weibull','a',2,'b',5)

pd =

 WeibullDistribution

22 Functions — Alphabetical List

22-5066

 Weibull distribution

 A = 2

 B = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 1.8363

• “Fit Probability Distribution Objects to Grouped Data” on page 5-124
• “Compare Multiple Distribution Fits” on page 5-117

Properties

a — Scale parameter
positive scalar value

Scale parameter of the Weibull distribution, stored as a positive scalar value.
Data Types: single | double

b — Shape parameter
positive scalar value

Shape parameter of the Weibull distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

 Using WeibullDistribution Objects

22-5067

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

22 Functions — Alphabetical List

22-5068

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Object Functions
cdficdfiqr meanmedian negloglikparamci pdfproflik randomstd truncatevar

Create Object

Statistics and Machine Learning Toolbox provides several ways to create a
WeibullDistribution probability distribution object.

 Using WeibullDistribution Objects

22-5069

• Create a WeibulllDistribution object with specified parameter values using
makedist.

pd = makedist('Weibull') creates a WeibullDistribution object using the
default parameter values for the scale parameter (a = 1) and the shape parameter (b
= 1).

pd = makedist('Weibull','a',a,'b',b) creates a WeibullDistribution
object using the parameter values specified for a and b.

For additional syntax options, see makedist.
• Fit a WeibullDistribution object to data using fitdist.

pd = fitdist(x,'Weibull') creates a WeibullDistribution object by fitting a
Weibull distribution to the data contained in the column vector, x.

For additional syntax options, see fitdist.
• Interactively fit a WeibullDistribution object to data using the Distribution

Fitting app, dfittool.

See Also
dfittool | fitdist | makedist

More About
• “Weibull Distribution”

22 Functions — Alphabetical List

22-5070

prob.UniformDistribution class

Package: prob
Superclasses: prob.ParametricTruncatableDistribution

Uniform probability distribution object

Description

prob.UniformDistribution is an object consisting of parameters and a model
description for a uniform probability distribution. Create a probability distribution object
with specified parameters using makedist.

Construction

pd = makedist('Uniform') creates a uniform probability distribution object using
the default parameter values.

pd = makedist('Uniform','Lower',lower,'Upper',upper) creates a uniform
distribution object using the specified parameter values.

Input Arguments

lower — Lower parameter
0 (default) | scalar value

Lower limit for the uniform distribution, specified as a scalar value.
Data Types: single | double

upper — Upper parameter
1 (default) | scalar value

Upper parameter for the uniform distribution, specified as a scalar value greater than
lower.

Data Types: single | double

 prob.UniformDistribution class

22-5071

Properties

lower — Lower parameter
scalar value

Lower parameter for the uniform distribution, stored as a scalar value.
Data Types: single | double

upper — Upper parameter
scalar value

Upper parameter for the uniform distribution, stored as a scalar value greater than
lower.

Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

22 Functions — Alphabetical List

22-5072

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

 prob.UniformDistribution class

22-5073

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

mean
Mean of probability distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Uniform Distribution

The uniform distribution has a constant probability density function between its two
parameters, lower (the minimum) and upper (the maximum). This distribution is
appropriate for representing round-off errors in values tabulated to a particular number
of decimal places.

The uniform distribution uses the following parameters.

Parameter Description Support

lower Lower parameter -• < <lower upper

upper Upper parameter lower upper< < •

The probability density function (pdf) is

22 Functions — Alphabetical List

22-5074

f x lower upper upper lower
lower x upper

otherwi

(| ,)
;

;

= -
Ê

Ë
Á

ˆ

¯
˜ £ £1

0 sse

Ï

Ì
Ô

Ó
Ô

.

and 0 otherwise.

Examples

Create a Uniform Distribution Object Using Default Parameters

Create a uniform distribution object using the default parameter values.

pd = makedist('Uniform')

pd =

 UniformDistribution

 Uniform distribution

 Lower = 0

 Upper = 1

Create a Uniform Distribution Object Using Specified Parameters

Create a uniform distribution object by specifying parameter values.

pd = makedist('Uniform','Lower',-4,'Upper',2)

pd =

 UniformDistribution

 Uniform distribution

 Lower = -4

 Upper = 2

Compute the interquartile range of the distribution

r = iqr(pd)

r =

 prob.UniformDistribution class

22-5075

 3

See Also
makedist

More About
• “Uniform Distribution (Continuous)”
• Class Attributes
• Property Attributes

22 Functions — Alphabetical List

22-5076

union
Class: dataset

Set union for dataset array observations

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

C = union(A,B)

C = union(A,B,vars)

C = union(A,B,vars,setOrder)

[C,iA,iB] = union(___)

Description

C = union(A,B) for dataset arrays A and B returns the combined set of observations
from the two arrays, with repetitions removed. The observations in the dataset array C
are sorted.

C = union(A,B,vars) returns the combined set of observations from the two arrays,
with repetitions of unique combinations of the variables specified in vars removed. The
observations in the dataset array C are sorted by those variables.

The values for variables not specified in vars for each observation in C are taken from the
corresponding observation in A or B, or from A if there are common observations in both A
and B. If there are multiple observations in A or B that correspond to an observation in C,
those values are taken from the first occurrence.

C = union(A,B,vars,setOrder) returns the observations in C in the order specified
by setOrder.

 union

22-5077

[C,iA,iB] = union(___) also returns index vectors iA and iB such that C is a sorted
combination of the values A(iA,:) and B(iB,:). If there are common observations
in A and B, then union returns only the index from A, in iA. If there are repeated
observations in A or B, then the index of the first occurrence is returned. You can use any
of the previous input arguments.

Input Arguments

A,B

Input dataset arrays.

vars

Cell array of strings containing variable names or a vector of integers containing variable
column numbers, indicating the variables for which union removes repetitions of unique
combinations of the variables.

Specify vars as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of
setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A,

then B.

Output Arguments

C

Dataset array with the combined observations of A and B, with repetitions removed. C is
in sorted order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations in A that contribute to the union. iA contains
the index to the first occurrence of any repeated observations in A.

22 Functions — Alphabetical List

22-5078

iB

Index vector, indicating the observations in B that contribute to the union. If there are
common observations in A and B, then union returns only the index from A, in iA. iB
contains the index to the first occurrence of any repeated observations in B.

Examples
Union of Two Dataset Arrays

Navigate to the folder containing sample data, and load sample data.

cd(matlabroot)

cd('help/toolbox/stats/examples')

A = dataset('XLSFile','hospitalSmall.xlsx');

B = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2);

[length(A) length(B)]

ans =

 14 8

The first dataset array, A, has 14 observations. The second dataset array, B, has 8
observations.

Return the union.

C = union(A,B);

length(C)

ans =

 21

The union of the two dataset arrays has 21 observations, indicating that there was one
observation replicated in A and B.

• “Create a Dataset Array from a File” on page 2-69
• “Merge Dataset Arrays” on page 2-99

See Also
dataset | intersect | ismember | setdiff | setxor | sortrows | unique

 union

22-5079

More About
• “Dataset Arrays” on page 2-132

22 Functions — Alphabetical List

22-5080

unique
Class: dataset

Unique observations in dataset array

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

C = unique(A)

[C,ia,ic] = unique(A)

C = unique(A,vars)

[C,ia,ic] = unique(A,vars)

[...] = unique(A,vars,occurrence)

[...] = unique(...,'R2012a')

[...] = unique(...,'legacy')

[...] = unique(A,vars,setOrder)

Description

Note: The behavior of dataset.unique is consistent with the MATLAB function
unique. For a demonstration of using the 'legacy' flag to preserve the behavior from
R2012b and prior in your existing code, see the documentation for unique.

C = unique(A) returns a copy of the dataset A that contains only the sorted unique
observations. A must contain only variables whose class has a unique method, including:

• numeric
• character

 unique

22-5081

• logical
• categorical
• cell arrays of strings

For a variable with multiple columns, its class's unique method must support the
'rows' flag.

[C,ia,ic] = unique(A) also returns index vectors ia and ic such that C = A(ia,:)
and A = C(ic,:).

C = unique(A,vars) returns a dataset that contains only one observation for each
unique combination of values for the variables in A specified in vars. vars is a positive
integer, a vector of positive integers, a variable name, a cell array containing one or more
variable names, or a logical vector. C includes all variables from A. The values in C for the
variables not specified in vars are taken from the last occurrence among observations in
A with each unique combination of values for the variables specified in vars.

[C,ia,ic] = unique(A,vars) also returns index vectors ia and ic such that C =
A(ia,:) and A(:,vars) = C(ic,vars).

[...] = unique(A,vars,occurrence) specifies which index is returned in ia
in the case of repeated observations in A. The default value is occurrence='last',
which returns the index of the last occurrence of each repeated observation in A.
occurrence='first' returns the index of the first occurrence of each repeated
observation in A. The values in C for variables not specified in vars are taken from the
observations A(ia,:). Specify vars as [] to use the default value of all variables.

[...] = unique(...,'R2012a') adopts the future behavior of unique. You can
specify the flag as the final argument with any previous syntax that accepts A, vars, or
occurrence.

[...] = unique(...,'legacy') preserves the current behavior of unique. You can
specify the flag as the final argument with any previous syntax that accepts A, vars, or
occurrence.

[...] = unique(A,vars,setOrder) returns the observations of C in a specific order.
setOrder='sorted' returns the values of C in sorted order. setOrder='stable'
returns the values of C in the same order as A. If there are repeated observations in A,
then ia returns the index of the first occurrence of each repeated observation. Specify
vars as [] to use the default value of all variables.

22 Functions — Alphabetical List

22-5082

See Also
dataset | set | subsasgn

 Units property

22-5083

Units property
Class: dataset

Units of variables in data set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

A cell array of strings giving the units of the variables in the data set. This property may
be empty, but if not empty, the number of strings must equal the number of variables.
Any individual string may be empty for a variable that does not have units defined. The
default is an empty cell array.

22 Functions — Alphabetical List

22-5084

unidcdf
Discrete uniform cumulative distribution function

Syntax

p = unidcdf(x,N)

p = unidcdf(x,N,'upper')

Description

p = unidcdf(x,N) returns the discrete uniform cdf at each value in x using the
corresponding maximum observable value in N. x and N can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other inputs. The maximum observable
values in N must be positive integers.

p = unidcdf(x,N,'upper') returns the complement of the discrete uniform cdf at
each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities.

The discrete uniform cdf is

p F x N
floor x

N
I xN= =

()
(|) ()(,...,)1

The result, p, is the probability that a single observation from the discrete uniform
distribution with maximum N will be a positive integer less than or equal to x. The
values x do not need to be integers.

Examples

Compute Discrete Uniform Distribution cdf

What is the probability of drawing a number 20 or less from a hat with the numbers from
1 to 50 inside?

 unidcdf

22-5085

probability = unidcdf(20,50)

probability =

 0.4000

More About
• “Uniform Distribution (Discrete)” on page B-169

See Also
cdf | unidpdf | unidinv | unidstat | unidrnd | mle

22 Functions — Alphabetical List

22-5086

unidinv
Discrete uniform inverse cumulative distribution function

Syntax

X = unidinv(P,N)

Description

X = unidinv(P,N) returns the smallest positive integer X such that the discrete
uniform cdf evaluated at X is equal to or exceeds P. You can think of P as the probability
of drawing a number as large as X out of a hat with the numbers 1 through N inside.

P and N can be vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of X. A scalar input for N or P is expanded to a constant array with
the same dimensions as the other input. The values in P must lie on the interval [0 1]
and the values in N must be positive integers.

Examples
x = unidinv(0.7,20)

x =

 14

y = unidinv(0.7 + eps,20)

y =

 15

A small change in the first parameter produces a large jump in output. The cdf and its
inverse are both step functions. The example shows what happens at a step.

More About
• “Uniform Distribution (Discrete)” on page B-169

 unidinv

22-5087

See Also
icdf | unidcdf | unidpdf | unidstat | unidrnd

22 Functions — Alphabetical List

22-5088

unidpdf
Discrete uniform probability density function

Syntax

Y = unidpdf(X,N)

Description

Y = unidpdf(X,N) computes the discrete uniform pdf at each of the values in X using
the corresponding maximum observable value in N. X and N can be vectors, matrices,
or multidimensional arrays that have the same size. A scalar input is expanded to a
constant array with the same dimensions as the other inputs. The parameters in N must
be positive integers.

The discrete uniform pdf is

y f x N
N

I xN= () = ()()| ,...,
1

1

You can think of y as the probability of observing any one number between 1 and n.

Examples

For fixed n, the uniform discrete pdf is a constant.

y = unidpdf(1:6,10)

y =

 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Now fix x, and vary n.

likelihood = unidpdf(5,4:9)

likelihood =

 0 0.2000 0.1667 0.1429 0.1250 0.1111

 unidpdf

22-5089

More About
• “Uniform Distribution (Discrete)” on page B-169

See Also
pdf | unidcdf | unidinv | unidstat | unidrnd

22 Functions — Alphabetical List

22-5090

unidrnd
Discrete uniform random numbers

Syntax

R = unidrnd(N)

R = unidrnd(N,m,n,...)

R = unidrnd(N,[m,n,...])

Description

R = unidrnd(N) generates random numbers for the discrete uniform distribution
with maximum N. The parameters in N must be positive integers. N can be a vector, a
matrix, or a multidimensional array. The size of R is the size of N. The discrete uniform
distribution arises from experiments equivalent to drawing a number from one to N out of
a hat.

R = unidrnd(N,m,n,...) or R = unidrnd(N,[m,n,...]) generates an m-by-n-by-...
array. The N parameter can be a scalar or an array of the same size as R.

Examples

In the Massachusetts lottery, a player chooses a four-digit number. Generate random
numbers for Monday through Saturday.

numbers = unidrnd(10000,1,6)-1

numbers =

 4564 185 8214 4447 6154 7919

More About
• “Uniform Distribution (Discrete)” on page B-169

See Also
random | unidpdf | unidcdf | unidinv | unidstat

 unidstat

22-5091

unidstat
Discrete uniform mean and variance

Syntax

[M,V] = unidstat(N)

Description

[M,V] = unidstat(N) returns the mean and variance of the discrete uniform
distribution with minimum value 1 and maximum value N.

The mean of the discrete uniform distribution with parameter N is (N + 1)/2. The
variance is (N2 – 1)/12.

Examples
[m,v] = unidstat(1:6)

m =

 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

v =

 0 0.2500 0.6667 1.2500 2.0000 2.9167

More About
• “Uniform Distribution (Discrete)” on page B-169

See Also
unidpdf | unidcdf | unidinv | unidrnd

22 Functions — Alphabetical List

22-5092

unifcdf
Continuous uniform cumulative distribution function

Syntax

p = unifcdf(x,a,b)

p = unifcdf(x,a,b,'upper')

Description

p = unifcdf(x,a,b) returns the uniform cdf at each value in x using the
corresponding lower endpoint (minimum), a and upper endpoint (maximum), b. x, a,
and b can be vectors, matrices, or multidimensional arrays that all have the same size.
A scalar input is expanded to a constant matrix with the same dimensions as the other
inputs.

p = unifcdf(x,a,b,'upper') returns the complement of the uniform cdf at each
value in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

The uniform cdf is

p F x a b
x a

b a
I xa b= = −

−
()[](| ,) ,

The standard uniform distribution has a = 0 and b = 1.

Examples

Compute Uniform Distribution cdf

What is the probability that an observation from a standard uniform distribution will be
less than 0.75?

probability = unifcdf(0.75)

 unifcdf

22-5093

probability =

 0.7500

What is the probability that an observation from a uniform distribution with a = -1 and
b = 1 will be less than 0.75?

probability = unifcdf(0.75,-1,1)

probability =

 0.8750

More About
• “Uniform Distribution (Continuous)” on page B-163

See Also
cdf | unifpdf | unifinv | unifstat | unifit | unifrnd

22 Functions — Alphabetical List

22-5094

unifinv
Continuous uniform inverse cumulative distribution function

Syntax

X = unifinv(P,A,B)

Description

X = unifinv(P,A,B) computes the inverse of the uniform cdf with parameters A and
B (the minimum and maximum values, respectively) at the corresponding probabilities
in P. P, A, and B can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input is expanded to a constant array with the same dimensions as
the other inputs.

The inverse of the uniform cdf is

x F p a b a p a b I p= () = + −() ()−
[]

1
0 1| , ,

The standard uniform distribution has A = 0 and B = 1.

Examples

What is the median of the standard uniform distribution?

median_value = unifinv(0.5)

median_value =

 0.5000

What is the 99th percentile of the uniform distribution between -1 and 1?

percentile = unifinv(0.99,-1,1)

percentile =

 0.9800

 unifinv

22-5095

More About
• “Uniform Distribution (Continuous)” on page B-163

See Also
icdf | unifcdf | unifpdf | unifstat | unifit | unifrnd

22 Functions — Alphabetical List

22-5096

unifit
Continuous uniform parameter estimates

Syntax

[ahat,bhat] = unifit(data)

[ahat,bhat,ACI,BCI] = unifit(data)

[ahat,bhat,ACI,BCI] = unifit(data,alpha)

Description

[ahat,bhat] = unifit(data) returns the maximum likelihood estimates (MLEs) of
the parameters of the uniform distribution given the data in data.

[ahat,bhat,ACI,BCI] = unifit(data) also returns 95% confidence intervals, ACI
and BCI, which are matrices with two rows. The first row contains the lower bound of the
interval for each column of the matrix data. The second row contains the upper bound of
the interval.

[ahat,bhat,ACI,BCI] = unifit(data,alpha) enables you to control of the
confidence level alpha. For example, if alpha = 0.01 then ACI and BCI are 99%
confidence intervals.

Examples
r = unifrnd(10,12,100,2);

[ahat,bhat,aci,bci] = unifit(r)

ahat =

 10.0154 10.0060

bhat =

 11.9989 11.9743

aci =

 9.9551 9.9461

 10.0154 10.0060

bci =

 11.9989 11.9743

 unifit

22-5097

 12.0592 12.0341

More About
• “Uniform Distribution (Continuous)” on page B-163

See Also
mle | unifpdf | unifcdf | unifinv | unifstat | unifrnd

22 Functions — Alphabetical List

22-5098

unifpdf
Continuous uniform probability density function

Syntax

Y = unifpdf(X,A,B)

Description

Y = unifpdf(X,A,B) computes the continuous uniform pdf at each of the values in X
using the corresponding lower endpoint (minimum), A and upper endpoint (maximum),
B. X, A, and B can be vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same dimensions as the
other inputs. The parameters in B must be greater than those in A.

The continuous uniform distribution pdf is

y f x a b
b a

I xa b= () =
−

()[]| , ,
1

The standard uniform distribution has A = 0 and B = 1.

Examples

For fixed a and b, the uniform pdf is constant.

x = 0.1:0.1:0.6;

y = unifpdf(x)

y =

 1 1 1 1 1 1

What if x is not between a and b?

y = unifpdf(-1,0,1)

y =

 0

 unifpdf

22-5099

More About
• “Uniform Distribution (Continuous)” on page B-163

See Also
pdf | unifcdf | unifinv | unifstat | unifit | unifrnd

22 Functions — Alphabetical List

22-5100

unifrnd
Continuous uniform random numbers

Syntax

R = unifrnd(A,B)

R = unifrnd(A,B,m,n,...)

R = unifrnd(A,B,[m,n,...])

Description

R = unifrnd(A,B) returns an array R of random numbers generated from the
continuous uniform distributions with lower and upper endpoints specified by A and B,
respectively. If A and B are arrays, R(i,j) is generated from the distribution specified
by the corresponding elements of A and B. If either A or B is a scalar, it is expanded to the
size of the other input.

R = unifrnd(A,B,m,n,...) or R = unifrnd(A,B,[m,n,...]) returns an m-
by-n-by-... array. If A and B are scalars, all elements of R are generated from the same
distribution. If either A or B is an array, they must be m-by-n-by-... .

Examples

Generate one random number each from the continuous uniform distributions on the
intervals (0,1), (0,2), ..., (0,5):

a = 0; b = 1:5;

r1 = unifrnd(a,b)

r1 =

 0.8147 1.8116 0.3810 3.6535 3.1618

Generate five random numbers each from the same distributions:

B = repmat(b,5,1);

R = unifrnd(a,B)

R =

 unifrnd

22-5101

 0.0975 0.3152 0.4257 2.6230 3.7887

 0.2785 1.9412 1.2653 0.1428 3.7157

 0.5469 1.9143 2.7472 3.3965 1.9611

 0.9575 0.9708 2.3766 3.7360 3.2774

 0.9649 1.6006 2.8785 2.7149 0.8559

Generate five random numbers from the continuous uniform distribution on (0,2):

r2 = unifrnd(a,b(2),1,5)

r2 =

 1.4121 0.0637 0.5538 0.0923 0.1943

More About
• “Uniform Distribution (Continuous)” on page B-163

See Also
rand | random | unifpdf | unifcdf | unifinv | unifstat | unifit

22 Functions — Alphabetical List

22-5102

unifstat
Continuous uniform mean and variance

Syntax

[M,V] = unifstat(A,B)

Description

[M,V] = unifstat(A,B) returns the mean of and variance for the continuous uniform
distribution using the corresponding lower endpoint (minimum), A and upper endpoint
(maximum), B. Vector or matrix inputs for A and B must have the same size, which is also
the size of M and V. A scalar input for A or B is expanded to a constant matrix with the
same dimensions as the other input.

The mean of the continuous uniform distribution with parameters a and b is (a + b)/2,
and the variance is (a – b)2/12.

Examples
a = 1:6;

b = 2.*a;

[m,v] = unifstat(a,b)

m =

 1.5000 3.0000 4.5000 6.0000 7.5000 9.0000

v =

 0.0833 0.3333 0.7500 1.3333 2.0833 3.0000

More About
• “Uniform Distribution (Continuous)” on page B-163

See Also
unifpdf | unifcdf | unifinv | unifit | unifrnd

 unstack

22-5103

unstack

Class: dataset

Unstack data from single variable into multiple variables

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

wide = unstack(tall,datavar,indvar)

[wide,itall] = unstack(tall,datavar,indvar)

wide = unstack(tall,datavar,indvar,'Parameter',value)

Description

wide = unstack(tall,datavar,indvar) converts a dataset array tall to an
equivalent dataset array wide that is in wide format, by unstacking a single variable in
tall into multiple variables in wide. In general wide contains more variables, but fewer
observations, than tall.

datavar specifies the data variable in tall to unstack. indvar specifies an indicator
variable in tall that determines which variable in wide each value in datavar is
unstacked into. unstack treats the remaining variables in tall as grouping variables.
Each unique combination of their values defines a group of observations in tall that will
be unstacked into a single observation in wide.

unstack creates m data variables in wide, where m is the number of group levels in
indvar. The values in indvar indicate which of those m variables receive which values
from datavar. The j-th data variable in wide contains the values from datavar that
correspond to observations whose indvar value was the j-th of the m possible levels.

22 Functions — Alphabetical List

22-5104

Elements of those m variables for which no corresponding data value in tall exists
contain a default value.

datavar is a positive integer, a variable name, or a logical vector containing a single
true value. indvar is a positive integer, a variable name, or a logical vector containing a
single true value.

[wide,itall] = unstack(tall,datavar,indvar) returns an index vector itall
indicating the correspondence between observations in wide and those in tall. For each
observation in wide, itall contains the index of the first in the corresponding group of
observations in tall.

For more information on grouping variables, see “Grouping Variables” on page 2-52.

Input Arguments

wide = unstack(tall,datavar,indvar,'Parameter',value) uses the following
parameter name/value pairs to control how unstack converts variables in tall to
variables in wide:

'GroupVars' Grouping variables in tall that define groups of
observations. groupvars is a positive integer, a vector of
positive integers, a variable name, a cell array containing
one or more variable names, or a logical vector. The default
is all variables in tall not listed in datavar or indvar.

'NewDataVarNames' A cell array of strings containing names for the data
variables unstack should create in wide. Default is the
group names of the grouping variable specified in indvar.

'AggregationFun' A function handle that accepts a subset of values from
datavar and returns a single value. stack applies this
function to observations from the same group that have
the same value of indvar. The function must aggregate
the data values into a single value, and in such cases it
is not possible to recover tall from wide using stack.
The default is @sum for numeric data variables. For non-
numeric variables, there is no default, and you must specify
'AggregationFun' if multiple observations in the same
group have the same values of indvar.

 unstack

22-5105

'ConstVars' Variables in tall to copy to wide without unstacking. The
values for these variables in wide are taken from the first
observation in each group in tall, so these variables should
typically be constant within each group. ConstVars is a
positive integer, a vector of positive integers, a variable
name, a cell array containing one or more variable names, or
a logical vector. The default is no variables.

You can also specify more than one data variable in tall, each of which becomes a set
of m variables in wide. In this case, specify datavar as a vector of positive integers,
a cell array containing variable names, or a logical vector. You may specify only one
variable with indvar. The names of each set of data variables in wide are the name
of the corresponding data variable in tall concatenated with the names specified in
'NewDataVarNames'. The function specified in 'AggregationFun' must return a
value with a single row.

Examples

Convert a "wide format" data set to "tall format", and then back to a different "wide
format":

load flu

% FLU has a 'Date' variable, and 10 variables for estimated

% influenza rates (in 9 different regions, estimated from

% Google searches, plus a nationwide extimate from the

% CDC). Combine those 10 variables into a "tall" array that

% has a single data variable, 'FluRate', and an indicator

% variable, 'Region', that says which region each estimate

% is from.

[flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...

 'IndVarName','Region')

% The second observation in FLU is for 10/16/2005. Find the

% observations in FLU2 that correspond to that date.

flu(2,:)

flu2(iflu==2,:)

% Use the 'Date' variable from that tall array to split

% 'FluRate' into 52 separate variables, each containing the

% estimated influenza rates for each unique date. The new

22 Functions — Alphabetical List

22-5106

% "wide" array has one observation for each region. In

% effect, this is the original array FLU "on its side".

dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));

[flu3,iflu2] = unstack(flu2, 'FluRate', 'Date', ...

 'NewDataVarNames',dateNames)

% Since observations in FLU3 represent regions, IFLU2

% indicates the first occurrence in FLU2 of each region.

flu2(iflu2,:)

See Also
dataset.stack | dataset.join

How To
• “Grouping Variables” on page 2-52

 upperparams

22-5107

upperparams
Class: paretotails

Upper Pareto tails parameters

Syntax

params = upperparams(obj)

Description

params = upperparams(obj) returns the 2-element vector params of shape and scale
parameters, respectively, of the upper tail of the Pareto tails object obj. upperparams
does not return a location parameter.

Examples

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);

obj = paretotails(t,0.1,0.9);

lowerparams(obj)

ans =

 -0.1901 1.1898

upperparams(obj)

ans =

 0.3646 0.5103

See Also
paretotails | lowerparams

22 Functions — Alphabetical List

22-5108

UserData property
Class: dataset

Variable containing additional information associated with data set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

Any variable containing additional information to be associated with the data set. The
default is an empty array.

 var

22-5109

var
Variance of probability distribution

Syntax

v = var(pd)

Description

v = var(pd) returns the variance v of the probability distribution pd.

Examples

Variance of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the variance of the fitted distribution.

v = var(pd)

v =

22 Functions — Alphabetical List

22-5110

 76.0419

For a normal distribution, the variance is equal to the square of the parameter sigma.

Variance of a Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

Compute the variance of the distribution.

v = var(pd)

v =

 5.3650

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

v — Variance
nonnegative scalar value

 var

22-5111

Variance of the probability distribution, returned as a nonnegative scalar value.

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-5112

var
Class: prob.KernelDistribution
Package: prob

Variance of probability distribution object

Syntax
v = var(pd)

Description
v = var(pd) returns the variance v of the probability distribution pd.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Fit a probability
distribution object to data using fitdist or the Distribution Fitting app.

Output Arguments
v — Variance
nonnegative scalar value

Variance of the probability distribution, returned as a nonnegative scalar value.

Examples
Variance of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

 var

22-5113

load examgrades;

x = grades(:,1);

Fit a kernel distribution object to the data.

pd = fitdist(x,'Kernel')

pd =

 KernelDistribution

 Kernel = normal

 Bandwidth = 3.61677

 Support = unbounded

Compute the variance of the fitted distribution.

v = var(pd)

v =

 88.4893

See Also
dfittool | fitdist

22 Functions — Alphabetical List

22-5114

var
Class: ProbDistUnivParam

Return variance of ProbDistUnivParam object

Syntax

V = var(PD)

Description

V = var(PD) returns V, the variance of the ProbDistUnivParam object PD.

Input Arguments

PD An object of the class ProbDistUnivParam.

Output Arguments

V The variance of the ProbDistUnivParam object PD.

See Also
var

 var

22-5115

var
Class: prob.ParametricTruncatableDistribution
Package: prob

Variance of probability distribution object

Syntax
v = var(pd)

Description
v = var(pd) returns the variance v of the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.

Output Arguments

v — Variance
nonnegative scalar value

Variance of the probability distribution, returned as a nonnegative scalar value.

Examples

Variance of a Triangular Distribution

Create a triangular distribution object.

22 Functions — Alphabetical List

22-5116

pd = makedist('Triangular','a',-3,'b',1,'c',3)

pd =

 TriangularDistribution

A = -3, B = 1, C = 3

Compute the variance of the distribution.

v = var(pd)

v =

 1.5556

See Also
makedist

 var

22-5117

var

Class: prob.ToolboxFittableParametricDistribution
Package: prob

Variance of probability distribution object

Syntax

v = var(pd)

Description

v = var(pd) returns the variance v of the probability distribution pd.

Input Arguments

pd — Probability distribution
probability distribution object

Probability distribution, specified as a probability distribution object. Create a
probability distribution object with specified parameter values using makedist.
Alternatively, create a probability distribution object by fitting it to data using fitdist
or the Distribution Fitting app.

Output Arguments

v — Variance
nonnegative scalar value

Variance of the probability distribution, returned as a nonnegative scalar value.

22 Functions — Alphabetical List

22-5118

Examples

Variance of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam
grade data.

load examgrades;

x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 75.0083 [73.4321, 76.5846]

 sigma = 8.7202 [7.7391, 9.98843]

Compute the variance of the fitted distribution.

v = var(pd)

v =

 76.0419

For a normal distribution, the variance is equal to the square of the parameter sigma.

Variance of a Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','a',5,'b',2)

pd =

 WeibullDistribution

 Weibull distribution

 A = 5

 B = 2

 var

22-5119

Compute the variance of the distribution.

v = var(pd)

v =

 5.3650

See Also
dfittool | fitdist | makedist

22 Functions — Alphabetical List

22-5120

VarDescription property
Class: dataset

Cell array of strings giving descriptions of variables in data set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

A cell array of strings giving the descriptions of the variables in the data set. This
property may be empty, but if not empty, the number of strings must equal the number
of variables. Any individual string may be empty for a variable that does not have a
description defined. The default is an empty cell array.

 varimportance

22-5121

varimportance
Class: classregtree

Compute embedded estimates of input feature importance

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

imp = varimportance(t)

Description

imp = varimportance(t) computes estimates of input feature importance for tree t
by summing changes in the risk due to splits on every feature. The returned vector imp
has one element for each input variable in the data used to train this tree. At each node,
the risk is estimated as node impurity if impurity was used to split nodes and node error
otherwise. This risk is weighted by the node probability. Variable importance associated
with this split is computed as the difference between the risk for the parent node and the
total risk for the two children.

See Also
risk

22 Functions — Alphabetical List

22-5122

VarNames property
Class: dataset

Cell array giving names of variables in data set

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Description

A cell array of nonempty, distinct strings giving the names of the variables in the data
set. The number of strings must equal the number of variables. The default is the cell
array of string names for the variables used to create the data set.

 VarNames property

22-5123

VarNames property
Class: TreeBagger

Variable names

Description

The VarNames property is a cell array containing the names of the predictor variables
(features). TreeBagger takes these names from the optional 'names' parameter. The
default names are 'x1', 'x2', etc.

22 Functions — Alphabetical List

22-5124

vartest

Chi-square variance test

Syntax

h = vartest(x,v)

h = vartest(x,v,Name,Value)

[h,p] = vartest(___)

[h,p,ci,stats] = vartest(___)

Description

h = vartest(x,v) returns a test decision for the null hypothesis that the data in
vector x comes from a normal distribution with variance v, using the chi-square variance
test. The alternative hypothesis is that x comes from a normal distribution with a
different variance. The result h is 1 if the test rejects the null hypothesis at the 5%
significance level, and 0 otherwise.

h = vartest(x,v,Name,Value) performs the chi-square variance test with additional
options specified by one or more name-value pair arguments. For example, you can
change the significance level or conduct a one-sided test.

[h,p] = vartest(___) also returns the p-value of the test, p, using any of the input
arguments in the previous syntaxes.

[h,p,ci,stats] = vartest(___) also returns the confidence interval for the true
variance, ci, and the structure stats containing information about the test statistic.

Examples

Test for a Specified Variance

Load the sample data. Create a vector containing the first column of the students’ exam
grades matrix.

 vartest

22-5125

load examgrades;

x = grades(:,1);

Test the null hypothesis that the data comes from a distribution with a variance of 25.

[h,p,ci,stats] = vartest(x,25)

h =

 1

p =

 0

ci =

 59.8936

 99.7688

stats =

 chisqstat: 361.9597

 df: 119

The returned value h = 1 indicates that vartest rejects the null hypothesis at the
default 5% significance level. ci shows the lower and upper boundaries of the 95%
confidence interval for the true variance, and suggests that the true variance is greater
than 25.

One-Sided Hypothesis Test

Load the sample data. Create a vector containing the first column of the students’ exam
grades matrix.

load examgrades;

x = grades(:,1);

Test the null hypothesis that the data comes from a distribution with a variance of 25,
against the alternative hypothesis that the variance is greater than 25.

[h,p] = vartest(x,25,'Tail','right')

h =

 1

p =

 2.4269e-26

22 Functions — Alphabetical List

22-5126

The returned value of h = 1 indicates that vartest rejects the null hypothesis at the
default 5% significance level, in favor of the alternative hypothesis that the variance is
greater than 25.

Input Arguments

x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. For matrices,
vartest performs separate tests along each column of x, and returns a row vector
of results. For multidimensional arrays, vartest works along the first nonsingleton
dimension of x.
Data Types: single | double

v — Hypothesized variance
nonnegative scalar value

Hypothesized variance, specified as a nonnegative scalar value.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at
the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

 vartest

22-5127

'Dim' — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix to test along, specified as the comma-separated pair
consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests
the data in each column for equality to the hypothesized variance, while 'Dim',2 tests
the data in each row.
Example: 'Dim',2

Data Types: single | double

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the population variance is not v.
'right' Test the alternative hypothesis that the population variance is

greater than v.
'left' Test the alternative hypothesis that the population variance is less

than v.

Example: 'Tail','right'

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

22 Functions — Alphabetical List

22-5128

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true variance, returned as a two-element vector containing
the lower and upper boundaries of the 100 × (1 – Alpha)% confidence interval.

stats — Test statistics
structure

Test statistics for the chi-square variance test, returned as a structure containing:

• chisqstat — Value of the test statistic.
• df — Degrees of freedom of the test.

More About

Chi-Square Variance Test

The chi-square variance test is used to test if the variance of a population is equal to a
hypothesized value.

The test statistic is

T n
s= -() Ê

Ë
Á

ˆ

¯
˜1

0

2

s
,

where n is the sample size, s is the sample standard deviation, and σ0 is the hypothesized
standard deviation. The denominator is the ratio of the sample standard deviation to the
hypothesized standard deviation. The further this ratio deviates from 1, the more likely
you are to reject the null hypothesis. The test statistic T has a chi-square distribution
with n – 1 degrees of freedom under the null hypothesis.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-
by-4 array, then x is a three-dimensional array.

 vartest

22-5129

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not
equal to 1. For example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the
first nonsingleton dimension of x.

See Also
vartest2 | vartestn

22 Functions — Alphabetical List

22-5130

vartest2
Two-sample F-test for equal variances

Syntax

h = vartest2(x,y)

h = vartest2(x,y,Name,Value)

[h,p] = vartest2(___)

[h,p,ci,stats] = vartest2(___)

Description

h = vartest2(x,y) returns a test decision for the null hypothesis that the data in
vectors x and y comes from normal distributions with the same variance, using the two-
sample F-test. The alternative hypothesis is that they come from normal distributions
with different variances. The result h is 1 if the test rejects the null hypothesis at the 5%
significance level, and 0 otherwise.

h = vartest2(x,y,Name,Value) returns a test decision for the two-sample F-
test with additional options specified by one or more name-value pair arguments. For
example, you can change the significance level or conduct a one-sided test.

[h,p] = vartest2(___) also returns the p-value of the test, p, using any of the input
arguments in the previous syntaxes.

[h,p,ci,stats] = vartest2(___) also returns the confidence interval for the true
variance ratio, ci, and the structure stats containing information about the test statistic.

Examples

Test for Equal Variances

Load the sample data. Create vectors containing the first and second columns of the data
matrix to represent students’ grades on two exams.

load examgrades;

x = grades(:,1);

 vartest2

22-5131

y = grades(:,2);

Test the null hypothesis that the data in x and y comes from distributions with the same
variance.

[h,p,ci,stats] = vartest2(x,y)

h =

 1

p =

 0.0019

ci =

 1.2383

 2.5494

stats =

 fstat: 1.7768

 df1: 119

 df2: 119

The returned result h = 1 indicates that vartest2 rejects the null hypothesis at the
default 5% significance level. ci contains the lower and upper boundaries of the 95%
confidence interval for the true variance ratio. stats contains the value of the test
statistic for the F-test and the numerator and denominator degrees of freedom.

One-Sided Hypothesis Test

Load the sample data. Create vectors containing the first and second columns of the data
matrix to represent students’ grades on two exams.

load examgrades;

x = grades(:,1);

y = grades(:,2);

Test the null hypothesis that the data in x and y comes from distributions with the same
variance, against the alternative that the population variance of x is greater than that of
y.

vartest2(x,y,'Tail','right')

h =

 1

p =

22 Functions — Alphabetical List

22-5132

 9.4364e-04

The returned result h = 1 indicates that vartest2 rejects the null hypothesis at the
default 5% significance level, in favor of the alternative hypothesis that the population
variance of x is greater than that of y.

Input Arguments

x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

• If x and y are vectors, they do not need to be the same length.
• If x and y are matrices, they must have the same number of columns, but do not

need to have the same number of rows. vartest2 performs separate tests along each
column and returns a vector of the results.

• If x and y are multidimensional arrays, they must have the same number of
dimensions, and the same size along all but the first nonsingleton dimension.

Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

• If x and y are vectors, they do not need to be the same length.
• If x and y are matrices, they must have the same number of columns, but do not

need to have the same number of rows. vartest2 performs separate tests along each
column and returns a vector of the results.

• If x and y are multidimensional arrays, they must have the same number of
dimensions, and the same size along all but the first nonsingleton dimension.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 vartest2

22-5133

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at
the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Dim' — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix to test along, specified as the comma-separated pair
consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests
the data in each column for variance equality, while 'Dim',2 tests the data in each row.

Example: 'Dim',2

Data Types: single | double

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate using the F-test, specified as the comma-
separated pair consisting of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the population variances are not
equal.

'right' Test the alternative hypothesis that the population variance of x is
greater than that of y.

'left' Test the alternative hypothesis that the population variance of x is
less than that of y.

Example: 'Tail','right'

22 Functions — Alphabetical List

22-5134

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true ratio of the population variances, returned as a two-
element vector containing the lower and upper boundaries of the 100 × (1 – Alpha)%
confidence interval.

stats — Test statistics
structure

Test statistics for the hypothesis test, returned as a structure containing:

• fstat — Value of the test statistic.
• df1 — Numerator degrees of freedom of the test.
• df2 — Denominator degrees of freedom of the test.

More About

Two-Sample F-Test

The two-sample F-test is used to test if the variances of two populations are equal.

 vartest2

22-5135

The test statistic is

F
s

s

=
1

2

2
2

,

where s1 and s2 are the sample standard deviations. The test statistic is a ratio of the two
sample variances. The further this ratio deviates from 1, the more likely you are to reject
the null hypothesis. Under the null hypothesis, the test statistic F has a F-distribution
with numerator degrees of freedom equal to N1 – 1 and denominator degrees of freedom
equal to N2 – 1, where N1 and N2 are the sample sizes of the two data sets.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-
by-4 array, then x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not
equal to 1. For example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the
first nonsingleton dimension of x.

See Also
vartest | vartestn

22 Functions — Alphabetical List

22-5136

vartestn

Multiple-sample tests for equal variances

Syntax

vartestn(x)

vartestn(x,Name,Value)

vartestn(x,group)

vartestn(x,group,Name,Value)

p = vartestn(___)

[p,stats] = vartestn(___)

Description

vartestn(x) returns a summary table of statistics and a box plot for a Bartlett test of
the null hypothesis that the columns of data vector x come from normal distributions
with the same variance. The alternative hypothesis is that not all columns of data have
the same variance.

vartestn(x,Name,Value) returns a summary table of statistics and a box plot for a
test of unequal variances with additional options specified by one or more name-value
pair arguments. For example, you can specify a different type of hypothesis test or
change the display settings for the test results.

vartestn(x,group) returns a summary table of statistics and a box plot for a Bartlett
test of the null hypothesis that the data in each categorical group comes from normal
distributions with the same variance. The alternative hypothesis is that not all groups
have the same variance.

vartestn(x,group,Name,Value) returns a summary table of statistics and a box plot
for a test of unequal variances with additional options specified by one or more name-
value pair arguments. For example, you can specify a different type of hypothesis test or
change the display settings for the test results.

 vartestn

22-5137

p = vartestn(___) also returns the p-value of the test, p, using any of the input
arguments in the previous syntaxes.

[p,stats] = vartestn(___) also returns the structure stats containing information
about the test statistic.

Examples

Test Data for Equal Variances

Load the sample data.

load examgrades;

Test the null hypothesis that the variances are equal across the five columns of data in
the students’ exam grades matrix, grades.

vartestn(grades)

22 Functions — Alphabetical List

22-5138

The low p-value, p = 0, indicates that vartestn rejects the null hypothesis that the
variances are equal across all five columns, in favor of the alternative hypothesis that at
least one column has a different variance.

Test Grouped Data for Equal Variances

Load the sample data.

load carsmall;

Test the null hypothesis that the variances in miles per gallon (MPG) are equal across
different model years.

vartestn(MPG,Model_Year)

 vartestn

22-5139

22 Functions — Alphabetical List

22-5140

The high p-value, p = 0.83269, indicates that vartestn does not reject the null
hypothesis that the variances in miles per gallon (MPG) are equal across different model
years.

Test for Equal Variances Using Levene’s Test

Load the sample data.

load carsmall;

Use Levene’s test to test the null hypothesis that the variances in miles per gallon (MPG)
are equal across different model years.

p = vartestn(MPG,Model_Year,'TestType','LeveneAbsolute')

 vartestn

22-5141

p =

 0.6320

22 Functions — Alphabetical List

22-5142

The high p-value, p = 0.63195, indicates that vartestn does not reject the null
hypothesis that the variances in miles per gallon (MPG) are equal across different model
years.

Test for Equal Variances Using the Brown-Forsythe Test

Load the sample data.

load examgrades;

Test the null hypothesis that the variances are equal across the five columns of data in
the students’ exam grades matrix, grades, using the Brown-Forsythe test. Suppress the
display of the summary table of statistics and the box plot.

 vartestn

22-5143

[p,stats] = vartestn(grades,'TestType','BrownForsythe','Display','off')

p =

 1.3121e-06

stats =

 fstat: 8.4160

 df: [4 595]

The small p-value, p = 1.3121e-06, indicates that vartestn rejects the null
hypothesis that the variances are equal across all five columns, in favor of the alternative
hypothesis that at least one column has a different variance.

Input Arguments

x — Sample data
matrix | vector

Sample data, specified as a matrix or vector. If a grouping variable group is specified,
x must be a vector. If a grouping variable is not specified, x must be a matrix. In either
case, vartestn treats NaN values as missing values and ignores them.

Data Types: single | double

group — Grouping variable
categorical array | logical or numeric vector | cell array of strings

Grouping variable, specified as a categorical array, logical or numeric vector, or cell array
of strings with one row for each element of x. Each unique value in a grouping variable
defines a group.

For example, if Gender is a cell array of strings with values 'Male' and 'Female', you
can use Gender as a grouping variable to test your data by gender.

Example: Gender

Data Types: single | double | logical | cell | char

22 Functions — Alphabetical List

22-5144

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'TestType','BrownForsythe','Display','off' specifies a Brown-
Forsythe test and omits the plot of the results.

'Display' — Display settings for test results
'on' (default) | 'off'

Display settings for test results, specified as the comma-separated pair consisting of
'Display' and one of the following.

'on' Display a box plot and table of summary statistics.
'off' Do not display a box plot and table of summary statistics.

Example: 'display','off'

'TestType' — Type of hypothesis test
'Bartlett' (default) | 'LeveneQuadratic' | 'LeveneAbsolute' |
'BrownForsythe' | 'OBrien'

Type of hypothesis test to perform, specified as the comma-separated pair consisting of
'TestType' and one of the following.

'Bartlett' Bartlett’s test.
'LeveneQuadratic' Levene’s test computed by performing ANOVA on the squared

deviations of the data values from their group means.
'LeveneAbsolute' Levene’s test computed by performing ANOVA on the absolute

deviations of the data values from their group means.
'BrownForsythe' Brown-Forsythe test computed by performing ANOVA on

the absolute deviations of the data values from the group
medians.

'OBrien' O’Brien’s modification of Levene’s test with W = 0.5.

Example: 'TestType','OBrien'

 vartestn

22-5145

Output Arguments

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics
structure

Test statistics for the hypothesis test, returned as a structure containing:

• chistat: Value of the test statistic.
• df: Degrees of freedom of the test.

More About

Bartlett’s Test

Bartlett’s test is used to test whether multiple data samples have equal variances,
against the alternative that at least two of the data samples do not have equal variances.

The test statistic is

T

N k s N s

k N

p i i
i

k

i

i

k
=

-() - -()

+ -()()() -()
Ê

Ë

=

=

Â

Â

ln ln

/ /

2 2

1

1

1

1 1 3 1 1 1ÁÁÁ
ˆ

¯
˜̃ - -()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

1 /

,

N k

where s
i

2 is the variance of the ith group, N is the total sample size, Ni is the sample size

of the ith group, k is the number of groups, and sp

2 is the pooled variance. The pooled
variance is defined as

22 Functions — Alphabetical List

22-5146

s N s N kp i i
i

k
2 2

1

1= -() -()
=
Â / .

The test statistic has a chi-square distribution with k – 1 degrees of freedom under the
null hypothesis.

Bartlett’s test is sensitive to departures from normality. If your data comes from a
nonnormal distribution, Levene’s test could provide a more accurate result.

Levene, Brown-Forsythe, and O’Brien Tests

The Levene, Brown-Forsythe, and O’Brien tests are used to test if multiple data samples
have equal variances, against the alternative that at least two of the data samples do not
have equal variances.

The test statistic is

W

N k N Z Z

k Z Z

i i
i

k

ij i

j

N

i

k i

=

-() -()

-() -()

=

==

Â

ÂÂ

. ..

.

,

2

1

2

11

1

where Ni is the sample size of the ith group, and k is the number of groups. Depending
on the type of test specified with the TestType name-value pair arguments, Zij can have
one of four definitions:

• If you specify LeveneAbsolute, vartestn uses Z Y Yij ij i= -
.

, where Y
i. is the

mean of the ith subgroup.
•

If you specify LeveneQuadratic, vartestn uses Z Y Yij ij i
2 2

= -(). , where Y
i. is the

mean of the ith subgroup.
• If you specify BrownForsythe, vartestn uses Z Y Yij ij i= -

%
.

, where %Yi. is the

median of the ith subgroup.
• If you specify OBrien, vartestn uses

 vartestn

22-5147

Z
n n y y n

n n
ij

i i ij i i i

i i

=
+ -() -() - -()

-() -()

0 5 2 0 5 1

1 2

2 2
. .

,
s

where ni is the size of the ith group, σi
2 is its sample variance.

In all cases, the test statistic has an F-distribution with k – 1 numerator degrees of
freedom, and N – k denominator degrees of freedom.

The Levene, Brown-Forsythe, and O’Brien tests are less sensitive to departures from
normality than Bartlett’s test, so they are useful alternatives if you suspect the samples
come from nonnormal distributions.

See Also
anova1 | vartest | vartest2

22 Functions — Alphabetical List

22-5148

vertcat
Class: dataset

Vertical concatenation for dataset arrays

Compatibility

The dataset data type might be removed in a future release. To work with
heterogeneous data, use the MATLAB table data type instead. See MATLAB table
documentation for more information.

Syntax

ds = vertcat(ds1, ds2, ...)

Description

ds = vertcat(ds1, ds2, ...) vertically concatenates the dataset arrays ds1,
ds2, Observation names, when present, must be unique across datasets. vertcat
fills in default observation names for the output when some of the inputs have names
and some do not.

Variable names for all dataset arrays must be identical except for order. vertcat
concatenates by matching variable names. vertcat assigns values for the "per-variable"
properties (e.g., Units and VarDescription) in ds from the corresponding property
values in ds1.

See Also
cat | horzcat

 view

22-5149

view

Class: classregtree

Plot tree

Compatibility

classregtree will be removed in a future release. See fitctree, fitrtree,
ClassificationTree, or RegressionTree instead.

Syntax

view(t)

view(t,param1,val1,param2,val2,...)

Description

view(t) displays the decision tree t as computed by classregtree in a figure window.
Each branch in the tree is labeled with its decision rule, and each terminal node is
labeled with the predicted value for that node. Click any node to get more information
about it. The information displayed is specified by the Click to display pop-up menu at
the top of the figure.

view(t,param1,val1,param2,val2,...) specifies optional parameter name/value
pairs:

• 'names' — A cell array of names for the predictor variables, in the order in which
they appear in the matrix X from which the tree was created. (See classregtree.)

• 'prunelevel' — Initial pruning level to display.

For each branch node, the left child node corresponds to the points that satisfy the
condition, and the right child node corresponds to the points that do not satisfy the
condition.

22 Functions — Alphabetical List

22-5150

Examples

Create a classification tree for Fisher's iris data:

load fisheriris;

t = classregtree(meas,species,...

 'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(t)

 view

22-5151

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | prune | test | eval

22 Functions — Alphabetical List

22-5152

compact
Class: clustering.evaluation.ClusterCriterion
Package: clustering.evaluation

Compact clustering evaluation object

Syntax

c = compact(eva)

Description

c = compact(eva) returns a compact clustering evaluation object, which contains
a subset of information about the clustering solution in eva. Compacting a clustering
evaluation object reduces the memory requirements of the object, which is useful when
clustering a large data set.

Input Arguments

eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, specified as a clustering evaluation object. Create a
clustering evaluation object using evalclusters.

Output Arguments

c — Compact clustering evaluation object
clustering evaluation object

Compact clustering evaluation object, returned as a clustering evaluation object. The
compact object includes the clustering evaluation results, In the compact object, the
properties for the input data X, optimal clustering solution OptimalY, and the list of
excluded data Missing are empty.

 compact

22-5153

Examples

Create a Compact Clustering Evaluation Object

Create a compact clustering evaluation object from a full clustering evaluation object.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three
species of iris flowers.

Create a clustering evaluation object. Cluster the data using kmeans, and evaluate the
optimal number of clusters using the gap criterion.

rng('default'); % For reproducibility

eva = evalclusters(meas,'kmeans','Gap','KList',[1:6])

eva =

 GapEvaluation with properties:

 NumObservations: 150

 InspectecedK: [1 2 3 4 5 6]

 CriterionValues: [0.0747 0.5906 0.8737 1.0055 1.0466 0.9848]

 OptimalK: 4

Create a compact clustering evaluation object from eva.

c = compact(eva)

c =

 GapEvaluation with properties:

 NumObservations: 150

 InspectecedK: [1 2 3 4 5 6]

 CriterionValues: [0.0747 0.5906 0.8737 1.0055 1.0466 0.9848]

 OptimalK: 4

The displayed output of the compact object c is the same as the original object eva, but
some properties not shown in the display are different. For example, in the compact
object, the properties x, OptimalY, and Missing are empty.

22 Functions — Alphabetical List

22-5154

Display the optimal clustering solution OptimalY for c.

c.OptimalY

ans =

 []

See Also
evalclusters

 view

22-5155

view
Class: CompactClassificationTree

View tree

Syntax
view(tree)

view(tree,Name,Value)

Description
view(tree) returns a text description of tree, a decision tree.

view(tree,Name,Value) describes tree with additional options specified by one or
more Name,Value pair arguments.

Input Arguments

tree

A classification tree or compact classification tree created by fitctree or compact.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Mode'

String describing the display of tree, either 'graph' or 'text'. 'graph' opens a user
interface displaying tree, and containing controls for querying the tree. 'text' sends
output to the Command Window describing tree.

Default: 'text'

22 Functions — Alphabetical List

22-5156

Examples

View the classification tree for Fisher's iris model in both textual and graphical displays:
load fisheriris

tree = fitctree(meas,species);

view(tree)

Decision tree for classification

1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa

2 class = setosa

3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor

4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor

5 class = virginica

6 if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

view(tree,'Mode','graph')

 view

22-5157

See Also
ClassificationTree | fitctree

22 Functions — Alphabetical List

22-5158

view
Class: CompactRegressionTree

View tree

Syntax
view(tree)

view(tree,Name,Value)

Description
view(tree) returns a text description of tree, a decision tree.

view(tree,Name,Value) describes tree with additional options specified by one or
more Name,Value pair arguments.

Input Arguments

tree

A regression tree or compact regression tree created by fitrtree or compact.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Mode'

String describing the display of tree, either 'graph' or 'text'. 'graph' opens a GUI
displaying tree, and containing controls for querying the tree. 'text' sends output to
the Command Window describing tree.

Default: 'text'

 view

22-5159

Examples

View a regression tree for the carsmall data in both textual and graphical displays:
load carsmall

tree = fitrtree([Weight, Cylinders],MPG,...

 'categoricalpredictors',2,'MinParent',20,...

 'PredictorNames',{'W','C'});

view(tree)

Decision tree for regression

 1 if W<3085.5 then node 2 elseif W>=3085.5 then node 3 else 23.7181

 2 if W<2371 then node 4 elseif W>=2371 then node 5 else 28.7931

 3 if C=8 then node 6 elseif C in {4 6} then node 7 else 15.5417

 4 if W<2162 then node 8 elseif W>=2162 then node 9 else 32.0741

 5 if C=6 then node 10 elseif C=4 then node 11 else 25.9355

 6 if W<4381 then node 12 elseif W>=4381 then node 13 else 14.2963

 7 fit = 19.2778

 8 fit = 33.3056

 9 fit = 29.6111

10 fit = 23.25

11 if W<2827.5 then node 14 elseif W>=2827.5 then node 15 else 27.2143

12 if W<3533.5 then node 16 elseif W>=3533.5 then node 17 else 14.8696

13 fit = 11

14 fit = 27.6389

15 fit = 24.6667

16 fit = 16.6

17 fit = 14.3889

view(tree,'Mode','graph')

See Also
RegressionTree | fitrtree

22 Functions — Alphabetical List

22-5160

wblcdf
Weibull cumulative distribution function

Syntax

p = wblcdf(x,a,b)

[p,plo,pup] = wblcdf(x,a,b,pcov,alpha)

[p,plo,pup] = wblcdf(___ ,'upper')

Description

p = wblcdf(x,a,b) returns the cdf of the Weibull distribution with scale parameter
a and shape parameter b, at each value in x. x, a, and b can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a
constant array of the same size as the other inputs. The default values for a and b are
both 1. The parameters a and b must be positive.

[p,plo,pup] = wblcdf(x,a,b,pcov,alpha) returns confidence bounds for p when
the input parameters a and b are estimates. pcov is the 2-by-2 covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies 100(1 - alpha)%
confidence bounds. plo and pup are arrays of the same size as p containing the lower
and upper confidence bounds.

[p,plo,pup] = wblcdf(___ ,'upper') returns the complement of the Weibull cdf
for each value in x, using an algorithm that more accurately computes the extreme upper
tail probabilities. You can use 'upper' with any of the previous syntaxes.

The function wblcdf computes confidence bounds for p using a normal approximation to
the distribution of the estimate

ˆ log log ˆb x a−()

and then transforms those bounds to the scale of the output p. The computed bounds give
approximately the desired confidence level when you estimate mu, sigma, and pcov from
large samples, but in smaller samples other methods of computing the confidence bounds
might be more accurate.

 wblcdf

22-5161

The Weibull cdf is

p F x a b ba t e dt e I xb b

t

ax
x

a

b b

= () = = − ()− −
−






 −








∞()∫| , ,
1

0 01

Examples

Weibull Distribution cdf

What is the probability that a value from a Weibull distribution with parameters
a = 0.15 and b = 0.8 is less than 0.5?

probability = wblcdf(0.5, 0.15, 0.8)

probability =

 0.9272

How sensitive is this result to small changes in the parameters?

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);

probability = wblcdf(0.5, A, B)

probability =

 0.7484 0.7198 0.6991

 0.7758 0.7411 0.7156

 0.8022 0.7619 0.7319

More About
• “Weibull Distribution” on page B-172

See Also
cdf | wblpdf | wblinv | wblstat | wblfit | wbllike | wblrnd

22 Functions — Alphabetical List

22-5162

wblfit
Weibull parameter estimates

Syntax

parmhat = wblfit(data)

[parmhat,parmci] = wblfit(data)

[parmhat,parmci] = wblfit(data,alpha)

[...] = wblfit(data,alpha,censoring)

[...] = wblfit(data,alpha,censoring,freq)

[...] = wblfit(...,options)

Description

parmhat = wblfit(data) returns the maximum likelihood estimates, parmhat, of the
parameters of the Weibull distribution given the values in the vector data, which must
be positive. parmhat is a two-element row vector: parmhat(1) estimates the Weibull
parameter a, and parmhat(2) estimates the Weibull parameter b, in the pdf

y f x a b ba x e I xb b

x

a

b

= () = ()− −
−








∞()| , ,
1

0

[parmhat,parmci] = wblfit(data) returns 95% confidence intervals for the
estimates of a and b in the 2-by-2 matrix parmci. The first row contains the lower
bounds of the confidence intervals for the parameters, and the second row contains the
upper bounds of the confidence intervals.

[[parmhat,parmci] = wblfit(data,alpha) returns 100(1 - alpha)% confidence
intervals for the parameter estimates.

[...] = wblfit(data,alpha,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = wblfit(data,alpha,censoring,freq) accepts a frequency vector, freq,
of the same size as data. The vector freq typically contains integer frequencies for the

 wblfit

22-5163

corresponding elements in data, but can contain any non-negative values. Pass in [] for
alpha, censoring, or freq to use their default values.

[...] = wblfit(...,options) accepts a structure, options, that specifies control
parameters for the iterative algorithm the function uses to compute maximum likelihood
estimates. The Weibull fit function accepts an options structure that can be created
using the function statset. Enter statset ('wblfit') to see the names and default
values of the parameters that lognfit accepts in the options structure. See the
reference page for statset for more information about these options.

Examples
data = wblrnd(0.5,0.8,100,1);

[parmhat, parmci] = wblfit(data)

parmhat =

 0.5861 0.8567

parmci =

 0.4606 0.7360

 0.7459 0.9973

More About
• “Weibull Distribution” on page B-172

See Also
mle | wbllike | wblpdf | wblcdf | wblinv | wblstat | wblrnd

22 Functions — Alphabetical List

22-5164

wblinv
Weibull inverse cumulative distribution function

Syntax

X = wblinv(P,A,B)

[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha)

Description

X = wblinv(P,A,B) returns the inverse cumulative distribution function (cdf) for a
Weibull distribution with scale parameter A and shape parameter B, evaluated at the
values in P. P, A, and B can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input is expanded to a constant array of the same size as the
other inputs. The default values for A and B are both 1.

[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha) returns confidence bounds for X when
the input parameters A and B are estimates. PCOV is a 2-by-2 matrix containing the
covariance matrix of the estimated parameters. alpha has a default value of 0.05, and
specifies 100(1 - alpha)% confidence bounds. XLO and XUP are arrays of the same size as
X containing the lower and upper confidence bounds.

The function wblinv computes confidence bounds for X using a normal approximation to
the distribution of the estimate

log �
log

�
a

q

b
+

where q is the Pth quantile from a Weibull distribution with scale and shape parameters
both equal to 1. The computed bounds give approximately the desired confidence level
when you estimate mu, sigma, and PCOV from large samples, but in smaller samples
other methods of computing the confidence bounds might be more accurate.

The inverse of the Weibull cdf is

x F p a b a p I p
b

= = − −() 
−1 1

0 11(| ,) ln ()
/

[,]

 wblinv

22-5165

Examples

The lifetimes (in hours) of a batch of light bulbs has a Weibull distribution with
parameters a = 200 and b = 6.

Find the median lifetime of the bulbs:

life = wblinv(0.5, 200, 6)

life =

 188.1486

Generate 100 random values from this distribution, and estimate the 90th percentile
(with confidence bounds) from the random sample

x = wblrnd(200,6,100,1);

p = wblfit(x)

[nlogl,pcov] = wbllike(p,x)

[q90,q90lo,q90up] = wblinv(0.9,p(1),p(2),pcov)

p =

 204.8918 6.3920

nlogl =

 496.8915

pcov =

 11.3392 0.5233

 0.5233 0.2573

q90 =

 233.4489

q90lo =

 226.0092

22 Functions — Alphabetical List

22-5166

q90up =

 241.1335

More About
• “Weibull Distribution” on page B-172

See Also
icdf | wblcdf | wblpdf | wblstat | wblfit | wbllike | wblrnd

 wbllike

22-5167

wbllike
Weibull negative log-likelihood

Syntax

nlogL = wbllike(params,data)

[logL,AVAR] = wbllike(params,data)

[...] = wbllike(params,data,censoring)

[...] = wbllike(params,data,censoring,freq)

Description

nlogL = wbllike(params,data) returns the Weibull log-likelihood. params(1) is
the scale parameter, A, and params(2) is the shape parameter, B.

[logL,AVAR] = wbllike(params,data) also returns AVAR, which is the asymptotic
variance-covariance matrix of the parameter estimates if the values in params are the
maximum likelihood estimates. AVAR is the inverse of Fisher's information matrix. The
diagonal elements of AVAR are the asymptotic variances of their respective parameters.

[...] = wbllike(params,data,censoring) accepts a Boolean vector, censoring,
of the same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = wbllike(params,data,censoring,freq) accepts a frequency vector,
freq, of the same size as data. freq typically contains integer frequencies for the
corresponding elements in data, but can contain any nonnegative values. Pass in [] for
censoring to use its default value.

The Weibull negative log-likelihood for uncensored data is

−() = − () = − ()
==
∑∏log log , | log , |L f a b x f a b xi i
i

n

i 11

where f is the Weibull pdf.

22 Functions — Alphabetical List

22-5168

wbllike is a utility function for maximum likelihood estimation.

Examples

This example continues the example from wblfit.

r = wblrnd(0.5,0.8,100,1);

[logL, AVAR] = wbllike(wblfit(r),r)

logL =

 47.3349

AVAR =

 0.0048 0.0014

 0.0014 0.0040

More About
• “Weibull Distribution” on page B-172

References

[1] Patel, J. K., C. H. Kapadia, and D. B. Owen. Handbook of Statistical Distributions.
New York: Marcel Dekker, 1976.

See Also
wblfit | wblpdf | wblcdf | wblinv | wblstat | wblrnd

 wblpdf

22-5169

wblpdf
Weibull probability density function

Syntax

Y = wblpdf(X,A,B)

Description

Y = wblpdf(X,A,B) computes the Weibull pdf at each of the values in X using the
corresponding scale parameter, A and shape parameter, B. X, A, and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other inputs. The parameters in A
and B must be positive.

The Weibull pdf is

f x a b
b

a

x

a
e

b
x a

b

| , ./() = Ê
ËÁ

ˆ
¯̃

-
-()

1

Some references refer to the Weibull distribution with a single parameter. This
corresponds to wblpdf with A = 1.

Examples

The exponential distribution is a special case of the Weibull distribution.

lambda = 1:6;

y = wblpdf(0.1:0.1:0.6,lambda,1)

y =

 0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

y1 = exppdf(0.1:0.1:0.6,lambda)

y1 =

 0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

22 Functions — Alphabetical List

22-5170

More About
• wblfit

• wblinv

• wbllike

• wblplot

• wblrnd

• wblstat

• “Weibull Distribution” on page B-172

References

[1] Devroye, L. Non-Uniform Random Variate Generation. New York: Springer-Verlag,
1986.

See Also
pdf | wblcdf

 wblplot

22-5171

wblplot
Weibull probability plot

Syntax

wblplot(X)

h = wblplot(X)

Description

wblplot(X) displays a Weibull probability plot of the data in X. If X is a matrix,
wblplot displays a plot for each column.

h = wblplot(X) returns handles to the plotted lines.

The purpose of a Weibull probability plot is to graphically assess whether the data
in X could come from a Weibull distribution. If the data are Weibull the plot will be
linear. Other distribution types might introduce curvature in the plot. wblplot uses
midpoint probability plotting positions. Use probplot when the data included censored
observations.

Examples

Create a Weibull Probability Plot

Generate a vector r containing 50 random numbers from a Weibull distribution with
parameters A = 1.2 and B = 1.5.

rng default; % For reproducibility

r = wblrnd(1.2,1.5,50,1);

Create a Weibull probability plot to visually determine if the data comes from a Weibull
distribution.

figure;

wblplot(r)

22 Functions — Alphabetical List

22-5172

The plot indicates that the data likely comes from a Weibull distribution.

More About
• wblfit

• wblinv

• wbllike

• wblpdf

• wblrnd

• wblstat

 wblplot

22-5173

• “Weibull Distribution” on page B-172

See Also
probplot | normplot | wblcdf

22 Functions — Alphabetical List

22-5174

wblrnd
Weibull random numbers

Syntax

R = wblrnd(A,B)

R = wblrnd(A,B,m,n,...)

R = wblrnd(A,B,[m,n,...])

Description

R = wblrnd(A,B) generates random numbers for the Weibull distribution with scale
parameter, A and shape parameter, B. The input arguments A and B can be either scalars
or matrices. A and B, can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input is expanded to a constant array of the same size as the
other input.

R = wblrnd(A,B,m,n,...) or R = wblrnd(A,B,[m,n,...]) generates an m-by-n-
by-... array. The A, B parameters can each be scalars or arrays of the same size as R.

Devroye [1] refers to the Weibull distribution with a single parameter; this is wblrnd
with A = 1.

Examples
n1 = wblrnd(0.5:0.5:2,0.5:0.5:2)

n1 =

 0.0178 0.0860 2.5216 0.9124

n2 = wblrnd(1/2,1/2,[1 6])

n2 =

 0.0046 1.7214 2.2108 0.0367 0.0531 0.0917

More About
• “Weibull Distribution” on page B-172

 wblrnd

22-5175

References

[1] Devroye, L. Non-Uniform Random Variate Generation. New York: Springer-Verlag,
1986.

See Also
random | wblpdf | wblcdf | wblinv | wblstat | wblfit | wbllike

22 Functions — Alphabetical List

22-5176

wblstat
Weibull mean and variance

Syntax

[M,V] = wblstat(A,B)

Description

[M,V] = wblstat(A,B) returns the mean of and variance for the Weibull distribution
with scale parameter, A and shape parameter, B. Vector or matrix inputs for A and B
must have the same size, which is also the size of M and V. A scalar input for A or B is
expanded to a constant matrix with the same dimensions as the other input.

The mean of the Weibull distribution with parameters a and b is

a bΓ 1
1+()





−

and the variance is

a b b
2 1 1

2

1 2 1Γ Γ+() − +()









− −

Examples
[m,v] = wblstat(1:4,1:4)

m =

 1.0000 1.7725 2.6789 3.6256

v =

 1.0000 0.8584 0.9480 1.0346

wblstat(0.5,0.7)

ans =

 0.6329

 wblstat

22-5177

More About
• “Weibull Distribution” on page B-172

See Also
wblpdf | wblcdf | wblinv | wblfit | wbllike | wblrnd

22 Functions — Alphabetical List

22-5178

prob.WeibullDistribution class
Package: prob
Superclasses: prob.ToolboxFittableParametricDistribution

Weibull probability distribution object

Description

prob.WeibullDistribution is an object consisting of parameters, a model description,
and sample data for a Weibull probability distribution.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a distribution to data using fitdist or the Distribution Fitting app.

Construction

pd = makedist('Weibull') creates a Weibull probability distribution object using the
default parameter values.

pd = makedist('Weibull','a',a,'b',b) creates a Weibull probability distribution
object using the specified parameter values.

Input Arguments

a — Scale parameter
1 (default) | positive scalar value

Scale parameter of the Weibull distribution, specified as a positive scalar value.
Data Types: single | double

b — Shape parameter
1 (default) | positive scalar value

Shape parameter of the Weibull distribution, specified as a positive scalar value.
Data Types: single | double

 prob.WeibullDistribution class

22-5179

Properties
a — Scale parameter
positive scalar value

Scale parameter of the Weibull distribution, stored as a positive scalar value.
Data Types: single | double

b — Shape parameter
positive scalar value

Shape parameter of the Weibull distribution, stored as a positive scalar value.
Data Types: single | double

DistributionName — Probability distribution name
probability distribution name string

Probability distribution name, stored as a valid probability distribution name string.
This property is read-only.
Data Types: char

InputData — Data used for distribution fitting
structure

Data used for distribution fitting, stored as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

This property is read-only.
Data Types: struct

IsTruncated — Logical flag for truncated distribution
0 | 1

Logical flag for truncated distribution, stored as a logical value. If IsTruncated
equals 0, the distribution is not truncated. If IsTruncated equals 1, the distribution is
truncated. This property is read-only.
Data Types: logical

22 Functions — Alphabetical List

22-5180

NumParameters — Number of parameters
positive integer value

Number of parameters for the probability distribution, stored as a positive integer value.
This property is read-only.
Data Types: single | double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

Covariance matrix of the parameter estimates, stored as a p-by-p matrix, where p is the
number of parameters in the distribution. The (i,j) element is the covariance between
the estimates of the ith parameter and the jth parameter. The (i,i) element is the
estimated variance of the ith parameter. If parameter i is fixed rather than estimated
by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0.
This property is read-only.
Data Types: single | double

ParameterDescription — Distribution parameter descriptions
cell array of strings

Distribution parameter descriptions, stored as a cell array of strings. Each cell contains a
short description of one distribution parameter. This property is read-only.
Data Types: char

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

Logical flag for fixed parameters, stored as an array of logical values. If 0, the
corresponding parameter in the ParameterNames array is not fixed. If 1, the
corresponding parameter in the ParameterNames array is fixed. This property is read-
only.
Data Types: logical

ParameterNames — Distribution parameter names
cell array of strings

Distribution parameter names, stored as a cell array of strings. This property is read-
only.
Data Types: char

 prob.WeibullDistribution class

22-5181

ParameterValues — Distribution parameter values
vector of scalar values

Distribution parameter values, stored as a vector. This property is read-only.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

Truncation interval for the probability distribution, stored as a vector containing the
lower and upper truncation boundaries. This property is read-only.
Data Types: single | double

Methods

Inherited Methods

cdf
Cumulative distribution function of
probability distribution object

icdf
Inverse cumulative distribution function of
probability distribution object

iqr
Interquartile range of probability
distribution object

median
Median of probability distribution object

pdf
Probability density function of probability
distribution object

random
Generate random numbers from probability
distribution object

truncate
Truncate probability distribution object

22 Functions — Alphabetical List

22-5182

mean
Mean of probability distribution object

negloglik
Negative log likelihood of probability
distribution object

paramci
Confidence intervals for probability
distribution parameters

proflik
Profile likelihood function for probability
distribution object

std
Standard deviation of probability
distribution object

var
Variance of probability distribution object

Definitions

Weibull Distribution

The Weibull distribution is used in reliability and lifetime modeling, and to model the
breaking strength of materials.

The Weibull distribution uses the following parameters.

Parameter Description Support

a Scale parameter
a > 0

b Shape parameter b > 0

The probability density function (pdf) is

f x a b
b

a

x

a

x

a
x

b b

| , exp ; .() = Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
≥

-1

0

 prob.WeibullDistribution class

22-5183

Examples

Create a Weibull Distribution Object Using Default Parameters

Create a Weibull distribution object using the default parameter values.

pd = makedist('Weibull')

pd =

 WeibullDistribution

 Weibull distribution

 A = 1

 B = 1

Create a Weibull Distribution Object Using Specified Parameter Values

Create a Weibull distribution object by specifying the parameter values.

pd = makedist('Weibull','a',2,'b',5)

pd =

 WeibullDistribution

 Weibull distribution

 A = 2

 B = 5

Compute the mean of the distribution.

m = mean(pd)

m =

 1.8363

See Also
dfittool | fitdist | makedist

More About
• “Weibull Distribution”

22 Functions — Alphabetical List

22-5184

• Class Attributes
• Property Attributes

 wishrnd

22-5185

wishrnd
Wishart random numbers

Syntax

W = wishrnd(Sigma,df)

W = wishrnd(Sigma,df,D)

[W,D] = wishrnd(Sigma,df)

Description

W = wishrnd(Sigma,df) generates a random matrix W having the Wishart distribution
with covariance matrix Sigma and with df degrees of freedom. The inverse of W has the
Inverse Wishart distribution with parameters Tau = inv(Sigma) and df degrees of
freedom.

W = wishrnd(Sigma,df,D) expects D to be the Cholesky factor of Sigma. If you call
wishrnd multiple times using the same value of Sigma, it's more efficient to supply D
instead of computing it each time.

[W,D] = wishrnd(Sigma,df) returns D so you can provide it as input in future calls to
wishrnd.

This function defines the parameter Sigma so that the mean of the output matrix is
Sigma*df

More About
• “Wishart Distribution” on page B-175

See Also
iwishrnd

22 Functions — Alphabetical List

22-5186

X property
Class: TreeBagger

X data used to create ensemble

Description

The X property is a numeric matrix of size Nobs-by-Nvars, where Nobs is the number of
observations (rows) and Nvars is the number of variables (columns) in the training data.
This matrix contains the predictor (or feature) values.

 xptread

22-5187

xptread
Create table from data stored in SAS XPORT format file

Syntax
data = xptread

data = xptread(filename)

[data,missing] = xptread(filename)

xptread(...,'ReadObsNames',true)

Description
data = xptread displays a dialog box for selecting a file, then reads data from the file
into a table. The file must be in the SAS XPORT format.

data = xptread(filename) retrieves data from a SAS XPORT format file filename.
The XPORT format allows for 28 missing data types, represented in the file by an upper
case letter, '.' or '_'. xptread converts all missing data to NaN values in data.
However, if you need the specific missing types then you can recover this information by
specifying a second output.

[data,missing] = xptread(filename) returns a nominal array, missing, of the
same size as data containing the missing data type information from the xport format
file. The entries are undefined for values that are not present and are one of '.', '_',
'A',...,'Z' for missing values.

xptread(...,'ReadObsNames',true) treats the first variable in the file as
observation names. The default value is false.

xptread only supports single data sets per file. xptread does not support compressed
files.

Examples
Read In SAS XPORT Data

Read in SAS XPORT format data.

22 Functions — Alphabetical List

22-5188

data = xptread('sample.xpt');

See Also
table

 x2fx

22-5189

x2fx
Convert predictor matrix to design matrix

Syntax
D = x2fx(X,model)

D = x2fx(X,model,categ)

D = x2fx(X,model,categ,catlevels)

Description
D = x2fx(X,model) converts a matrix of predictors X to a design matrix D for
regression analysis. Distinct predictor variables should appear in different columns of X.

The optional input model controls the regression model. By default, x2fx returns the
design matrix for a linear additive model with a constant term. model is one of the
following strings:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

If X has n columns, the order of the columns of D for a full quadratic model is:

1 The constant term
2 The linear terms (the columns of X, in order 1, 2, ..., n)
3 The interaction terms (pairwise products of the columns of X, in order (1, 2), (1, 3), ...,

(1, n), (2, 3), ..., (n–1, n))
4 The squared terms (in order 1, 2, ..., n)

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order.
In this case, model should have one column for each column in X and one row for each
term in the model. The entries in any row of model are powers for the corresponding
columns of X. For example, if X has columns X1, X2, and X3, then a row [0 1 2] in

22 Functions — Alphabetical List

22-5190

model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model
specifies a constant term, which can be omitted.

D = x2fx(X,model,categ) treats columns with numbers listed in the vector categ
as categorical variables. Terms involving categorical variables produce dummy variable
columns in D. Dummy variables are computed under the assumption that possible
categorical levels are completely enumerated by the unique values that appear in the
corresponding column of X.

D = x2fx(X,model,categ,catlevels) accepts a vector catlevels the same length
as categ, specifying the number of levels in each categorical variable. In this case,
values in the corresponding column of X must be integers in the range from 1 to the
specified number of levels. Not all of the levels need to appear in X.

Examples

Example 1

The following converts 2 predictors X1 and X2 (the columns of X) into a design matrix for
a full quadratic model with terms constant, X1, X2, X1.*X2, X1.^2, and X2.^2.

X = [1 10

 2 20

 3 10

 4 20

 5 15

 6 15];

D = x2fx(X,'quadratic')

D =

 1 1 10 10 1 100

 1 2 20 40 4 400

 1 3 10 30 9 100

 1 4 20 80 16 400

 1 5 15 75 25 225

 1 6 15 90 36 225

Example 2

The following converts 2 predictors X1 and X2 (the columns of X) into a design matrix for
a quadratic model with terms constant, X1, X2, X1.*X2, and X1.^2.

 x2fx

22-5191

X = [1 10

 2 20

 3 10

 4 20

 5 15

 6 15];

model = [0 0

 1 0

 0 1

 1 1

 2 0];

D = x2fx(X,model)

D =

 1 1 10 10 1

 1 2 20 40 4

 1 3 10 30 9

 1 4 20 80 16

 1 5 15 75 25

 1 6 15 90 36

See Also
regstats | rstool | candexch | candgen | cordexch | rowexch

22 Functions — Alphabetical List

22-5192

Y property
Class: TreeBagger

Y data used to create ensemble

Description

The Y property is an array of true class labels for classification, or response values for
regression. Y can be a numeric column vector, a character matrix, or a cell array of
strings.

 zscore

22-5193

zscore
Standardized z-scores

Syntax
Z = zscore(X)

Z = zscore(X,flag)

Z = zscore(X,flag,dim)

[Z,mu,sigma] = zscore(___)

Description
Z = zscore(X) returns the z-score for each element of X such that columns of X are
centered to have mean 0 and scaled to have standard deviation 1. Z is the same size as X.

• If X is a vector, then Z is a vector of z-scores.
• If X is a matrix, then Z is a matrix of the same size as X, and each column of Z has

mean 0 and standard deviation 1.
• For multidimensional arrays, z-scores in Z are computed along the first nonsingleton

dimension of X.

Z = zscore(X,flag) scales X using the standard deviation indicated by flag.

• If flag is 0 (default), then zscore scales X using the sample standard deviation, with
n - 1 in the denominator of the standard deviation formula. zscore(X,0) is the same
as zscore(X).

• If flag is 1, then zscore scales X using the population standard deviation, with n in
the denominator of standard deviation formula.

Z = zscore(X,flag,dim) standardizes X along dimension dim. For example, for a
matrix X, if dim = 1, then zscore uses the means and standard deviations along the
columns of X, if dim = 2, then zscore uses the means and standard deviations along the
rows of X.

[Z,mu,sigma] = zscore(___) also returns the means and standard deviations
used for centering and scaling, mu and sigma, respectively. You can use any of the input
arguments in the previous syntaxes.

22 Functions — Alphabetical List

22-5194

Examples

Z-Scores of Two Data Vectors

Compute and plot the z-scores of two data vectors, and then compare the results.

Load the sample data.

load('lawdata.mat')

Two variables load into the workspace: gpa and lsat.

Plot both variables on the same axes.

plot([gpa,lsat])

legend('gpa','lsat','Location','East')

 zscore

22-5195

It is difficult to compare these two measures because they are on a very different scale.

Plot the z-scores of gpa and lsat on the same axes.

Zgpa = zscore(gpa);

Zlsat = zscore(lsat);

plot([Zgpa, Zlsat])

legend('gpa z-scores','lsat z-scores','Location','Northeast')

22 Functions — Alphabetical List

22-5196

Now, you can see the relative performance of individuals with respect to both their gpa
and lsat results. For example, the third individual’s gpa and lsat results are both one
standard deviation below the sample mean. The eleventh individual’s gpa is around the
sample mean but has an lsat score almost 1.25 standard deviations above the sample
average.

Check the mean and standard deviation of the z-scores you created.

 mean([Zgpa,Zlsat])

ans =

 1.0e-14 *

 zscore

22-5197

 -0.1088 0.0357

 std([Zgpa,Zlsat])

ans =

 1 1

By definition, z-scores of gpa and lsat have mean 0 and standard deviation 1.

Z-Scores for a Population vs. Sample

Load the sample data.

load('lawdata.mat')

Two variables load into the workspace: gpa and lsat.

Compute the z-scores of gpa using the population formula for standard deviation.

Z1 = zscore(gpa,1); % population formula

Z0 = zscore(gpa,0); % sample formula

disp([Z1 Z0])

 1.2554 1.2128

 0.8728 0.8432

-1.2100 -1.1690

-0.2749 -0.2656

 1.4679 1.4181

-0.1049 -0.1013

-0.4024 -0.3888

 1.4254 1.3771

 1.1279 1.0896

 0.1502 0.1451

 0.1077 0.1040

-1.5076 -1.4565

-1.4226 -1.3743

-0.9125 -0.8815

-0.5724 -0.5530

For a sample from a population, the population standard deviation formula with n in the
denominator corresponds to the maximum likelihood estimate of the population standard

22 Functions — Alphabetical List

22-5198

deviation, and might be biased. The sample standard deviation formula, on the other
hand, is the unbiased estimator of the population standard deviation for a sample.

Z-Scores of a Data Matrix

Compute z-scores using the mean and standard deviation computed along the columns or
rows of a data matrix.

Load the sample data.

load('flu.mat')

The dataset array flu is loaded in the workplace. flu has 52 observations on 11
variables. The first variable contains dates (in weeks). The other variables contain the flu
estimates for different regions in the U.S.

Convert the dataset array to a data matrix.

flu2 = double(flu(:,2:end));

The new data matrix, flu2, is a 52-by-10 double data matrix. The rows correspond to the
weeks and the columns correspond to the U.S. regions in the data set array flu.

Standardize the flu estimate for each region (the columns of flu2).

Z1 = zscore(flu2,[],1);

You can see the z-scores in the variable editor by double-clicking on the matrix Z1
created in the workspace.

Standardize the flu estimate for each week (the rows of flu2).

Z2 = zscore(flu2,[],2);

Z-Scores, Mean, and Standard Deviation

Return the mean and standard deviation used to compute the z-scores.

Load the sample data.

load('lawdata.mat')

Two variables load into the workspace: gpa and lsat.

 zscore

22-5199

Return the z-scores, mean, and standard deviation of gpa.

[Z,gpamean,gpastdev] = zscore(gpa)

Z =

 1.2128

 0.8432

 -1.1690

 -0.2656

 1.4181

 -0.1013

 -0.3888

 1.3771

 1.0896

 0.1451

 0.1040

 -1.4565

 -1.3743

 -0.8815

 -0.5530

gpamean =

 3.0947

gpastdev =

 0.2435

Input Arguments

X — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.
Data Types: double | single

flag — Indicator for the standard deviation
0 (default) | 1

Indicator for the standard deviation used to compute the z-scores, specified as 0 or 1.

22 Functions — Alphabetical List

22-5200

• If flag is 0 (default), then zscore scales X using the sample standard deviation.
zscore(X,0) is the same as zscore(X).

• If flag is 1, then zscore scales X using the population standard deviation.

dim — Dimension
1 (default) | positive integer

Dimension along which to calculate the z-scores of X, specified as a positive integer. For
example, for a matrix X, if dim = 1, then zscore uses the means and standard deviations
along the columns of X, if dim = 2, then zscore uses the means and standard deviations
along the rows of X.

Output Arguments

Z — z-scores
vector | matrix | multidimensional array

z-scores, returned as a vector, matrix, or multidimensional array. A vector of z-scores has
mean 0 and variance 1.

• If X is a vector, then Z is a vector of z-scores.
• If X is an array, then zscore is an array, with each column or row standardized

to have mean 0 and variance 1 (depending on dim). If dim is not specified, zscore
standardizes along the first nonsingleton dimension of X.

mu — Mean
scalar | vector

Mean of X used to compute the z-scores, returned as a scalar or vector.

• If X is a vector, then mu is a scalar.
• If X is a matrix, then mu is a row vector if zscore calculates the means along the

columns of X (dim = 1), and a column vector if zscore calculates the means along the
rows of X (dim = 2).

sigma — Standard deviation
scalar | vector

Standard deviation of X used to compute the z-scores, returned as a scalar or vector.

 zscore

22-5201

• If X is a vector, then sigma is a scalar.
• If X is a matrix, then sigma is a row vector if zscore calculates the standard

deviations along the columns of X (dim = 1), and a column vector if zscore calculates
the standard deviations along the rows of X (dim = 2).

More About

Z-Score

For a random variable X with mean μ and standard deviation σ, the z-score of a value x is

z

x

=
-()m

s
.

For sample data with mean X and standard deviation S, the z-score of a data point x is

z
x X

S
=

-()
.

z-scores measure the distance of a data point from the mean in terms of the standard
deviation. This is also called standardization of data. The standardized data set has
mean 0 and standard deviation 1, and retains the shape properties of the original data
set (same skewness and kurtosis).

You can use z-scores to put data on the same scale before further analysis. This lets you
to compare two or more data sets with different units.

Multidimensional Array

A multidimensional array is an array with more than two dimensions. For example, if X
is a 1-by-3-by-4 array, then X is a three-dimensional array.

First Nonsingleton Dimension

A first nonsingleton dimension is the first dimension of an array whose size is not equal
to 1. For example, if X is a 1-by-2-by-3-by-4 array, then the second dimension is the first
nonsingleton dimension of X.

22 Functions — Alphabetical List

22-5202

Sample Standard Deviation

The sample standard deviation, S, is given by

S
x X

n

ii

n

=
-()

-

=Â
2

1

1
.

S is the square root of an unbiased estimator of the variance of the population from
which X is drawn, as long as X consists of independent, identically distributed samples.

Notice that the denominator in this variance formula is n – 1.

Population Standard Deviation

If the data is the entire population of values, then you can use the population standard
deviation,

s
m

=
-()

=Â x

n

ii

n 2

1
.

If X is a random sample from a population, then μ is estimated by the sample mean, and
σ is the biased maximum likelihood estimator of the population standard deviation.

Notice that the denominator in this variance formula is n.

Algorithms

zscore returns NaNs for any sample containing NaNs.

zscore returns 0s for any sample that is constant (all values are the same). For
example, if X is a vector of the same numeric value, then Z is a vector of 0s. If X is a
matrix with a column of consisting of the same value, then that column of Z consists of
0s.

See Also
mean | std

 ztest

22-5203

ztest
z-test

Syntax

h = ztest(x,m,sigma)

h= ztest(x,m,sigma,Name,Value)

[h,p] = ztest(___)

[h,p,ci,zval] = ztest(___)

Description

h = ztest(x,m,sigma) returns a test decision for the null hypothesis that the data
in the vector x comes from a normal distribution with mean m and a standard deviation
sigma, using the z-test. The alternative hypothesis is that the mean is not m. The result
h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h= ztest(x,m,sigma,Name,Value) returns a test decision for the z-test with
additional options specified by one or more name-value pair arguments. For example, you
can change the significance level or conduct a one-sided test.

[h,p] = ztest(___) also returns the p-value of the test, using any of the input
arguments from previous syntaxes.

[h,p,ci,zval] = ztest(___) also returns the confidence interval of the population
mean, ci, and the value of the test statistic, zval.

Examples

Test for a Hypothesized Mean

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

22 Functions — Alphabetical List

22-5204

x = grades(:,1);

Test the null hypothesis that the data comes from a normal distribution with mean m =
75 and standard deviation sigma = 10.

[h,p,ci,zval] = ztest(x,75,10)

h =

 0

p =

 0.9927

ci =

 73.2191

 76.7975

zval =

 0.0091

The returned value of h = 0 indicates that ztest does not reject the null hypothesis at
the default 5% significance level.

One-Sided Hypothesis Test

Load the sample data. Create a vector containing the first column of the students’ exam
grades data.

load examgrades;

x = grades(:,1);

Test the null hypothesis that the data comes from a normal distribution with mean m =
65 and standard deviation sigma = 10, against the alternative that the mean is greater
than 65.

[h,p] = ztest(x,65,10,'Tail','right')

h =

 1

p =

 2.8596e-28

 ztest

22-5205

The returned value of h = 1 indicates that ztest rejects the null hypothesis at the
default 5% significance level, in favor of the alternative hypothesis that the population
mean is greater than 65.

Input Arguments

x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

• If x is specified as a vector, ztest returns a single value for each output argument.
• If x is specified as a matrix, ztest performs a separate z-test along each column of x

and returns a vector of results.
• If x is specified as a multidimensional array, ztest works along the first

nonsingleton dimension of x.

In all cases, ztest treats NaN values as missing data and ignores them.

Data Types: single | double

m — Hypothesized mean
scalar value

Hypothesized mean, specified as a scalar value.
Data Types: single | double

sigma — Population standard deviation
scalar value

Population standard deviation, specified as a scalar value.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

22 Functions — Alphabetical List

22-5206

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at
the 1% significance level.

'Alpha' — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range (0,1).

Example: 'Alpha',0.01

Data Types: single | double

'Dim' — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-
separated pair consisting of 'Dim' and a positive integer value. For example, specifying
'Dim',1 tests the column means, while 'Dim',2 tests the row means.

Example: 'Dim',2

Data Types: single | double

'Tail' — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the population mean is not
equal to m.

'right' Test the alternative hypothesis that the population mean is greater
than m.

'left' Test the alternative hypothesis that the population mean is less
than m.

Example: 'Tail','right'

 ztest

22-5207

Output Arguments

h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance
level.

• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance
level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under
the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true population mean, returned as a two-element vector
containing the lower and upper boundaries of the 100 × (1 – Alpha)% confidence interval.

zval — Test statistic
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

More About

z-Test

The z-test is a parametric hypothesis test used to determine whether a sample data
set comes from a population with a particular mean. The test assumes the sample data
comes from a population with a normal distribution and a known standard deviation.

The test statistic is

22 Functions — Alphabetical List

22-5208

z
x

n

=
- m

s /
,

where x is the sample mean, µ is the population mean, σ is the population standard
deviation, and n is the sample size. Under the null hypothesis, the test statistic has a
standard normal distribution.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-
by-4 array, then x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not
equal to 1. For example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the
first nonsingleton dimension of x.

See Also
ttest | ttest2

 Classification Learner

22-5209

Classification Learner
Train models to classify data using supervised machine learning

Description
The Classification Learner app trains models to classify data. Using this app, you can
explore supervised machine learning using various classifiers. Classification types
include decision trees, support vector machines, nearest neighbors, and ensemble
classification. You can perform supervised machine learning by supplying a known set
of input data (observations or examples) and known responses to the data (e.g., labels or
classes). You use the data to train a model that generates predictions for the response to
new data. To use the model with new data, or to learn about programmatic classification,
you can export the model to the workspace or generate MATLAB code to recreate the
trained model.

Required Products

• MATLAB
• Statistics and Machine Learning Toolbox

Open the Classification Learner App

• Open from the Apps tab of the MATLAB Toolstrip, in the Math, Statistics and
Optimization group

• Alternatively, start it from the MATLAB command prompt using
classificationLearner.

Examples
• “Explore Classification Models Interactively”
• “Choose a Classifier”
• “Explore Decision Trees Interactively”
• “Explore Support Vector Machines Interactively”
• “Explore Nearest Neighbor Classification Interactively”

22 Functions — Alphabetical List

22-5210

• “Explore Ensemble Classification Interactively”

More About
• “Classification Trees and Regression Trees”

Parameters

Import Data

Open a dialog to select data from the workspace. Importing new data starts a new app
session and discards any previous data and trained models.

1 The app tries to select a suitable response variable. Change the selections if needed
to specify the response, predictors and any variables you do not want to import.

Response variables can be a categorical array, cell array of strings, character array,
logical vector, or a numeric vector the same size as the input predictor data.

2 (Optionally) Choose a validation method to examine the predictive accuracy of the
fitted models, or try the default settings.

For details, see “Select Data and Validation for Classification Problem”.

Feature Selection

Open the Feature Selection dialog box to specify predictors to include in the model.

Use the check boxes to try including different features in the model. See if you can
improve the model by removing features with low predictive power.

Classifier Choice

Specify the classifier to train by clicking an option in the Classifier toolstrip section.
To see all available classifier options, on the far right of the Classifier section, click the
arrow to expand the list of classifiers. The options in the Classifier gallery are starting
points with different settings.

For help, see “Choose a Classifier”.

 Classification Learner

22-5211

Tip After you choose a classifier type (e.g., Support Vector Machines), try training each of
the options in the Classifier gallery. The options in the Classifier gallery are starting
points with different settings. Try them all to see which option produces the best model
with your data.

Decision Trees

Decision trees are easy to interpret, fast for fitting and prediction, and low on memory
usage, but they can have low predictive accuracy. Try to grow shallower trees to prevent
overfitting. Control the depth with the Minimum leaf size setting.

For details, see “Choose a Classifier”.

Tip Try training each of the decision tree options in the Classifier gallery. Train them
all to see which settings produce the best model with your data. Select the best model
in the History list. To try to further improve your model, try feature selection, and then
(optionally) try changing some advanced options.

Support Vector Machines

Support vector machines have high predictive accuracy, medium fitting speed, and can
have good prediction speed and memory usage with few support vectors. Linear SVM is
easy to interpret, but other kernel functions are less easy to interpret.

For details, see “Choose a Classifier”.

Tip Try training each of the support vector machine options in the Classifier gallery.
Train them all to see which settings produce the best model with your data. Select the
best model in the History list. To try to further improve your model, try feature selection,
and then (optionally) try changing some advanced options.

Nearest Neighbor Classifiers

Nearest Neighbor Classifiers has good predictive accuracy in low dimensions, but not in
high dimensions. They have fast fitting speed, medium prediction speed, high memory
usage, and are not easy to interpret.

22 Functions — Alphabetical List

22-5212

For details, see “Choose a Classifier”.

Tip Try training each of the nearest neighbor options in the Classifier gallery. Train
them all to see which settings produce the best model with your data. Select the best
model in the History list. To try to further improve your model, try feature selection, and
then (optionally) try changing some advanced options.

Ensemble Classifiers

Ensemble Classifiers meld results from many weak learners into one high-quality
ensemble predictor. Qualities depend on the choice of algorithm.

Note: All ensemble classifiers tend to be slow to fit because they often need many
learners. They are not easy to interpret.

For details, see “Choose a Classifier”.

Tip Try training each of the ensemble classifier options in the Classifier gallery. Train
them all to see which settings produce the best model with your data. Select the best
model in the History list. To try to further improve your model, try feature selection, and
then (optionally) try changing some advanced options.

Generate Code

After you create classification models interactively in Classification Learner app, you can
generate MATLAB code for your best model. You can then use the code to train the model
with new data.

The app generates code from the model you select in the History list, and displays the file
in the MATLAB Editor. The file includes the predictors and response and the classifier
training methods. View the generated code to learn how to programmatically create a
trained model using the classifier and validation options you selected in the app.

To retrain your classifier model, call the file from the command line with your original
data as input arguments. You also can call the file with new data.

 Classification Learner

22-5213

For details, see “Export Classification Model to Predict New Data”.

Export Model

After you create classification models interactively in Classification Learner app, you
can export your best model to the workspace. You can then use the trained model to
make predictions with new data. Export the currently selected classifier in the History
list to the workspace as a classification object. For example, a ClassificationTree,
or CompactClassificationTree. Compact classification objects do not include the
training data.

For details, see “Export Classification Model to Predict New Data”.

Settings

If you do not want to include the data used for training the tree, select the Export
compacted option. This exports the model as a compact classification object that does
not include the data (e.g., CompactClassificationTree). You cannot perform some
tasks with a compact classification object, such as cross validation. Use a compact
classification tree for making predictions (classifications) of new data.

See Also

Functions
fitcecoc | fitcknn | fitcsvm | fitctree | fitensemble

Introduced in R2015a

22 Functions — Alphabetical List

22-5214

Distribution Fitting

Fit probability distributions to data

Description
The Distribution Fitting app interactively fits probability distributions to data imported
from the MATLAB workspace. You can choose from 22 built-in probability distributions
or create your own custom distribution. The app displays plots of the fitted distribution
superimposed on a histogram of the data. Available plots include probability density
function (pdf), cumulative distribution function (cdf), probability plots, and survivor
functions. You can export the fitted parameter values to the workspace as a probability
distribution object, and use object functions to perform further analyses. For more
information on working with these objects, see “Working with Probability Distributions”
on page 5-3. For the programmatic work flow of the Distribution Fitting app, see
dfittool.

Required Products

• MATLAB
• Statistics and Machine Learning Toolbox

Open the Distribution Fitting App

• On the MATLAB toolstrip, click the Apps tab. In the Math, Statistics and
Optimization group, open the Distribution Fitting app.

• Alternatively, at the command prompt, enter dfittool.

Examples
• “Fit a Distribution Using the Distribution Fitting App” on page 5-101

 Distribution Fitting

22-5215

Parameters

Data

To select data from the workspace, open a dialog box.

1 From the Data drop-down list, select your variable of interest. If the variable is
a matrix, the app imports the first column of the matrix by default. To select a
different column or row of the matrix, click Select Column or Row. Alternatively,
you can enter any valid MATLAB expression in the Data field.

2 (Optionally) From the Censoring and Frequency drop-down lists, select variables
containing censoring and frequency data . If the variable is a matrix, the app imports
the first column of the matrix by default. To select a different column or row of the
matrix, click Select Column or Row.

3 In the Dataset name field, name the data set or accept the default name, and
then click Create Data Set. The name of the new data set appears in the Manage
data sets pane. Click the buttons below this pane to view the data (View), set the
bin rules (Set Bin Rules), rename the data set (Rename), or delete the data set
(Delete).

New Fit

To fit a probability distribution to an imported data set, open a dialog box.

1 In the Fit name field, name the data set or accept the default name.
2 From the Data drop-down list, select the data set to fit.
3 From the Distribution drop-down list, select the type of distribution to fit.
4 (Optionally) In the Exclusion rule drop-down list, specify a rule to exclude some

data values. To populate this drop-down list, you must first define exclusion rules by
clicking Exclude in the main window of the app.

5 Click Apply to fit the distribution to the data. The Distribution Fitting app displays
a plot of the distribution, along with the corresponding data.

Manage Fits

To display a table of the available fits, open a dialog box.

22 Functions — Alphabetical List

22-5216

1 Select Plot to specify which fits to plot in the main window. Clearing the Plot check
box removes the fit from the plot.

2 If you select Plot for a particular fit, you can select Conf bounds to also display
the confidence bounds for that fit on the plot in the main window. Clearing the
Conf bounds check box removes the confidence intervals from the plot. The
Distribution Fitting app displays confidence bounds only if the Display Type in the
main window is set to Cumulative probability (CDF), Quantile (inverse
CDF), Survivor function, or Cumulative hazard.

3 (Optionally) Click New Fit to open a New Fit window
4 (Optionally) Click Copy to create a copy of the selected fit.
5 (Optionally) Click Edit to open an Edit Fit window, where you can edit the fit.
6 (Optionally) Click Save to workspace to save the selected fit as a probability

distribution object in the MATLAB workspace.
7 (Optionally) Click Delete to delete the selected fit.

Evaluate

To evaluate a fit at whatever data points you choose, open a dialog box. Available
probability functions include the probability density function (pdf), cumulative
distribution function (cdf), quantile (inverse cdf), survival function, cumulative hazard,
and hazard rate.

1 In the Fit pane, select one or more fits to evaluate.
2 From the Function drop-down list, select the type of probability function to

evaluate.
3 In the At x = field, specify the values at which to evaluate the function. If you specify

Function as Quantile (inverse CDF), this field name changes to At p = and
you enter a vector of probability values.

4 (Optionally) Select Compute confidence bounds to compute the confidence
bounds for the selected fit. This check box is enabled only if you specify Function
as Cumulative probability (CDF), Quantile (inverse CDF), Survivor
function, or Cumulative hazard. In the Level field, set the level for the
confidence bounds or accept the default value.

5 (Optionally) Select Plot function to display a plot of the distribution function,
evaluated at the points that you enter in the At x = field, in a new window.

6 To apply these settings to the selected fit, click Apply. The results appear on the
right side of the Evaluate window.

 Distribution Fitting

22-5217

7 (Optionally) Click Export to Workspace to export a matrix containing the results
to the MATLAB workspace.

Exclude

To define data exclusion rules to apply to the fit, open a dialog box.

1 In the Exclusion rule name field, specify a name for the exclusion rule.
2 In the Exclude sections pane, define the exclusion rule. In the Lower limits

exclude data and Upper limits exclude data fields, you can numerically specify
limits. Alternatively, in the Exclude graphically pane, you can define the exclusion
rule graphically. From the Select data drop-down list, select the data set and click
Exclude Graphically. An interactive plot opens where you can add lower or upper
limits by clicking and dragging a boundary on the plot.

3 Click Create Exclusion Rule.
4 (Optionally) You can copy, view, rename, or delete exclusion rules. Select the rule

from the Existing exclusion rules field on the right of the Exclude window and
click the appropriate button.

Programmatic Use

dfittool opens the Distribution Fitting app, or brings focus to the app if it is already
open.

dfittool(y) opens the Distribution Fitting app populated with the data specified by
the vector y.

dfittool(y,cens) uses the vector cens to specify whether the observation y(j) is
censored, (cens(j)==1), or observed exactly, (cens(j)==0). If cens is omitted or
empty, then no y values are censored.

dfittool(y,cens,freq) uses the vector freq to specify the frequency of each element
contained in y. If freq is omitted or empty, then all values in y have a frequency of 1.

dfittool(y,cens,freq,dsname) creates a data set with the name dsname using the
data vector, y, censoring indicator, cens, and frequency vector, freq. Specify dsname as a
string enclosed in single quotes, for example, 'mydata'.

22 Functions — Alphabetical List

22-5218

See Also

Functions
dfittool | fitdist | makedist

More About
• “Model Data Using the Distribution Fitting App” on page 5-74
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

A

Sample Data Sets

A Sample Data Sets

A-2

Statistics and Machine Learning Toolbox software includes the sample data sets in the
following table.

To load a data set into the MATLAB workspace, type:

load filename

where filename is one of the files listed in the table.

Data sets contain individual data variables, description variables with references, and
dataset arrays encapsulating the data set and its description, as appropriate.

File Description of Data Set

acetylene.mat Chemical reaction data with correlated predictors
arrhythmia.mat Cardiac arrhythmia data from the UCI machine learning

repository
carbig.mat Measurements of cars, 1970–1982
carsmall.mat Subset of carbig.mat. Measurements of cars, 1970, 1976,

1982
cereal.mat Breakfast cereal ingredients
cities.mat Quality of life ratings for U.S. metropolitan areas
discrim.mat A version of cities.mat used for discriminant analysis
examgrades.mat Exam grades on a scale of 0–100
fisheriris.mat Fisher's 1936 iris data
flu.mat Google Flu Trends estimated ILI (influenza-like illness)

percentage for various regions of the US, and CDC weighted
ILI percentage based on sentinel provider reports

gas.mat Gasoline prices around the state of Massachusetts in 1993
hald.mat Heat of cement vs. mix of ingredients
hogg.mat Bacteria counts in different shipments of milk
hospital.mat Simulated hospital data
imports-85.mat 1985 Auto Imports Database from the UCI repository
ionosphere.mat Ionosphere dataset from the UCI machine learning

repository

 Sample Data Sets

A-3

File Description of Data Set

kmeansdata.mat Four-dimensional clustered data
lawdata.mat Grade point average and LSAT scores from 15 law schools
mileage.mat Mileage data for three car models from two factories
moore.mat Biochemical oxygen demand on five predictors
morse.mat Recognition of Morse code distinctions by non-coders
ovariancancer.mat Grouped observations on 4000 predictors
parts.mat Dimensional run-out on 36 circular parts
polydata.mat Sample data for polynomial fitting
popcorn.mat Popcorn yield by popper type and brand
reaction.mat Reaction kinetics for Hougen-Watson model
sat.dat Scholastic Aptitude Test averages by gender and test (table)
sat2.dat Scholastic Aptitude Test averages by gender and test (csv)
spectra.mat NIR spectra and octane numbers of 60 gasoline samples
stockreturns.mat Simulated stock returns

B

Distribution Reference

B Bernoulli Distribution

B-2

Bernoulli Distribution

In this section...

“Overview” on page B-2
“Parameters” on page B-2
“Probability Mass Function” on page B-2
“Mean and Variance” on page B-2
“Relationship to Other Distributions” on page B-3

Overview

The Bernoulli distribution is a discrete probability distribution with the only two possible
values for the random variable. Each instance of an event with a Bernoulli distribution is
called a Bernoulli trial.

Parameters

The Bernoulli distribution uses the following parameter.

Parameter Description Support

p Probability of success 0 1£ £p

Probability Mass Function

The probability mass function (pmf) is

f x p
p x

p x
(|)

, ,

,
.=

- =

=

Ï
Ì
Ó

1 0

1

Mean and Variance

The mean is

mean = p .

 Bernoulli Distribution

B-3

The variance is

var .= -()p p1

Relationship to Other Distributions

The Bernoulli distribution is a special case of the binomial distribution, with the number
of trials n = 1. The geometric distribution models the number of Bernoulli trials before
the first success (or first failure).

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Beta Distribution

B-4

Beta Distribution

In this section...

“Overview” on page B-4
“Parameters” on page B-4
“Probability Density Function” on page B-5
“Cumulative Distribution Function” on page B-7
“Example” on page B-7

Overview

The beta distribution describes a family of curves that are unique in that they are
nonzero only on the interval (0 1). A more general version of the function assigns
parameters to the endpoints of the interval.

Statistics and Machine Learning Toolbox provides several ways to work with the beta
distribution. You can use the following approaches to estimate parameters from sample
data, compute the pdf, cdf, and icdf, generate random numbers, and more.

• Fit a probability distribution object to sample data, or create a probability distribution
object with specified parameter values. See Using BetaDistribution Objects for
more information.

• Work with data input from matrices, tables, and dataset arrays using probability
distribution functions. See “Supported Distributions” on page 5-17 for a list of beta
distribution functions.

• Interactively fit, explore, and generate random numbers from the distribution using
an app or user interface.

For more information on each of these options, see “Working with Probability
Distributions” on page 5-3.

Parameters

The beta distribution uses the following parameters.

Parameter Description Support

a First shape parameter
a > 0

 Beta Distribution

B-5

Parameter Description Support

b Second shape parameter b > 0

Probability Density Function

Definition

The probability density function (pdf) of the beta distribution is

y f x a b
B a b

x x I xa b= = −− −(| ,)
(,)

() ()(,)
1

11 1
0 1

where B(·) is the Beta function. The indicator function I(0,1)(x) ensures that only values
of x in the range (0,1) have nonzero probability.

Plot

This plot shows how changing the value of the parameters alters the shape of the pdf.
The constant pdf (the flat line) shows that the standard uniform distribution is a special
case of the beta distribution, which occurs when a = b = 1.

X = 0:.01:1;

y1 = betapdf(X,0.75,0.75);

y2 = betapdf(X,1,1);

y3 = betapdf(X,4,4);

figure

plot(X,y1,'Color','r','LineWidth',2)

hold on

plot(X,y2,'LineStyle','-.','Color','b','LineWidth',2)

plot(X,y3,'LineStyle',':','Color','g','LineWidth',2)

legend({'a = b = 0.75','a = b = 1','a = b = 4'},'Location','NorthEast');

hold off

B Beta Distribution

B-6

Relationship to Other Distributions

The beta distribution has a functional relationship with the t distribution. If Y is an
observation from Student's t distribution with ν degrees of freedom, then the following
transformation generates X, which is beta distributed.

X
Y

Y

= +
+

1

2

1

2 2
n

If Y~t(v), then X ∼ b
n n

2 2
,







 Beta Distribution

B-7

This relationship is used to compute values of the t cdf and inverse function as well as
generating t distributed random numbers.

Cumulative Distribution Function

The beta cdf is the same as the incomplete beta function.

Example

Suppose you are collecting data that has hard lower and upper bounds of zero and one
respectively. Parameter estimation is the process of determining the parameters of the
beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood
has the same form as the beta pdf. But for the pdf, the parameters are known constants
and the variable is x. The likelihood function reverses the roles of the variables. Here,
the sample values (the x's) are already observed. So they are the fixed constants. The
variables are the unknown parameters. Maximum likelihood estimation (MLE) involves
calculating the values of the parameters that give the highest likelihood given the
particular set of data.

The function betafit returns the MLEs and confidence intervals for the parameters
of the beta distribution. Here is an example using random numbers from the beta
distribution with a = 5 andb = 0.2.

rng default % For reproducibility

r = betarnd(5,0.2,100,1);

[phat, pci] = betafit(r)

phat =

 7.4911 0.2135

pci =

 5.0861 0.1744

 11.0334 0.2614

The MLE for parameter a is 7.4911, compared to the true value of 5. The 95% confidence
interval for a goes from 2.8051 to 6.2610, which does not include the true value. While

B Beta Distribution

B-8

this is an unlikely result, it does sometimes happen when estimating distribution
parameters.

Similarly the MLE for parameter b is 0.2135, compared to the true value of 0.2. The 95%
confidence interval for b goes from 0.1771 to 0.2832, which does include the true value. In
this made-up example you know the “true value.” In experimentation you do not.

More About
• Using BetaDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Binomial Distribution

B-9

Binomial Distribution

In this section...

“Overview” on page B-9
“Parameters” on page B-9
“Probability Density Function” on page B-9
“Mean and Variance” on page B-10
“Relationship to Other Distributions” on page B-10
“Example” on page B-10

Overview

The binomial distribution models the total number of successes in repeated trials from an
infinite population under the following conditions:

• Only two outcomes are possible on each of n trials.
• The probability of success for each trial is constant.
• All trials are independent of each other.

Parameters

The binomial distribution uses the following parameters.

Parameter Description Support

N Number of trials positive integer
p Probability of success 0 1£ £p

Probability Density Function

The probability density function (pdf) is

f x N p
N

x
p p x Nx N x

| , ; , , , ..., ,() =
Ê

Ë
Á

ˆ

¯
˜ -() =-

1 0 1 2

B Binomial Distribution

B-10

where x is the number of successes in n trials of a Bernoulli process with probability of
success p.

Mean and Variance

The mean is

mean = np .

The variance is

var .= -()np p1

Relationship to Other Distributions

The binomial distribution is a generalization of the Bernoulli distribution, allowing
for a number of trials n greater than 1. The binomial distribution generalizes to the
multinomial distribution when there are more than two possible outcomes for each trial.

Example

Suppose you are collecting data from a widget manufacturing process, and you record the
number of widgets within specification in each batch of 100. You might be interested in
the probability that an individual widget is within specification. Parameter estimation
is the process of determining the parameter, p, of the binomial distribution that fits this
data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood
has the same form as the binomial pdf above. But for the pdf, the parameters (n and p)
are known constants and the variable is x. The likelihood function reverses the roles of
the variables. Here, the sample values (the x's) are already observed. So they are the
fixed constants. The variables are the unknown parameters. MLE involves calculating
the value of p that give the highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the parameters of
the binomial distribution. Here is an example using random numbers from the binomial
distribution with n = 100 and p = 0.9.

 Binomial Distribution

B-11

rng default; % for reproducibility

r = binornd(100,0.9)

[phat, pci] = binofit(r,100)

r =

 85

phat =

 0.8500

pci =

 0.7647 0.9135

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The 95%
confidence interval for p goes from 0.7998 to 0.9364, which includes the true value. In
this made-up example you know the “true value” of p. In experimentation you do not.

The following commands generate a plot of the binomial pdf for n = 10 and p = 1/2.

x = 0:10;

y = binopdf(x,10,0.5);

plot(x,y,'+')

B Binomial Distribution

B-12

More About
• Using BinomialDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Birnbaum-Saunders Distribution

B-13

Birnbaum-Saunders Distribution

In this section...

“Definition” on page B-13
“Background” on page B-13
“Parameters” on page B-14

Definition

The Birnbaum-Saunders distribution has the density function

1

2 2 2

2

2p

b
b

g

b
b

g
exp −

−
































+





















x

x

x

x

x






with scale parameter β > 0 and shape parameter γ > 0, for x > 0.

If x has a Birnbaum-Saunders distribution with parameters β and γ, then

x

xb
b

g

−







has a standard normal distribution.

Background

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for
materials subject to cyclic patterns of stress and strain, where the ultimate failure
of the material comes from the growth of a prominent flaw. In materials science,
Miner's Rule suggests that the damage occurring after n cycles, at a stress level with an
expected lifetime of N cycles, is proportional to n / N. Whenever Miner's Rule applies, the
Birnbaum-Saunders model is a reasonable choice for a lifetime distribution model.

B Birnbaum-Saunders Distribution

B-14

Parameters

To estimate distribution parameters, us mle or the Distribution Fitting app.

More About
• Using BirnbaumSaundersDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Burr Type XII Distribution

B-15

Burr Type XII Distribution

In this section...

“Definition” on page B-15
“Background” on page B-16
“Parameters” on page B-17
“Fit a Burr Distribution and Draw the cdf” on page B-18
“Compare Lognormal and Burr pdfs” on page B-20
“Burr pdf for Various Parameters” on page B-22
“Survival and Hazard Functions of Burr Distribution” on page B-24
“Divergence of Parameter Estimates” on page B-26

Definition

The Burr type XII distribution is a three-parameter family of distributions on the
positive real line. The cumulative distribution function (cdf) of the Burr distribution is

F x c k

x

x c k
c

k
(| , ,) , , , , ,a

a

a= -

+ Ê
Ë
Á

ˆ
¯
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

> > > >1
1

1

0 0 0 0

where c and k are the shape parameters and α is the scale parameter. The probability
density function (pdf) is

f x c k

kc x

x

x c

c

c k
(| , ,) , , ,a a a

a

a=

Ê
ËÁ

ˆ
¯̃

+ Ê
Ë
Á

ˆ
¯
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

> > >

-

+

1

1

1

0 0 00 0, .k >

The density of the Burr type XII distribution is L-shaped if c ≤ 1 and unimodal,
otherwise.

B Burr Type XII Distribution

B-16

Background

Burr distribution was first discussed by Burr (1942) as a two-parameter family.
An additional scale parameter was introduced by Tadikamalla (1980). It is a very
flexible distribution family that can express a wide range of distribution shapes.
The Burr distribution includes, overlaps, or has as a limiting case, many commonly
used distributions such as gamma, lognormal, loglogistic, bell-shaped, and J-shaped
beta distributions (but not U-shaped). Some compound distributions also correspond
to the Burr distribution. For example, compounding a Weibull distribution with a
gamma distribution for its scale parameter results in a Burr distribution. Similarly,
compounding an exponential distribution with a gamma distribution for its rate
parameter, 1/μ, also yields a Burr distribution. The Burr distribution also has two
asymptotic limiting cases: Weibull and Pareto Type I.

The Burr distribution can fit a wide range of empirical data. Different values of its
parameters cover a broad set of skewness and kurtosis. Hence, it is used in various fields
such as finance, hydrology, and reliability to model a variety of data types. Examples of
data modeled by the Burr distribution are household income, crop prices, insurance risk,
travel time, flood levels, and failure data.

The survival and hazard functions of Burr type XII distribution are, respectively,

S x c k

x
c

k
| , ,a

a

() =

+ Ê
Ë
Á

ˆ
¯
˜

È

Î
Í
Í

˘

˚
˙
˙

1

1

and

h x c k

kc x

x

c

c
| , , .a a a

a

() =

Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

-1

1

If c > 1, the hazard function h(x) is non-monotonic with a mode at x = α(c – 1)1/c.

 Burr Type XII Distribution

B-17

Parameters

The three-parameter Burr distribution is defined by its scale parameter α and shape
parameters c and k. You can estimate the parameters using mle or fitdist. Both
functions support censored data for Burr distribution.

Generate sample data from a Burr distribution with scale parameter 0.5 and shape
parameters 2 and 5.

rng('default')

R = random('burr',0.5,2,5,1000,1);

Estimate the parameters and the confidence intervals.

[phat,pci] = mle(R,'distribution','burr')

phat =

 0.4154 2.1217 4.0550

pci =

 0.2985 1.9560 2.4079

 0.5782 2.3014 6.8288

The default 95% confidence intervals for the parameters include the true parameter
values.

The three-parameter Burr distribution converges asymptotically to one of the two
limiting forms as its parameters diverge:

• If k→0, c→∞, ck = λ, then the Burr distribution reduces to a two-parameter Pareto
distribution with the cdf

F
x

x
P

= - Ê
ËÁ

ˆ
¯̃

≥
-

1
a

a
l

, .

• If k→∞, α→∞, α/k1/c = θ, then the Burr distribution reduces to a two-parameter
Weibull distribution with the cdf

F x c
x

W

c

(| ,) exp .q
q

= - -Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

1

B Burr Type XII Distribution

B-18

If mle or fitdist detects such divergence, it returns an error message, but informs you
of the limiting distribution and corresponding parameter estimates for that distribution.

Fit a Burr Distribution and Draw the cdf

This example shows how to fit a Burr distribution to data, draw the cdf, and construct a
histogram with a Burr distribution fit.

1. Load the sample data.

load('arrhythmia.mat')

The fifth column in X contains a measurement obtained from electrocardiograms, called
QRS duration.

2. Fit a Burr distribution to the QRS duration data, and get the parameter estimates.

PD = fitdist(X(:,5),'burr');

PD has the maximum likelihood estimates of the Burr distribution parameters in the
property Param. The estimates are α = 80.4515, c = 18.9251, k = 0.4492.

3. Plot the cdf of the QRS duration data.

QRScdf=cdf('burr',sortrows(X(:,5)),80.4515,18.9251,0.4492);

plot(sortrows(X(:,5)),QRScdf)

xlabel('QRS Duration')

 Burr Type XII Distribution

B-19

cdf of QRS duration data

4. Draw the histogram of QRS duration data with 15 bins and the pdf of the Burr
distribution fit.

histfit(X(:,5),15,'burr')

xlabel('QRS Duration')

B Burr Type XII Distribution

B-20

Histogram of QRS data with a Burr distribution fit

Compare Lognormal and Burr pdfs

This example shows how to compare the lognormal pdf to the Burr pdf using income data
generated from a lognormal distribution.

1. Generate the income data.

rng('default') % for reproducibility

y = random('logn',log(25000),0.65,500,1);

2. Fit a Burr distribution.

 Burr Type XII Distribution

B-21

pd = fitdist(y,'burr');

3. Plot both the Burr and lognormal pdfs of income data on the same axis.

p = pdf('burr',sortrows(y),26007,2.6374,1.0966);

p2 = pdf('logn',sortrows(y),log(25000),0.65);

plot(sortrows(y),p,'g',sortrows(y),p2,'r','LineWidth',2)

legend('burr','lognormal')

B Burr Type XII Distribution

B-22

Burr and Lognormal pdfs fitted to income data

Burr pdf for Various Parameters

This example shows how to create a variety of shapes for probability density functions of
the Burr distribution.

X = 0:0.01:5;

c = [0.5 0.95 2 5];

k = [0.5 0.75 2 5];

alpha = [0.5 1 2 5];

colors = ['b';'g';'r';'k']'

 Burr Type XII Distribution

B-23

figure

for i = 1:1:4

pdf1(i,:) = pdf('burr',X,1,c(i),0.5);

pdf2(i,:) = pdf('burr',X,1,2,k(i));

pdf3(i,:) = pdf('burr',X,alpha(i),2,0.5);

axC = subplot(3,1,1);

pC(i) = plot(X,pdf1(i,:),colors(i),'LineWidth',2);

title('Effect of c, \alpha = 1, k = 0.5'),xlabel('x')

hold on

axK = subplot(3,1,2);

pK(i) = plot(X,pdf2(i,:),colors(i),'LineWidth',2);

title('Effect of k, \alpha = 1, c = 2'),xlabel('x')

hold on

axAlpha = subplot(3,1,3);

pAlpha(i) = plot(X,pdf3(i,:),colors(i),'LineWidth',2);

title('Effect of \alpha, c = 2, k = 0.5'),xlabel('x')

hold on

end

set(axC,'XLim',[0 3],'YLim',[0 1.2]);

set(axK,'XLim',[0 3],'YLim',[0 2.1]);

set(axAlpha,'XLim',[0 5],'YLim',[0 1]);

legend(axC,'c=0.5','c=0.95','c=2','c=5');

legend(axK,'k=0.5','k=0.75','k=2','k=5');

legend(axAlpha,'\alpha=0.5','\alpha=1','\alpha=2','\alpha=5');

B Burr Type XII Distribution

B-24

This figure illustrates how the shape and scale of the Burr distribution changes for
different values of its parameters.

Survival and Hazard Functions of Burr Distribution

This example shows how to find and plot the survival and hazard functions for a sample
coming from a Burr distribution.

1. Generate the data.

 Burr Type XII Distribution

B-25

 X = 0:0.015:2.5;

2. Evaluate the pdf and cdf of data in X.

Xpdf = pdf('burr',X,0.2,5,0.5);

Xcdf = cdf('burr',X,0.2,5,0.5);

3. Evaluate and plot the survival function of data in X.

S = 1.-Xcdf; % survival function

plot(X,S,'LineWidth',2)

xlabel('x')

Survival function

B Burr Type XII Distribution

B-26

4. Evaluate and plot the hazard function of data in X.

H = Xpdf./S; % hazard function

plot(X,H,'r','LineWidth',2)

xlabel('x')

Hazard function

Divergence of Parameter Estimates

This example shows how to interpret the display when the parameter estimates diverge
when fitting a Burr distribution to input data.

 Burr Type XII Distribution

B-27

1. Generate sample data from the Weibull distribution with parameters 0.5 and 2.

rng('default') % for reproducibility

X = wblrnd(0.5,2,100,1);

2. Fit a Burr distribution.

PD = fitdist(X,'burr');

Error using addburr>burrfit (line 566)

The data are not fit by a Burr distribution with finite

parameters. The maximum likelihood fit is provided by the

k->Inf, alpha->Inf limiting form of the Burr distribution: a

Weibull distribution with the parameters below.

 a (scale): 0.476817

 b (shape): 1.96219

Error in fitdata (line 24)

 p = F(x,fixedparams{:},0.05,opts{:});

Error in ProbDistUnivParam.fit (line 94)

pd = fitdata(pd,spec,x,cens,freq,fixedparams,options);

Error in fitdist (line 124)

 pd =

 ProbDistUnivParam.fit(x,distname,'cens',cens,'freq',freq,args{:});

The error message tells you that the Weibull family seems to fit the data better and gives
you the parameter estimates from a Weibull fit. You can use those estimates directly. If
you need covariance estimates for the parameters or other information about the fit, you
can refit a Weibull distribution to the data.

3. Fit a Weibull distribution to the data and find the confidence intervals for the
parameter estimates.

PD = fitdist(X,'weibull');

paramci(PD)

ans =

 0.4291 1.6821

 0.5298 2.2890

B Burr Type XII Distribution

B-28

These are the 95% confidence intervals of the parameter estimates for the Weibull
distribution fit.

References

[1] Burr, Irving W. “Cumulative frequency functions.” The Annals of Mathematical
Statistics, Vol. 13, Number 2, 1942, pp. 215–232.

[2] Tadikamalla, Pandu R. “A look at the Burr and related distributions.” International
Statistical Review, Vol. 48, Number 3, 1980, pp. 337–344.

[3] Rodriguez, Robert N. “A guide to the Burr type XII distributions.” Biometrika, Vol. 64,
Number 1, 1977, pp. 129–134.

[4] AL-Hussaini, Essam K. “A characterization of the Burr type XII distribution”. Appl.
Math. Lett. Vol. 4, Number 1, 1991, pp. 59–61.

[5] Grammig, Joachim and Kai-Oliver Maurer. “Non-monotonic hazard functions and the
autoregressive conditional duration model.” Econometrics Journal, Vol. 3, 2000,
pp. 16–38.

More About
• Using BurrDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Chi-Square Distribution

B-29

Chi-Square Distribution

In this section...

“Overview” on page B-29
“Parameters” on page B-29
“Probability Density Function” on page B-29
“Cumulative Distribution Function” on page B-30
“Descriptive Statistics” on page B-30
“Relationship to Other Distributions” on page B-30
“Examples” on page B-30

Overview

The chi-square distribution is commonly used in hypothesis testing, particularly the chi-
squared test for goodness of fit.

Parameters

The chi-square distribution uses the following parameter.

Parameter Description Support

ν Degrees of freedom ν is a nonnegative integer value

Probability Density Function

The probability density function (pdf) is

y f x
x e x

= () =

()

−() −
|

/

/ /

n

n

n

n

2 2 2

22 2Γ

where Γ(·) is the Gamma function, ν is the degrees of freedom, and x ≥ 0.

B Chi-Square Distribution

B-30

Cumulative Distribution Function

The cumulative distribution function (cdf) is

p F x
t e

dt
t

x
= =

− −

∫(|)
(/)

() / /

/
n

n

n

n

2 2 2

20 2 2Γ

where Γ(·) is the Gamma function, ν is the degrees of freedom, and x ≥ 0.

Descriptive Statistics

The mean is ν.

The variance is 2ν.

Relationship to Other Distributions

The χ2 distribution is a special case of the gamma distribution where b = 2 in the
equation for gamma distribution below.

y f x a b
b a

x e
a

a

x

b= () =
()

−| ,
1 1

Γ

The χ2 distribution gets special attention because of its importance in normal sampling
theory. If a set of n observations is normally distributed with variance σ2, and s2 is the
sample standard deviation, then

n s

n

−()
−()1

1

2

2

2

s

c∼

This relationship is used to calculate confidence intervals for the estimate of the normal
parameter σ2 in the function normfit.

Examples

Compute Chi-Square Distribution pdf

Compute the pdf of a chi-square distribution with 4 degrees of freedom.

 Chi-Square Distribution

B-31

x = 0:0.2:15;

y = chi2pdf(x,4);

Plot the pdf.

figure;

plot(x,y)

The chi-square distribution is skewed to the right, especially for few degrees of freedom.

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Chi-Square Distribution

B-32

 Copulas

B-33

Copulas

See “Copulas: Generate Correlated Samples” on page 5-160.

B Custom Distributions

B-34

Custom Distributions

User-defined custom distributions, created using files and function handles, are
supported by the Statistics and Machine Learning Toolbox functions pdf, cdf, icdf, and
mle, and the Statistics and Machine Learning Toolbox Distribution Fitting app.

 Exponential Distribution

B-35

Exponential Distribution

In this section...

“Definition” on page B-35
“Background” on page B-35
“Parameters” on page B-35
“Examples” on page B-36

Definition

The exponential pdf is

y f x e

x

= () =
−

|m
m

m1

Background

Like the chi-square distribution, the exponential distribution is a special case of the
gamma distribution (obtained by setting a = 1)

y f x a b
b a

x e
a

a

x

b= () =
()

−| ,
1 1

Γ

where Γ(·) is the Gamma function.

The exponential distribution is special because of its utility in modeling events that occur
randomly over time. The main application area is in studies of lifetimes.

Parameters

Suppose you are stress testing light bulbs and collecting data on their lifetimes. You
assume that these lifetimes follow an exponential distribution. You want to know how
long you can expect the average light bulb to last. Parameter estimation is the process of
determining the parameters of the exponential distribution that fit this data best in some
sense.

B Exponential Distribution

B-36

One popular criterion of goodness is to maximize the likelihood function. The likelihood
has the same form as the exponential pdf above. But for the pdf, the parameters are
known constants and the variable is x. The likelihood function reverses the roles of the
variables. Here, the sample values (the x's) are already observed. So they are the fixed
constants. The variables are the unknown parameters. MLE involves calculating the
values of the parameters that give the highest likelihood given the particular set of data.

The function expfit returns the MLEs and confidence intervals for the parameters
of the exponential distribution. Here is an example using random numbers from the
exponential distribution with µ = 700.

lifetimes = exprnd(700,100,1);

[muhat, muci] = expfit(lifetimes)

muhat =

 672.8207

muci =

 547.4338

 810.9437

The MLE for parameter µ is 672, compared to the true value of 700. The 95% confidence
interval for µ goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of µ so it is nice to have a confidence
interval on the parameter to give a range of likely values.

Examples

Exponentially Distributed Lifetime Data

For exponentially distributed lifetimes, the probability that an item will survive an extra
unit of time is independent of the current age of the item. The example shows a specific
case of this special property.

l = 10:10:60;

lpd = l+0.1;

deltap = (expcdf(lpd,50)-expcdf(l,50))./(1-expcdf(l,50))

deltap =

 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

 Exponential Distribution

B-37

Compute the Exponential Distribution pdf

Compute the pdf of an exponential distribution with parameter mu = 2.

x = 0:0.1:10;

y = exppdf(x,2);

Plot the pdf.

figure;

plot(x,y)

More About
• Using ExponentialDistribution Objects

B Exponential Distribution

B-38

• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Extreme Value Distribution

B-39

Extreme Value Distribution

In this section...

“Definition” on page B-39
“Background” on page B-39
“Parameters” on page B-41
“Examples” on page B-42

Definition

The probability density function for the extreme value distribution with location
parameter µ and scale parameter σ is

y f x
x x

= () =
−





−
−















−| , exp exp expm s s
m

s

m

s

1

This form of the probability density function is suitable for modeling the minimum value.
To model the maximum value, use the negative of the original values.

If T has a Weibull distribution with parameters a and b, then log T has an extreme value
distribution with parameters µ = log a and σ = 1/b.

Background

Extreme value distributions are often used to model the smallest or largest value
among a large set of independent, identically distributed random values representing
measurements or observations. The extreme value distribution is appropriate for
modeling the smallest value from a distribution whose tails decay exponentially fast, for
example, the normal distribution. It can also model the largest value from a distribution,
such as the normal or exponential distributions, by using the negative of the original
values.

For example, the following fits an extreme value distribution to minimum values taken
over 1000 sets of 500 observations from a normal distribution.

rng default; % For reproducibility

B Extreme Value Distribution

B-40

xMinima = min(randn(1000,500), [], 2);

paramEstsMinima = evfit(xMinima);

y = linspace(-5,-1.5,1001);

histogram(xMinima,-4.75:.25:-1.75);

p = evpdf(y,paramEstsMinima(1),paramEstsMinima(2));

line(y,.25*length(xMinima)*p,'color','r')

The following fits an extreme value distribution to the maximum values in each set of
observations.

rng default; % For reproducibility

xMaxima = max(randn(1000,500), [], 2);

paramEstsMaxima = evfit(-xMaxima);

y = linspace(1.5,5,1001);

 Extreme Value Distribution

B-41

histogram(xMaxima,1.75:.25:4.75);

p = evpdf(-y,paramEstsMaxima(1),paramEstsMaxima(2));

line(y,.25*length(xMaxima)*p,'color','r')

Although the extreme value distribution is most often used as a model for extreme
values, you can also use it as a model for other types of continuous data. For example,
extreme value distributions are closely related to the Weibull distribution. If T has a
Weibull distribution, then log(T) has a type 1 extreme value distribution.

Parameters

The function evfit returns the maximum likelihood estimates (MLEs) and confidence
intervals for the parameters of the extreme value distribution. The following example

B Extreme Value Distribution

B-42

shows how to fit some sample data using evfit, including estimates of the mean and
variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch of 1000 from a
manufacturing process. If you believe that the sizes are independent within and between
each batch, you can fit an extreme value distribution to measurements of the minimum
diameter from a series of eight experimental batches. The following code returns the
MLEs of the distribution parameters as parmhat and the confidence intervals as the
columns of parmci.

x = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83];

[parmhat, parmci] = evfit(x)

parmhat =

 20.2506 0.8223

parmci =

 19.644 0.49861

 20.857 1.3562

You can find mean and variance of the extreme value distribution with these parameters
using the function evstat.

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))

meanfit =

 19.776

varfit =

 1.1123

Examples

Compute the Extreme Value Distribution pdf

Compute the pdf of an extreme value distribution.

t = [-5:.01:2];

y = evpdf(t);

Plot the pdf.

figure;

plot(t,y)

 Extreme Value Distribution

B-43

The extreme value distribution is skewed to the left, and its general shape remains the
same for all parameter values. The location parameter, mu, shifts the distribution along
the real line, and the scale parameter, sigma, expands or contracts the distribution.

The following plots the probability function for different combinations of mu and sigma.

x = -15:.01:5;

plot(x,evpdf(x,2,1),'-', ...

 x,evpdf(x,0,2),':', ...

 x,evpdf(x,-2,4),'-.');

legend({'mu = 2, sigma = 1', ...

 'mu = 0, sigma = 2', ...

 'mu = -2, sigma = 4'}, ...

 'Location','NW')

B Extreme Value Distribution

B-44

xlabel('x')

ylabel('f(x|mu,sigma)')

More About
• Using ExtremeValueDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 F Distribution

B-45

F Distribution

In this section...

“Definition” on page B-45
“Background” on page B-45
“Examples” on page B-46

Definition

The pdf for the F distribution is

y f x= () =

+()





























| ,n n

n n

n n

n

n
1 2

1 2

1 2

1

2

2

2 2

Γ

Γ Γ

nn n

n n

n

n

1 1

1 2

2

2

2

1

2

2
1

x

x

−

+

+




















where Γ(·) is the Gamma function.

Background

The F distribution has a natural relationship with the chi-square distribution. If χ1 and
χ2 are both chi-square with ν1 and ν2 degrees of freedom respectively, then the statistic F
below is F-distributed.

F n n

c

n

c

n

1 2

1

1

2

2

,() =

The two parameters, ν1 and ν2, are the numerator and denominator degrees of freedom.
That is, ν1 and ν2 are the number of independent pieces of information used to calculate
χ1 and χ2, respectively.

B F Distribution

B-46

Examples

Compute the F Distribution pdf

Compute the pdf of an F distibution with 5 numerator degrees of freedom and 3
denominator degrees of freedom.

x = 0:0.01:10;

y = fpdf(x,5,3);

Plot the pdf.

figure;

plot(x,y)

 F Distribution

B-47

The plot shows that the F distribution exists on positive real numbers and is skewed to
the right.

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Gamma Distribution

B-48

Gamma Distribution

In this section...

“Definition” on page B-48
“Background” on page B-48
“Parameters” on page B-49
“Examples” on page B-50

Definition

The gamma pdf is

y f x a b
b a

x e
a

a

x

b= = −
−

(| ,)
()

1 1

Γ

where Γ(·) is the Gamma function.

Background

The gamma distribution models sums of exponentially distributed random variables.

The gamma distribution family is based on two parameters. The chi-square and
exponential distributions, which are children of the gamma distribution, are one-
parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete Gamma
function.

f x a b
x

b
a| , ,() = 





gammainc

When a is large, the gamma distribution closely approximates a normal distribution with
the advantage that the gamma distribution has density only for positive real numbers.

 Gamma Distribution

B-49

Parameters

Suppose you are stress testing computer memory chips and collecting data on their
lifetimes. You assume that these lifetimes follow a gamma distribution. You want to
know how long you can expect the average computer memory chip to last. Parameter
estimation is the process of determining the parameters of the gamma distribution that
fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood
has the same form as the gamma pdf above. But for the pdf, the parameters are known
constants and the variable is x. The likelihood function reverses the roles of the variables.
Here, the sample values (the x's) are already observed. So they are the fixed constants.
The variables are the unknown parameters. MLE involves calculating the values of the
parameters that give the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the parameters of
the gamma distribution. Here is an example using random numbers from the gamma
distribution with a = 10 and b = 5.

lifetimes = gamrnd(10,5,100,1);

[phat, pci] = gamfit(lifetimes)

phat =

 10.9821 4.7258

pci =

 7.4001 3.1543

 14.5640 6.2974

Note phat(1) = â and phat(2) = ˆb . The MLE for parameter a is 10.98, compared to the
true value of 10. The 95% confidence interval for a goes from 7.4 to 14.6, which includes
the true value.

Similarly the MLE for parameter b is 4.7, compared to the true value of 5. The 95%
confidence interval for b goes from 3.2 to 6.3, which also includes the true value.

In the life tests you do not know the true value of a and b so it is nice to have a
confidence interval on the parameters to give a range of likely values.

B Gamma Distribution

B-50

Examples

Compute the Gamma Distribution pdf

Compute the pdf of a gamma distribution with parameters A = 100 and B = 10. For
comparison, also compute the pdf of a normal distribution with parameters mu = 1000
and sigma = 100.

x = gaminv((0.005:0.01:0.995),100,10);

y = gampdf(x,100,10);

y1 = normpdf(x,1000,100);

Plot the pdfs of the gamma distribution and the normal distribution on the same figure.

figure;

plot(x,y,'-',x,y1,'-.')

 Gamma Distribution

B-51

More About
• Using GammaDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Gaussian Distribution

B-52

Gaussian Distribution

See “Normal Distribution” on page B-130.

 Gaussian Mixture Distributions

B-53

Gaussian Mixture Distributions

See the discussion of the gmdistribution class in “Gaussian Mixture Models” on page
5-150.

B Generalized Extreme Value Distribution

B-54

Generalized Extreme Value Distribution

In this section...

“Definition” on page B-54
“Background” on page B-54
“Parameters” on page B-55
“Examples” on page B-56

Definition

The probability density function for the generalized extreme value distribution with
location parameter µ, scale parameter σ, and shape parameter k ≠ 0 is

y f x
x x= () =





− + −





















+
−

| , , exp
() (

k k k
kµ σ

σ
µ

σ
1

1 1

1

−−




− −µ

σ
)

1
1

k

for

1 +
(x-)

 > 0k
m

s

k > 0 corresponds to the Type II case, while k < 0 corresponds to the Type III case. For
k = 0, corresponding to the Type I case, the density is

y f x
x x

= () =





− −
−





−
−







| , , exp exp

() ()
0

1
µ σ

σ
µ

σ
µ

σ

Background

Like the extreme value distribution, the generalized extreme value distribution is often
used to model the smallest or largest value among a large set of independent, identically
distributed random values representing measurements or observations. For example,
you might have batches of 1000 washers from a manufacturing process. If you record the

 Generalized Extreme Value Distribution

B-55

size of the largest washer in each batch, the data are known as block maxima (or minima
if you record the smallest). You can use the generalized extreme value distribution as a
model for those block maxima.

The generalized extreme value combines three simpler distributions into a single form,
allowing a continuous range of possible shapes that includes all three of the simpler
distributions. You can use any one of those distributions to model a particular dataset
of block maxima. The generalized extreme value distribution allows you to “let the data
decide” which distribution is appropriate.

The three cases covered by the generalized extreme value distribution are often referred
to as the Types I, II, and III. Each type corresponds to the limiting distribution of block
maxima from a different class of underlying distributions. Distributions whose tails
decrease exponentially, such as the normal, lead to the Type I. Distributions whose tails
decrease as a polynomial, such as Student's t, lead to the Type II. Distributions whose
tails are finite, such as the beta, lead to the Type III.

Types I, II, and III are sometimes also referred to as the Gumbel, Frechet, and Weibull
types, though this terminology can be slightly confusing. The Type I (Gumbel) and Type
III (Weibull) cases actually correspond to the mirror images of the usual Gumbel and
Weibull distributions, for example, as computed by the functions evcdf and evfit , or
wblcdf and wblfit, respectively. Finally, the Type II (Frechet) case is equivalent to
taking the reciprocal of values from a standard Weibull distribution.

Parameters

If you generate 250 blocks of 1000 random values drawn from Student's t distribution
with 5 degrees of freedom, and take their maxima, you can fit a generalized extreme
value distribution to those maxima.

blocksize = 1000;

nblocks = 250;

rng default % For reproducibility

t = trnd(5,blocksize,nblocks);

x = max(t); % 250 column maxima

paramEsts = gevfit(x)

paramEsts =

 0.1185 1.4530 5.8929

B Generalized Extreme Value Distribution

B-56

Notice that the shape parameter estimate (the first element) is positive, which is what
you would expect based on block maxima from a Student's t distribution.

histogram(x,2:20,'FaceColor',[.8 .8 1]);

xgrid = linspace(2,20,1000);

line(xgrid,nblocks*...

 gevpdf(xgrid,paramEsts(1),paramEsts(2),paramEsts(3)));

Examples

Compute the Generalized Extreme Value Distribution pdf

Generate examples of probability density functions for the three basic forms of the
generalized extreme value distribution.

 Generalized Extreme Value Distribution

B-57

x = linspace(-3,6,1000);

y1 = gevpdf(x,-.5,1,0);

y2 = gevpdf(x,0,1,0);

y3 = gevpdf(x,.5,1,0);

plot(x,y1,'-', x,y2,'--', x,y3,':')

legend({'K < 0, Type III' 'K = 0, Type I' 'K > 0, Type II'})

Notice that for k = 0, the distribution has zero probability density for x such that
.

For k = 0, the distribution has zero probability density for .

B Generalized Extreme Value Distribution

B-58

For k = 0, there is no upper or lower bound.

Compute the Generalized Extreme Value Distribution pdf

Generate examples of probability density functions for the three basic forms of the
generalized extreme value distribution.

x = linspace(-3,6,1000);

y1 = gevpdf(x,-.5,1,0);

y2 = gevpdf(x,0,1,0);

y3 = gevpdf(x,.5,1,0);

plot(x,y1,'-', x,y2,'--', x,y3,':')

legend({'K < 0, Type III' 'K = 0, Type I' 'K > 0, Type II'})

 Generalized Extreme Value Distribution

B-59

Notice that for k = 0, the distribution has zero probability density for x such that
.

For k = 0, the distribution has zero probability density for .

For k = 0, there is no upper or lower bound.

More About
• Using GeneralizedExtremeValueDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Generalized Pareto Distribution

B-60

Generalized Pareto Distribution
In this section...

“Definition” on page B-60
“Background” on page B-60
“Parameters” on page B-61
“Examples” on page B-62

Definition

The probability density function for the generalized Pareto distribution with shape
parameter k ≠ 0, scale parameter σ, and threshold parameter θ, is

y f x k k
x k= =





+ −





− −
(| , ,)

()
s q

s

q

s

1
1

1
1

for θ < x, when k > 0, or for θ < x < θ – σ/k when k < 0.

For k = 0, the density is

y f x

x

= =





− −

(| , ,) e

()

0
1

s q
s

q

s

for θ < x.

If k = 0 and θ = 0, the generalized Pareto distribution is equivalent to the exponential
distribution. If k > 0 and θ = σ/k, the generalized Pareto distribution is equivalent to the
Pareto distribution with a scale parameter equal to σ/k and a shape parameter equal to
1/k.

Background

Like the exponential distribution, the generalized Pareto distribution is often used to
model the tails of another distribution. For example, you might have washers from a
manufacturing process. If random influences in the process lead to differences in the
sizes of the washers, a standard probability distribution, such as the normal, could be
used to model those sizes. However, while the normal distribution might be a good model
near its mode, it might not be a good fit to real data in the tails and a more complex

 Generalized Pareto Distribution

B-61

model might be needed to describe the full range of the data. On the other hand, only
recording the sizes of washers larger (or smaller) than a certain threshold means you
can fit a separate model to those tail data, which are known as exceedences. You can
use the generalized Pareto distribution in this way, to provide a good fit to extremes of
complicated data.

The generalized Pareto distribution allows a continuous range of possible shapes that
includes both the exponential and Pareto distributions as special cases. You can use
either of those distributions to model a particular dataset of exceedences. The generalized
Pareto distribution allows you to “let the data decide” which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding to a
limiting distribution of exceedence data from a different class of underlying distributions.

• Distributions whose tails decrease exponentially, such as the normal, lead to a
generalized Pareto shape parameter of zero.

• Distributions whose tails decrease as a polynomial, such as Student's t, lead to a
positive shape parameter.

• Distributions whose tails are finite, such as the beta, lead to a negative shape
parameter.

The generalized Pareto distribution is used in the tails of distribution fit objects of the
paretotails class.

Parameters

If you generate a large number of random values from a Student's t distribution with 5
degrees of freedom, and then discard everything less than 2, you can fit a generalized
Pareto distribution to those exceedences.

rng default % For reproducibility

t = trnd(5,5000,1);

y = t(t > 2) - 2;

paramEsts = gpfit(y)

paramEsts =

 0.1445 0.7225

Notice that the shape parameter estimate (the first element) is positive, which is what
you would expect based on exceedences from a Student's t distribution.

B Generalized Pareto Distribution

B-62

hist(y+2,2.25:.5:11.75);

h = findobj(gca,'Type','patch');

h.FaceColor = [.8 .8 1];

xgrid = linspace(2,12,1000);

line(xgrid,.5*length(y)*...

 gppdf(xgrid,paramEsts(1),paramEsts(2),2));

Examples

Compute Generalized Pareto Distribution pdf

Compute the pdf of three generalized Pareto distributions. The first has shape parameter
k = -0.25, the second has k = 0, and the third has k = 1.

 Generalized Pareto Distribution

B-63

x = linspace(0,10,1000);

y1 = gppdf(x,-.25,1,0);

y2 = gppdf(x,0,1,0);

y3 = gppdf(x,1,1,0);

Plot the three pdfs on the same figure.

figure;

plot(x,y1,'-', x,y2,'--', x,y3,':')

legend({'K < 0' 'K = 0' 'K > 0'});

Related Examples
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-61

B Generalized Pareto Distribution

B-64

More About
• Using GeneralizedParetoDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Geometric Distribution

B-65

Geometric Distribution

In this section...

“Overview” on page B-65
“Parameters” on page B-65
“Probability Distribution Function” on page B-65
“Cumulative Distribution Function” on page B-68
“Mean and Variance” on page B-70
“Example” on page B-71

Overview

The geometric distribution models the number of failures before one success in a series
of independent trials, where each trial results in either success or failure, and the
probability of success in any individual trial is constant. For example, if you toss a coin,
the geometric distribution models the number of tails observed before getting a heads.
The geometric distribution is discrete, existing only on the nonnegative integers.

Parameters

The geometric distribution uses the following parameter.

Parameter Description

0 1£ £p Probability of success

Probability Distribution Function

Definition

The probability distribution function (pdf) of the geometric distribution is

y f x p p p xx
= = - =(|) () ; , , , ,1 0 1 2…

B Geometric Distribution

B-66

where p is the probability of success, and x is the number of failures before the first
success. The result y is the probability of observing exactly x trials before a success,
when the probability of success in any given trial is p. For discrete distributions, the
probability distribution function is also known as the probability mass function (pmf).

Plot

This plot shows how changing the value of the probability parameter p alters the shape
of the pdf. Use geopdf to compute the pdf for values at x equals 1 through 10, for three
different values of p. Then plot all three pdfs on the same figure for a visual comparison.

x = [1:10];

y1 = geopdf(x,0.1); % For p = 0.1

y2 = geopdf(x,0.25); % For p = 0.25

y3 = geopdf(x,0.75); % For p = 0.75

figure;

plot(x,y1,'kd')

hold on

plot(x,y2,'ro')

plot(x,y3,'b+')

legend({'p = 0.1','p = 0.25','p = 0.75'})

hold off

 Geometric Distribution

B-67

In this plot, the value of y is the probability of observing exactly x trials before a success.
When the probability of success p is large, y decreases rapidly as x increases, and the
probability of observing a large number of failures before a success quickly becomes
small. But when the probability of success p is small, y decreases slowly as x increases.
The probability of observing a large number of failures before a success still decreases as
the number of trials increases, but at a much slower rate.

Random Number Generation

A random number generated from a geometric distribution represents the number
of failures observed before a success in a single experiment, given the probability of
success p for each independent trial. Use geornd to generate random numbers from the

B Geometric Distribution

B-68

geometric distribution. For example, the following generates a random number from a
geometric distribution with probability of success p equal to 0.1.

p = 0.1;

r = geornd(p)

r =

 1

The returned random number represents the number of failures observed before a
success in a series of independent trials.

Relationship to Other Distributions

The geometric distribution is a special case of the negative binomial distribution, with
the specified number of successes parameter r equal to 1.

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of the geometric distribution is

y F x p p x
x

= = - -() =
+

(|) ; , , , ...,1 1 0 1 2
1

where p is the probability of success, and x is the number of failures before the first
success. The result y is the probability of observing up to x trials before a success, when
the probability of success in any given trial is p.

Plot

This plot shows how changing the value of the parameter p alters the shape of the cdf.
Use geocdf to compute the cdf values at x equals 1 through 10, for three different values
of p. Then plot all three cdfs on the same figure for a visual comparison.

x = [1:10];

y1 = geocdf(x,0.1); % For p = 0.1

y2 = geocdf(x,0.25); % For p = 0.25

 Geometric Distribution

B-69

y3 = geocdf(x,0.75); % For p = 0.75

figure;

plot(x,y1,'kd')

hold on

plot(x,y2,'ro')

plot(x,y3,'b+')

legend({'p = 0.1','p = 0.25','p = 0.75'})

hold off

In this plot, the value of y is the probability of observing up to x trials before a success.
When the probability of success p is large, y increases rapidly as x increases. The
probability of observing a success quickly becomes very high, even for a small number of
trials. But when the probability of success p is small, y increases slowly as x increases.

B Geometric Distribution

B-70

The probability of observing a success still increases as the number of trials increases,
but at a much slower rate.

Inverse cdf

The inverse cdf of a geometric distribution determines the value of x that corresponds
to a probability y of observing x successes in a row in independent trials. Use geoinv to
compute the inverse cdf of the geometric distribution. For example, the following returns
the smallest possible integer x such that the geometric cdf y evaluated at x is greater
than or equal to 0.1 , when the probability of success for each independent trial p is 0.03.

y = 0.1;

p = 0.03;

x = geoinv(y,p)

x =

 3

Mean and Variance

The mean of the geometric distribution is

mean =

-1 p

p
,

and the variance of the geometric distribution is

var ,=

-1

2

p

p

where p is the probability of success.

Use geostat to compute the mean and variance of a geometric distribution. For
example, the following computes the mean m and variance v of a geometric distribution
with probability parameter p equal to 0.25.

p = 0.25;

 Geometric Distribution

B-71

[m,v] = geostat(p)

m =

 3

v =

 12

Example

Compute Geometric Distribution Probabilities

Suppose the probability of a five-year-old car battery not starting in cold weather is 0.03.
What is the probability of the car starting for 25 consecutive days during a long cold
snap?

Model the scenario using a geometric distribution. In this case, the "failure" event is the
car starting, and the "success" event is the car not starting. We want to determine the
probability of observing 25 failures (the car starting) without observing a single success
(the car not starting). The probability of success for each trial (the car not starting in any
single attempt) is P = 0.03.

To solve, first compute the cumulative distribution function (cdf) for x = 25 trials. This
returns the probability of observing success (the car not starting) in up to 25 trials. Then
subtract this result from 1 to determine the probability of observing success in up
to 25 trials - in other words, the probability that the car starts at every one of the 25
attempts.

pstart = 1 - geocdf(25,0.03)

pstart =

 0.4530

The returned result pstart = 0.4530 is the probability that the car will start every
day for 25 days in a row during a cold snap.

B Geometric Distribution

B-72

This plot of the cdf for this scenario shows that, as the number of trials (x) increases, the
probability of success (y) also increases. In the context of this example, it means that the
more times you attempt to start the car, the greater the probability that it does not start
on at least one of those occasions.

figure;

x = 0:25;

y = geocdf(x,0.03);

stairs(x,y)

More About
• “Working with Probability Distributions” on page 5-3

 Geometric Distribution

B-73

• “Supported Distributions” on page 5-17

B Hypergeometric Distribution

B-74

Hypergeometric Distribution

In this section...

“Definition” on page B-74
“Background” on page B-74
“Examples” on page B-75

Definition

The hypergeometric pdf is

y f x M K n

K

x

M K

n x

M

n

= =











−
−





















(| , ,)

Background

The hypergeometric distribution models the total number of successes in a fixed-size
sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the number
of samples or the number of possible successes, whichever is greater. The hypergeometric
distribution differs from the binomial only in that the population is finite and the
sampling from the population is without replacement.

The hypergeometric distribution has three parameters that have direct physical
interpretations.

• M is the size of the population.
• K is the number of items with the desired characteristic in the population.
• n is the number of samples drawn.

Sampling “without replacement” means that once a particular sample is chosen, it is
removed from the relevant population for all subsequent selections.

 Hypergeometric Distribution

B-75

Examples

Compute and Plot Hypergeometric Distribution CDF

This example shows how to compute and plot the cdf of a hypergeometric distribution.

Compute the cdf of a hypergeometric distribution that draws 20 samples from a group of
1000 items, when the group contains 50 items of the desired type.

x = 0:10;

y = hygecdf(x,1000,50,20);

Plot the cdf.

stairs(x,y)

B Hypergeometric Distribution

B-76

The x-axis of the plot shows the number of items drawn that are of the desired type. The
y-axis shows the corresponding cdf values.

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Inverse Gaussian Distribution

B-77

Inverse Gaussian Distribution

In this section...

“Definition” on page B-77
“Background” on page B-77
“Parameters” on page B-77

Definition

The inverse Gaussian distribution has the density function

l

p

l

m
m

2 23 2

2

x x

xexp − −()












Background

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative
positively skewed data. The distribution originated in the theory of Brownian motion, but
has been used to model diverse phenomena. Inverse Gaussian distributions have many
similarities to standard Gaussian (normal) distributions, which lead to applications in
inferential statistics.

Parameters

To estimate distribution parameters, use mle or the Distribution Fitting app.

More About
• Using InverseGaussianDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Inverse Wishart Distribution

B-78

Inverse Wishart Distribution

Definition

The probability density function of the d-dimensional Inverse Wishart distribution is
given by

y f
T e

X

TX

d d d
= =

() − ()







−

−

(, ,)

/

()/ (())/ (
Χ Σ n

p

n

n

2

1

2

2 1 4

1

2

trace

nn

n n
+ + () − −d

d
1 2

2 1 2
) /

/ ... (()) /
,

Γ Γ

where X and T are d-by-d symmetric positive definite matrices, and ν is a scalar greater
than or equal to d. While it is possible to define the Inverse Wishart for singular Τ, the
density cannot be written as above.

If a random matrix has a Wishart distribution with parameters T–1 and ν, then the
inverse of that random matrix has an inverse Wishart distribution with parameters Τ
and ν. The mean of the distribution is given by

1

1n − −d
T

where d is the number of rows and columns in T.

Only random matrix generation is supported for the inverse Wishart, including both
singular and nonsingular T.

Background

The inverse Wishart distribution is based on the Wishart distribution. In Bayesian
statistics it is used as the conjugate prior for the covariance matrix of a multivariate
normal distribution.

Example

Notice that the sampling variability is quite large when the degrees of freedom is small.

 Inverse Wishart Distribution

B-79

Tau = [1 .5; .5 2];

df = 10; S1 = iwishrnd(Tau,df)*(df-2-1)

S1 =

 1.7959 0.64107

 0.64107 1.5496

df = 1000; S2 = iwishrnd(Tau,df)*(df-2-1)

S2 =

 0.9842 0.50158

 0.50158 2.1682

See Also

“Wishart Distribution” on page B-175

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Johnson System

B-80

Johnson System

See “Pearson and Johnson Systems” on page 6-26.

 Kernel Distribution

B-81

Kernel Distribution

In this section...

“Overview” on page B-81
“Kernel Density Estimator” on page B-81
“Kernel Smoothing Function” on page B-81
“Bandwidth” on page B-87

Overview

A kernel distribution is a nonparametric representation of the probability density
function (pdf) of a random variable. You can use a kernel distribution when a parametric
distribution cannot properly describe the data, or when you want to avoid making
assumptions about the distribution of the data. This distribution is defined by a
smoothing function and a bandwidth value that controls the smoothness of the resulting
density curve.

Kernel Density Estimator

The kernel density estimator is the estimated probability density function (pdf) of the
random variable. Its formula is given by the equation

ˆ ; ,f x
nh

K
x x

h
xh

i

i

n

() =
-Ê

Ë
Á

ˆ

¯
˜ - • < < •

=
Â1

1

where n is the sample size, K i() is the kernel smoothing function, h is the bandwidth.

Kernel Smoothing Function

The kernel smoothing function defines the shape of the curve used to generate the
pdf. Similar to a histogram, the kernel distribution builds a function to represent the
probability distribution using the sample data. But unlike a histogram, which places the
values into discrete bins, a kernel distribution sums the component smoothing functions
for each data value to produce a smooth, continuous probability curve. The following

B Kernel Distribution

B-82

plots show a visual comparison of a histogram and a kernel distribution generated from
the same sample data.

A histogram represents the probability distribution by establishing bins and placing each
data value in the appropriate bin.

SixMPG = [13;15;23;29;32;34];

figure;

histogram(SixMPG)

Because of this bin count approach, the histogram produces a discrete probability density
function. This might be unsuitable for certain applications, such as generating random
numbers from a fitted distribution.

 Kernel Distribution

B-83

Alternatively, the kernel distribution builds the pdf by creating an individual probability
density curve for each data value, then summing the smooth curves. This approach
creates one smooth, continuous probability density function for the data set.

figure;

pdSix = fitdist(SixMPG,'Kernel','BandWidth',4);

x = 0:.1:45;

ySix = pdf(pdSix,x);

plot(x,ySix,'k-','LineWidth',2);

% Plot each individual pdf and scale its appearance on the plot

hold on;

for i=1:6

 pd = makedist('Normal','mu',SixMPG(i),'sigma',4);

 y = pdf(pd,x);

 y = y/6;

 plot(x,y,'b:');

end

hold off;

B Kernel Distribution

B-84

The smaller dashed curves are the probability distributions for each value in the sample
data, scaled to fit the plot. The larger solid curve is the overall kernel distribution of
the SixMPG data. The kernel smoothing function refers to the shape of those smaller
component curves, which have a normal distribution in this example.

You can choose one of several options for the kernel smoothing function. This plot shows
the shapes of the available smoothing functions.

Set plot specifications

hname = {'normal' 'epanechnikov' 'box' 'triangle'};

colors = {'r' 'b' 'g' 'm'};

lines = {'-','-.','--',':'};

 Kernel Distribution

B-85

% Generate a sample of each kernel smoothing function and plot

data = [0];

figure;

for j=1:4

 pd = fitdist(data,'kernel','Kernel',hname{j});

 x = -3:.1:3;

 y = pdf(pd,x);

 plot(x,y,'Color',colors{j},'LineStyle',lines{j});

 hold on;

end

legend(hname{:});

hold off;

B Kernel Distribution

B-86

To understand the effect of different kernel smoothing functions on the shape of the
resulting pdf estimate, compare plots of the mileage data (MPG) from carbig.mat using
each available kernel function.

load carbig;

% Set plot specifications

hname = {'normal' 'epanechnikov' 'box' 'triangle'};

colors = {'r' 'b' 'g' 'm'};

lines = {'-','-.','--',':'};

% Generate kernel distribution objects and plot

figure;

for j=1:4

 pd = fitdist(MPG,'kernel','Kernel',hname{j});

 x = -10:1:60;

 y = pdf(pd,x);

 plot(x,y,'Color',colors{j},'LineStyle',lines{j});

 hold on;

end

legend(hname{:});

hold off;

 Kernel Distribution

B-87

Each density curve uses the same input data, but applies a different kernel smoothing
function to generate the pdf. The density estimates are roughly comparable, but the
shape of each curve varies slightly. For example, the box kernel produces a density curve
that is less smooth than the others.

Bandwidth

The choice of bandwidth value controls the smoothness of the resulting probability
density curve. This plot shows the density estimate for the same MPG data, using a
normal kernel smoothing function with three different bandwidths.

Create kernel distribution objects

B Kernel Distribution

B-88

pd1 = fitdist(MPG,'kernel');

pd2 = fitdist(MPG,'kernel','BandWidth',1);

pd3 = fitdist(MPG,'kernel','BandWidth',5);

% Compute each pdf

x = -10:1:60;

y1 = pdf(pd1,x);

y2 = pdf(pd2,x);

y3 = pdf(pd3,x);

% Plot each pdf

plot(x,y1,'Color','r','LineStyle','-');

hold on;

plot(x,y2,'Color','k','LineStyle',':');

plot(x,y3,'Color','b','LineStyle','--');

legend({'BandWidth = Default','BandWidth = 1','BandWidth = 5'});

hold off;

 Kernel Distribution

B-89

The default bandwidth, which is theoretically optimal for estimating densities for
the normal distribution, produces a reasonably smooth curve. Specifying a smaller
bandwidth produces a very rough curve, but reveals that there might be two major peaks
in the data. Specifying a larger bandwidth produces a curve nearly identical to the kernel
function, and is so smooth that it obscures potentially important features of the data.

See Also
ksdensity

Related Examples
• “Fit Kernel Distribution Object to Data” on page 5-49

B Kernel Distribution

B-90

• “Fit Kernel Distribution Using ksdensity” on page 5-54
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-57

More About
• Using KernelDistribution Objects
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Logistic Distribution

B-91

Logistic Distribution

In this section...

“Overview” on page B-91
“Parameters” on page B-91
“Probability Density Function” on page B-91
“Relationship to Other Distributions” on page B-91

Overview

The logistic distribution is used for growth models and in logistic regression. It has
longer tails and a higher kurtosis than the normal distribution.

Parameters

The logistic distribution uses the following parameters.

Parameter Description Support

mu Mean -• < < •m

sigma Scale parameter s ≥ 0

Probability Density Function

The probability density function (pdf) is

f x

x

x
x(| ,)

exp

exp

; .m s

m
s

s m
s

=

-Ï
Ì
Ó

¸
˝
˛

+ -Ï
Ì
Ó

¸
˝
˛

Ê

Ë
Á

ˆ

¯
˜

- • < < •

1
2

Relationship to Other Distributions

The loglogistic distribution is closely related to the logistic distribution. If x is distributed
loglogistically with parameters μ and σ, then log(x) is distributed logistically with mean
and standard deviation.

B Logistic Distribution

B-92

More About
• Using LogisticDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Loglogistic Distribution

B-93

Loglogistic Distribution

In this section...

“Overview” on page B-93
“Parameters” on page B-93
“Probability Density Function” on page B-93
“Relationship to Other Distributions” on page B-94

Overview

The loglogistic distribution is a probability distribution whose logarith has a logistic
distribution. This distribution is often used in survival analysis to model events that
experience an initial rate increase, followed by a rate decrease. It is also known as the
Fisk distribution in economics applications.

Parameters

The loglogistic distribution uses the following parameters.

Parameter Description Support

mu Log mean m > 0

sigma Log scale parameter s > 0

Probability Density Function

The probability density function (pdf) is

f x
x

e

e

x
z

z

(| ,) ; ,m s
s

=

+()
≥

1 1

1

0
2

where z

x

=
() -log m

s
.

B Loglogistic Distribution

B-94

Relationship to Other Distributions

The loglogistic distribution is closely related to the logistic distribution. If x is distributed
loglogistically with parameters μ and σ, then log(x) is distributed logistically with mean
and standard deviation. The relationship is similar to that between the lognormal and
normal distribution.

More About
• Using LoglogisticDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Lognormal Distribution

B-95

Lognormal Distribution

In this section...

“Overview” on page B-95
“Parameters” on page B-95
“Probability Density Function” on page B-95
“Descriptive Statistics” on page B-96
“Relationship to Other Distributions” on page B-96
“Examples” on page B-96

Overview

The lognormal distribution is a probability distribution whose logarithm has a normal
distribution. It is sometimes called the Galton distribution. The lognormal distribution is
applicable when the quantity of interest must be positive, since log(x) exists only when x
is positive.

Parameters

The lognormal distribution uses the following parameters.

Parameter Description Support

mu Log mean -• < < •m

sigma Log standard deviation s ≥ 0

Probability Density Function

The probability density function (pdf) of the lognormal distribution is

f x
x

x
x| , exp

ln
; .m s

s p

m

s
() =

- -()Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
>

1

2 2
0

2

2

B Lognormal Distribution

B-96

Descriptive Statistics

The mean is

mean = +
Ê

Ë
ÁÁ

ˆ

¯
˜̃exp .m

s 2

2

The variance is

var exp exp .= +() () -()2 12 2m s s

You can compute these descriptive statistics using the lognstat function.

Relationship to Other Distributions

The lognormal distribution is closely related to the normal distribution. If x is distributed
lognormally with parameters μ and σ, then log(x) is distributed normally with mean μ
and standard deviation σ. The lognormal distribution is applicable when the quantity of
interest must be positive, since log(x) exists only when x is positive.

Examples

Compute the Lognormal Distribution pdf

Suppose the income of a family of four in the United States follows a lognormal
distribution with mu = log(20,000) and sigma = 1. Compute and plot the income
density.

x = (10:1000:125010)';

y = lognpdf(x,log(20000),1.0);

figure;

plot(x,y)

h = gca;

h.XTick = [0 30000 60000 90000 120000];

h.XTickLabel = {'0','$30,000','$60,000',...

 '$90,000','$120,000'};

 Lognormal Distribution

B-97

More About
• Using LognormalDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Multinomial Distribution

B-98

Multinomial Distribution

In this section...

“Overview” on page B-98
“Parameter” on page B-98
“Probability Density Function” on page B-98
“Descriptive Statistics” on page B-99
“Relationship to Other Distributions” on page B-99

Overview

Multinomial distribution models the probability of each combination of successes in a
series of independent trials. Use this distribution when there are more than two possible
mutually exclusive outcomes for each trial, and each outcome has a fixed probability of
success.

Parameter

Multinomial distribution uses the following parameter.

Parameter Description Constraints

probabilities Outcome
probabilities

0 1 1£ () £ () =

()
Âprobabilities i probabilities i

all i

;

Probability Density Function

The multinomial pdf is

f x n p
n

x x
p p

k

x
k
xk| ,

!

! !
,() =

1
1

1

L

L

where k is the number of possible mutually exclusive outcomes for each trial, and n is
the total number of trials. The vector x = (x1...xk) is the number of observations of each
k outcome, and contains nonnegative integer components that sum to n. The vector p

 Multinomial Distribution

B-99

= (p1...pk) is the fixed probability of each k outcome, and contains nonnegative scalar
components that sum to 1.

Descriptive Statistics

The expected number of observations of outcome i in n trials is

E x npi i{ } = ,

where pi is the fixed probability of outcome i.

The variance is of outcome i is

var x np pi i i() = -()1 .

The covariance of outcomes i and j is

cov(,) , .x x np p i ji j i j= - π

Relationship to Other Distributions

The multinomial distribution is a generalization of the binomial distribution. While the
binomial distribution gives the probability of the number of “successes” in n independent
trials of a two-outcome process, the multinomial distribution gives the probability of each
combination of outcomes in n independent trials of a k-outcome process. The probability
of each outcome in any one trial is given by the fixed probabilities p1,..., pk.

More About
• Using MultinomialDistribution Objects
• “Multinomial Probability Distribution Objects” on page 5-128
• “Multinomial Probability Distribution Functions” on page 5-132
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Multivariate Gaussian Distribution

B-100

Multivariate Gaussian Distribution

See “Multivariate Normal Distribution” on page B-101.

 Multivariate Normal Distribution

B-101

Multivariate Normal Distribution

In this section...

“Definition” on page B-101
“Background” on page B-101
“Examples” on page B-102

Definition

The probability density function of the d-dimensional multivariate normal distribution is
given by

y f x e

x x

d
 = =

1

(2)

1

2
(-)’ -1 (-)

(, ,)m

p

m m

S

S

S-

where x and μ are 1-by-d vectors and Σ is a d-by-d symmetric positive definite matrix.
While it is possible to define the multivariate normal for singular Σ, the density cannot
be written as above. Only random vector generation is supported for the singular case.
Note that while most textbooks define the multivariate normal with x and μ oriented as
column vectors, for the purposes of data analysis software, it is more convenient to orient
them as row vectors, and Statistics and Machine Learning Toolbox software uses that
orientation.

Background

The multivariate normal distribution is a generalization of the univariate normal to two
or more variables. It is a distribution for random vectors of correlated variables, each
element of which has a univariate normal distribution. In the simplest case, there is no
correlation among variables, and elements of the vectors are independent univariate
normal random variables.

The multivariate normal distribution is parameterized with a mean vector, μ, and a
covariance matrix, Σ. These are analogous to the mean μ and variance σ2 parameters of a
univariate normal distribution. The diagonal elements of Σ contain the variances for each
variable, while the off-diagonal elements of Σ contain the covariances between variables.

B Multivariate Normal Distribution

B-102

The multivariate normal distribution is often used as a model for multivariate data,
primarily because it is one of the few multivariate distributions that is tractable to work
with.

Examples

Compute the Multivariate Normal pdf

Compute and plot the pdf of a multivariate normal distribution.

mu = [0 0];

Sigma = [.25 .3; .3 1];

x1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([-3 3 -3 3 0 .4])

xlabel('x1'); ylabel('x2'); zlabel('Probability Density');

 Multivariate Normal Distribution

B-103

Compute the Multivariate Normal cdf

Compute and plot the cdf of a multivariate normal distribution with parameters mu =
[1 -1] and SIGMA = [.9 .4; .4 .3].

mu = [1 -1];

SIGMA = [.9 .4; .4 .3];

figure;

[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');

X = [X1(:) X2(:)];

p = mvncdf(X,mu,SIGMA);

surf(X1,X2,reshape(p,25,25));

B Multivariate Normal Distribution

B-104

Compute Cumulative Probabilities Over Regions

Since the bivariate normal distribution is defined on the plane, you can also compute
cumulative probabilities over rectangular regions.

Compute the probability contained within the unit square, and create a contour plot of
the results.

mu = [0 0];

Sigma = [.25 .3; .3 1];

x1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

 Multivariate Normal Distribution

B-105

mvncdf([0 0],[1 1],mu,Sigma);

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);

xlabel('x'); ylabel('y');

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');

Computing a multivariate cumulative probability requires significantly more work than
computing a univariate probability. By default, the mvncdf function computes values
to less than full machine precision, and returns an estimate of the error as an optional
second output.

[F,err] = mvncdf([0 0],[1 1],mu,Sigma)

B Multivariate Normal Distribution

B-106

F =

 0.2097

err =

 1.0000e-08

 Multivariate t Distribution

B-107

Multivariate t Distribution

In this section...

“Definition” on page B-107
“Background” on page B-107
“Example” on page B-108

Definition

The probability density function of the d-dimensional multivariate Student's t
distribution is given by

f x
d x x

d
(, ,)

()

(() /)

(/)/

-
(

S
S

G
G

Sn
np

n
n n

n

= + +
¢Ê

Ë
ÁÁ

ˆ

¯
˜̃

- +
1 1 2

2
1

1 2

1
dd) /

.

2

where x is a 1-by-d vector, Σ is a d-by-d symmetric, positive definite matrix, and ν is a
positive scalar. While it is possible to define the multivariate Student's t for singular
Σ, the density cannot be written as above. For the singular case, only random number
generation is supported. Note that while most textbooks define the multivariate
Student's t with x oriented as a column vector, for the purposes of data analysis software,
it is more convenient to orient x as a row vector, and Statistics and Machine Learning
Toolbox software uses that orientation.

Background

The multivariate Student's t distribution is a generalization of the univariate Student's
t to two or more variables. It is a distribution for random vectors of correlated variables,
each element of which has a univariate Student's t distribution. In the same way as the
univariate Student's t distribution can be constructed by dividing a standard univariate
normal random variable by the square root of a univariate chi-square random variable,
the multivariate Student's t distribution can be constructed by dividing a multivariate
normal random vector having zero mean and unit variances by a univariate chi-square
random variable.

B Multivariate t Distribution

B-108

The multivariate Student's t distribution is parameterized with a correlation matrix, Σ,
and a positive scalar degrees of freedom parameter, ν. ν is analogous to the degrees of
freedom parameter of a univariate Student's t distribution. The off-diagonal elements of
Σ contain the correlations between variables. Note that when Σ is the identity matrix,
variables are uncorrelated; however, they are not independent.

The multivariate Student's t distribution is often used as a substitute for the
multivariate normal distribution in situations where it is known that the marginal
distributions of the individual variables have fatter tails than the normal.

Example

Plot PDF and CDF of Multivariate t-Distribution

Plot the pdf of a bivariate Student's t distribution. You can use this distribution for a
higher number of dimensions as well, although visualization is not easy.

Rho = [1 .6; .6 1];

nu = 5;

x1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(x1,x2);

F = mvtpdf([X1(:) X2(:)],Rho,nu);

F = reshape(F,length(x2),length(x1));

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([-3 3 -3 3 0 .2])

xlabel('x1'); ylabel('x2'); zlabel('Probability Density');

 Multivariate t Distribution

B-109

Plot the cdf of a bivariate Student's t distribution.

F = mvtcdf([X1(:) X2(:)],Rho,nu);

F = reshape(F,length(x2),length(x1));

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([-3 3 -3 3 0 1])

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');

B Multivariate t Distribution

B-110

Since the bivariate Student's t distribution is defined on the plane, you can also compute
cumulative probabilities over rectangular regions. For example, this contour plot
illustrates the computation that follows, of the probability contained within the unit
square shown in the figure.

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);

xlabel('x'); ylabel('y');

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');

 Multivariate t Distribution

B-111

Compute the value of the probability contained within the unit square.

F = mvtcdf([0 0],[1 1],Rho,nu)

F =

 0.1401

Computing a multivariate cumulative probability requires significantly more work than
computing a univariate probability. By default, the mvtcdf function computes values
to less than full machine precision and returns an estimate of the error, as an optional
second output.

B Multivariate t Distribution

B-112

[F,err] = mvtcdf([0 0],[1 1],Rho,nu)

F =

 0.1401

err =

 1.0000e-08

 Nakagami Distribution

B-113

Nakagami Distribution

In this section...

“Definition” on page B-113
“Background” on page B-113
“Parameters” on page B-113

Definition

The Nakagami distribution has the density function

2
1 2 1

2

m

w m

m
m

m

w






 ()

−()
−

Γ
x e

x

with shape parameter µ and scale parameter ω > 0, for x > 0. If x has a Nakagami
distribution with parameters µ and ω, then x2 has a gamma distribution with shape
parameter µ and scale parameter ω/µ.

Background

In communications theory, Nakagami distributions, Rician distributions, and Rayleigh
distributions are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different fading
characteristics. Rayleigh and Nakagami distributions are used to model dense scatters,
while Rician distributions model fading with a stronger line-of-sight. Nakagami
distributions can be reduced to Rayleigh distributions, but give more control over the
extent of the fading.

Parameters

To estimate distribution parameters, use mle or the Distribution Fitting app.

More About
• Using NakagamiDistribution Objects
• “Working with Probability Distributions” on page 5-3

B Nakagami Distribution

B-114

• “Supported Distributions” on page 5-17

 Negative Binomial Distribution

B-115

Negative Binomial Distribution

In this section...

“Definition” on page B-115
“Background” on page B-115
“Parameters” on page B-116
“Example” on page B-118

Definition

When the r parameter is an integer, the negative binomial pdf is

y f x r p
r x

x
p q I xr x= =

+ −







(| ,) ()(, ,...)

1
0 1

where q = 1 – p. When r is not an integer, the binomial coefficient in the definition of the
pdf is replaced by the equivalent expression

Γ
Γ Γ

()

() ()

r x

r x

+
+ 1

Background

In its simplest form (when r is an integer), the negative binomial distribution models
the number of failures x before a specified number of successes is reached in a series
of independent, identical trials. Its parameters are the probability of success in a
single trial, p, and the number of successes, r. A special case of the negative binomial
distribution, when r = 1, is the geometric distribution, which models the number of
failures before the first success.

More generally, r can take on non-integer values. This form of the negative binomial
distribution has no interpretation in terms of repeated trials, but, like the Poisson
distribution, it is useful in modeling count data. The negative binomial distribution is
more general than the Poisson distribution because it has a variance that is greater
than its mean, making it suitable for count data that do not meet the assumptions of
the Poisson distribution. In the limit, as r increases to infinity, the negative binomial
distribution approaches the Poisson distribution.

B Negative Binomial Distribution

B-116

Parameters

Suppose you are collecting data on the number of auto accidents on a busy highway, and
would like to be able to model the number of accidents per day. Because these are count
data, and because there are a very large number of cars and a small probability of an
accident for any specific car, you might think to use the Poisson distribution. However,
the probability of having an accident is likely to vary from day to day as the weather and
amount of traffic change, and so the assumptions needed for the Poisson distribution
are not met. In particular, the variance of this type of count data sometimes exceeds the
mean by a large amount. The data below exhibit this effect: most days have few or no
accidents, and a few days have a large number.

accident = [2 3 4 2 3 1 12 8 14 31 23 1 10 7 0];

m = mean(accident)

v = var(accident)

m =

 8.0667

v =

 79.3524

The negative binomial distribution is more general than the Poisson, and is often
suitable for count data when the Poisson is not. The function nbinfit returns the
maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the
negative binomial distribution. Here are the results from fitting the accident data:

[phat,pci] = nbinfit(accident)

phat =

 1.0060 0.1109

pci =

 0.2152 0.0171

 Negative Binomial Distribution

B-117

 1.7968 0.2046

It is difficult to give a physical interpretation in this case to the individual parameters.
However, the estimated parameters can be used in a model for the number of daily
accidents. For example, a plot of the estimated cumulative probability function shows
that while there is an estimated 10% chance of no accidents on a given day, there is also
about a 10% chance that there will be 20 or more accidents.

plot(0:50,nbincdf(0:50,phat(1),phat(2)),'.-');

xlabel('Accidents per Day')

ylabel('Cumulative Probability')

B Negative Binomial Distribution

B-118

Example

Compute and Plot Negative Binomial Distribution PDF

Compute and plot the pdf using four different values for the parameter r, the desired
number of successes: .1, 1, 3, and 6. In each case, the probability of success p is .5.

x = 0:10;

plot(x,nbinpdf(x,.1,.5),'s-', ...

 x,nbinpdf(x,1,.5),'o-', ...

 x,nbinpdf(x,3,.5),'d-', ...

 x,nbinpdf(x,6,.5),'^-');

legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})

xlabel('x')

ylabel('f(x|r,p)')

 Negative Binomial Distribution

B-119

The plot shows that the negative binomial distribution can take on a variety of shapes,
ranging from very skewed to nearly symmetric, depending on the value of r.

More About
• Using NegativeBinomialDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Noncentral Chi-Square Distribution

B-120

Noncentral Chi-Square Distribution

In this section...

“Definition” on page B-120
“Background” on page B-120
“Examples” on page B-121

Definition

There are many equivalent formulas for the noncentral chi-square distribution function.
One formulation uses a modified Bessel function of the first kind. Another uses the
generalized Laguerre polynomials. The cumulative distribution function is computed
using a weighted sum of χ2 probabilities with the weights equal to the probabilities of a
Poisson distribution. The Poisson parameter is one-half of the noncentrality parameter of
the noncentral chi-square

F x
j

e x

j

j
j(| ,)

!
Prn d

d

c

d

n=



























≤





−

=

∞

+∑
1

2 2

0
2

2

where δ is the noncentrality parameter.

Background

The χ2 distribution is actually a simple special case of the noncentral chi-square
distribution. One way to generate random numbers with a χ2 distribution (with ν degrees
of freedom) is to sum the squares of ν standard normal random numbers (mean equal to
zero.)

What if the normally distributed quantities have a mean other than zero? The sum of
squares of these numbers yields the noncentral chi-square distribution. The noncentral
chi-square distribution requires two parameters: the degrees of freedom and the
noncentrality parameter. The noncentrality parameter is the sum of the squared means
of the normally distributed quantities.

 Noncentral Chi-Square Distribution

B-121

The noncentral chi-square has scientific application in thermodynamics and signal
processing. The literature in these areas may refer to it as the “Rician Distribution” on
page B-144 or generalized “Rayleigh Distribution” on page B-141.

Examples

Compute Noncentral Chi-Square Distribution pdf

Compute the pdf of a noncentral chi-square distribution with degrees of freedom V = 4
and noncentrality parameter DELTA = 2. For comparison, also compute the pdf of a chi-
square distribution with the same degrees of freedom.

x = (0:0.1:10)';

ncx2 = ncx2pdf(x,4,2);

chi2 = chi2pdf(x,4);

Plot the pdf of the noncentral chi-square distribution on the same figure as the pdf of the
chi-square distribution.

figure;

plot(x,ncx2,'b-','LineWidth',2)

hold on

plot(x,chi2,'g--','LineWidth',2)

legend('ncx2','chi2')

B Noncentral Chi-Square Distribution

B-122

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Noncentral F Distribution

B-123

Noncentral F Distribution

In this section...

“Definition” on page B-123
“Background” on page B-123
“Examples” on page B-124

Definition

Similar to the noncentral χ2 distribution, the toolbox calculates noncentral F distribution
probabilities as a weighted sum of incomplete beta functions using Poisson probabilities
as the weights.

F x
j

e I
x

j

j

(| , ,)
!

n n d

d
n

n n

d

1 2
2

0

1

2 1

1

2=



























⋅
+

−

=

∞

∑ ⋅⋅
+









x

j
n n1 2

2 2
,

I(x|a,b) is the incomplete beta function with parameters a and b, and δ is the
noncentrality parameter.

Background

As with the χ2 distribution, the F distribution is a special case of the noncentral F
distribution. The F distribution is the result of taking the ratio of χ2 random variables
each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable divided by its
degrees of freedom, the resulting distribution is the noncentral F distribution.

The main application of the noncentral F distribution is to calculate the power of a
hypothesis test relative to a particular alternative.

B Noncentral F Distribution

B-124

Examples

Compute Noncentral F Distribution pdf

Compute the pdf of a noncentral F distribution with degrees of freedom NU1 = 5 and
NU2 = 20, and noncentrality parameter DELTA = 10. For comparison, also compute the
pdf of an F distribution with the same degrees of freedom.

x = (0.01:0.1:10.01)';

p1 = ncfpdf(x,5,20,10);

p = fpdf(x,5,20);

Plot the pdf of the noncentral F distribution and the pdf of the F distribution on the same
figure.

figure;

plot(x,p1,'b-','LineWidth',2)

hold on

plot(x,p,'g--','LineWidth',2)

legend('Noncentral F','F distribution')

 Noncentral F Distribution

B-125

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Noncentral t Distribution

B-126

Noncentral t Distribution

In this section...

“Definition” on page B-126
“Background” on page B-126
“Examples” on page B-127

Definition

The most general representation of the noncentral t distribution is quite complicated.
Johnson and Kotz [60] give a formula for the probability that a noncentral t variate falls
in the range [–u, u].

P u x u
j

e I
u

u

j

j

- < <() =

Ê
Ë
Á

ˆ
¯
˜

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃ +

-

=

•

Â| ,
!

n d
d

n

d
1

2
2

2

0

2

2

2

11

2 2
+

Ê

Ë
Á
Á

ˆ

¯
˜
˜

j,
n

I(x|ν,δ) is the incomplete beta function with parameters ν and δ. δ is the noncentrality
parameter, and ν is the number of degrees of freedom.

Background

The noncentral t distribution is a generalization of Student's t distribution.

Student's t distribution with n – 1 degrees of freedom models the t-statistic

t
x

s n

=
- m

/

where x is the sample mean and s is the sample standard deviation of a random sample
of size n from a normal population with mean μ. If the population mean is actually μ0,
then the t-statistic has a noncentral t distribution with noncentrality parameter

 Noncentral t Distribution

B-127

d
m m

s
=

-
0

/ n

The noncentrality parameter is the normalized difference between μ0 and μ.

The noncentral t distribution gives the probability that a t test will correctly reject a false
null hypothesis of mean μ when the population mean is actually μ0; that is, it gives the
power of the t test. The power increases as the difference μ0 – μ increases, and also as the
sample size n increases.

Examples

Compute Noncentral t Distribution pdf

Compute the pdf of a noncentral t distribution with degrees of freedom V = 10 and
noncentrality parameter DELTA = 1. For comparison, also compute the pdf of a t
distribution with the same degrees of freedom.

x = (-5:0.1:5)';

nct = nctpdf(x,10,1);

t = tpdf(x,10);

Plot the pdf of the noncentral t distribution and the pdf of the t distribution on the same
figure.

plot(x,nct,'b-','LineWidth',2)

hold on

plot(x,t,'g--','LineWidth',2)

legend('nct','t')

B Noncentral t Distribution

B-128

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Noncentral t Distribution

B-129

B Normal Distribution

B-130

Normal Distribution

In this section...

“Definition” on page B-130
“Background” on page B-130
“Parameters” on page B-130
“Examples” on page B-132

Definition

The normal pdf is

y f x e

x

= =
− −

(| ,)

()

m s
s p

m

s
1

2

2

22

Background

The normal distribution is a two-parameter family of curves. The first parameter, µ, is
the mean. The second, σ, is the standard deviation. The standard normal distribution
(written Φ(x)) sets µ to 0 and σ to 1.

Φ(x) is functionally related to the error function, erf.

erf x x() = () −2 2 1Φ

The first use of the normal distribution was as a continuous approximation to the
binomial.

The usual justification for using the normal distribution for modeling is the Central
Limit Theorem, which states (roughly) that the sum of independent samples from any
distribution with finite mean and variance converges to the normal distribution as the
sample size goes to infinity.

Parameters

To use statistical parameters such as mean and standard deviation reliably, you need
to have a good estimator for them. The maximum likelihood estimates (MLEs) provide

 Normal Distribution

B-131

one such estimator. However, an MLE might be biased, which means that its expected
value of the parameter might not equal the parameter being estimated. For example,
an MLE is biased for estimating the variance of a normal distribution. An unbiased
estimator that is commonly used to estimate the parameters of the normal distribution
is the minimum variance unbiased estimator (MVUE). The MVUE has the minimum
variance of all unbiased estimators of a parameter.

The MVUEs of parameters µ and σ2 for the normal distribution are the sample mean
and variance. The sample mean is also the MLE for µ. The following are two common
formulas for the variance.

s
n

x x
i

i

n
2 2

1

1= −()
=
∑

s
n

x x
i

i

n
2 2

1

1

1
=

−
−()

=
∑

where

x
x

n

i

i

n

=
=
∑

1

Equation 1 is the maximum likelihood estimator for σ2, and equation 2 is the MVUE.

As an example, suppose you want to estimate the mean, µ, and the variance, σ2, of the
heights of all fourth grade children in the United States. The function normfit returns
the MVUE for µ, the square root of the MVUE for σ2, and confidence intervals for µ and
σ2. Here is a playful example modeling the heights in inches of a randomly chosen fourth
grade class.

rng default; % For reproducibility

height = normrnd(50,2,30,1); % Simulate heights

[mu,s,muci,sci] = normfit(height)

mu =

B Normal Distribution

B-132

 51.1038

s =

 2.6001

muci =

 50.1329

 52.0747

sci =

 2.0707

 3.4954

Note that s^2 is the MVUE of the variance.

s^2

ans =

 6.7605

Examples

Compute and Plot the Normal Distribution pdf

Compute the pdf of a standard normal distribution, with parameters equal to 0 and
equal to 1.

x = [-3:.1:3];

norm = normpdf(x,0,1);

Plot the pdf.

figure;

plot(x,norm)

 Normal Distribution

B-133

More About
• Using NormalDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Pareto Distribution

B-134

Pareto Distribution

See “Generalized Pareto Distribution” on page B-60.

 Pearson System

B-135

Pearson System

See “Pearson and Johnson Systems” on page 6-26.

B Piecewise Linear Distribution

B-136

Piecewise Linear Distribution

In this section...

“Overview” on page B-136
“Parameters” on page B-136
“Cumulative Distribution Function” on page B-136
“Relationship to Other Distributions” on page B-136

Overview

The piecewise linear distribution creates a nonparametric representation of the
cumulative distribution function (cdf) by linearly connecting the known cdf values from
the sample data.

Parameters

The piecewise linear distribution uses the following parameters.

Parameter Description

x Vector of x values at which the cdf changes
slope

Fx Vector of cdf values that correspond to each
value in x

Cumulative Distribution Function

The piecewise linear distribution constructs a continuous cumulative distribution
function (cdf) by connecting the empirical cdf values such that the cdf increases linearly
between x(j) and x(j + 1).

Relationship to Other Distributions

The piecewise linear distribution is a continuous version of the discrete empirical
cumulative distribution function (ecdf).

 Piecewise Linear Distribution

B-137

More About
• Using PiecewiseLinearDistribution Objects
• “Nonparametric and Empirical Probability Distributions” on page 5-40
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Poisson Distribution

B-138

Poisson Distribution

In this section...

“Definition” on page B-138
“Background” on page B-138
“Parameters” on page B-139
“Examples” on page B-139

Definition

The Poisson pdf is

f x
x

e x
x

(|)
!

; , , , , .l
l l

= = •
- 0 1 2…

Background

The Poisson distribution is appropriate for applications that involve counting the number
of times a random event occurs in a given amount of time, distance, area, etc. Sample
applications that involve Poisson distributions include the number of Geiger counter
clicks per second, the number of people walking into a store in an hour, and the number
of flaws per 1000 feet of video tape.

The Poisson distribution is a one-parameter discrete distribution that takes nonnegative
integer values. The parameter, λ, is both the mean and the variance of the distribution.
Thus, as the size of the numbers in a particular sample of Poisson random numbers gets
larger, so does the variability of the numbers.

The Poisson distribution is the limiting case of a binomial distribution where N
approaches infinity and p goes to zero while Np = λ.

The Poisson and exponential distributions are related. If the number of counts follows
the Poisson distribution, then the interval between individual counts follows the
exponential distribution.

 Poisson Distribution

B-139

Parameters

The MLE and the MVUE of the Poisson parameter, λ, is the sample mean. The sum of
independent Poisson random variables is also Poisson distributed with the parameter
equal to the sum of the individual parameters. This is used to calculate confidence
intervals λ. As λ gets large the Poisson distribution can be approximated by a normal
distribution with µ = λ and σ2 = λ. This approximation is used to calculate confidence
intervals for values of λ greater than 100.

Examples

Compute and Plot Poisson Distribution PDF

Compute and plot the pdf of a Poisson distribution with parameter lambda = 5.

x = 0:15;

y = poisspdf(x,5);

plot(x,y,'+')

B Poisson Distribution

B-140

More About
• Using PoissonDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Rayleigh Distribution

B-141

Rayleigh Distribution

In this section...

“Definition” on page B-141
“Background” on page B-141
“Parameters” on page B-141
“Examples” on page B-142

Definition

The Rayleigh pdf is

y f x b
x

b
e

x

b= =

-Ê

Ë
Á

ˆ

¯
˜

(|)
2

2

2

2

Background

The Rayleigh distribution is a special case of the Weibull distribution. If A and B are the
parameters of the Weibull distribution, then the Rayleigh distribution with parameter b
is equivalent to the Weibull distribution with parameters A b= 2 and B = 2.

If the component velocities of a particle in the x and y directions are two independent
normal random variables with zero means and equal variances, then the distance the
particle travels per unit time is distributed Rayleigh.

In communications theory, Nakagami distributions, Rician distributions, and Rayleigh
distributions are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different fading
characteristics. Rayleigh and Nakagami distributions are used to model dense scatters,
while Rician distributions model fading with a stronger line-of-sight. Nakagami
distributions can be reduced to Rayleigh distributions, but give more control over the
extent of the fading.

Parameters

The raylfit function returns the MLE of the Rayleigh parameter. This estimate is

B Rayleigh Distribution

B-142

b
n

xi

i

n

=

=

Â
1

2

2

1

Examples

Compute and Plot Rayleigh Distribution pdf

Compute the pdf of a Rayleigh distribution with parameter B = 0.5.

x = [0:0.01:2];

p = raylpdf(x,0.5);

Plot the pdf.

figure;

plot(x,p)

 Rayleigh Distribution

B-143

More About
• Using RayleighDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Rician Distribution

B-144

Rician Distribution

In this section...

“Definition” on page B-144
“Background” on page B-144
“Parameters” on page B-144

Definition

The Rician distribution has the density function

I
xs x

e

x s

0
2 2

2

2 2

2

s s

s









− +









with noncentrality parameter s ≥ 0 and scale parameter σ > 0, for x > 0. I0 is the zero-
order modified Bessel function of the first kind. If x has a Rician distribution with
parameters s and σ, then (x/σ)2 has a noncentral chi-square distribution with two degrees
of freedom and noncentrality parameter (s/σ)2.

Background

In communications theory, Nakagami distributions, Rician distributions, and Rayleigh
distributions are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different fading
characteristics. Rayleigh and Nakagami distributions are used to model dense scatters,
while Rician distributions model fading with a stronger line-of-sight. Nakagami
distributions can be reduced to Rayleigh distributions, but give more control over the
extent of the fading.

Parameters

To estimate distribution parameters, use mle or the Distribution Fitting app.

More About
• Using RicianDistribution Objects

 Rician Distribution

B-145

• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Student's t Distribution

B-146

Student's t Distribution

In this section...

“Overview” on page B-146
“Parameters” on page B-146
“Probability Density Function” on page B-146
“Cumulative Distribution Function” on page B-149
“Mean and Variance” on page B-151
“Example” on page B-152

Overview

The Student’s t distribution is a family of curves depending on a single parameter ν (the
degrees of freedom).

Parameters

The Student’s t distribution uses the following parameter.

Parameter Description

ν = 1, 2, 3,... Degrees of freedom

Probability Density Function

Definition

The probability density function (pdf) of the Student's t distribution is

y f x

x

= =

+









 +











+
(|)n

n

n np

n

n

Γ

Γ

1

2

2

1 1

1
2

1

2

 Student's t Distribution

B-147

where ν is the degrees of freedom and Γ(·) is the Gamma function. The result y is the
probability of observing a particular value of x from a Student’s t distribution with ν
degrees of freedom.

Plot

This plot shows how changing the value of the degrees of freedom parameter ν alters the
shape of the pdf. Use tpdf to compute the pdf for values x equals 0 through 10, for three
different values of ν. Then plot all three pdfs on the same figure for a visual comparison.

x = [0:.1:10];

y1 = tpdf(x,5); % For nu = 5

y2 = tpdf(x,25); % For nu = 25

y3 = tpdf(x,50); % For nu = 50

figure;

plot(x,y1,'Color','black','LineStyle','-')

hold on

plot(x,y2,'Color','red','LineStyle','-.')

plot(x,y3,'Color','blue','LineStyle','--')

legend({'nu = 5','nu = 25','nu = 50'})

hold off

B Student's t Distribution

B-148

Random Number Generation

Use trnd to generate random numbers from the Student’s t distribution. For example,
the following generates a random number from a Student’s t distribution with degrees of
freedom ν equal to 10.

nu = 10;

r = trnd(nu)

r =

 1.0585

 Student's t Distribution

B-149

Relationship to Other Distributions

As the degrees of freedom ν goes to infinity, the t distribution approaches the standard
normal distribution.

If x is a random sample of size n from a normal distribution with mean μ, then the
statistic

t
x

s n

=
- m

/

where x is the sample mean and s is the sample standard deviation, has Student's t
distribution with n – 1 degrees of freedom.

The Cauchy distribution is a Student’s t distribution with degrees of freedom νequal to 1.
The Cauchy distribution has an undefined mean and variance.

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of Student’s t distribution is

p F x

t

dt
x

= =

+









 +











+−∞∫(|)n

n

n np

n

n

Γ

Γ

1

2

2

1 1

1
2

1

2

where ν is the degrees of freedom and Γ(·) is the Gamma function. The result p is the
probability that a single observation from the t distribution with ν degrees of freedom will
fall in the interval [–∞, x].

Plot

This plot shows how changing the value of the parameter ν alters the shape of the cdf.
Use tcdf to compute the cdf for values x equals 0 through 10, for three different values
of ν. Then plot all three cdfs on the same figure for a visual comparison.

x = [0:.1:10];

y1 = tcdf(x,5); % For nu = 5

B Student's t Distribution

B-150

y2 = tcdf(x,25); % For nu = 25

y3 = tcdf(x,50); % For nu = 50

figure;

plot(x,y1,'Color','black','LineStyle','-')

hold on

plot(x,y2,'Color','red','LineStyle','-.')

plot(x,y3,'Color','blue','LineStyle','--')

legend({'nu = 5','nu = 25','nu = 50'})

hold off

Inverse cdf

Use tinv to compute the inverse cdf of the Student’s t distribution.

 Student's t Distribution

B-151

p = .95;

nu = 50;

x = tinv(p,nu)

x =

 1.6759

Mean and Variance

The mean of the Student’s t distribution is

mean = 0

for degrees of freedom ν greater than 1. If ν equals 1, then the mean is undefined.

The variance of the Student’s t distribution is

var =

-

n

n 2

for degrees of freedom ν greater than 2. If ν is less than or equal to 2, then the variance is
undefined.

Use tstat to compute the mean and variance of a Student’s t distribution. For example,
the following computes the mean and variance of a Student’s t distribution with degrees
of freedom ν equal to 10.

nu = 10;

[m,v] = tstat(nu)

m =

 0

B Student's t Distribution

B-152

v =

 1.2500

Example

Compare Student's t and Normal Distribution pdfs

Compute the pdf for a Student's t distribution with parameter nu = 5, and for a
standard normal distribution.

x = -5:0.1:5;

y = tpdf(x,5);

z = normpdf(x,0,1);

Plot the Student's t and standard normal pdfs on the same figure. The standard normal
pdf (dashed line) has shorter tails than the Student's t pdf (solid line).

figure;

plot(x,y,'-',x,z,'-.')

 Student's t Distribution

B-153

Related Examples
• “Generate Cauchy Random Numbers Using Student’s t” on page 5-142

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B t Location-Scale Distribution

B-154

t Location-Scale Distribution

In this section...

“Overview” on page B-154
“Parameters” on page B-154
“Probability Density Function” on page B-154
“Cumulative Distribution Function” on page B-155
“Descriptive Statistics” on page B-155
“Relationship to Other Distributions” on page B-156

Overview

The t location-scale distribution is useful for modeling data distributions with heavier
tails (more prone to outliers) than the normal distribution. It approaches the normal
distribution as ν approaches infinity, and smaller values of ν yield heavier tails.

Parameters

The t location-scale distribution uses the following parameters.

Parameter Description Support

μ Location parameter –∞ < μ < ∞
σ Scale parameter σ > 0
ν Shape parameter ν > 0

To estimate distribution parameters, use mle. Alternatively, fit a
prob.tLocationScaleDistribution object to data using fitdist or the Distribution
Fitting app, disttool.

Probability Density Function

The probability density function (pdf) of the t location-scale distribution is

 t Location-Scale Distribution

B-155

Γ

Γ

n

s np
n

n
m

s

n

n

+













+
−




























−
+

1

2

2

2

1

2
x






where Γ(•) is the gamma function, µ is the location parameter, σ is the scale parameter,
and ν is the shape parameter .

To compute the probability density function, use pdf. Alternatively, you can create a
prob.tLocationScaleDistribution object using fitdist or makedist, then use
the pdf method to work with the object.

Cumulative Distribution Function

To compute the probability density function, use cdf. Alternatively, you can create a
prob.tLocationScaleDistribution object using fitdist or makedist, then use
the cdf method to work with the object.

Descriptive Statistics

The mean of the t location-scale distribution is

mean = m ,

where μ is the location parameter. The mean is only defined for shape parameter values ν
> 1. For other values of ν, the mean is undefined.

The variance of the t location-scale distribution is

var ,=

-

s
n

n

2

2

where μ is the location parameter and ν is the shape parameter. The variance is only
defined for values of ν > 2. For other values of ν, the variance is undefined.

To compute the mean and variance, create a prob.tLocationScaleDistribution
object using fitdist or makedist. You can also use the Distribution Fitting app,
disttool.

B t Location-Scale Distribution

B-156

Relationship to Other Distributions

If x has a t location-scale distribution, with parameters µ, σ, and ν, then

x - m

s

has a Student's t distribution with ν degrees of freedom.

More About
• Using tLocationScaleDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Triangular Distribution

B-157

Triangular Distribution

In this section...

“Overview” on page B-157
“Parameters” on page B-157
“Probability Density Function” on page B-158
“Cumulative Distribution Function” on page B-159
“Descriptive Statistics” on page B-161

Overview

The triangular distribution provides a simplistic representation of the probability
distribution when limited sample data is available. Its parameters are the minimum,
maximum, and peak of the data. Common applications include business and economic
simulations, project management planning, natural phenomena modeling, and audio
dithering.

Parameters

The triangular distribution uses the following parameters.

Parameter Description Constraints

a Lower limit a b£

b Peak location a b c£ £

c Upper limit c b≥

Parameter Estimation

Typically, you estimate triangular distribution parameters using subjectively reasonable
values based on the sample data. You can estimate the lower and upper limit parameters
a and c using the minimum and maximum values of the sample data, respectively. You
can estimate the peak location parameter b using the sample mean, median, mode, or
any other subjectively reasonable estimate of the population mode.

B Triangular Distribution

B-158

Probability Density Function

The probability density function (pdf) of the triangular distribution is

f x a b c

x a

c a b a
a x b

c x

c a c b
b x c

x

(| , ,)

;

;

;

=

-()
-() -()

£ £

-()
-() -()

< £

2

2

0 << >

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô a x c,

.

This plot shows how changing the value of the parameters a, b, and c alters the shape of
the pdf.

% Create four distribution objects with different parameters

pd1 = makedist('Triangular');

pd2 = makedist('Triangular','a',-1,'b',0,'c',1);

pd3 = makedist('Triangular','a',-.5,'b',0,'c',1);

pd4 = makedist('Triangular','a',0,'b',0,'c',1);

% Compute the pdfs

x = -2:.01:2;

pdf1 = pdf(pd1,x);

pdf2 = pdf(pd2,x);

pdf3 = pdf(pd3,x);

pdf4 = pdf(pd4,x);

% Plot the pdfs

figure;

plot(x,pdf1,'r','LineWidth',2)

hold on;

plot(x,pdf2,'k:','LineWidth',2);

plot(x,pdf3,'b-.','LineWidth',2);

plot(x,pdf4,'g--','LineWidth',2);

legend({'a = 0, b = 0.5, c = 1','a = -1, b = 0, c = 1',...

 'a = -0.5, b = 0, c = 1','a = 0, b = 0, c = 1'},'Location','NW');

hold off;

 Triangular Distribution

B-159

As the distance between a and c increases, the density at any particular value within
the distribution boundaries decreases. Because the density function integrates to 1, the
height of the pdf plot decreases as its width increases. The location of the peak parameter
b determines whether the pdf skews right or left, or if it is symmetrical.

Cumulative Distribution Function

The cumulative distribution function (cdf) of the triangular distribution is

B Triangular Distribution

B-160

F x a b c

x a

x a

c a b a
a x b

c x

c a c b
b

(| , ,)

,

,

,

=

<

-()
-() -()

£ £

-
-()

-() -()

0

1

2

2

<< £

>

Ï

Ì

Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô

x c

x c1 ,

.

This plot shows how changing the value of the parameters a, b, and c alters the shape of
the cdf.

% Create four distribution objects with different parameters

pd1 = makedist('Triangular');

pd2 = makedist('Triangular','a',-1,'b',0,'c',1);

pd3 = makedist('Triangular','a',-.5,'b',0,'c',1);

pd4 = makedist('Triangular','a',0,'b',0,'c',1);

% Compute the cdfs

x = -1.2:.01:1.2;

cdf1 = cdf(pd1,x);

cdf2 = cdf(pd2,x);

cdf3 = cdf(pd3,x);

cdf4 = cdf(pd4,x);

% Plot the cdfs

figure;

plot(x,cdf1,'r','LineWidth',2)

xlim([-1.2 1.2]);

ylim([0 1.1]);hold on;

plot(x,cdf2,'k:','LineWidth',2);

plot(x,cdf3,'b-.','LineWidth',2);

plot(x,cdf4,'g--','LineWidth',2);

legend({'a = 0, b = 0.5, c = 1','a = -1, b = 0, c = 1',...

 'a = -0.5, b = 0, c = 1','a = 0, b = 0, c = 1'},'Location','NW');

hold off;

 Triangular Distribution

B-161

Descriptive Statistics

The mean and variance of the triangular distribution are related to the parameters a, b,
and c.

The mean is

mean = + +Ê
ËÁ

ˆ
¯̃

a b c

3
.

The variance is

B Triangular Distribution

B-162

var .=
+ + - - -Ê

Ë
ÁÁ

ˆ

¯
˜̃

a b c ab ac bc
2 2 2

18

Related Examples
• “Generate Random Numbers Using the Triangular Distribution” on page 5-66

More About
• Using TriangularDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Uniform Distribution (Continuous)

B-163

Uniform Distribution (Continuous)

In this section...

“Overview” on page B-163
“Parameters” on page B-163
“Probability Density Function” on page B-163
“Cumulative Distribution Function” on page B-165
“Descriptive Statistics” on page B-167
“Relationship to Other Distributions” on page B-168

Overview

The uniform distribution (also called the rectangular distribution) is notable because
it has a constant probability distribution function (pdf) between its two bounding
parameters. It is appropriate for representing the distribution of round-off errors in
values tabulated to a particular number of decimal places, and is used in random number
generating techniques such as the inversion method.

Parameters

The uniform distribution uses the following parameters.

Parameter Description Constraints

lower Lower limit -• < <lower upper

upper Upper limit lower upper< < •

Parameter Estimation

The maximum likelihood estimator (MLE) for lower is the sample minimum. The MLE
for upper is the sample maximum.

Probability Density Function

The probability density function (pdf) of the continuous uniform distribution is

B Uniform Distribution (Continuous)

B-164

f x lower upper upper lower
lower x upper

otherwi

(| ,)
;

;

= -
Ê

Ë
Á

ˆ

¯
˜ £ £1

0 sse

Ï

Ì
Ô

Ó
Ô

.

The pdf is constant between lower and upper.

This plot illustrates how changing the value of the parameters lower and upper affects
the shape of the pdf.

% Create three distribution objects with different parameters

pd1 = makedist('Uniform');

pd2 = makedist('Uniform','lower',-2,'upper',2);

pd3 = makedist('Uniform','lower',-2,'upper',1);

% Compute the pdfs

x = -3:.01:3;

pdf1 = pdf(pd1,x);

pdf2 = pdf(pd2,x);

pdf3 = pdf(pd3,x);

% Plot the pdfs

figure;

stairs(x,pdf1,'r','LineWidth',2);

hold on;

stairs(x,pdf2,'k:','LineWidth',2);

stairs(x,pdf3,'b-.','LineWidth',2);

ylim([0 1.1]);

legend({'lower = 0, upper = 1','lower = -2, upper = 2',...

 'lower = -2, upper = 1'},'Location','NW');

hold off;

 Uniform Distribution (Continuous)

B-165

As the distance between lower and upper increases, the density at any particular value
within the distribution boundaries decreases. Because the density function integrates to
1, the height of the pdf plot decreases as its width increases.

Cumulative Distribution Function

The cumulative distribution function (cdf) of the continuous uniform distribution is

B Uniform Distribution (Continuous)

B-166

F x lower upper

x lower

x lower

upper lower
lower x upper| ,

;

;() =

<

-

-
£ <

0

11 ;

.

x upper≥

Ï

Ì
Ô
Ô

Ó
Ô
Ô

This plot illustrates how changing the value of the parameters lower and upper affects
the shape of the cdf.

% Create three distribution objects with different parameters

pd1 = makedist('Uniform');

pd2 = makedist('Uniform','lower',-2,'upper',2);

pd3 = makedist('Uniform','lower',-2,'upper',1);

% Compute the cdfs

x = -3:.01:3;

cdf1 = cdf(pd1,x);

cdf2 = cdf(pd2,x);

cdf3 = cdf(pd3,x);

% Plot the cdfs

figure;

plot(x,cdf1,'r','LineWidth',2);

hold on;

plot(x,cdf2,'k:','LineWidth',2);

plot(x,cdf3,'b-.','LineWidth',2);

ylim([0 1.1]);

legend({'lower = 0, upper = 1','lower = -2, upper = 2',...

 'lower = -2, upper = 1'},'Location','NW');

hold off;

 Uniform Distribution (Continuous)

B-167

Descriptive Statistics

The mean and variance of the continuous uniform distribution are related to the
parameters lower and upper.

The mean is

mean = +()
1

2
lower upper .

The variance is

B Uniform Distribution (Continuous)

B-168

var .= -()
1

12

2
upper lower

Relationship to Other Distributions

The standard uniform distribution (lower = 0 and upper = 1) is a special case of the
beta distribution obtained by setting the beta distribution parameters a = 1 and b = 1.

The inversion method uses the continuous standard uniform distribution to generate
random numbers for any other continuous distribution. The inversion method relies on
the principle that continuous cumulative distribution functions (cdfs) range uniformly
over the open interval (0,1). If u is a uniform random number on (0,1), then x = F–1(u)
generates a random number x from any continuous distribution with the specified cdf F.

Related Examples
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-135

More About
• Using UniformDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Uniform Distribution (Discrete)

B-169

Uniform Distribution (Discrete)

In this section...

“Definition” on page B-169
“Background” on page B-169
“Examples” on page B-169

Definition

The discrete uniform pdf is

y f x N
N

I xN= () = ()()| ,...,
1

1

Background

The discrete uniform distribution is a simple distribution that puts equal weight on the
integers from one to N.

Examples

Plot a Discrete Uniform Distribution cdf

As for all discrete distributions, the cdf is a step function. The plot shows the discrete
uniform cdf for N = 10.

x = 0:10;

y = unidcdf(x,10);

figure;

stairs(x,y)

h = gca;

h.XLim = [0 11];

B Uniform Distribution (Discrete)

B-170

Generate Discrete Uniform Random Numbers

Pick a random sample of 10 from a list of 553 items.

rng default; % for reproducibility

numbers = unidrnd(553,1,10)

numbers =

 451 501 71 506 350 54 155 303 530 534

 Uniform Distribution (Discrete)

B-171

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

B Weibull Distribution

B-172

Weibull Distribution

In this section...

“Definition” on page B-172
“Background” on page B-172
“Parameters” on page B-173
“Example” on page B-173

Definition

The Weibull pdf is positive only for positive values of x, and is zero otherwise. For strictly
positive values of the shape parameter b and scale parameter a, the density is

f x a b
b

a

x

a
e

b
x a

b

| , ./() = Ê
ËÁ

ˆ
¯̃

-
-()

1

Background

Waloddi Weibull offered the distribution that bears his name as an appropriate
analytical tool for modeling the breaking strength of materials. Current usage also
includes reliability and lifetime modeling. The Weibull distribution is more flexible than
the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If f(t) and F(t)
are the pdf and cdf of a distribution, then the hazard rate is

h t
f t

F t
() =

()
− ()1

Substituting the pdf and cdf of the exponential distribution for f(t) and F(t) above yields a
constant. The example below shows that the hazard rate for the Weibull distribution can
vary.

 Weibull Distribution

B-173

Parameters

Suppose you want to model the tensile strength of a thin filament using the Weibull
distribution. The function wblfit gives maximum likelihood estimates and confidence
intervals for the Weibull parameters.

rng('default'); % For reproducibility

strength = wblrnd(0.5,2,100,1); % Simulated strengths

[p,ci] = wblfit(strength)

p =

 0.4768 1.9622

ci =

 0.4291 1.6821

 0.5298 2.2890

The default 95% confidence interval for each parameter contains the true value.

Example

The exponential distribution has a constant hazard function, which is not generally the
case for the Weibull distribution. The plot shows the hazard function for exponential
(dashed line) and Weibull (solid line) distributions having the same mean life. The
Weibull hazard rate here increases with age (a reasonable assumption).

t = 0:0.1:4.5;

h1 = exppdf(t,0.8862) ./ (1-expcdf(t,0.8862));

h2 = wblpdf(t,1,2) ./ (1-wblcdf(t,1,2));

plot(t,h1,'--',t,h2,'-')

B Weibull Distribution

B-174

More About
• Using WeibullDistribution Objects
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-17

 Wishart Distribution

B-175

Wishart Distribution

In this section...

“Overview” on page B-175
“Parameters” on page B-175
“Probability Density Function” on page B-175
“Example” on page B-176

Overview

The Wishart distribution is a generalization of the univariate chi-square distribution to
two or more variables. It is a distribution for symmetric positive semidefinite matrices,
typically covariance matrices, the diagonal elements of which are each chi-square
random variables. In the same way as the chi-square distribution can be constructed
by summing the squares of independent, identically distributed, zero-mean univariate
normal random variables, the Wishart distribution can be constructed by summing the
inner products of independent, identically distributed, zero-mean multivariate normal
random vectors. The Wishart distribution is often used as a model for the distribution of
the sample covariance matrix for multivariate normal random data, after scaling by the
sample size.

Only random matrix generation is supported for the Wishart distribution, including both
singular and nonsingular Σ.

Parameters

The Wishart distribution is parameterized with a symmetric, positive semidefinite
matrix, Σ, and a positive scalar degrees of freedom parameter, ν. ν is analogous to the
degrees of freedom parameter of a univariate chi-square distribution, and Σν is the mean
of the distribution.

Probability Density Function

The probability density function of the d-dimensional Wishart distribution is given by

B Wishart Distribution

B-176

y = f(, ,) =
2

(-d-1
- trace

(d)/2
Χ Σ

Χ
Σ Χ

ν
π

ν

ν

) /2

1

2

1

() ()







−

e

((d(d-1))/4 ... (-(d-1))/2∑ ()ν ν ν/
/

2
2Γ Γ

where X and Σ are d-by-d symmetric positive definite matrices, and ν is a scalar greater
than d – 1. While it is possible to define the Wishart for singular Σ, the density cannot be
written as above.

Example

If x is a bivariate normal random vector with mean zero and covariance matrix

S =
Ê

Ë
Á

ˆ

¯
˜

1 5

5 2

.

.

then you can use the Wishart distribution to generate a sample covariance matrix
without explicitly generating x itself. Notice how the sampling variability is quite large
when the degrees of freedom is small.

Sigma = [1 .5; .5 2];

df = 10; S1 = wishrnd(Sigma,df)/df

S1 =

 1.7959 0.64107

 0.64107 1.5496

df = 1000; S2 = wishrnd(Sigma,df)/df

S2 =

 0.9842 0.50158

 0.50158 2.1682

See Also
wishrnd

More About
• “Inverse Wishart Distribution” on page B-78
• “Supported Distributions” on page 5-17

C

Bibliography

[1] Atkinson, A. C., and A. N. Donev. Optimum Experimental Designs. New York: Oxford
University Press, 1992.

[2] Bates, D. M., and D. G. Watts. Nonlinear Regression Analysis and Its Applications.
Hoboken, NJ: John Wiley & Sons, Inc., 1988.

[3] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics. Hoboken, NJ: John
Wiley & Sons, Inc., 1980.

[4] Berry, M. W., et al. “Algorithms and Applications for Approximate Nonnegative
Matrix Factorization.” Computational Statistics and Data Analysis. Vol. 52, No.
1, 2007, pp. 155–173.

[5] Bookstein, Fred L. Morphometric Tools for Landmark Data. Cambridge, UK:
Cambridge University Press, 1991.

[6] Bouye, E., V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli. “Copulas for
Finance: A Reading Guide and Some Applications.” Working Paper. Groupe de
Recherche Operationnelle, Credit Lyonnais, 2000.

[7] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis.
New York: Oxford University Press, 1997.

[8] Box, G. E. P., and N. R. Draper. Empirical Model-Building and Response Surfaces.
Hoboken, NJ: John Wiley & Sons, Inc., 1987.

[9] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken,
NJ: Wiley-Interscience, 1978.

[10] Bratley, P., and B. L. Fox. “ALGORITHM 659 Implementing Sobol's Quasirandom
Sequence Generator.” ACM Transactions on Mathematical Software. Vol. 14, No.
1, 1988, pp. 88–100.

[11] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Boca Raton, FL: CRC Press, 1984.

C Bibliography

C-2

[12] Breiman, L., et al., Classification and Regression Trees, Chapman & Hall, Boca
Raton, 1993.

[13] Bulmer, M. G. Principles of Statistics. Mineola, NY: Dover Publications, Inc., 1979.

[14] Bury, K.. Statistical Distributions in Engineering. Cambridge, UK: Cambridge
University Press, 1999.

[15] Chatterjee, S., and A. S. Hadi. “Influential Observations, High Leverage Points, and
Outliers in Linear Regression.” Statistical Science. Vol. 1, 1986, pp. 379–416.

[16] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

[17] Conover, W. J. Practical Nonparametric Statistics. Hoboken, NJ: John Wiley & Sons,
Inc., 1980.

[18] Cook, R. D., and S. Weisberg. Residuals and Influence in Regression. New York:
Chapman & Hall/CRC Press, 1983.

[19] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman & Hall,
1984.

[20] Davidian, M., and D. M. Giltinan. Nonlinear Models for Repeated Measurements
Data. New York: Chapman & Hall, 1995.

[21] Deb, P., and M. Sefton. “The Distribution of a Lagrange Multiplier Test of
Normality.” Economics Letters. Vol. 51, 1996, pp. 123–130.

[22] de Jong, S. “SIMPLS: An Alternative Approach to Partial Least Squares Regression.”
Chemometrics and Intelligent Laboratory Systems. Vol. 18, 1993, pp. 251–263.

[23] Demidenko, E. Mixed Models: Theory and Applications. Hoboken, NJ: John Wiley &
Sons, Inc., 2004.

[24] Delyon, B., M. Lavielle, and E. Moulines, Convergence of a stochastic approximation
version of the EM algorithm, Annals of Statistics, 27, 94-128, 1999.

[25] Dempster, A. P., N. M. Laird, and D. B. Rubin. “Maximum Likelihood from
Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society.
Series B, Vol. 39, No. 1, 1977, pp. 1–37.

[26] Devroye, L. Non-Uniform Random Variate Generation. New York: Springer-Verlag,
1986.

 Bibliography

C-3

[27] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman &
Hall, 1990.

[28] Draper, N. R., and H. Smith. Applied Regression Analysis. Hoboken, NJ: Wiley-
Interscience, 1998.

[29] Drezner, Z. “Computation of the Trivariate Normal Integral.” Mathematics of
Computation. Vol. 63, 1994, pp. 289–294.

[30] Drezner, Z., and G. O. Wesolowsky. “On the Computation of the Bivariate Normal
Integral.” Journal of Statistical Computation and Simulation. Vol. 35, 1989, pp.
101–107.

[31] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple
Regression Computing Environment.” Computer Science and Statistics:
Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American
Statistical Association, 1989.

[32] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge, UK: Cambridge University Press, 1998.

[33] Efron, B., and R. J. Tibshirani. An Introduction to the Bootstrap. New York:
Chapman & Hall, 1993.

[34] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for
Insurance and Finance. New York: Springer, 1997.

[35] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken,
NJ: John Wiley & Sons, Inc., 1993, pp. 50–52, 73–74, 102–105, 147, 148.

[36] Genz, A. “Numerical Computation of Rectangular Bivariate and Trivariate Normal
and t Probabilities.” Statistics and Computing. Vol. 14, No. 3, 2004, pp. 251–260.

[37] Genz, A., and F. Bretz. “Comparison of Methods for the Computation of Multivariate
t Probabilities.” Journal of Computational and Graphical Statistics. Vol. 11, No.
4, 2002, pp. 950–971.

[38] Genz, A., and F. Bretz. “Numerical Computation of Multivariate t Probabilities with
Application to Power Calculation of Multiple Contrasts.” Journal of Statistical
Computation and Simulation. Vol. 63, 1999, pp. 361–378.

[39] Gibbons, J. D. Nonparametric Statistical Inference. New York: Marcel Dekker, 1985.

C Bibliography

C-4

[40] Goodall, C. R. “Computation Using the QR Decomposition.” Handbook in Statistics.
Vol. 9, Amsterdam: Elsevier/North-Holland, 1993.

[41] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in Engineering. Hoboken, NJ:
John Wiley & Sons, Inc., 1994, p. 95.

[42] Hald, A. Statistical Theory with Engineering Applications. Hoboken, NJ: John Wiley
& Sons, Inc., 1960.

[43] Harman, H. H. Modern Factor Analysis. 3rd Ed. Chicago: University of Chicago
Press, 1976.

[44] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
New York: Springer, 2001.

[45] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ:
John Wiley & Sons, 1987.

[46] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Applications to Nonorthogonal
Problems.” Technometrics. Vol. 12, No. 1, 1970, pp. 69–82.

[47] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Biased Estimation for
Nonorthogonal Problems.” Technometrics. Vol. 12, No. 1, 1970, pp. 55–67.

[48] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.

[49] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted
Least-Squares.” Communications in Statistics: Theory and Methods, A6, 1977, pp.
813–827.

[50] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ:
John Wiley & Sons, Inc., 1999.

[51] Hong, H. S., and F. J. Hickernell. “ALGORITHM 823: Implementing Scrambled
Digital Sequences.” ACM Transactions on Mathematical Software. Vol. 29, No. 2,
2003, pp. 95–109.

[52] Huber, P. J. Robust Statistics. Hoboken, NJ: John Wiley & Sons, Inc., 1981.

[53] Jackson, J. E. A User's Guide to Principal Components. Hoboken, NJ: John Wiley
and Sons, 1991.

[54] Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper Saddle River, NJ:
Prentice-Hall, 1988.

 Bibliography

C-5

[55] Jarque, C. M., and A. K. Bera. “A test for normality of observations and regression
residuals.” International Statistical Review. Vol. 55, No. 2, 1987, pp. 163–172.

[56] Joe, S., and F. Y. Kuo. “Remark on Algorithm 659: Implementing Sobol's
Quasirandom Sequence Generator.” ACM Transactions on Mathematical
Software. Vol. 29, No. 1, 2003, pp. 49–57.

[57] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148, 189–
200, 201–219.

[58] Johnson, N. L., N. Balakrishnan, and S. Kotz. Continuous Multivariate
Distributions. Vol. 1. Hoboken, NJ: Wiley-Interscience, 2000.

[59] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.

[60] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions.
Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.

[61] Johnson, N. L., S. Kotz, and N. Balakrishnan. Discrete Multivariate Distributions.
Hoboken, NJ: Wiley-Interscience, 1997.

[62] Johnson, N. L., S. Kotz, and A. W. Kemp. Univariate Discrete Distributions.
Hoboken, NJ: Wiley-Interscience, 1993.

[63] Jolliffe, I. T. Principal Component Analysis. 2nd ed., New York: Springer-Verlag,
2002.

[64] Jöreskog, K. G. “Some Contributions to Maximum Likelihood Factor Analysis.”
Psychometrika. Vol. 32, 1967, pp. 443–482.

[65] Kaufman L., and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. Hoboken, NJ: John Wiley & Sons, Inc., 1990.

[66] Kendall, David G. “A Survey of the Statistical Theory of Shape.” Statistical Science.
Vol. 4, No. 2, 1989, pp. 87–99.

[67] Kocis, L., and W. J. Whiten. “Computational Investigations of Low-Discrepancy
Sequences.” ACM Transactions on Mathematical Software. Vol. 23, No. 2, 1997,
pp. 266–294.

C Bibliography

C-6

[68] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications.
London: Imperial College Press, 2000.

[69] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New
York: Oxford University Press, 1988.

[70] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ:
Wiley-Interscience, 2002.

[71] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical Method. 2nd ed.
New York: American Elsevier Publishing, 1971.

[72] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for normality with mean and
variance unknown.” Journal of the American Statistical Association. Vol. 62,
1967, pp. 399–402.

[73] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for the exponential distribution
with mean unknown.” Journal of the American Statistical Association. Vol. 64,
1969, pp. 387–389.

[74] Lindstrom, M. J., and D. M. Bates. “Nonlinear mixed-effects models for repeated
measures data.” Biometrics. Vol. 46, 1990, pp. 673–687.

[75] Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with Missing Data.
2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 2002.

[76] Mardia, K. V., J. T. Kent, and J. M. Bibby. Multivariate Analysis. Burlington, MA:
Academic Press, 1980.

[77] Marquardt, D.W. “Generalized Inverses, Ridge Regression, Biased Linear
Estimation, and Nonlinear Estimation.” Technometrics. Vol. 12, No. 3, 1970, pp.
591–612.

[78] Marquardt, D. W., and R.D. Snee. “Ridge Regression in Practice.” The American
Statistician. Vol. 29, No. 1, 1975, pp. 3–20.

[79] Marsaglia, G., and W. W. Tsang. “A Simple Method for Generating Gamma
Variables.” ACM Transactions on Mathematical Software. Vol. 26, 2000, pp. 363–
372.

[80] Marsaglia, G., W. Tsang, and J. Wang. “Evaluating Kolmogorov’s Distribution.”
Journal of Statistical Software. Vol. 8, Issue 18, 2003.

 Bibliography

C-7

[81] Martinez, W. L., and A. R. Martinez. Computational Statistics with MATLAB. New
York: Chapman & Hall/CRC Press, 2002.

[82] Massey, F. J. “The Kolmogorov-Smirnov Test for Goodness of Fit.” Journal of the
American Statistical Association. Vol. 46, No. 253, 1951, pp. 68–78.

[83] Matousek, J. “On the L2-Discrepancy for Anchored Boxes.” Journal of Complexity.
Vol. 14, No. 4, 1998, pp. 527–556.

[84] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley &
Sons, Inc., 2000.

[85] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman &
Hall, 1990.

[86] McGill, R., J. W. Tukey, and W. A. Larsen. “Variations of Boxplots.” The American
Statistician. Vol. 32, No. 1, 1978, pp. 12–16.

[87] Meeker, W. Q., and L. A. Escobar. Statistical Methods for Reliability Data. Hoboken,
NJ: John Wiley & Sons, Inc., 1998.

[88] Meng, Xiao-Li, and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM
Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

[89] Meyers, R. H., and D.C. Montgomery. Response Surface Methodology: Process and
Product Optimization Using Designed Experiments. Hoboken, NJ: John Wiley &
Sons, Inc., 1995.

[90] Miller, L. H. “Table of Percentage Points of Kolmogorov Statistics.” Journal of the
American Statistical Association. Vol. 51, No. 273, 1956, pp. 111–121.

[91] Milliken, G. A., and D. E. Johnson. Analysis of Messy Data, Volume 1: Designed
Experiments. Boca Raton, FL: Chapman & Hall/CRC Press, 1992.

[92] Montgomery, D. Introduction to Statistical Quality Control. Hoboken, NJ: John
Wiley & Sons, 1991, pp. 369–374.

[93] Montgomery, D. C. Design and Analysis of Experiments. Hoboken, NJ: John Wiley &
Sons, Inc., 2001.

[94] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics.
3rd ed., New York: McGraw-Hill, 1974. pp. 540–541.

C Bibliography

C-8

[95] Moore, J. Total Biochemical Oxygen Demand of Dairy Manures. Ph.D. thesis.
University of Minnesota, Department of Agricultural Engineering, 1975.

[96] Mosteller, F., and J. Tukey. Data Analysis and Regression. Upper Saddle River, NJ:
Addison-Wesley, 1977.

[97] Nelson, L. S. “Evaluating Overlapping Confidence Intervals.” Journal of Quality
Technology. Vol. 21, 1989, pp. 140–141.

[98] Patel, J. K., C. H. Kapadia, and D. B. Owen. Handbook of Statistical Distributions.
New York: Marcel Dekker, 1976.

[99] Pinheiro, J. C., and D. M. Bates. “Approximations to the log-likelihood function in
the nonlinear mixed-effects model.” Journal of Computational and Graphical
Statistics. Vol. 4, 1995, pp. 12–35.

[100] Rice, J. A. Mathematical Statistics and Data Analysis. Pacific Grove, CA: Duxbury
Press, 1994.

[101] Rosipal, R., and N. Kramer. “Overview and Recent Advances in Partial Least
Squares.” Subspace, Latent Structure and Feature Selection: Statistical and
Optimization Perspectives Workshop (SLSFS 2005), Revised Selected Papers
(Lecture Notes in Computer Science 3940). Berlin, Germany: Springer-Verlag,
2006, pp. 34–51.

[102] Sachs, L. Applied Statistics: A Handbook of Techniques. New York: Springer-
Verlag, 1984, p. 253.

[103] Searle, S. R., F. M. Speed, and G. A. Milliken. “Population marginal means in the
linear model: an alternative to least-squares means.” American Statistician.
1980, pp. 216–221.

[104] Seber, G. A. F. Linear Regression Analysis. Hoboken, NJ: Wiley-Interscience, 2003.

[105] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc.,
1984.

[106] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-
Interscience, 2003.

[107] Sexton, Joe, and A. R. Swensen. “ECM Algorithms that Converge at the Rate of
EM.” Biometrika. Vol. 87, No. 3, 2000, pp. 651–662.

 Bibliography

C-9

[108] Snedecor, G. W., and W. G. Cochran. Statistical Methods. Ames, IA: Iowa State
Press, 1989.

[109] Spath, H. Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples.
Translated by J. Goldschmidt. New York: Halsted Press, 1985.

[110] Stein, M. “Large sample properties of simulations using latin hypercube sampling.”
Technometrics. Vol. 29, No. 2, 1987, pp. 143–151. Correction, Vol. 32, p. 367.

[111] Stephens, M. A. “Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related
Statistics Without Extensive Tables.” Journal of the Royal Statistical Society.
Series B, Vol. 32, No. 1, 1970, pp. 115–122.

[112] Street, J. O., R. J. Carroll, and D. Ruppert. “A Note on Computing Robust
Regression Estimates via Iteratively Reweighted Least Squares.” The American
Statistician. Vol. 42, 1988, pp. 152–154.

[113] Student. “On the Probable Error of the Mean.” Biometrika. Vol. 6, No. 1, 1908, pp.
1–25.

[114] Vellemen, P. F., and D. C. Hoaglin. Application, Basics, and Computing of
Exploratory Data Analysis. Pacific Grove, CA: Duxbury Press, 1981.

[115] Weibull, W. “A Statistical Theory of the Strength of Materials.” Ingeniors
Vetenskaps Akademiens Handlingar. Stockholm: Royal Swedish Institute for
Engineering Research, No. 151, 1939.

[116] Zahn, C. T. “Graph-theoretical methods for detecting and describing Gestalt
clusters.” IEEE Transactions on Computers. Vol. C-20, Issue 1, 1971, pp. 68–86.

